栈和队列的应用
数据结构-Java语言描述 第三章 栈和队列
System.exit(1);
}
栈顶指针top的初始值决
top=-1;
定了后续其他方法的实现
stackArray=(T[])new Object[n];
}
【算法3-2】入栈
public void push(T obj)
{
if(top==stackArray.length-1){
T []p=(T[])new Object [top*2];
(b)元素a2入栈
an … … a2 a1
(c)元素an入栈
an-1 … a2 a1
(d)元素an出栈
a2 a1
(e)元素a3出栈
a1
(f)元素a2出栈
【例3-1】一个栈的输入序列是1、2、3、4、5,若在 入栈的过程中允许出栈,则栈的输出序列4、3、5、1、 2可能实现吗?1、2、3、4、5的输出呢?
型 正序遍历:依次访问栈中每个元素并输出
3.1.2 顺序栈
顺序栈泛型类的定义如下:
public class sequenceStack<T> {
顺序栈中一维数组 的初始长度
final int MaxSize=10;
private T[] stackArray; 存储元素的数组对象
private int top;
public void nextOrder() {
for(int i=top;i>=0;i--) System.out.println(stackArray[i]);
}
【算法3-8】清空栈操作
public void clear() {
top=-1; }
3.1.3 链栈
栈的链接存储结构称为链栈。结点类的定义,同 第二章Node类。
栈与队列的应用
栈与队列的应用栈(Stack)和队列(Queue)是计算机科学中常见的数据结构,它们分别具有先进后出(Last-In-First-Out, LIFO)和先进先出(First-In-First-Out, FIFO)的特性。
这两种数据结构在计算机领域有着广泛的应用,本文将介绍一些栈与队列的常见应用场景。
一、栈的应用1. 括号匹配栈常被用于判断表达式中的括号是否匹配。
通过遍历表达式中的每个字符,将左括号入栈,当遇到右括号时,检查栈顶元素与右括号是否匹配。
若匹配,则出栈;若不匹配,则说明括号不匹配。
2. 浏览器的前进与后退功能在浏览器中,我们可以通过点击前进和后退按钮来在不同的网页之间切换。
这种功能可以使用两个栈来实现:一个栈用于存储用户浏览的历史页面,另一个栈用于存储用户后退的页面。
当用户点击前进按钮时,从后退栈中弹出页面并推入历史页面栈;当用户点击后退按钮时,从历史页面栈中取出页面并推入后退页面栈。
3. 函数调用与递归在程序中,函数的调用是通过栈来实现的。
当一个函数被调用时,系统会将该函数的返回地址和参数等信息压入栈中;当函数执行完毕后,从栈中弹出返回地址,继续执行调用函数的下一条指令。
4. 表达式求值中缀表达式求值通常需要借助栈来实现。
通过将表达式转换成后缀表达式,并使用栈存储运算符和操作数,可以按照规定的优先级进行计算,得到最终的结果。
二、队列的应用1. 打印任务队列在计算机系统中,多个用户同时提交打印任务时,可以使用队列来管理这些任务。
每当有新的任务到达时,将其加入队列尾部,打印机则从队列头部取出任务进行打印。
这样可以保证任务的顺序性,并避免多个任务之间的冲突。
2. 消息队列在分布式系统中,消息队列通常用于解耦不同模块之间的通信。
一个模块可以将消息发送到队列中,而其他模块可以异步地从队列中获取消息并进行相应的处理。
这种方式提高了系统的可伸缩性和稳定性。
3. 广度优先搜索在图论中,广度优先搜索(Breadth-First Search, BFS)可以借助队列来实现。
数据结构实验三栈和队列的应用
数据结构实验三栈和队列的应用数据结构实验三:栈和队列的应用在计算机科学领域中,数据结构是组织和存储数据的重要方式,而栈和队列作为两种常见的数据结构,具有广泛的应用场景。
本次实验旨在深入探讨栈和队列在实际问题中的应用,加深对它们特性和操作的理解。
一、栈的应用栈是一种“后进先出”(Last In First Out,LIFO)的数据结构。
这意味着最后进入栈的元素将首先被取出。
1、表达式求值在算术表达式的求值过程中,栈发挥着重要作用。
例如,对于表达式“2 + 3 4”,我们可以通过将操作数压入栈,操作符按照优先级进行处理,实现表达式的正确求值。
当遇到数字时,将其压入操作数栈;遇到操作符时,从操作数栈中弹出相应数量的操作数进行计算,将结果压回操作数栈。
最终,操作数栈中的唯一值就是表达式的结果。
2、括号匹配在程序代码中,检查括号是否匹配是常见的任务。
可以使用栈来实现。
遍历输入的字符串,当遇到左括号时,将其压入栈;当遇到右括号时,弹出栈顶元素,如果弹出的左括号与当前右括号类型匹配,则继续,否则表示括号不匹配。
3、函数调用和递归在程序执行过程中,函数的调用和递归都依赖于栈。
当调用一个函数时,当前的执行环境(包括局部变量、返回地址等)被压入栈中。
当函数返回时,从栈中弹出之前保存的环境,继续之前的执行。
递归函数的执行也是通过栈来实现的,每次递归调用都会在栈中保存当前的状态,直到递归结束,依次从栈中恢复状态。
二、队列的应用队列是一种“先进先出”(First In First Out,FIFO)的数据结构。
1、排队系统在现实生活中的各种排队场景,如银行排队、餐厅叫号等,可以用队列来模拟。
新到达的顾客加入队列尾部,服务完成的顾客从队列头部离开。
通过这种方式,保证了先来的顾客先得到服务,体现了公平性。
2、广度优先搜索在图的遍历算法中,广度优先搜索(BreadthFirst Search,BFS)常使用队列。
从起始节点开始,将其放入队列。
数据结构中的栈与队列的应用场景
数据结构中的栈与队列的应用场景栈与队列是数据结构中常见的两种基本数据类型,它们在不同的应用场景中发挥着重要作用。
下面将分别介绍栈和队列的应用场景。
栈的应用场景:1. 编辑器的撤销操作:在编辑器中,撤销(undo)操作是一个常见需求。
撤销操作通常是按照用户操作的反序执行,因此可以使用栈来存储每一次的操作,当用户执行撤销操作时,从栈中弹出最近的操作并执行对应的反操作。
2. 后退按钮的实现:在浏览器中,后退按钮用于返回上一个访问的网页。
通过使用栈来存储用户的访问记录,每当用户访问一个新的页面时,将该页面的地址压入栈中。
当用户点击后退按钮时,从栈中弹出最近访问的页面地址并跳转到该页面。
3. 函数调用与返回:在程序中,函数的调用和返回通常遵循“后进先出”的原则,即后调用的函数先返回。
因此,可以使用栈来实现函数调用与返回的过程。
每当一个函数被调用时,将该函数的执行环境(包括参数、局部变量等)压入栈中;当函数执行完毕后,从栈中弹出该函数的执行环境,恢复上一个函数的执行。
队列的应用场景:1. 消息队列:在分布式系统和异步通信中,消息队列用于解耦发送方和接收方之间的耦合性。
发送方将消息发送到队列的末尾,接收方从队列的头部获取消息进行处理。
消息队列可以实现异步处理、削峰填谷等功能,常见的消息队列系统有RabbitMQ和Kafka等。
2. 操作系统中的进程调度:在操作系统中,进程调度用于控制多个进程的执行顺序。
常见的调度算法中,有使用队列来实现的先来先服务(FCFS)调度算法和轮转调度算法。
进程按照到达时间的顺序加入队列,在CPU空闲时,从队列的头部取出一个进程执行。
3. 打印队列:在打印机等资源共享环境中,通常会使用打印队列来管理多个打印请求。
每当用户提交一个打印请求时,将该请求加入打印队列的末尾,打印机从队列的头部取出请求进行打印。
这样可以保证每个用户的打印请求按照提交的顺序进行处理。
综上所述,栈和队列在不同的应用场景中发挥着重要作用。
栈和队列解密数据结构中的先进后出和先进先出
栈和队列解密数据结构中的先进后出和先进先出在数据结构中,栈和队列是常用的基本数据结构之一,它们分别以先进后出(Last-In-First-Out,LIFO)和先进先出(First-In-First-Out,FIFO)的方式进行操作。
本文将解密栈和队列在数据结构中的应用以及其先进后出和先进先出的特性。
一、栈的特性和应用栈是一种具有后入先出(Last-In-First-Out,LIFO)特性的数据结构,类似于现实生活中的堆叠物体。
栈的主要操作有入栈(Push)和出栈(Pop),分别用于在栈顶添加元素和移除栈顶元素。
1. 栈的结构与表达方式栈可以使用数组或链表来实现。
数组实现的栈通常具有固定大小,链表实现的栈则可以动态扩展。
在数组实现的栈中,使用一个指针(top)来指示栈顶元素;在链表实现的栈中,链表头即为栈顶。
2. 栈的应用场景栈在计算机科学和程序设计中有广泛的应用。
其中,最常见的是函数调用和递归。
当一个函数被调用时,将当前函数的执行环境压入栈中,当函数执行完毕后,再从栈中弹出执行环境,以便返回上层函数的执行。
此外,栈还可以用于程序中的撤销操作,如文本编辑器中的撤销功能。
每一次操作都可以将当前状态入栈,撤销时则可通过出栈操作恢复到之前的状态。
二、队列的特性和应用队列是一种具有先进先出(First-In-First-Out,FIFO)特性的数据结构,类似于现实生活中的排队情况。
队列的主要操作有入队(Enqueue)和出队(Dequeue),分别用于在队尾添加元素和从队首移除元素。
1. 队列的结构与表达方式队列可以使用数组或链表来实现。
数组实现的队列通常具有固定大小,链表实现的队列则可以动态扩展。
在数组实现的队列中,使用两个指针(front和rear)分别指示队首和队尾;在链表实现的队列中,使用两个指针(head和tail)分别指示队首和队尾。
2. 队列的应用场景队列在多线程编程和操作系统中有广泛的应用。
栈和队列的应用
栈和队列的应用栈和队列是计算机科学中非常重要的数据结构,它们在各种应用中被广泛使用。
本文将探讨栈和队列的应用,并讨论它们在不同场景下的具体用途。
一、栈的应用1. 浏览器的前进后退功能在使用浏览器时,我们可以通过点击前进按钮或后退按钮来切换网页。
这种功能实际上是由一个栈来实现的。
当我们访问新的网页时,当前页面被推入栈中,当我们点击后退按钮时,栈顶的页面被弹出并显示在浏览器中。
2. 函数调用栈在编写程序时,函数的调用和返回也是通过栈来管理的。
每当一个函数被调用时,相关的信息(例如参数、返回地址等)会被推入栈中,当函数执行完毕后,这些信息会从栈中弹出,程序会回到函数调用的地方继续执行。
3. 括号匹配在编写编译器或表达式计算器时,需要检查括号是否正确匹配。
这个问题可以使用栈来解决。
遍历表达式时,遇到左括号将其推入栈中,遇到右括号时,若栈顶元素是对应的左括号,则将栈顶元素弹出,继续处理下一个字符;若栈为空或栈顶元素不是对应的左括号,则括号不匹配。
二、队列的应用1. 消息队列消息队列是一种在分布式系统中实现异步通信的机制。
它常用于解耦系统中的组件,例如,一个组件将消息发送到队列中,而另一个组件则从队列中接收消息并处理。
这种方式可以提高系统的可伸缩性和可靠性。
2. 打印队列在打印机系统中,多个任务需要按照先后顺序进行打印。
这时可以使用队列来管理打印任务的顺序。
每当一个任务到达时,将其加入到队列的末尾,打印机从队列的头部取出任务进行打印,直到队列为空。
3. 广度优先搜索广度优先搜索(BFS)是一种常用的图搜索算法,它使用队列来辅助实现。
在BFS中,首先将起始节点加入队列中,然后依次将与当前节点相邻且未访问过的节点入队,直到遍历完所有节点。
结论栈和队列作为常用的数据结构,在计算机科学中有着广泛的应用。
本文只介绍了它们部分的应用场景,实际上它们还可以用于解决其他许多问题,如迷宫路径搜索、计算器计算等。
因此,了解和熟练运用栈和队列是程序员和计算机科学家的基本素养之一。
栈和队列的应用实验报告
栈和队列的应用实验报告栈和队列的应用实验报告引言:栈和队列是计算机科学中常用的数据结构,它们在各种算法和应用中都有广泛的应用。
本实验报告旨在探讨栈和队列的基本概念、特性以及它们在实际应用中的具体使用。
一、栈的基本概念和特性栈是一种特殊的数据结构,它遵循“先进后出”的原则。
栈有两个基本操作:压栈(push)和弹栈(pop)。
压栈将元素添加到栈的顶部,弹栈则将栈顶元素移除。
栈还具有一个重要的特性,即它的访问方式是受限的,只能访问栈顶元素。
在实际应用中,栈可以用于实现递归算法、表达式求值、括号匹配等。
例如,在递归算法中,当函数调用自身时,需要将当前状态保存到栈中,以便在递归结束后能够恢复到正确的状态。
另外,栈还可以用于实现浏览器的“后退”功能,每次浏览新页面时,将当前页面的URL压入栈中,当用户点击“后退”按钮时,再从栈中弹出最近访问的URL。
二、队列的基本概念和特性队列是另一种常见的数据结构,它遵循“先进先出”的原则。
队列有两个基本操作:入队(enqueue)和出队(dequeue)。
入队将元素添加到队列的尾部,出队则将队列头部的元素移除。
与栈不同的是,队列可以访问头部和尾部的元素。
在实际应用中,队列经常用于任务调度、消息传递等场景。
例如,在操作系统中,任务调度器使用队列来管理待执行的任务,每当一个任务执行完毕后,从队列中取出下一个任务进行执行。
另外,消息队列也是一种常见的应用,它用于在分布式系统中传递消息,保证消息的顺序性和可靠性。
三、栈和队列在实际应用中的具体使用1. 栈的应用栈在计算机科学中有广泛的应用。
其中一个典型的应用是表达式求值。
当计算机遇到一个复杂的表达式时,需要将其转化为逆波兰表达式,然后使用栈来进行求值。
栈的特性使得它非常适合处理这种情况,可以方便地保存运算符和操作数的顺序,并按照正确的顺序进行计算。
另一个常见的应用是括号匹配。
在编程语言中,括号是一种常见的语法结构,需要保证括号的匹配性。
栈和队列的应用场景
栈和队列的应用场景栈和队列是数据结构中常见的两种基本数据结构,它们在实际生活和计算机领域中有着广泛的应用场景。
本文将从实际应用的角度出发,介绍栈和队列在不同场景下的具体应用。
### 一、栈的应用场景#### 1.1 浏览器的后退和前进功能在浏览器中,当我们访问一个网页时,浏览器会将该网页的 URL 存储在一个栈中。
当我们点击后退按钮时,浏览器会从栈顶取出上一个网页的 URL,实现后退功能;当我们点击前进按钮时,浏览器会从栈中取出下一个网页的 URL,实现前进功能。
#### 1.2 括号匹配在编程中,栈常用于检查表达式中的括号是否匹配。
当遇到左括号时,将其入栈;当遇到右括号时,将栈顶元素出栈并与右括号进行匹配。
如果匹配成功,则继续;如果匹配失败,则表达式中存在不匹配的括号。
#### 1.3 撤销操作在文本编辑器或图像处理软件中,撤销操作通常使用栈来实现。
每次编辑操作都会将编辑内容存储在栈中,当用户点击撤销按钮时,软件会从栈中取出上一个编辑操作,实现撤销功能。
### 二、队列的应用场景#### 2.1 系统任务调度在操作系统中,队列常用于实现任务调度。
操作系统会将需要执行的任务按照先来先服务的原则排入队列,然后逐个执行。
这种方式可以保证任务的顺序性和公平性。
#### 2.2 打印队列在打印机中,打印任务通常按照先后顺序排入打印队列中,然后依次执行。
这样可以避免多个打印任务同时请求打印,导致打印机发生冲突。
#### 2.3 消息队列在分布式系统中,消息队列被广泛应用于解耦和异步处理。
生产者将消息发送到队列中,消费者从队列中取出消息并进行处理,实现了生产者和消费者之间的解耦。
### 三、栈和队列的综合应用场景#### 3.1 模拟计算器在计算器的设计中,可以使用栈来实现表达式的计算。
将中缀表达式转换为后缀表达式,然后利用栈来计算后缀表达式的值,实现计算器的功能。
#### 3.2 资源分配在操作系统中,可以使用队列来实现资源的分配。
栈和队列实验报告
栈和队列实验报告引言:计算机科学中的数据结构是解决问题的关键。
栈和队列这两种常用的数据结构,无疑在许多实际应用中起着重要的作用。
本篇报告旨在探讨栈和队列的实验结果,并展示它们的实际应用。
一、栈的实验结果及应用1. 栈的实验结果在实验中,我们设计了一个基于栈的简单计算器,用于实现基本的四则运算。
通过栈的先进后出(Last In First Out)特性,我们成功实现了表达式的逆波兰表示法,并进行了正确的计算。
实验结果表明,栈作为一个非常有效的数据结构,可以很好地处理栈内数据的存储和检索。
2. 栈的应用栈在计算机科学中有许多实际应用。
其中之一是程序调用的存储方式。
在程序调用过程中,每个函数的返回地址都可以通过栈来保存和恢复。
另一个应用是浏览器的历史记录。
浏览器中每个访问网页的URL都可以通过栈来存储,以便用户能够追溯他们之前访问的网页。
二、队列的实验结果及应用1. 队列的实验结果在实验中,我们模拟了一个简单的出租车调度系统,利用队列的先进先出(First In First Out)特性实现乘客的排队和叫车。
实验结果表明,队列作为一个具有高效性和可靠性的数据结构,能够很好地处理排队问题。
2. 队列的应用队列在许多方面都有应用。
一个常见的应用是消息队列。
在网络通信中,消息队列可以用于存储和传递信息,确保按照特定的顺序进行处理。
另一个应用是操作系统的进程调度。
操作系统使用队列来管理各个进程的执行顺序,以实现公平和高效的资源分配。
三、栈和队列的比较及选择1. 效率比较栈和队列在实际应用中的效率取决于具体问题的需求。
栈的操作更简单,仅涉及栈顶元素的插入和删除,因此具有更高的执行速度。
而队列涉及到队头和队尾元素的操作,稍复杂一些。
但是,队列在某些问题中的应用更为广泛,例如调度问题和消息传递问题。
2. 如何选择在选择栈和队列时,需要根据实际问题的性质和需求进行综合考虑。
如果问题需要追溯历史记录或按照特定顺序进行处理,则应选择栈作为数据结构。
栈和队列的特点及日常生活中的应用
栈和队列的特点及日常生活中的应用栈和队列是两种常见的数据结构,它们在日常生活中有着广泛的应用。
栈具有先进后出(Last In First Out,简称LIFO)的特点,而队列则具有先进先出(First In First Out,简称FIFO)的特点。
下面将从两个方面来讨论栈和队列的特点及其在日常生活中的应用。
一、栈的特点及日常生活中的应用:-栈的插入和删除操作只在栈顶进行;-栈的插入操作被称为“入栈”,删除操作被称为“出栈”;-栈的结构特点决定了只能访问栈顶元素。
2.日常生活中的应用:-撤销操作:许多软件在编辑功能中都提供了“撤销”功能,这就利用了栈的特点,将操作历史记录在栈中,每次撤销时只需要出栈即可恢复上一步操作;-括号匹配:在编程中,经常需要对括号进行匹配,利用栈的特点可以方便地判断括号是否匹配,以及处理括号之间的嵌套;-网页浏览历史:浏览器提供了“后退”和“前进”的功能,实质上就是利用了栈的特点,将浏览历史记录在栈中,每次点击“后退”或“前进”时,只需要进行出栈或入栈操作即可。
二、队列的特点及日常生活中的应用:-队列的插入操作在队尾进行,删除操作在队头进行;-队列的插入操作被称为“入队”,删除操作被称为“出队”。
2.日常生活中的应用:-等待队列:日常生活中,我们经常在银行、超市等场所遇到人们排队等待的情况,这就是队列的一种应用。
先来的人先入队,后来的人先出队,保证了公平性和有序性;-打印队列:多台电脑共享一个打印机时,打印任务通常会先进入打印队列,按照FIFO的原则依次打印,这样可以保证每个任务都能得到执行;-消息传递:在多线程、多进程的编程中,往往需要通过队列来进行线程或进程间的通信,保证消息的有序传递和处理。
通过以上的讨论,我们可以看到,栈和队列在日常生活中有着广泛的应用。
它们的特点决定了它们在不同场景中的合适性,合理地利用栈和队列可以提高效率,简化操作,实现更加智能化的功能。
因此,了解栈和队列的特点及其应用,对于我们提高编程和解决问题的能力有着重要意义。
第3章栈和队列
3.1.2 栈的表示和算法实现
1.顺序栈 2.链栈
第3章栈和队列
1. 顺序栈 顺序栈是用顺序存储结构实现的栈,即利 用一组地址连续的存储单元依次存放自栈 底到栈顶的数据元素,同时由于栈的操作 的特殊性,还必须附设一个位置指针top( 栈顶指针)来动态地指示栈顶元素在顺序 栈中的位置。通常以top=-1表示空栈。
第 3 章 栈和队列
3.1 栈 3.2 队列 3.3 栈和队列的应用
第3章栈和队列
3.1 栈
3.1.1 栈的抽象数据类型定义 3.1.2 栈的表示和算法实现
第3章栈和队列
3.1.1 栈的定义
1.栈的定义 栈(stack)是一种只允许在一端进行插入和删除的线 性表,它是一种操作受限的线性表。在表中只允许进
行插入和删除的一端称为栈顶(top),另一端称为 栈 底 (bottom) 。 栈 的 插 入 操 作 通 常 称 为 入 栈 或 进 栈 (push),而栈的删除操作则称为出栈或退栈(pop)。 当栈中无数据元素时,称为空栈。
栈是按照后进先出 (LIFO)的原则组 织数据的,因此, 栈也被称为“后进 先出”的线性表。
第3章栈和队列
(2)入栈操作
Status Push(SqStack &S, Elemtype e)
【算法3.2 栈的入栈操作】
{ /*将元素e插入到栈S中,作为S的新栈顶*/
if (S->top>= Stack_Size -1) return ERROR;
else { S->top++;
S->elem[S->top]=e;
return OK;}
Push(S,’you’)
栈和队列的应用实验报告
栈和队列的应用实验报告
《栈和队列的应用实验报告》
一、实验目的
本实验旨在通过实际操作,掌握栈和队列的基本概念、操作及应用,加深对数
据结构的理解和应用能力。
二、实验内容
1. 栈的基本操作:包括入栈、出栈、获取栈顶元素等。
2. 队列的基本操作:包括入队、出队、获取队首元素等。
3. 栈和队列的应用:通过实际案例,探讨栈和队列在实际生活中的应用场景。
三、实验步骤
1. 学习栈和队列的基本概念和操作。
2. 编写栈和队列的基本操作代码,并进行调试验证。
3. 分析并实现栈和队列在实际应用中的案例,如表达式求值、迷宫问题等。
4. 进行实际应用案例的测试和验证。
四、实验结果
1. 成功实现了栈和队列的基本操作,并通过实际案例验证了其正确性和可靠性。
2. 通过栈和队列在实际应用中的案例,加深了对数据结构的理解和应用能力。
五、实验总结
通过本次实验,我深刻理解了栈和队列的基本概念和操作,并掌握了它们在实
际应用中的重要性和作用。
栈和队列作为数据结构中的重要内容,对于解决实
际问题具有重要意义,希望通过不断的实践和学习,能够更加熟练地运用栈和
队列解决实际问题,提高自己的编程能力和应用能力。
六、感想与展望
本次实验让我对栈和队列有了更深入的了解,也让我对数据结构有了更加深刻的认识。
我将继续学习和探索更多的数据结构知识,提高自己的编程能力和解决问题的能力,为将来的学习和工作打下坚实的基础。
同时,我也希望能够将所学知识应用到实际工程中,为社会做出更大的贡献。
栈和队列在实际生活中的应用
栈和队列在实际生活中的应用栈有许多实际生活中的应用,如在登山中,当一个人带着各种装备登上山顶时,必须在一定的时间内做出正确的决定,将装备叠放在登山包里,并且放在合适的位置,这就需要一种特殊的模式,即将装备以先进后出————栈放入登山包,以便出发前能得到优化,以免在登山过程中需要更换装备又要拆出来放,也可以减少其他队员装备拆卸带来的不便的可能性。
另一种可以使用栈的场景是文件夹的管理。
当你正在浏览电脑中的各种文件夹时,如果想要返回上一级文件夹,只要点击“返回”按钮,就能重新回到上一级,而这就是栈在日常生活中的实际运用。
它(栈)通过对对象进行连续压入操作,同时只有最近一次压入的对象才能先出栈,从而实现上述的“返回”操作。
再比如,当你学习语言时,为了巩固从字面理解到母语理解的过程,你应该首先学习规则,而后学习相应的例子,最后进行测验,把这些步骤安排起来,就是栈结构,根据上面所说的“后进先出”的原理,可以将规则、例子和测验一一进栈,最后,一段时间过后,实现从字面理解到母语理解的步骤。
此外,队列是另一种在实际生活中有着广泛应用的数据结构。
最常见的场景就是排队取号,比如在银行,每位客户都会先取一张号码牌,然后依照号码先后排队办理业务。
这种取号就是将名字放入队列的过程,而这一过程反映的正是“先进先出”的队列模式,也就是“取号”,“叫号”,“办理”的原理。
另外,队列在工业生产中也有广泛的应用,最常见的是生产线的工作顺序,比如一件产品从零部件输入生产线开始制作,经过一步步的工序,最后出厂给消费者,此过程也是严格按照规定的“先进先出”顺序,从而保证产品和服务的质量。
总之,栈和队列是实际生活中有着重要功用的数据结构。
无论是登山时堆放装备的先进后出的栈结构,还是排序取号的先进先出的队列模式,还是生产线上按照规定的“先进先出”顺序,都是使用到了“栈”和“队列”这两种不同的数据结构。
由此可见,这两种数据结构在实际生活中有着广泛的应用范围,是不可或缺的一部分。
栈和队列区别及应用场景
栈和队列区别及应用场景栈(Stack)和队列(Queue)是两种常见的数据结构,它们在计算机科学领域有广泛的应用。
本文将从定义、特点和基本操作等方面详细介绍栈和队列的区别,并分析它们各自的应用场景。
一、栈的定义及特点:栈是一种线性数据结构,其特点是“先进后出”(Last In First Out,LIFO)。
即在栈中最后一个进入的元素,也是第一个出栈的元素。
栈的基本操作包括入栈和出栈。
入栈(Push)是将一个元素追加到栈的顶部,出栈(Pop)是将栈顶元素移除。
栈的应用场景:1.函数调用:在函数调用时,每遇到一个新的函数调用就将当前的上下文(包括局部变量和返回地址)压入栈中,当函数调用完毕后,再弹出栈顶元素,恢复上一个函数的上下文。
2.表达式求值:栈可以用于进行中缀表达式到后缀表达式的转换,并通过栈来计算后缀表达式的值。
3.递归:递归算法的实现中通常会使用栈来保存递归调用的上下文。
4.撤销操作:在很多应用程序中,比如文本编辑器和图像处理软件中,通过栈来存储用户操作,以便可以撤销之前的操作。
5.浏览器历史记录:浏览器通常使用栈来实现历史记录的功能,每当用户浏览一个新的页面时,就将该页面的URL入栈,当用户点击后退按钮时,再依次出栈。
6.二叉树的遍历:用栈可以实现二叉树的深度优先遍历,具体的实现是使用非递归的方式进行前序、中序、后序遍历。
二、队列的定义及特点:队列也是一种线性数据结构,其特点是“先进先出”(First In First Out,FIFO)。
即在队列中最先进入的元素,也是第一个出队列的元素。
队列的基本操作包括入队和出队。
入队(Enqueue)是将元素放入队列的尾部,出队(Dequeue)是将队列的头部元素移除。
队列的应用场景:1.广度优先搜索:在图论中,广度优先搜索(Breadth First Search,BFS)通常会使用队列来实现,按照层次的顺序进行搜索。
2.缓冲区:队列可以用作缓冲区,在生产者和消费者模型中,生产者将数据放入队列的尾部,消费者从队列的头部取出数据进行处理。
栈和队列的应用实例
栈和队列的应用实例一、栈的应用实例1.计算器程序计算器程序是栈的一个经典应用,它可以通过将表达式转换成后缀表达式,再利用栈进行运算得出结果。
具体实现过程如下:(1)将中缀表达式转换为后缀表达式。
(2)利用栈进行后缀表达式的运算。
2.浏览器前进后退功能浏览器前进后退功能也是栈的一个应用。
当用户点击浏览器的前进或后退按钮时,浏览器会将当前页面的URL压入一个栈中。
当用户点击前进或后退按钮时,浏览器会从栈中弹出上一个或下一个URL并加载。
3.括号匹配问题括号匹配问题也是栈的一个常见应用。
当我们需要判断一段代码中括号是否匹配时,可以使用栈来实现。
遍历代码中每个字符,如果是左括号,则将其压入栈中;如果是右括号,则从栈顶弹出一个左括号进行匹配。
如果最终栈为空,则说明所有括号都匹配成功。
二、队列的应用实例1.打印队列打印队列是队列的一个典型应用。
在打印机资源有限且多人共享的情况下,打印队列可以帮助我们管理打印任务的顺序。
每当有一个新的打印任务到达时,就将其加入队列中。
当打印机空闲时,从队列中取出第一个任务进行打印,直到队列为空。
2.消息队列消息队列也是队列的一个重要应用。
在分布式系统中,不同节点之间需要传递消息进行通信。
为了保证消息传递的可靠性和顺序性,可以使用消息队列来实现。
每当一个节点发送一条消息时,就将其加入到消息队列中。
接收方从消息队列中取出最早的一条消息进行处理。
3.广度优先搜索广度优先搜索也是队列的一个常见应用。
在图论和网络分析中,广度优先搜索可以帮助我们寻找最短路径和连通性等问题。
具体实现过程如下:(1)将起点加入到队列中。
(2)从队首取出一个节点,并将与其相邻且未访问过的节点加入到队尾。
(3)重复步骤(2),直到找到终点或者遍历完所有节点。
以上是栈和队列的一些应用实例,在实际编程过程中需要根据具体情况选择合适的数据结构来解决问题。
数据结构栈和队列知识点总结
数据结构栈和队列知识点总结一、栈的基本概念栈是一种线性数据结构,具有后进先出(LIFO)的特点。
栈有两个基本操作:入栈(push)和出栈(pop)。
入栈指将元素压入栈中,出栈指将最近压入的元素弹出。
二、栈的实现方式1. 数组实现:利用数组来存储元素,通过一个变量来记录当前栈顶位置。
2. 链表实现:利用链表来存储元素,每个节点包含一个数据域和一个指向下一个节点的指针。
三、应用场景1. 表达式求值:使用两个栈分别存储操作数和运算符,按照优先级依次进行计算。
2. 函数调用:每当调用一个函数时,就将当前函数的上下文信息压入调用栈中,在函数返回时再弹出。
3. 浏览器历史记录:使用两个栈分别存储浏览器前进和后退的网页地址。
四、队列的基本概念队列是一种线性数据结构,具有先进先出(FIFO)的特点。
队列有两个基本操作:入队(enqueue)和出队(dequeue)。
入队指将元素加入到队列尾部,出队指从队列头部删除元素。
五、队列的实现方式1. 数组实现:利用数组来存储元素,通过两个变量分别记录队列头和队列尾的位置。
2. 链表实现:利用链表来存储元素,每个节点包含一个数据域和一个指向下一个节点的指针。
六、应用场景1. 广度优先搜索:使用队列来保存待访问的节点,按照层次依次访问。
2. 线程池:使用队列来保存任务,线程从队列中取出任务进行处理。
3. 缓存淘汰策略:使用队列来维护缓存中元素的顺序,根据一定策略选择删除队首或队尾元素。
七、栈和队列的比较1. 栈是一种后进先出的数据结构,而队列是一种先进先出的数据结构。
2. 栈只能在栈顶进行插入和删除操作,而队列可以在两端进行操作。
3. 栈可以用于回溯、函数调用等场景,而队列适合于广度优先搜索、缓存淘汰等场景。
八、常见问题及解决方法1. 栈溢出:当栈空间不够时,会发生栈溢出。
解决方法包括增加栈空间大小、减少递归深度等。
2. 队列空间浪费:当使用数组实现队列时,可能会出现队列空间不足的情况。
生活中栈和队列的例子
生活中栈和队列的例子
1. 你看那排队买奶茶的队伍,这不就是一个典型的队列嘛!大家都按照先来后到的顺序排队,依次购买,多有秩序呀!就像我们遵守规则依次前进一样。
2. 想想学校食堂打饭的时候,餐盘不就像在栈里一样嘛,一个个叠放在那里,先放进去的最后才拿出来,这多形象呀!
3. 周末去超市购物,大家把购物车推来推去,就好像栈里的元素进进出出,不是很有意思吗?
4. 去火车站坐车,大家检票进站不也是排队依次进入嘛,这不就是队列在生活中的体现嘛?哎呀!
5. 家里的碗柜,碗一个个叠起来,拿的时候也是从上面开始拿,这和栈简直一模一样呀,你说神奇不神奇?
6. 图书馆里的书架,书按照一定的顺序摆放,这不就像队列一样整整齐齐的嘛,找起来也方便呀!
7. 上班等电梯的时候,大家不也是排队嘛,先进去的人先上楼,这就是队列呀,难道不是吗?
8. 高速公路上的车辆排队通过收费站,这也是一种队列呀,大家依次缴费通过,多么有秩序呀!
我的观点结论就是:生活中到处都有栈和队列的影子呀,它们让我们的生活更加有序、高效呢!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单表达式采用字符数组exp表示,其中只含有“+”、 “-”、“*”、“/”、正整数和圆括号。
为了方便,假设该表达式都是合法的算术表达式,例 如,exp=“1+2*(4+12)”;
在设计相关算法中用到栈,这里采用顺序栈存储结构。
3/59
运算符位于两个操作数中间的表达式称为中缀表达 式。例如,1+2*3就是一个中缀表达式。
开始时,任何运算符都进栈 (:一个子表达式开始,进栈 栈顶为(:任何运算符进栈
):退栈到(
只有大于栈顶的优先级,才进栈;否则退栈
10/59
while (从exp读取字符ch,ch!='\0') { ch为数字:将后续的所有数字均依次存放到postexp中,
并以字符'#'标志数值串结束; ch为左括号'(':将此括号进栈到Optr中; ch为右括号')':将Optr中出栈时遇到的第一个左括号'('以前的运算符依次出
栈并存放到postexp中,然后将左括号'('出栈; ch为其他运算符:
if (栈空或者栈顶运算符为'(') 直接将ch进栈; else if (ch的优先级高于栈顶运算符的优先级)
直接将ch进栈; else
依次出栈并存入到postexp中,直到栈顶运算符优先级小于ch的优先级, 然后将ch进栈; } 若exp扫描完毕,则将Optr中所有运算符依次出栈并存放到postexp中。
中缀表达式的运算规则:“先乘除,后加减,从左到 右计算,先括号内,后括号外”。
因此,中缀表达式不仅要依赖运算符优先级,而且还 要处理括号。
4/59
算术表达式的另一种形式是后缀表达式或逆波兰表达 式,就是在算术表达式中,运算符在操作数的后面,如 1+2*3的后缀表达式为1 2 3 * +。
后缀表达式:
postexp:
运算符栈
“1+2+3” “1 2 + 3 +”
先进栈的先退栈即先执行: 只有大于栈顶优先级才能直接进栈
exp扫描完毕,所有运算符退栈
9/59
exp postexp 情况2(带有括号) exp= “ 2 * ( 1 + 3 ) - 4 ”
postexp:
运算符栈
postexp=“2 1 3 + * 4 -”
栈的应用
栈和队列都是存放多个数据的容器。通常用于存放临 时数据:
如果先放入的数据先处理,则使用队列。 如果后放入的数据先处理,则使用栈。
1/59
1. 简单表达式求值
这里限定的简单表达式求值问题是:用户输入一个包 含“+”、“-”、“*”、“/”、正整数和圆括号的合法算 术表达式,计算该表达式的运算结果。
void trans(char *exp,char postexp[])
{ char e;
SqStack *Optr;
//定义运算符栈指针
InitStack(Optr);
//初始化运算符栈
int i=0;
//i作为postexp的下标
while (*exp!='\0')
//exp表达式未扫描完时循环
(-
')':将栈中'('之前的运算符'-'出栈并存入 56#20#-
postexp中,然后将'('出栈
'/':将ch进栈
56#20#-
/
13/59
操作 '(':将此括号进栈
postexp 56#20#-
Optr栈(栈底→栈顶) /(
ch为数字:将4#存入postexp中
56#20#-4#
/(
'+':栈顶运算符为'(',直接将ch进栈 56#20#-4#
依次出栈并存放到postexp中,然后将左括号'('出栈; ch为'+'或'-':出栈运算符并存放到postexp中,直到栈空或者栈顶为'(',
然后将'+'或'-'进栈; ch为'*'或'/':出栈运算符并存放到postexp中,直到栈空或者栈顶为'('、'+'或'-',
然后将'+'或'-'进栈; } 若exp扫描完毕,则将Optr中所有运算符依次出栈并存放到postexp中。
{ switch(*exp)
{
case '(': Push(Optr,'(');
exp++;
//判定为左括号 //左括号进栈 //继续扫描其他字符
break;
15/59
case ')': Pop(Optr,e); while (e!='(') { postexp[i++]=e; Pop(Optr,e); } exp++; break;
运算数的相对次序相同
6/59
中缀表达式的求值过程:
将中缀算术表达式转换成后缀表达式。 对该后缀表达式求值。
式 exp postexp 扫描exp的所有字符:
数字字符直接放在postexp中 运算符通过一个栈来处理优先级
运算符栈 8/59
exp postexp 情况1(没有括号) exp= “ 1 + 2 + 3 ”
12/59
中缀表达式“(56-20)/(4+2)” 后缀表达式“56#20#-4#2#+/”
操作 '(':将此括号进栈
postexp
Optr栈(栈底→栈顶) (
ch为数字:将56#存入postexp中 '-':直接将ch进栈 ch为数字:将20#存入postexp中
56#
(
56#
(-
56#20#
/(+
ch为数字:将2#存入postexp中
56#20#-4#2#
/(+
')':将栈中'('之前的运算符'+'出栈并 56#20#-4#2#+
/
存入postexp中,然后将'('出栈
str扫描完毕,将Optr栈中的所有运算 56#20#-4#2#+/ 符依次出栈并存入postexp中
14/59
算法:将算术表达式exp转换成后缀表达式postexp。
11/59
针对简单表达式:
while (从exp读取字符ch,ch!='\0') { ch为数字:将后续的所有数字均依次存放到postexp中,
并以字符'#'标志数值串结束; ch为左括号'(':将此括号进栈到Optr中; ch为右括号')':将Optr中出栈时遇到的第一个左括号'('以前的运算符
已考虑了运算符的优先级。 没有括号。 只有操作数和运算符,而且越放在前面的运算符来越优先 执行。
5/59
在算术表达式中,如果运算符在操作数的前面,称为前缀 表达式,如1+2*3的前缀表达式为+ 1 * 2 3。
中缀表达式:1 + 2 * 3 后缀表达式:1 2 3 * + 前缀表达式:+ 1 * 2 3