人教版七年级数学下册第一单元练习题

合集下载

(整理)新人教版初中数学七年级下册单元同步练习试题全册

(整理)新人教版初中数学七年级下册单元同步练习试题全册

5.1.1-2相交线、垂线检测题一、填空1.如图,直线AB,CD 相交于O,OE 平分∠AOD,FO ⊥OD 于O,∠1=40°,则∠2=•___ __,∠4=______.421D CAB (5)OFE D C A B NM(6)O FE(第1题图) (第2题图)2.如图,AB ⊥CD 于O,EF 为过点O 的直线,MN 平分∠AOC,若∠EON=100•°,•那么 ∠EOB=________,∠BOM=________.3.如图,AB 是一直线,OM 为∠AOC 的角平分线,ON 为∠BOC 的角平分线,则OM,ON 的位置关系是_______.4.直线外一点与直线上各点连结的线段中,以_________为最短.5.从直线外一点到这条直线的________叫做这点到直线的距离.C AB NM(7)DCA B(8)O(第3题图) (第7题图) (第8题图)6.经过直线外或直线上一点,有且只有______直线与已知直线垂直.7.如图,要证BO ⊥OD,请完善证明过程,并在括号内填上相应依据:∵AO ⊥CO,∴∠AOC=__________(___________).又∵∠COD=40°(已知),∴∠AOD=_______.•∵∠BOC=∠AOD=50°(已知),∴∠BOD=_______, ∴_______⊥_______(__________).8. 如图,点B 到AC 的距离是线段_________的长度,_________是线段BC 到A 的距离二、选择9.下列语句正确的是( )A.相等的角为对顶角B.不相等的角一定不是对顶角C.不是对顶角的角都不相等D.有公共顶点且和为180°的两个角为邻补角10.两条相交直线与另外一条直线在同一平面内,它们的交点个数是( ) A.1 B.2 C.3或2 D.1或2或311.如图10,PO ⊥OR,OQ ⊥PR,能表示点到直线(或线段)的距离的线段有( ) A.1条 B.2条 C.3条 D.5条(10)PQDCAB(11)O D C AB(12)FE (第11题图) (第12题图) (第14题图)12.如图,OA ⊥OB,OC ⊥OD,则( )A.∠AOC=∠AODB.∠AOD=∠DOBC.∠AOC=∠BODD.以上结论都不对 13.下列说法正确的是( )A.在同一平面内,过已知直线外一点作这条直线的垂线有且只有一条B.连结直线外一点和直线上任一点,使这条线段垂直于已知直线C.作出点P 到直线的距离D.连结直线外一点和直线上任一点的线段长是点到直线的距离 14.如图,与∠C 是同旁内角的有( ). A.2 B.3 C.4 D.5 15.下列说法正确的是( ).A.两条直线相交成四个角,如果有三个角相等,那么这两条直线垂直.B.两条直线相交成四个角,如果有两个角相等,那么这两条直线垂直.C.两条直线相交成四个角,如果有一对对顶角互余,那么这两条直线垂直.D.两条直线相交成四个角,如果有两个角互补,那么这两条直线垂直. 16.如果∠1与∠2互为补角,且∠1>∠2,那么∠2的余角是( )A. 12(∠1+∠2)B. 12∠1C. 12(∠1-∠2)D.12∠2三、作图题17、如图,按要求作出:(1)AE ⊥BC 于E; (2)AF ⊥CD 于F;(3)连结BD,作AG ⊥BD 于G.18、如下左图,一辆汽车在直线形的公路AB 上由A 向B 行驶,M 、N 分别是位于公路AB 两侧的村庄,(1)现在公路AB 上修建一个超市C ,使得到M 、N 两村庄距离最短,请在图中画出点C (2)设汽车行驶到点P 位置时离村庄M 最近;行驶到点Q 位置时,距离村庄N 最近,请在图中公路AB 上分别画出P 、Q 两点的位置。

数学七年级下第一单元试卷

数学七年级下第一单元试卷

一、选择题(每题2分,共20分)1. 下列各数中,是正数的是()A. -3B. 0C. 1.5D. -1.22. 下列各数中,有理数是()A. $\sqrt{2}$B. $\pi$C. $\frac{3}{4}$D. $\sqrt[3]{-8}$3. 下列各数中,无理数是()A. $\sqrt{9}$B. $\frac{5}{3}$C. $\sqrt[3]{-27}$D. $\pi$4. 已知数轴上点A的坐标为-3,点B的坐标为2,则AB的长度是()A. 5B. 3C. 2D. 15. 若a、b是相反数,且|a| > |b|,则a+b的值为()A. 0B. aC. -aD. 2a6. 若a、b是互为倒数的有理数,且a > 0,则|a|+|b|的值为()A. 1B. 2C. 3D. 47. 已知一元一次方程2x-5=3,则x的值为()A. 2B. 3C. 4D. 58. 若一元一次方程ax+b=0(a≠0)的解为x=2,则a+b的值为()A. 4B. 3C. 2D. 19. 下列各方程中,是一元二次方程的是()A. 2x+3=5B. x^2+2x+1=0C. 3x^2-4x+1=0D. 2x^2+3x+1=010. 若一元二次方程ax^2+bx+c=0(a≠0)的解为x=1,则a+b+c的值为()A. 1B. 0C. -1D. 2二、填空题(每题2分,共20分)11. 若a、b是互为倒数的有理数,则|a|×|b|=______。

12. 若a、b是相反数,则|a-b|=______。

13. 若|a|+|b|=5,且a、b同号,则|a|×|b|=______。

14. 若a、b是互为倒数的有理数,且a > 0,则|a-b|=______。

15. 若一元一次方程2x-5=3的解为x=2,则方程3x+2=______。

16. 若一元二次方程x^2-3x+2=0的解为x=1,则方程x^2-3x+2=______。

七年级下册数学第一单元测试卷【含答案】

七年级下册数学第一单元测试卷【含答案】

七年级下册数学第一单元测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是2dm、3dm、4dm,那么它的体积是多少?A. 24立方分米B. 20立方分米C. 18立方分米D. 22立方分米4. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/105. 如果a=3,那么2a+5的值是多少?A. 6B. 11C. 8D. 14二、判断题(每题1分,共5分)1. 两个质数相乘,其结果一定还是质数。

()2. 一个三角形的内角和一定是180度。

()3. 长方体的六个面都是相同的。

()4. 分子和分母相同的分数是最简分数。

()5. 如果a是正数,那么-a一定是负数。

()三、填空题(每题1分,共5分)1. 100的因数有______个。

2. 一个三角形的两个内角分别是30度和60度,那么第三个内角是______度。

3. 一个长方体的长是5cm,宽是3cm,高是4cm,那么它的表面积是______平方厘米。

4. 把分数3/4化成小数,其结果是______。

5. 如果a=5,那么3a-2的值是______。

四、简答题(每题2分,共10分)1. 什么是质数?请给出三个质数的例子。

2. 请解释三角形内角和定理。

3. 请简述长方体的体积公式。

4. 请解释什么是最简分数。

5. 如果一个数是负数,那么它的相反数是什么?五、应用题(每题2分,共10分)1. 一个长方形的长是10cm,宽是5cm,求这个长方形的周长和面积。

2. 一个等腰三角形的底边长是8cm,腰长是5cm,求这个三角形的周长。

3. 把分数4/5、3/4、2/3按照大小顺序排列。

4. 如果a=4,那么2a+3的值是多少?5. 一个长方体的长、宽、高分别是2cm、3cm、4cm,求这个长方体的体积。

七年级下册数学第一单元试卷

七年级下册数学第一单元试卷

七年级下册数学第一单元试卷一、选择题(每题3分,共30分)1. 在平面直角坐标系中,点P(-3,4)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限。

2. 若x轴上的点P到y轴的距离为3,则点P的坐标为()A. (3,0)B. (0,3)或(0,-3)C. (0,3)D. (3,0)或(-3,0)3. 点M(2,-3)关于x轴对称的点N的坐标是()A. (-2,-3)B. (-2,3)C. (2,3)D. (-3,2)4. 已知点A(a,b)在第四象限,那么点B(b,-a)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限。

5. 在平面直角坐标系中,将点A(-2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A'的坐标是()A. (1,1)B. (-5,1)C. (-5,5)D. (1,5)6. 若点A(x,y)在第二象限,则点B(-x,y - 1)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限。

7. 一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标为()A. (2,3)B. (3,2)C. (3,3)D. (2,2)8. 点P(1,-2)到y轴的距离是()A. 1B. 2C. -1D. -29. 下列各点中,位于第二象限的是()A. (2,3)B. (-2,3)C. (-2,-3)D. (2,-3)10. 若a>0,b<0,则点P(a,b)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限。

二、填空题(每题3分,共15分)1. 若点P(m + 3,m - 1)在x轴上,则m=_1。

2. 在平面直角坐标系中,点A(-3,0)与点B(0,2)的距离是√(13)。

3. 点P(-2,1)关于原点对称的点P'的坐标是(2,-1)。

4. 把点A(3,2)向左平移6个单位长度得点A',则点A'的坐标是(-3,2)。

(人教版)北京市七年级数学下册第一单元《相交线与平行线》测试题(答案解析)

(人教版)北京市七年级数学下册第一单元《相交线与平行线》测试题(答案解析)

一、选择题1.下列说法中,正确的是( )A .在同一平面内,过一点有无数条直线与已知直线垂直B .两直线相交,对顶角互补C .垂线段最短D .直线外一点到这条直线的垂线段叫做点到直线的距离2.如图,将周长为7的△ABC 沿BC 方向向右平移2个单位得到△DEF ,则四边形ABFD 的周长为( )A .8B .9C .10D .11 3.如图,25AOB ︒∠=,90AOC ︒∠=,点B ,O ,D 在同一直线上,则COD ∠的度数为( )A .65B .25C .115D .1554.如图,A 是直线l 外一点,过点A 作AB l ⊥于点B ,在直线l 上取一点C ,连接AC ,使2AC AB =,P 在线段BC 上,连接AP .若3AB =,则线段AP 的长不可能是( )A .4B .5C .2D .5.55.如图,直线12l l //,被直线3l 、4l 所截,并且34l l ⊥,144∠=,则2∠等于( )A .56°B .36°C .44°D .46° 6.下面命题中是真命题的有( )①相等的角是对顶角 ②直角三角形两锐角互余③三角形内角和等于180°④两直线平行内错角相等A .1个B .2个C .3个D .4个7.如图所示,下列条件能判断a ∥b 的有( )A .∠1+∠2=180°B .∠2=∠4C .∠2+∠3=180°D .∠1=∠3 8.下列说法中不正确的个数为( ).①在同一平面内,两条直线的位置关系只有两种:相交和垂直.②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.⑤过一点,有且只有一条直线与已知直线平行.A .2个B .3个C .4个D .5个9.如图,在Rt ABC △中,90,BAC ︒∠=3,AB cm =4AC cm =,把ABC 沿着直线BC 的方向平移2.5cm 后得到DEF ,连接AE ,AD ,有以下结论:①//AC DF ;②//AD BE ;③ 2.5CF cm =;④DE AC ⊥.其中正确的结论有( )A .1个B .2个C .3个D .4个10.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为( )A .10°B .20°C .25°D .30°11.如图是郝老师的某次行车路线,总共拐了三次弯,最后行车路线与开始的路线是平行的,已知第一次转过的角度120︒,第三次转过的角度135︒,则第二次拐弯的角度是( )A .75︒B .120︒C .135︒D .无法确定 12.如图,∠1=20º,AO ⊥CO ,点B 、O 、D 在同一条直线上,则∠2的度数为( )A .70ºB .20ºC .110ºD .160º二、填空题13.如图,直线AB 与CD 相交于点O ,EO ⊥CD 于点O ,OF 平分∠AOD ,且∠BOE =50°,则∠DOF 的度数为__.14.如图,AB ,CD 相交于点E ,ACE AEC ∠=∠,BDE BED ∠=∠,过A 作AF BD ⊥,垂足为F .求证:AC AF ⊥.证明:∵ACE AEC ∠=∠,BDE BED ∠=∠又AEC BED ∠=∠(________________)∴ACE BDE ∠=∠∴//AC DB (________________________)∴CAF AFD ∠=∠(________________________)∵AF DB ⊥∴90AFD ∠=︒(________________________)∴90CAF =︒∠∴AC AF ⊥15.命题“等边三角形的每个内角都等于60°”的逆命题是_____命题.(填“真”或“假”) 16.命题“相等的角是对顶角”是______(填“真命题”或“假命题”).17.小明用一副三角板自制对顶角的“小仪器”,第一步固定直角三角板ABC ,并将边AC 延长至点P ,第二步将另一块三角板CDE 的直角顶点与三角板ABC 的直角顶点C 重合,摆放成如图所示,延长DC 至点F ,PCD ∠与ACF ∠就是一组对顶角,若30ACF ∠=,则PCD ∠=__________,若重叠所成的(090)BCE n n ∠=<<,则PCF ∠的度数__________.18.如图,将直角三角形ABC 沿斜边AC 的方向平移到三角形DEF 的位置,DE 交BC 于点G ,BG =4,EF =12,△BEG 的面积为4,下列结论:①DE ⊥BC ;②△ABC 平移的距离是4;③AD =CF ;④四边形GCFE 的面积为20,其中正确的结论有________(只填写序号).19.如果一张长方形的纸条,如图所示折叠,那么∠α等于____.20.如图,添加一个你认为合适的条件______使//AD BC .三、解答题21.三角形ABC 中,D 是AB 上一点,//DE BC 交AC 于点E ,点F 是线段DE 延长线上一点,连接FC ,180BCF ADE ∠+∠=︒.(1)如图1,求证://CF AB ;(2)如图2,连接BE ,若40ABE ∠=︒,60ACF ∠=︒,求BEC ∠的度数; (3)如图3,在(2)的条件下,点G 是线段FC 延长线上一点,若:7:13EBC ECB ∠∠=,BE 平分ABG ∠,求CBG ∠的度数.22.请将下列题目的证明过程补充完整:如图,F 是BC 上一点,FG AC 于点,G H 是AB 上一点,HE AC ⊥于点,12E ∠=∠,求证://DE BC .证明:连接EF .,FG AC HE AC ∴⊥⊥,90FGC HEC ︒∴∠=∠=.//FG ∴_______( ).3∴∠=∠_______( ).又12∠=∠,∴______24=∠+∠,即∠_________EFC =∠.//DE BC ∴(___________).23.如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,72AOC ∠=︒,OF CD ⊥.(1)与BOF ∠互余的角是______;(2)求EOF ∠的度数.24.如图,已知直线l 1//l 2,l 3、和l 1、l 2分别交于点A 、B 、C 、D ,点P 在直线l 3或上且不与点A 、B 、C 、D 重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P 在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P 在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P 在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明; (4)若点P 在线段DC 延长线上运动时,请直接写出∠1、∠2、∠3之间的关系.25.如图所示,直线MN 分别与直线,AC DG 是好点B 、F ,且12∠=∠,ABF ∠的平分线BE 交直线DG 于点E ,BFG ∠的平分线FC 交直线AC 于点C .(1)请判断直线AC 与DG 的位置关系,并说明理由(2)请判断直线BE 与CF 的位置关系,并说明理由(3)若35C ∠=︒,求BED ∠的度数26.在边长为1的小正方形组成的网格中,把一个点先沿水平方向平移a 格(当a 为正数时,表示向右平移.当a 为负数时,表示向左平移),再沿竖直方向平移b 格(当b 为正数时,表示向上平移.当b 为负数时,表示向下平移),得到一个新的点,我们把这个过程记为(,)a b .例如,从A 到B 记为:1,()3A B →++.从C 到D 记为:(1,2)C D →+-,回答下列问题:(1)如图1,若点A 的运动路线为:A B C A →→→,请计算点A 运动过的总路程.(2)若点A 运动的路线依次为:(2,3)A M →++,(1,1)M N →+-,(2,2)N P →-+,(4,4)P Q →+-.请你依次在图2上标出点M 、N 、P 、Q 的位置.(3)在图2中,若点A 经过(,)m n 得到点E ,点E 再经过(,)p q 后得到Q ,则m 与p 满足的数量关系是 .n 与q 满足的数量关系是 .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】依据垂线的性质、对顶角的性质、垂线段的性质以及点到直线的距离的概念,即可得出结论.【详解】解:A.在同一平面内,过一点有且仅有一条直线与已知直线垂直,故本选项错误;B.两直线相交,对顶角相等,故本选项错误;C.垂线段最短,故本选项正确;D.直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故本选项错误;故选:C.【点睛】本题主要考查了垂线的性质、对顶角的性质、垂线段的性质以及点到直线的距离的概念,熟练掌握概念是解题的关键.2.D解析:D【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC即可得出答案.【详解】解:根据题意,将周长为7的△ABC沿BC方向向右平移2个单位得到△DEF,∴AD=2,BF=BC+CF=BC+2,DF=AC;又∵AB+BC+AC=7,∴四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC=11.故选:D.【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.3.C解析:C【分析】先求出∠BOC,再由邻补角关系求出∠COD的度数.∵∠AOB=25°,∠AOC=90°,∴∠BOC=90°-25°=65°,∴∠COD=180°-65°=115°.故选:C .【点睛】本题考查了余角、邻补角的定义和角的计算;弄清各个角之间的关系是解题的关键. 4.C解析:C【分析】根据题意计算出AC 的长度,由垂线段最短得出AP 的范围,选出AP 的长度不可能的选项即可.【详解】3AB =,26AC AB cm ∴==,结合垂线段最短,得:36AP ≤≤.故选:C .【点睛】本题主要考查直线外一点与直线上各点连接的所有线段中,垂线段最短,熟记概念并求出对应线段的范围是解题关键.5.D解析:D【分析】依据l 1∥l 2,即可得到∠1=∠3=44°,再根据l 3⊥l 4,可得∠2=90°-44°=46°.【详解】解:如图,∵l 1∥l 2,∴∠1=∠3=44°,又∵l 3⊥l 4,∴∠2=90°-44°=46°,故选:D .本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.6.C解析:C【分析】利用平行线的性质、三角形的内角和、直角三角形的性质、对顶角的性质分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故不符合题意;②直角三角形两锐角互余,故符合题意;③三角形内角和等于180°,故符合题意;④两直线平行内错角相等,故符合题意;故选:C.【点睛】此题考查了命题与定理,解题的关键是了解平行线的性质、对顶角的定义、直角三角形的性质及三角形的内角和等知识,难度不大.7.B解析:B【分析】通过平行线的判定的相关知识点,并结合题中所示条件进行相应的分析,即可得出答案.【详解】A.∠1 ,∠2是互补角,相加为180°不能证明平行,故A错误.B.∠2=∠4,内错角相等,两直线平行,所以B正确.C. ∠2+∠3=180°,不能证明a∥b,故C错误.D.虽然∠1=∠3,但是不能证明a∥b;故D错误.故答案选:B.【点睛】本题考查的知识点是平行线的判定,解题的关键是熟练的掌握平行线的判定.8.C解析:C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.【详解】∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确;∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确;过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;∴不正确的有①②④⑤四个.故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.9.D解析:D【分析】根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小可对①②③进行判断;根据∠BAC=90°及平移的性质可对④进行判断,综上即可得答案.【详解】∵△ABC沿着直线BC的方向平移2.5cm后得到△DEF,∴AB//DE,AC//DF,AD//CF,CF=AD=2.5cm,故①②③正确.∵∠BAC=90°,∴AB⊥AC,∵AB//DE∴⊥,故④正确.DE AC综上所述:之前的结论有:①②③④,共4个,故选D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.10.C解析:C【解析】分析:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故选C.11.A解析:A【解析】分析:根据两直线平行,内错角相等,得到∠BFD的度数,进而得出∠CFD的度数,再由三角形外角的性质即可得到结论.详解:如图,延长ED交BC于F.∵DE∥AB,∴∠DFB=∠ABF=120°,∴∠CFD=60°.∵∠CDE=∠C+∠CFD,∴∠C=∠CDE-∠CFD=135°-60°=75°.故选A.点睛:本题考查了平行线的性质及三角形外角的性质.解题的关键是理解题意,灵活应用平行线的性质解决问题,属于中考常考题型.12.C解析:C【分析】由AO⊥CO和∠1=20º求得∠BOC=70º,再由邻补角的定义求得∠2的度数.【详解】∵AO⊥CO和∠1=20º,∴∠BOC=90 º-20 º=70º,又∵∠2+∠BOC=180 º(邻补角互补),∴∠2=110º.故选:C.【点睛】考查了邻补角和垂直的定义,解题关键是利用角的度数之间的和差的关系求未知的角的度数.二、填空题13.【分析】利用垂直定义可得∠COE=90°进而可得∠COB的度数再利用对顶角相等可得∠AOD再利用角平分线定义可得答案【详解】解:∵EO⊥CD于点O∴∠COE=90°∵∠BOE=50°∴∠COB=90解析:70【分析】利用垂直定义可得∠COE=90°,进而可得∠COB的度数,再利用对顶角相等可得∠AOD,再利用角平分线定义可得答案.【详解】解:∵EO⊥CD于点O,∴∠COE=90°,∵∠BOE=50°,∴∠COB =90°+50°=140°,∴∠AOD =140°,∵OF 平分∠AOD ,∴∠FOD =12∠AOD =70°, 故答案为:70°.【点睛】此题主要考查了垂直定义,关键是理清图中角之间的和差关系.14.对顶角相等;内错角相等两直线平行;两直线平行内错角相等;垂直定义【分析】依据对顶角相等推出利用平行线的判定定理内错角相等两直线平行利用平行线的性质得由垂直再根据同旁内角互补即可【详解】证明:∵又(对 解析:对顶角相等;内错角相等,两直线平行;两直线平行,内错角相等;垂直定义【分析】依据对顶角相等推出ACE BDE ∠=∠,利用平行线的判定定理内错角相等两直线平行//AC DB ,利用平行线的性质得CAF AFD ∠=∠,由垂直90AFD ∠=︒,再根据同旁内角互补90CAF =︒∠即可.【详解】证明:∵ACE AEC ∠=∠,BDE BED ∠=∠,又AEC BED ∠=∠(对顶角相等),∴ACE BDE ∠=∠,∴//AC DB (内错角相等,两直线平行),∴CAF AFD ∠=∠(两直线平行,内错角相等),∵AF DB ⊥,∴90AFD ∠=︒(垂直定义),∴90CAF =︒∠,∴AC AF ⊥.故答案为:对顶角相等;内错角相等,两直线平行;两直线平行,内错角相等;垂直定义.【点睛】本题主要考查了平行线的判定和性质,对顶角性质,等式的性质,垂直定义,掌握平行线的判定和性质,对顶角性质,等式的性质,垂直定义,解题时注意:两直线平行,同旁内角互补是解题关键.15.真【分析】逆命题就是原命题的假设和结论互换找到原命题的题设为等边三角形结论为每个内角都是60°互换即可判断命题是真是假;【详解】∵原命题为:等边三角形的每个内角都是60°∴逆命题为:三个内角都是60解析:真【分析】逆命题就是原命题的假设和结论互换,找到原命题的题设为等边三角形,结论为每个内角都是60°,互换即可判断命题是真是假;【详解】∵原命题为:等边三角形的每个内角都是60°,∴逆命题为:三个内角都是60°的三角形是等边三角形∴逆命题为真命题;故答案为:真.【点睛】本题考查了命题的真假,正确掌握原命题与逆命题之间的关系是解题的关键;16.假命题【分析】对顶角相等但相等的角不一定是对顶角从而可得出答案【详解】解:对顶角相等但相等的角不一定是对顶角从而可得命题相等的角是对顶角是假命题故答案为:假命题【点睛】此题考查了命题与定理的知识属于解析:假命题【分析】对顶角相等,但相等的角不一定是对顶角,从而可得出答案.【详解】解:对顶角相等,但相等的角不一定是对顶角,从而可得命题“相等的角是对顶角”是假命题.故答案为:假命题.【点睛】此题考查了命题与定理的知识,属于基础题,在判断的时候要仔细思考.17.30°180°-n°【分析】(1)根据对顶角相等可得答案;(2)根据角的和差可得答案【详解】解:(1)若∠ACF=30°则∠PCD=30°理由是对顶角相等(2)由角的和差得∠ACD+∠BCE=∠AC解析:30° 180°-n°【分析】(1)根据对顶角相等,可得答案;(2)根据角的和差,可得答案.【详解】解:(1)若∠ACF=30°,则∠PCD=30°,理由是对顶角相等.(2)由角的和差,得∠ACD+∠BCE=∠ACB+∠BCD+∠BCE=∠ACB+∠DCE=180°,∴∠ACD=180°-∠BCE=180°-n°.故答案为:30°,180°-n°.【点睛】本题考查了对顶角的性质、角的和差,由图形得到各角之间的数量关系是解答本题的关键.18.①③④【分析】根据平移的性质分别对各个小题进行判断:①利用平移前后对应线段是平行的即可得出结果;②平移距离指的是对应点之间的线段的长度;③根据平移前后对应线段相等即可得出结果;④利用梯形的面积公式即解析:①③④【分析】根据平移的性质分别对各个小题进行判断:①利用平移前后对应线段是平行的即可得出结果;②平移距离指的是对应点之间的线段的长度;③根据平移前后对应线段相等即可得出结果;④利用梯形的面积公式即可得出结果.【详解】解:∵直角三角形ABC沿斜边AC的方向平移到三角形DEF的位置,∴AB∥DE,∴∠ABC=∠DGC=90°,∴DE⊥BC,故①正确;△ABC平移距离应该是BE的长度,BE>4,故②错误;由平移前后的图形是全等可知:AC=DF,∴AC-DC=DF-DC,∴AD=CF,故③正确;∵△BEG的面积是4,BG=4,∴EG=4×2÷4=2,∵由平移知:BC=EF=12,∴CG=12-4=8,四边形GCFE的面积:(12+8)×2÷2=20,故④正确;故答案为:①③④【点睛】本题主要考查的是平移的性质,正确的掌握平移的性质是解题的关键.19.70°【分析】依据平行线的性质可得∠BAE=∠DCE=140°依据折叠即可得到∠α=70°【详解】解:如图∵AB∥CD∴∠BAE=∠DCE=140°由折叠可得:∴∠α=70°故答案为:70°【点睛】解析:70°.【分析】依据平行线的性质,可得∠BAE=∠DCE=140°,依据折叠即可得到∠α=70°.【详解】解:如图,∵AB ∥CD ,∴∠BAE =∠DCE =140°, 由折叠可得:12DCF DCE ∠=∠, ∴∠α=70°.故答案为:70°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等. 20.∠ADF=∠C 或∠A=∠ABE 或∠A+∠ABC=180°或∠C+∠ADC=180°(答案不唯一写一个正确的即可)【分析】根据平行线的判定方法即可求解【详解】第一种情况同位角相等两直线平行即∠ADF=解析:∠ADF=∠C 或∠A=∠ABE 或∠A+∠ABC=180°或∠C+∠ADC=180°(答案不唯一,写一个正确的即可)【分析】根据平行线的判定方法即可求解.【详解】第一种情况,同位角相等,两直线平行,即∠ADF=∠C 时,//AD BC ;第二种情况,内错角相等,两直线平行,即∠A=∠ABE 时,//AD BC ;第三种情况,同旁内角互补,两直线平行,即∠A+∠ABC=180°或∠C+∠ADC=180°时,//AD BC ;故答案为∠ADF=∠C 或∠A=∠ABE 或∠A+∠ABC=180°或∠C+∠ADC=180°.【点睛】本题考查了平行线的判定方法,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.三、解答题21.(1)证明见解析;(2)100°;(3)12°.【分析】(1)根据平行线的判定及其性质即可求证结论;(2)过E 作//EK AB 可得//CF AB ∥EK ,再根据平行线的性质即可求解;(3)根据题意设7EBC x ∠=︒,则13ECB x ∠=︒,根据∠AED +∠DEB +BEC =180°,可得关于x 的方程,解方程即可求解.【详解】(1)证明:∵DE ∥BC ,∴ADE B ∠=∠,又∵∠BCF +∠ADE =180°,∴180BCF B ∠+∠=︒,∴//CF AB ,(2)解:过E 作//EK AB ,∵//CF AB ,∴//CF EK ,∵//EK AB ,40ABE ∠=︒,∴40BEK ABE ∠=∠=︒,∵//CF EK ,60ACF ∠=︒,∴60CEK ACF ∠=∠=︒,又∵BEC BEK CEK ∠=∠+∠,∴4060100BEC ∠=︒+︒=︒,答:BEC ∠的度数是100°,(3)解:∵BE 平分ABG ∠, 40ABE ∠=︒,∴40EBG ABE ∠=∠=︒,∴:7:13EBC ECB ∠∠=,∴设7EBC x ∠=︒,则13ECB x ∠=︒,∵DE ∥BC ,∴7DEB EBC x ∠=∠=︒,13AED ECB x ∠=∠=︒,∵180AED DEB BEC ∠+∠+∠=︒,∴137100180x x ++=,∴4x =,∴728EBC x ∠=︒=︒,又∵EBG EBC CBG ∠=∠+∠,∴CBG EBG EBC ∠=∠-∠,∴402812CBG ∠=-=︒,∠的度数是12°.答:CBG【点睛】本题考查平行线的判定及其性质,解题的关键是熟练掌握平行线的判定及其性质的有关知识.22.HE;同位角相等,两直线平行;4;两直线平行,内错角相等;∠1+∠3;DEF;内错角相等,两直线平行【分析】∠=∠,再证明∠DEF=∠EFC,再连接EF,根据垂线定义和平行线的判定与性质可证得34根据平行线的性质即可证得结论.【详解】证明:连接EF⊥⊥,,FG AC HE AC∴∠=∠=.90FGC HEC︒∴∥HE(同位角相等,两直线平行).FG∴∠=∠(两直线平行,内错角相等).34∠=∠,又12∴∠+∠=∠+∠,1324∠=∠.即DEF EFCDE∴∥BC(内错角相等,两直线平行),故答案为:HE;同位角相等,两直线平行;4;两直线平行,内错角相等;∠1+∠3;DEF;内错角相等,两直线平行.【点睛】本题考查平行线的判定与性质、垂线定义,掌握平行线的判定与性质是解答的关键.23.(1)∠BOD、∠AOC;(2)54°【分析】(1)根据垂直的定义得到∠FOD=90°,于是得到∠BOF+∠BOD=90°,根据对顶角的性质得到∠BOD=∠AOC,等量代换得到∠BOF+∠AOC=90°,即可得到结论.(2)根据已知条件得到∠BOF=90°﹣72°=18°,再由OE平分∠BOD,得出∠BOE=1∠BOD=36°,因此∠EOF=36°+18°=54°.2【详解】解:(1)∵OF⊥CD,∴∠FOD=90°,∴∠BOF+∠BOD=90°,∵∠BOD=∠AOC,∴∠BOF+∠AOC=90°,∴图中互余的角有∠BOF与∠BOD,∠BOF与∠AOC.故答案为:∠BOD、∠AOC;(2)∵直线AB和CD相交于点O,∴∠BOD=∠AOC=72°,∵OF⊥CD,∴∠BOF=90°﹣72°=18°,∵OE平分∠BOD,∴∠BOE=1∠BOD=36°,2∴∠EOF=36°+18°=54°.【点睛】本题考查了对顶角、垂线以及角平分线的定义;弄清各个角之间的关系是解题的关键.24.(1)证明见详解;(2)∠3=∠2﹣∠1;(3)∠3=360°﹣∠1﹣∠2,证明见详解;(4)∠3=360°﹣∠1﹣∠2.【分析】此题四个小题的解题思路是一致的,过P作直线l1、l2的平行线,利用平行线的性质得到和∠1、∠2相等的角,然后结合这些等角和∠3的位置关系,即可得出∠1、∠2、∠3的数量关系.【详解】解:(1)如图(1)证明:过P作PQ∥l1∥l2,由两直线平行,内错角相等,可得:∠1=∠QPE、∠2=∠QPF;∵∠EPF=∠QPE+∠QPF,∴∠EPF=∠1+∠2.(2)∠3=∠2﹣∠1;证明:如图2,过P作直线PQ∥l1∥l2,则:∠1=∠QPE、∠2=∠QPF;∵∠EPF=∠QPF﹣∠QPE,∴∠EPF=∠2﹣∠1.(3)∠3=360°﹣∠1﹣∠2.证明:如图(3),过P作PQ∥l1∥l2;∴∠EPQ+∠1=180°,∠FPQ+∠2=180°,∵∠EPF=∠EPQ+∠FPQ;∴∠EPQ +∠FPQ +∠1+∠2=360°,即∠EPF=360°﹣∠1﹣∠2;(4)点P在线段DC延长线上运动时,∠3=∠1﹣∠2.证明:如图(4),过P作PQ∥l1∥l2;∴∠1=∠QPE、∠2=∠QPF;∵∠QPE﹣∠QPF=∠EPF;∴∠3=∠1﹣∠2.【点睛】此题主要考查的是平行线的性质,能够正确地作出辅助线,是解决问题的关键.25.(1)AC∥DG,理由见解析;(2)BE∥CF,理由见解析;(3)145°【分析】(1)求出∠1=∠BFG,根据平行线的判定得出AC∥DG;(2)求出∠EBF=∠BFC ,根据平行线的判定得出即可;(3)根据平行线的性质得出∠C=∠CFG=∠BEF=35°,再求出答案即可.【详解】(1)AC ∥DG证明:∵∠1=∠2,∠2=∠BFG ,∴∠1=∠BFG ,∴AC ∥DG ,(2)BE ∥CF证明:∵AC ∥DG∴∠ABF=∠BFG ,∵∠ABF 的角平分线BE 交直线DG 于点E ,∠BFG 的角平分线FC 交直线AC 于点C , ∴∠EBF=12∠ABF ,∠CFB =12∠BFG , ∴∠EBF=∠CFB ,∴BE ∥CF ;(3)∵AC ∥DG ,BE ∥CF ,∠C=35°,∴∠C=∠CFG=35°,∴∠CFG=∠BEG=35°,∴∠BED=180°-∠BEG=145°.【点睛】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.26.解:(1)A 运动过的总路程是14;(2)见解析;(3)5m p +=;0n q +=【分析】(1)按照先左右后上下的顺序列出算式,再计算即可;(2)根据题意画出图即可;(3)根据A 、Q 水平相距的单位,可得m 、p 的关系;根据A 、Q 水平相距的单位,可得n 、q 的关系.【详解】解:(1)∵点A 的运动路线为:A B C A →→→,则根据题意可得:1,()3A B →++,(2,1)B C →++,(3,4)C A →--,∴点A 运动过的总路程是:1321|3||4|14++++-+-=;(2)根据题意,点M 、N 、P 、Q 的位置如下图示:(3)∵点A 经过(,)m n 得到点E ,点E 再经过(,)p q 后得到Q ,根据题意可得:5m p +=,0n q +=.故答案为5m p +=,0n q +=.【点睛】本题考查了坐标与图形变化-平移,横坐标,右移加,左移减;纵坐标,上移加,下移减.。

2024年人教版七年级下册数学第一单元课后练习题(含答案和概念)

2024年人教版七年级下册数学第一单元课后练习题(含答案和概念)

2024年人教版七年级下册数学第一单元课后练习题(含答案和概念)试题部分一、选择题:1. 下列哪个数是最小的质数?()A. 1B. 2C. 3D. 42. 有理数3,0,5,8中,最大的数是()A. 3B. 0C. 5D. 83. 下列各数中,无理数是()A. √9B. √16C. √3D. √14. 下列运算中,正确的是()A. (3)² = 9B. (3)² = 9C. √(3)² = 3D. √(3)² = 35. 一个正数的平方根是2,那么这个数是()A. 4B. 2C. 4D. 26. 下列哪个数是负数?()A. |5|B. |5|C. 5²D. (5)²7. 下列各数中,2的倍数是()A. 3.5B. 4.5C. 5.5D. 6.58. 如果a是有理数,那么下列哪个数一定是有理数?()A. a²B. √aC. a+√2D. a√29. 下列哪个图形的面积可以用平方单位表示?()A. 圆B. 正方形C. 三角形D. 棱柱10. 下列哪个运算符表示“乘方”?()A. ×B. ÷C. ^D. √二、判断题:1. 0是正数和负数的分界点。

()2. 负数的平方是正数。

()3. 无理数可以表示为分数形式。

()4. 两个负数相乘,结果是正数。

()5. 平方根是一个数的二次方等于它的数。

()6. 任何有理数的平方根都是有理数。

()7. 互为相反数的两个数的平方相等。

()8. 一个数的平方和它的平方根相等。

()9. 质数除了1和它本身外,还有其他因数。

()10. 0的平方根是0。

()三、计算题:1. 计算:(3/4) ÷ (12/16)2. 计算:2³ × (5 3)3. 计算:√(81/64)4. 计算:(5/7) + (2/3) (1/6)5. 计算:2√18 3√86. 计算:(3√2)²7. 计算:|(5) × (4)| |(3)²|8. 计算:(0.4)² ÷ (0.2)³9. 计算:(2/3) ÷ (1/4) (1/2)10. 计算:√(49/25) × √(64/81)11. 计算:(4/5) × (5/8) (3/10)12. 计算:|(7) + 5| ÷ 213. 计算:(3/4) × (16/9) ÷ (2/3)14. 计算:√(121) √(81)15. 计算:(0.75)³ ÷ (0.25)²16. 计算:(5/6) ÷ (2/3) + (1/4)17. 计算:2√36 ÷ 3√918. 计算:(2/3) × (3/4) + (1/2)19. 计算:|(3)²| |(4)|20. 计算:(1/2) ÷ (1/4) (3/4)四、应用题:1. 一个长方形的长度是10米,宽度是6米,求这个长方形的面积。

最新人教版初中数学七年级数学下册第一单元《相交线与平行线》检测(含答案解析)

最新人教版初中数学七年级数学下册第一单元《相交线与平行线》检测(含答案解析)

一、选择题1.如图,用直尺和三角尺画图:已知点P 和直线a ,经过点P 作直线b ,使//b a ,其画法的依据是( )A .过直线外一点有且只有一条直线与已知直线平行B .两直线平行,同位角相等C .同位角相等,两直线平行D .内错角相等,两直线平行2.如图://AB DE ,50B ∠=︒,110D ∠=︒,BCD ∠的度数为( )A .160︒B .115︒C .110︒D .120︒3.如图,两个直角三角形重叠在一起,将ABC 沿AB 方向平移2cm 得到DEF ,2cm CH =,4cm EF =,下列结论:①//BH EF ;②AD BE =;③BD CH =:④C BHD ∠=∠;⑤阴影部分的面积为26cm .其中正确的是( )A .①②③④B .②③④⑤C .①②③⑤D .①②④⑤4.下面的语句,不正确的是( ) A .对顶角相等B .相等的角是对顶角C .两直线平行,内错角相等D .在同一平面内,经过一点,有且只有一条直线与已知直线垂直5.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是( ) A .∠1=50°,∠2=40° B .∠1=50°,∠2=50° C .∠1=∠2=45°D .∠1=40°,∠2=40°6.如图,A 是直线l 外一点,过点A 作AB l ⊥于点B ,在直线l 上取一点C ,连接AC ,使2AC AB =,P 在线段BC 上,连接AP .若3AB =,则线段AP 的长不可能是( )A .4B .5C .2D .5.5 7.用反证法证明“m 为正数”时,应先假设( ).A .m 为负数B .m 为整数C .m 为负数或零D .m 为非负数8.如图,△ABC 经平移得到△EFB ,则下列说法正确的有 ( )①线段AC 的对应线段是线段EB ; ②点C 的对应点是点B ; ③AC ∥EB ;④平移的距离等于线段BF 的长度. A .1B .2C .3D .49.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为( )A .10°B .20°C .25°D .30°10.如图,直线a ,b 被直线c 所截,且a//b ,若∠1=55°,则∠2等于( )A .35°B .45°C .55°D .125°11.如图,下列说法错误的是( )A .若a ∥b ,b ∥c ,则a ∥cB .若∠1=∠2,则a ∥cC .若∠3=∠2,则b ∥cD .若∠3+∠5=180°,则a ∥c12.下列命题中,属于假命题的是( )A .如果三角形三个内角的度数比是1:2:3,那么这个三角形是直角三角形B .内错角不一定相等C .平行于同一直线的两条直线平行D .若数a 使得a a >-,则a 一定小于0二、填空题13.将长度为5cm 的线段向上平移3cm 后所得线段的长度为__.14.直线//,a b Rt ABC ∆的直角顶C 点在直线a 上,若135∠=︒,则2∠等于_______.15.若∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,则∠B =_____度. 16.命题“若a 2>b 2则a >b ”是_____命题(填“真”或“假”),它的逆命题是_____. 17.地铁某换乘站设有编号为A ,B ,C ,D ,E 的五个安全出口.若同时开放其中的两个安全出口, 疏散1000名乘客所需的时间如下: 安全出口编号 A ,BB ,CC ,DD ,EA ,E疏散乘客时间()s12022016014020018.如图是某公园里一处矩形风景欣赏区ABCD ,长AB=50米,宽BC=30米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为______米.19.如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为_____.AD BC.20.如图,添加一个你认为合适的条件______使//三、解答题21.如图,已知:∠DGA=∠FHC,∠A=∠F.求证:DF∥AC.(注:证明时要求写出每一步的依据)22.如图1,AB∥CD,直线AE分别交AB、CD于点A、E.点F是直线AE上一点,连结BF,BP平分∠ABF,EP平分∠AEC,BP与EP交于点P.(1)若点F是线段AE上一点,且BF⊥AE,求∠P的度数;(2)若点F是直线AE上一动点(点F与点A不重合),请直接写出∠P与∠AFB之间的数量关系.23.把一块含60°角的直角三角尺()0090,60EFG EFG EGF ∠=∠=放在两条平行线,AB CD 之间.(1)如图1,若三角形的60°角的顶点G 放在CD 上,且221∠=∠,求1∠的度数; (2)如图2,若把三角尺的两个锐角的顶点,E G 分别放在AB 和CD 上,请你探索并说明AEF ∠与FGC ∠间的数量关系;(3)如图3,若把三角尺的直角顶点F 放在CD 上,30°角的顶点E 落在AB 上,请直接写出AEG ∠与CFG ∠的数量关系.24.如图,直线AB 和CD 相交于点O .(1)∠1的邻补角是____________,对顶角是___________; (2)若∠1=40°,求出∠2,∠3,∠4的度数.25.如图,CD AB ⊥于D ,点F 是BC 上任意一点,FE AB ⊥于E ,且12∠=∠,380∠=︒.(1)证明://BC DG ;(2)若AD AG =,求ABC ∠的度数.26.如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A(-5, 1),B(4,0),C(2,5),将△ABC 向右平移2个单位长度,再向下平移1个单位长度得到△EFG .(1)画出平移后的图形,并写出△EFG的三个顶点坐标.(2)求△EFG的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据平行线的判定定理即可得出结论.【详解】解:由画法可知,其画法的依据是同位角相等,两直线平行.故选:C.【点睛】本题考查了作图-复杂作图,熟知平行线的判定定理是解答此题的关键.2.D解析:D【分析】如图(见解析),利用平行线的判定与性质、角的和差即可得.【详解】CF AB,如图,过点C作//AB DE,//////∴,AB DE CF∴∠=∠∠+∠=︒,,180BCF B DCF D50,110B D ∠=︒∠=︒,50,18070BCF DCF D ∴∠=︒∠=︒-∠=︒,120BCD BCF DCF ∴∠=∠+∠=︒, 故选:D .【点睛】本题考查了平行线的判定与性质、角的和差,熟练掌握平行线的判定与性质是解题关键.3.D解析:D 【分析】根据平移的性质可直接判断①②③,根据平行线的性质可判断④,阴影部分的面积=S 梯形BEFH,于是可判断⑤,进而可得答案.【详解】解:因为将ABC 沿AB 方向平移2cm 得到DEF , 所以//BH EF ,AD BE =,DF ∥AC ,故①②正确; 所以C BHD ∠=∠,故④正确; 而BD 与CH 不一定相等,故③不正确; 因为2cm CH =,4cm EF BC ==, 所以BH=2cm , 又因为BE=2cm ,所以阴影部分的面积=S △ABC -S △DBH = S △DEF -S △DBH =S 梯形BEFH =()12422⨯+⨯=26cm ,故⑤正确;综上,正确的结论是①②④⑤. 故选:D . 【点睛】本题考查了平移的性质,属于基础题目,正确理解题意、熟练掌握平移的性质是解题的关键.4.B解析:B 【分析】根据对顶角的性质、平行线的性质和垂线的基本性质逐项进行分析,即可得出答案. 【详解】A 、根据对顶角的性质可知,对顶角相等,故本选项正确;B 、相等的角不一定是对顶角,故本选项错误;C 、两直线平行,内错角相等,故本选项正确;D 、根据垂线的基本性质可知在同一平面内,过直线上或直线外的一点,有且只有一条直线和已知直线垂直.故本选项正确. 故选:B . 【点睛】本题主要考查了对顶角的性质、平行线的性质和垂线的基本性质等知识点,解题的关键是了解垂线的性质、对顶角的定义、平行线的性质等知识,难度不大.5.C解析:C 【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子. 【详解】A 、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A 选项错误;B 、不满足条件,故B 选项错误;C 、满足条件,不满足结论,故C 选项正确;D 、不满足条件,也不满足结论,故D 选项错误. 故选:C . 【点睛】此题考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键.6.C解析:C 【分析】根据题意计算出AC 的长度,由垂线段最短得出AP 的范围,选出AP 的长度不可能的选项即可. 【详解】3AB =,26AC AB cm ∴==,结合垂线段最短,得:36AP ≤≤. 故选:C . 【点睛】本题主要考查直线外一点与直线上各点连接的所有线段中,垂线段最短,熟记概念并求出对应线段的范围是解题关键.7.C解析:C 【分析】根据反证法的性质分析,即可得到答案. 【详解】用反证法证明“m 为正数”时,应先假设m 为负数或零故选:C.【点睛】本题考查了反证法的知识,解题的关键是熟练掌握反证法的性质,从而完成求解.8.D解析:D【分析】根据平移的特点分别判断各选项即可.【详解】∵△ABC经平移得到△EFB∴点A、B、C的对应点分别为E、F、B,②正确∴BE是AC的对应线段,①正确∴AC∥EB,③正确平移距离为对应点连线的长度,即BF的长度,④正确故选:D【点睛】本题考查平移的特点,注意,在平移过程中,一定要把握住对应点,仅对应点的连线之间才有平行、相等的一些关系.9.C解析:C【解析】分析:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故选C.10.C解析:C【解析】试题分析:根据图示可得:∠1和∠2是同位角,根据两直线平行,同位角相等可得:∠2=∠1=55°.考点:平行线的性质11.C解析:C【解析】试题分析:根据平行线的判定进行判断即可.解:A、若a∥b,b∥c,则a∥c,利用了平行公理,正确;B、若∠1=∠2,则a∥c,利用了内错角相等,两直线平行,正确;C、∠3=∠2,不能判断b∥c,错误;D、若∠3+∠5=180°,则a∥c,利用同旁内角互补,两直线平行,正确;故选C.考点:平行线的判定.12.D解析:D【分析】利用三角形内角和对A进行判断;根据内错角的定义对B进行判断;根据平行线的判定方法对C进行判断;根据绝对值的意义对D进行判断.【详解】解:A、如果三角形三个内角的度数比是1:2:3,则三个角的度数分别为30°,60°,90°,所以这个三角形是直角三角形,所以A选项为真命题;B、内错角不一定相等,所以B选项为真命题;C、平行于同一直线的两条直线平行,所以C选项为真命题;D、若数a使得|a|>-a,则a为不等于0的实数,所以D选项为假命题.故选:D.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.二、填空题13.5cm【分析】根据平移的性质:①平移不改变图形的形状和大小;②经过平移对应点所连的线段平行且相等对应线段平行且相等对应角相等【详解】解:∵平移不改变图形的形状和大小∴线段长度不变还是5cm故答案为:解析:5cm【分析】根据平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.【详解】解:∵平移不改变图形的形状和大小∴线段长度不变,还是5cm.故答案为:5cm.【点睛】此题主要考查平移的基本性质,解题的关键是掌握平移的性质即可.14.【分析】先根据直角为90°即可得到∠3的度数再根据平行线的性质即可得出∠2的度数【详解】解:∵Rt△ABC的直角顶点C在直线a上∠1=35°∴∠3=90°-35°=55°又∵a∥b∴∠2=∠3=55解析:55【分析】先根据直角为90°,即可得到∠3的度数,再根据平行线的性质,即可得出∠2的度数.【详解】解:∵Rt△ABC的直角顶点C在直线a上,∠1=35°,∴∠3=90°-35°=55°,又∵a∥b,∴∠2=∠3=55°,故答案为:55°.【点睛】本题主要考查了平行线的性质,直角三角形两个锐角互余的性质,解题时注意:两直线平行同位角相等.15.55或20【分析】根据平行线性质得出∠A+∠B=180°①∠A=∠B②求出∠A=3∠B﹣40°③把③分别代入①②求出即可【详解】解:∵∠A与∠B的两边分别平行∴∠A+∠B=180°①∠A=∠B②∵∠解析:55或20【分析】根据平行线性质得出∠A+∠B=180°①,∠A=∠B②,求出∠A=3∠B﹣40°③,把③分别代入①②求出即可.【详解】解:∵∠A与∠B的两边分别平行,∴∠A+∠B=180°①,∠A=∠B②,∵∠A比∠B的3倍少40°,∴∠A=3∠B﹣40°③,把③代入①得:3∠B﹣40°+∠B=180°,∠B=55°,把③代入②得:3∠B﹣40°=∠B,∠B=20°,故答案为:55或20.【点睛】本题考查平行线的性质,解题的关键是掌握由∠A和∠B的两边分别平行,即可得∠A =∠B或∠A+∠B=180°,注意分类讨论思想的应用.16.假若a>b则a2>b2【分析】a2大于b2则a不一定大于b所以该命题是假命题它的逆命题是若a>b则a2>b2【详解】①当a=-2b=1时满足a2>b2但不满足a>b所以是假命题;②命题若a2>b2则解析:假若a>b则a2>b2【分析】a2大于b2则a不一定大于b,所以该命题是假命题,它的逆命题是“若a>b则a2>b2”.【详解】①当a=-2,b=1时,满足a2>b2,但不满足a>b,所以是假命题;②命题“若a2>b2则a>b”的逆命题是若“a>b则a2>b2”;故答案为:假;若a>b则a2>b2.【点睛】本题主要考查判断命题真假、逆命题的概念以及平方的计算,熟记相关概念取特殊值代入是解题关键.17.D【分析】利用同时开放其中的两个安全出口疏散1000名乘客所需的时间分析对比能求出结果【详解】同时开放AE两个安全出口疏散1000名乘客所需的时间为200s同时开放DE两个安全出口疏散1000名乘客解析:D【分析】利用同时开放其中的两个安全出口,疏散1000名乘客所需的时间分析对比,能求出结果.【详解】同时开放A、E两个安全出口,疏散1000名乘客所需的时间为200s,同时开放D、E两个安全出口,疏散1000名乘客所需的时间为140s,得到D疏散乘客比A快;同时开放A、E两个安全出口,疏散1000名乘客所需的时间为200s,同时开放A、B两个安全出口,疏散1000名乘客所需的时间为120s,得到A疏散乘客比E快;同时开放A、B两个安全出口,疏散1000名乘客所需的时间为120s,同时开放B、C两个安全出口,疏散1000名乘客所需的时间为220s,得到A疏散乘客比C快;同时开放B、C两个安全出口,疏散1000名乘客所需的时间为220s,同时开放C、D两个安全出口,疏散1000名乘客所需的时间为160s,得到D疏散乘客比B快.综上,疏散乘客最快的一个安全出口的编号是D.故答案为:D.【点睛】本题考查推理能力,进行简单的合情推理为解题关键.18.98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析水平距离等于AB铅直距离等于(AD-1)×2又∵长AB=50米宽BC=25米∴小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为50解析:98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析,水平距离等于AB,铅直距离等于(AD-1)×2,又∵长AB=50米,宽BC=25米,∴小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为50+(25-1)×2=98米,故答案为98.19.48°【分析】将BE与CD交点记为点F由两直线平行同位角相等得出∠EFC 度数再利用三角形外角的性质可得答案【详解】解:如图所示将BE与CD交点记为点F∵AB∥CD∠B=75°∴∠EFC=∠B=75°解析:48°【分析】将BE与CD交点记为点F,由两直线平行同位角相等得出∠EFC度数,再利用三角形外角的性质可得答案.【详解】解:如图所示,将BE与CD交点记为点F,∵AB∥CD,∠B=75°,∴∠EFC=∠B=75°,又∵∠EFC=∠D+∠E,且∠E=27°,∴∠D=∠EFC﹣∠E=75°﹣27°=48°,故答案为:48°.【点睛】本题考查平行线的性质和三角形外角性质,解题的关键是掌握两直线平行,同位角相等这一性质.20.∠ADF=∠C或∠A=∠ABE或∠A+∠ABC=180°或∠C+∠ADC=180°(答案不唯一写一个正确的即可)【分析】根据平行线的判定方法即可求解【详解】第一种情况同位角相等两直线平行即∠ADF=解析:∠ADF=∠C或∠A=∠ABE或∠A+∠ABC=180°或∠C+∠ADC=180°(答案不唯一,写一个正确的即可)【分析】根据平行线的判定方法即可求解.【详解】第一种情况,同位角相等,两直线平行,即∠ADF=∠C时,//AD BC;第二种情况,内错角相等,两直线平行,即∠A=∠ABE时,//AD BC;第三种情况,同旁内角互补,两直线平行,即∠A+∠ABC=180°或∠C+∠ADC=180°时,//AD BC;故答案为∠ADF=∠C或∠A=∠ABE或∠A+∠ABC=180°或∠C+∠ADC=180°.【点睛】本题考查了平行线的判定方法,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.三、解答题21.见解析.【分析】先根据∠DGA=∠EGC证出AE∥BF,再根据平行证明出∠F=∠FBC即可求证出结论.【详解】证明:∵∠DGA=∠EGC(对顶角相等)又∵∠DGA=∠FHC(已知)∴∠EGC=∠FHC(等量代换)∴AE∥BF (同位角相等,两直线平行)∴∠A=∠FBC (两直线平行,同位角相等)又∵∠A=∠F(已知)∴∠F=∠FBC (等量代换)∴DF∥AC (内错角相等,两直线平行).【点睛】此题考查平行线的判定与性质:同位角相等,两直线平行;两直线平行,同位角相等;内错角相等,两直线平行.22.(1)45°;(2)当E点在A点上方时,∠BPE=12∠AFB,当E点在A点下方时,∠BPE=90°﹣12∠AFB【分析】(1)过点P作PQ∥AB,过点F作FH∥AB,由平行线的性质得∠ABP+∠CEP=∠BPE,∠ABF+∠CEF=∠BFE,再由垂直定义和角平分线定义求得结果;(2)分三种情况:点F在EA的延长线上时,点F在线段AE上时,点F在AE的延长线上时,分别进行探究便可.【详解】解:(1)过点P作PQ∥AB,过点F作FH∥AB,∵AB∥CD,∴AB∥CD∥PQ∥FH,∴∠ABP=∠BPQ,∠CEP=∠EPQ,∠ABF=∠BFH,∠CEF=∠EFH,∴∠ABP+∠CEP=∠BPQ+∠EPQ=∠BPE,∠ABF+∠CEF=∠BFH+∠EFH=∠BFE,∵BF⊥AE,∴∠ABF+∠CEF=∠BFE=90°,∵BP平分∠ABF,EP平分∠AEC,∴∠ABP+∠CEP=12(∠ABF+∠CEF)=45°,∴∠BPE=45°;(2)①当点F在EA的延长线上时,∠BPE=12∠AFB,理由如下:如备用图1,过点P作PQ∥AB,过点F作FH∥AB,∵AB∥CD,∴AB∥CD∥PQ∥FH,∴∠ABP=∠BPQ,∠CEP=∠EPQ,∠ABF=∠BFH,∠CEF=∠EFH,∴∠CEP﹣∠ABP=∠EPQ﹣∠BPQ=∠BPE,∠CEF﹣∠ABF=∠EFH﹣∠BFH=∠BFE,∵BP平分∠ABF,EP平分∠AEC,∴∠CEP﹣∠ABP=12(∠CEF﹣∠ABF)=12∠BFE=∠AFB,∴∠BPE=12∠AFB;②当点F在线段AE上(不与A点重合)时,∠BPE=90°﹣12∠AFB;理由如下:如备用图2,过点P作PQ∥AB,过点F作FH∥AB,∵AB∥CD,∴AB∥CD∥PQ∥FH,∴∠ABP=∠BPQ,∠CEP=∠EPQ,∠ABF=∠BFH,∠CEF=∠EFH,∴∠ABP+∠CEP=∠BPQ+∠EPQ=∠BPE,∠ABF+∠CEF=∠BFH+∠EFH=∠BFE,∵BP平分∠ABF,EP平分∠AEC,∴∠ABP+∠CEP=12(∠ABF+∠CEF),∴∠BPE=12∠BFE∴∠BFE=180°﹣∠AFB,∴∠BPE=90°﹣12∠AFB;③当点F在AE的延长线上时,∠BPE=90°﹣12∠AFB,理由如下:如备用图3,过点P 作PQ ∥AB ,过点F 作FH ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥PQ ∥FH ,∴∠ABP =∠BPQ ,∠CEP =∠EPQ ,180°﹣∠ABF =∠BFH ,∠AEC =∠EFH ,∴∠CEP +∠ABP =∠EPQ +∠BPQ =∠BPE ,∠BFH ﹣∠EFH =180°﹣∠ABF ﹣∠AEC =∠AFB , ∵BP 平分∠ABF ,EP 平分∠AEC ,∴∠CEP +∠ABP =12(∠AEC +∠ABF )=12(180°﹣∠AFB ), ∴∠BPE =90°﹣12∠AFB ; 综上,当E 点在A 点上方时,∠BPE =12∠AFB ,当E 点在A 点下方时,∠BPE =90°﹣12∠AFB . 【点睛】此题考查平行线的性质:两直线平行内错角相等,两直线平行同位角相等,两直线平行同旁内角互补,以及角平分线的性质,在相交线问题中通常作平行线利用平行线的性质解答,将角度转化由此求出答案.解题中运用分类思想解答问题.23.(1)40°;(2)∠AEF+∠FGC=90°;(3)AEG ∠+CFG ∠=300°【分析】(1)根据平行线的性质得:1=∠EGD ,结合∠2=2∠1和平角的定义,即可求解; (2)过点F 作FP ∥AB ,根据平行线的性质和直角的意义,即可求解;(3)根据平行线的性质得∠AEF+∠CFE=180°,结合条件,即可求解.【详解】(1)∵AB ∥CD ,∴∠1=∠EGD ,∵∠2+∠FGE+∠EGD=180°,∠2=2∠1,∴2∠1+60°+∠1=180°,解得∠1=40°;(2)如图,过点F 作FP ∥AB ,∵CD ∥AB ,∴FP ∥AB ∥CD ,∴∠AEF=∠EFP ,∠FGC=∠GFP .∴∠AEF+∠FGC=∠EFP+∠GFP=∠EFG ,∵∠EFG=90°,∴∠AEF+∠FGC=90°;(3) AEG ∠+CFG ∠=300°,理由如下:∵AB ∥CD ,∴∠AEF+∠CFE=180°,即AEG ∠−30°+CFG ∠−90°=180°,整理得:AEG ∠+CFG ∠=300°.【点睛】本题主要考查平行线的性质,添加辅助线,构造相等的角,是解题的关键24.(1)∠2和∠4,∠3(2)∠2=140°,∠3=40°,∠4=140°【分析】(1)根据对顶角和邻补角的定义解答即可;(3)根据邻补角的定义列式求出∠2,再根据对顶角相等解答.【详解】(1)∠1的邻补角是∠2和∠4,对顶角是∠3;(2)∵∠1=40°,∴∠2=180°−∠1=180°−40°=140°,∴∠3=∠1=40°,∠4=∠2=140°.【点睛】本题考查了对顶角、邻补角,是基础题,熟记概念是解题的关键,要注意一个角的邻补角有两个.25.(1)证明见解析;(2)80︒【分析】(1)先根据CD ⊥AB 于D ,FE ⊥AB 得出CD ∥EF ,故可得出∠2=∠DCB ;由∠2=∠DCB ,∠1=∠2得出DG ∥BC ,由此可得出结论;(2)由(1)得B ADG ∠=∠,再证明380ADG ∠=∠=︒,最后由平行线的性质可得结论.【详解】(1)证明:∵CD AB ⊥,FE AB ⊥∴//CD EF∴2BCD ∠=∠.∵12∠=∠,∴1BCD ∠=∠,∴//BC DG(2) 由(1)得B ADG ∠=∠∵AD AG =∴380ADG ∠=∠=︒∵//DG BC∴80ABC ADG ∠=∠=︒【点睛】本题考查的是平行线的判定与性质,用到的知识点为:内错角相等,两直线平行. 26.(1)画图见解析;()3,0E -,()6,1F -,()4,4G ;(2)21.5【分析】(1)分别作出A ,B ,C 的对应点E ,F ,G 即可解决问题.(2)利用分割法求三角形面积即可.【详解】解:(1)如图,△EFG 即为所求,E (-3,0),F (6,-1),G (4,4).(2)S △EFG =5×9-12×1×9-12×5×2-12×4×7=21.5. 【点睛】 本题考查作图-平移变换,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.。

七下数学第一章测试卷

七下数学第一章测试卷

选择题:
下列哪个数是有理数?
A. π
B. √2
C. -3/2(正确答案)
D. e
下列说法正确的是?
A. 整数就是正整数和负整数
B. 零是整数但不是正数(正确答案)
C. 有理数就是正数和负数
D. 分数都是有理数,但都是有理数的分数不存在
下列哪个数既是分数又是负数?
A. -3
B. -1/2(正确答案)
C. 2/3
D. 0
有理数包括哪些数?
A. 正数和负数
B. 整数和分数(正确答案)
C. 正整数和零
D. 正数和分数
下列哪个数轴上的点表示的是有理数?
A. 表示√3的点
B. 表示-2的点(正确答案)
C. 表示π的点
D. 表示e的点
下列哪个数不是有理数?
A. 0
B. -1/4
C. √5(正确答案)
D. 100
下列哪个选项中的两个数都是有理数?
A. √2和-√2
B. π和-π
C. -3/4和2/5(正确答案)
D. e和-e
下列哪个数是有理数且大于-2?
A. -3
B. -√3
C. -1/2(正确答案)
D. -π
下列说法错误的是?
A. 有理数包括整数和分数
B. 有理数可以用分数形式表示
C. 有理数在数轴上的点都是孤立的(正确答案)
D. 有理数包括正数、负数和零。

人教版七年级数学试题:第一单元-有理数-单元测试题(含答案)

人教版七年级数学试题:第一单元-有理数-单元测试题(含答案)

有理数 单元测试题一、选择题(每小题3分,共30分)1. 若有理数a ,b 互为相反数,则下列等式恒成立的是( ).A .0=-b aB .0=+b aC .1=abD .1-=ab解:B .2. 如果3a 是负数,那么a ( ).A .0a >B .0a ≥C .0a <D .0a ≤解:C .3. 如果1a a=-,那么a 是 ( ). A .正数 B .负数 C .非正数 D .非负数解:B4. 若0ab ≠,则b a a b+的取值不可能是 ( ). A .0B .1C .2D .-2解:B .5. 两个相反数的商是 ( ).A .-1B .1C .0D .-1或没意义解:D .6. 下列说法正确的是 ( )A .两个有理数的和一定大于每一个加数B .两个有理数的差一定小于被减数C .若两数的和为0,则这两个数都为0D .若两个数的和为正数,则这两个数中至少有一个为正数解:D .7. 若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则代数式m b a cd m ++-2 的值为( ).A .3-B .3C .5-D .3或5-解:B .8. 计算()200820091(1)-+-的值是( ). A .0 B .-1 C .1 D .2解:A .9. 若(2)(3)a =-⋅-,3(2)b =-,3(3)c =--,则a ,b ,c 的大小关系是( ). A .a >b >c B .a >c >b C .c >a >b D .c >b >a解:C .10. 计算()200820091(1)-+-的值是( ). A .0 B .-1 C .1 D .2解:A .二、填空题(每小题3分,共30分)11. 若数轴上表示的-4点记为A ,表示+2的点记为B ,那么把A 点向 边移动 个单位长度到B 点.解:右 6.12. y x --9的最大值是 ;y x ++-8的最小值是 . 解: 9 , -8.13. 如果022=-+-x x 那么x 的取值范围是 .解:2x ≤.14. 某食品包装袋上标有净含量“385±5(克)”,这包食品的合格净含量范围是_______克~ 克.解:380克~390克.15. 若2x =,3y =,且20x y<,则x y += . 解:1或-1.16. 绝对值大于4且小于7的整数有 .解:5±或6±.17. 已知一列数:1,-2,3,-4,5,-6,7,-8,9,-10……将这列数排列成下列形式. 第一行: 1第二行: -2, 3第三行: -4, 5, -6第四行: 7, -8, 9, -10第五行: 11, -12, 13, -14, 15……按照上述规律排列下去,那么第10行从左边数第5个数是 .解:-50.18. 若11x y⋅=-,则x 和y 之间的关系是__________. 解:互为相反数且不为0.19. 若230a b ->,则b 0.解:<.20. 水星和太阳的平均距离约为57900000km .用科学记数法表示57900000为 .解:75.7910⨯.三、解答题(本大题共5小题,共40分)21.计算:(每小题3分,共9分)(1)计算:()()⎥⎦⎤⎢⎣⎡--+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-76.892583450114776.89 解:原式=()76.892583450114776.89++⎪⎭⎫ ⎝⎛-+- =()[]⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-++-50163450114776.8976.89 =0+⎪⎭⎫ ⎝⎛-504512 =10912-.(2)31324()864÷+-. 解:原式9418557624()24()242424245=÷+-=÷-=-.(3) ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+217418 解:原式=()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+++217418=()⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛+++217418 =()()[]⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛++-++214178 =1+⎪⎭⎫ ⎝⎛-41 =43. 22.(6分) 计算:200520041200420031431321211⨯+⨯++⨯+⨯+⨯ 解:原式=2005120041200412003141313121211-+-++-+-+- =1-20051 =20052004.23.(6分) 数a ,b c 在数轴上如图所示,求cc b b a a ++的值.解:由数轴可知0,0,0<>>c b a , ∴a a =,b b =,c c -=, ∴c c b b a a ++=cc b b a a -++ =1+1+(-1)=1.24.(9分). 同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离。

七下数学第一章计算题

七下数学第一章计算题

七下数学第一章计算题全文共四篇示例,供读者参考第一篇示例:【七下数学第一章计算题】一、加减法计算题1. 37 + 45 = ?2. 68 - 29 = ?3. 54 + 78 = ?4. 93 - 47 = ?5. 126 + 189 = ?6. 345 - 187 = ?7. 453 + 298 = ?8. 687 - 269 = ?9. 876 + 543 = ?10. 984 - 367 = ?在做加减法计算时,我们要注意进位和退位的方法,保证计算的准确性。

加法计算时,要先把同位数相加,再进行进位,进位时要注意进位数的标注,以免计算错误。

减法计算时,要先判断被减数是否大于减数,若大于则直接相减,若小于则进行退位操作,保证计算的准确性。

在做乘除法计算时,我们要注意乘法和除法的计算步骤。

乘法计算时,要先把乘数和被乘数相乘得到部分积,再对各个部分积进行相加,得到最终积。

除法计算时,要先把被除数除以除数,得到商,再判断余数是否为0,若为0则商为整数,若不为0则商为带分数。

通过做以上的计算题,我们可以提高自己的计算能力,巩固基础知识,为以后的数学学习打下良好的基础。

希望大家能够认真对待数学学习,每天多做练习,提高自己的数学水平。

加油!第二篇示例:第一章计算题在七年级下册的数学课本中,第一章主要在复习与拓展六年级学过的知识,其中就包括整体的数学计算,在这一章节中,学生们将学到如何进行加减乘除等基本的数学运算,不仅要求准确无误地计算,还要能够灵活应用到各种实际问题中。

下面就让我们一起来看一看这一章节中的一些典型的计算题吧。

1. 求解算式:72 ÷ 3 + 6 × 2 = ?解答:首先按照乘除优先加减的原则进行计算,先算乘法,6 × 2 = 12,再算除法,72 ÷ 3 = 24,最后加法,24 + 12 = 36。

答案为36。

2. 将1.24、1.01、0.93 这三个数从小到大排列。

2019年人教版七年级数学下册第1单元测试卷1试卷检测试卷含答案

2019年人教版七年级数学下册第1单元测试卷1试卷检测试卷含答案

人教版七年级数学下册第1单元测试卷1一、选择题(每题3分,共30分)1. 体育课上,老师测量跳远成绩的依据是().(A)平行线间的距离相等(B)两点之间,线段最短(C)垂线段最短(D)两点确定一条直线2.如图1,给出了过直线外一点作已知直线的平行线的方法,其依据是()A. 同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等3. 如图2所示是“福娃欢欢”的五幅图案,②、③、④、⑤哪一个图案可以通过平移图案①得到()图2A.②B.③C.④D.⑤4.下列命题:①两条直线相交,一角的两邻补角相等,则这两条直线垂直;②两条直线相交,一角与其邻补角相等,则这两条直线垂直;③内错角相等,则它们的角平分线互相垂直;④同旁内角互补,则它们的角平分线互相垂直.其中正确的个数为().A.4 B.3 C.2 D.15.如果∠α与∠β是对顶角且互补,则它们两边所在的直线().A.互相垂直B.互相平行C.即不垂直也不平行D.不能确定6.如图3,若∠1=70°,∠2=110°,∠3=70°,则有().A.a∥bB.c∥d C.a⊥dD.任两条都无法判定是否平行7.汉字“王、人、木、水、口、立”中能通过平移组成一个新的汉字的有( )A.1个B.2个C.3个D.4个8.一副三角扳按如图4方式摆放,且∠1的度数比∠2的度数大54°,则∠1=()A. 18° B.54° C.72° D.70°9.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为()A.1个 B.2个 C.3个 D.4个10.如图6所示,已知∠3=∠4,若要使∠1=∠2,则还需() A.∠1=∠3 B.∠2=∠3 C.∠1=∠4 D.AB∥CD 图1图3图4BAE CBAECBA E CE CBA图5图6二、填空题(每题3分,共30分)11.如图7,当剪刀口∠AOB增大21°时,∠COD增大。

初一下册数学第一单元必考难题及答案

初一下册数学第一单元必考难题及答案

初一下册数学第一单元必考难题及答案1、7. 3位同学准备去学校饭堂吃午饭,学校饭堂有2个,则不同的去法共有( )种.[单选题] *A. 2+3=5种B.2×3=6种C.3×3=9种D.2×2×2=8种(正确答案)2、方程(x+3)(x-2)=0的根是()[单选题] *A.x=-3B.x=2C.x1=3,x2=-2D.x1=-3x2=2(正确答案)3、平面上两点A(-3,-3),B(3,5)之间的距离等于()[单选题] *A、9B、10(正确答案)C、8D、64、390°是第()象限角?[单选题] *第一象限(正确答案)第二象限第三象限第四象限5、6.数学文化《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数,若其意义相反,则分别叫做正数与负数.若向西走9米记作米,则米表示()[单选题] *A向东走5米(正确答案)B向西走5米C向东走4米D向西走4米6、若(m-3)+(4-2m)i为实数,那么实数m的值为()[单选题] *A、3B、4(正确答案)C、-2D、-37、4、已知直角三角形的直角边边长分别是方程x2-14x+48=0的两个根,则此三角形的第三边是()[单选题] *A、6B、10(正确答案)C、8D、28、28.已知点A(2,3)、B(1,5),直线AB的斜率是()[单选题] *A.2B.-2C.1/2D.-1/2(正确答案)9、21.已知集合A={x|-2m},B={x|m+1≤x≤2m-1}≠?,若A∩B=B,则实数m的取值范围为___. [单选题] *A 2≤x≤3(正确答案)B 2<x≤3C 2≤x<3D 2<x<310、?方程x2?+2X-3=0的根是(? ? ? ??)[单选题] *A、X1=-3, X2=1(正确答案)B、X1=3 ,X2=-1C、X1=3, X2=1D. X1=-3, X2=-111、下列说法正确的是[单选题] *A.绝对值最小的数是0(正确答案)B.绝对值相等的两个数相等C.-a一定是负数D.有理数的绝对值一定是正数12、以A(3,2),B(6,5),C(1,10)为顶点的三角形是()[单选题] *A、锐角三角形B、锐角三角形C、直角三角形(正确答案)D、无法判断13、3.课间操时,小华、小军、小刚的位置如图.小华对小刚说:“如果我的位置用表示,小军的位置用表示,那么你的位置可以表示成()[单选题] *A.(5,4)B(4,5)C(3,4)D(4,3)(正确答案)14、两数之和为负数,则这两个数可能是? [单选题] *A.都是负数B.0和负数(正确答案)C.一个正数与一个负数D.一正一负或同为负数或0和负数15、5.在数轴上点A,B分别表示数-2,-5,则A,B两点之间的距离可表示为()[单选题] *A.-2+(-5)B.-2-(-5)(正确答案)C.(-5)+2D(-5)-216、5. 下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()[单选题] *A.有两个不相等实数根(正确答案)B.有且只有一个实数根C.有两个相等实数根D.没有实数根17、50、如图所示,已知△ABC≌△ADE,BC的延长线交DE于F,∠B=∠D=25°,∠ACB =∠AED=105°,∠DAC=10°,则∠DFB为()[单选题] *A.40°B.50°C.55°D.60°(正确答案)18、2.在+3,﹣4,﹣8,﹣,0,90中,分数共有()[单选题] *A.1个B.2个C.3个(正确答案)D.4个19、若10?=3,10?=2,则10的值为( ) [单选题] *A. 5B. 6(正确答案)C. 8D. 920、36.如果x2﹣kxy+9y2是一个完全平方式,那么k的值是()[单选题] *A.3B.±6(正确答案)C.6D.±321、5.下列结论不正确的是[单选题] *A.若a > 0,b > 0,则a + b > 0B.若a < 0,b < 0,则a + b < 0C.若a > 0,b < 0,且|a| > |b|,则a + b > 0D.若a < 0,b > 0,且|a| > |b|,则a + b > 0(正确答案)22、下列各对象可以组成集合的是()[单选题] *A、与1非常接近的全体实数B、与2非常接近的全体实数(正确答案)C、高一年级视力比较好的同学D、与无理数相差很小的全体实数23、5.将△ABC的三个顶点的横坐标乘以-1,纵坐标不变,则所得图形与原图的关系是( ) [单选题] *A.关于x轴对称B.关于y轴对称(正确答案)C.关于原点对称D.将原图向x轴的负方向平移了1个单位长度24、? 是第()象限的角[单选题] *A. 一(正确答案)B. 二C. 三D. 四25、4.小亮用天平称得牛奶和玻璃杯的总质量为0.3546㎏,用四舍五入法将0.3546精确到0.01的近似值为()[单选题] *A.0.35(正确答案)B.0.36C.0.354D.0.35526、260°是第()象限角?[单选题] *第一象限第二象限第三象限(正确答案)第四象限27、13.下列说法中,正确的为().[单选题] *A.一个数不是正数就是负数B. 0是最小的数C正数都比0大(正确答案)D. -a是负数28、7.把点平移到点,平移方式正确的为()[单选题] *A.先向左平移3个单位长度,再向下平移2个单位长度B.先向左平移3个单位长度,再向上平移2个单位长度C.先向右平移3个单位长度,再向下平移2个单位长度D.先向右平移3个单位长度,再向上平移2个单位长度(正确答案)29、10.如图,点O在直线AE上,OC平分∠AOE,∠DOB是直角.若∠1=25°,那么∠AOB的度数是()[单选题] *A.65°B.25°(正确答案)C.90°D.115°30、北京、南京、上海三个民航站之间的直达航线,共有多少种不同的飞机票?()[单选题] *A、3B、4C、6(正确答案)D、12。

七年级数学下册第一单元测试题含答案

七年级数学下册第一单元测试题含答案

⼀、填空:(每题3分,共21分)1、若2x-3y=5,则6-4x+6y=_______。

2、已知甲、⼄两数的和为13,⼄数⽐甲数少5,则甲数是________,⼄数是________.3、已知(y-3x+1)2+|2x+5y-12|=0,则x=_____,y=_____。

4、如果⽅程组与⽅程y=kx-1有公共解,则k=________.5、(10江西)某班有40名同学去看演出,购买甲、⼄两种票共⽤去370元,其中甲种票每张10元,⼄种票每张8元,设购买了甲种票x张,⼄种票y张,由此可列出⽅程组:¬¬¬¬¬ .6、已知:,,则 ab = 。

7、如果⽅程组的解是,则 , 。

8. 已知与都是⽅程ax+by=0(b≠0)的解,则c=________.9. 若⽅程组的解是,某学⽣看错了c,求出解为,则正确的c值为________,b=________.⼆、选择题:(每题4分共28分)1、下列⽅程组中,属于⼆元⼀次⽅程组的是()A、 B、 C、 D、2、在⽅程组中,如果是它的⼀个解,那么a、b的值为( )A.a=1,b=2 B.不能惟⼀确定C.a=4,b=0 D.a=,b=-13、某校运动员分组训练,若每组7⼈,余3⼈;若每组8⼈,则缺5⼈;设运动员⼈数为x⼈,组数为y组,则列⽅程组为()A、 B、 C、 D、4、⽅程组的解的情况是()A、⼀组解B、⼆组解C、⽆解D、⽆数组解5、⼆元⼀次⽅程组的解满⾜⽅程 x-2y=5,那么k的值为( )A. B. C.-5 D.16、⽅程组12 x+13 y=3ax-y=a 的解是()A、 x=4ay=3aB、 x=-4ay=-5aC、 x=165 ay=115 aD、 x=16ay=17a7、若⼆元⼀次⽅程5x-2y=4有正整数解,则x的取值为()A、偶数B、奇数C、偶数或奇数D、 08. 甲、⼄两地相距360千⽶,⼀轮船往返于甲、⼄两地之间,顺流⽤18⼩时,逆流⽤24⼩时,若设船在静⽔中的速度为x千⽶/时,⽔流速度为y千⽶/时,在下列⽅程组中正确的是 ( )A. B.C. D.三、解⽅程组(每题5分,共20分)1、 2、四、解答题(每题6分,共14分)1. 在解⽅程组bx+ay=10x-cy=14时,甲正确地解得x=4y=-2,⼄把c写错⽽得到x=2y=4,若两⼈的运算过程均⽆错误,求a、b、c的值。

七年级数学下册第一章试题

七年级数学下册第一章试题

第一章整式的运算单元测试 1一、 耐心填一填每小题3分,共30分1.单项式32n m -的系数是 ,次数是 . 2.()()23342a b ab -÷= . 3.若A=2x y -,4B x y =-,则2A B -= .4.()()3223m m -++= .5.2005200640.25⨯= .6.若23nx =,则6n x = . 7.已知15a a +=,则221aa +=___________________.441a a +=___________________. 8.用科学计数法表示: 000024⋅-= .9.若10m n +=,24mn =,则22mn += . 10.()()()24212121+++的结果为 . 二、 精心选一选每小题3分,共30分 11.多项式322431x x y xy -+-的项数、次数分别是 .A .3、4B .4、4C .3、3D .4、312.三、用心想一想21题16分,22~25小题每小题4分,26小题8分,共40分.21.计算:16822a a a ÷+ 2()()().52222344321044x x x x x ⋅+-+- 3()()55x y x y --+- 4用乘法公式计算:21005. 22.已知0106222=++-+b a b a ,求20061ab-的值 23. 先化简并求值: )2)(2(2))(2()2(2b a b a b a b a b a +--+--+,其中2,21-==b a .24.已知9ab =,3a b -=-,求223a ab b ++的值.25. 在一次联欢会上,节目主持人让大家做一个猜数的游戏,游戏的规则是:主持人让观众每人在心里想好一个除0以外的数,然后按以下顺序计算: ()1把这个数加上2后平方.()2然后再减去4. ()3再除以原来所想的那个数,得到一个商.最后把你所得到的商是多少告诉主持人,主持人便立即知道你原来所想的数是多少,你能解释其中的奥妙吗26.请先观察下列算式,再填空:181322⨯=-, 283522⨯=-.①=-22578× ; ②29- 2=8×4;③ 2-92=8×5;④213- 2=8× ;………⑴通过观察归纳,你知道上述规律的一般形式吗 请把你的猜想写出来.⑵你能运用本章所学的平方差公式来说明你的猜想的正确性吗附加题:1.把1422-+x x 化成k h x a ++2)(其中a,h,k 是常数的形式2.已知a -b=b -c=35,a 2+b 2+c 2=1则ab +bc +ca 的值等于 . 绝密★档案B第一章整式的运算单元测试2一、填空题:每空2分,共28分1.把下列代数式的字母代号填人相应集合的括号内:A. xy+1B. –2x 2+yC.3xy 2-D.214-E.x 1-F.x 4G.x ax 2x 8123--H.x+y+zI.3ab 2005-J.)y x (31+ K.c 3ab 2+ 1单项式集合 { …}2多项式集合 { …}3三次多项式 { …}4整式集合 { …}2.单项式bc a 792-的系数是 . 3.若单项式-2x 3y n-3是一个关于x 、y 的五次单项式,则n = .4.2x+y 2=4x 2+ +y 2. 5.计算:-2a 221ab+b 2-5aa 2b-ab 2 = . 6.32243b a 21c b a 43⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-= . 7.-x 2与2y 2的和为A,2x 2与1-y 2的差为B, 则A -3B= .8.()()()()()=++++-884422y x y x y x y x y x .9.有一名同学把一个整式减去多项式xy+5yz+3xz 误认为加上这个多项式,结果答案为 5yz-3xz+2xy,则原题正确答案为 .10.当a = ,b = 时,多项式a 2+b 2-4a+6b+18有最小值.二、选择题每题3分,共24分1.下列计算正确的是A 532x 2x x =+B 632x x x =⋅C 336x x x =÷D 623x x -=-)(2.有一个长方形的水稻田,长是宽的2.8倍,宽为6.5210⨯,则这块水稻田的面积是A1.183710⨯ B 510183.1⨯ C 71083.11⨯ D 610183.1⨯3.如果x 2-kx -ab = x -ax +b, 则k 应为Aa +b B a -b C b -a D -a -b4.若x -30 -23x -6-2 有意义,则x 的取值范围是A x >3 Bx ≠3 且x ≠2 C x ≠3或 x ≠2 Dx < 25.计算:322)2(21)x (4554---÷⎪⎭⎫ ⎝⎛--π-+⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛得到的结果是A8 B9 C10 D116.若a = -0.42, b = -4-2, c =241-⎪⎭⎫⎝⎛-,d =041⎪⎭⎫⎝⎛-, 则 a 、b 、c 、d 的大小关系为A a<b<c<d Bb<a<d<c C a<d<c<b Dc<a<d<b7.下列语句中正确的是Ax -3.140 没有意义B 任何数的零次幂都等于1C 一个不等于0的数的倒数的-p 次幂p 是正整数等于它的p 次幂D 在科学记数法a×10 n 中,n 一定是正整数8.若k xy 30x 252++为一完全平方式,则k 为A 36y 2B 9y 2C 4y 2 Dy 2三、1.计算13xy -2x 2-3y 2+x 2-5xy +3y 22-51x 25x 2-2x +13-35ab 3c ⋅103a 3bc ⋅-8abc 2420052006315155321352125.0)()()()(-⨯+⨯- 5〔21xyx 2+yx 2-y +23x 2y 7÷3xy 4〕÷-81x 4y 6))((c b a c b a ---+ 2.用简便方法计算: 17655.0469.27655.02345.122⨯++ 29999×10001-100002 3.化简求值:14x 2+yx 2-y -2x 2-y 2 , 其中 x=2, y=-52已知:2x -y =2, 求:〔x 2+y 2-x -y 2+2yx -y 〕÷4y 4.已知:aa -1-a 2-b= -5 求: 代数式 2b a 22+-ab 的值. 5.已知: a 2+b 2-2a +6b +10 = 0, 求:a2005-b 1的值. 6.已知多项式x 2+nx+3 与多项式 x 2-3x+m 的乘积中不含x 2和x 3项,求m 、n 的值.7.请先阅读下面的解题过程,然后仿照做下面的题.已知:01x x 2=-+,求:3x 2x 23++的值.若:0x x x 132=+++,求:200432x x x x ++++ 的值.附加题:1.计算:2200320052003200320032004222-+2.已知:多项式42bx ax x 323+++能被多项式6x 5x 2+-整除,求:a 、b 的值 .绝密★档案C第一章整式的运算单元测试3一.填空题.1. 在代数式4,3x a ,y +2,-5m 中____________为单项式,_________________为多项式. 2.多项式13254242+---x y x y x π是一个 次 项式,其中最高次项的系数为 .. 3.当k = 时,多项式8313322+---xy y kxy x 中不含xy 项. 4.)()()(12y x y x x y n n --⋅--= .5.计算:)2()63(22x y x xy -÷-= .6.29))(3(x x -=-- 7.-+2)23(y x =2)23(y x -.8. -5x 2 +4x -1=6x 2-8x +2.9.计算:31131313122⨯--= . 10.计算:02397)21(6425.0⨯-⨯⨯-= . 11.若84,32==n m ,则1232-+n m = .12.若10,8==-xy y x ,则22y x += . 13.若22)(14n x m x x +=+-, 则m = ,n = .14.当x = 时,1442+--x x 有最大值,这个值是 .15. 一个两位数,个位上的数字为a,十位上的数字比个位上的数字大2,用代数式表示这个 两位数为 .16. 若 b 、a 互为倒数,则 20042003b a⨯= . 二.选择题.1.代数式:πab x x x abc ,213,0,52,17,52--+-中,单项式共有 个. A.1个 B.2个 C.3个 D.4个2.下列各式正确的是A.2224)2(b a b a +=+B.1)412(02=-- C.32622x x x -=÷- D.523)()()(y x x y y x -=--3.计算223)31(])([-⋅---a 结果为 A.591a B.691a C.69a - D.891a - 4.2)21(b a --的运算结果是 A.2241b a + B.2241b a - C.2241b ab a ++ D.2241b ab a +- 5.若))((b x a x +-的乘积中不含x 的一次项,则b a ,的关系是A.互为倒数B.相等C.互为相反数D.b a ,都为06.下列各式中,不能用平方差公式计算的是A.)43)(34(x y y x ---B.)2)(2(2222y x y x +-C.))((a b c c b a +---+D.))((y x y x -+-7. 若y b a 25.0与b a x 34的和仍是单项式,则正确的是 A.x=2,y=0B.x=-2,y=0C.x=-2,y=1D.x=2,y=1 8. 观察下列算式:12=2,22=4,32=8,42=16,52=32,62=64,72=128,82=256,……根据其规律可知108的末位数是 ……………………………………………A 、2B 、4C 、6D 、89.下列各式中,相等关系一定成立的是A 、22)()(x y y x -=-B 、6)6)(6(2-=-+x x xC 、222)(y x y x +=+D 、)6)(2()2()2(6--=-+-x x x x x10. 如果3x 2y -2xy 2÷M=-3x+2y,则单项式M 等于A 、 xy ;B 、-xy ;C 、x ;D 、 -y12. 若A =5a 2-4a +3与B =3a 2-4a +2 ,则A 与BA 、A =B B 、A >BC 、A <BD 、以上都可能成立三.计算题. 125223223)21(})2()]()2{[(a a a a a -÷⋅+-⋅- 2)2(3)121()614121(22332mn n m mn mn n m n m +--÷+-- 3)21)(12(y x y x --++ 422)2()2)(2(2)2(-+-+-+x x x x524422222)2()2()4()2(y x y x y x y x ---++四.解答题.已知将32()(34)x mx n x x ++-+乘开的结果不含3x 和2x 项.1求m 、n 的值;2当m 、n 取第1小题的值时,求22()()m n m mn n +-+的值.五.解方程:3x+2x -1=3x -1x+1.六.求值题:1.已知()2x y -=62536,x+y=76,求xy 的值. 2.已知a -b=2,b -c=-3,c -d=5,求代数式a -cb -d÷a-d 的值. 3.已知:2424,273b a == 代简求值:2(32)(3)(2)(3)(3)a b a b a b a b a b ---+++- 7分七.探究题.观察下列各式: 2(1)(1)1x x x -+=-1根据前面各式的规律可得:1(1)(...1)n n x x x x --++++ = .其中n 为正整数2根据1求2362631222...22++++++的值,并求出它的个位数字.。

七年级下册数学第一章测试题及答案人教版

七年级下册数学第一章测试题及答案人教版

七年级下册数学第一章测试题及答案人教版
一、选择题(每小题3分,共30分)
1. 如果在一个数的两倍和三倍中间,则这个数是()
A. 五分之一
B. 五分之二
C. 五分之三
D. 五分之四
2. 两个数的和是18,其中一个数是6,那么另一个数是()
A. 12
B. 14
C. 16
D. 18
3. 下列四个数中,最大的数是()
A. -8
B. -3
C. 5
D. 8
4. 下列四个数中,最小的数是()
A. -8
B. -3
C. 5
D. 8
5. 下列四个数中,绝对值最大的数是()
A. -8
B. -3
C. 5
D. 8
二、填空题(每小题3分,共15分)
6. -2的相反数是____________。

7. -5的相反数是____________。

8. 两个数的和是5,其中一个数是3,另一个数是____________。

9. 两个数的和是10,其中一个数是-2,另一个数是____________。

10. 两个数的积是-24,其中一个数是4,另一个数是____________。

答案:1. D 2. A 3. D 4. A 5. A 6. 2 7. 5 8. 2 9. 8 10. -6。

人教版七年级数学下册第一单元练习题

人教版七年级数学下册第一单元练习题

第一单元自主学习达标检测(§5。

1~§5。

2)(时间45分钟 满分100分)班级 学号 姓名 得分一、填空题(每小题3分,共30分)1.如图1所示,已知三条直线AB 、CD 、EF 两两相交于点P 、Q 、R ,则图中邻补角共有对,对顶角共有 对(平角除外).2.一个角的对顶角比它的邻补角的3倍还大20°,则这个角的度数为 . 3.如图2所示,已知直线AB 、CD 交于点O ,OE ⊥AB 于点O ,且∠1比∠2大20°,则∠AOC= .4.已知直线AB ⊥CD 于点O ,且AO=5㎝,BO=3㎝,则线段AB 的长为 . 5.直线a 、b 、c 中,若,a b b ⊥∥c ,则a 、c 的位置关系是 .6.如图3所示,点D 、E 、F 分别在AB 、BC 、CA 上,若∠1=∠2,则 ∥ ,若∠1=∠3,则 ∥ .7.如图4所示,若∠1=∠2,则 ∥ ;若∠2= ,则BC ∥B ′C ′;理由是 .8.如图5所示,若∠1=2∠3,∠2=60°,则AB 与CD 的位置关系为 . 9.如图6,在正方体1111ABCD A B C D -中,与面11CC D D 垂直的棱有_____.10.如图7,已知直线AB CD ,相交于点O ,OE 平分BOD ∠,OF OE ⊥,120=∠,F E D C B A R Q P(图1) EDCB A O(图2)21(图3) F E D C BA3 2 1 C B A C 'B 'A '(图4)3 21DCB A(图5) 3 21 (图6) (图二、选择题(每小题3分,共24分)11.如图8所示,∠1与∠2是对顶角的图形的个数有( )(A)1个 (B )2个 (C )3个 (D )4个12.已知:如图9所示,直线AB 、CD 被直线EF 所截,则∠EMB 的同位角是( )(A )∠AMF (B)∠BMF (C )∠ENC (D )∠END13.如图10所示,AC ⊥BC 与C ,CD ⊥AB 于D ,图中能表示点到直线(或线段)的距离的线段有( )(A)1条 (B)2条 (C)3条 (D )5条 14.判断下列语句中,正确的个数有( )①两条直线相交,若有一组邻补角相等,则这两条直线互相垂直;②从直线外一点到已知直线的垂线段,叫做这个点到已知直线的距离;③从线外一点画已知直线的垂线,垂线的长度就是这个点到已知直线的距离;④画出已知直线外一点到已知直线的距离. (A)1个 (B )2个 (C )3个 (D )4个15.已知:如图11所示,直线AB 、CD 相交于O ,OD 平分∠BOE ,∠AOC=42°,则∠AOE 的度数为( )(A )126° (B )96° (C )102° (D )138° 16.在同一平面内两条直线的位置关系可能是( )(A ) 相交或垂直 (B)垂直或平行 (C )平行或相交 (D )不确定 17.如图12所示,下列条件中,能判断直线1l ∥2l 的是( )(A )∠2=∠3 (B )∠1=∠3 (C )∠4+∠5=180° (D )∠2=∠4(图9)NMFE DC B A(图12)2l1l 5 432 1(图11)O EDCBA B(图10) DCA21 121221 (图8)18.如图13所示,下列推理中正确的数目有( )①因为∠1=∠4,所以BC ∥AD . ②因为∠2=∠3,所以AB ∥CD .③因为∠BCD +∠ADC=180°,所以AD ∥BC . ④因为∠1+∠2+∠C=180°,所以BC ∥AD .(A )1个 (B)2个 (C )3个 (D )4个 三、解答题(共46分)19.(本题6分)如图,AB DC ∥,E 为BC 的中点. (1)过E 作EF AB ∥,EF 与AD 交于点F ; (2)EF 与DC 平行吗?为什么? 20.(本题6分)如图7,在表盘上请你画出时针与分针,使时针与分针恰好互相垂直,且此时恰好为整点.(1)此时表示的时间是_____点.(2)一天24小时,时针与分针互相垂直_____次. 21.(本题8分)如图所示,当∠BED 与∠B ,∠D 满足 条件时,可以判断AB ∥CD .(1)在“ ”上填上一个条件; (2)试说明你填写的条件的正确性.22.(本题8分)利用如图所示的方法可以折出互相垂直的线,试试看!并与同伴讨论这种折法的合理性.(图中,BM AM )DCBA43 2 1(图13)E DC B A,,三点是否共线?你能说明理23.(本题8分)如图,如果CD AB∥,那么C D E∥,CE AB由吗?24.(本题10分)(1)1条直线,最多可将平面分成112+=个部分;(2)2条直线,最多可将平面分成1124++=个部分;(3)3条直线,最多可将平面分成_____个部分;(4)4条直线,最多可将平面分成_____个部分;(5)n条直线,最多可将平面分成_____个部分.。

人教版七年级数学下册第1单元测试题及答案平行与相交

人教版七年级数学下册第1单元测试题及答案平行与相交

123(第三题)A B C D E (第10题)ABCD 1234(第2题)12345678(第4题)ab cA B CD(第7题)七年级数学第五章《相交线与平行线》测试卷班级 _______ 姓名 ________ 坐号 _______ 成绩 _______一、单项选择题(每小题3分,共 30 分)1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图AB ∥CD 可以得到( )A 、∠1=∠2B 、∠2=∠3C 、∠1=∠4D 、∠s3=∠4 3、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3=( ) A 、90° B 、120° C 、180° D 、140° 4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a ∥b 的条件的序号是( )A 、①②B 、①③C 、①④D 、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( ) A 、第一次左拐30°,第二次右拐30° B 、第一次右拐50°,第二次左拐130° C 、第一次右拐50°,第二次右拐130° D 、第一次向左拐50°,第二次向左拐130°6、下列哪个图形是由左图平移得到的( )BD7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影 部分面积与正方形ABCD 面积的比是( )A 、3:4B 、5:8C 、9:16D 、1:28、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走A 、③B 、②③C 、①②④D 、①②⑤ 9、下列说法正确的是( )A 、有且只有一条直线与已知直线平行B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一单元自主学习达标检测(§5.1~§5.2)
(时间45分钟 满分100分)
班级 学号 姓名 得分
一、填空题(每小题3分,共30分)
1.如图1所示,已知三条直线AB 、CD 、EF 两两相交于点P 、Q 、R ,则图中邻补角共有
对,对顶角共有 对(平角除外).
2.一个角的对顶角比它的邻补角的3倍还大20°,则这个角的度数为 . 3.如图2所示,已知直线AB 、CD 交于点O ,OE ⊥AB 于点O ,且∠1比∠2大20°,则
∠AOC= .
4.已知直线AB ⊥CD 于点O ,且AO=5㎝,BO=3㎝,则线段AB 的长为 . 5.直线a 、b 、c 中,若,a b b ⊥∥c ,则a 、c 的位置关系是 .
6.如图3所示,点D 、E 、F 分别在AB 、BC 、CA 上,若∠1=∠2,则 ∥ ,若∠1=∠3,
则 ∥ .
7.如图4所示,若∠1=∠2,则 ∥ ;若∠2= ,则BC ∥B ′C ′;理由
是 .
8.如图5所示,若∠1=2∠3,∠2=60°,则AB 与CD 的位置关系为 . 9.如图6,在正方体1111ABCD A B C D -中,与面11CC D D 垂直的棱有_____.
10.如图7,已知直线AB CD ,相交于点O ,OE 平分BOD ∠,OF OE ⊥,120=o ∠,
F E D C B A R Q P
(图1) E
D
C
B A O
(图2)
2
1
(图3) F E D C B
A
3 2 1 C B A C '
B '
A '
(图4)
3 2
1
D
C
B A
(图5) 3 2
1 (图6) (图
二、选择题(每小题3分,共24分)
11.如图8所示,∠1与∠2是对顶角的图形的个数有( )
(A )1个 (B )2个 (C )3个 (D )4个
12.已知:如图9所示,直线AB 、CD 被直线EF 所截,则∠EMB 的同位角是( )
(A )∠AMF (B )∠BMF (C )∠ENC (D )∠END
13.如图10所示,AC ⊥BC 与C ,CD ⊥AB 于D ,图中能表示点到直线(或线段)的距离的线段
有( )
(A )1条 (B )2条 (C )3条 (D )5条 14.判断下列语句中,正确的个数有( )
①两条直线相交,若有一组邻补角相等,则这两条直线互相垂直;②从直线外一点到已知直线的垂线段,叫做这个点到已知直线的距离;③从线外一点画已知直线的垂线,垂线的长度就是这个点到已知直线的距离;④画出已知直线外一点到已知直线的距离. (A )1个 (B )2个 (C )3个 (D )4个
15.已知:如图11所示,直线AB 、CD 相交于O ,OD 平分∠BOE ,∠AOC=42°,则∠AOE 的度数
为( )
(A )126° (B )96° (C )102° (D )138° 16.在同一平面内两条直线的位置关系可能是( )
(A ) 相交或垂直 (B )垂直或平行 (C )平行或相交 (D )不确定 17.如图12所示,下列条件中,能判断直线1l ∥2l 的是( )
(A )∠2=∠3 (B )∠1=∠3 (C )∠4+∠5=180° (D )∠2=∠4
(图9)
N
M
F
E D
C B A
(图12)
2l
1l 5 4
3
2 1
(图11)
O E
D
C
B
A B
(图10) D
C
A
2
1 1
2
1
2
2
1 (图8)
18.如图13所示,下列推理中正确的数目有( )
①因为∠1=∠4,所以BC ∥AD . ②因为∠2=∠3,所以AB ∥CD .
③因为∠BCD +∠ADC=180°,所以AD ∥BC . ④因为∠1+∠2+∠C=180°,所以BC ∥AD .
(A )1个 (B )2个 (C )3个 (D )4个 三、解答题(共46分)
19.(本题6分)如图,AB DC ∥,E 为BC 的中点. (1)过E 作EF AB ∥,EF 与AD 交于点F ; (2)EF 与DC 平行吗?为什么? 20.(本题6分)如图7,在表盘上请你画出时针与分针,使时针与分针恰好互相垂直,且此
时恰好为整点.
(1)此时表示的时间是_____点.
(2)一天24小时,时针与分针互相垂直_____次. 21.(本题8分)如图所示,当∠BED 与∠B ,∠D 满足 条件时,可以判断AB
∥CD .
(1)在“ ”上填上一个条件; (2)试说明你填写的条件的正确性.
22.(本题8分)利用如图所示的方法可以折出互相垂直的线,试试看!并与同伴讨论这种折
法的合理性.(图中,BM AM )
D
C
B
A
4
3 2 1
(图13)
E D
C B A
,,三点是否共线?你能说明23.(本题8分)如图,如果CD AB
∥,那么C D E
∥,CE AB
理由吗?
24.(本题10分)(1)1条直线,最多可将平面分成112
+=个部分;
(2)2条直线,最多可将平面分成1124
++=个部分;
(3)3条直线,最多可将平面分成_____个部分;
(4)4条直线,最多可将平面分成_____个部分;
(5)n条直线,最多可将平面分成_____个部分.。

相关文档
最新文档