模式识别作业题(1)
贝叶斯决策理论-模式识别课程作业
研究生课程作业贝叶斯决策理论课程名称模式识别姓名xx学号xxxxxxxxx专业软件工程任课教师xxxx提交时间2019.xxx课程论文提交时间:2019 年3月19 日需附上习题题目1. 试简述先验概率,类条件概率密度函数和后验概率等概念间的关系:先验概率针对M 个事件出现的可能性而言,不考虑其他任何条件类条件概率密度函数是指在已知某类别的特征空间中,出现特征值X 的概率密度,指第 类样品其属性X 是如何分布的。
后验概率是指通过调查或其它方式获取新的附加信息,利用贝叶斯公式对先验概率进行修正,而后得到的概率。
贝叶斯公式可以计算出该样品分属各类别的概率,叫做后验概率;看X 属于那个类的可能性最大,就把X 归于可能性最大的那个类,后验概率作为识别对象归属的依据。
贝叶斯公式为类别的状态是一个随机变量.而某种状态出现的概率是可以估计的。
贝叶斯公式体现了先验概率、类条件概率密度函数、后验概率三者关系的式子。
2. 试写出利用先验概率和分布密度函数计算后验概率的公式3. 写出最小错误率和最小风险决策规则相应的判别函数(两类问题)。
最小错误率如果12(|)(|)P x P x ωω>,则x 属于1ω 如果12(|)(|)P x P x ωω<,则x 属于2ω 最小风险决策规则 If12(|)(|)P x P x ωλω< then 1x ω∈If12(|)(|)P x P x ωλω> then 2x ω∈4. 分别写出以下两种情况下,最小错误率贝叶斯决策规则: (1)两类情况,且12(|)(|)P X P X ωω= (2)两类情况,且12()()P P ωω=最小错误率贝叶斯决策规则为:If 1...,(|)()max (|)i i j j cp x P P x ωωω==, then i x ω∈两类情况:若1122(|)()(|)()p X P p X P ωωωω>,则1X ω∈ 若1122(|)()(|)()p X P p X P ωωωω<,则2X ω∈(1) 12(|)(|)P X P X ωω=, 若12()()P P ωω>,则1X ω∈若12()()P P ωω<,则2X ω∈(2) 12()()P P ωω=,若12(|)(|)p X p X ωω>,则1X ω∈若12(|)(|)p X p X ωω<,则2X ω∈5. 对两类问题,证明最小风险贝叶斯决策规则可表示为, 若112222221111(|)()()(|)()()P x P P x P ωλλωωλλω->-则1x ω∈,反之则2x ω∈ 计算条件风险2111111221(|)(|)(|)(|)j j j R x p x P x P x αλωλωλω===+∑2222112221(|)(|)(|)(|)j j j R x p x P x P x αλωλωλω===+∑如果 111122(|)(|)P x P x λωλω+<211222(|)(|)P x P x λωλω+ 2111112222()(|)()(|)P x P x λλωλλω->-211111122222()()(|)()()(|)P p x P p x λλωωλλωω->-112222221111(|)()()(|)()()P x P P x P ωλλωωλλω->-所以,如果112222221111(|)()()(|)()()P x P P x P ωλλωωλλω->- ,则1x ω∈,反之则2x ω∈6. 表示模式的特征向量d x R ∈,对一个c 类分类问题,假设各类先验概率相等,每一类条件概率密度为高斯分布。
大学模式识别考试题及答案详解
大学模式识别考试题及答案详解Document number:PBGCG-0857-BTDO-0089-PTT1998一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A?01, A? 0A1 , A? 1A0 , B?BA , B? 0}, A)(2)({A}, {0, 1}, {A?0, A? 0A}, A)(3)({S}, {a, b}, {S ? 00S, S ? 11S, S ? 00, S ? 11}, S)(4)({A}, {0, 1}, {A?01, A? 0A1, A? 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。
答:(1)分类准则,模式相似性测度,特征量的选择,量纲。
(2)证明:(2分)(2分)(1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。
模式识别作业题(1)
m 2 mn ] 是奇异的。 mn n 2
1
2、参考参考书 P314“模式识别的概要表示”画出第二章的知识结构图。 答:略。 3、现有两类分类问题。如下图所示, (1,
1 1 3 ) 、 ( , ) 、 (1, 3 ) 、 (1,-tan10°)为 3 2 2 3 3 ,- * tan 10° ) 、 (2,0)为 W2 类。 5 5
W1 类,其中(1,-tan10°)已知为噪声点; (1,0) 、 ( 自选距离度量方法和分类器算法,判别(
6 ,0)属于哪一类? 5
答:度量方法:根据题意假设各模式是以原点为圆心的扇状分布,以两个向量之间夹角(都 是以原点为起点)的余弦作为其相似性测度,P22。 然后使用 K 近邻法,K 取 3,求已知 7 个点与(
2
答: (1)×,不一定,因为仅仅是对于训练样本分得好而已。 (2)×,平均样本法不需要。 (3)√,参考书 P30,将 r 的值代入式(2.26)即得。 (4)√,参考书 P34,三条线线性相关。 ( 5 ) √ ,就是说解区是 “ 凸 ” 的,参考书 P37 ,也可以证明,设 W1T X’=a, W2T X’=b, 则 a≤λW1+(1-λ)W2≤b(设 a≤b) 。 (6)√,参考书 P38。 (7)×,前一句是错的,参考书 P46。 (8)×,是在训练过程中发现的,参考书 P51。 (9)×,最简单的情况,两个点(0,0)∈w1,(2,0)∈w2,用势函数法求出来的判决界面是 x1=1。 (10)√,一个很简单的小证明, 设 X1=a+K1*e,X2= a-K1*e,X3=b+K2*e,X4= b-K2*e, Sw=某系数*e*e’,设 e=[m n],则 e *e’= [
方法三:参照“两维三类问题的线性分类器的第二种情况(有不确定区域) ”的算法,求 G12,G23,G13。 G12*x1>0, G12*x2<0, G12=(-1,-1,-1)’ G23*x2>0, G23*x3<0, G23=(-1,-1,1)’ G13*x1>0, G13*x3<0, G12=(-1,-1,1)’ 有两条线重合了。
模式识别作业
第四章模式识别作业姓名:谢雪琴学号:20102220551、阐述线性判别函数的几何意义和用于分类的实用价值。
答:线性判别函数的几何意义:利用线性判别函数进行决策,它可以看成是两类数据沿着一个向量投影,在向量上存在一个超平面,能将两类数据分隔开,即两类数据能够完全被区别。
线性判别函数可以是最小错误率或最小风险意义下的最优分类器。
它利用一个超平面把特征空间分割成为两个决策区域,超平面的方向由权向量W确定,它的位置由阈权值w0确定,判别函数g(x)正比于x点到超平面的代数距离(带正负号),当x在H正侧时,g(x)>0,当在H负侧时,g(x)<0;使用价值:线性分类器是最简单的分类器,但是样本在某些分布情况时,线性判别函数可以成为最小错误率或最小风险意义下的最优分类器。
而在一般情况下,线性分类器只能是次优分类器,但是因为他简单而且在很多情况下效果接近最优,所以应用比较广发,在样本有限的情况下有时甚至能取得比复杂分类器更好地效果2、参考教材4.3,完成线性判别分析(LDA)的Matlab实现,并用Fisher's Iris Data【注】进行验证(考虑其中的2类即可)。
注:Fisher's Iris Data: Fisher's iris data consists of measurements on the sepal length, sepal width, petal length, and petal width of 150 iris specimens. There are 50 specimens from each of three species. 在Matlab中调用load fisheriris可以得到该数据,meas为150×4的数据矩阵,species为150×1的cell矩阵,含有类别信息。
3、试推导出感知器算法的迭代求解过程,尝试用Matlab实现,并用Fisher's Iris Data进行验证(考虑2类分类即可)。
大学模式识别考试题及答案详解
大学模式识别考试题及答案详解Company number:【0089WT-8898YT-W8CCB-BUUT-202108】一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A01, A 0A1 , A 1A0 , B BA , B 0}, A)(2)({A}, {0, 1}, {A0, A 0A}, A)(3)({S}, {a, b}, {S 00S, S 11S, S 00, S 11}, S)(4)({A}, {0, 1}, {A01, A 0A1, A 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些(2)证明马氏距离是平移不变的、非奇异线性变换不变的。
答:(1)分类准则,模式相似性测度,特征量的选择,量纲。
(2)证明:(2分)(2分)(1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。
模式识别练习题
一、试问“模式”与“模式类”的含义。
如果一位姓王的先生是位老年人,试问“王先生”和“老头”谁是模式,谁是模式类?答:在模式识别学科中,就“模式”与“模式类”而言,模式类是一类事物的代表,概念或典型,而“模式”则是某一事物的具体体现,如“老头”是模式类,而王先生则是“模式”是“老头”的具体化。
二、试说明Mahalanobis距离平方的定义,到某点的Mahalanobis距离平方为常数的轨迹的几何意义,它与欧氏距离的区别与联系。
答:Mahalanobis距离的平方定义为:其中x,u为两个数据,是一个正定对称矩阵(一般为协方差矩阵)。
根据定义,距某一点的Mahalanobis距离相等点的轨迹是超椭球,如果是单位矩阵Σ,则Mahalanobis距离就是通常的欧氏距离。
三、试说明用监督学习与非监督学习两种方法对道路图像中道路区域的划分的基本做法,以说明这两种学习方法的定义与它们间的区别。
答:监督学习方法用来对数据实现分类,分类规则通过训练获得。
该训练集由带分类号的数据集组成,因此监督学习方法的训练过程是离线的。
非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,一般用来对数据集进行分析,如聚类,确定其分布的主分量等。
就道路图像的分割而言,监督学习方法则先在训练用图像中获取道路象素与非道路象素集,进行分类器设计,然后用所设计的分类器对道路图像进行分割。
使用非监督学习方法,则依据道路路面象素与非道路象素之间的聚类分析进行聚类运算,以实现道路图像的分割。
四、试述动态聚类与分级聚类这两种方法的原理与不同。
答:动态聚类是指对当前聚类通过迭代运算改善聚类;分级聚类则是将样本个体,按相似度标准合并,随着相似度要求的降低实现合并。
五、如果观察一个时序信号时在离散时刻序列得到的观察量序列表示为,而该时序信号的内在状态序列表示成。
如果计算在给定O 条件下出现S 的概率,试问此概率是何种概率。
如果从观察序列来估计状态序列的最大似然估计,这与Bayes 决策中基于最小错误率的决策有什么关系。
大学模式识别考试题及答案详解完整版
大学模式识别考试题及答案详解HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A01, A 0A1 , A 1A0 , B BA , B 0}, A)(2)({A}, {0, 1}, {A0, A 0A}, A)(3)({S}, {a, b}, {S 00S, S 11S, S 00, S 11}, S)(4)({A}, {0, 1}, {A01, A 0A1, A 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。
答:(1)分类准则,模式相似性测度,特征量的选择,量纲。
(2)证明:(2分)(2分)(1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。
模式识别_作业1
作业一:作业二:对如下5个6维模式样本,用最小聚类准则进行系统聚类分析: x 1: 0, 1, 3, 1, 3, 4 x 2: 3, 3, 3, 1, 2, 1 x 3: 1, 0, 0, 0, 1, 1 x 4: 2, 1, 0, 2, 2, 1 x 5: 0, 0, 1, 0, 1, 01、 计算D (0)=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0 12 3 5 2612 0 7 15 243 7 0 24 55 15 24 0 2326 24 5 23 0,因为x3与x5的距离最近,则将x3与x5分为一类。
同时可以求出x1,x2,x4与x3,5的距离,如x1到x3,5的距离为x1到x3的距离与x1与x5的距离中取最小的一个距离。
2、 则D (1)=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0 7 15 2470 24 515 24 0 2324 5 23 0,同样现在该矩阵中x4与x3,5的距离最近,则可以将x3,4,5分为一类,这样分类结束,总共可以将x1,x2,x3,x4,x5分为三类,其中:x1为第一类;x2为第二类;x3和x4和x5为第三类。
• 作业三:(K-均值算法)• 选k=2,z 1(1)=x 1,z 2(1)=x 10,用K-均值算法进行聚类分析由图可以看出这二十个点的坐标:x1(0,0),x2(1,0),x3(0,1),x4(1,1),x5(2,1),x6(1,2),x7(2,2),x8( 3,2),x9(6,6),x10(7,6),x11(8,6),x12(6,7),x13(7,7),x14(8,7),x 15(9,7),x16(7,8),x17(8,8),x18(9,8),x19(8,9),x20(9,9)。
1、选2个初始聚类中心,z1(1)=x1,z2(1)=x10.2、求取其它十八个点分别到x1与x10的距离:x2到x1的距离为1;x2到x10的距离为6x3到x1的距离为1;x3到x10的距离为x4到x1的距离为;x4到x10的距离为x5到x1的距离为;x5到x10的距离为5x6到x1的距离为;x6到x10的距离为x7到x1的距离为2;x7到x10的距离为x8到x1的距离为;x8到x10的距离为4x9到x1的距离为6;x9到x10的距离为1x11到x1的距离为10;x11到x10的距离为1x12到x1的距离为;x12到x10的距离为x13到x1的距离为7;x13到x10的距离为1x14到x1的距离为;x14到x10的距离为x15到x1的距离为;x15到x10的距离为x16到x1的距离为;x16到x10的距离为2x17到x1的距离为8;x17到x10的距离为x18到x1的距离为;x18到x10的距离为2x19到x1的距离为;x19到x10的距离为x20到x1的距离为9;x20到x10的距离为所以其中x2到x8距离x1近些,则可以将x2到x8与x1分为一类,而x9与x11到x20与x10分为另一类;3、通过将第一类中的所有x1到x8的坐标求取平均来计算该类别的中心坐标,求取新的类别的中心坐标z1(2)= (5/4,9/8),同理可以求出另一类的中心坐标z2(2)= (92/12,22/3)4、然后重新计算各点距离这二点中心坐标的距离,最后可以得出x1到x8仍然为第一类,x9到x20仍然为第二类。
模式识别作业
第二章主要内容:几种常见的聚类算法已经所使用的准则函数。
作业1:对如下5个6维模式样本,用最小聚类准则进行系统聚类分析 已知样本如下:x1: 0, 1, 3, 1, 3, 4;x2: 3, 3, 3, 1, 2, 1;x3: 1, 0, 0, 0, 1, 1;x4: 2, 1, 0, 2, 2, 1;x5: 0, 0, 1, 0, 1, 0 第1步:将每一样本看成单独一类,得(0)(0)(0)112233(0)(0)4455{},{},{}{},{}G x G x G x Gx Gx =====计算各类之间的欧式距离,可得距离矩阵(0)D第2步:矩阵(0)D,它是(0)3G 和(0)5G 之间的距离,将他们合并为一类,得新的分类为(1)(0)(1)(0)(1)(0)(0)(1)(0)112233544{},{},{,},{}G G G G G G G G G ====计算聚类后的距离矩阵(1)D 第3步:由于(1)D 它是(1)3G 与(1)4G 之间的距离,于是合并(1)3G 和(1)4G ,得新的分类为(2)(1)(2)(2)(2)(1)(1)1122334{},{},{,}G G G G G G G ===同样,按最小距离准则计算距离矩阵(2)D,得第4步:同理得(3)(2)(3)(2)(2)11223{},{,}G G G G G == 满足聚类要求,如聚为2类,聚类完毕。
系统聚类算法介绍:第一步:设初始模式样本共有N 个,每个样本自成一类,即建立N 类。
G 1(0), G 2(0) , ……,G N (0)为计算各类之间的距离(初始时即为各样本间的距离),得到一个N*N 维的距离矩阵D(0)。
这里,标号(0)表示聚类开始运算前的状态。
第二步:假设前一步聚类运算中已求得距离矩阵D(n),n 为逐次聚类合并的次数,则求D(n)中的最小元素。
如果它是Gi(n)和Gj(n)两类之间的距离,则将Gi(n)和Gj(n)两类合并为一类G ij (n+1),由此建立新的分类:G 1(n+1), G 2(n+1)……第三步:计算合并后新类别之间的距离,得D(n+1)。
模式识别大作业-许萌-1306020
第一题对数据进行聚类分析1.题目要求用FAMALE.TXT、MALE.TXT和/或test2.txt的数据作为本次实验使用的样本集,利用C 均值聚类法和层次聚类法对样本集进行聚类分析,对结果进行分析,从而加深对所学内容的理解和感性认识。
2.原理及流程图2.1 C均值聚类法原理C均值算法首先取定C个类别数量并对这C个类别数量选取C个聚类中心,按最小距离原则将各模式分配到C类中的某一类,之后不断地计算类心和调整各模式的类别,最终使各模式到其对应的判属类别中心的距离平方之和最小。
2.2 C均值聚类算法流程图N图1.1 C均值聚类算法流程图2.3 层次聚类算法原理N个初始模式样本自成一类,即建立N类,之后按照以下步骤运算:Step1:计算各类之间(即各样本间)的距离,得一个维数为N×N的距离矩阵D(0)。
“0”表示初始状态。
Step2:假设已求得距离矩阵D(n)(n为逐次聚类合并的次数),找出D(n)中的最小元素,将其对应的两类合并为一类。
由此建立新的分类:Step3:计算合并后所得到的新类别之间的距离,得D (n +1)。
Step4:跳至第2步,重复计算及合并。
直到满足下列条件时即可停止计算:①取距离阈值T ,当D (n )的最小分量超过给定值 T 时,算法停止。
所得即为聚类结果。
②或不设阈值T ,一直到将全部样本聚成一类为止,输出聚类的分级树。
2.4层次聚类算法流程图N图1.2层次聚类算法流程图3 验结果分析对数据文件FAMALE.TXT 、MALE.TXT 进行C 均值聚类的聚类结果如下图所示:图1.3 C 均值聚类结果的二维平面显示将两种样本即进行聚类后的样本中心进行比较,如下表:从下表可以纵向比较可以看出,C 越大,即聚类数目越多,聚类之间差别越小,他们的聚类中心也越接近。
横向比较用FEMALE,MALE 中数据作为样本和用FEMALE,MALE ,test2中),1(),1(21++n G n G数据作为样本时,由于引入了新的样本,可以发现后者的聚类中心比前者都稍大。
模式识别大作业
作业1 用身高和/或体重数据进行性别分类(一)基本要求:用和的数据作为训练样本集,建立Bayes分类器,用测试样本数据对该分类器进行测试。
调整特征、分类器等方面的一些因素,考察它们对分类器性能的影响,从而加深对所学内容的理解和感性认识。
具体做法:1.应用单个特征进行实验:以(a)身高或者(b)体重数据作为特征,在正态分布假设下利用最大似然法或者贝叶斯估计法估计分布密度参数,建立最小错误率Bayes分类器,写出得到的决策规则,将该分类器应用到测试样本,考察测试错误情况。
在分类器设计时可以考察采用不同先验概率(如对, 对, 对等)进行实验,考察对决策规则和错误率的影响。
图1-先验概率:分布曲线图2-先验概率:分布曲线图3--先验概率:分布曲线图4不同先验概率的曲线有图可以看出先验概率对决策规则和错误率有很大的影响。
程序:和2.应用两个特征进行实验:同时采用身高和体重数据作为特征,分别假设二者相关或不相关(在正态分布下一定独立),在正态分布假设下估计概率密度,建立最小错误率Bayes 分类器,写出得到的决策规则,将该分类器应用到训练/测试样本,考察训练/测试错误情况。
比较相关假设和不相关假设下结果的差异。
在分类器设计时可以考察采用不同先验概率(如vs. , vs. , vs. 等)进行实验,考察对决策和错误率的影响。
训练样本female来测试图1先验概率vs. 图2先验概率vs.图3先验概率vs. 图4不同先验概率对测试样本1进行试验得图对测试样本2进行试验有图可以看出先验概率对决策规则和错误率有很大的影响。
程序和3.自行给出一个决策表,采用最小风险的Bayes决策重复上面的某个或全部实验。
W1W2W10W20close all;clear all;X=120::200; %设置采样范围及精度pw1=;pw2=; %设置先验概率sample1=textread('') %读入样本samplew1=zeros(1,length(sample1(:,1)));u1=mean(sample1(:,1));m1=std(sample1(:,1));y1=normpdf(X,u1,m1); %类条件概率分布figure(1);subplot(2,1,1);plot(X,y1);title('F身高类条件概率分布曲线');sample2=textread('') %读入样本samplew2=zeros(1,length(sample2(:,1)));u2=mean(sample2(:,1));m2=std(sample2(:,1));y2=normpdf(X,u2,m2); %类条件概率分布subplot(2,1,2);plot(X,y2);title('M身高类条件概率分布曲线');P1=pw1*y1./(pw1*y1+pw2*y2);P2=pw2*y2./(pw1*y1+pw2*y2);figure(2);subplot(2,1,1);plot(X,P1);title('F身高后验概率分布曲线');subplot(2,1,2);plot(X,P2);title('M身高后验概率分布曲线');P11=pw1*y1;P22=pw2*y2;figure(3);subplot(3,1,1);plot(X,P11);subplot(3,1,2);plot(X,P22);subplot(3,1,3);plot(X,P11,X,P22);sample=textread('all ') %读入样本[result]=bayes(sample1(:,1),sample2(:,1),pw1,pw2);%bayes分类器function [result] =bayes(sample1(:,1),sample2(:,1),pw1,pw2);error1=0;error2=0;u1=mean(sample1(:,1));m1=std(sample1(:,1));y1=normpdf(X,u1,m1); %类条件概率分布u2=mean(sample2(:,1));m2=std(sample2(:,1));y2=normpdf(X,u2,m2); %类条件概率分布P1=pw1*y1./(pw1*y1+pw2*y2);P2=pw2*y2./(pw1*y1+pw2*y2);for i = 1:50if P1(i)>P2(i)result(i)=0;pe(i)=P2(i);elseresult(i)=1;pe(i)=P1(i);endendfor i=1:50if result(k)==0error1=error1+1;else result(k)=1error2=error2+1;endendratio = error1+error2/length(sample); %识别率,百分比形式sprintf('正确识别率为%.2f%%.',ratio)作业2 用身高/体重数据进行性别分类(二)基本要求:试验直接设计线性分类器的方法,与基于概率密度估计的贝叶斯分离器进行比较。
模式识别大作业
模式识别专业:电子信息工程班级:电信****班学号:********** 姓名:艾依河里的鱼一、贝叶斯决策(一)贝叶斯决策理论 1.最小错误率贝叶斯决策器在模式识别领域,贝叶斯决策通常利用一些决策规则来判定样本的类别。
最常见的决策规则有最大后验概率决策和最小风险决策等。
设共有K 个类别,各类别用符号k c ()K k ,,2,1 =代表。
假设k c 类出现的先验概率()k P c以及类条件概率密度()|k P c x 是已知的,那么应该把x 划分到哪一类才合适呢?若采用最大后验概率决策规则,首先计算x 属于k c 类的后验概率()()()()()()()()1||||k k k k k Kk k k P c P c P c P c P c P P c P c ===∑x x x x x然后将x 判决为属于kc ~类,其中()1arg max |kk Kk P c ≤≤=x若采用最小风险决策,则首先计算将x 判决为k c 类所带来的风险(),k R c x ,再将x 判决为属于kc ~类,其中()min ,kkk R c =x可以证明在采用0-1损失函数的前提下,两种决策规则是等价的。
贝叶斯决策器在先验概率()k P c 以及类条件概率密度()|k P c x 已知的前提下,利用上述贝叶斯决策规则确定分类面。
贝叶斯决策器得到的分类面是最优的,它是最优分类器。
但贝叶斯决策器在确定分类面前需要预知()k P c 与()|k P c x ,这在实际运用中往往不可能,因为()|k P c x 一般是未知的。
因此贝叶斯决策器只是一个理论上的分类器,常用作衡量其它分类器性能的标尺。
最小风险贝叶斯决策可按下列步骤进行: (1)在已知)(i P ω,)(i X P ω,i=1,…,c 及给出待识别的X 的情况下,根据贝叶斯公式计算出后验概率:∑==cj iii i i P X P P X P X P 1)()()()()(ωωωωω j=1,…,x(2)利用计算出的后验概率及决策表,按下面的公式计算出采取i a ,i=1,…,a 的条件风险∑==cj j j i i X P a X a R 1)(),()(ωωλ,i=1,2,…,a(3)对(2)中得到的a 个条件风险值)(X a R i ,i=1,…,a 进行比较,找出使其条件风险最小的决策k a ,即()()1,min k i i aR a x R a x ==则k a 就是最小风险贝叶斯决策。
模式识别小作业
(1)神经网络模式识别识别加入20%噪声的A-Z 26个字母。
程序代码clear;close all;clc;[alphabet,targets]=prprob;[R,Q]=size(alphabet);[S2,Q]=size(targets);S1=10;P=alphabet;net=newff(minmax(P),[S1,S2],{'logsig' 'logsig'},'traingdx'); net.LW{2,1}=net.LW{2,1}*0.01;net.b{2}=net.b{2}*0.01;T=targets;net.performFcn='sse';net.trainParam.goal=0.1;net.trainParam.show=20;net.trainParam.epochs=5000;net.trainParam.mc=0.95;[net,tr]=train(net,P,T);netn=net;netn.trainParam.goal=0.6;netn.trainParam.epochs=300;T=[targets targets targets targets];for pass=1:10;P=[alphabet,alphabet,...(alphabet+randn(R,Q)*0.1),...(alphabet+randn(R,Q)*0.2)];[netn,tr]=train(netn,P,T);endnetn.trainParam.goal=0.1;netn.trainParam.epochs=500;netn.trainParam.show=5;P=alphabet;T=targets;[netn,tr]=train(netn,P,T);noise_percent=0.2;for k=1:26noisyChar=alphabet(:,k)+randn(35,1)*noise_percent;subplot(6,9,k+floor(k/9.5)*9);plotchar(noisyChar);de_noisyChar=sim(net,noisyChar);de_noisyChar=compet(de_noisyChar);answer=find(de_noisyChar==1);subplot(6,9,k+floor(k/9.5)*9+9);plotchar(alphabet(:,answer));endset(gcf,'Position',[10,60,900,700], 'color','w')运行结果(2)实现最小错误率和最小风险bayes决策w1=input('input the priorp of a1\n');w2=input('input the priorp of a2\n');p1=input('input the similarp of w1\n');p2=input('input the similarp of w2\n');s=input('input the table\n');posteriorp1=w1*p1; %约去总体概率密度的w1的后验概率posteriorp2=w2*p2; %。
模式识别练习题
模式识别练习题模式识别练习题模式识别是一种认知能力,是人类大脑的重要功能之一。
通过模式识别,我们能够从复杂的信息中抽取出有用的模式,并进行分类、归纳和推理。
模式识别在日常生活中无处不在,无论是辨认人脸、理解语言还是解读图像,都离不开模式识别的帮助。
在这里,我将给大家提供一些模式识别练习题,帮助大家锻炼和提高自己的模式识别能力。
这些题目涵盖了不同的领域,包括数字、形状和图案等,旨在让大家在娱乐中提升自己的认知水平。
1. 数字序列请观察以下数字序列:2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ...请问下一个数字是多少?答案:2048解析:观察数字序列,可以发现每个数字都是前一个数字的2倍。
因此,下一个数字是1024的2倍,即2048。
2. 形状序列请观察以下形状序列:▲, □, ○, △, ▢, ◇, ...请问下一个形状是什么?答案:□解析:观察形状序列,可以发现每个形状都是按照一定的规律交替出现。
▲和○是封闭的形状,□和▢是开放的形状,△和◇是封闭的形状。
因此,下一个形状应该是开放的形状,即□。
3. 图案序列请观察以下图案序列:A, AB, ABA, ABAC, ABACA, ...请问下一个图案是什么?答案:ABACABAC解析:观察图案序列,可以发现每个图案都是在前一个图案的基础上添加一个新的元素。
第一个图案是A,第二个图案是在A的基础上添加B,第三个图案是在ABA的基础上添加C,依此类推。
因此,下一个图案是在ABACABAC的基础上添加ABAC,即ABACABAC。
通过这些练习题,我们可以锻炼自己的观察力和逻辑思维能力。
模式识别不仅仅是一种认知能力,也是一种解决问题的思维方式。
通过不断地练习和思考,我们可以提高自己的模式识别能力,更好地应对各种复杂的情境和挑战。
除了以上的练习题,我们还可以通过观察自然界、阅读文学作品和解决日常问题等方式来锻炼模式识别能力。
大学模式识别考试题及答案详解精编WORD版
大学模式识别考试题及答案详解精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A?01, A ? 0A1 , A ? 1A0 , B ? BA , B ? 0}, A)(2)({A}, {0, 1}, {A?0, A ? 0A}, A)(3)({S}, {a, b}, {S ? 00S, S ? 11S, S ? 00, S ? 11}, S)(4)({A}, {0, 1}, {A?01, A ? 0A1, A ? 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。
答:(1)分类准则,模式相似性测度,特征量的选择,量纲。
模式识别练习题
2013模式识别练习题一. 填空题1、模式识别系统的基本构成单元包括:模式采集、特征的选择和提取和模式分类。
2、统计模式识别中描述模式的方法一般使用特征矢量;句法模式识别中模式描述方法一般有串、树、网。
3、影响层次聚类算法结果的主要因素有计算模式距离的测度、聚类准则、类间距离阈值、预定的类别数目。
4、线性判别函数的正负和数值大小的几何意义是正负表示样本点位于判别界面法向量指向的正负半空间中,绝对值正比于样本点与判别界面的距离。
5、感知器算法1 ,H-K算法 2 。
(1)只适用于线性可分的情况;(2)线性可分、不可分都适用。
6、在统计模式分类问题中,聂曼-皮尔逊判决准则主要用于某一种判别错误较另一种判别错误更为重要的情况;最小最大判别准则主要用于先验概率未知的情况。
7、“特征个数越多越有利于分类”这种说法正确吗?错误。
特征选择的主要目的是从n个特征中选取最有利于分类的m个特征(m<n),以降低特征维数。
一般在和(C n m>>n )的条件下,可以使用分支定界法以减少计算量。
8、散度J ij越大,说明ωi类模式与ωj类模式的分布差别越大;当ωi类模式与ωj类模式的分布相同时,J ij= 0。
二、选择题1、影响聚类算法结果的主要因素有(B、C、D )。
A.已知类别的样本质量;B.分类准则;C.特征选取;D.模式相似性测度2、模式识别中,马式距离较之于欧式距离的优点是(C、D)。
A.平移不变性;B.旋转不变性;C尺度不变性;D.考虑了模式的分布3、影响基本K-均值算法的主要因素有(ABD)。
A.样本输入顺序;B.模式相似性测度;C.聚类准则;D.初始类中心的选取4、位势函数法的积累势函数K(x)的作用相当于Bayes判决中的(B D)。
A. 先验概率;B. 后验概率;C. 类概率密度;D. 类概率密度与先验概率的乘积5、在统计模式分类问题中,当先验概率未知时,可以使用(BD )。
A. 最小损失准则;B. 最小最大损失准则;C. 最小误判概率准则;D. N-P 判决6、散度J D 是根据( C )构造的可分性判据。
模式识别上机作业[1]
模式识别上机作业队别:研究生二队姓名:孙祥威学号:112082作业一:1{(0,0),(0,1)}ω=,2{(1,0),(1,1)}ω=。
用感知器固定增量法求判别函数,设1(1,1,1)w=,1kρ=。
写程序上机运行,写出判别函数,打出图表。
解答:1、程序代码如下:clc,clearw=[0 0 1;0 1 1;-1 0 -1;-1 -1 -1];W=[1 1 1];rowk=1;flag=1;flagS=zeros(1,size(w,1));k=0;while flagfor i=1:size(w,1)if isempty(find(flagS==0))flag=0;break;endk=k+1;pb=w(i,:)*W';if pb<=0flagS(i)=0;W=W+rowk*w(i,:);elseflagS(i)=1;endendendW,kwp1=[0 0;0 1;];wp2=[1 0;1 1];plot(wp1(:,1),wp1(:,2),'o')hold onplot(wp2(:,1),wp2(:,2),'*')hold ony=-0.2:1/100:1.2;plot(1/3*ones(1,size(y)),y,'r-') axis([-0.25 1.25 -0.25 1.25])2、判别函数。
计算得到增广权矢量为*(3,0,1)T w =-,故判别函数表达式为:1310x -+=3、分类示意图:图 1 感知器算法分类结果图作业二:在下列条件下,求待定样本(2,0)T x =的类别,画出分界线,编程上机。
1解答:经计算,两类的协方差矩阵不相等。
设12()()P P ωω=,计算时相关项直接略去。
1、计算时,参考书中P96页式(4-1-31)等。
程序代码如下:clc,clear,close all D1=[1,1,2;1,0,-1;]; D2=[-1,-1,-2;1,0,-1;]; u1=mean(D1,2); u2=mean(D2,2);c1=zeros(size(D1,1),size(D1,1)); for i=1:size(D1,2)c1=c1+D1(:,i)*D1(:,i)'; endc1=c1/size(D1,2)-u1*u1';c2=zeros(size(D2,1),size(D2,1)); for i=1:size(D2,2)c2=c2+D2(:,i)*D2(:,i)'; endc2=c2/size(D2,2)-u2*u2'; I=eye(size(c1,1),size(c1,1)); ic1=c1\I; ic2=c2\I; W1=-0.5*ic1; W2=-0.5*ic2; w1=ic1*u1;; w2=ic2*u2;;w10=-0.5*log(det(c1))-0.5*u1'*ic1*u1; w20=-0.5*log(det(c2))-0.5*u2'*ic2*u2; syms x1 x2; x=[x1;x2];fprintf('决策界面方程为:')D=x'*(W1-W2)*x+(w1-w2)'*x+(w10-w20); pretty(D)fprintf('(2,0)代入决策面方程的值为:') value=subs(D,{x1,x2},[2 0]) figure ezplot(D) hold onplot(D1(1,:),D1(2,:),'bo')plot(D2(1,:),D2(2,:),'ks') plot(2,0,'rp')运行结果显示,决策面方程为:11248180x x x -=。
模式识别试题及总结
模式识别试题及总结一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2) (3) (4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A?01, A ? 0A1 , A ? 1A0 , B ? BA , B ? 0}, A) (2)({A}, {0, 1}, {A?0, A ? 0A}, A)(3)({S}, {a, b}, {S ? 00S, S ? 11S, S ? 00, S ? 11}, S)(4)({A}, {0, 1}, {A?01, A ? 0A1, A ? 1A0}, A)9、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。
10、欧式距离具有( 1、2 );马式距离具有(1、2、3、4 )。
(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6 ,0)的距离(这里算得的 7 个距离略) , 5
然后排序,发现属于 W1 的有 1 个,属于 W2 的有 2 个,则判属于 W2。 本题也可使用欧式距离,不过计算较复杂。 本题也可用平均样本法、平均距离法。 使用最近邻法直接判错。 当然,若已知(1,-tan10°)为噪声点,直接去掉也行。去掉噪声点后用线性分类器也可解 答,但不大好。 本题无标准答案,论述有理、步骤正确即可。 4、已知训练样本(-1,-1)T 属于 w1 类, (0,0)T 属于 w2 类, (1,1)T 属于 w3 类,试用 感知器算法求解对应的分类器(设初始解权向量 0,步长为 1,要求给出相应解权向量的表 达式,并给出结果的图示) 。 答: 要活学活用, 了解了感知器原理和线性分类器原理就不难将书上的两类算法推广为三类。 方法一: (1)参照“两维三类问题的线性分类器的第三种情况(没有不确定区域,参考书 P35) ”的算法,求 d1,d2,d3。 训练样本矢量增广化,各类样本无需符号规范化。 x1=(-1,-1,1)’, x2=(0,0,1)’, x3=(1,1,1)’ (2)运用感知器训练算法。 增量为 1,赋初值:w1(0)=w2(0)=w3(0)=(0,0,0)’,进行迭代运算: k=1,x1∈w1,d1(x1)=d2(x1)和 d1(x1)=d3(x1),所以 w1(1)=w1(0)+x1=(-1,-1,1)’ w2(1)=w2(0)-x1=(1,1,-1)’ w3(1)=w3(0)-x1=(1,1,-1)’
方法三:参照“两维三类问题的线性分类器的第二种情况(有不确定区域) ”的算法,求 G12,G23,G13。 G12*x1>0, G12*x2<0, G12=(-1,-1,-1)’ G23*x2>0, G23*x3<0, G23=(-1,-1,1)’ G13*x1>0, G13*x3<0, G12=(-1,-1,1)’ 有两条线重合了。
b 。 Xi
答: (1)满足 W’ TXi≥b 的 W’也满足 W’ TXi>0,故得证。 (2)W’TXi=b 到 W’TXi=0 的距离为
G (W ') b ,这是因为 P31 r= ,其中 G(W’)= W’TXi, Xi Xi
设 W’TXi=b 面上一点为 e,则 r=
G (e) eT Xi b = = 。 Xi Xi Xi
6
⎡1 1 1⎤ ⎢2 3 1⎥ ⎥ ,b=[1 2 1 2] T, 答: (1) [ X ] = ⎢ ⎢ −2 0 −1⎥ ⎢ ⎥ ⎣ −4 −1 −1⎦
X#=-0.2667 -0.0333 0.0667 -0.3667 -0.0667 0.3667 0.2667 0.0333 0.9333 -0.1333 -0.7333 0.5333 T -1 T W=(X X) X b= -1 1 1 分类器是 G(X)=-x1+x2+1 G(X)>0,为 W1,G(X)<0,为 W2。 (2)计算伪逆, 然后取余量矢量 b(0)= [1 2 1 2] T,由算法可知 W(0)= X#* b(0)=[-1 1 1]’ e(0)=XW(0)-b(0)=[0 0 0 0]’ 所以 W(0)就是所求的解,分类器和(1)一样。 (3)计算两个类别的均值向量, mx1=( 计算类内总离散度矩阵 Sw=2.5000 2.0000 -1 Sw =1.1111 -0.8889 最佳投影方向 W*=-3 3 T T W1: (1,1) 投影为 0, (2,3) 投影为 3,W2: (2,0)T 投影为-6, (4,1)T 投影为-9,阈值可 选为-3,故判决函数 G(X)=-3X1+3X2->3 判为 W1,<3 判为 W2。 其实和(1)一样。 该题很多同学写不完整,算出 W 就结束了,但是还要给出最终的分类器! 附加题: 2.0000 2.5000 -0.8889 1.1111
模式识别第一次作业习题解答
1、 判断题 (1)训练误差越小的分类器效果越好。 () (2)平均样本法、平均距离法和最近邻法都需要存储所有的训练样本。 () (3)X 在超平面 G(x) = WT X + w0 = 0 上的投影是 X p = X −
G( X ) W
2
W。 ()
(4)两维三类问题的线性分类器的第三种情况(没有不确定区域,参考书 P35)中,三条 直线一定交于一点。 () (5)已知两类样本线性可分,使用的线性分类器判别函数为 G(x) = WT X’,现求得 W1 和 W2 都是满足分类要求的权向量,则 λW1+(1-λ)W2(0≤λ≤1)也是满足要求的权向量。 () (6)感知准则函数正比于被错分类的样本到判决界面的距离之和。 () (7) 由于负梯度方向总是最理想的搜索方向, 所以沿着负梯度方向进行搜索的“最陡下降法” 收敛很快。 () (8)H-K 算法可以在训练前直接判断训练样本集是否线性可分。 () (9) 位势函数法使用 K ( X , Xn) = exp{−α X − Xn } 作为位势函数时对二维二类问题进行 分类,最终得到的判别界面一定是曲线。 () (10)下图中,若 L1∥L2,则类内总离散度矩阵是奇异的。 ()
方法二:直接设两条直线 L1、L2,使得 L1x1<0,L2x1<0 L1x2<0,L2x2>0 L1x3>0,L2x3>0 初始化都设为 0, k=1,L1x1=0,L1=L1-x1=(1,1,-1)’ L2x1=0,L2=L2-x1=(1x2=-1,L1 不变 L2x2=-1,L2=L2+x2=(1,1,0)’ k=3,L1x3=1,L1 不变 L2x3=2,L2 不变 k=4,L1x1=-3,L1 不变 L2x1=-2,L2 不变 k=5,L1x2=-1,L1=L1 不变 L2x2=0,L2=L2+x2=(1,1,1)’ k=6,L1x3=1,L1 不变 L2x3=3,L2 不变 k=7,L1x1=-3,L1 不变 L2x1=-1,L2 不变 k=8,L1x2=-1,L1 不变 L2x2=1,L2 不变 结束, L1=x1+x2-1 L2=x1+x2+1 若 L1x1<0,L2x1<0,判为 w1 若 L1x2<0,L2x2>0,判为 w2 若 L1x3>0,L2x3>0,判为 w3
6、对于二维线性判别函数 g(x) = x1 + 2x2 − 2 (1)将判别函数写成 g(x) = wT x + w0 的形式,并画出 g(x) = 0 的几何图形; (2)映射成广义齐次线性函数 g(x) = aT y; (3)指出上述 X 空间实际是 Y 空间的一个子空间,且 aT y = 0 对于 X 子空间的划分和原 空间中 wTx + w0 = 0 对原 X 空间的划分相同,并在图上表示出来。 答: (1)w = [1, 2]T , x = [x1, x2]T ,w0 = −2,则 g(x) = wT x + w0,g(x) = 0 的图形如下图所示。
2
k=2,x2∈w2,d1(x2)>d2(x2)和 d2(x2)=d3(x2),所以 w1(2)=w1(1)-x2=(-1,-1,0)’ w2(2)=w2(1)+x2=(1,1,0)’ w3(2)=w3(1)-x2=(1,1,-2)’ k=3,x3∈w3,d1(x3)<d3(x3)和 d2(x3)>d3(x3),所以 w1(3)=w1(2) =(-1,-1,0)’ w2(3)=w2(2)-x3=(0,0,-1)’ w3(3)=w3(2)+x3=(2,2,-1)’ k=4,x1∈w1,d1(x1)>d2(x1)和 d1(x1)>d3(x1),所以成功 1 次, w1(4)=w1(3) =(-1,-1,0)’ w2(4)=w2(3) =(0,0,-1)’ w3(4)=w3(3) =(2,2,-1)’ k=5,x2∈w2,d1(x2)>d2(x2)和 d2(x2)=d3(x2),所以成功 0 次, w1(5)=w1(4) –x2=(-1,-1,-1)’ w2(5)=w2(4) +x2=(0,0,0)’ w3(5)=w3(4) –x2=(2,2,-2)’ k=6,x3∈w3,d1(x3)<d3(x3)和 d2(x3)<d3(x3),所以成功 1 次, k=7,x1∈w1,成功 2 次, k=8,x2∈w2,成功 3 次,结束, 求得三个判别函数: d1(x)=--x1-x2-1 d2(x)=0 d3(x)=2x1+2x2-2; d12(x)= -x1-x2-1 d13(x)=-3x1-3x2+1 d23(x)=-2x1-2x2+2
W1 类,其中(1,-tan10°)已知为噪声点; (1,0) 、 ( 自选距离度量方法和分类器算法,判别(
6 ,0)属于哪一类? 5
答:度量方法:根据题意假设各模式是以原点为圆心的扇状分布,以两个向量之间夹角(都 是以原点为起点)的余弦作为其相似性测度,P22。 然后使用 K 近邻法,K 取 3,求已知 7 个点与(
m 2 mn ] 是奇异的。 mn n 2
1
2、参考参考书 P314“模式识别的概要表示”画出第二章的知识结构图。 答:略。 3、现有两类分类问题。如下图所示, (1,
1 1 3 ) 、 ( , ) 、 (1, 3 ) 、 (1,-tan10°)为 3 2 2 3 3 ,- * tan 10° ) 、 (2,0)为 W2 类。 5 5
4
还有同学把三点做了变换,使三个点不在同一条直线上,总体线性可分,这种做法也可以。 但其实没有必要。 有的同学先把 x1 看成一类,x2、x3 看成另一类生成一个分类器 w1,再根据 x2、x3 生成一 个分类器 w2,也可以。 该题很多同学出现的错误是:用“总体线性可分”的方法来做;或者想当然的先根据 x1、 x2 生成分类器 1,再根据 x2、x3 生成分类器 2,思路错误。 5、证明引入余量 b 之后,新的解区 W’TXi≥b(i=1,2,…) 位于原解区 W’ TXi>0(i=1,2,…)之中, 且与原解区边界之间的距离为