东营市一中2018-2019学年高三上学期11月月考数学试卷含答案

合集下载

潍坊市一中2018-2019学年高三上学期11月月考数学试卷含答案

潍坊市一中2018-2019学年高三上学期11月月考数学试卷含答案

18. 5 2
三、解答题
19.
20. 21.
22.(1)甲,乙,丙,丁;(2) P 2 . 5
23. 24.(1)证明见解析;(2)证明见解析.
第 5 页,共 5 页
班级_______________ 座号______ 姓名_______________ 分数_______________ ___________________________________________________________________________________________________
A.个
B.个
C.个
D.个
二、填空题
13.已知 a,b 是互异的负数,A 是 a,b 的等差中项,G 是 a,b 的等比中项,则 A 与 G 的大小关系为 .
14.下列四个命题: ①两个相交平面有不在同一直线上的三个公交点 ②经过空间任意三点有且只有一个平面 ③过两平行直线有且只有一个平面 ④在空间两两相交的三条直线必共面 其中正确命题的序号是 . 15.经过 A(﹣3,1),且平行于 y 轴的直线方程为 .
A.{x|x≥﹣1} B.{x|x>﹣1 且 x≠3} C.{x|x≠﹣1 且 x≠3} D.{x|x≥﹣1 且 x≠3}
5. 若 f(x)=x2﹣2x﹣4lnx,则 f′(x)>0 的解集为(

A.(0,+∞) B.(﹣1,0)∪(2,+∞) C.(2,+∞) D.(﹣1,0)
6. 某单位安排甲、乙、丙三人在某月 1 日至 12 日值班,每人 4 天.
A. B.2 C. D.3
3. 已知函数 y sin(2x ) 在 x 处取得最大值,则函数 y cos(2x ) 的图象(

东营市一中2018-2019学年上学期高三数学10月月考试题

东营市一中2018-2019学年上学期高三数学10月月考试题

6. 函数 y=x2﹣2x+3,﹣1≤x≤2 的值域是( B.[3,6] C.[2,6]
D.[2,+∞)
7. 已知在数轴上 0 和 3 之间任取一实数,则使“ log 2 x 1 ”的概率为( A.
1 2 C. 8 3 8. 设 a, b, c 分别是 ABC 中, A, B, C 所对边的边长,则直线 sin AAx ay c 0 与
20.设定义在(0,+∞)上的函数 f(x)=
,g(x)=
,其中 n∈N*
(Ⅰ)求函数 f(x)的最大值及函数 g(x)的单调区间; y=c(c∈R) (Ⅱ)若存在直线 l: ,使得曲线 y=f(x)与曲线 y=g(x)分别位于直线 l 的两侧,求 n 的最大值 .(参考数据:ln4≈1.386,ln5≈1.609)
2
9 8 1 2 ,切点横坐标为 ,函数 y ax x 图象经过点 (2, 0) 时, a , 16 3 2
观察图象可得 a 2. 【答案】B
1 ,选 C. 2
,kAB= =﹣ ,
【解析】解:线段 AB 的中点为 ∴垂直平分线的斜率 k= =2,
∴线段 AB 的垂直平分线的方程是 y﹣ =2(x﹣2)⇒4x﹣2y﹣5=0, 故选 B. 【点评】本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法. 3. 【答案】A 【解析】解:当 a=1 时,M={1,2},N={1}有 N⊆M 当 N⊆M 时,a2=1 或 a2=2 有 所以“a=1”是“N⊆M”的充分不必要条件. 故选 A. 4. 【答案】A 【解析】解:二项式的展开式的通项公式为 Tr+1= 故展开式中含 x3 项的系数为 不含 x3 项的系数之和为 20, 故选:A. 【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的 系数,属于中档题. 5. 【答案】A 【解析】解:设 x<0 时,则﹣x>0, •(﹣1)r•x12﹣3r,令 12﹣3r=3,求得 r=3, •(﹣1)3=﹣20,而所有系数和为 0,

垦利区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案

垦利区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案

垦利区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设集合P={3,log 2a},Q={a ,b},若P ∩Q={0},则P ∪Q=( ) A .{3,0} B .{3,0,1}C .{3,0,2}D .{3,0,1,2}2. 曲线y=在点(1,﹣1)处的切线方程为( )A .y=x ﹣2B .y=﹣3x+2C .y=2x ﹣3D .y=﹣2x+1 3. 已知一组函数f n (x )=sin n x+cos n x ,x ∈[0,],n ∈N *,则下列说法正确的个数是( )①∀n ∈N *,f n (x )≤恒成立②若f n (x )为常数函数,则n=2 ③f 4(x )在[0,]上单调递减,在[,]上单调递增.A .0B .1C .2D .34. 过点(0,﹣2)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( ) A.B.C.D.5. 已知双曲线和离心率为4sinπ的椭圆有相同的焦点21F F 、,P 是两曲线的一个公共点,若 21cos 21=∠PF F ,则双曲线的离心率等于( ) A . B .25 C .26 D .276. 如图,在△ABC 中,AB=6,AC=4,A=45°,O 为△ABC 的外心,则•等于( )A .﹣2B .﹣1C .1D .27. 已知全集U={0,1,2,3,4},集合A={0,1,3},B={0,1,4},则(∁U A )∪B 为( )A .{0,1,2,4}B .{0,1,3,4}C .{2,4}D .{4}8. 在复平面内,复数1zi+所对应的点为(2,1)-,i 是虚数单位,则z =( ) A .3i --B .3i -+C .3i -D .3i +9. 在等比数列}{n a 中,821=+n a a ,8123=⋅-n a a ,且数列}{n a 的前n 项和121=n S ,则此数列的项数n 等于( )A .4B .5C .6D .7【命题意图】本题考查等比数列的性质及其通项公式,对逻辑推理能力、运算能力及分类讨论思想的理解有一定要求,难度中等.班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.一枚质地均匀的正方体骰子,六个面上分别刻着1点至6点.甲、乙二人各掷骰子一次,则甲掷得的向上的点数比乙大的概率为( ) A.B.C.D.11.已知变量,x y 满足约束条件20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,则y x 的取值范围是( )A .9[,6]5B .9(,][6,)5-∞+∞ C .(,3][6,)-∞+∞ D .[3,6] 12.P是双曲线=1(a >0,b >0)右支上一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则△PF 1F 2的内切圆圆心的横坐标为( )A .aB .bC .cD .a+b ﹣c二、填空题13.若函数f (x )=x 2﹣(2a ﹣1)x+a+1是区间(1,2)上的单调函数,则实数a 的取值范围是 .14.定义在(﹣∞,+∞)上的偶函数f (x )满足f (x+1)=﹣f (x ),且f (x )在[﹣1,0]上是增函数,下面五个关于f (x )的命题中: ①f (x )是周期函数;②f (x ) 的图象关于x=1对称; ③f (x )在[0,1]上是增函数; ④f (x )在[1,2]上为减函数; ⑤f (2)=f (0). 正确命题的个数是 .15.若x 、y 满足约束条件⎩⎪⎨⎪⎧x -2y +1≤02x -y +2≥0x +y -2≤0,z =3x +y +m 的最小值为1,则m =________.16.在复平面内,复数与对应的点关于虚轴对称,且,则____.17.命题“若a >0,b >0,则ab >0”的逆否命题是 (填“真命题”或“假命题”.)18.命题p :∀x ∈R,函数的否定为 .三、解答题19.(本小题满分12分) 已知函数21()x f x x +=,数列{}n a 满足:12a =,11n n a f a +⎛⎫= ⎪⎝⎭(N n *∈).(1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和为n S ,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和n T .【命题意图】本题主要考查等差数列的概念,通项公式的求法,裂项求和公式,以及运算求解能力.20.椭圆C :=1,(a >b >0)的离心率,点(2,)在C 上.(1)求椭圆C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM的斜率与l 的斜率的乘积为定值.21.某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组[50,60),第二组[60,70),…,第五组[90,100].如图所示是按上述分组方法得到的频率分布直方图. (Ⅰ)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩合格的人数;(Ⅱ)从测试成绩在[50,60)∪[90,100]内的所有学生中随机抽取两名同学,设其测试成绩分别为m 、n ,求事件“|m ﹣n|>10”概率.22.已知函数f (x )=|x ﹣10|+|x ﹣20|,且满足f (x )<10a+10(a ∈R )的解集不是空集. (Ⅰ)求实数a 的取值集合A(Ⅱ)若b ∈A ,a ≠b ,求证a a b b >a b b a.23.(本小题满分12分)已知向量(cos sin ,sin )m x m x x w w w =-a ,(cos sin ,2cos )x x n x w w w =--b ,设函数()()2n f x x R =??a b的图象关于点(,1)12p对称,且(1,2)w Î. (I )若1m =,求函数)(x f 的最小值;(II )若()()4f x f p£对一切实数恒成立,求)(x f y 的单调递增区间.【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.24.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)(不等式选做题)设,且,则的最小值为(几何证明选做题)如图,中,,以为直径的半圆分别交于点,若,则垦利区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:∵P∩Q={0},∴log2a=0∴a=1从而b=0,P∪Q={3,0,1},故选B.【点评】此题是个基础题.考查集合的交集和并集及其运算,注意集合元素的互异性,以及对数恒等式和真数是正数等基础知识的应用.2.【答案】D【解析】解:y′=()′=,∴k=y′|x=1=﹣2.l:y+1=﹣2(x﹣1),则y=﹣2x+1.故选:D3.【答案】D【解析】解:①∵x∈[0,],∴f(x)=sin n x+cos n x≤sinx+cosx=≤,因此正确;n②当n=1时,f1(x)=sinx+cosx,不是常数函数;当n=2时,f2(x)=sin2x+cos2x=1为常数函数,当n≠2时,令sin2x=t∈[0,1],则f n(x)=+=g(t),g′(t)=﹣=,当t∈时,g′(t)<0,函数g(t)单调递减;当t∈时,g′(t)>0,函数g(t)单调递增加,因此函数f n(x)不是常数函数,因此②正确.③f4(x)=sin4x+cos4x=(sin2x+cos2x)2﹣2sin2xcos2x=1﹣==+,当x∈[0,],4x∈[0,π],因此f4(x)在[0,]上单调递减,当x∈[,],4x∈[π,2π],因此f4(x)在[,]上单调递增,因此正确.综上可得:①②③都正确.故选:D.【点评】本题考查了三角函数的图象与性质、倍角公式、平方公式、两角和差的正弦公式,考查了推理能力与计算能力,属于中档题.4.【答案】A【解析】解:若直线斜率不存在,此时x=0与圆有交点, 直线斜率存在,设为k ,则过P 的直线方程为y=kx ﹣2, 即kx ﹣y ﹣2=0,若过点(0,﹣2)的直线l 与圆x 2+y 2=1有公共点,则圆心到直线的距离d ≤1,即≤1,即k 2﹣3≥0, 解得k ≤﹣或k ≥,即≤α≤且α≠,综上所述,≤α≤,故选:A .5. 【答案】C 【解析】试题分析:设椭圆的长半轴长为1a ,双曲线的实半轴长为2a ,焦距为c 2,m PF =1,n PF =2,且不妨设n m >,由12a n m =+,22a n m =-得21a a m +=,21a a n -=,又21c os 21=∠PF F ,∴由余弦定理可知:mn n m c -+=2224,2221234a a c +=∴,432221=+∴c a c a ,设双曲线的离心率为,则4322122=+e)(,解得26=e .故答案选C .考点:椭圆的简单性质.【思路点晴】本题主要考查圆锥曲线的定义和离心率.根据椭圆和双曲线的定义,由P 为公共点,可把焦半径1PF 、2PF 的长度用椭圆的半长轴以及双曲线的半实轴21,a a 来表示,接着用余弦定理表示21cos 21=∠PF F ,成为一个关于21,a a 以及的齐次式,等式两边同时除以2c ,即可求得离心率.圆锥曲线问题在选择填空中以考查定义和几何性质为主.6. 【答案】A【解析】解:结合向量数量积的几何意义及点O 在线段AB ,AC 上的射影为相应线段的中点,可得,,则•==16﹣18=﹣2; 故选A .【点评】本题考查了向量数量积的几何意义和三角形外心的性质、向量的三角形法则,属于中档题7. 【答案】A【解析】解:∵U={0,1,2,3,4},集合A={0,1,3},∴C U A={2,4}, ∵B={0,1,4}, ∴(C U A )∪B={0,1,2,4}.故选:A .【点评】本题考查集合的交、交、补集的混合运算,是基础题.解题时要认真审题,仔细解答.8. 【答案】D【解析】解析:本题考查复数的点的表示与复数的乘法运算,21zi i=-+,(1)(2)3z i i i =+-=+,选D . 9. 【答案】B10.【答案】C显然甲掷得的向上的点数比乙大的有15种,故甲掷得的向上的点数比乙大的概率为P=.故选:C .【点评】此题可以采用列表法或者采用树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比11.【答案】A 【解析】试题分析:作出可行域,如图ABC ∆内部(含边界),yx 表示点(,)x y 与原点连线的斜率,易得59(,)22A ,(1,6)B ,992552OAk ==,661OB k ==,所以965y x ≤≤.故选A .考点:简单的线性规划的非线性应用. 12.【答案】A【解析】解:如图设切点分别为M ,N ,Q , 则△PF 1F 2的内切圆的圆心的横坐标与Q 横坐标相同.由双曲线的定义,PF 1﹣PF 2=2a . 由圆的切线性质PF 1﹣PF 2=F I M ﹣F 2N=F 1Q ﹣F 2Q=2a ,∵F 1Q+F 2Q=F 1F 2=2c ,∴F 2Q=c ﹣a ,OQ=a ,Q 横坐标为a . 故选A .【点评】本题巧妙地借助于圆的切线的性质,强调了双曲线的定义.二、填空题13.【答案】{a|或}.【解析】解:∵二次函数f(x)=x2﹣(2a﹣1)x+a+1 的对称轴为x=a﹣,f(x)=x2﹣(2a﹣1)x+a+1是区间(1,2)上的单调函数,∴区间(1,2)在对称轴的左侧或者右侧,∴a﹣≥2,或a﹣≤1,∴a≥,或a≤,故答案为:{a|a≥,或a≤}.【点评】本题考查二次函数的性质,体现了分类讨论的数学思想.14.【答案】3个.【解析】解:∵定义在(﹣∞,+∞)上的偶函数f(x),∴f(x)=f(﹣x);∵f(x+1)=﹣f(x),∴f(x+1)=﹣f(x),∴f(x+2)=﹣f(x+1)=f(x),f(﹣x+1)=﹣f(x)即f(x+2)=f(x),f(﹣x+1)=f(x+1),周期为2,对称轴为x=1所以①②⑤正确,故答案为:3个15.【答案】【解析】解析:可行域如图,当直线y=-3x+z+m与直线y=-3x平行,且在y轴上的截距最小时,z才能取最小值,此时l经过直线2x-y+2=0与x-2y+1=0的交点A(-1,0),z min=3×(-1)+0+m=-3+m=1,∴m=4.答案:416.【答案】-2【解析】【知识点】复数乘除和乘方【试题解析】由题知:所以 故答案为:-217.【答案】 真命题【解析】解:若a >0,b >0,则ab >0成立,即原命题为真命题,则命题的逆否命题也为真命题,故答案为:真命题.【点评】本题主要考查命题的真假判断,根据逆否命题的真假性相同是解决本题的关键.18.【答案】 ∃x 0∈R ,函数f (x 0)=2cos 2x 0+sin2x 0>3 .【解析】解:全称命题的否定是特称命题,即为∃x 0∈R ,函数f(x 0)=2cos 2x 0+sin2x 0>3,故答案为:∃x 0∈R ,函数f (x 0)=2cos 2x 0+sin2x 0>3,三、解答题19.【答案】【解析】(1)∵211()2x f x x x +==+,∴11()2n n na f a a +==+. 即12n n a a +-=,所以数列{}n a 是以首项为2,公差为2的等差数列, ∴1(1)22(1)2n a a n d n n =+-=+-=. (5分) (2)∵数列{}n a 是等差数列,∴1()(22)(1)22n n a a n n nS n n ++===+, ∴1111(1)1n S n n n n ==-++. (8分) ∴1231111n n T S S S S =++++11111111()()()()1223341n n =-+-+-++-+ 111n =-+1n n =+.(12分) 20.【答案】【解析】解:(1)椭圆C :=1,(a >b >0)的离心率,点(2,)在C 上,可得,,解得a 2=8,b 2=4,所求椭圆C 方程为:.(2)设直线l :y=kx+b ,(k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ),把直线y=kx+b 代入可得(2k 2+1)x 2+4kbx+2b 2﹣8=0,故x M==,y M=kx M+b=,于是在OM的斜率为:K OM==,即K OM k=.∴直线OM的斜率与l的斜率的乘积为定值.【点评】本题考查椭圆方程的综合应用,椭圆的方程的求法,考查分析问题解决问题的能力.21.【答案】【解析】解:(I)由直方图知,成绩在[60,80)内的人数为:50×10×(0.18+0.040)=29.所以该班在这次数学测试中成绩合格的有29人.(II)由直方图知,成绩在[50,60)内的人数为:50×10×0.004=2,设成绩为x、y成绩在[90,100]的人数为50×10×0.006=3,设成绩为a、b、c,若m,n∈[50,60)时,只有xy一种情况,若m,n∈[90,100]时,有ab,bc,ac三种情况,事件“|m﹣n|>10”所包含的基本事件个数有6种∴.【点评】在频率分布直方图中,每一个小矩形都是等宽的,即等于组距,高是,所以有:×组距=频率;即可把所求范围内的频率求出,进而求该范围的人数.22.【答案】【解析】解(1)要使不等式|x﹣10|+|x﹣20|<10a+10的解集不是空集,则(|x﹣10|+|x﹣20|)min<10a+10,根据绝对值三角不等式得:|x﹣10|+|x﹣20|≥|(x﹣10)﹣(x﹣20)|=10,即(|x﹣10|+|x﹣20|)min=10,所以,10<10a+10,解得a>0,所以,实数a的取值集合为A=(0,+∞);(2)∵a,b∈(0,+∞)且a≠b,∴不妨设a>b>0,则a﹣b>0且>1,则>1恒成立,即>1,所以,a a﹣b>b a﹣b,将该不等式两边同时乘以a b b b得,a ab b>a b b a,即证.【点评】本题主要考查了绝对值三角不等式的应用和不等式的证明,涉及指数函数的性质,属于中档题.23.【答案】24.【答案】【解析】AB。

泰安市一中2018-2019学年高三上学期11月月考数学试卷含答案

泰安市一中2018-2019学年高三上学期11月月考数学试卷含答案

泰安市一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若函数f (x )=2sin (ωx+φ)对任意x 都有f (+x )=f (﹣x ),则f ()=()A .2或0B .0C .﹣2或0D .﹣2或22. 已知定义在上的奇函数)(x f ,满足,且在区间上是增函数,则 R (4)()f x f x +=-[0,2]A 、 B 、(25)(11)(80)f f f -<<(80)(11)(25)f f f <<-C 、 D 、(11)(80)(25)f f f <<-(25)(80)(11)f f f -<<3. 已知变量x 与y负相关,且由观测数据算得样本平均数=3, =2.7,则由该观测数据算得的线性回归方程可能是()A . =﹣0.2x+3.3B . =0.4x+1.5C . =2x ﹣3.2D . =﹣2x+8.64. 执行如图所示的程序框图,则输出的S 等于()A .19B .42C .47D .895. 如图给出的是计算的值的一个流程图,其中判断框内应填入的条件是()A .i ≤21B .i ≤11C .i ≥21D .i ≥116. 与命题“若x ∈A ,则y ∉A ”等价的命题是( )A .若x ∉A ,则y ∉AB .若y ∉A ,则x ∈AC .若x ∉A ,则y ∈AD .若y ∈A ,则x ∉A7. 已知向量=(1,2),=(m ,1),如果向量与平行,则m 的值为( )A .B .C .2D .﹣28. 设曲线在点处的切线的斜率为,则函数的部分图象2()1f x x =+(,())x f x ()g x ()cos y g x x =班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________可以为( )A .B .C. D .9. 设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (﹣2)=0,当x >0时,xf ′(x )﹣f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(﹣∞,﹣2)∪(0,2)B .(﹣∞,﹣2)∪(2,+∞)C .(﹣2,0)∪(2,+∞)D .(﹣2,0)∪(0,2)10.已知△ABC 中,a=1,b=,B=45°,则角A 等于()A .150°B .90°C .60°D .30°11.已知等比数列{a n }的前n 项和为S n ,若=4,则=()A .3B .4C .D .1312.已知命题p :对任意x ∈R ,总有3x >0;命题q :“x >2”是“x >4”的充分不必要条件,则下列命题为真命题的是()A .p ∧qB .¬p ∧¬qC .¬p ∧qD .p ∧¬q二、填空题13.若函数f (x ),g (x )满足:∀x ∈(0,+∞),均有f (x )>x ,g (x )<x 成立,则称“f (x )与g (x )关于y=x 分离”.已知函数f (x )=a x 与g (x )=log a x (a >0,且a ≠1)关于y=x 分离,则a 的取值范围是 . 14.不等式恒成立,则实数的值是__________.()2110ax a x +++≥15.设函数f (x )=若f[f (a )],则a 的取值范围是 .16.已知函数f (x )=cosxsinx ,给出下列四个结论:①若f (x 1)=﹣f (x 2),则x 1=﹣x 2;②f (x )的最小正周期是2π;③f (x )在区间[﹣,]上是增函数;④f (x )的图象关于直线x=对称.其中正确的结论是 . 17.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A .B .C .D .18.已知函数f (x )=sinx ﹣cosx ,则= .三、解答题19.如图所示,两个全等的矩形和所在平面相交于,,,且ABCD ABEF AB M AC ∈N FB ∈,求证:平面.AM FN =//MN BCE20.如图,在△ABC 中,BC 边上的中线AD 长为3,且sinB=,cos ∠ADC=﹣.(Ⅰ)求sin ∠BAD 的值;(Ⅱ)求AC 边的长.21.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,(1)求证:直线BC 1∥平面D 1AC ;(2)求直线BC 1到平面D 1AC 的距离.22.如图,在五面体ABCDEF 中,四边形ABCD 是边长为4的正方形,EF ∥AD ,平面ADEF ⊥平面ABCD ,且BC=2EF ,AE=AF ,点G 是EF 的中点.(Ⅰ)证明:AG ⊥平面ABCD ;(Ⅱ)若直线BF 与平面ACE 所成角的正弦值为,求AG 的长.23.(本题满分15分)设点是椭圆上任意一点,过点作椭圆的切线,与椭圆交于,P 14:221=+y x C P )1(14:22222>=+t ty t x C A 两点.B(1)求证:;PB PA =(2)的面积是否为定值?若是,求出这个定值;若不是,请说明理由.OAB ∆【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力.24.已知A (﹣3,0),B (3,0),C (x 0,y 0)是圆M 上的三个不同的点.(1)若x 0=﹣4,y 0=1,求圆M 的方程;(2)若点C 是以AB 为直径的圆M 上的任意一点,直线x=3交直线AC 于点R ,线段BR 的中点为D .判断直线CD 与圆M 的位置关系,并证明你的结论.泰安市一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案D D A B D D B A A D 题号1112答案D D二、填空题13. (,+∞) .a14.115. 或a=1 .16. ③④ .17.18. .三、解答题19.证明见解析.20.21.22.23.(1)详见解析;(2)详见解析.∴点为线段中点,;…………7分P AB PB PA =(2)若直线斜率不存在,则,与椭圆方程联立可得,,AB 2:±=x AB 2C )1,2(2--±t A ,故,…………9分1,2(2-±t B 122-=∆t S OAB 若直线斜率存在,由(1)可得AB ,,,…………11分148221+-=+k km x x 144422221+-=k t m x x 141141222212+-+=-+=k t k x x k AB 点到直线的距离,…………13分O AB 2221141kk k m d ++=+=∴,综上,的面积为定值.…………15分12212-=⋅=∆t d AB S OAB OAB ∆122-t 24.。

东营区一中2018-2019学年高三上学期11月月考数学试卷含答案

东营区一中2018-2019学年高三上学期11月月考数学试卷含答案

东营区一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 如图所示,在三棱锥P ABC -的六条棱所在的直线中,异面直线共有( )111]A .2对B .3对C .4对D .6对2. 给出函数()f x ,()g x 如下表,则(())f g x 的值域为( )A .{}4,2B .{}1,3C .{}1,2,3,4D .以上情况都有可能 3. 《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织( )尺布. A.B.C. D.4.以过椭圆+=1(a >b >0)的右焦点的弦为直径的圆与其右准线的位置关系是( )A .相交B .相切C .相离D .不能确定5. 某学校10位同学组成的志愿者组织分别由李老师和张老师负责.每次献爱心活动均需该组织4位同学参加.假设李老师和张老师分别将各自活动通知的信息独立、随机地发给4位同学,且所发信息都能收到.则甲冋学收到李老师或张老师所发活动通知信息的概率为( ) A.B.C.D.6. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E 为底面ABCD 上的动点.若三棱锥B ﹣D 1EC 的表面积最大,则E 点位于( )A .点A 处B .线段AD 的中点处C .线段AB 的中点处D .点D 处7. “3<-b a ”是“圆056222=++-+a y x y x 关于直线b x y 2+=成轴对称图形”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【命题意图】本题考查圆的一般方程、圆的几何性质、常用逻辑等知识,有一定的综合性,突出化归能力的考班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________查,属于中等难度.8. 三个数60.5,0.56,log 0.56的大小顺序为( ) A .log 0.56<0.56<60.5 B .log 0.56<60.5<0.56C .0.56<60.5<log 0.56D .0.56<log 0.56<60.59. 定义在R 上的奇函数f (x )满足f (x+3)=f (x ),当0<x ≤1时,f (x )=2x ,则f (2015)=( )A .2B .﹣2C .﹣D .10.已知函数()xF x e =满足()()()F x g x h x =+,且()g x ,()h x 分别是R 上的偶函数和奇函数, 若(0,2]x ∀∈使得不等式(2)()0g x ah x -≥恒成立,则实数的取值范围是( )A .(,-∞B .(,-∞C .(0,D .)+∞ 11.若集合A ={-1,1},B ={0,2},则集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为( )A5 B4 C3 D212.过抛物线y 2=4x 焦点的直线交抛物线于A ,B 两点,若|AB|=10,则AB 的中点到y 轴的距离等于( ) A .1 B .2 C .3 D .4二、填空题13.设数列{a n }满足a 1=1,且a n+1﹣a n =n+1(n ∈N *),则数列{}的前10项的和为 .14.已知点A 的坐标为(﹣1,0),点B 是圆心为C 的圆(x ﹣1)2+y 2=16上一动点,线段AB 的垂直平分线交BC 与点M ,则动点M 的轨迹方程为 .15.已知正四棱锥O ABCD -的体积为2,则该正四棱锥的外接球的半径为_________16.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为BD 1的中点,则△PAC 在该正方体各个面上的射影可能是 .17.下列四个命题:①两个相交平面有不在同一直线上的三个公交点 ②经过空间任意三点有且只有一个平面 ③过两平行直线有且只有一个平面 ④在空间两两相交的三条直线必共面 其中正确命题的序号是 .18.将曲线1:C 2sin(),04y x πωω=+>向右平移6π个单位后得到曲线2C ,若1C 与2C 关于x 轴对称,则ω的最小值为_________.三、解答题19.设常数λ>0,a >0,函数f (x )=﹣alnx .(1)当a=λ时,若f (x )最小值为0,求λ的值;(2)对任意给定的正实数λ,a ,证明:存在实数x 0,当x >x 0时,f (x )>0.20.在平面直角坐标系xOy 中,点B 与点A (﹣1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于﹣.(Ⅰ)求动点P 的轨迹方程;(Ⅱ)设直线AP 和BP 分别与直线x=3交于点M ,N ,问:是否存在点P 使得△PAB 与△PMN 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由.21.(本小题满分10分)选修4-5:不等式选讲 已知函数()32,f x x x t t =-++∈R . (1)当1t =时,解不等式()5f x ≥;(2)若存在实数a 满足()32f a a +-<,求t 的取值范围.22.计算: (1)8+(﹣)0﹣;(2)lg25+lg2﹣log 29×log 32.23.(本小题满分10分)选修4-4:坐标系与参数方程 已知椭圆C 的极坐标方程为222123cos 4sin ρθθ=+,点12,F F为其左、右焦点,直线的参数方程为222x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(为参数,t R ∈). (1)求直线和曲线C 的普通方程; (2)求点12,F F 到直线的距离之和.24.已知函数f(x)=x2﹣(2a+1)x+alnx,a∈R(1)当a=1,求f(x)的单调区间;(4分)(2)a>1时,求f(x)在区间[1,e]上的最小值;(5分)(3)g(x)=(1﹣a)x,若使得f(x0)≥g(x0)成立,求a的范围.东营区一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案 B A DCCAABB题号 11 12 答案CD13. .14.=115.11816. ①④ .17. ③ . 18.6三、解答题19. 20. 21. 22.23.(1)直线的普通方程为2y x =-,曲线C 的普通方程为22143x y +=;(2)22. 24.解:(1)当a=1,f (x )=x 2﹣3x+lnx ,定义域(0,+∞), ∴…(2分),解得x=1或x=,x ∈,(1,+∞),f ′(x )>0,f (x )是增函数,x ∈(,1),函数是减函数.…(4分) (2)∴,∴,当1<a <e 时,∴f(x)min=f(a)=a(lna﹣a﹣1)当a≥e时,f(x)在[1,a)减函数,(a,+∞)函数是增函数,∴综上…(9分)(3)由题意不等式f(x)≥g(x)在区间上有解即x2﹣2x+a(lnx﹣x)≥0在上有解,∵当时,lnx≤0<x,当x∈(1,e]时,lnx≤1<x,∴lnx﹣x<0,∴在区间上有解.令…(10分)∵,∴x+2>2≥2lnx∴时,h′(x)<0,h(x)是减函数,x∈(1,e],h(x)是增函数,∴,∴时,,∴∴a的取值范围为…(14分)。

东营市第一高级中学2018-2019学年上学期高二数学12月月考试题含答案

东营市第一高级中学2018-2019学年上学期高二数学12月月考试题含答案

东营市第一高级中学2018-2019学年上学期高二数学12月月考试题含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.设、是两个非零向量,则“(+)2=||2+||2”是“⊥”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件1~62.一个骰子由六个数字组成,请你根据图中三种状态所显示的数字,推出“”处的数字是()A.6 B.3 C.1 D.23.已知双曲线(a>0,b>0)的一条渐近线方程为,则双曲线的离心率为()A.B.C.D.P Q R S4.下列正方体或四面体中,、、、分别是所在棱的中点,这四个点不共面的一个图形是()5.由直线与曲线所围成的封闭图形的面积为()AB1CD6. 已知x ,y 满足时,z=x ﹣y 的最大值为( )A .4B .﹣4C .0D .27. 若复数在复平面内对应的点关于轴对称,且,则复数在复平面内对应的点在12,z z y 12i z =-12z z ()A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力.8. 函数是()A .最小正周期为2π的奇函数B .最小正周期为π的奇函数C .最小正周期为2π的偶函数D .最小正周期为π的偶函数9. 已知正三棱柱的底面边长为,高为,则一质点自点出发,沿着三棱111ABC A B C -4cm 10cm A 柱的侧面,绕行两周到达点的最短路线的长为( )1A A .B .C .D.16cm 26cm10.执行右面的程序框图,如果输入的,则输出的属于( )[1,1]t ∈-S A. B. C. D.[0,2]e -(,2]e -¥-[0,5][3,5]e -【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用.11.给出函数,如下表,则的值域为()()f x ()g x (())f g xA .B .C .D .以上情况都有可能{}4,2{}1,3{}1,2,3,412.将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为()A .1372B .2024C .3136D .4495二、填空题13.若实数x ,y 满足x 2+y 2﹣2x+4y=0,则x ﹣2y 的最大值为 .14.已知正方体ABCD ﹣A 1B 1C 1D 1的一个面A 1B 1C 1D 1在半径为的半球底面上,A 、B 、C 、D 四个顶点都在此半球面上,则正方体ABCD ﹣A 1B 1C 1D 1的体积为 .15.如图,在三棱锥中,,,,为等边三角形,则P ABC -PA PB PC ==PA PB ⊥PA PC ⊥PBC △PC 与平面所成角的正弦值为______________.ABC【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力.16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sinAsinB+sinBsinC+cos2B=1.若C=,则= .17.设变量满足约束条件,则的最小值是,则实数y x ,22022010x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩22(1)3(1)z a x a y =+-+20-a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力.18.自圆:外一点引该圆的一条切线,切点为,切线的长度等于点到C 22(3)(4)4x y -++=(,)P x y Q P 原点的长,则的最小值为( )O PQ A .B .3C .4D .13102110【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想.三、解答题19.(本小题满分12分)已知函数.21()(3)ln 2f x x a x x =+-+(1)若函数在定义域上是单调增函数,求的最小值;()f x (2)若方程在区间上有两个不同的实根,求的取值范围.21()()(4)02f x a x a x -+--=1[,]e e20.已知椭圆+=1(a>b>0)的离心率为,且a2=2b.(1)求椭圆的方程;(2)直线l:x﹣y+m=0与椭圆交于A,B两点,是否存在实数m,使线段AB的中点在圆x2+y2=5上,若存在,求出m的值;若不存在,说明理由.21.在某班级举行的“元旦联欢会”有奖答题活动中,主持人准备了两个问题,规定:被抽签抽到的答题同学,答对问题可获得分,答对问题可获得200分,答题结果相互独立互不影响,先回答哪个问题由答题同学自主决定;但只有第一个问题答对才能答第二个问题,否则终止答题.答题终止后,获得的总分决定获奖的等次.若甲是被抽到的答题同学,且假设甲答对问题的概率分别为.(Ⅰ)记甲先回答问题再回答问题得分为随机变量,求的分布列和数学期望;(Ⅱ)你觉得应先回答哪个问题才能使甲的得分期望更高?请说明理由.22.A={x|x2﹣3x+2=0},B={x|ax﹣2=0},若B⊆A,求a.23.已知函数f(x)=2cosx(sinx+cosx)﹣1(Ⅰ)求f(x)在区间[0,]上的最大值;(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,且f(B)=1,a+c=2,求b的取值范围.24.已知数列{a n}是等比数列,S n为数列{a n}的前n项和,且a3=3,S3=9(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log2,且{b n}为递增数列,若c n=,求证:c1+c2+c3+…+c n<1.东营市第一高级中学2018-2019学年上学期高二数学12月月考试题含答案(参考答案)一、选择题1.【答案】C【解析】解:设a、b是两个非零向量,“(a+b)2=|a|2+|b|2”⇒(a+b)2=|a|2+|b|2+2ab=|a|2+|b|2⇒a•b=0,即a⊥b;a⊥b⇒a•b=0即(a+b)2=|a|2+|b|2所以“(a+b)2=|a|2+|b|2”是“a⊥b”的充要条件.故选C.2.【答案】A【解析】1,4,31,2,51,3,5试题分析:根据与相邻的数是,而与相邻的数有,所以是相邻的数,故“?”表示的数是,故选A.考点:几何体的结构特征.3.【答案】A【解析】解:∵双曲线的中心在原点,焦点在x轴上,∴设双曲线的方程为,(a>0,b>0)由此可得双曲线的渐近线方程为y=±x,结合题意一条渐近线方程为y=x,得=,设b=4t,a=3t,则c==5t(t>0)∴该双曲线的离心率是e==.故选A.【点评】本题给出双曲线的一条渐近线方程,求双曲线的离心率,着重考查了双曲线的标准方程、基本概念和简单几何性质等知识,属于基础题.4.【答案】D【解析】考点:平面的基本公理与推论.5.【答案】D【解析】由定积分知识可得,故选D。

东营区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案

东营区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案
2
(1)求数列 {an } 的通项公式 an ; (2)令 bn
1 ,求数列 {bn } 的前项和为 Tn . (n 1)an
第 2 页,共 13 页
20.已知函数 f(x)=|2x+1|+|2x﹣3|. (Ⅰ)求不等式 f(x)≤6 的解集; (Ⅱ)若关于 x 的不等式 f(x)﹣log2(a2﹣3a)>2 恒成立,求实数 a 的取值范围.
第 4 页,共 13 页
东营区第二中学校 2018-2019 学年高三上学期 11 月月考数学试卷含答案(参考答案) 一、选择题
1. 【答案】A 【解析】解:因为 f(x+4)=f(x),故函数的周期是 4 所以 f(7)=f(3)=f(﹣1), 又 f(x)在 R 上是奇函数, 所以 f(﹣1)=﹣f(1)=﹣2×12=﹣2, 故选 A. 【点评】本题考查函数的奇偶性与周期性. 2. 【答案】B 【解析】解:因为 B={0,1,2,3},C={0,2,4},且 A⊆B,A⊆C; ∴A⊆B∩C={0,2} ∴集合 A 可能为{0,2},即最多有 2 个元素, 故最多有 4 个子集. 故选:B. 3. 【答案】B 【解析】解:∵直线 l⊂平面 α,直线 m⊄平面 α,命题 p:“若直线 m⊥α,则 m⊥l”, ∴命题 P 是真命题,∴命题 P 的逆否命题是真命题; ¬P:“若直线 m 不垂直于 α,则 m 不垂直于 l”, ∵¬P 是假命题,∴命题 p 的逆命题和否命题都是假命题. 故选:B. 4. 【答案】A 【解析】 试题分析:由已知得 f x
21.已知数列{an}满足 a1= ,an+1=an+ (Ⅰ)证明:bn∈(0,1)
,数列{bn}满足 bn=
(Ⅱ)证明:
=

山东省东营2018-2019学年高一上学期第一次月考数学试卷Word版含解析

山东省东营2018-2019学年高一上学期第一次月考数学试卷Word版含解析

山东省东营2018-2019学年高一上学期第一次月考数学试卷一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={﹣5,﹣3,0,3,5},集合B={﹣5,﹣2,2,5},则A∪B=()A.{﹣5,﹣3,0,3,5,﹣5,﹣2,2,5} B.{﹣5,5}C.{﹣5,﹣3,﹣2,0,2,3,5} D.{﹣5,﹣3,﹣2,2,3,5}2.若集合A={x|y=(x﹣1)0},B={y|y=x2,x∈R},则A∩B等于()A.{x|﹣1≤x≤1} B.{x|x≥0} C.{x|x≥0且x≠1} D.∅3.下列函数中,既是奇函数又是增函数的为()A.y=x+1 B.y=﹣x2C.y=D.y=x|x|4.若函数f(x)满足f(3x+2)=9x+8,则f(x)的解析式是()A.f(x)=9x+8 B.f(x)=3x+2C.f(x)=﹣3x﹣4 D.f(x)=3x+2或f(x)=﹣3x﹣45.与y=|x|为同一函数的是()A.y=()2B.y=C.y= D.y=6.已知函数y=的定义域为()A.(﹣∞,1] B.(﹣∞,2] C.(﹣∞,﹣)∩(﹣,1] D.(﹣∞,﹣)∪(﹣,1]7.函数y=的值域是()A. B.(﹣∞,2] C. D.[0,]8.如果f(x)图象关于原点对称,在区间[3,7]上是增函数且最大值为5,那么f(x)在区间[﹣7,﹣3]上是()A.增函数且最小值是﹣5 B.增函数且最大值是﹣5C.减函数且最大值是﹣5 D.减函数且最小值是﹣59.如图所示,M,P,S是V的三个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪S C.(M∩S)∩(∁s P)D.(M∩P)∪(∁VS)10.已知a,b为不等的两个实数,集合M={a2﹣4a,﹣1},N={b2﹣4b+1,﹣2},f:x→x表示把M中的元素映射到N中仍为x,则a+b=()A.1 B.2 C.3 D.411.函数f(x)=x2+2(a﹣1)x+2在区间(0,4)上单调,那么实数a的取值范围()A.(﹣∞,﹣3] B.[﹣3,1] C.[1,+∞)∪(﹣∞,﹣3] D.[1,+∞)12.函数f(x)为区间(﹣∞,0)∪(0,+∞)上的奇函数,且(0,+∞)为增区间,若f(﹣1)=0,则当<0时,x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣1,0)∪(0,1)D.(﹣∞,﹣1)∪(1,+∞)二.填空题:本大题共4小题,每小题5分,共20分.13.函数f(x)=,则f(﹣2)= .14.已知集合M={a2,0},N={1,a,2},且M∩N={1},那么M∪N的子集有个.15.若偶函数f(x)在(﹣∞,0]上为增函数,则满足f(1)≤f(a)的实数a的取值范围是.16.函数f(x)=是R上的减函数,则a的取值范围是.三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知全集为R,集合A={x|2≤x<4},B={x|3x﹣7≥8﹣2x},则A∩B= ;A∪(∁RB)= .18.已知函数f(x)是定义在R上的偶函数,已知当x≤0时,f(x)=x2+4x+3.(1)求函数f(x)的解析式;(2)画出函数f(x)的图象,并写出函数f(x)的单调递增区间.19.已知y=f(x)在定义域(﹣1,1)上是减函数且为奇函数,若f(1﹣a)+f(1﹣2a)<0,求实数a的取值范围.A)∩B=∅,m= .20.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0};若(∁U21.已知函数f(x)=x+(Ⅰ)判断函数的奇偶性,并加以证明;(Ⅱ)用定义证明f(x)在(0,1)上是减函数;(Ⅲ)函数f(x)在(﹣1,0)上是单调增函数还是单调减函数?(直接写出答案,不要求写证明过程).22.已知二次函数f(x)满足f(0)=0且f(x+1)=f(x)+x+1,(1)求f(x)的表达(2)求函数f(x)在[t,t+1]上的最小值g(t)(3)若g(t)+m≥0对t∈R恒成立,求实数m的取值范围.山东省东营2018-2019学年高一上学期第一次月考数学试卷参考答案与试题解析一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={﹣5,﹣3,0,3,5},集合B={﹣5,﹣2,2,5},则A∪B=()A.{﹣5,﹣3,0,3,5,﹣5,﹣2,2,5} B.{﹣5,5}C.{﹣5,﹣3,﹣2,0,2,3,5} D.{﹣5,﹣3,﹣2,2,3,5}【考点】并集及其运算.【分析】由集合A={﹣5,﹣3,0,3,5},集合B={﹣5,﹣2,2,5},根据并集的定义及运算法则即可得出答案.【解答】解:由集合A={﹣5,﹣3,0,3,5},集合B={﹣5,﹣2,2,5},根据并集的定义得:A∪B={﹣5,﹣3,﹣2,0,2,3,5},故选C.2.若集合A={x|y=(x﹣1)0},B={y|y=x2,x∈R},则A∩B等于()A.{x|﹣1≤x≤1} B.{x|x≥0} C.{x|x≥0且x≠1} D.∅【考点】交集及其运算.【分析】求出A中x的范围确定出A,求出B中y的范围确定出B,找出A与B的交集即可.【解答】解:由A中y=(x﹣1)0,得到x﹣1≠0,即x≠1,∴A={x|x≠1},由B中y=x2≥0,得到B={y|y≥0},则A∩B={x|x≥0且x≠1},故选:C.3.下列函数中,既是奇函数又是增函数的为()A.y=x+1 B.y=﹣x2C.y=D.y=x|x|【考点】函数奇偶性的判断;函数单调性的判断与证明.【分析】根据函数奇偶性和单调性的性质分别进行判断即可.【解答】解:A.y=x+1为非奇非偶函数,不满足条件.B.y=﹣x2是偶函数,不满足条件.C.y=是奇函数,但在定义域上不是增函数,不满足条件.D.设f(x)=x|x|,则f(﹣x)=﹣x|x|=﹣f(x),则函数为奇函数,当x>0时,y=x|x|=x2,此时为增函数,当x≤0时,y=x|x|=﹣x2,此时为增函数,综上在R上函数为增函数.故选:D4.若函数f(x)满足f(3x+2)=9x+8,则f(x)的解析式是()A.f(x)=9x+8 B.f(x)=3x+2C.f(x)=﹣3x﹣4 D.f(x)=3x+2或f(x)=﹣3x﹣4【考点】函数解析式的求解及常用方法.【分析】令3x+2=t,得到x=,求出f(x)的解析式即可.【解答】解:令3x+2=t,则x=,故f(t)=3(t﹣2)+8=3t+2,故f(x)=3x+2,故选:B.5.与y=|x|为同一函数的是()A.y=()2B.y=C.y= D.y=【考点】判断两个函数是否为同一函数.【分析】先求y=|x|的定义域与值域,再分别求出所给的四个函数的定义域与值域,进行对比得出答案.【解答】解:函数y=|x|的定义域为R,值域为[0,+∞),A中,函数的定义域为[0,+∞),A不能选;B中, =|x|,两者是同一个函数;C中,定义域中无实数0,∴定义域不同;D中,函数值可以取负值,∴值域不同.故选:B.6.已知函数y=的定义域为()A.(﹣∞,1] B.(﹣∞,2] C.(﹣∞,﹣)∩(﹣,1] D.(﹣∞,﹣)∪(﹣,1]【考点】函数的定义域及其求法.【分析】由根式内部的代数式大于等于0,分式的分母不等于0联立不等式组得答案.【解答】解:由,解得x≤1且x.∴函数y=的定义域为(﹣∞,﹣)∪(﹣,1].故选:D.7.函数y=的值域是()A. B.(﹣∞,2] C. D.[0,]【考点】函数的值域.【分析】利用配方法化简可得y==,即可求出函数的值域.【解答】解:利用配方法化简可得y==,∴,故选D.8.如果f(x)图象关于原点对称,在区间[3,7]上是增函数且最大值为5,那么f(x)在区间[﹣7,﹣3]上是()A.增函数且最小值是﹣5 B.增函数且最大值是﹣5C.减函数且最大值是﹣5 D.减函数且最小值是﹣5【考点】函数的最值及其几何意义;函数单调性的性质;奇偶性与单调性的综合.【分析】根据奇函数的图象关于原点对称,故它在对称区间上的单调性不变,结合题意从而得出结论.【解答】解:由于f(x)图象关于原点对称,则f(x)为奇函数,故它在对称区间上的单调性不变.如果奇函数f(x)在区间[3,7]上是增函数且最大值为5,那么f(x)在区间[﹣7,﹣3]上必是增函数且最小值为﹣5,故选:A.9.如图所示,M,P,S是V的三个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪S C.(M∩S)∩(∁s P)D.(M∩P)∪(∁VS)【考点】Venn图表达集合的关系及运算.【分析】先根据图中的阴影部分是M∩P的子集,但不属于集合S,属于集合S的补集,然后用关系式表示出来即可.【解答】解:图中的阴影部分是:M∩P的子集,不属于集合S,属于集合S的补集即是CV S的子集则阴影部分所表示的集合是(M∩P)∩∁VS故选:C.10.已知a,b为不等的两个实数,集合M={a2﹣4a,﹣1},N={b2﹣4b+1,﹣2},f:x→x表示把M中的元素映射到N中仍为x,则a+b=()A.1 B.2 C.3 D.4【考点】一元二次不等式的应用;映射.【分析】集合M中的两个元素的像都等于﹣2不可能,都等于b2﹣4b+1 也不可能,故只有b2﹣4b+1=﹣1,且a2﹣4a=﹣2,最后结合方程的思想利用根与系数的关系即可求得a+b.【解答】解:由题意知,b2﹣4b+1=﹣1,且a2﹣4a=﹣2,∴a,b是方程x2﹣4x+2=0的两个根,根据根与系数的关系,故a+b=4,故选D.11.函数f(x)=x2+2(a﹣1)x+2在区间(0,4)上单调,那么实数a的取值范围()A.(﹣∞,﹣3] B.[﹣3,1] C.[1,+∞)∪(﹣∞,﹣3] D.[1,+∞)【考点】二次函数的性质.【分析】求出二次函数的对称轴,根据单调区间与对称轴之间的关系建立条件,即可求出a 的取值范围.【解答】解:f(x)=x2+2(a﹣1)x+2的对称轴为x=1﹣a,抛物线开口向上,若函数f(x)在区间(0,4)上单调递减,1﹣a≥4,解得a≤﹣3,若函数f(x)在区间(0,4)上单调递增,1﹣a≤0,解得a≥1,故选:C.12.函数f(x)为区间(﹣∞,0)∪(0,+∞)上的奇函数,且(0,+∞)为增区间,若f(﹣1)=0,则当<0时,x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣1,0)∪(0,1)D.(﹣∞,﹣1)∪(1,+∞)【考点】奇偶性与单调性的综合.【分析】根据函数为奇函数,得到在区间(﹣∞,0)上单调递增,再利用f(1)=0,得到f (﹣1)=0,从而得到相应的结果.【解答】解:∵函数f(x)奇函数,在区间(0,+∞)上单调递增,∴在区间(﹣∞,0)上单调递增,∵f(﹣1)=0,∴f(1)=0,∴当x<﹣1时,f(x)<0,当﹣1<x<0时,f(x)>0,当0<x<1时,f(x)<0,当x>1时,f(x)>0,∴当﹣1<x<0或0<x<1时,<0,故选C.二.填空题:本大题共4小题,每小题5分,共20分.13.函数f(x)=,则f(﹣2)= 2 .【考点】函数的值.【分析】利用分段函数的性质求解.【解答】解:∵函数f(x)=,∴f(﹣2)=f(﹣1)=f(0)=f(1)=2.故答案为:2.14.已知集合M={a2,0},N={1,a,2},且M∩N={1},那么M∪N的子集有16 个.【考点】子集与真子集.【分析】由题意先确定集合M,N,再求M∪N={﹣1,0,1,2},从而求子集的个数.【解答】解:∵M={a2,0},N={1,a,2},且M∩N={1},∴a=﹣1,∴M∪N={﹣1,0,1,2},故M∪N的子集有24=16个.故答案为:16.15.若偶函数f(x)在(﹣∞,0]上为增函数,则满足f(1)≤f(a)的实数a的取值范围是[﹣1,1] .【考点】奇偶性与单调性的综合.【分析】根据题意,当a<0时不等式f(1)≤f(a)即f(﹣1)≤f(a),结合函数的单调性得﹣1≤a<0;而当a≥0时,由f(x)在[0,+∞)上为减函数,解不等式f(1)≤f(a)得0≤a≤1.由此可得本题答案.【解答】解:∵偶函数f(x)在(﹣∞,0]上为增函数,∴f(x)在[0,+∞)上为减函数,当a≥0时,由f(1)≤f(a)得0≤a≤1;当a<0时,不等式f(1)≤f(a)即f(﹣1)≤f(a),可得﹣1≤a<0.综上所述,满足f(1)≤f(a)的实数a的取值范围是[﹣1,1].故答案为:[﹣1,1]16.函数f(x)=是R上的减函数,则a的取值范围是(﹣1,1] .【考点】分段函数的应用.【分析】若函数f(x)=是R上的减函数,则,解得a的取值范围【解答】解:∵函数f(x)=是R上的减函数,∴,解得a∈(﹣1,1],故答案为:(﹣1,1]三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知全集为R,集合A={x|2≤x<4},B={x|3x﹣7≥8﹣2x},则A∩B= {x|3≤x<4} ;A∪(∁B)= {x|x<4} .R【考点】交、并、补集的混合运算;交集及其运算.【分析】求出集合B,然后求解交集,以及B的补集与A的并集运算.【解答】解:全集为R,集合A={x|2≤x<4},B={x|3x﹣7≥8﹣2x}={x|x≥3},则A∩B={x|3≤x<4};∁B={x|x<3}RB)={x|x<4}.A∪(∁R故答案为:{x|3≤x<4};{x|x<4}.18.已知函数f(x)是定义在R上的偶函数,已知当x≤0时,f(x)=x2+4x+3.(1)求函数f(x)的解析式;(2)画出函数f(x)的图象,并写出函数f(x)的单调递增区间.【考点】函数奇偶性的性质;函数的图象.【分析】(1)当x>0时,﹣x<0,可求得f(x)=x2﹣4x+3,从而有函数f(x)的解析式;(2)可根据的图象得到函数f(x)的单调递增区间.【解答】解(1)∵函数f(x)是定义在R上的偶函数∴对任意的x∈R都有f(﹣x)=f(x)成立∴当x>0时,﹣x<0即f(x)=f(﹣x)=(﹣x)2+4(﹣x)+3=x2﹣4x+3.∴(2)图形如右图所示,函数f(x)的单调递增区间为[﹣2,0]和[2,+∞).(写成开区间也可以)19.已知y=f(x)在定义域(﹣1,1)上是减函数且为奇函数,若f(1﹣a)+f(1﹣2a)<0,求实数a的取值范围.【考点】函数奇偶性的性质.【分析】f(1﹣a)+f(1﹣2a)<0,利用函数的奇偶性可得:f(1﹣a)<f(2a﹣1),再利用单调性即可得出.【解答】解:∵f(1﹣a)+f(1﹣2a)<0,∴f(1﹣a)<﹣f(1﹣2a),∵f(x)在定义域(﹣1,1)上为减函数且为奇函数.∴f(1﹣a)<f(2a﹣1),∴,∴,∴.A)∩B=∅,m= 1或2 .20.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0};若(∁U【考点】交、并、补集的混合运算;空集的定义、性质及运算.A)∩B=∅”推知集合B中元素的特点即可解【分析】先化简集合A,B,再结合题中条件:“(CU决.【解答】解:∵A={x|x2+3x+2=0}={﹣1,﹣2},x2+(m+1)x+m=0得:x=﹣1或x=﹣m.A)∩B=∅,∵(CU∴集合B中只能有元素﹣1或﹣2,∴m=1或2故答案为1或2.21.已知函数f(x)=x+(Ⅰ)判断函数的奇偶性,并加以证明;(Ⅱ)用定义证明f(x)在(0,1)上是减函数;(Ⅲ)函数f (x )在(﹣1,0)上是单调增函数还是单调减函数?(直接写出答案,不要求写证明过程).【考点】奇偶性与单调性的综合.【分析】(I )用函数奇偶性定义证明,要注意定义域.(II )先任取两个变量,且界定大小,再作差变形看符号,(III )由函数图象判断即可.【解答】证明:(I )函数为奇函数(II )设x 1,x 2∈(0,1)且x 1<x 2= ∵0<x 1<x 2<1,∴x 1x 2<1,x 1x 2﹣1<0,∵x 2>x 1∴x 2﹣x 1>0.∴f (x 2)﹣f (x 1)<0,f (x 2)<f (x 1)因此函数f (x )在(0,1)上是减函数(III )f (x )在(﹣1,0)上是减函数.22.已知二次函数f (x )满足f (0)=0且f (x+1)=f (x )+x+1,(1)求f (x )的表达(2)求函数f (x )在[t ,t+1]上的最小值g (t )(3)若g (t )+m ≥0对t ∈R 恒成立,求实数m 的取值范围.【考点】二次函数的性质;函数的最值及其几何意义.【分析】(1)设出二次函数的一般形式后,代入f (x+1)=f (x )+x+1,化简后根据多项式相等,各系数相等即可求出a ,b 及c 的值,即可确定出f (x )的解析式;(2)对称轴x=﹣,讨论区间与对称轴的位置关系,从而求最小值.(3))由g (t )+m ≥0对t ∈R 恒成立,可得﹣m ≤g (t )min ,由(2)可知g (t )min =﹣,问题得以解决.【解答】解:(1)令f (x )=ax 2+bx+c ,(a ≠0)代入f (x+1)=f (x )+x+1,得:a (x+1)2+b (x+1)+c=ax 2+bx+c+x+1,∴(2a+b )x+a+b=(b+1)x+1,∴,解得a=,b=又∵f (0)=c=0∴f (x )=x 2+x ,(2)由(1)可得f (x )的对称轴为x=﹣,∴函数f (x )在(﹣∞,﹣)单调递减,在(,+∞)单调递增,①当t+1≤﹣,即t ≤﹣时,f (x )在[t ,t+1]单调递减,g (t )=f (x )min =f (t+1)=t 2+t+1,②﹣<t+1且t <﹣,即﹣<t <﹣时,f (x )在[t ,﹣)递减,在(﹣,t+1]递增,∴g (t )=f (x )min =f (﹣)=﹣,③t ≥﹣时,函数f (x )在[t ,t+1]单调递增,∴g (t )=f (x )min =f (t )=t 2+t ,∴g (t )=,(3)∵g (t )+m ≥0对t ∈R 恒成立,∴﹣m ≤g (t )min ,由(2)可知g (t )min =﹣,∴﹣m ≤﹣,∴m ≥.。

东营区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案

东营区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案

东营区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1.已知向量=(1,n),=(﹣1,n ﹣2),若与共线.则n 等于( ) A .1 B. C .2 D .4 2. 已知等差数列{a n }中,a 6+a 8=16,a 4=1,则a 10的值是( )A .15B .30C .31D .643. 设m 、n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n ∥α,则m ⊥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若m ⊥α,n ⊥α,则m ∥n ;④若α⊥β,m ⊥β,则m ∥α; 其中正确命题的序号是( ) A .①②③④ B .①②③ C .②④D .①③4. 设函数()()21,141x x f x x ⎧+<⎪=⎨≥⎪⎩,则使得()1f x ≥的自变量的取值范围为( )A .(][],20,10-∞-B .(][],20,1-∞-C .(][],21,10-∞-D .[][]2,01,10-5. 已知平面向量a 、b 满足||||1==a b ,(2)⊥-a a b ,则||+=a b ( ) A .0 B .2 C .2 D .3 6. 方程x= 所表示的曲线是( )A .双曲线B .椭圆C .双曲线的一部分D .椭圆的一部分7. 在曲线y=x 2上切线倾斜角为的点是( )A .(0,0)B .(2,4) C.(,)D.(,)8. 已知直线34110m x y +-=:与圆22(2)4C x y -+=:交于A B 、两点,P 为直线3440n x y ++=:上任意一点,则PAB ∆的面积为( )A.B.C.D. 9. 已知全集{}1,2,3,4,5,6,7U =,{}2,4,6A =,{}1,3,5,7B =,则()U A B =ð( )A .{}2,4,6B .{}1,3,5C .{}2,4,5D .{}2,5 10.方程x 2+2ax+y 2=0(a ≠0)表示的圆( ) A .关于x 轴对称B .关于y 轴对称C .关于直线y=x 轴对称D .关于直线y=﹣x 轴对称11.已知函数()xF x e =满足()()()F x g x h x =+,且()g x ,()h x 分别是R 上的偶函数和奇函数, 若(0,2]x ∀∈使得不等式(2)()0g x ah x -≥恒成立,则实数的取值范围是( )A.(-∞ B.(-∞ C. D.)+∞ 12.执行如图所示的程序框图,若输出的结果是,则循环体的判断框内①处应填( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .11?B .12?C .13?D .14?二、填空题13.已知条件p :{x||x ﹣a|<3},条件q :{x|x 2﹣2x ﹣3<0},且q 是p 的充分不必要条件,则a 的取值范围是 .14.已知点A (﹣1,1),B (1,2),C (﹣2,﹣1),D (3,4),求向量在方向上的投影.15.已知向量,满足42=,2||=,4)3()(=-⋅+,则与的夹角为 .【命题意图】本题考查向量的数量积、模及夹角知识,突出对向量的基础运算及化归能力的考查,属于容易题.16.已知双曲线的标准方程为,则该双曲线的焦点坐标为, 渐近线方程为 .17.设实数x ,y 满足,向量=(2x ﹣y ,m ),=(﹣1,1).若∥,则实数m 的最大值为 .18.已知函数f (x )=,点O 为坐标原点,点An (n ,f (n ))(n ∈N +),向量=(0,1),θn 是向量与i 的夹角,则++…+= .三、解答题19.设函数f (x )=a (x+1)2ln (x+1)+bx (x >﹣1),曲线y=f (x )过点(e ﹣1,e 2﹣e+1),且在点(0,0)处的切线方程为y=0. (Ⅰ)求a ,b 的值;(Ⅱ)证明:当x ≥0时,f (x )≥x 2;(Ⅲ)若当x ≥0时,f (x )≥mx 2恒成立,求实数m 的取值范围.20.已知函数f(x)=lnx﹣a(1﹣),a∈R.(Ⅰ)求f(x)的单调区间;(Ⅱ)若f(x)的最小值为0.(i)求实数a的值;(ii)已知数列{a n}满足:a1=1,a n+1=f(a n)+2,记[x]表示不大于x的最大整数,求证:n>1时[a n]=2.21.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AD,点F是棱PD的中点,点E为CD的中点.(1)证明:EF∥平面PAC;(2)证明:AF⊥EF.22.已知二次函数f(x)的图象过点(0,4),对任意x满足f(3﹣x)=f(x),且有最小值是.(1)求f(x)的解析式;(2)求函数h(x)=f(x)﹣(2t﹣3)x在区间[0,1]上的最小值,其中t∈R;(3)在区间[﹣1,3]上,y=f(x)的图象恒在函数y=2x+m的图象上方,试确定实数m的范围.23.已知梯形ABCD中,AB∥CD,∠B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周的都如图所示的几何体(Ⅰ)求几何体的表面积(Ⅱ)判断在圆A上是否存在点M,使二面角M﹣BC﹣D的大小为45°,且∠CAM为锐角若存在,请求出CM的弦长,若不存在,请说明理由.24.已知函数f(x)=ax2+blnx在x=1处有极值.(1)求a,b的值;(2)判断函数y=f(x)的单调性并求出单调区间.东营区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】A【解析】解:∵向量=(1,n ),=(﹣1,n ﹣2),且与共线. ∴1×(n ﹣2)=﹣1×n ,解之得n=1 故选:A2. 【答案】A【解析】解:∵等差数列{a n }, ∴a 6+a 8=a 4+a 10,即16=1+a 10, ∴a 10=15, 故选:A .3. 【答案】B【解析】解:由m 、n 是两条不同的直线,α,β,γ是三个不同的平面: 在①中:若m ⊥α,n ∥α,则由直线与平面垂直得m ⊥n ,故①正确; 在②中:若α∥β,β∥γ,则α∥γ,∵m ⊥α,∴由直线垂直于平面的性质定理得m ⊥γ,故②正确;在③中:若m ⊥α,n ⊥α,则由直线与平面垂直的性质定理得m ∥n ,故③正确; 在④中:若α⊥β,m ⊥β,则m ∥α或m ⊂α,故④错误. 故选:B .4. 【答案】A 【解析】考点:分段函数的应用.【方法点晴】本题主要考查了分段函数的应用,其中解答中涉及到不等式的求解,集合的交集和集合的并集运算,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据分段函数的分段条件,列出相应的不等式,通过求解每个不等式的解集,利用集合的运算是解答的关键. 5. 【答案】D【解析】∵(2)⊥-a a b ,∴(2)0⋅-=a a b , ∴21122⋅==a b a ,∴222||()2+=+=+⋅+a b a b a a b b22112132=+⨯+=.6. 【答案】C【解析】解:x=两边平方,可变为3y 2﹣x 2=1(x ≥0),表示的曲线为双曲线的一部分;故选C .【点评】本题主要考查了曲线与方程.解题的过程中注意x 的范围,注意数形结合的思想.7. 【答案】D【解析】解:y'=2x ,设切点为(a ,a 2)∴y'=2a ,得切线的斜率为2a ,所以2a=tan45°=1,∴a=,在曲线y=x 2上切线倾斜角为的点是(,).故选D .【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.8. 【答案】 C【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.圆心C 到直线m 的距离1d =,22||223AB r d =-=,两平行直线m n 、之间的距离为3d '=,∴PAB ∆的面积为1||332AB d '⋅=,选C . 9. 【答案】A考点:集合交集,并集和补集.【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目. 10.【答案】A【解析】解:方程x 2+2ax+y 2=0(a ≠0)可化为(x+a )2+y 2=a 2,圆心为(﹣a ,0),∴方程x 2+2ax+y 2=0(a ≠0)表示的圆关于x 轴对称,故选:A .【点评】此题考查了圆的一般方程,方程化为标准方程是解本题的关键.11.【答案】B 【解析】试题分析:因为函数()x F x e =满足()()()F x g x h x =+,且()(),g x h x 分别是R 上的偶函数和奇函数,()()()()()()(],,,,0,222x x x xxxe e e e e g x h x eg x h x g x h x x ---+-∴=+=-∴==∀∈ 使得不等式()()20g x ah x -≥恒成立, 即22022xxx xe ee e a--+--≥恒成立, ()2222x x x xx xx xe e e ea e e e e -----++∴≤=--()2x x x xe e e e--=-++, 设x x t e e -=-,则函数x x t e e -=-在(]0,2上单调递增,220t e e -∴<≤-, 此时不等式2tt +≥当且仅当2t t=,即t =时, 取等号,a ∴≤故选B.考点:1、函数奇偶性的性质;2、不等式恒成立问题及函数的最值.【方法点晴】本题主要考查函数奇偶性的性质、不等式恒成立问题及函数的最值,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合;③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数.本题是利用方法①求得的最大值的.12.【答案】C【解析】解:由已知可得该程序的功能是计算并输出S=+++…+=的值,若输出的结果是,则最后一次执行累加的k 值为12, 则退出循环时的k 值为13, 故退出循环的条件应为:k ≥13?, 故选:C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.二、填空题13.【答案】 [0,2] .【解析】解:命题p :||x ﹣a|<3,解得a ﹣3<x <a+3,即p=(a ﹣3,a+3);命题q :x 2﹣2x ﹣3<0,解得﹣1<x <3,即q=(﹣1,3).∵q 是p 的充分不必要条件,∴q ⊊p ,∴,解得0≤a≤2,则实数a的取值范围是[0,2].故答案为:[0,2].【点评】本题考查了绝对值不等式的解法、一元二次不等式的解法、充分必要条件的判定与应用,考查了推理能力与计算能力,属于中档题14.【答案】【解析】解:∵点A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),∴向量=(1+1,2﹣1)=(2,1),=(3+2,4+1)=(5,5);∴向量在方向上的投影是==.215.【答案】3【解析】16.【答案】(±,0)y=±2x.【解析】解:双曲线的a=2,b=4,c==2,可得焦点的坐标为(±,0),渐近线方程为y=±x,即为y=±2x.故答案为:(±,0),y=±2x.【点评】本题考查双曲线的方程和性质,主要是焦点的求法和渐近线方程的求法,考查运算能力,属于基础题.17.【答案】6.【解析】解:∵=(2x﹣y,m),=(﹣1,1).若∥,∴2x﹣y+m=0,即y=2x+m,作出不等式组对应的平面区域如图:平移直线y=2x+m,由图象可知当直线y=2x+m经过点C时,y=2x+m的截距最大,此时z最大.由,解得,代入2x﹣y+m=0得m=6.即m的最大值为6.故答案为:6【点评】本题主要考查线性规划的应用,利用m的几何意义结合数形结合,即可求出m的最大值.根据向量平行的坐标公式是解决本题的关键.18.【答案】.【解析】解:点An(n,)(n∈N+),向量=(0,1),θn是向量与i的夹角,=,=,…,=,∴++…+=+…+=1﹣=,故答案为:.【点评】本题考查了向量的夹角、数列“裂项求和”方法,考查了推理能力与计算能力,属于中档题.三、解答题19.【答案】【解析】解:(Ⅰ)f′(x)=2a(x+1)ln(x+1)+a(x+1)+b,∵f′(0)=a+b=0,f(e﹣1)=ae2+b(e﹣1)=a(e2﹣e+1)=e2﹣e+1∴a=1,b=﹣1.…(Ⅱ)f(x)=(x+1)2ln(x+1)﹣x,设g(x)=(x+1)2ln(x+1)﹣x﹣x2,(x≥0),g′(x)=2(x+1)ln(x+1)﹣x,(g′(x))′=2ln(x+1)+1>0,∴g′(x)在[0,+∞)上单调递增,∴g′(x)≥g′(0)=0,∴g(x)在[0,+∞)上单调递增,∴g(x)≥g(0)=0.∴f(x)≥x2.…(Ⅲ)设h(x)=(x+1)2ln(x+1)﹣x﹣mx2,h′(x)=2(x+1)ln(x+1)+x﹣2mx,(Ⅱ)中知(x+1)2ln(x+1)≥x2+x=x(x+1),∴(x+1)ln(x+1)≥x,∴h′(x)≥3x﹣2mx,①当3﹣2m≥0即时,h′(x)≥0,∴h(x)在[0,+∞)单调递增,∴h(x)≥h(0)=0,成立.②当3﹣2m<0即时,h′(x)=2(x+1)ln(x+1)+(1﹣2m)x,h′′(x)=2ln(x+1)+3﹣2m,令h′′(x)=0,得,当x∈[0,x0)时,h′(x)<h′(0)=0,∴h(x)在[0,x0)上单调递减,∴h(x)<h(0)=0,不成立.综上,.…20.【答案】【解析】解:(Ⅰ)函数f(x)的定义域为(0,+∞),且f′(x)=﹣=.当a≤0时,f′(x)>0,所以f(x)在区间(0,+∞)内单调递增;当a>0时,由f′(x)>0,解得x>a;由f′(x)<0,解得0<x<a.所以f(x)的单调递增区间为(a,+∞),单调递减区间为(0,a).综上述:a≤0时,f(x)的单调递增区间是(0,+∞);a>0时,f(x)的单调递减区间是(0,a),单调递增区间是(a,+∞).(Ⅱ)(ⅰ)由(Ⅰ)知,当a≤0时,f(x)无最小值,不合题意;当a>0时,[f(x)]min=f(a)=1﹣a+lna=0,令g(x)=1﹣x+lnx(x>0),则g′(x)=﹣1+=,由g′(x)>0,解得0<x<1;由g′(x)<0,解得x>1.所以g(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).故[g(x)]max=g(1)=0,即当且仅当x=1时,g(x)=0.因此,a=1.(ⅱ)因为f(x)=lnx﹣1+,所以a n+1=f(a n)+2=1++lna n.由a1=1得a2=2于是a3=+ln2.因为<ln2<1,所以2<a3<.猜想当n≥3,n∈N时,2<a n<.下面用数学归纳法进行证明.①当n=3时,a3=+ln2,故2<a3<.成立.②假设当n=k (k ≥3,k ∈N )时,不等式2<a k <成立.则当n=k+1时,a k+1=1++lna k ,由(Ⅰ)知函数h (x )=f (x )+2=1++lnx 在区间(2,)单调递增,所以h (2)<h (a k )<h (),又因为h (2)=1++ln2>2,h ()=1++ln <1++1<.故2<a k+1<成立,即当n=k+1时,不等式成立.根据①②可知,当n ≥3,n ∈N 时,不等式2<a n <成立.综上可得,n >1时[a n ]=2.【点评】本题主要考查函数的导数、导数的应用等基础知识,考查推理论证能力、运算求解能力、创新意识等,考查函数与方程思想、化归与转化思想、分类与整合思想、有限与无限思想等,属难题.21.【答案】【解析】(1)证明:如图,∵点E ,F 分别为CD ,PD 的中点,∴EF ∥PC .∵PC ⊂平面PAC ,EF ⊄平面PAC ,∴EF ∥平面PAC .(2)证明:∵PA ⊥平面ABCD ,CD ⊂平面ABCD ,又ABCD 是矩形,∴CD ⊥AD ,∵PA ∩AD=A ,∴CD ⊥平面PAD .∵AF ⊂平面PAD ,∴AF ⊥CD .∵PA=AD ,点F 是PD 的中点,∴AF ⊥PD .又CD ∩PD=D ,∴AF ⊥平面PDC .∵EF ⊂平面PDC ,∴AF ⊥EF .【点评】本题考查了线面平行的判定,考查了由线面垂直得线线垂直,综合考查了学生的空间想象能力和思维能力,是中档题.22.【答案】【解析】解:(1)二次函数f(x)图象经过点(0,4),任意x满足f(3﹣x)=f(x)则对称轴x=,f(x)存在最小值,则二次项系数a>0设f(x)=a(x﹣)2+.将点(0,4)代入得:f(0)=,解得:a=1∴f(x)=(x﹣)2+=x2﹣3x+4.(2)h(x)=f(x)﹣(2t﹣3)x=x2﹣2tx+4=(x﹣t)2+4﹣t2,x∈[0,1].当对称轴x=t≤0时,h(x)在x=0处取得最小值h(0)=4;当对称轴0<x=t<1时,h(x)在x=t处取得最小值h(t)=4﹣t2;当对称轴x=t≥1时,h(x)在x=1处取得最小值h(1)=1﹣2t+4=﹣2t+5.综上所述:当t≤0时,最小值4;当0<t<1时,最小值4﹣t2;当t≥1时,最小值﹣2t+5.∴.(3)由已知:f(x)>2x+m对于x∈[﹣1,3]恒成立,∴m<x2﹣5x+4对x∈[﹣1,3]恒成立,∵g(x)=x2﹣5x+4在x∈[﹣1,3]上的最小值为,∴m<.23.【答案】【解析】解:(1)根据题意,得;该旋转体的下半部分是一个圆锥,上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,其表面积为S=×4π×2×2=8π,或S=×4π×2+×(4π×2﹣2π×)+×2π×=8π;(2)作ME⊥AC,EF⊥BC,连结FM,易证FM⊥BC,∴∠MFE为二面角M﹣BC﹣D的平面角,设∠CAM=θ,∴EM=2sinθ,EF=,∵tan∠MFE=1,∴,∴tan=,∴,∴CM=2.【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目.24.【答案】【解析】解:(1)因为函数f(x)=ax2+blnx,所以.又函数f(x)在x=1处有极值,所以即可得,b=﹣1.(2)由(1)可知,其定义域是(0,+∞),且x f x f x。

东营区二中2018-2019学年高三上学期11月月考数学试卷含答案

东营区二中2018-2019学年高三上学期11月月考数学试卷含答案

东营区二中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则cos C =( ) A .725B .725- C. 725± D .24252. 某几何体的三视图如图所示,则该几何体的表面积为( )A .8+2B .8+8C .12+4D .16+43. 等比数列{a n }中,a 3,a 9是方程3x 2﹣11x+9=0的两个根,则a 6=( ) A .3B .C .±D .以上皆非4. 若实数x ,y 满足,则(x ﹣3)2+y 2的最小值是( ) A .B .8C .20D .25. 若复数(2+ai )2(a ∈R )是实数(i 是虚数单位),则实数a 的值为( ) A .﹣2 B .±2 C .0 D .26. 已知f (x )=4+a x ﹣1的图象恒过定点P ,则点P 的坐标是( ) A .(1,5) B .(1,4) C .(0,4) D .(4,0)7. 已知f (x )=x 3﹣3x+m ,在区间[0,2]上任取三个数a ,b ,c ,均存在以f (a ),f (b ),f (c )为边长的三角形,则m 的取值范围是( )A .m >2B .m >4C .m >6D .m >88. 若函数()()222f x x πϕϕ⎛⎫+< ⎪⎝⎭的图象关于直线12x π=对称,且当12172123x x ππ⎛⎫∈-- ⎪⎝⎭,,,12x x ≠时,()()12f x f x =,则()12f x x +等于( )A 2B 2 6 D 29. 3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有( ) A .90种 B .180种C .270种D .540种10.已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为( )A .240x y +-=B .240x y --=C .20x y +-=D .20x y --=班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________11.已知平面向量a 、b 满足||||1==a b ,(2)⊥-a a b ,则||+=a b ( ) A .0 B .2 C .2 D .3 12.给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行; ③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个二、填空题13.设椭圆E :+=1(a >b >0)的右顶点为A 、右焦点为F ,B 为椭圆E 在第二象限上的点,直线BO交椭圆E 于点C ,若直线BF 平分线段AC ,则椭圆E 的离心率是 . 14.给出下列命题: ①存在实数α,使②函数是偶函数③是函数的一条对称轴方程④若α、β是第一象限的角,且α<β,则sin α<sin β其中正确命题的序号是 .15.不等式的解集为R ,则实数m 的范围是.16.如图,在平面直角坐标系xOy 中,将直线y=与直线x=1及x 轴所围成的图形旋转一周得到一个圆锥,圆锥的体积V 圆锥=π()2dx=x 3|=.据此类推:将曲线y=x 2与直线y=4所围成的图形绕y 轴旋转一周得到一个旋转体,该旋转体的体积V= .17.若双曲线的方程为4x 2﹣9y 2=36,则其实轴长为 .18.已知a 、b 、c 分别是ABC ∆三内角A B C 、、的对应的三边,若C a A c cos sin -=,则33cos()4A B π-+的取值范围是___________. 【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想.三、解答题19.已知函数f(x)=cosx(sinx+cosx)﹣.(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.20.某校为选拔参加“央视猜灯谜大赛”的队员,在校内组织猜灯谜竞赛.规定:第一阶段知识测试成绩不小于160分的学生进入第二阶段比赛.现有200名学生参加知识测试,并将所有测试成绩绘制成如下所示的频率分布直方图.(Ⅰ)估算这200名学生测试成绩的中位数,并求进入第二阶段比赛的学生人数;(Ⅱ)将进入第二阶段的学生分成若干队进行比赛.现甲、乙两队在比赛中均已获得120分,进入最后抢答阶段.抢答规则:抢到的队每次需猜3条谜语,猜对1条得20分,猜错1条扣20分.根据经验,甲队猜对每条谜语的概率均为,乙队猜对前两条的概率均为,猜对第3条的概率为.若这两队抢到答题的机会均等,您做为场外观众想支持这两队中的优胜队,会把支持票投给哪队?21.(本小题满分12分)某校为了解高一新生对文理科的选择,对1 000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:分数段理科人数文科人数[40,50)[50,60)[60,70)[70,80)正正[80,90)正[90,100](1率分布直方图.(2)根据你绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分.22.【镇江2018届高三10月月考文科】已知函数,其中实数为常数,为自然对数的底数. (1)当时,求函数的单调区间;(2)当时,解关于的不等式;(3)当时,如果函数不存在极值点,求的取值范围.23.如图1,在Rt △ABC 中,∠C=90°,BC=3,AC=6,D 、E 分别是AC 、AB 上的点,且DE ∥BC ,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1D ⊥CD ,如图2.(Ⅰ)求证:平面A 1BC ⊥平面A 1DC ;(Ⅱ)若CD=2,求BD 与平面A 1BC 所成角的正弦值; (Ⅲ)当D 点在何处时,A 1B 的长度最小,并求出最小值.24.(本小题满分12分)已知函数21()3cos cos 2f x x x x =--. (1)求函数()y f x =在[0,]2π上的最大值和最小值; (2)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,满足2c =,3a =,()0f B =,求sin A 的值.1111]东营区二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】A 【解析】考点:正弦定理及二倍角公式.【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式,如θθθθθ2222sin cos 2cos ,1cos sin -==+,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定理R CcB b A 2sin sin sin a ===,余弦定理A bc c b a cos 2222-+=, 实现边与角的互相转化. 2. 【答案】D【解析】解:根据三视图得出该几何体是一个斜四棱柱,AA 1=2,AB=2,高为,根据三视图得出侧棱长度为=2,∴该几何体的表面积为2×(2×+2×2+2×2)=16,故选:D【点评】本题考查了空间几何体的三视图,运用求解表面积,关键是恢复几何体的直观图,属于中档题.3. 【答案】C【解析】解:∵a 3,a 9是方程3x 2﹣11x+9=0的两个根, ∴a 3a 9=3,又数列{a n }是等比数列, 则a 62=a 3a 9=3,即a 6=±.故选C4.【答案】A【解析】解:画出满足条件的平面区域,如图示:,由图象得P(3,0)到平面区域的最短距离d min=,∴(x﹣3)2+y2的最小值是:.故选:A.【点评】本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.5.【答案】C【解析】解:∵复数(2+ai)2=4﹣a2+4ai是实数,∴4a=0,解得a=0.故选:C.【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题.6.【答案】A【解析】解:令x﹣1=0,解得x=1,代入f(x)=4+a x﹣1得,f(1)=5,则函数f(x)过定点(1,5).故选A.7.【答案】C【解析】解:由f′(x)=3x2﹣3=3(x+1)(x﹣1)=0得到x1=1,x2=﹣1(舍去)∵函数的定义域为[0,2]∴函数在(0,1)上f′(x)<0,(1,2)上f′(x)>0,∴函数f(x)在区间(0,1)单调递减,在区间(1,2)单调递增,则f(x)min=f(1)=m﹣2,f(x)max=f(2)=m+2,f(0)=m由题意知,f(1)=m﹣2>0 ①;f(1)+f(1)>f(2),即﹣4+2m>2+m②由①②得到m >6为所求.故选C 【点评】本题以函数为载体,考查构成三角形的条件,解题的关键是求出函数在区间[0,2]上的最小值与最大值8. 【答案】C 【解析】考点:函数的图象与性质.【方法点晴】本题主要考查函数的图象与性质,涉及数形结合思想、函数与方程思想、转化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型.首先利用数形结合思想和转化化归思想可得()2122k k ππϕπ⨯+=+∈Z ,解得3πϕ=,从而()223f x x π⎛⎫=+ ⎪⎝⎭,再次利用数形结合思想和转化化归思想可得()()()()1122x f x x f x ,,,关于直线1112x π=-对称,可得12116x x π+=-,从而()12116233f x x ππ⎛⎫+=-+= ⎪⎝⎭.9. 【答案】D【解析】解:三所学校依次选医生、护士,不同的分配方法共有:C 31C 62C 21C 42=540种. 故选D .10.【答案】D【解析】解析:本题考查抛物线的焦半径公式的应用与“中点弦”问题的解法.设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的中点坐标为(4,2).由2114y x =,2224y x =两式相减得121212()()4()y y y y x x +-=-,而1222y y +=,∴12121y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=,选D . 11.【答案】D【解析】∵(2)⊥-a a b ,∴(2)0⋅-=a a b ,∴21122⋅==a b a , ∴222||()2+=+=+⋅+a b a b a a b b22112132=+⨯+=.12.【答案】B 【解析】考点:空间直线与平面的位置关系.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与直线平行的判定与性质、直线与平面平行的判定与性质的应用,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直线与直线平行和直线与平面平行的判定与性质是解答的关键.二、填空题13.【答案】.【解析】解:如图,设AC 中点为M ,连接OM , 则OM 为△ABC 的中位线, 于是△OFM ∽△AFB ,且==,即=可得e==.故答案为:.【点评】本题考查椭圆的方程和性质,主要是离心率的求法,运用中位线定理和三角形相似的性质是解题的关键.14.【答案】 ②③ .【解析】解:①∵sinαcosα=sin2α∈[,],∵>,∴存在实数α,使错误,故①错误,②函数=cosx是偶函数,故②正确,③当时,=cos(2×+)=cosπ=﹣1是函数的最小值,则是函数的一条对称轴方程,故③正确,④当α=,β=,满足α、β是第一象限的角,且α<β,但sinα=sinβ,即sinα<sinβ不成立,故④错误,故答案为:②③.【点评】本题主要考查命题的真假判断,涉及三角函数的图象和性质,考查学生的运算和推理能力.15.【答案】.【解析】解:不等式,x2﹣8x+20>0恒成立可得知:mx2+2(m+1)x+9x+4<0在x∈R上恒成立.显然m<0时只需△=4(m+1)2﹣4m(9m+4)<0,解得:m<﹣或m>所以m<﹣故答案为:16.【答案】8π.【解析】解:由题意旋转体的体积V===8π,故答案为:8π.【点评】本题给出曲线y=x2与直线y=4所围成的平面图形,求该图形绕xy轴转一周得到旋转体的体积.着重考查了利用定积分公式计算由曲边图形旋转而成的几何体体积的知识,属于基础题.17.【答案】6.【解析】解:双曲线的方程为4x2﹣9y2=36,即为:﹣=1,可得a=3,则双曲线的实轴长为2a=6.故答案为:6.【点评】本题考查双曲线的实轴长,注意将双曲线方程化为标准方程,考查运算能力,属于基础题.18.【答案】62 (1,)【解析】三、解答题19.【答案】【解析】解:(1)∵0<α<,且sinα=,∴cosα=,∴f(α)=cosα(sinα+cosα)﹣,=×(+)﹣=.(2)f(x)=cosx(sinx+cosx)﹣.=sinxcosx+cos2x﹣=sin2x+cos2x=sin(2x+),∴T==π,由2kπ﹣≤2x+≤2kπ+,k∈Z,得kπ﹣≤x≤kπ+,k∈Z,∴f(x)的单调递增区间为[kπ﹣,kπ+],k∈Z.20.【答案】【解析】解:(Ⅰ)设测试成绩的中位数为x,由频率分布直方图得,(0.0015+0.019)×20+(x﹣140)×0.025=0.5,解得:x=143.6.∴测试成绩中位数为143.6.进入第二阶段的学生人数为200×(0.003+0.0015)×20=18人.(Ⅱ)设最后抢答阶段甲、乙两队猜对灯谜的条数分别为ξ、η,则ξ~B(3,),∴E(ξ)=.∴最后抢答阶段甲队得分的期望为[]×20=30,∵P(η=0)=,P(η=1)=,P(η=2)=,P(η=3)=,∴Eη=.∴最后抢答阶段乙队得分的期望为[]×20=24.∴120+30>120+24,∴支持票投给甲队.【点评】本小题主要考查概率、概率与统计等基础知识,考查推理论证能力、数据处理能力、运算求解能力及应用意识,考查或然与必然的思想,属中档题.21.【答案】【解析】解:(1)从统计表看出选择理科的学生的数学平均成绩高于选择文科的学生的数学平均成绩,反映了数学成绩对学生选择文理科有一定的影响,频率分布直方图如下.(2)从频率分布直方图知,数学成绩有50%小于或等于80分,50%大于或等于80分,所以中位数为80分.平均分为(55×0.005+65×0.015+75×0.030+85×0.030+95×0.020)×10=79.5,即估计选择理科的学生的平均分为79.5分.22.【答案】(1)单调递增区间为;单调递减区间为.(2)(3)【解析】试题分析:把代入由于对数的真数为正数,函数定义域为,所以函数化为,求导后在定义域下研究函数的单调性给出单调区间;代入,,分和两种情况解不等式;当时,,求导,函数不存在极值点,只需恒成立,根据这个要求得出的范围.试题解析:(2)时,.当时,原不等式可化为.记,则,当时,,所以在单调递增,又,故不等式解为;当时,原不等式可化为,显然不成立,综上,原不等式的解集为.23.【答案】【解析】【分析】(Ⅰ)在图1中,△ABC中,由已知可得:AC⊥DE.在图2中,DE⊥A1D,DE⊥DC,即可证明DE⊥平面A1DC,再利用面面垂直的判定定理即可证明.(Ⅱ)如图建立空间直角坐标系,设平面A1BC的法向量为,利用,BE与平面所成角的正弦值为.(Ⅲ)设CD=x(0<x<6),则A1D=6﹣x,利用=(0<x<6),即可得出.【解答】(Ⅰ)证明:在图1中,△ABC中,DE∥BC,AC⊥BC,则AC⊥DE,∴在图2中,DE⊥A1D,DE⊥DC,又∵A1D∩DC=D,∴DE⊥平面A1DC,∵DE∥BC,∴BC⊥平面A1DC,∵BC ⊂平面A 1BC ,∴平面A 1BC ⊥平面A 1DC .(Ⅱ)解:如图建立空间直角坐标系:A 1(0,0,4)B (3,2,0),C (0,2,0),D (0,0,0), E (2,0,0). 则,, 设平面A 1BC 的法向量为则,解得,即则BE 与平面所成角的正弦值为(Ⅲ)解:设CD=x (0<x <6),则A 1D=6﹣x ,在(2)的坐标系下有:A 1(0,0,6﹣x ),B (3,x ,0), ∴==(0<x <6), 即当x=3时,A 1B 长度达到最小值,最小值为.24.【答案】(1)最大值为,最小值为32-;(2)32114.【解析】试题分析:(1)将函数利用两角和的正余弦公式,倍角公式,辅助角公式将函数化简()sin(2)16f x x π=--再利用()sin()(0,||)2f x A x b πωϕωϕ=++><的性质可求在[0,]2π上的最值;(2)利用()0f B =,可得B ,再由余弦定理可得AC ,再据正弦定理可得sin A .1试题解析:(2)因为()0f B =,即sin(2)16B π-=∵(0,)B π∈,∴112(,)666B πππ-∈-,∴262B ππ-=,∴3B π=又在ABC ∆中,由余弦定理得,22212cos 49223732b c a c a π=+-⋅⋅=+-⨯⨯⨯=,所以7AC =.由正弦定理得:sin sin b aB A =73sin sin 3A =,所以321sin A =考点:1.辅助角公式;2.()sin()(0,||)2f x A x b πωϕωϕ=++><性质;3.正余弦定理.【思路点睛】本题主要考查倍角公式,正余弦定理.在利用正,余弦定理 解三角形的过程中,当所给的等式中既有正弦又有余弦时,常利用正弦定理将边的关系转化为角的关系;如果出现边的平方或者两边长的乘积时 可考虑使用余弦定理判断三角形的形状.解三角形问题时,要注意正,余弦定理的变形应用,解题思路有两个:一个是角化为边,二是边化为角.。

东营市高级中学2018-2019学年高三上学期11月月考数学试卷含答案

东营市高级中学2018-2019学年高三上学期11月月考数学试卷含答案

东营市高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1.一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于P,直线PF1(F1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为()A.B.C.D.2.已知M是△ABC内的一点,且=2,∠BAC=30°,若△MBC,△MCA和△MAB的面积分别为,x,y,则+的最小值是()A.20 B.18 C.16 D.93.直线在平面外是指()A.直线与平面没有公共点B.直线与平面相交C.直线与平面平行D.直线与平面最多只有一个公共点4.已知△ABC的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A的轨迹方程是()A.(x≠0)B.(x≠0)C .(x≠0)D.(x≠0)5.已知d为常数,p:对于任意n∈N*,a n+2﹣a n+1=d;q:数列{a n}是公差为d的等差数列,则¬p是¬q的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.垂直于同一条直线的两条直线一定()A.平行B.相交C.异面D.以上都有可能7.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=18.在正方体1111ABCD A B C D-中,M是线段11AC的中点,若四面体M ABD-的外接球体积为36p,则正方体棱长为()A.2 B.3 C.4 D.5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力.9.在△ABC中,a,b,c分别是角A,B,C的对边,a=5,b=4,cosC=,则△ABC的面积是()A.16 B.6 C.4 D.810.设双曲线焦点在y轴上,两条渐近线为,则该双曲线离心率e=()班级_______________座号______姓名_______________分数__________________________________________________________________________________________________________________A .5B .C .D .11.在ABC ∆中,22tan sin tan sin A B B A =,那么ABC ∆一定是( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形12.已知函数,函数,其中b ∈R ,若函数y=f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )A .B .C .D .二、填空题13.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为BD 1的中点,则△PAC 在该正方体各个面上的射影可能是 .14.在(1+x )(x 2+)6的展开式中,x 3的系数是 .15.圆心在原点且与直线2x y +=相切的圆的方程为_____ .【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题. 16.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市; 丙说:我们三人去过同一城市;由此可判断乙去过的城市为 .17.在(1+2x )10的展开式中,x 2项的系数为 (结果用数值表示).18.已知函数y=f (x ),x ∈I ,若存在x 0∈I ,使得f (x 0)=x 0,则称x 0为函数y=f (x )的不动点;若存在x 0∈I ,使得f (f (x 0))=x 0,则称x 0为函数y=f (x )的稳定点.则下列结论中正确的是 .(填上所有正确结论的序号)①﹣,1是函数g (x )=2x 2﹣1有两个不动点;②若x 0为函数y=f (x )的不动点,则x 0必为函数y=f (x )的稳定点; ③若x 0为函数y=f (x )的稳定点,则x 0必为函数y=f (x )的不动点; ④函数g (x )=2x 2﹣1共有三个稳定点;⑤若函数y=f (x )在定义域I 上单调递增,则它的不动点与稳定点是完全相同.三、解答题19.已知函数f (x )=2x 2﹣4x+a ,g (x )=log a x (a >0且a ≠1). (1)若函数f (x )在[﹣1,3m]上不具有单调性,求实数m 的取值范围; (2)若f (1)=g (1) ①求实数a 的值;②设t 1=f (x ),t 2=g (x ),t 3=2x ,当x ∈(0,1)时,试比较t 1,t 2,t 3的大小.20.如图,四边形ABEF 是等腰梯形,,2,42,22AB EF AF BE EF AB ====,四边形ABCD 是矩形,AD ⊥平面ABEF ,其中,Q M 分别是,AC EF 的中点,P 是BM 的中点.(1)求证:PQ 平面BCE ; (2)AM ⊥平面BCM .21.(本小题满分12分)已知函数()233sin cos cos 2f x x x x =++. (1)当63x ππ⎡⎤∈-⎢⎥⎣⎦,时,求函数()y f x =的值域;(2)已知0ω>,函数()212x g x f ωπ⎛⎫=+⎪⎝⎭,若函数()g x 在区间236ππ⎡⎤-⎢⎥⎣⎦,上是增函数,求ω的最大值.22.(本题满分15分)如图,已知长方形ABCD 中,2AB =,1AD =,M 为DC 的中点,将ADM ∆沿AM 折起,使得平面⊥ADM 平面ABCM .(1)求证:BM AD ⊥;(2)若)10(<<=λλDB DE ,当二面角D AM E --大小为3π时,求λ的值.【命题意图】本题考查空间点、线、面位置关系,二面角等基础知识,意在考查空间想象能力和运算求解能力.23.如图,四棱锥P ﹣ABCD 中,PD ⊥平面ABCD ,底面ABCD 为正方形,BC=PD=2,E 为PC 的中点,.求证:PC ⊥BC ;(Ⅱ)求三棱锥C ﹣DEG 的体积;(Ⅲ)AD 边上是否存在一点M ,使得PA ∥平面MEG .若存在,求AM 的长;否则,说明理由.24.(本题满分15分)正项数列}{n a 满足121223+++=+n n n n a a a a ,11=a .(1)证明:对任意的*N n ∈,12+≤n n a a ;(2)记数列}{n a 的前n 项和为n S ,证明:对任意的*N n ∈,32121<≤--n n S .【命题意图】本题考查数列的递推公式与单调性,不等式性质等基础知识,意在考查推理论证能力,分析和解决问题的能力.东营市高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题13. ①④ .14. 20 .15.222x y += 16. A .17. 180 18. ①②⑤三、解答题19.20.(1)证明见解析;(2)证明见解析. 21.(1)332⎡⎤⎢⎥⎣⎦,;(2).22.(1)详见解析;(2)3λ=. 23.24.(1)详见解析;(2)详见解析.。

垦利区一中2018-2019学年高三上学期11月月考数学试卷含答案

垦利区一中2018-2019学年高三上学期11月月考数学试卷含答案

垦利区一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若复数a 2﹣1+(a ﹣1)i (i 为虚数单位)是纯虚数,则实数a=( ) A .±1B .﹣1C .0D .12. 设P是椭圆+=1上一点,F 1、F 2是椭圆的焦点,若|PF 1|等于4,则|PF 2|等于( )A .22B .21C .20D .133.将函数的图象上所有的点向左平移个单位长度,再把图象上各点的横坐标扩大到原来的2倍,则所得的图象的解析式为( ) A. B. C.D.4. 下列各组表示同一函数的是( )A .y=与y=()2B .y=lgx 2与y=2lgxC .y=1+与y=1+ D .y=x 2﹣1(x ∈R )与y=x 2﹣1(x ∈N )5. P是双曲线=1(a >0,b >0)右支上一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则△PF 1F 2的内切圆圆心的横坐标为( )A .aB .bC .cD .a+b ﹣c6. 已知函数f (x )=x 3+mx 2+(2m+3)x (m ∈R )存在两个极值点x 1,x 2,直线l 经过点A (x 1,x 12),B(x 2,x 22),记圆(x+1)2+y 2=上的点到直线l 的最短距离为g (m ),则g (m )的取值范围是( )A .[0,2]B .[0,3]C .[0,) D .[0,)7. 已知实数[1,1]x ∈-,[0,2]y ∈,则点(,)P x y 落在区域20210220x y x y x y +-⎧⎪-+⎨⎪-+⎩……… 内的概率为( )A.34B.38C.14D.18【命题意图】本题考查线性规划、几何概型等基础知识,意在考查数形结合思想及基本运算能力. 8. 单位正方体(棱长为1)被切去一部分,剩下部分几何体的三视图如图所示,则( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.该几何体体积为B.该几何体体积可能为C.该几何体表面积应为+D.该几何体唯一9.某一简单几何体的三视图如所示,该几何体的外接球的表面积是()A.13πB.16πC.25πD.27π10.设集合M={x|x2﹣2x﹣3<0},N={x|log2x<0},则M∩N等于()A.(﹣1,0)B.(﹣1,1)C.(0,1) D.(1,3)11.阅读下面的程序框图,则输出的S=()A.14 B.20 C.30 D.5512.已知命题“如果﹣1≤a≤1,那么关于x的不等式(a2﹣4)x2+(a+2)x﹣1≥0的解集为∅”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有()A.0个B.1个C.2个D.4个二、填空题13.已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则=.14.当时,4x<log a x,则a的取值范围.15.i是虚数单位,化简:=.16.一船以每小时12海里的速度向东航行,在A处看到一个灯塔B在北偏东60°,行驶4小时后,到达C处,看到这个灯塔B在北偏东15°,这时船与灯塔相距为海里.17.在△ABC中,若a=9,b=10,c=12,则△ABC的形状是.18.在△ABC中,角A,B,C所对边分别为a,b,c,且,B=45°,面积S=2,则b等于.三、解答题19.已知:函数f(x)=log2,g(x)=2ax+1﹣a,又h(x)=f(x)+g(x).(1)当a=1时,求证:h(x)在x∈(1,+∞)上单调递增,并证明函数h(x)有两个零点;(2)若关于x的方程f(x)=log2g(x)有两个不相等实数根,求a的取值范围.20.在平面直角坐标系xOy中,圆C:x2+y2=4,A(,0),A1(﹣,0),点P为平面内一动点,以PA为直径的圆与圆C相切.(Ⅰ)求证:|PA1|+|PA|为定值,并求出点P的轨迹方程C1;(Ⅱ)若直线PA与曲线C1的另一交点为Q,求△POQ面积的最大值.21.已知等差数列{a n}满足a1+a2=3,a4﹣a3=1.设等比数列{b n}且b2=a4,b3=a8(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)设c n=a n+b n,求数列{c n}前n项的和S n.22.已知双曲线过点P(﹣3,4),它的渐近线方程为y=±x.(1)求双曲线的标准方程;(2)设F1和F2为该双曲线的左、右焦点,点P在此双曲线上,且|PF1||PF2|=41,求∠F1PF2的余弦值.23.在极坐标系内,已知曲线C1的方程为ρ2﹣2ρ(cosθ﹣2sinθ)+4=0,以极点为原点,极轴方向为x正半轴方向,利用相同单位长度建立平面直角坐标系,曲线C2的参数方程为(t为参数).(Ⅰ)求曲线C1的直角坐标方程以及曲线C2的普通方程;(Ⅱ)设点P为曲线C2上的动点,过点P作曲线C1的切线,求这条切线长的最小值.24.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()ABC D垦利区一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题13.﹣5.14..15.﹣1+2i.16.2417.锐角三角形18.5.三、解答题19.20.21.22.23.24.C。

东营区实验中学2018-2019学年高三上学期11月月考数学试卷含答案

东营区实验中学2018-2019学年高三上学期11月月考数学试卷含答案

东营区实验中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 为得到函数的图象,只需将函数y=sin2x 的图象()A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位2. 已知函数()2111x f x x ++=+,则曲线()y f x =在点()()11f ,处切线的斜率为( )A .1B .1-C .2D .2-3. 若满足约束条件,则当取最大值时,的值为( )y x ,⎪⎪⎩⎪⎪⎨⎧≥≤-+≥+-0033033y y x y x 31++x y y x +A . B . C . D .1-3-34. cos80cos130sin100sin130︒︒-︒︒等于( )A B .12 C .12-D .5. 将函数y=cosx 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,所得函数图象的一条对称轴方程是( )A .x=πB .C .D .6. 设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则,类比这个结论可知:四面体S ﹣ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球半径为r ,四面体S ﹣ABC 的体积为V,则r=( )A .B .C .D .7. 已知三棱锥A ﹣BCO ,OA 、OB 、OC 两两垂直且长度均为6,长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),则MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.B .或36+C .36﹣D .或36﹣8. 如果向量满足,且,则的夹角大小为( )A .30°B .45°C .75°D .135°9. 抛物线x 2=4y 的焦点坐标是( )A .(1,0)B .(0,1)C .()D .()10.已知实数满足不等式组,若目标函数取得最大值时有唯一的最优解,则y x ,⎪⎩⎪⎨⎧≤-≥+≤-5342y x y x x y mx y z -=)3,1(实数的取值范围是( )m A .B .C .D .1-<m 10<<m 1>m 1≥m 【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.11.德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f (x )=被称为狄利克雷函数,其中R 为实数集,Q 为有理数集,则关于函数f (x )有如下四个命题:①f (f (x ))=1;②函数f (x )是偶函数;③任取一个不为零的有理数T ,f (x+T )=f (x )对任意的x=R 恒成立;④存在三个点A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 3,f (x 3)),使得△ABC 为等边三角形.其中真命题的个数有( )A .1个B .2个C .3个D .4个12.执行如图所以的程序框图,如果输入a=5,那么输出n=()A .2B .3C .4D .5二、填空题13.椭圆的两焦点为F 1,F 2,一直线过F 1交椭圆于P 、Q ,则△PQF 2的周长为 .14.已知变量x ,y ,满足,则z=log 4(2x+y+4)的最大值为 .15.已知数列中,,函数在处取得极值,则{}n a 11a =3212()3432n n a f x x x a x -=-+-+1x =_________.n a =16.已知f (x+1)=f (x ﹣1),f (x )=f (2﹣x ),方程f (x )=0在[0,1]内只有一个根x=,则f (x )=0在区间[0,2016]内根的个数 .17.小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是 米.(太阳光线可看作为平行光线)18.【盐城中学2018届高三上第一次阶段性考试】已知函数有两个极值点,则实数的()()ln f x x x ax =-a 取值范围是.三、解答题19.【南通中学2018届高三10月月考】设,,函数,其中是自然对数的底数,曲线在点处的切线方程为.(Ⅰ)求实数、的值;(Ⅱ)求证:函数存在极小值;(Ⅲ)若,使得不等式成立,求实数的取值范围.20.如图,在四边形ABCD 中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD 绕AD旋转一周所成几何体的表面积.21.已知是等差数列,是等比数列,为数列的前项和,,且,{}n a {}n b n S {}n a 111a b ==3336b S =().228b S =*n N ∈(1)求和;n a n b (2)若,求数列的前项和.1n n a a +<11n n a a +⎧⎫⎨⎬⎩⎭n T 22.设函数f (x )=mx 2﹣mx ﹣1.(1)若对一切实数x ,f (x )<0恒成立,求m 的取值范围;(2)对于x ∈[1,3],f (x )<﹣m+5恒成立,求m 的取值范围. 23.如图,在三棱柱ABC ﹣A 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面ABC ⊥平面AA 1C 1C ,AB=3,BC=5.(Ⅰ)求证:AA 1⊥平面ABC ;(Ⅱ)求证二面角A 1﹣BC 1﹣B 1的余弦值;(Ⅲ)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求的值.24.(本小题满分12分)如图所示,已知平面,平面,为等边⊥AB ACD ⊥DE ACD ACD ∆三角形,,为的中点.AB DE AD 2==F CD (1)求证:平面;//AF BCE (2)平面平面.⊥BCE CDE东营区实验中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】A 【解析】解:∵,只需将函数y=sin2x 的图象向左平移个单位得到函数的图象.故选A .【点评】本题主要考查诱导公式和三角函数的平移.属基础题. 2. 【答案】A 【解析】试题分析:由已知得()2112x f x x x -==-,则()21'f x x=,所以()'11f =.考点:1、复合函数;2、导数的几何意义.3. 【答案】D 【解析】考点:简单线性规划.4. 【答案】D 【解析】试题分析:原式()()cos80cos130sin80sin130cos 80130cos 210cos 30180cos30=︒︒-︒︒=︒+︒=︒=︒+︒=-︒=考点:余弦的两角和公式.5. 【答案】B【解析】解:将函数y=cosx的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cos x,再向右平移个单位得到y=cos[(x)],由(x)=kπ,得x=2kπ,即+2kπ,k∈Z,当k=0时,,即函数的一条对称轴为,故选:B【点评】本题主要考查三角函数的对称轴的求解,利用三角函数的图象关系求出函数的解析式是解决本题的关键.6.【答案】C【解析】解:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为∴R=故选C.【点评】类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).7.【答案】D【解析】【分析】由于长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,故MN的中点P的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可.【解答】解:因为长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),有空间想象能力可知MN 的中点P 的轨迹为以O 为球心,以1为半径的球体,则MN 的中点P 的轨迹与三棱锥的面所围成的几何体可能为该球体的或该三棱锥减去此球体的,即:或.故选D8. 【答案】B 【解析】解:由题意故,即故两向量夹角的余弦值为=故两向量夹角的取值范围是45°故选B【点评】本题考点是数量积表示两个向量的夹角,考查利用向量内积公式的变形形式求向量夹角的余弦,并进而求出两向量的夹角.属于基础公式应用题. 9. 【答案】B【解析】解:∵抛物线x 2=4y 中,p=2, =1,焦点在y 轴上,开口向上,∴焦点坐标为 (0,1),故选:B .【点评】本题考查抛物线的标准方程和简单性质的应用,抛物线x 2=2py 的焦点坐标为(0,),属基础题. 10.【答案】C【解析】画出可行域如图所示,,要使目标函数取得最大值时有唯一的最优解,则需)3,1(A mx y z -=)3,1(直线过点时截距最大,即最大,此时即可.l A z 1>l k11.【答案】 D【解析】解:①∵当x 为有理数时,f (x )=1;当x 为无理数时,f (x )=0∴当x 为有理数时,f (f (x ))=f (1)=1;当x 为无理数时,f (f (x ))=f (0)=1即不管x是有理数还是无理数,均有f(f(x))=1,故①正确;②∵有理数的相反数还是有理数,无理数的相反数还是无理数,∴对任意x∈R,都有f(﹣x)=f(x),故②正确;③若x是有理数,则x+T也是有理数;若x是无理数,则x+T也是无理数∴根据函数的表达式,任取一个不为零的有理数T,f(x+T)=f(x)对x∈R恒成立,故③正确;④取x1=﹣,x2=0,x3=,可得f(x1)=0,f(x2)=1,f(x3)=0∴A(,0),B(0,1),C(﹣,0),恰好△ABC为等边三角形,故④正确.故选:D.【点评】本题给出特殊函数表达式,求函数的值并讨论它的奇偶性,着重考查了有理数、无理数的性质和函数的奇偶性等知识,属于中档题.12.【答案】B【解析】解:a=5,进入循环后各参数对应值变化如下表:p1520结束q525n23∴结束运行的时候n=3.故选:B.【点评】本题考查了程序框图的应用,考查了条件结构和循环结构的知识点.解题的关键是理解题设中语句的意义,从中得出算法,由算法求出输出的结果.属于基础题.二、填空题13.【答案】 20 .【解析】解:∵a=5,由椭圆第一定义可知△PQF2的周长=4a.∴△PQF2的周长=20.,故答案为20.【点评】作出草图,结合图形求解事半功倍.14.【答案】 【解析】解:作的可行域如图:易知可行域为一个三角形,验证知在点A(1,2)时,z1=2x+y+4取得最大值8,∴z=log 4(2x+y+4)最大是,故答案为:.【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题. 15.【答案】1231n --g【解析】考点:1、利用导数求函数极值;2、根据数列的递推公式求通项公式.【方法点晴】本题主要考查等比数列的定义以及已知数列的递推公式求通项,属于中档题.由数列的递推公式求通项常用的方法有:累加法、累乘法、构造法,形如的递推数列求通项往往用1(0,1)n n a qa p p q -=+≠≠构造法,利用待定系数法构造成的形式,再根据等比数例求出的通项,进而得1()n n a m q a m -+=+{}n a m +出的通项公式.{}n a 16.【答案】 2016 .【解析】解:∵f (x )=f (2﹣x ),∴f (x )的图象关于直线x=1对称,即f (1﹣x )=f (1+x ).∵f (x+1)=f (x ﹣1),∴f (x+2)=f (x ),即函数f (x )是周期为2的周期函数,∵方程f (x )=0在[0,1]内只有一个根x=,∴由对称性得,f ()=f ()=0,∴函数f (x )在一个周期[0,2]上有2个零点,即函数f (x )在每两个整数之间都有一个零点,∴f (x )=0在区间[0,2016]内根的个数为2016,故答案为:2016. 17.【答案】 3.3 【解析】解:如图BC 为竿的高度,ED 为墙上的影子,BE 为地面上的影子.设BC=x ,则根据题意=,AB=x ,在AE=AB ﹣BE=x ﹣1.4,则=,即=,求得x=3.3(米)故树的高度为3.3米,故答案为:3.3.【点评】本题主要考查了解三角形的实际应用.解题的关键是建立数学模型,把实际问题转化为数学问题. 18.【答案】.【解析】由题意,y ′=ln x +1−2mx令f ′(x )=ln x −2mx +1=0得ln x =2mx −1,函数有两个极值点,等价于f ′(x )=ln x −2mx +1有两个零点,()()ln f x x x mx =-等价于函数y =ln x 与y =2mx −1的图象有两个交点,,当m =时,直线y =2mx −1与y =ln x 的图象相切,12由图可知,当0<m <时,y =ln x 与y =2mx −1的图象有两个交点,12则实数m 的取值范围是(0,),12故答案为:(0,).12三、解答题19.【答案】(Ⅰ);(Ⅱ)证明见解析;(Ⅲ).【解析】试题分析:(Ⅰ)利用导函数研究函数的切线,得到关于实数a ,b 的方程组,求解方程组可得;(Ⅱ)结合(Ⅰ)中求得的函数的解析式首先求解导函数,然后利用导函数讨论函数的单调性即可确定函数存在极小值;试题解析:(Ⅰ)∵,∴,由题设得,∴;(Ⅱ)由(Ⅰ)得,∴,∴,∴函数在是增函数,∵,,且函数图像在上不间断,∴,使得,结合函数在是增函数有:)递减极小值递增∴函数存在极小值;(Ⅲ),使得不等式成立,即,使得不等式成立……(*),令,,则,∴结合(Ⅱ)得,其中,满足,即,∴,,∴,∴,,∴在内单调递增,∴,结合(*)有,即实数的取值范围为.20.【答案】【解析】解:四边形ABCD 绕AD 旋转一周所成的几何体,如右图:S 表面=S 圆台下底面+S 圆台侧面+S 圆锥侧面=πr 22+π(r 1+r 2)l 2+πr 1l 1===21.【答案】(1),或,;(2).21n a n =-12n n b -=1(52)3n a n =-16n n b -=21n n +【解析】试题解析:(1)设的公差为,的公比为,{}n a d {}n b 由题意得解得或2(33)36,(2)8,q d q d ⎧+=⎨+=⎩2,2,d q =⎧⎨=⎩2,36.d q ⎧=-⎪⎨⎪=⎩∴,或,.21n a n =-12n n b -=1(52)3n a n =-16n n b -=(2)若,由(1)知,+1n n a a <21n a n =-∴,111111()(21)(21)22121n n a a n n n n +==--+-+∴.111111(1)2335212121n nT n n n =-+-++-=-++…考点:1、等差数列与等比数列的通项公式及前项和公式;2、裂项相消法求和的应用.22.【答案】【解析】解:(1)当m=0时,f (x )=﹣1<0恒成立,当m ≠0时,若f (x )<0恒成立,则解得﹣4<m <0综上所述m 的取值范围为(﹣4,0]﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)要x ∈[1,3],f (x )<﹣m+5恒成立,即恒成立.令﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当 m >0时,g (x )是增函数,所以g (x )max =g (3)=7m ﹣6<0,解得.所以当m=0时,﹣6<0恒成立.当m <0时,g (x )是减函数.所以g (x )max =g (1)=m ﹣6<0,解得m<6.所以m<0.综上所述,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查的知识点是函数恒成立问题,函数的最值,其中将恒成立问题转化为最值问题是解答此类问题的关键.23.【答案】【解析】(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,∴AA1⊥平面ABC.(II)解:由AC=4,BC=5,AB=3.∴AC2+AB2=BC2,∴AB⊥AC.建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),∴,,.设平面A1BC1的法向量为,平面B1BC1的法向量为=(x2,y2,z2).则,令y1=4,解得x1=0,z1=3,∴.,令x2=3,解得y2=4,z2=0,∴.===.∴二面角A1﹣BC1﹣B1的余弦值为.(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D,∴=,=(0,3,﹣4),∵,∴,∴,解得t=.∴.【点评】本题综合考查了线面垂直的判定与性质定理、面面垂直的性质定理、通过建立空间直角坐标系利用法向量求二面角的方法、向量垂直与数量积得关系等基础知识与基本方法,考查了空间想象能力、推理能力和计算能力. 24.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)推导出,,从而平面,连接,则三点BC AC ⊥1CC AC ⊥⊥AC 11B BCC 11,NA CA N A B ,,1共线,推导出,由线面垂直的判定定理得平面;(2)连接交于MN CN BA CN ⊥⊥,1⊥CN BNM 1AC 1CA 点,推导出,,则是二面角的平面角.由此能求出二面角H 1BA AH ⊥1BA HQ ⊥AQH ∠C BA A --1的余弦值.1B BN C --试题解析:(1)如图,取的中点,连接. ∵为的中点,∴且.CE G BG FG ,F CD DE GF //DE GF 21=∵平面,平面, ∴, ∴.⊥AB ACD ⊥DE ACD DE AB //AB GF //又,∴. ∴四边形为平行四边形,则. (4分)DE AB 21=AB GF =GFAB BG AF //∵平面,平面, ∴平面 (6分)⊄AF BCE ⊂BG BCE //AF BCE考点:直线与平面平行和垂直的判定.。

东营区高级中学2018-2019学年高三上学期11月月考数学试卷含答案

东营区高级中学2018-2019学年高三上学期11月月考数学试卷含答案

东营区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 下列函数中,为奇函数的是( ) A .y=x+1 B .y=x 2 C .y=2x D .y=x|x|2. 与函数 y=x 有相同的图象的函数是( ) A .B .C .D .3. 若某程序框图如图所示,则输出的n 的值是( )A .3B .4C .5D .64. 在ABC ∆中,若60A ∠=,45B ∠=,BC =AC =( )A .B . C.D 5. 某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S 的值为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.9.6 B.7.68 C.6.144 D.4.91526.一个几何体的三视图如图所示,则该几何体的体积是()A.64 B.72C.80 D.112【命题意图】本题考查三视图与空间几何体的体积等基础知识,意在考查空间想象能力与运算求解能力. 7.若不等式1≤a﹣b≤2,2≤a+b≤4,则4a﹣2b的取值范围是()A.[5,10] B.(5,10)C.[3,12] D.(3,12)8.设b,c表示两条直线,α,β表示两个平面,则下列命题是真命题的是()A.若b⊂α,c∥α,则b∥cB.若c∥α,α⊥β,则c⊥βC.若b⊂α,b∥c,则c∥αD.若c∥α,c⊥β,则α⊥β9.函数f(x)=x2﹣2ax,x∈[1,+∞)是增函数,则实数a的取值范围是()A.R B.[1,+∞)C.(﹣∞,1] D.[2,+∞)10.已知实数x ,y 满足,则z=2x+y 的最大值为( )A .﹣2B .﹣1C .0D .411.已知两点M (1,),N (﹣4,﹣),给出下列曲线方程: ①4x+2y ﹣1=0;②x 2+y 2=3;③+y 2=1;④﹣y 2=1.在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( ) A .①③ B .②④ C .①②③ D .②③④12.函数y=2x 2﹣e |x|在[﹣2,2]的图象大致为( )A .B .C .D .二、填空题13.已知函数()ln a f x x x =+,(0,3]x ∈,其图象上任意一点00(,)P x y 处的切线的斜率12k ≤恒 成立,则实数的取值范围是 .14.等比数列{a n }的前n 项和为S n ,已知S 3=a 1+3a 2,则公比q= .15.已知平面向量a ,b 的夹角为3π,6=-b a ,向量c a -,c b -的夹角为23π,23c a -=,则a与c的夹角为__________,a c ⋅的最大值为 .【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力.16.-23311+log 6-log 42()= .17.已知x ,y 满足条件,则函数z=﹣2x+y 的最大值是 .18.已知双曲线的标准方程为,则该双曲线的焦点坐标为, 渐近线方程为 .三、解答题19.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:零件的个数x (个) 2 3 4 5 加工的时间y (小时)2.5344.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的线性回归方程=x+,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?参考公式:回归直线=bx+a ,其中b==,a=﹣b .20.已知圆C :(x ﹣1)2+y 2=9内有一点P (2,2),过点P 作直线l 交圆C 于A ,B 两点. (1)当l 经过圆心C 时,求直线l 的方程;(2)当弦AB 被点P 平分时,求直线l 的方程.21.某学校为了解高三年级学生寒假期间的学习情况,抽取甲、乙两班,调查这两个班的学生在寒假期间每天平均学习的时间(单位:小时),统计结果绘成频率分别直方图(如图).已知甲、乙两班学生人数相同,甲班学生每天平均学习时间在区间[2,4]的有8人.( I )求直方图中a 的值及甲班学生每天平均学习时间在区间[10,12]的人数;( II )从甲、乙两个班每天平均学习时间大于10个小时的学生中任取4人参加测试,设4人中甲班学生的人数为ξ,求ξ的分布列和数学期望.22.设函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求函数在上的最大值与最小值.23.(本小题满分13分)如图,已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,以椭圆C 的左顶点T 为圆心作圆T :222(2)x y r ++=(0r >),设圆T 与椭圆C 交于点M 、N .[_](1)求椭圆C 的方程;(2)求TM TN⋅的最小值,并求此时圆T的方程;(3)设点P是椭圆C上异于M、N的任意一点,且直线MP,NP分别与x轴交于点R S、(O为坐标原点),求证:OR OS⋅为定值.【命题意图】本题考查椭圆的方程,直线与椭圆的位置关系,几何问题构建代数方法解决等基础知识,意在考查学生转化与化归能力,综合分析问题解决问题的能力,推理能力和运算能力.24.在直角坐标系中,已知圆C的圆心坐标为(2,0),半径为,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.,直线l的参数方程为:(t为参数).(1)求圆C和直线l的极坐标方程;(2)点P的极坐标为(1,),直线l与圆C相交于A,B,求|PA|+|PB|的值.东营区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题13.21≥a14. 2 .15.6π,18+ 16.33217. 4 .18. (±,0) y=±2x .三、解答题19.20. 21. 22. 23. 24.。

东营区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案

东营区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案

东营区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知函数f (x )=1+x ﹣+﹣+…+,则下列结论正确的是()A .f (x )在(0,1)上恰有一个零点B .f (x )在(﹣1,0)上恰有一个零点C .f (x )在(0,1)上恰有两个零点D .f (x )在(﹣1,0)上恰有两个零点2. 对一切实数x ,不等式x 2+a|x|+1≥0恒成立,则实数a 的取值范围是( )A .(﹣∞,﹣2)B .D .上是减函数,那么b+c ()A .有最大值B .有最大值﹣C .有最小值D .有最小值﹣3. 在中,、、分别为角、、所对的边,若,则此三角形的形状一定是( )A .等腰直角B .等腰或直角C .等腰D .直角4. 已知圆C 1:x 2+y 2=4和圆C 2:x 2+y 2+4x ﹣4y+4=0关于直线l 对称,则直线l 的方程为( )A .x+y=0B .x+y=2C .x ﹣y=2D .x ﹣y=﹣25. 已知集合,则下列式子表示正确的有( ){}2|10A x x =-=①;②;③;④.1A ∈{}1A -∈A ∅⊆{}1,1A -⊆A .1个 B .2个C .3个D .4个6. 若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是()A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)7. 已知AC ⊥BC ,AC=BC ,D 满足=t+(1﹣t ),若∠ACD=60°,则t 的值为()A .B .﹣C .﹣1D .8. 如图在圆中,,是圆互相垂直的两条直径,现分别以,,,为直径作四个O AB CD O OA OB OC OD 圆,在圆内随机取一点,则此点取自阴影部分的概率是()O DABCO A .B .C .D .π1π21π121-π2141-【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度.9. 函数f (x )=x 2﹣2ax ,x ∈[1,+∞)是增函数,则实数a 的取值范围是()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .RB .[1,+∞)C .(﹣∞,1]D .[2,+∞)10.过点,的直线的斜率为,则( )),2(a M -)4,(a N 21-=||MN A .B .C .D .10180365611.若函数则函数的零点个数为( )21,1,()ln ,1,x x f x x x ⎧-≤=⎨>⎩1()2y f x x =+A .1B .2C .3D .412.直线x ﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为()A .B .C .D .二、填空题13.已知平面上两点M (﹣5,0)和N (5,0),若直线上存在点P 使|PM|﹣|PN|=6,则称该直线为“单曲型直线”,下列直线中:①y=x+1 ②y=2 ③y=x ④y=2x+1是“单曲型直线”的是 .14.已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .15.已知数列中,,函数在处取得极值,则{}n a 11a =3212()3432n n a f x x x a x -=-+-+1x =_________.n a =16.某城市近10年居民的年收入x 与支出y 之间的关系大致符合=0.9x+0.2(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是 亿元.17.【南通中学2018届高三10月月考】已知函数,若曲线在点处的切线经()32f x x x =-()f x ()()1,1f 过圆的圆心,则实数的值为__________.()22:2C x y a +-=a 18.已知是圆为圆心)上一动点,线段AB 的垂直平分线交BF于P ,则动点P 的轨迹方程为 .三、解答题19.在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且.(Ⅰ)求角B 的大小;(Ⅱ)若b=6,a+c=8,求△ABC 的面积.20.(本小题满分10分)选修4-4:坐标系与参数方程:在直角坐标系中,以原点为极点,轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线的极坐x l 标方程为,曲线的极坐标方程为.cos sin 2ρθρθ-=C 2sin 2cos (0)p p ρθθ=>(1)设为参数,若,求直线的参数方程;t 2x =-+l (2)已知直线与曲线交于,设,且,求实数的值.l C ,P Q (2,4)M --2||||||PQ MP MQ =⋅p 21.已知f (x )=x 2+ax+a (a ≤2,x ∈R ),g (x )=e x ,φ(x )=.(Ⅰ)当a=1时,求φ(x )的单调区间;(Ⅱ)求φ(x )在x ∈[1,+∞)是递减的,求实数a 的取值范围;(Ⅲ)是否存在实数a ,使φ(x )的极大值为3?若存在,求a 的值;若不存在,请说明理由. 22.如图,在三棱柱ABC ﹣A 1B 1C 1中,底面△ABC 是边长为2的等边三角形,D 为AB 中点.(1)求证:BC 1∥平面A 1CD ;(2)若四边形BCC 1B 1是正方形,且A 1D=,求直线A 1D 与平面CBB 1C 1所成角的正弦值.23.设,证明:(Ⅰ)当x >1时,f (x )<( x ﹣1);(Ⅱ)当1<x <3时,.24.【淮安市淮海中学2018届高三上第一次调研】已知函数.()133x x af x b+-+=+(1)当时,求满足的的取值;1a b ==()3xf x =x (2)若函数是定义在上的奇函数()f x R ①存在,不等式有解,求的取值范围;t R ∈()()2222f t t f t k -<-k ②若函数满足,若对任意,不等式恒成立,()g x ()()()12333xx f x g x -⎡⎤⋅+=-⎣⎦x R ∈()()211g x m g x ≥⋅-求实数的最大值.m东营区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:∵f′(x)=1﹣x+x2﹣x3+…+x2014=(1﹣x)(1+x2+…+x2012)+x2014;∴f′(x)>0在(﹣1,0)上恒成立;故f(x)在(﹣1,0)上是增函数;又∵f(0)=1,f(﹣1)=1﹣1﹣﹣﹣…﹣<0;故f(x)在(﹣1,0)上恰有一个零点;故选B.【点评】本题考查了导数的综合应用及函数零点的个数的判断,属于中档题.2.【答案】B【解析】解:由f(x)在上是减函数,知f′(x)=3x2+2bx+c≤0,x∈,则⇒15+2b+2c≤0⇒b+c≤﹣.故选B.3.【答案】B【解析】因为,所以由余弦定理得,即,所以或,即此三角形为等腰三角形或直角三角形,故选B答案:B4.【答案】D【解析】【分析】由题意可得圆心C1和圆心C2,设直线l方程为y=kx+b,由对称性可得k和b的方程组,解方程组可得.【解答】解:由题意可得圆C1圆心为(0,0),圆C2的圆心为(﹣2,2),∵圆C1:x2+y2=4和圆C2:x2+y2+4x﹣4y+4=0关于直线l对称,∴点(0,0)与(﹣2,2)关于直线l对称,设直线l方程为y=kx+b,∴•k=﹣1且=k•+b,解得k=1,b=2,故直线方程为x﹣y=﹣2,故选:D .5. 【答案】C 【解析】试题分析:,所以①③④正确.故选C.{}1,1A =-考点:元素与集合关系,集合与集合关系.6. 【答案】D【解析】解:∵方程x 2+ky 2=2,即表示焦点在y 轴上的椭圆∴故0<k <1故选D .【点评】本题主要考查了椭圆的定义,属基础题. 7. 【答案】A【解析】解:如图,根据题意知,D 在线段AB 上,过D 作DE ⊥AC ,垂足为E ,作DF ⊥BC ,垂足为F ;若设AC=BC=a ,则由得,CE=ta ,CF=(1﹣t )a ;根据题意,∠ACD=60°,∠DCF=30°;∴;即;解得.故选:A .【点评】考查当满足时,便说明D ,A ,B 三点共线,以及向量加法的平行四边形法则,平面向量基本定理,余弦函数的定义. 8. 【答案】C【解析】设圆的半径为,根据图形的对称性,可以选择在扇形中研究问题,过两个半圆的交点分别O 2OAC 向,作垂线,则此时构成一个以为边长的正方形,则这个正方形内的阴影部分面积为,扇形OA OC 112-π的面积为,所求概率为.OAC ππππ12112-=-=P 9. 【答案】C【解析】解:由于f (x )=x 2﹣2ax 的对称轴是直线x=a ,图象开口向上,故函数在区间(﹣∞,a]为减函数,在区间[a ,+∞)上为增函数,又由函数f (x )=x 2﹣2ax ,x ∈[1,+∞)是增函数,则a ≤1.故答案为:C 10.【答案】D【解析】考点:1.斜率;2.两点间距离.11.【答案】D 【解析】考点:函数的零点.【易错点睛】函数零点个数的判断方法:(1)直接求零点:令,如果能求出解,则有几个解就有几0)(=x f 个零点.(2)零点存在性定理法:要求函数在上是连续的曲线,且.还必须结合函数的图],[b a 0)()(<b f a f 象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.12.【答案】A【解析】直线x ﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),直线x ﹣2y+2=0经过椭圆的一个焦点和一个顶点;故.故选A .【点评】本题考查了椭圆的基本性质,只需根据已知条件求出a ,b ,c 即可,属于基础题型. 二、填空题13.【答案】 ①② .【解析】解:∵|PM|﹣|PN|=6∴点P 在以M 、N 为焦点的双曲线的右支上,即,(x >0).对于①,联立,消y 得7x 2﹣18x ﹣153=0,∵△=(﹣18)2﹣4×7×(﹣153)>0,∴y=x+1是“单曲型直线”.对于②,联立,消y 得x 2=,∴y=2是“单曲型直线”.对于③,联立,整理得144=0,不成立.∴不是“单曲型直线”.对于④,联立,消y 得20x 2+36x+153=0,∵△=362﹣4×20×153<0∴y=2x+1不是“单曲型直线”.故符合题意的有①②.故答案为:①②.【点评】本题考查“单曲型直线”的判断,是中档题,解题时要认真审题,注意双曲线定义的合理运用. 14.【答案】()53,44--【解析】试题分析:()23f x x m '=+,因为()10g =,所以要使()()(){}()min ,0h x f x g x x =>恰有三个零点,须满足()10,0,0f f m ><<,解得51534244m m >->⇒-<<-考点:函数零点【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.15.【答案】1231n --g【解析】考点:1、利用导数求函数极值;2、根据数列的递推公式求通项公式.【方法点晴】本题主要考查等比数列的定义以及已知数列的递推公式求通项,属于中档题.由数列的递推公式求通项常用的方法有:累加法、累乘法、构造法,形如的递推数列求通项往往用1(0,1)n n a qa p p q -=+≠≠构造法,利用待定系数法构造成的形式,再根据等比数例求出的通项,进而得1()n n a m q a m -+=+{}n a m +出的通项公式.{}n a 16.【答案】 18.2 【解析】解:∵某城市近10年居民的年收入x 和支出y 之间的关系大致是=0.9x+0.2,∵x=20,∴y=0.9×20+0.2=18.2(亿元).故答案为:18.2.【点评】本题考查线性回归方程的应用,考查学生的计算能力,考查利用数学知识解决实际问题的能力,属于基础题. 17.【答案】2-【解析】结合函数的解析式可得:,()311211f =-⨯=-对函数求导可得:,故切线的斜率为,()2'32f x x =-()2'13121k f ==⨯-=则切线方程为:,即,()111y x +=⨯-2y x =-圆:的圆心为,则:.C ()222x y a +-=()0,a 022a =-=-18.【答案】 .【解析】解:依题意可知|BP|+|PF|=2,|PB|=|PA|∴|AP|+|PF|=2根据椭圆的定义可知,点P 的轨迹为以A ,F 为焦点的椭圆,a=1,c=,则有b=故点P 的轨迹方程为故答案为【点评】本题主要考查了用定义法求轨迹方程的问题.考查了学生综合分析问题和解决问题的能力.三、解答题19.【答案】【解析】解:(Ⅰ)由2bsinA=a,以及正弦定理,得sinB=,又∵B为锐角,∴B=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)由余弦定理b2=a2+c2﹣2accosB,∴a2+c2﹣ac=36,∵a+c=8,∴ac=,∴S△ABC==.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣20.【答案】【解析】【命题意图】本题主要考查抛物线极坐标方程、直线的极坐标方程与参数方程的互化、直线参数方程的几何意义的应用,意在考查逻辑思维能力、等价转化的能力、运算求解能力,以及方程思想、转化思想的应用.21.【答案】【解析】解:(I)当a=1时,φ(x)=(x2+x+1)e﹣x.φ′(x)=e﹣x(﹣x2+x)当φ′(x)>0时,0<x<1;当φ′(x)<0时,x>1或x<0∴φ(x)单调减区间为(﹣∞,0),(1,+∞),单调增区间为(0,1);(II)φ′(x)=e﹣x[﹣x2+(2﹣a)x]∵φ(x)在x∈[1,+∞)是递减的,∴φ′(x)≤0在x∈[1,+∞)恒成立,∴﹣x2+(2﹣a)x≤0在x∈[1,+∞)恒成立,∴2﹣a≤x在x∈[1,+∞)恒成立,∴2﹣a≤1∴a≥1∵a≤2,1≤a≤2;(III)φ′(x)=(2x+a)e﹣x﹣e﹣x(x2+ax+a)=e﹣x[﹣x2+(2﹣a)x]令φ′(x)=0,得x=0或x=2﹣a:由表可知,φ(x)极大=φ(2﹣a)=(4﹣a)e a﹣2设μ(a)=(4﹣a)e a﹣2,μ′(a)=(3﹣a)e a﹣2>0,∴μ(a)在(﹣∞,2)上是增函数,∴μ(a)≤μ(2)=2<3,即(4﹣a)e a﹣2≠3,∴不存在实数a,使φ(x)极大值为3.22.【答案】【解析】证明:(1)连AC1,设AC1与A1C相交于点O,连DO,则O为AC1中点,∵D为AB的中点,∴DO∥BC1,∵BC1⊄平面A1CD,DO⊂平面A1CD,∴BC1∥平面A1CD.解:∵底面△ABC是边长为2等边三角形,D为AB的中点,四边形BCC1B1是正方形,且A1D=,∴CD⊥AB,CD==,AD=1,∴AD2+AA12=A1D2,∴AA1⊥AB,∵,∴,∴CD⊥DA1,又DA1∩AB=D,∴CD⊥平面ABB1A1,∵BB1⊂平面ABB1A1,∴BB1⊥CD,∵矩形BCC1B1,∴BB1⊥BC,∵BC∩CD=C∴BB1⊥平面ABC,∵底面△ABC是等边三角形,∴三棱柱ABC﹣A1B1C1是正三棱柱.以C为原点,CB为x轴,CC1为y轴,过C作平面CBB1C1的垂线为z轴,建立空间直角坐标系,B(2,0,0),A(1,0,),D(,0,),A1(1,2,),=(,﹣2,﹣),平面CBB1C1的法向量=(0,0,1),设直线A1D与平面CBB1C1所成角为θ,则sinθ===.∴直线A1D与平面CBB1C1所成角的正弦值为.23.【答案】【解析】证明:(Ⅰ)(证法一):记g (x )=lnx+﹣1﹣(x ﹣1),则当x >1时,g ′(x )=+﹣<0,又g (1)=0,有g (x )<0,即f (x )<( x ﹣1);…4′(证法二)由均值不等式,当x >1时,2<x+1,故<+.①令k (x )=lnx ﹣x+1,则k (1)=0,k ′(x )=﹣1<0,故k (x )<0,即lnx <x ﹣1②由①②得当x >1时,f (x )<( x ﹣1);(Ⅱ)记h (x )=f (x )﹣,由(Ⅰ)得,h ′(x )=+﹣=﹣<﹣=,令g (x )=(x+5)3﹣216x ,则当1<x <3时,g ′(x )=3(x+5)2﹣216<0,∴g (x )在(1,3)内是递减函数,又由g (1)=0,得g (x )<0,∴h ′(x )<0,…10′因此,h (x )在(1,3)内是递减函数,又由h (1)=0,得h (x )<0,于是,当1<x <3时,f (x )<…12′24.【答案】(1)(2)①,②61x =-()1,-+∞【解析】试题解析:(1)由题意,,化简得131331x x x +-+=+()2332310x x ⋅+⋅-=解得,()13133x x =-=舍或所以1x =-(2)因为是奇函数,所以,所以()f x ()()0f x f x -+=1133033xx x x aab b -++-+-++=++化简并变形得:()()333260x x a b ab --++-=要使上式对任意的成立,则x 30260a b ab -=-=且解得:,因为的定义域是,所以舍去11{{ 33a a b b ==-==-或()f x R 1{ 3ab =-=-所以,所以1,3a b ==()13133x x f x +-+=+①()131********x x x f x +-+⎛⎫==-+ ⎪++⎝⎭对任意有:1212,,x x R x x ∈<()()()()211212121222333313133131x x x x x x f x f x ⎛⎫-⎛⎫ ⎪-=-= ⎪ ⎪++++⎝⎭⎝⎭因为,所以,所以,12x x <21330x x->()()12f x f x >因此在R 上递减.()f x 因为,所以,()()2222f t t f t k -<-2222t t t k ->-即在时有解220t t k +-<所以,解得:,440t ∆=+>1t >-所以的取值范围为()1,-+∞②因为,所以()()()12333x x f x g x -⎡⎤⋅+=-⎣⎦()()3323x xg x f x --=-即()33x xg x -=+所以()()222233332x x x xg x --=+=+-不等式恒成立,()()211g x m g x ≥⋅-即,()()23323311x x x x m --+-≥⋅+-即:恒成立93333x x x xm --≤+++令,则在时恒成立33,2x x t t -=+≥9m t t≤+2t ≥令,,()9h t t t =+()29'1h t t=-时,,所以在上单调递减()2,3t ∈()'0h t <()h t ()2,3时,,所以在上单调递增()3,t ∈+∞()'0h t >()h t ()3,+∞所以,所以()()min 36h t h ==6m ≤所以,实数m 的最大值为6考点:利用函数性质解不等式,不等式恒成立问题【思路点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题。

大庆市一中2018-2019学年高三上学期11月月考数学试卷含答案

大庆市一中2018-2019学年高三上学期11月月考数学试卷含答案

大庆市一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 如图,在等腰梯形ABCD 中,AB=2DC=2,∠DAB=60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B 重合于点P ,则P ﹣DCE 三棱锥的外接球的体积为( )A. B. C. D.2. 已知平面向量(12)=,a ,(32)=-,b ,若k +a b 与a 垂直,则实数k 值为( ) A .15- B .119 C .11 D .19【命题意图】本题考查平面向量数量积的坐标表示等基础知识,意在考查基本运算能力.3. 设m ,n 是两条不同直线,α,β是两个不同的平面,下列命题正确的是( ) A .m ∥α,n ∥β且α∥β,则m ∥n B .m ⊥α,n ⊥β且α⊥β,则m ⊥n C .m ⊥α,n ⊂β,m ⊥n ,则α⊥β D .m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β4. 复数2(2)i z i-=(i 为虚数单位),则z 的共轭复数为( )A .43i -+B .43i +C .34i +D .34i -【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力. 5. 函数y=2x 2﹣e |x|在[﹣2,2]的图象大致为( )A. B. C.D.6. O 为坐标原点,F为抛物线的焦点,P 是抛物线C 上一点,若|PF|=4,则△POF 的面积为( )A .1B.C.D .27. 若命题“p 或q ”为真,“非p ”为真,则( )A .p 真q 真B .p 假q 真C .p 真q 假D .p 假q 假班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8.函数y=f(x)在[1,3]上单调递减,且函数f(x+3)是偶函数,则下列结论成立的是()A.f(2)<f(π)<f(5)B.f(π)<f(2)<f(5)C.f(2)<f(5)<f(π)D.f(5)<f(π)<f(2)9.若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为()A.1:2:3 B.2:3:4 C.3:2:4 D.3:1:210.下面的结构图,总经理的直接下属是()A.总工程师和专家办公室B.开发部C.总工程师、专家办公室和开发部D.总工程师、专家办公室和所有七个部11.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2﹣b2=bc,sinC=2sinB,则A=()A.30°B.60°C.120°D.150°12.已知i为虚数单位,则复数所对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题13.已知数列{a n}中,a1=1,a n+1=a n+2n,则数列的通项a n=.14.已知(2x﹣)n展开式的二项式系数之和为64,则其展开式中常数项是.15.若函数y=f(x)的定义域是[,2],则函数y=f(log2x)的定义域为.16.把函数y=sin2x的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为.17.若全集,集合,则。

东营区一中2018-2019学年上学期高三数学10月月考试题

东营区一中2018-2019学年上学期高三数学10月月考试题

1 3 b , ABC 的面积 S c, 2 12
第 2 页,共 17 页
②若 f(x)恰有 2 个零点,则实数 a 的取值范围是 . 17.曲线 y=x2+3x 在点(-1,-2)处的切线与曲线 y=ax+ln x 相切,则 a=________.
三、解答题
18.(本小题满分 12 分) 设函数 f x 22 x 7 a 4 x 1 a 0且a 1 . (1)当 a
有且只有一个零点时,a 的取值范围是( C. <a<1 D.a≤0 或 a>1
二、填空题
x2 y 2 PF PF a b 0 1 ( , )的左、右焦点,点 在双曲线上,满足 P 1 2 0, a 2 b2 3 1 若 PF1 F2 的内切圆半径与外接圆半径之比为 ,则该双曲线的离心率为______________. 2
24.(本题满分 15 分) 已知函数 f ( x) ax bx c ,当 x 1 时, f ( x) 1 恒成立.
2
(1)若 a 1 , b c ,求实数 b 的取值范围; (2)若 g ( x) cx bx a ,当 x 1 时,求 g ( x) 的最大值.
B.3
C.7
2. 圆 x y 2 x 2 y 1 0 上的点到直线 x y 2 的距离最大值是( A. B. 2 1 C.
2 1 2
D. 2 2 1
Байду номын сангаас
3. 对于复数
,若集合
具有性质“对任意
,必有
”,则当
时, A1 B-1 C0 D
等于 (
)
4. 设 S n 是等差数列 {an } 的前项和,若 A.1 B.2 C.3 D.4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东营市一中2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 自主招生联盟成行于2009年清华大学等五校联考,主要包括“北约”联盟,“华约”联盟,“卓越”联盟和“京派”联盟.在调查某高中学校高三学生自主招生报考的情况,得到如下结果: ①报考“北约”联盟的学生,都没报考“华约”联盟
②报考“华约”联盟的学生,也报考了“京派”联盟 ③报考“卓越”联盟的学生,都没报考“京派”联盟 ④不报考“卓越”联盟的学生,就报考“华约”联盟 根据上述调查结果,下列结论错误的是( ) A .没有同时报考“华约” 和“卓越”联盟的学生 B .报考“华约”和“京派”联盟的考生一样多 C .报考“北约” 联盟的考生也报考了“卓越”联盟
D .报考“京派” 联盟的考生也报考了“北约”联盟
2. 若不等式1≤a ﹣b ≤2,2≤a+b ≤4,则4a ﹣2b 的取值范围是( )
A .[5,10]
B .(5,10)
C .[3,12]
D .(3,12)
3. 执行如图的程序框图,若输出i 的值为12,则①、②处可填入的条件分别为( )
A .
S 384,2i i ≥=+ C .S 3840,2i i ≥=+
4. ()x 在()0+∞,上是单调递减,则
()()21
0x f x f x -<--的解集为( ) A .(- B .()()11-∞-+∞,, C .()1-∞-,
D .()1+∞,
5. 已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}的元素个数为( ) A .4
B .5
C .6
D .9
6. 一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A.B.C.D.
7.S n是等差数列{a n}的前n项和,若3a8-2a7=4,则下列结论正确的是()
A.S18=72 B.S19=76
C.S20=80 D.S21=84
8.设0<a<1,实数x,y满足,则y关于x的函数的图象形状大致是()
A. B. C.D.
9.命题“∃x∈R,使得x2<1”的否定是()
A.∀x∈R,都有x2<1 B.∃x∈R,使得x2>1
C.∃x∈R,使得x2≥1 D.∀x∈R,都有x≤﹣1或x≥1
10.已知点A(0,1),B(3,2),向量=(﹣4,﹣3),则向量=()
A.(﹣7,﹣4)B.(7,4)C.(﹣1,4)D.(1,4)
11.下列关系正确的是()
A.1∉{0,1} B.1∈{0,1} C.1⊆{0,1} D.{1}∈{0,1}
12.下列说法正确的是()
A.圆锥的侧面展开图是一个等腰三角形;
B.棱柱即是两个底面全等且其余各面都是矩形的多面体;
C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;
D.通过圆台侧面上的一点,有无数条母线.
二、填空题
13.已知圆C1:(x﹣2)2+(y﹣3)2=1,圆C2:(x﹣3)2+(y﹣4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值.
14.已知两个单位向量,a b满足:
1
2
a b
∙=-,向量2a b
-与的夹角为,则cosθ=.
15.某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔小时各服一次药,每次一片,每片毫克.假设该患者的肾脏每小时从体内大约排出这种药在其体内残留量的,并且医生认为这种药在体内的残留量不超过毫克时无明显副作用.若该患者第一天上午点第一次
服药,则第二天上午点服完药时,药在其体内的残留量是毫克,若该患者坚持长期服用此药明显副作用(此空填“有”或“无”)
16.已知向量=(1,2),=(1,0),=(3,4),若λ为实数,( +λ)⊥,则λ的值为 . 17.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 是A 1D 1的中点,点P 在侧面BCC 1B 1上运动.现有下列命题:
①若点P 总保持PA ⊥BD 1,则动点P 的轨迹所在曲线是直线;
②若点P 到点A 的距离为
,则动点P 的轨迹所在曲线是圆;
③若P 满足∠MAP=∠MAC 1,则动点P 的轨迹所在曲线是椭圆;
④若P 到直线BC 与直线C 1D 1的距离比为1:2,则动点P 的轨迹所在曲线是双曲线; ⑤若P 到直线AD 与直线CC 1的距离相等,则动点P 的轨迹所在曲线是抛物丝. 其中真命题是 (写出所有真命题的序号)
18.如图是函数y=f (x )的导函数y=f ′(x )的图象,对此图象,有如下结论: ①在区间(﹣2,1)内f (x )是增函数; ②在区间(1,3)内f (x )是减函数; ③在x=2时,f (x )取得极大值; ④在x=3时,f (x )取得极小值. 其中正确的是 .
三、解答题
19.(本小题满分10分)
已知曲线C 的极坐标方程为2sin cos 10ρθρθ+=,将曲线1cos :sin x C y θ
θ=⎧⎨=⎩,(α为参数),经过伸缩变
换32x x
y y '=⎧⎨'=⎩
后得到曲线2C .
(1)求曲线2C 的参数方程;
(2)若点M的在曲线
C上运动,试求出M到曲线C的距离的最小值.
2
20.已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.
(1)求椭圆C的方程;
(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由.
21.已知函数.
(1)求f(x)的周期.
(2)当时,求f(x)的最大值、最小值及对应的x值.
22.已知a,b,c分别为△ABC三个内角A,B,C的对边,且满足2bcosC=2a﹣c.
(Ⅰ)求B;
(Ⅱ)若△ABC的面积为,b=2求a,c的值.
23.设函数f(x)=lnx﹣ax2﹣bx.
(1)当a=2,b=1时,求函数f(x)的单调区间;
(2)令F(x)=f(x)+ax2+bx+(2≤x≤3)其图象上任意一点P(x0,y0)处切线的斜率k≤恒成立,求实数a的取值范围;
(3)当a=0,b=﹣1时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.
24.已知函数f(x)=|x﹣a|.
(Ⅰ)若不等式f(x)≤2的解集为[0,4],求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若∃x0∈R,使得f(x0)+f(x0+5)﹣m2<4m,求实数m的取值范围.
东营市一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)
一、选择题
13. 5﹣4 .
14.7
-. 15.
, 无.
16. ﹣

17. ①②④ 18. ③ .
三、解答题
19.(1)3cos 2sin x y θ
θ=⎧⎨=⎩
(为参数);(220.
21.
22. 23. 24.。

相关文档
最新文档