初一数学下册期末考试试题及答案
浙教版数学七年级下册期末考试试题及答案
浙教版数学七年级下册期末考试试卷一、选择题:(本大题共10个小题,每小题3分,共30分)1.下列方程中,为二元一次方程的是()A .210a +=B .32x y z +=C .9xy =D .325x y -=2.下列运算正确的是()A .236m m m = B .842m m m ÷=C .325m n mn +=D .326()m m =3.分式34x x --无意义的条件是()A .4x =B .4x ≠±C .4x ≠-D .4x >4.下列统计活动中不宜用问卷调查的方式收集数据是()A .七年级同学家中电脑的数量B .星期六早晨同学们起床的时间C .各种手机在使用时所产生的辐射D .学校足球队员的年龄和身高5.下列各项变形式,是因式分解的是()A .2(2)2m m n m mn+=+B .2244(2)a a a -+=-C .211()y y y y -=-D .222438xy x y =⋅6.一组数据共100个,分为6组,第1~4组的频数分别为10,14,16,20,第5组的频率为0.20,则第6组的频数为()A .20B .22C .24D .307.已知12x y =-⎧⎨=⎩是关于x 、y 的二元一次方程组382x ny mx y +=⎧⎨-=⎩的解,则2m n +的值为()A .52-B .1C .7D .118.如图,已知直线//AB CD ,GEB ∠的平分线EF 交CD 于点F ,130∠=︒,则2∠等于()A .135︒B .145︒C .155︒D .165︒9.暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x 套,由题意列方程正确的是()A .60080040x x =-B .60080040x x =-C .60080040x x =+D .60080040x x=+10.设m xy =,n x y =+,22p x y =+,22q x y =-,其中20202018x t y t =+⎧⎨=+⎩,①当3n =时,6q =.②当292p =时,214m =.则下列正确的是()A .①正确②错误B .①正确②正确C .①错误②正确D .①错误②错误二.填空题(本大题共8个小题,每小题3分,共24分)11.当x 的值为时,分式4x x +的值为0.12.因式分解:24a a -=.13.对于方程238x y +=,用含x 的代数式表示y ,则可以表示为.14.若等式222(1)3x x a x -+=--成立,则a =.15.已知二元一次方程3510x y -=,请写出它的一个整数解为.16.若方程组213212x y x y -=⎧⎨+=⎩的解也是二元一次方程511x my -=-的一组解,则m 的值等于.17.如图所示,12//l l ,点A ,E ,D 在直线1l 上,点B ,C 在直线2l 上,满足BD 平分ABC ∠,BD CD ⊥,CE 平分DCB ∠,若136BAD ∠=︒,那么AEC ∠=.18.如图,把三张边长相等的小正方形甲、乙、丙纸片按先后顺序放在一个大正方形ABCD 内,丙纸片最后放在最上面.已知小正方形的边长为a ,如果斜线阴影部分的面积之和为b ,空白部分的面积和为4,那么2b a 的值为.三.解答题(共7小题)19.(6分)计算:(1)322(124)(2)x y x x -÷-(2)2(21)(23)(23)x x x --+-20.(6分)解方程或方程组:(1)24342x y x y +=⎧⎨-=⎩(2)33233x x x-=--21.(6分)如图,已知1BDC ∠=∠,23180∠+∠=︒.(1)AD 与EC 平行吗?试说明理由.(2)若DA 平分BDC ∠,CE AE ⊥于点E ,180∠=︒,试求FAB ∠的度数.22.(6分)我区的数学爱好者申请了一项省级课题--《中学学科核心素养理念下渗透数学美育的研究》,为了了解学生对数学美的了解情况,随机抽取部分学生进行问卷调查,按照“理解、了解、不太了解、不知道”四个类型,课题组绘制了如图两幅不完整的统计图,请根据统计图中提供的信息,回答下列问题:(1)本次调查共抽取了多少名学生?并补全条形统计图;(2)在扇形统计图中,“理解”所占扇形的圆心角是多少度?(3)我区七年级大约8000名学生,请估计“理解”和“了解”的共有学生多少名?23.(7分)【阅读材料】我们知道,图形也是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙地解决一些图形问题.在一次数学活动课上,张老师准备了若干张如图1所示的甲、乙、丙三种纸片,其中甲种纸片是边长为x 的正方形,乙种纸片是边长为y 的正方形,丙种纸片是长为y ,宽为x 的长方形,并用甲种纸片一张,乙种纸片一张,丙种纸片两张拼成了如图2所示的一个大正方形.【理解应用】(1)观察图2,用两种不同方式表示阴影部分的面积可得到一个等式,请你直接写出这个等式;【拓展升华】(2)利用(1)中的等式解决下列问题.①已知2210a b +=,6a b +=,求ab 的值;②已知(2021)(2019)1c c --=,求22(2021)(2019)c c -+-的值.24.(7分)“脐橙结硕果,香飘引客来”,赣南脐橙以其“外表光洁美观,肉质脆嫩,风味浓甜芳香”的特点饮誉中外.现欲将一批脐橙运往外地销售,若用2辆A型车和1辆B型车载满脐橙一次可运走10吨;用1辆A型车和2辆B型车载满脐橙一次可运走11吨.现有脐橙31吨,计划同时租用A 型车a辆,B型车b辆,一次运完,且恰好每辆车都载满脐橙.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满脐橙一次可分别运送多少吨?(2)请你帮该物流公司设计租车方案;(3)若1辆A型车需租金100元/次,1辆B型车需租金120元/次.请选出费用最少的租车方案,并求出最少租车费.25.(8分)已知,如图①,点D,E,F,G是ABCFG AC,∆三边上的点,且//(1)若EDC FGC∠=∠,试判断DE与BC是否平行,并说明理由.(2)如图②,点M、N分别在边AC、BC上,且//∠=︒,CMN AB,连接GM,若60∠=︒,55A∠的度数.∠=∠,求GMN4FGM MGC(3)点M、N分别在射线AC、BC上,且//∠=,MN AB,连接GM.若Aα∠=,ACBβ∠的度数(用含α,β,n的代数式表示)FGM n MGC∠=∠,直接写出GMN参考答案一.选择题(共10小题)1.解:A .是一元一次方程,不是二元一次方程,故本选项不符合题意;B .是三元一次方程,不是二元一次方程,故本选项不符合题意;C .是二元二次方程,不是二元一次方程,故本选项不符合题意;D .是二元一次方程,故本选项符合题意;故选:D .2.解:23235m m m m +== ,因此选项A 不正确;84844m m m m -÷==,因此选项B 不正确;3m 与2n 不是同类项,因此选项C 不正确;32326()m m m ⨯==,因此选项D 正确;故选:D .3.解: 分式34x x --无意义,40x ∴-=,4x ∴=,故选:A .4.解:A .七年级同学家中电脑的数量,利用问卷调查比较直接简单而且比较准确,适合问卷调查,故此选项正确;B .星期六早晨同学们起床的时间,利用问卷调查比较直接简单而且比较准确,适合问卷调查,故此选项正确;C .各种手机在使用时所产生的辐射,利用问卷调查不能准确得到辐射情况,不适合问卷调查,故此选项错误;D .学校足球队员的年龄和身高,利用问卷调查比较直接简单而且比较准确,适合问卷调查,故此选项正确.故选:C .5.解:A .等式从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B .等式从左到右的变形属于因式分解,故本选项符合题意;C .等式的右边不是整式的积的形式,不属于因式分解,故本选项不符合题意;D .等式从左到右的变形不属于因式分解,故本选项不符合题意;故选:B .6.解: 一组数据共100个,第5组的频率为0.20,∴第5组的频数是:1000.2020⨯=,一组数据共100个,分为6组,第1~4组的频数分别为10,14,16,20,∴第6组的频数为:100201014162020-----=.故选:A .7.解:把1x =-,2y =代入方程组,得32822n m -+=⎧⎨--=⎩解得4m =-,112n =,24117m n ∴+=-+=.故选:C .8.解://AB CD ,130GEB ∴∠=∠=︒,EF 为GEB ∠的平分线,1152FEB GEB ∴∠=∠=︒,2180165FEB ∴∠=︒-∠=︒.故选:D .9.解:若设书店第一次购进该科幻小说x 套,由题意列方程正确的是60080040x x =+,故选:C .10.解:当3n =时,即3x y +=,由20202018x t y t =+⎧⎨=+⎩可得,2x y -=,因此,52x =,12y =,22251246444q x y ∴=-==-==,因此①正确;当292p =时,即22292x y +=,又2x y ∴-=,2224x xy y ∴-+=,∴29242xy -=,214m xy ∴==,因此②正确;故选:B .二.填空题(共8小题)11.解:由题意得:40x +=,且0x ≠,解得:4x =-,故答案为:4-.12.解:原式(4)a a =-.故答案为:(4)a a -.13.解:方程238x y +=,解得:823xy -=.故答案为:823xy -=.14.解:22(1)322x x x --=-- ,22222x x a x x ∴-+=--,2a ∴=-.故答案为:2-.15.解:3510x y -=,5310y x -=-,325y x =-,方程的一个整数解是51x y =⎧⎨=-⎩,故答案为:51x y =⎧⎨=-⎩.16.解:根据题意得213212x y x y -=⎧⎨+=⎩①②,∴由①得:21y x =-,代入②用x 表示y 得,32(21)12x x +-=,解得:2x =,代入①得,3y =,∴将2x =,3y =,代入511x my -=-解得,7m =.故答案为:7.17.解:12//l l ,180BAD ABC ∴∠+∠=︒,136BAD ∠=︒ ,44ABC ∴∠=︒,BD 平分ABC ∠,22DBC ∴∠=︒,BD CD ⊥ ,90BDC ∴∠=︒,68BCD ∴∠=︒,CE 平分DCB ∠,34ECB ∴∠=︒,12//l l ,180AEC ECB ∴∠+∠=︒,146AEC ∴∠=︒,故答案为:146︒.18.解:将乙正方形平移至AB 边,如图所示:设AB x =,∴乙的宽()x a =-;甲的宽()x a =-;又 斜线阴影部分的面积之和为b ,2()a x a b ∴-=,空白部分的面积和为4,2()4x a ∴-=,2x a ∴-=,即22a b ⋅=,∴22ba =.三.解答题(共7小题)19.解:(1)原式322(124)431x y x x xy =-÷=-;(2)原式2244149410x x x x =-+-+=-+.20.解:(1)24342x y x y +=⎧⎨-=⎩①②,①2⨯+②得:510x =,解得:2x =,把2x =代入①得:1y =,则方程组的解为21x y =⎧⎨=⎩;(2)分式方程整理得:33233xx x -=---,去分母得:32(3)3x x --=-,去括号得:3263x x -+=-,解得:9x =-,经检验9x =-是分式方程的解.21.(1)AD 与EC 平行,证明:1BDC ∠=∠ ,//AB CD ∴(同位角相等,两直线平行),2ADC ∴∠=∠(两直线平行,内错角相等),23180∠+∠=︒ ,3180ADC ∴∠+∠=︒(等量代换),//AD CE ∴(同旁内角互补,两直线平行);(2)解:1BDC ∠=∠ ,180∠=︒,80BDC ∴∠=︒,DA 平分BDC ∠,1402ADC BDC ∴∠=∠=︒(角平分线定义),240ADC ∴∠=∠=︒(已证),又CE AE ⊥ ,90AEC ∴∠=︒(垂直定义),//AD CE (已证),90FAD AEC ∴∠=∠=︒(两直线平行,同位角相等),2904050FAB FAD ∴∠=∠-∠=︒-︒=︒.22.解:(1)本次调查共抽取学生为:204005%=(名),∴不太了解的学生为:40012016020100---=(名),补全条形统计图如下:(2)“理解”所占扇形的圆心角是:120360108400⨯︒=︒;(3)1208000(40%)5600400⨯+=(名),所以“理解”和“了解”的共有学生5600名.23.解:(1)222()2x y x y xy +=+-.(2)①由题意得:222()()2a b a b ab +-+=,把2210a b +=,6a b +=代入上式得,2610132ab -==.②由题意得:2222(2021)(2019)(20212019)2(2021)(2019)2212c c c c c c -+-=-+----=-⨯=.24.解:(1)设1辆A 型车载满脐橙一次可运送x 吨,1辆B 型车载满脐橙一次可运送y 吨,依题意,得:210211x y x y +=⎧⎨+=⎩,解得:34x y =⎧⎨=⎩.答:1辆A 型车载满脐橙一次可运送3吨,1辆B 型车载满脐橙一次可运送4吨.(2)依题意,得:3431a b +=,a ,b 均为正整数,∴17a b =⎧⎨=⎩或54a b =⎧⎨=⎩或91a b =⎧⎨=⎩.∴一共有3种租车方案,方案一:租A 型车1辆,B 型车7辆;方案二:租A 型车5辆,B 型车4辆;方案三:租A 型车9辆,B 型车1辆.(3)方案一所需租金为10011207940⨯+⨯=(元);方案二所需租金为10051204980⨯+⨯=(元);方案三所需租金为100912011020⨯+⨯=(元).9409801020<< ,∴最省钱的租车方案是方案一,即租A 型车1辆,B 型车7辆,最少租车费为940元.25.解:(1)//DE BC ,理由如下://FG AC ,FGB C ∴∠=∠,180EDC ADE ∠+∠=︒ ,180FGC FGB ∠+∠=︒,EDC FGC ∠=∠,ADE FGB ∴∠=∠,ADE C ∴∠=∠,//DE BC ∴;(2)60A ∠=︒ ,55C ∠=︒,180180605565B A C ∴∠=︒-∠-∠=︒-︒-︒=︒,//FG AC ,55FGB C ∴∠=∠=︒,4FGM MGC ∠=∠ ,555180FGM MGC FGB MGC ∴∠+∠+∠=∠+︒=︒,25MGN ∴∠=︒,//MN AB ,65MNC B ∴∠=∠=︒,MNC MGN GMN ∠=∠+∠,652540GMN MNC MGN ∴∠=∠-∠=︒-︒=︒;(3)①如图②所示:A α∠= ,ACB β∠=,180180B A ACB αβ∴∠=︒-∠-∠=︒--,//FG AC ,FGB C β∴∠=∠=,FGM n MGC ∠=∠ ,(1)180FGM MGC FGB n MGC β∴∠+∠+∠=+∠+=︒,1801MGN n β︒-∴∠=+,//MN AB ,180MNC B αβ∴∠=∠=︒--,MNC MGN GMN ∠=∠+∠,180180(180)11nGMN MNC MGN n n βαββα︒-∴∠=∠-∠=︒---=︒--++.②如图③所示:设MGN x ∠=,则180GMN GMA NMC nx α∠=∠+∠=+︒-,(1)180n x β-+=︒ ,111801x n β︒-∴=-,18018018018011n GMN nx n n n ββααα︒--︒∴∠=+︒-=+︒-⋅=+--.。
部编人教版七年级数学下册期末考试卷及答案【必考题】
专业课原理概述部分一、选择题(每题1分,共5分)1.下列哪个数是质数?A.21B.23C.25D.272.一个等腰三角形的底边长是8cm,腰长是10cm,那么这个三角形的周长是?A.16cmB.26cmC.28cmD.36cm3.下列哪个数是偶数?A.101B.102C.103D.1044.一个正方形的边长是6cm,那么它的面积是?A.12cm²B.18cm²C.24cm²D.36cm²5.下列哪个数是负数?A.-5B.0C.5D.10二、判断题(每题1分,共5分)1.任何两个奇数相加的和都是偶数。
()2.任何两个偶数相加的和都是偶数。
()3.一个等边三角形的三个角都是60度。
()4.一个正方形的对角线长度等于它的边长。
()5.任何两个负数相加的和都是负数。
()三、填空题(每题1分,共5分)1.一个等腰三角形的底边长是10cm,腰长是12cm,那么这个三角形的周长是______cm。
2.下列哪个数是偶数?______3.一个正方形的边长是8cm,那么它的面积是______cm²。
4.下列哪个数是负数?______5.任何两个奇数相加的和都是______数。
四、简答题(每题2分,共10分)1.解释什么是质数。
2.解释什么是偶数。
3.解释什么是等腰三角形。
4.解释什么是正方形。
5.解释什么是负数。
五、应用题(每题2分,共10分)1.一个长方形的长是10cm,宽是5cm,求这个长方形的面积。
2.一个等边三角形的边长是6cm,求这个三角形的面积。
3.一个正方形的边长是9cm,求这个正方形的对角线长度。
4.两个负数相加,和是什么数?5.两个偶数相加,和是什么数?六、分析题(每题5分,共10分)1.分析为什么任何两个奇数相加的和都是偶数。
2.分析为什么任何两个偶数相加的和都是偶数。
七、实践操作题(每题5分,共10分)1.画出一个等腰三角形,并标出它的底边和腰。
人教版七年级数学下册期末考试测试卷(含答案)
人教版七年级数学下册期末考试测试卷(含答案)班级姓名成绩(考试时间:120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.36的平方根是()A.﹣6B.36C.±D.±62.已知a<b,则下列四个不等式中,不正确的是()A.a﹣2<b﹣2B.﹣2a<﹣2b C.2a<2b D.a+2<b+23.若是关于x和y的二元一次方程ax+y=1的解,则a的值等于()A.3B.1C.﹣1D.﹣34.如图,直线l与直线a,b相交,且a∥b,∠1=110°,则∠2的度数是()A.20°B.70°C.90°D.110°5.下列调査中,适合用全面调查方式的是()A.了解某校七年级(1)班学生期中数学考试的成绩B.了解一批签字笔的使用寿命C.了解市场上酸奶的质量情况D.了解某条河流的水质情况6.如图,小手盖住的点的坐标可能为()A.(﹣4,﹣5)B.(﹣4,5)C.(4,5)D.(4,﹣5)7.方程4x+3y=16的所有非负整数解为()A.1个B.2个C.3个D.无数个8.已知方程组,则x+y的值为()A.﹣1B.0C.2D.39.已知点A(a,3),点B是x轴上一动点,则点A、B之间的距离不可能是()A.2B.3C.4D.510.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过120分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x.根据题意得()A.10x﹣5(20﹣x)≥120 B.10x﹣5(20﹣x)≤120C.10x﹣5(20﹣x)>120 D.10x﹣5(20﹣x)<12011.若不等式组⎩⎨⎧-+-142322xxax>>,的解集为32<<x-,则a的取值范围是( )A.21=a B.2-=a C.2-≥a D.1-≤a12.若不等式组⎩⎨⎧<-<-mxxx632无解,则m的取值范围是()A.m>2B.m<2C.m≥2 D.m≤2第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分)13.比较大小:13___________3 (填“>,=,<”) ;14. P(3, −4)到y轴的距离是___________.15.已知二元一次方程2x-3y=6,用关于x的代数式表示y,则y=______.16.已知:如图,AB∥CD,EF∥CD,且∠ABC=20°,∠CFE=30°,则∠BCF的度数是___________.17.若y同时满足y+1>0与y-2<0,则y的取值范围是.三、解答题(本大题共7小题,共49分.解答应写出文字说明、证明过程或演算步骤)18.计算(5分)3336463-1125.041-0-27-++19.解方程组(5分)237342x y x y +=⎧⎨-=⎩20.(6分)解下列不等式组,并把解集在数轴上表示出来。
北师大版七年级下册数学期末考试试题附答案
北师大版七年级下册数学期末考试试卷一、单选题1.下列图形中对称轴最多的是()A.等腰三角形B.正方形C.圆D.线段2.下列事件中,是随机事件的是()A.抛出的篮球会下落地B.汽车到达一个路口,遇到红灯C.任意三条线段可组成三角形D.13个同学中至少有两个同学的生日在同一个月3.下面四个图形中,1∠与2∠是对顶角的是()A B C D()a的正确结果是()4.计算23A.23a B.5a C.6a D.6a5.在我国,平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000kg的煤所产生的能量.将130000000用科学记数法表示为()A.1.3×108B.0.13×109C.1.3×109D.13×1076.如图,要测量河两岸相对的两点A、B的距离,先在河岸BF上取两点C、D,使CD=BC,再作DE⊥BF,垂足为D,使A、C、E三点在一条直线上,测得ED=30米,因此AB 的长是()A.10米B.20米C.30米D.40米7.一把直尺和一块三角板ABC(含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CED=50°,那么∠BAF=()A.10°B.50°C.45°D.40°8.小明和哥哥从家里出发去买书,从家出发走了20分钟到一个离家1000米的书店.小明买了书后随即按原路返回;哥哥看了20分钟书后,用15分钟返家.下面的图象中哪一个表示哥哥离家时间与距离之间的关系()A.B.C.D.9.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论:①DE=CD;②AD平分∠CDE;③∠BAC=∠BDE;④BE+AC=AB,其中正确的是()A.1个B.2个C.3个D.4个10.如图所示:AB∥CD,MN交CD于点E,交AB于F,BE⊥MN于点E,若∠DEM=55°,则∠ABE=()A.55°B.35°C.45°D.30°二、填空题11.计算732a a ÷=________________.12.如图,已知∠4=75°,∠3=105°,∠1=42°,则∠2=________________°.13.如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有______种.14.已知6x y +=-,8xy =,则22x y +=________________.15.某学校购书1000本,给初一年级学生送书,每人都可得到2本不同的书,某一时刻有x 人领到书,则此时剩下的书y =________________本.(x 为正整数)16.一个袋中有5个球,分别标有1,2,3,4,5这五个号码,这些球除号码外都相同,搅匀后任意摸出一个球,则摸出标有数字为奇数的球的概率为___.17.如图,AB ∥CD ,AE ⊥EF ,垂足为E ,∠GHC =70°,则∠A =___________三、解答题18.计算:202022(1)(5.5 4.5)4-+---19.已知:如图,∠DAE =∠E ,∠B =∠D .直线AD 与BE 平行吗?直线AB 与DC 平行吗?说明理由(请在下面的解答过程的空格内填空或在括号内填写理由)解:直线AD 与BE ______________,直线AB 与DC ______________理由如下:∵∠DAE =∠E ,(已知)∴________//________,()∴∠D =∠DCE .()又∵∠B =∠D ,(已知)∴∠B =∠DCE ,()∴________//________.()20.先化简,再求值:[(2x +y )(2x ﹣y )﹣(2x ﹣3y )2]÷(﹣2y ),其中x =1,y =﹣2.21.米奇家住宅面积为90平方米,其中客厅30平方米,大卧室18平方米,小卧室15平方米,厨房14平方米,大卫生间9平方米,小卫生间4平方米.如果一只小猫在该住宅内地面上任意跑.求:(1)P(在客厅捉到小猫);(2)P(在小卧室捉到小猫);(3)P(在卫生间捉到小猫);(4)P(不在卧室捉到小猫).22.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点ABC ∆(顶点均在格点上)关于直线DE 对称的111A B C ∆;(2)在DE 上画出点Q ,使QA QC +最小.23.如图,点E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、D .求证:(1)∠ECD =∠EDC ;(2)OC=OD.24.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B,C重合),连接AD,作∠ADE=40°,DE与AC交于E.(1)当∠BDA=115°时,∠BAD=°,∠DEC=°;当点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD与△DCE全等?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数;若不可以,请说明理由.25.如图,已知CD平分ACB,DE∥BC,∠B=50°,∠ACB=30°,求∠BDC的度数.参考答案1.C【解析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此即可进行选择.【详解】解:A、因为等腰三角形分别沿底边的中线所在的直线对折,对折后的两部分都能完全重合,则等腰三角形是轴对称图形,底边的中线所在的直线就是对称轴,所以等腰三角形有1条对称轴;B、因为正方形沿对边的中线及其对角线所在的直线对折,对折后的两部分都能完全重合,则正方形是轴对称图形,对边的中线及其对角线所在的直线就是其对称轴,所以正方形有4条对称轴;C、因为圆沿任意一条直径所在的直线对折,对折后的两部分都能完全重合,则圆是轴对称图形,任意一条直径所在的直线就是圆的对称轴,所以说圆有无数条对称轴.D、线段是轴对称图形,有两条对称轴.故选:C.【点睛】本题考查了轴对称图形的性质,解答此题的主要依据是:轴对称图形的定义及其对称轴的条数.2.B【解析】根据必然事件、随机事件、不可能事件的意义结合具体问题情境进行判断即可.【详解】解:A.抛出的篮球会下落地,是必然事件,因此选项A不符合题意;B.汽车到达一个路口,可能遇到红灯,也可能不是红灯,因此是随机事件,所以选项B符合题意;C.任意三条线段可组成三角形,是不可能事件,所以选项C不符合题意;D.13个同学中至少有两个同学的生日在同一个月,是必然事件,所以选项D不符合题意;故选:B.本题考查必然事件、随机事件、不可能事件,理解必然事件、随机事件、不可能事件的意义是正确判断的前提.3.C【解析】【分析】根据对顶角的定义,如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,分别判断即可.【详解】解:A、两角两边没有互为反向延长线,选项错误;B、两角两边没有互为反向延长线,选项错误;C、有公共顶点,且两角两边互为反向延长线,选项正确.D、没有公共顶点,两角没有互为反向延长线,选项错误.故选:C.【点睛】本题考查对顶角的定义,根据定义解题是关键.4.D【解析】【分析】根据幂的乘方法则计算即可解答.【详解】解:(a2)3=a6,故选:D.【点睛】本题考查了幂的乘方法则,理清指数的变化是解题的关键.5.A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解:把130000000用科学记数法可表示为1.3×108.故选:A .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.C【解析】【分析】由已知可以得到∠ABC =∠BDE ,又CD =BC ,∠ACB =∠DCE ,由此根据角边角即可判定△EDC ≌△ABC ,则ED =AB .【详解】解:∵BF ⊥AB ,DE ⊥BF ,∴∠ABC =∠BDE在△EDC 和△ABC 中,ABC EDC BC DC ACB DCE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EDC ≌△ABC (ASA ).∴ED =AB .∵ED =30米,∴AB =30米.故选:C .【点睛】本题考查了全等三角形的应用;需注意根据垂直定义得到的条件,以及隐含的对顶角相等,观察图形,找着隐含条件是十分重要的.7.A【解析】【分析】先根据∠CED =50°,DE ∥AF ,即可得到∠CAF =50°,最后根据∠BAC =60°,即可得出∠BAF【详解】∵DE∥AF,∠CED=50°,∴∠CAF=∠CED=50°,∵∠BAC=60°,∴∠BAF=60°﹣50°=10°,故选:A.【点睛】此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键. 8.D【解析】【详解】解:根据题意,从20分钟到40分钟哥哥在书店里看书,离家距离没有变化,是一条平行于x轴的线段.故选D.9.D【解析】【详解】分析:①根据角平分线的性质得出结论:DE=CD;②证明△ACD≌△AED,得AD平分∠CDE;③由四边形的内角和为360°得∠CDE+∠BAC=180°,再由平角的定义可得结论是正确的;④由△ACD≌△AED得AC=AE,再由AB=AE+BE,得出结论是正确的.详解:①∵∠C=90°,AD平分∠BAC,DE⊥AB,∴DE=CD;所以此选项结论正确;②∵DE=CD,AD=AD,∠ACD=∠AED=90°,∴△ACD≌△AED,∴∠ADC=∠ADE,∴AD平分∠CDE,所以此选项结论正确;③∵∠ACD=∠AED=90°,∴∠CDE+∠BAC=360°-90°-90°=180°,∵∠BDE+∠CDE=180°,∴∠BAC=∠BDE,所以此选项结论正确;④∵△ACD≌△AED,∴AC=AE,∵AB=AE+BE,∴BE+AC=AB,所以此选项结论正确;本题正确的结论有4个,故选D.点睛:考查了全等三角形性质和判定,同时运用角平分线的性质得出两条垂线段相等;本题难度不大,关键是根据HL证明两直角三角形全等,根据等量代换得出线段的和,并结合四边形的内角和与平角的定义得出角的关系.10.B【解析】【详解】∵AB∥CD,∴∠EFB=∠DEM=55°,∵BE⊥MN,∴∠ABE=90°-55°=35°.故选B.11.24a【解析】【分析】根据单项式除以单项式的运算法则进行计算求解.【详解】解:原式=2a7﹣3=2a4,故答案为:2a4.【点睛】本题考查整式的除法运算,掌握单项式除以单项式的运算法则是解题基础.12.138【解析】【分析】由同旁内角互补,两直线平行可得AB//CD,可得∠1+∠2=180°,即可求解.【详解】解:∵∠4=75°,∠3=105°,∴∠4+∠3=75°+105°=180°,∴AB//CD,∴∠1+∠2=180°,∵∠1=42°,∴∠2=180°﹣∠2=180°﹣42°=138°,故答案为:138.【点睛】本题考查了平行线的判定和性质,掌握平行线的判定是本题的关键.13.3【解析】【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【详解】解:选择小正三角形涂黑,使整个被涂黑的图案构成一个轴对称图形,选择的位置有以下几种:1处,2处,3处,选择的位置共有3处.故答案为3.考点:概率公式;轴对称图形.14.20【解析】【分析】先把等式x+y=﹣6两边分别平方,得到x2+y2+2xy=36,再把xy=8代入,即可求出x2+y2的值.【详解】解:∵x+y=﹣6,∴(x+y)2=36,即x2+y2+2xy=36,∵xy=8,∴x2+y2+2×8=36,∴x2+y2=20,故答案为:20.【点睛】本题主要考查完全平方公式的应用,熟练掌握完全平方公式:(a±b)2=a2±2ab+b2,是本题解题关键.15.10002x【解析】【分析】根据剩下的书=总数1000本−送与学生的书的数量【详解】根据题意得到:y=1000−2x.故答案是:1000−2x.【点睛】本题主要考查了列代数式,解题的关键是读懂题意,找准等量关系.16.3 5【解析】【详解】∵奇数有3个,一共有5个球,∴摸出标有数字为奇数的球的概率为3 5 .17.20o【解析】【详解】∵AB∥CD,∠GHC=70°,∴∠ACE=∠GHC=70°,∵AE⊥EF,∴∠A=90°-70°=20°.18.7【解析】【分析】根据绝对值的定义、平方差公式的逆运用、乘方的意义以及有理数的混合运算解决此题.【详解】解:原式=1+(5.5+4.5)×(5.5﹣4.5)﹣4=1+10×1﹣4=1+10﹣4=7.【点睛】本题主要考查绝对值的定义、平方差公式的逆运用、乘方的意义以及有理数的混合运算,熟练掌握绝对值的定义、平方差公式的逆运用、乘方的意义是解决本题的关键.19.平行;平行;AD;BE;内错角相等,两直线平行;两直线平行,内错角相等;AB;DC;同位角相等,两直线平行【解析】【分析】因为∠DAE=∠E,所以根据内错角相等,两条直线平行,可以证明AD//BE;根据平行线的性质,可得∠D=∠DCE,结合已知条件,运用等量代换,可得∠B=∠DCE,可证明AB//DC.【详解】解:直线AD与BE平行,直线AB与DC平行.理由如下:∵∠DAE=∠E,(已知)∴AD//BE,(内错角相等,两条直线平行)∴∠D =∠DCE .(两条直线平行,内错角相等)又∵∠B =∠D ,(已知)∴∠B =∠DCE ,(等量代换)∴AB //DC .(同位角相等,两条直线平行)故答案为:平行;平行;AD ;BE ;内错角相等,两直线平行;两直线平行,内错角相等;AB ;DC ;同位角相等,两直线平行.【点睛】此题综合运用了平行线的性质和判定,关键是找准两条直线被第三条直线所截而形成的同位角、内错角.20.65x y -+;-16【解析】【分析】原式中括号中利用平方差公式及完全平方公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x 与y 的值代入计算即可求出值.【详解】解:原式2222(44129)(2)x y x xy y y =--+-÷-2(1210)(2)xy y y =-÷-65x y =-+,当1x =,2y =-时,原式61016=--=-.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.21.(1)13(2)16(3)1390(4)1930【解析】【详解】分析:根据题意,由相应房间的面积比上总面积90进行计算即可.详解:由题意可得:(1)P (在客厅捉到小猫)=301=903;(2)P (在小卧室捉到小猫)=151=906;(3)P (在卫生间捉到小猫)=9+413=9090;(4)P (不在卧室捉到小猫)=9018155719909030--==.点睛:知道:“在某个房间捉到小猫的概率=该房间的面积:米奇家住宅的总面积”是解答本题的关键.22.(1)见解析;(2)见解析.【解析】【分析】(1)根据网格结构找出点A 、B 、C 关于直线DE 对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据轴对称确定最短路线问题连接A1C 与DE 的交点即为所求点Q .【详解】(1)111A B C ∆如图所示;(2)连接1AC ,交DE 于点Q ,点Q 如图所示.【点睛】此题考查轴对称-最短路线问题,作图-轴对称变换,解题关键在于掌握作图法则.23.(1)见解析;(2)见解析【解析】【分析】(1)根据角平分线的性质可得ED =EC ,继而根据等边对等角的性质即可求证结论;(2)根据角平分线的性质和全等三角形的判定求证△OED ≌△OEC (AAS ),继而根据全等三角形的对应边相等得到结论.【详解】(1)∵OE平分∠AOB,EC⊥OA,ED⊥OB,∴ED=EC,即△CDE为等腰三角形,∴∠ECD=∠EDC;(2)∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴∠DOE=∠COE,又∠ODE=∠OCE=90°,OE=OE,∴△OED≌△OEC(AAS),∴OC=OD;【点睛】本题考查了角平分线的性质和垂直平分线的判定,全等三角形的判定与性质,熟记各性质是解题的关键.24.(1)25,115,小;(2)2,理由见解析;(3)能,110°或80°.【解析】【分析】(1)首先利用三角形内角和为180°可算出∠BAD=180°-40°-115°=25°;再利用邻补角的性质和三角形内角和定理可得∠DEC的度数;(2)当DC=2时,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE.(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.【详解】解:(1)∵∠B=40°,∠ADB=115°,∴∠BAD=180°-40°-115°=25°;∵∠ADE =40°,∠ADB =115°,∴∠EDC =180°-∠ADB -∠ADE =180°-115°-40°=25°.∴∠DEC =180°-40°-25°=115°,当点D 从B 向C 运动时,∠BDA 逐渐变小;故答案为:25,115,小;(2)当DC =2时,△ABD ≌△DCE ,理由:∵∠C =40°,∴∠DEC +∠EDC =140°,又∵∠ADE =40°,∴∠ADB +∠EDC =140°,∴∠ADB =∠DEC ,又∵AB =DC =2,在△ABD 和△DCE 中,ADB DECB C AB DC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△DCE (AAS );(3)当∠BDA 的度数为110°或80°时,△ADE 的形状是等腰三角形,∵∠BDA =110°时,∴∠ADC =70°,∵∠C =40°,∴∠DAC =70°,∴△ADE 的形状是等腰三角形;∵当∠BDA 的度数为80°时,∴∠ADC =100°,∵∠C =40°,∴∠DAC =40°,∴△ADE 的形状是等腰三角形.∴当∠BDA 的度数为110°或80°时,△ADE 的形状是等腰三角形.【点睛】本题主要考查了等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质,关键是要考虑全面,分情况讨论△ADE的形状是等腰三角形.25.115°【解析】【详解】∵DE∥BC∴∠ADE=∠B=50°,∠EDC=∠BCD∵CD平分∠ACB∴∠BCD=∠ECD=12∠ACB=12×30°=15°∴∠EDC=∠ECD=15°∴∠BDC=180°-∠ADE-∠EDC=180°-50°-15°=115°。
初一下学期数学期末考试试题内含答案
七年级下学期数学期末试题一.选择题( 每小题3分,共36分)1、如果点P(m ,1-2m)在第四象限,那么m 的取值范围是 ( )A .210<<m B .021<<-m C .0<m D .21>m 2、已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A .13cm B .6cm C .5cm D .4cm 3、若一个三角形三个内角度数的比为2︰3︰4,那么这个三角形是( ) A. 直角三角形 B. 锐角三角形 C. 钝角三角形 D. 等边三角形 4、若x y >,则下列式子错误的是( ) A .33x y ->- B .33x y ->-C .32x y +>+D .33x y > 5、如图,A ,B 的坐标为(2,0),(0,1).若将线段AB 平移至11A B ,则a b +的值为( )A .2B .3C .4D .56、如图,已知AB ∥CD,BE 平分∠ABC,且CD 于D 点, ∠CDE=150°,则∠C 为()A.120°B.150°C.135°D.110° 7、已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为 ( )A. 40°B. 100°C. 40°或100°D. 70°或50°8、为了了解我市参加中考的15000名学生的视力情况,抽查了1000名学生的视力进行统计分析.下面四个判断正确的是( )A .15000名学生是总体B .1000名学生的视力是总体的一个样本C .每名学生是总体的一个个体D .上述调查是普查 9、某校春季运动会比赛中,八年级(1)班、(5)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(5)班得分比为6 : 5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x 分,(5)班得y 分,根据题意所列的方程组应为( )A .65,240x y x y =⎧⎨=-⎩ B .65,240x y x y =⎧⎨=+⎩ C .56,240x y x y =⎧⎨=+⎩ D .56,240x y x y =⎧⎨=-⎩10、下列命题中错误的是( ))b 5题xE DCBAA . 三角形的中线、角平分线、高线都是线段;B . 任意多边形的外角和都是360°;C . 过一点有且只有一条直线与已知直线垂直D . 三角形的一个外角大于任何一个内角。
【人教版】七年级下册数学《期末考试卷》含答案解析
人教版数学七年级下学期期 末 测 试 卷(时间:120分钟 总分:120分) 学校________ 班级________ 姓名________ 座号________一.选择题1.下列命题不成立的是( )A. 等角的补角相等B. 两直线平行,内错角相等C. 同位角相等D. 对顶角相等 2.已知12x y =-⎧⎨=⎩是关于x 、y 的二元一次方程mx ﹣y =3的一个解,则m 的值是( ) A. ﹣1B. 1C. ﹣5D. 5 3.下列各式由左边到右边的变形中,属于分解因式的是( )A. ()a x y ax ay -=-B. 22()()a b a b a b -=+-C. 243(4)3x x x x -+=-+D. 211()a a a a+=+ 4.不等式组42x x ≤⎧⎨>⎩的解集在数轴上表示正确的是( ) A.B. C. D.5.下列运算正确的是( )A. 236x x x ⋅=B. 2242x x x +=C. 358(3)(5)15a a a -⋅-=D. 22(2)4x x -=- 6.下列多项式不能使用平方差公式的分解因式是( )A. 22m n --B. 2216x y -+C. 22b a -D. 22449a n - 7.已知a ,b ,c 是△ABC 的三条边长,化简|a +b ﹣c |+|b ﹣a ﹣c |的结果为( )A. 2a +2bB. 2a +2b ﹣2cC. 2b ﹣2cD. 2a 8.一副三角板按如图所示方式叠放在一起,则图中∠α等于( )A. 105oB. 115oC. 120oD. 135o 9.若m n >,下列不等式不一定成立的是( )A. 33m n ++>B. 33m n ﹣<﹣C. 33m n >D. 22m n > 10.若3x =15,3y =5,则3x-y 等于( )A. 5B. 3C. 15D. 1011.如果不等式组26x x x m -+<-⎧⎨>⎩的解集为x >4,m 的取值范围为( ) A .m <4B. m ≥4C. m ≤4D. 无法确定 12.计算(-2)2019+(-2)2018的值是( )A -2 B. 20182 C. 2 D. -2018213. 如图,将周长为8的△ABC 沿BC 方向平移1个单位得到△DEF ,则四边形ABFD 的周长为( )A. 6B. 8C. 10D. 1214.甲是乙现在的年龄时,乙8岁,乙是甲现在的年龄时,甲26岁,那么( )A. 甲20岁,乙14岁B. 甲22岁,乙16岁C. 乙比甲大18岁D. 乙比甲大34岁 15.如图,AB//EF ,C 90∠=o ,则α、β、γ的关系为( )A. βαγ=+B. αβγ180++=oC. βγα90+-=oD. αβγ90+-=o16.如图,D 是△ABC 的边BC 上任意一点,E 、F 分别是线段AD .CE 的中点,且△ABC 的面积为20cm 2,则△BEF 的面积是( )A. 10B. 9C. 6D. 5二.填空题17.(13)0=______. 18.如果a-b=3,ab=7,那么a 2b-ab 2=______.19.一根长为1的绳子恰好围成一个三角形,则这个三角形的最长边x 的取值范围是_________.20.如图,将△ABC 沿着平行于BC 的直线DE 折叠,点A 落到点A′,若∠C=125°,∠A=20°,则∠BDA′的度数为______.21.已知:如图,∠1=∠2,∠3=∠E ,试说明:∠A=∠EBC ,(请按图填空,并补理由,)证明:∵∠1=∠2(已知),∴______∥______,________∴∠E=∠______,________又∵∠E=∠3(已知),∴∠3=∠______(等量代换),∴______∥______(内错角相等,两直线平行),∴∠A=∠EBC ,________三.解答题22.按要求解下列问题(1)计算-a3(b3)2+(2ab2)3;(2)解不等式组()2x13x1 x523⎧+≥-⎪⎨+⎪⎩<.23.解下列各题:(1)分解因式:9a2(x﹣y)+4b2(y﹣x);(2)甲,乙两同学分解因式x2+mx+n,甲看错了n,分解结果为(x+2)(x+4);乙看错了m,分解结果为(x+1)(x+9),请分析一下m,n的值及正确的分解过程.24.请认真观察图形,解答下列问题:(1)根据图1中条件,试用两种不同方法表示两个阴影图形的面积的和.方法1:______;方法2:______.(2)从中你能发现什么结论?请用等式表示出来:______;(3)利用(2)中结论解决下面的问题:如图2,两个正方形边长分别为a、b,如果a+b=ab=4,求阴影部分的面积.25.某商店从厂家选购甲、乙两种商品,乙商品每件进价比甲商品每件进价少20元,若购进甲商品5件和乙商品4件共需要1000元;(1)求甲、乙两种商品每件的进价分别是多少元?(2)若甲种商品的售价为每件145元,乙种商品的售价为每件120元,该商店准备购进甲、乙两种商品共40件,且这两种商品全部售出后总利润不少于870元,则甲种商品至少可购进多少件?26.如图,在△ABC中,AD⊥BC,AE平分∠BAC(1)若∠B=70°,∠C=30°,求;①∠BAE的度数.②∠DAE度数.(2)探究:如果只知道∠B=∠C+40°,那么能求岀∠DAE度数吗?若能,请你写出求解过程;若不能,请说明理由.答案与解析一.选择题1.下列命题不成立的是()A. 等角的补角相等B. 两直线平行,内错角相等C. 同位角相等D. 对顶角相等【答案】C【解析】分析:对各个命题一一判断即可.详解:A. 等角的补角相等,正确.B. 两直线平行,内错角相等,正确.C.两直线平行,同位角相等.这是平行线的性质,没有两直线平行的前提,同位角相等,错误.D.对顶角相等,正确.故选C.点睛:考查命题真假的判断.比较简单.注意平行线的性质.2.已知12xy=-⎧⎨=⎩是关于x、y的二元一次方程mx﹣y=3的一个解,则m的值是()A. ﹣1B. 1C. ﹣5D. 5 【答案】C【解析】分析】把x与y值代入方程计算即可求出m的值.【详解】把12xy=-⎧⎨=⎩代入方程得:﹣m﹣2=3,解得:m =﹣5,故选:C .【点睛】考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.下列各式由左边到右边的变形中,属于分解因式的是( )A. ()a x y ax ay -=-B. 22()()a b a b a b -=+-C. 243(4)3x x x x -+=-+D. 211()a a a a+=+ 【答案】B【解析】【分析】根据分解因式的定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解,逐一判定即可.【详解】A 选项,不属于分解因式,错误;B 选项,属于分解因式,正确;C 选项,不属于分解因式,错误;D 选项,不能确定a 是否为0,错误;故选:B.【点睛】此题主要考查对分解因式的理解,熟练掌握,即可解题. 4.不等式组42x x ≤⎧⎨>⎩的解集在数轴上表示正确的是( ) A.B. C.D.【答案】C【解析】【分析】写出不等式解集,然后在数轴上表示出来.【详解】不等式组的解集为24x <≤ ∴答案选D.【点睛】本题主要考查了不等式在数轴上的表示,要注意实心与空心圆点的区别.5.下列运算正确的是( )A. 236x x x ⋅=B. 2242x x x +=C. 358(3)(5)15a a a -⋅-=D. 22(2)4x x -=-【答案】C【解析】【分析】 直接利用同底数幂的乘法运算法则.积的乘方运算法则以及单项式乘以单项式运算法则,即可得出答案.【详解】解:A .x 2•x 3=x 5,故此选项错误;B .x 2+x 2=2x 2,故此选项错误;C .(-3a 3)•(-5a 5)=15a 8,故此选项正确;D .(-2x )2=4x 2,故此选项错误;故选:C .【点睛】此题考查用同底数幂的乘法运算,积的乘方运算和单项式乘以单项式运算,正确掌握相关运算法则是解题关键.6.下列多项式不能使用平方差公式的分解因式是( )A. 22m n --B. 2216x y -+C. 22b a -D. 22449a n -【答案】A【解析】【分析】原式各项利用平方差公式的结构特征即可做出判断.【详解】下列多项式不能运用平方差公式分解因式的是22m n --.故选A .【点睛】此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.7.已知a ,b ,c 是△ABC 的三条边长,化简|a +b ﹣c |+|b ﹣a ﹣c |的结果为( )A. 2a +2bB. 2a +2b ﹣2cC. 2b ﹣2cD. 2a 【答案】D【解析】【分析】先根据三角形三条边的关系判断a+b-c 和b-a-c 的正负,然后根据绝对值的定义化简即可.【详解】解:∵a 、b 、c 为△ABC 的三条边长,∴a +b ﹣c >0,b ﹣a ﹣c <0,∴原式=a +b ﹣c ﹣(b ﹣a ﹣c )=a +b ﹣c +c +a ﹣b =2a .故选:D .【点睛】本题考查了三角形三条边的关系,以及绝对值的定义,熟练掌握三角形三条边的关系是解答本题的关键. 三角形任意两边之和大于第三边,任意两边之差小于第三边.8.一副三角板按如图所示方式叠放在一起,则图中∠α等于( )A. 105oB. 115oC. 120oD. 135o【答案】A【解析】【分析】 利用三角形内角和定理计算即可.【详解】解:由三角形的内角和定理可知:α=180°﹣30°﹣45°=105°,故选A .【点睛】本题考查三角形内角和定理,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考基础题.9.若m n >,下列不等式不一定成立的是( )A. 33m n ++>B. 33m n ﹣<﹣C. 33m n >D. 22m n >【答案】D【解析】【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,即可得到答案.【详解】解:A 、不等式的两边都加3,不等号的方向不变,故A 错误;B 、不等式的两边都乘以﹣3,不等号的方向改变,故B 错误;C 、不等式的两边都除以3,不等号的方向不变,故C 错误;D 、如2223m n m n m n =,=﹣,>,<;故D 正确;故选D .【点睛】主要考查了不等式的基本性质,“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.10.若3x=15,3y=5,则3x-y等于()A. 5B. 3C. 15D. 10【答案】B【解析】试题分析:3x-y=3x÷3y=15÷5=3;故选B.考点:同底数幂的除法.11.如果不等式组26x xx m-+<-⎧⎨>⎩的解集为x>4,m的取值范围为()A. m<4B. m≥4C. m≤4D. 无法确定【答案】C【解析】【分析】表示出不等式组中第一个不等式的解集,根据不等式组的解集确定出m的范围即可.【详解】解不等式﹣x+2<x﹣6得:x>4,由不等式组26x xx m-+<-⎧⎨>⎩的解集为x>4,得到m≤4,故选C.【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.12.计算(-2)2019+(-2)2018的值是()A.-2B. 20182C. 2D. -20182【答案】D 【解析】【分析】直接利用提取公因式法分解因式进而计算得出答案.【详解】解:(-2)2019+(-2)2018=(-2)2018×(-2+1)=-22018.故选:D.【点睛】此题考查提取公因式法分解因式,正确找出公因式是解题关键.13. 如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A. 6B. 8C. 10D. 12【答案】C【解析】解:根据题意,将周长为8个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故选C.14.甲是乙现在的年龄时,乙8岁,乙是甲现在的年龄时,甲26岁,那么()A. 甲20岁,乙14岁B. 甲22岁,乙16岁C. 乙比甲大18岁D. 乙比甲大34岁【答案】A【解析】【分析】设甲现在的年龄为x岁,乙现在的年龄为y岁,根据题意列出二元一次方程组即可求解.【详解】设甲现在的年龄为x岁,乙现在的年龄为y岁.依题意得()8()26y x yx x y--=⎧⎨+-=⎩,解2014xy=⎧⎨=⎩.故选A【点睛】此题主要考查二元一次方程组的应用,解题的关键根据题意找到等量关系列方程求解.15.如图,AB//EF,C90∠=o,则α、β、γ的关系为()A. βαγ=+B. αβγ180++=oC. βγα90+-=oD. αβγ90+-=o【答案】D【解析】解:方法一:延长DC 交AB 于G ,延长CD 交EF 于H .直角BGC V 中,190α∠=︒-;EHD △中,2βγ∠=-.因为AB EF P ,所以12∠=∠,于是90αβγ︒-=-,故90αβγ+-=︒.故选D .方法二:过点C 作CM AB ∥,过点D 作DN AB ∥,则由平行线的性质可得:BCM α∠=∠,NDE γ∠=,MCD CDN ∠=∠,∴90αβγ︒-∠=∠-∠,故90αβγ∠+∠-∠=︒,故选D 项.点睛:本题考查通过构造辅助线,同时利用三角形外角的性质以及平行线的性质建立角之间的关系. 16.如图,D 是△ABC 的边BC 上任意一点,E 、F 分别是线段AD .CE 的中点,且△ABC 的面积为20cm 2,则△BEF 的面积是( )A. 10B. 9C. 6D. 5 【答案】D【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】解:∵点E是AD的中点,∴S△ABE=12S△ABD,S△ACE=12S△ADC,∴S△ABE+S△ACE=12S△ABC=12×20=10cm2,∴S△BCE=12S△ABC=12×20=10cm2,∵点F是CE的中点,∴S△BEF=12S△BCE=12×10=5cm2.故选:D.【点睛】此题考查三角形的面积,解题关键在于利用三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.二.填空题17.(13)0=______.【答案】1【解析】【分析】根据零指数幂的性质计算.【详解】解:原式=1故答案为:1【点睛】此题考查零指数幂,解题关键在于掌握运算法则.18.如果a-b=3,ab=7,那么a2b-ab2=______.【答案】21【解析】【分析】直接将原式提取公因式ab,进而将已知代入数据求出答案.【详解】解:∵a-b=3,ab=7,∴a2b-ab2=ab(a-b)=3×7=21.故答案为:21.【点睛】此题考查提取公因式分解因式,正确分解因式是解题关键.19.一根长为1的绳子恰好围成一个三角形,则这个三角形的最长边x的取值范围是_________.【答案】11 32x≤<【解析】【分析】设其他两边的边长分别为y、z,然后根据三角形三边关系和x为最长边,列出不等式可得出结论. 【详解】设其他两边的边长分别为y、z,∵三角形周长为1,∴x+y+z=1,由三角形三边关系可得y+z>x,即1-x>x,解得12x<,又∵x为最长边,∴x≥y,x≥z,∴2x≥y+z,即2x≥1-x,解得13 x≥,综上可得11 32x≤<.【点睛】本题考查三角形的三边关系,掌握两较短边之和大于最长边是本题的关键.20.如图,将△ABC沿着平行于BC的直线DE折叠,点A落到点A′,若∠C=125°,∠A=20°,则∠BDA′的度数为______.【答案】110°【解析】【分析】根据三角形的内角和等于180°求出∠B,根据两直线平行,同位角相等可得∠ADE=∠B,再根据翻折变换的性质可得∠A′DE=∠ADE,然后根据平角等于180°列式计算即可得解.【详解】解:∵∠C=125°,∠A=20°,∴∠B=180°-∠A-∠C=180°-20°-125°=35°,∵△ABC沿着平行于BC的直线折叠,点A落到点A′,∴∠ADE=∠B=35°,∴∠A′DE=∠ADE=35°,∴∠A′DB=180°-35°-35°=110°.故答案为:110°.【点睛】此题考查平行线的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.21.已知:如图,∠1=∠2,∠3=∠E,试说明:∠A=∠EBC,(请按图填空,并补理由,)证明:∵∠1=∠2(已知),∴______∥______,________∴∠E=∠______,________又∵∠E=∠3(已知),∴∠3=∠______(等量代换),∴______∥______(内错角相等,两直线平行),∴∠A=∠EBC,________【答案】 (1). DB (2). EC (3). 内错角相等,两直线平行 (4). 4 (5). 两直线平行,内错角相等 (6). 4 (7). AD (8). BE (9). 两直线平行,同位角相等【解析】【分析】根据平行线的判定得出DB ∥EC ,根据平行线的性质得出∠E=∠4,求出∠3=∠4,根据平行线的判定得出AD ∥BE 即可.【详解】证明:∵∠1=∠2(已知),∴DB ∥EC (内错角相等,两直线平行),∴∠E=∠4(两直线平行,内错角相等),又∵∠E=∠3(已知),∴∠3=∠4( 等量代换),∴AD ∥BE (内错角相等,两直线平行),∴∠A=∠EBC (两直线平行,同位角相等),故答案为:DB ,EC ,内错角相等,两直线平行,4,两直线平行,内错角相等,4,AD ,BE ,两直线平行,同位角相等.【点睛】此题考查平行线的性质和判定定理,能灵活运用定理进行推理是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.三.解答题22.按要求解下列问题(1)计算-a 3(b 3)2+(2ab 2)3;(2)解不等式组()2x 13x 1x 523⎧+≥-⎪⎨+⎪⎩<. 【答案】(1)7a 3b 6;(2)x <1.【解析】【分析】(1)根据整式的运算法则即可求出答案;(2)根据不等式组的解法即可求出答案.【详解】解:(1)原式=-a 3b 6+8a 3b 6=7a 3b 6(2)()2x13x1x523⎧+≥-⎪⎨+⎪⎩①<②,由①得:x≤3,由②得:x<1,∴不等式组的解集为:x<1.【点睛】此题考查整式的加减运算,解一元一次不等式组,解题的关键是熟练运用运算法则,本题属于基础题型.23.解下列各题:(1)分解因式:9a2(x﹣y)+4b2(y﹣x);(2)甲,乙两同学分解因式x2+mx+n,甲看错了n,分解结果为(x+2)(x+4);乙看错了m,分解结果为(x+1)(x+9),请分析一下m,n的值及正确的分解过程.【答案】(1)(x﹣y)(3a+2b)(3a﹣2b);(2)m=6,n=9,(x+3)2.【解析】【分析】(1)用提取公因式和平方差公式进行因式分解即可解答;(2)根据已知条件分别求出m和n的值,然后进行因式分解即可解答.【详解】解:(1)原式=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(2)∵(x+2)(x+4)=x2+6x+8,甲看错了n,∴m=6.∵(x+1)(x+9)=x2+10x+9,乙看错了m,∴n=9,∴x2+mx+n=x2+6x+9=(x+3)2.【点睛】本题考查了用提取公因式和平方差公式进行因式分解,熟练掌握解题的关键.24.请认真观察图形,解答下列问题:(1)根据图1中条件,试用两种不同方法表示两个阴影图形的面积的和.方法1:______;方法2:______.(2)从中你能发现什么结论?请用等式表示出来:______;(3)利用(2)中结论解决下面的问题:如图2,两个正方形边长分别为a、b,如果a+b=ab=4,求阴影部分的面积.【答案】(1)a2+b2,(a+b)2-2ab;(2)a2+b2=(a+b)2-2ab;(3)阴影部分的面积=2.【解析】【分析】(1)方法1:两个正方形面积和,方法2:大正方形面积-两个小长方形面积;(2)由题意可直接得到;(3)由阴影部分面积=正方形ABCD的面积+正方形CGFE的面积-三角形ABD的面积-三角形BGF的面积,可求阴影部分的面积.【详解】解:(1)由题意可得:方法1:a2+b2方法2:(a+b)2-2ab,故答案为:a2+b2,(a+b)2-2ab;(2)a2+b2=(a+b)2-2ab,故答案为:a2+b2=(a+b)2-2ab;(3)∵阴影部分的面积=S正方形ABCD+S正方形CGFE-S△ABD-S△BGF=a2+b2-12a2-12(a+b)b∴阴影部分的面积=12a2+12b2-12ab=12[(a+b)2-2ab]-12ab,∵a+b=ab=4,∴阴影部分的面积=12[(a+b)2-2ab]-12ab=2.【点睛】此题考查完全平方公式的几何背景,用代数式表示图形的面积是解题的关键.25.某商店从厂家选购甲、乙两种商品,乙商品每件进价比甲商品每件进价少20元,若购进甲商品5件和乙商品4件共需要1000元;(1)求甲、乙两种商品每件的进价分别是多少元?(2)若甲种商品的售价为每件145元,乙种商品的售价为每件120元,该商店准备购进甲、乙两种商品共40件,且这两种商品全部售出后总利润不少于870元,则甲种商品至少可购进多少件?【答案】(1)甲120元,乙100元;(2)14件【分析】1)设甲种商品每件进价是x 元,乙种商品每件进价是y 元,根据“乙商品每件进价比甲商品每件进价多20元,若购进甲商品5件和乙商品4件共需要1000元”列出方程组解答即可;(2)设购进甲种商品a 件,则乙种商品(40﹣a )件,根据“全部售出后总利润(利润=售价﹣进价)不少于870元”列出不等式解答即可.【详解】(1)设甲商品进价每件x 元,乙商品进价每件y 元,根据题意得:20541000y x x y -=⎧⎨+=⎩解得:120100x y =⎧⎨=⎩. 答:甲商品进价每件120元,乙商品进价每件100元.(2)设甲商品购进a 件,则乙商品购进(40﹣a )件(145-120)a +(120-100)(40-a )≥870∴a ≥14.∵a 为整数,∴a 至少为14.答:甲商品至少购进14件.【点睛】本题主要考查了二元一次方程组的应用以及一元一次不等式的应用,解决本题的关键是读懂题意,找到所求量的等量关系及符合题意的不等关系式.26.如图,在△ABC 中,AD ⊥BC ,AE 平分∠BAC(1)若∠B=70°,∠C=30°,求;①∠BAE 的度数.②∠DAE 的度数.(2)探究:如果只知道∠B=∠C+40°,那么能求岀∠DAE 的度数吗?若能,请你写出求解过程;若不能,请说明理由.【答案】(1)①∠BAE=40°;②∠DAE=20°;(2)∠DAE=20°.【解析】(1)①利用三角形的内角和定理求出∠BAC,再利用角平分线定义求∠BAE.②先求出∠BAD,就可知道∠DAE的度数.(2)用∠B,∠C表示∠DAE,即可求岀∠DAE的度数.【详解】解:(1)①∵∠B=70°,∠C=30°,∴∠BAC=180°-70°-30°=80°,∵AE平分∠BAC,∴∠BAE=40°;②∵AD⊥BC,∠B=70°,∴∠BAD=90°-∠B=90°-70°=20°,而∠BAE=40°,∴∠DAE=20°;(2)∵AE为角平分线,∴∠BAE=12(180°-∠B-∠C),∵∠BAD=90°-∠B,∴∠DAE=∠BAE-∠BAD=12(180°-∠B-∠C)-(90°-∠B)=12(∠B-∠C),又∵∠B=∠C+40°,∴∠B-∠C=40°,∴∠DAE=20°.【点睛】此题考查了三角形内角和定理,熟练运用角平分线定义和三角形的内角和定理是解题的关键。
人教版初一下册《数学》期末考试卷及答案【可打印】
一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 2B. 4C. 6D. 82. 下列哪个图形是正方形?A.B.C.D.3. 下列哪个数是分数?A. 3.14B. 2/3C. 5D. 7.894. 下列哪个图形是三角形?A.B.C.D.5. 下列哪个数是偶数?A. 3B. 4C. 5D. 7二、判断题(每题1分,共5分)1. 2的平方是4。
()2. 正方形的对角线相等。
()3. 分数和小数可以互相转换。
()4. 三角形的内角和是180度。
()5. 奇数加偶数等于奇数。
()三、填空题(每题1分,共5分)1. 5的立方是______。
2. 正方形的面积是边长的______。
3. 分数3/4可以写成小数______。
4. 三角形的周长是______。
5. 偶数乘以偶数等于______。
四、简答题(每题2分,共10分)1. 请简述质数和合数的区别。
2. 请简述正方形和长方形的区别。
3. 请简述分数和小数的区别。
4. 请简述三角形和四边形的区别。
5. 请简述奇数和偶数的区别。
五、应用题(每题2分,共10分)1. 一个正方形的边长是5厘米,请计算它的面积。
2. 一个分数是2/3,请将它转换为小数。
3. 一个三角形的底是6厘米,高是4厘米,请计算它的面积。
4. 一个奇数是7,请计算它与相邻的偶数的和。
5. 一个长方形的长是8厘米,宽是4厘米,请计算它的周长。
六、分析题(每题5分,共10分)1. 分析正方形和长方形的性质,并举例说明。
2. 分析三角形和四边形的性质,并举例说明。
七、实践操作题(每题5分,共10分)1. 请用尺子和圆规画一个正方形。
2. 请用尺子和圆规画一个三角形。
八、专业设计题(每题2分,共10分)1. 设计一个包含至少三个质数的数列。
2. 设计一个正方形,使其面积等于24平方厘米。
3. 设计一个分数,使其小于1/2。
4. 设计一个三角形,使其周长等于15厘米。
5. 设计一个偶数,使其能被4整除。
初一下学期数学期末考试试题内含答案
初一下学期数学期末考试试题内含答案7年级下学期数学期末试题一、选择题(每小题3分,共36分)1、如果点P(m,1-2m)在第四象限,那么m的取值范围是()A.m<0B.-1/2<m<0C.m>0D.m<1/22、已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cmB.6cmC.5cmD.4cm3、若一个三角形三个内角度数的比为2︰3︰4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形4、若x>y,则下列式子错误的是()A.x-3>y-3B.3-x>3-yC.x+3>y+2D.xy>3/35、如图,A,B的坐标为(2,1),(3,b).若将线段AB平移至AB1,则a+b的值为()A.2B.3C.4D.56、如图,已知AB∥CD,BE平分∠ABC,且CD于D点,∠CDE=150°,则∠C为(A.120°B.150°C.135°D.110°7、已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为()A。
40°B。
100°C。
40°或100°D。
70°或50°8、为了了解我市参加中考的名学生的视力情况,抽查了1000名学生的视力进行统计分析.下面四个判断正确的是()A.名学生是总体B.1000名学生的视力是总体的一个样本C.每名学生是总体的一个个体D.上述调查是普查9、某校春季运动会比赛中,八年级(1)班、(5)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(5)班得分比为6:5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x分,(5)班得y分,根据题意所列的方程组应为()6x=5y。
A.x+2y=40 6x=5y。
B.x-2y=40 5x=6y。
新人教版七年级数学下册期末考试卷及答案【完整版】
新人教版七年级数学下册期末考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±3 2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==4.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元5.如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A .122°B .151°C .116°D .97°6.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3( )A .70°B .180°C .110°D .80°7.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .1320 8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.如图,在菱形ABCD 中,2,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a+1)2+|b+5|=b+5,且|2a-b-1|=1,则ab=___________.2.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=________.3.正五边形的内角和等于______度.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.2的相反数是________.5.若x的相反数是3,y=5,则x y+的值为_________.三、解答题(本大题共6小题,共72分)1.解方程:1314(1)(5) 243x x x⎡⎤--=+⎢⎥⎣⎦.2.已知x、y满足方程组52251x yx y-=-⎧⎨+=-⎩,求代数式()()()222x y x y x y--+-的值.3.如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a =3,b =2时,求矩形中空白部分的面积.4.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.5.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.6.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、B6、C7、B8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、40°3、5404、-405、﹣2.6、2或-8三、解答题(本大题共6小题,共72分)1、1x2、3 53、(1)S=ab﹣a﹣b+1;(2)矩形中空白部分的面积为2;4、(1)略;(2)略.5、(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.6、(1)A种纪念品需要100元,购进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元。
初一数学下期末考试试题及答案
初一数学下期末考试试题及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.333...D. -5答案:A2. 若两个角互为补角,则它们的和为:A. 90°B. 180°C. 270°D. 360°答案:B3. 已知直角三角形的两个直角边分别为6cm和8cm,则斜边长为:A. 10cmB. 12cmC. 15cmD. 20cm答案:A4. 下列函数中,是正比例函数的是:A. y = 2x + 3B. y = x^2C. y = -3xD. y = x^3答案:C5. 若平行四边形ABCD的对角线交于点E,已知BE=4cm,CE=6cm,则BD的长度为:A. 5cmB. 10cmC. 12cmD. 16cm答案:B6. 已知一个圆的半径为5cm,则其直径为:A. 10cmB. 14cmC. 20cmD. 25cm答案:A7. 下列哪个数是立方根:A. 27B. 9C. 6D. 3答案:A8. 若一个数的平方根为3,则这个数为:A. 9B. -9C. 3D. -3答案:A9. 已知一个等腰三角形的底边长为8cm,腰长为5cm,则这个三角形的周长为:A. 16cmB. 18cmC. 20cmD. 22cm答案:C10. 在梯形ABCD中,AB//CD,AB=6cm,CD=10cm,AD=8cm,BC=5cm,则梯形的高为:A. 2cmB. 3cmC. 4cmD. 5cm答案:B二、填空题(每题4分,共40分)1. 若两个角互为补角,它们的和为_______。
答案:180°2. 已知直角三角形的两个直角边分别为6cm和8cm,则斜边长为_______。
答案:10cm3. 下列函数中,是正比例函数的是:y = _______。
答案:-3x4. 若平行四边形ABCD的对角线交于点E,已知BE=4cm,CE=6cm,则BD的长度为_______。
初一数学下册期末考试试题及答案
-初一数学下册期末考试试题满分:120分 时间:120分钟一、选一选,比比谁细心(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.—的绝对值的倒数是( ).(A ) (B )— (C )—3 (D ) 32.方程5—3x=8的解是( ).(A )x=1 (B)x=—1 (C )x= (D )x=-3.如果收入15元记作+15元,那么支出20元记作( )元。
(A)+5 (B)+20 (C )-5 (D )—204.有理数,,, ,—(-1),中,其中等于1的个数是( )。
(A)3个 (B )4个 (C )5个 (D)6个5.已知p 与q 互为相反数,且p ≠0,那么下列关系式正确的是( ).(A ) (B ) (C) (D ) p=q6.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m,用科学记数法表示这个数为( )。
(A )1。
68×104m (B )16。
8×103 m (C )0。
168×104m (D )1。
68×103m7.下列变形中, 不正确的是( ).(A) a +b -(-c -d )=a +b +c +d (B ) a +(b +c -d )=a +b +c -d(C ) a -b -(c -d )=a -b -c -d (D )a -(b -c +d )=a -b +c -d8.如图,若数轴上的两点A 、B 表示的数分别为a 、b ,则下列结论正确的是( ).(A) b -a 〉0(B) a -b 〉0(C) ab >0(D ) a +9.按括号内的要求,用四舍五入法,对1022.0099取近似值, 其中错误的是( )。
(A )1022。
01(精确到0.01) (B)1.0×103(保留2个有效数字)(C)1020(精确到十位) (D)1022。
010(精确到千分位)10.“一个数比它的相反数大—14",若设这数是x ,则可列出关于x 的方程为( )。
新人教版七年级数学下册期末考试题(含答案)
新人教版七年级数学下册期末考试题(含答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.02.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是()A.160元B.180元C.200元D.220元3.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x 轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5) B.10,(3,﹣5)C.1,(3,4) D.3,(3,2)4.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A.2xx y+-B.22yxC.3223yxD.222()yx y-5.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.12 BC AB=6.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是()A.两点之间线段最短B.点到直线的距离C.两点确定一条直线D.垂线段最短7.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,58.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .33C .26D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.81的平方根是________.2.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.3.如图,点E 是AD 延长线上一点,如果添加一个条件,使BC ∥AD ,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S 1=4,S 2=9,S 3=8,S 4=10,则S=________.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =10,DH =4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.解下列不等式(组),并把它们的解集在数轴上表示出来:(1)9221163x x +--≥- (2)()328134x x x x ⎧+>+⎪⎨-≤⎪⎩①②2.已知方程组351ax by x cy +=⎧⎨-=⎩,甲正确地解得23x y =⎧⎨=⎩,而乙粗心地把C 看错了,得36x y =⎧⎨=⎩,试求出a ,b ,c 的值.3.如图,AD 平分∠BAC 交BC 于点D ,点F 在BA 的延长线上,点E 在线段CD 上,EF 与AC 相交于点G ,∠BDA+∠CEG=180°.(1)AD 与EF 平行吗?请说明理由;(2)若点H 在FE 的延长线上,且∠EDH=∠C ,则∠F 与∠H 相等吗,请说明理由.4.如图,在△ABC 和△ADE 中,AB=AC ,AD=AE ,且∠BAC=∠DAE ,点E 在BC 上.过点D 作DF ∥BC ,连接DB .求证:(1)△ABD ≌△ACE ;(2)DF=CE .5.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了 名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?6.为支援灾区,某校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品共1000件.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A型学习用品的件数相同.(1)求A、B两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、D4、D5、C6、D7、C8、C9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、83、∠A +∠ABC =180°或∠C +∠ADC =180°或∠CBD =∠ADB 或∠C =∠CDE4、50°5、316、48三、解答题(本大题共6小题,共72分)1、(1)2x ≥-,画图见解析;(2)14x <≤,画图见解析2、a =3,b =﹣1,c =3.3、略4、(1)证明略;(2)证明略.5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.6、(1)A 型学习用品20元,B 型学习用品30元;(2)800.。
人教版初一下册《数学》期末考试卷及答案【可打印】
一、选择题(每题1分,共5分)1. 下列数中,最大的数是()A. 2^3B. 3^2C. 2^2D. 3^32. 下列哪一个图形是平行四边形?()A.B.C.D.3. 一个正方形的边长为2,那么它的对角线长为()A. 2B. 2√2C. 4D. 4√24. 下列哪一个数是质数?()A. 21B. 31C. 29D. 205. 下列哪一个比例式是正确的?()A. a:b = b:aB. a:b = a:cC. a:b = c:dD. a:b = b:c二、判断题(每题1分,共5分)1. 任何两个奇数相加的结果都是偶数。
()2. 任何两个偶数相乘的结果都是偶数。
()3. 1是质数。
()4. 任何一个正整数都可以分解为几个质数的乘积。
()5. 两条平行线之间的距离是相等的。
()三、填空题(每题1分,共5分)1. 2^5 = _______。
2. 如果一个正方形的边长为3,那么它的面积为_______。
3. 两个质数相乘的结果是_______。
4. 如果a:b = 3:4,那么a和b的比例式是_______。
5. 两条平行线之间的距离是_______。
四、简答题(每题2分,共10分)1. 请简述平行四边形的性质。
2. 请简述质数的定义。
3. 请简述比例式的性质。
4. 请简述因式分解的意义。
5. 请简述勾股定理。
五、应用题(每题2分,共10分)1. 如果一个正方形的边长为4,那么它的对角线长为多少?2. 如果a:b = 2:3,那么a和b的比例式是什么?3. 请将20分解为几个质数的乘积。
4. 如果一个长方形的长为6,宽为4,那么它的面积是多少?5. 如果一个三角形的两个直角边长分别为3和4,那么它的斜边长为多少?六、分析题(每题5分,共10分)1. 请分析平行四边形和矩形的性质,并说明它们之间的关系。
2. 请分析质数和合数的区别,并说明它们在数学中的应用。
七、实践操作题(每题5分,共10分)1. 请用直尺和圆规画出一个边长为5的正方形。
七年级数学下册期末考试及答案【必考题】
七年级数学下册期末考试及答案【必考题】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知m=4+3,则以下对m 的估算正确的( )A .2<m <3B .3<m <4C .4<m <5D .5<m <62.下列说法中正确的是( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01±3.已知x+y =﹣5,xy =3,则x 2+y 2=( )A .25B .﹣25C .19D .﹣194.若关于x 的不等式3x-2m ≥0的负整数解为-1,-2,则m 的取值范围是( )A .96m 2-≤<-B .96m 2-<≤-C .9m 32-≤<-D .9m 32-<≤- 5.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°6.关于x 的一元一次不等式≤﹣2的解集为x ≥4,则m 的值为( )A .14B .7C .﹣2D .27.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( )A .赚16元B .赔16元C .不赚不赔D .无法确定 8.6的相反数为( )A .-6B .6C .16-D .169.下列各组数值是二元一次方程x ﹣3y =4的解的是( )A .11x y =⎧⎨=-⎩B .21x y =⎧⎨=⎩C .12x y =-⎧⎨=-⎩D .41x y =⎧⎨=-⎩10.如图,已知直线a ∥b ,则∠1、∠2、∠3的关系是( )A .∠1+∠2+∠3=360°B .∠1+∠2﹣∠3=180°C .∠1﹣∠2+∠3=180°D .∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=________.2.已知654a b c ==,且26a b c +-=,则a 的值为__________. 3.如图所示,在等腰△ABC 中,AB=AC ,∠A=36°,将△ABC 中的∠A 沿DE 向下翻折,使点A 落在点C 处.若AE=3,则BC 的长是________.4.若方程x+5=7﹣2(x ﹣2)的解也是方程6x+3k =14的解,则常数k =________.5.因式分解:34a a -=_____________.6.如图,直线12l l //,120︒∠=,则23∠+∠=________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)4935x yx y-+=⎧⎨+=⎩(2)3224()5()2x yx y x y+=⎧⎨+--=⎩2.先化简,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2018,y=2019.3.在△ABC中,AB=AC,点D是射线CB上的一个动点(不与点B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE=______度.(2)设∠BAC=α,∠DCE=β.①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).4.如图,已知∠1,∠2互为补角,且∠3=∠B,(1)求证:∠AFE=∠ACB(2)若CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度数.5.现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数;(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.6.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、C6、D7、B8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)11、10012、121314、2315、(2)(2)a a a +-16、200°三、解答题(本大题共6小题,共72分)17、(1)12x y =-⎧⎨=⎩;(2)71x y =⎧⎨=⎩18、(x ﹣y)2;1.19、(1)90°;(2)①α+β=180°;②α=β.20、(1)详略;(2)70°.21、(1)甲蛋糕店数量为100家,该市蛋糕店总数为600家;(2)甲公司需要增设25家蛋糕店.22、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.。
2022年人教版七7年级下册数学期末考试试卷(及答案)
2022 年人教版七 7 年级下册数学期末考试试卷(及答案)一、选择题1.如图所示,下列结论中正确的是()A.∠1 和∠2 是同位角B.∠2 和∠3 是同旁内角C.∠1 和∠4 是内错角2.在下列现象中,属于平移的是().D.∠3 和∠4 是对顶角A.荡秋千运动B.月亮绕地球运动C.操场上红旗的飘动D.教室可移动黑板的左右移动3.在平面直角坐标系中,点(1,0)所在的位置是()A.x 轴B.y 轴C.第一象限D.第四象限4.下列命题:①平面内,垂直于同一条直线的两直线平行;②经过直线外一点,有且只有一条直线与这条直线平行;③垂线段最短;④同旁内角互补.其中,正确命题的个数有()A.3 个B.2 个C.1 个D.0 个5.将一副三角板按如图放置,如果∠2 =30︒,则有∠4 是()A.15°B.30°6.下列等式正确的是()49 7C.45°D.60°27 3A.-9 =-3 B.=±144 12C.3(-8)2 =4 D.-3 -8=-27.如图,ABCD为一长方形纸片,AB∥CD,将ABCD沿E折叠,A、D两点分别与A′、D′对应,若∠CFE=2∠CFD′,则∠AEF的度数是()A.60°B.80°C.75°D.72°12 3 4 5 6 202118. 如图,在平面直角坐标系中,每个最小方格的边长均为1 个单位长度,P ,P ,P ,…123均在格点上,其顺序按图中“→”方向排列,如:P (0,0),P (0,1),P (1,1),P (1,﹣1),P (﹣1,﹣1),P (﹣1,2)…根据这个规律,点 P 的坐标为( )A .(﹣505,﹣505) C .(506,506)九、填空题9. 若 x =x ,则x 的值为 .十、填空题B .(﹣505,506) D .(505,﹣505)10. 已知点 P (3,﹣1)关于y 轴的对称点Q 的坐标是 .十一、填空题11. 如图 AB / /CD ,分别作∠AEF 和∠CFE 的角平分线交于点P ,称为第一次操作,则 ∠P = ;接着作∠AEP 和∠CFP 的角平分线交于P ,称为第二次操作,继续作∠AEP 1 1 1 22和∠CFP 的角平分线交于P ,称方第三次操作,如此一直操作下去,则∠P = .2 2 n十二、填空题12. 如图:已知 AB ∥ CD ,CE ∥ BF ,∠ AEC =45°,则∠ BFD =.十三、填空题13. 如图,将长方形 ABCD 沿 DE 折叠,使点 C 落在边 AB 上的点 F 处,若∠EFB = 45︒ ,则∠DEC = °1 2 n 20213 ⎪十四、填空题14. 按下面的程序计算:若输入 n=100,输出结果是 501;若输入 n=25,输出结果是 631,若开始输入的 n 值为正整数,最后输出的结果为 656,则开始输入的 n 值可以是.十五、填空题15. 在平面直角坐标系中,点 P 的坐标为(-2, -a 2 -1),则点 P 在第象限.十六、填空题16. 在平面直角坐标系中,一个智能机器人接到如下指令,从原点O 出发,按向右、向上、向右、向下…的方向依次不断移动,每次移动1 个单位,其行走路线如图所示,第1 次移动到 A ,第 2 次移动到 A ,…第 n 次移动到 A ,则 A 的坐标是 .十七、解答题17. 计算下列各式的值:(1)|–2|– 3 –8 +(–1)2021; (2) 3 ⎛ ⎝3+ 1 ⎫– ⎭ (–6)2 .十八、解答题18. 求下列各式中的 x 值 1(1)x 2﹣6 =41(2) (2x ﹣1)3=﹣42十九、解答题19. 根据下列证明过程填空:已知:如图, AD ⊥ BC 于点 D , EF ⊥ BC 于点 F ,∠4 =∠C .求证:∠1 =∠2 .证明:∵AD ⊥BC ,EF ⊥BC (已知)∴∠ADC = =90︒()∴AD / / EF ()∴∠1 = ()又∵∠4 =∠C (已知)∴AC / / ()∴∠2 = ()∴∠1 =∠2 ()二十、解答题20.已知在平面直角坐标系中有三点A(-3,0) ,B(5,4) ,C(1,5),请回答如下问题:(1)在平面直角坐标系内描出A 、B 、C ,连接三边得到ABC ;(2)将ABC 三点向下平移2 个单位长度,再向左平移1 个单位,得到△A B C ;画出△ A B C1 1 1 ,并写出A 、B 、C 三点坐标;1 1 11 1 1(3)求出△A B C 的面积.1 1 1二十一、解答题21.在学习《实数》内容时,我们通过“逐步逼近”的方法可以计算出 2 的近似值,得出1.4< 2 <1.5.利用“逐步逼近“法,请回答下列问题:(1)17 介于连续的两个整数a 和b 之间,且a<b,那么a=,b=.(2)x 是17 +2 的小数部分,y 是17 ﹣1 的整数部分,求x=,y=.(3)(17 ﹣x)y的平方根.二十二、解答题22.有一块正方形钢板,面积为16 平方米.(1)求正方形钢板的边长.(2)李师傅准备用它裁剪出一块面积为12 平方米的长方形工件,且要求长宽之比为3: 2 ,问李师傅能办到吗?若能,求出长方形的长和宽;若不能,请说明理由.(参考数据: 2 ≈1.414 , 3 ≈1.732 ).二十三、解答题23.已知,AB∥CD,点E 在CD 上,点G,F 在AB 上,点H 在AB,CD 之间,连接FE,EH,HG,∠AGH=∠FED,FE⊥HE,垂足为E.(1)如图1,求证:HG⊥HE;(2)如图2,GM 平分∠HGB,EM 平分∠HED,GM,EM 交于点M,求证:∠GHE=2∠GME;(3)如图3,在(2)的条件下,FK 平分∠AFE 交CD 于点K,若∠KFE:∠MGH=13:5,求∠HED 的度数.二十四、解答题24.如图1,AB//CD ,E 是AB 、CD 之间的一点.(1)判定∠BAE ,∠CDE 与∠AED 之间的数量关系,并证明你的结论;(2)如图2,若∠BAE 、∠CDE 的两条平分线交于点F.直接写出∠AFD 与∠AED 之间的数量关系;(3)将图2 中的射线DC 沿DE 翻折交AF 于点G 得图3,若∠AGD 的余角等于2∠E 的补角,求∠BAE 的大小.二十五、解答题25.(1)如图1 所示,△ABC 中,∠ACB 的角平分线CF 与∠EAC 的角平分线AD 的反向延长线交于点F;①若∠B=90°则∠F=;②若∠B=a,求∠F 的度数(用 a 表示);(2)如图2 所示,若点G 是CB 延长线上任意一动点,连接AG,∠AGB 与∠GAB 的角平分线交于点H,随着点G 的运动,∠F+∠H 的值是否变化?若变化,请说明理由;若不变,请求出其值.【参考答案】一、选择题1.B解析:B【分析】根据同位角,内错角,同旁内角以及对顶角的定义进行解答.【详解】解:A、∠1 和∠2 是同旁内角,故本选项错误;B、∠2 和∠3 是同旁内角,故本选项正确;C、∠1 和∠4 是同位角,故本选项错误;D、∠3 和∠4 是邻补角,故本选项错误;故选:B.【点睛】本题考查了同位角,内错角,同旁内角以及对顶角的定义.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.2.D【分析】根据平移的性质依次判断,即可得到答案.【详解】A、荡秋千运动是旋转,故本选项错误;B、月亮绕地球运动是旋转,故本选项错误;C、操场上红旗的飘动不是平移,故本选项错误;D、教室解析:D【分析】根据平移的性质依次判断,即可得到答案.【详解】A、荡秋千运动是旋转,故本选项错误;B、月亮绕地球运动是旋转,故本选项错误;C、操场上红旗的飘动不是平移,故本选项错误;D、教室可移动黑板的左右移动是平移,故本选项正确.故选:D.【点睛】本题考查了平移的知识;解题的关键是熟练掌握平移性质,从而完成求解.3.A【分析】由于点(1,0)的纵坐标为0,则可判断点(1,0) 在x 轴上.【详解】解:点(1,0)的纵坐标为0,故在x 轴上,故选:A.【点睛】本题考查了点的坐标,解题的关键是记住各象限内的点的坐标特征和坐标轴上点的坐标特点.4.A【分析】根据垂直的性质、平行公理、垂线段的性质及平行线的性质逐一判断即可得答案.【详解】平面内,垂直于同一条直线的两直线平行;故①正确,经过直线外一点,有且只有一条直线与这条直线平行,故②正确垂线段最短,故③正确,两直线平行,同旁内角互补,故④错误,∴正确命题有①②③,共3 个,故选:A.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两49 144 3 (-8)2 27 2 部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理. 5.C 【分析】根据一副三角板的特征先得到∠ E=60°,∠ C=45°,∠ 1+∠ 2=90°,再根据已知求出∠ 1=60°, 从而可证得 AC ∥ DE ,再根据平行线的性质即可求出∠ 4 的度数. 【详解】解:根据题意可知:∠ E=60°,∠ C=45°,∠ 1+∠ 2=90°, ∵ ∠2 = 30︒, ∴ ∠ 1=60°, ∴ ∠ 1=∠ E , ∴ AC ∥ DE , ∴ ∠ 4=∠ C=45°. 故选:C . 【点睛】本题考查的是平行线的性质和余角、补角的概念,掌握平行线的性质定理和判定定理是解题的关键. 6.C 【分析】根据算术平方根、立方根的定义计算即可 【详解】A 、负数没有平方根,故错误B 、 表示计算算术平方根,所以C 、 = 3 64=4 ,故正确= 7 ,故错误 12D 、- 3 - = -⎛ - 3 ⎫ = 3,故错误⎪ ⎝ ⎭ 故选:C 【点睛】本题考查算术平方根、立方根的计算,熟知任何数都有立方根、负数没有平方根是关键 7.D 【分析】先根据平行线的性质,由 AB ∥ CD ,得到∠ CFE =∠ AEF ,再根据翻折的性质可得 ∠ DFE =∠ EFD ′,由平角的性质可求得∠ CFD ′的度数,即可得出答案. 【详解】 解:∵ AB ∥ CD , ∴ ∠ CFE =∠ AEF ,又∵ ∠ DFE =∠ EFD ′,∠ CFE =2∠ CFD ′, ∴ ∠ DFE =∠ EFD ′=3∠ CFD ′,49 144 2 8∴∠DFE+∠CFE=3∠CFD′+2∠CFD′=180°,∴∠CFD′=36°,∴∠AEF=∠CFE=2∠CFD′=72°.故选:D.【点睛】本题主要考查了平行线的性质,翻折变换等知识,熟练应用平行线的性质进行求解是解决本题的关键.8.A【分析】先分别求出点的坐标,再归纳类推出一般规律即可得.【详解】解:由题意得:点的坐标为,即,点的坐标为,即,点的坐标为,即,归纳类推得:点的坐标为,其中为正整数,,点的坐标为,解析:A【分析】先分别求出点P , P , P的坐标,再归纳类推出一般规律即可得.【详解】5 9 13解:由题意得:点P 的坐标为P (-1,-1),即P(-1,-1),5 5点P 的坐标为P (-2, -2) ,即P (-2, -2) ,4⨯1+19 9点P 的坐标为P4⨯2+1(-3, -3) ,即P (-3, -3) ,13 134⨯3+1归纳类推得:点P4n+1的坐标为P4n+1(-n, -n) ,其中n 为正整数,2021 =4⨯505 +1 ,∴点P 的坐标为P(-505, -505) ,2021故选:A.【点睛】2021本题考查了点坐标的规律探索,正确归纳类推出一般规律是解题关键.九、填空题9.0 或1【分析】根据算术平方根的定义(一般地说,若一个非负数x 的平方等于a,即x²=a,则这个数x 叫做a 的算术平方根)求解.【详解】∵ 02=0,12=1,∴0 的算术平方根为0,1 的算术平方根解析:0 或1【分析】根据算术平方根的定义(一般地说,若一个非负数x 的平方等于a,即x²=a,则这个数x 叫做a 的算术平方根)求解.【详解】∵ 02=0,12=1,∴0 的算术平方根为故答案是:0 或1.【点睛】=0,1 的算术平方根为=1.考查了算术平方根的定义,解题关键是利用算术平方根的定义(一般地说,若一个非负数x 的平方等于a,即x²=a,则这个数x 叫做a 的算术平方根)求解.十、填空题10.(-3,-1)【分析】根据关于y 轴对称的点的坐标为,纵坐标不变,横坐标互为相反数即可解答.【详解】解:∵点Q 与点P(3,﹣1)关于y 轴对称,∴Q(-3,-1).故答案为(-3,-1).解析:(-3,-1)【分析】根据关于y 轴对称的点的坐标为,纵坐标不变,横坐标互为相反数即可解答.【详解】解:∵点Q 与点P(3,﹣1)关于y 轴对称,∴Q(-3,-1).故答案为(-3,-1).【点睛】本题主要考查关于对称轴对称的点的坐标特征,解此题的关键在于熟练掌握其知识点.十一、填空题11.90°【分析】过P1 作P1Q∥AB,则P1Q∥CD,根据平行线的性质得到∠AEF+∠CFE=180°,∠AEP1=∠EP1Q,∠CFP1=∠FP1Q,结合角平分线的定义可计算∠E解析:90°90︒2n0 11 1 1 1 【分析】过 P 作 P Q ∥ AB ,则 P Q ∥ CD ,根据平行线的性质得到∠ AEF +∠ CFE =180°, 1 ∠ AEP 1 =∠ EP Q ,∠ CFP 1 =∠ FP Q ,结合角平分线的定义可计算∠ EP F ,再同理求出∠ P ,1 1 1 1 12 ∠ P ,总结规律可得∠P .3 【详解】 解:过 P 作 P nQ ∥ AB ,则 PQ ∥ CD , 1 1 1 ∵ AB ∥ CD ,∴ ∠ AEF +∠ CFE =180°,∠ AEP =∠ EP Q ,∠ CFP =∠ FP Q ,∵ ∠AEF 和∠CFE 的角平分线交于点P 1∴ ∠ E P F =∠ EP Q +∠ FP Q =∠ AEP +∠ CFP = 1 (∠ AEF +∠ CFE )=90°;1 1 1 11 12 同理可得:∠ P 2= 4(∠ AEF +∠ CFE )=45°, 1 = (∠ AEF +∠ CFE )=22.5°,3..., ∴ ∠P n 8= 90︒ , 2n故答案为:90°,90︒ .2n【点睛】本题主要考查了平行线的性质,角平分线的定义,规律性问题,解决问题的关键是作辅助线构造内错角,依据两直线平行,内错角相等进行计算求解.十二、填空题12.45°【分析】根据平行线的性质可得∠ ECD =∠ AEC ,∠ BFD =∠ ECD ,等量代换即可求出 ∠ BFD .【详解】解:∵ AB ∥ CD ,∴ ∠ ECD =∠ AEC ,∵ CE ∥ BF ,,∠ P∴∠BFD=∠ECD,解析:45°【分析】根据平行线的性质可得∠ECD=∠AEC,∠BFD=∠ECD,等量代换即可求出∠BFD.【详解】解:∵AB∥CD,∴∠ECD=∠AEC,∵CE∥BF,∴∠BFD=∠ECD,∴∠BFD=∠AEC,∵∠AEC=45°,∴∠BFD=45°.故答案为:45°.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题关键.十三、填空题13.5【分析】根据翻折的性质,可得到∠DEC=∠FED,∠BEF 与∠DEC、∠FED 三者相加为180°,求出∠BEF 的度数即可.【详解】解:∵△DFE 是由△ DCE 折叠得到的,∴ ∠ DEC=∠ FE解析:5【分析】根据翻折的性质,可得到∠DEC=∠FED,∠BEF 与∠DE C、∠FED 三者相加为180°,求出∠BEF 的度数即可.【详解】解:∵△DFE 是由△ DCE 折叠得到的,∴∠DEC=∠FED,又∵∠EFB=45°,∠B=90°,∴∠BEF=45°,∴∠DEC= 1(180°-45°)=67.5°.2故答案为:67.5.【点睛】本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键.十四、填空题14.131 或26 或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.解析:131 或26 或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.十五、填空题15.三【分析】先判断出点P 的纵坐标的符号,再根据各象限内点的符号特征判断点P 所在象限即可.【详解】解:∵a2 为非负数,∴-a2-1 为负数,∴点P 的符号为(-,-)∴点P 在第三象限.故答案解析:三【分析】先判断出点P 的纵坐标的符号,再根据各象限内点的符号特征判断点P 所在象限即可.【详解】解:∵a2 为非负数,∴-a2-1 为负数,∴点P 的符号为(-,-)∴点P 在第三象限.故答案为:三.【点睛】本题考查了点的坐标.解题的关键是掌握象限内的点的符号特点,注意a2 加任意一个正数,结果恒为正数.牢记点在各象限内坐标的符号特征是正确解答此类题目的关键.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).十六、填空题16.(1011,0)【分析】根据图象可得移动4 次完成一个循环,从而可得出点A2021 的坐标.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,解析:(1011,0)【分析】根据图象可得移动4 次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…,2021÷4=505•••1,所以A2021的坐标为(505×2+1,0),则A2021的坐标是(1011,0).故答案为:(1011,0).【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.十七、解答题17.(1)3;(2)–2【分析】(1)根据绝对值、立方根、乘方解决此题.(2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题.【详解】解:(1)原式=,=3.(2)原式,=解析:(1)3;(2)–2【分析】(1)根据绝对值、立方根、乘方解决此题.3 36 254 (2) 先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题.【详解】解:(1)原式= 2 -(-2)+ (-1),=3.(2)原式= 3 ⨯ =3+1-6,=–2.【点睛】1+ 3 ⨯ - ,本地主要考查绝对值、立方根、算术平方根以及乘方,熟练掌握绝对值、立方根、算术平方根以及乘方是解决本题的关键.十八、解答题18.(1);(2).【分析】(1) 根据平方根的定义解答即可;(2) 根据立方根的定义解答即可.【详解】(1)x2﹣6,移项得:,开方得:x ,解得:;(2)(2x ﹣1)3=﹣4,变形得:解析:(1) x = ± 5 ;(2) x = - 1 .2 2【分析】(1) 根据平方根的定义解答即可;(2) 根据立方根的定义解答即可.【详解】(1)x 2﹣6 = x 2 1,4 1 25移项得: = 4 + 6 = 4 ,开方得:x = ± ,解得: x = ± 5 ;21(2) 2 (2x ﹣1)3=﹣4, 31 变形得:(2x ﹣1)3=﹣8,开立方得: 2x -1 = ∴ 2x =﹣1,= -2 ,1 解得: x = - . 2【点睛】本题考查了立方根及平方根的应用,注意一个正数的平方根有两个,且互为相反数,一个数的立方根只有一个.十九、解答题19.;垂直的定义;同位角相等,两直线平行;;两直线平行,同位角相等; GD ;同位角相等,两直线平行;;两直线平行,内错角相等;等量代换【分析】结合图形,根据已知证明过程,写出相关的依据即可.【详解】解析: ∠FEC ;垂直的定义;同位角相等,两直线平行;∠3 ;两直线平行,同位角相等; GD ;同位角相等,两直线平行;∠3 ;两直线平行,内错角相等;等量代换【分析】结合图形,根据已知证明过程,写出相关的依据即可.【详解】证明:证明:∵ AD ⊥ BC , EF ⊥ BC (已知)∴ ∠ADC = ∠FEC =90︒ (垂直的定义)∴ AD / / E F (同位角相等,两直线平行)∴ ∠1 = ∠3(两直线平行,同位角相等)又∵ ∠4 = ∠C (已知)∴ AC / /GD (同位角相等,两直线平行)∴ ∠ 2 = ∠ 3 (两直线平行,内错角相等)∴ ∠1 = ∠2 (等量代换)【点睛】本题考查证明过程中每一步的依据,根据推理过程明白相关知识点是解题关键. 二十、解答题20.(1)见详解;(2)图形见详解,(-4,-2)、(4,2)、(0,3); (3)12.【分析】(1) 根据坐标在坐标图中描点连线即可;(2) 按照平移方式描点连线并写出坐标点;(3) 根据坐标点利用解析:(1)见详解;(2)图形见详解, A (-4,-2)、 B 1(4,2)、C 1(0,3);3 -81 - ⨯ - ⨯ - ⨯ 【分析】(1) 根据坐标在坐标图中描点连线即可;(2) 按照平移方式描点连线并写出坐标点;(3) 根据坐标点利用割补法求面积即可.【详解】解:(1)如图:(2) 平移后如图:平移后坐标分别为: A (-4,-2)、 B 1(4,2)、C 1(0,3);(3) △ A B C 1 1 1 的面积: 5⨯ 8 1 4 ⨯ 5 1 4 ⨯ 8 1 4 ⨯1 = 12 .2 2 217 = ⎣ 此题考查坐标系中坐标的平移和坐标图形的面积,难度一般,掌握平移的性质是关键. 二十一、解答题21.(1)4;5;(2);3;(3)±8.【分析】(1) 首先估算出的取值范围,即可得出结论;(2) 根据 (1)的结论,得到,即可求得答案;(3) 根据(2)的结论代入计算即可求得答案.【详解】解析:(1)4;5;(2) 【分析】- 4 ;3;(3)±8.(1) 首先估算出 的取值范围,即可得出结论;(2)根据 (1)的结论4 < < 5 ,得到6 < + 2 < 7 ,即可求得答案;(3) 根据(2)的结论代入计算即可求得答案.【详解】解:(1)∵ 16<17<25,∴ 4 < < 5 ,∴ a =4,b =5.故答案为:4;5 (2)∵ 4 << 5 ,∴ 6 < 由此: ∴ x = + 2 < 7 ,+ 2 的整数部分为 6,小数部分为 - 4 , y = 3 .- 4 ,故答案为: (3)当 x = - 4 ;3- 4 , y = 3 时,代入,( 17﹣x )y ⎡ - ( 17 - 4 )⎤3⎦= 43= 64 . ∴ 64 的平方根为: ±8 .【点睛】本题考查了平方和平方根估算无理数大小应用,正确计算是解题的关键,注意平方根是一对互为相反数的两个数.二十二、解答题22.(1)4 米 (2)见解析【分析】(1) 根据正方形边长与面积间的关系求解即可;(2) 设长方形的长宽分别为米、米,由其面积可得 x 值,比较长方形的长和宽 17 17 17 17 17 17 17 17 17 17 17 1716 2 2 与正方形边长的大小可得结论.【详解】解解析:(1)4 米 (2)见解析【分析】(1) 根据正方形边长与面积间的关系求解即可;(2) 设长方形的长宽分别为3x 米、2x 米,由其面积可得x 值,比较长方形的长和宽与正方形边长的大小可得结论.【详解】解:(1) 正方形的面积是 16 平方米,∴正方形钢板的边长是 = 4 米;(2)设长方形的长宽分别为3x 米、2x 米,则3x• 2x = 12, x 2 = 2, x = ,3x = 3 2 > 4 , 2x = 2 < 4, ∴长方形长是3 【点睛】米,而正方形的边长为 4 米,所以李师傅不能办到.本题考查了算术平方根的实际应用,灵活的利用算术平方根表示正方形和长方形的边长是解题的关键.二十三、解答题23.(1)见解析;(2)见解析;(3)40°【分析】(1) 根据平行线的性质和判定解答即可;(2) 过点 H 作 HP ∥ AB ,根据平行线的性质解答即可;(3) 过点 H 作 HP ∥ AB ,根据平行线的性质解答即可.解析:(1)见解析;(2)见解析;(3)40°【分析】(1) 根据平行线的性质和判定解答即可;(2) 过点 H 作 HP ∥ AB ,根据平行线的性质解答即可;(3) 过点 H 作 HP ∥ AB ,根据平行线的性质解答即可.【详解】证明:(1)∵ AB ∥ CD ,∴ ∠ AFE =∠ FED ,∵ ∠ AGH =∠ FED ,∴ ∠ AFE =∠ AGH ,∴ EF ∥ GH ,∴ ∠ FEH +∠ H =180°,2∵FE⊥HE,∴∠FEH=90°,∴∠H=180°﹣∠FEH=90°,∴HG⊥HE;(2)过点M 作MQ∥AB,∵AB∥CD,∴MQ∥CD,过点H 作HP∥AB,∵AB∥CD,∴HP∥C D,∵GM 平分∠HGB,∴∠BGM=∠HGM=1∠BGH,2∵EM 平分∠HED,∠HED,∴∠HEM=∠DEM=12∵MQ∥AB,∴∠BGM=∠GMQ,∵MQ∥CD,∴∠QME=∠MED,∴∠GME=∠GMQ+∠QME=∠BGM+∠MED,∵HP∥AB,∴∠BGH=∠GHP=2∠BGM,∵HP∥CD,∴∠PHE=∠HED=2∠MED,∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED),∴∠GHE=∠2GME;(3)过点M 作MQ∥AB,过点H 作HP∥AB,由∠KFE:∠MGH=13:5,设∠KFE=13x,∠MGH=5x,由(2)可知:∠BGH=2∠MGH=10x,∵∠AFE+∠BFE=180°,∴∠AFE=180°﹣10x,∵FK 平分∠AFE,∴∠AFK=∠KFE=12∠AFE,即1(180︒-10x) =13x ,2解得:x=5°,∴∠BGH=10x=50°,∵HP∥AB,HP∥CD,∴∠BGH=∠GHP=50°,∠PHE=∠HED,∵∠GHE=90°,∴∠PHE=∠GHE﹣∠GHP=90°﹣50°=40°,∴∠HED=40°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键.二十四、解答题24.(1),见解析;(2);(3)60°【分析】(1)作EF//AB,如图1,则EF//CD,利用平行线的性质得∠1=∠BAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED;(2)如图2,解析:(1)∠BAE +∠CDE =∠AED,见解析;(2)∠AFD =1∠AED ;(3)60°2【分析】(1)作EF//AB,如图1,则EF//CD,利用平行线的性质得∠1=∠BAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED;(2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF,根据角平分线的定义得到∠BAF=1 ∠BAE,∠CDF=12 2 ∠CDE,则∠AFD=12(∠BAE+∠CDE),加上(1)的结论得到∠AFD=12∠AED;(3)由(1)的结论得∠AGD=∠BAF+∠CDG,利用折叠性质得∠CDG=4∠CDF,再利用等量代换得到∠AGD=2∠AED-3 ∠BAE,加上90°-∠AGD=180°-2∠AED,从而可计算2出∠BAE 的度数.【详解】解:(1)∠BAE +∠CDE =∠AED 理由如下:作EF//AB ,如图1,AB//CD ,∴EF //CD .∴∠1 =∠BAE ,∠2 =∠CDE ,∴∠BAE +∠CDE =∠AED ;(2)如图2,由(1)的结论得∠AFD =∠BAF +∠CDF ,∠BAE 、∠CDE 的两条平分线交于点F,∴∠BAF =1∠BAE ,∠CDF =1∠CDE ,2 2∴∠AFD =1(∠BAE +∠CDE) ,2∠BAE +∠CDE =∠AED ,∴∠AFD =1∠AED ;2(3)由(1)的结论得∠AGD =∠BAF +∠CDG,而射线DC 沿DE 翻折交AF 于点G,∴∠CDG =4∠CDF ,∴∠AGD =∠BAF +4∠CDF =1∠BAE +2∠CDE =1∠BAE +2(∠AED -∠BAE) = 2 22∠AED -3∠BAE ,290︒-∠AGD =180︒-2∠AED ,∴90︒-2∠AED +3∠BAE =180︒-2∠AED ,2∴∠BAE =60︒.【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.二十五、解答题25.(1)①45°;②∠F=a;(2)∠F+∠H 的值不变,是定值180°.【分析】(1)①②依据AD 平分∠CAE,CF 平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依据∠CAE 是△ABC22 22 22 2 2 22 2 2 2 22 2 2 2 21解析:(1)①45°;②∠ F = 2a ;(2)∠ F +∠ H 的值不变,是定值 180°. 【分析】(1) ①②依据 AD 平分∠ CAE ,CF 平分∠ ACB ,可得∠ CAD= 1 ∠ CAE ,∠ ACF= 1 ∠ ACB , 依据∠ CAE 是△ ABC 的外角,可得∠ B=∠ CAE-∠ ACB ,再根据∠ CAD 是△ ACF 的外角,即可得到∠ F=∠ CAD-∠ ACF= 1 ∠ CAE- 1 ∠ ACB= 1 (∠ CAE-∠ ACB )= 1 ∠ B ; (2) 由(1)可得,∠ F= 1 ∠ ABC ,根据角平分线的定义以及三角形内角和定理,即可得到∠ H=90°+ 1 ∠ ABG ,进而得到∠ F+∠ H=90°+ 1 ∠ CBG=180°. 【详解】解:(1)①∵ AD 平分∠ CAE ,CF 平分∠ ACB ,∴ ∠ CAD = 1 ∠ CAE ,∠ ACF = 1 ∠ ACB , 2 2∵ ∠ CAE 是△ ABC 的外角,∴ ∠ B =∠ CAE ﹣∠ ACB ,∵ ∠ CAD 是△ ACF 的外角,∴ ∠ F =∠ CAD ﹣∠ ACF = 1 ∠ CAE ﹣ 1 ∠ ACB = 1 (∠ CAE ﹣∠ ACB )= 1 ∠ B =45°,故答案为 45°;②∵ AD 平分∠ CAE ,CF 平分∠ ACB ,∴ ∠ CAD = 1 ∠ CAE ,∠ ACF = 1 ∠ ACB , 2 2∵ ∠ CAE 是△ ABC 的外角,∴ ∠ B =∠ CAE ﹣∠ ACB ,∵ ∠ CAD 是△ ACF 的外角,∴ ∠ F =∠ CAD ﹣∠ ACF = 1 ∠ CAE ﹣ 1 ∠ ACB = 1 (∠ CAE ﹣∠ ACB )= 1 ∠ B = 1 a ; (2)由(1)可得,∠ F = 1 ∠ ABC , ∵ ∠ AGB 与∠ GAB 的角平分线交于点 H ,∴ ∠ AGH = 1 ∠ AGB ,∠ GAH = 1 ∠ GAB ,2 2 ∴ ∠ H =180°﹣(∠ AGH +∠ GAH )=180°﹣ 1 (∠ AGB +∠ GAB )=180°1 180°﹣2 ∠ ABG )=90°+ 1 ∠ ABG ,2﹣ 2( ∴ ∠ F +∠ H = 1 ∠ ABC +90°+ 1 ∠ ABG =90°+ 1 ∠ CBG =180°, 2 2 2 ∴ ∠ F +∠ H 的值不变,是定值 180°.【点睛】本题主要考查了三角形内角和定理、三角形外角性质的综合运用,熟练运用定理是解题的关键.。
初中七年级数学下册期末考试卷及答案【可打印】
初中七年级数学下册期末考试卷及答案【可打印】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知m,n为常数,代数式2x4y+mx|5-n|y+xy化简之后为单项式,则m n的值共有()A.1个B.2个C.3个D.4个2.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.3.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x 轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5) B.10,(3,﹣5)C.1,(3,4) D.3,(3,2)4.4的算术平方根是()A.-2 B.2 C.2D.25.甲、乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系图象如图所示,根据图中提供的信息,有下列说法:(1)他们都行驶了18千米;(2)甲在途中停留了0.5小时;(3)乙比甲晚出发了0.5小时;(4)相遇后,甲的速度小于乙的速度;(5)甲、乙两人同时到达目的地其中符合图象描述的说法有( )A .2个B .3个C .4个D .5个6.如图,若AB ∥CD ,CD ∥EF ,那么∠BCE =( )A .∠1+∠2B .∠2-∠1C .180°-∠1+∠2D .180°-∠2+∠17.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .8.如图,已知1l AB ∕∕,AC 为角平分线,下列说法错误的是( )A .14∠=∠B .15∠=∠C .23∠∠=D .13∠=∠9.设42a ,小数部分为b ,则1a b-的值为( ) A .2-B 2C .21+ D .21 10.如图,宽为50cm 的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为()A.400cm2B.500cm2C.600cm2D.300cm2二、填空题(本大题共6小题,每小题3分,共18分)1.已知5a=2b=10,那么aba b+的值为________.2.若关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩,则关于a、b的二元一次方程组3()()=52()()6a b m a ba b n a b+--⎧⎨++-=⎩的解是________.3.如图,在长方形ABCD中,放入六个形状,大小相同的长方形(即空白的长方形),AD=12cm,FG=4cm,则图中阴影部分的总面积是 __________2cm.4.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.有下列结论:①∠BOE=12(180-a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确的结论是________(填序号).5.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a∥b的是________(填序号)6.设4x2+mx+121是一个完全平方式,则m=________三、解答题(本大题共6小题,共72分)1.解方程:223124x x x --=+-.2.解不等式组:3(1)72323x x x x x --<⎧⎪-⎨-≤⎪⎩,并把解集在数轴上表示出来.3.如图,已知直线l 1∥l 2,直线l 3和直线l 1、l 2交于点C 和D ,点P 是直线CD上的一个动点。
七年级数学下册期末考试题及答案【可打印】
七年级数学下册期末考试题及答案【可打印】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若单项式a m ﹣1b 2与212n a b 的和仍是单项式,则n m 的值是( ) A .3 B .6 C .8 D .92.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b3.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠B .34∠=∠C .24180∠+∠=D .14180∠+∠=4.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )A .∠A=∠1+∠2B .2∠A=∠1+∠2C .3∠A=2∠1+∠2D .3∠A=2(∠1+∠2)5.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A .a b >B .a b <C .0a b +>D .0a b< 6.当1<a<2时,代数式|a -2|+|1-a|的值是( )A .-1B .1C .3D .-37.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+18.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,已知AE 是ΔABC 的角平分线,AD 是BC 边上的高.若∠ABC=34°,∠ACB=64°,则∠DAE 的大小是( )A .5°B .13°C .15°D .20°10.如图,宽为50cm 的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为( )A .400cm 2B .500cm 2C .600cm 2D .300cm 2二、填空题(本大题共6小题,每小题3分,共18分)1.若0abc >,化简a c b abc a b c abc+++结果是________. 2.如图,点O 是直线AD 上一点,射线OC ,OE 分别平分∠AOB 、∠BOD .若∠AOC =28°,则∠BOE =________.3.分解因式:32x 2x x -+=_________.4.如果关于x 的不等式组232x a x a >+⎧⎨<-⎩无解,则a 的取值范围是_________. 5.若不等式组2x b 0{x a 0-≥+≤的解集为3≤x ≤4,则不等式ax+b <0的解集为________.6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解下列一元一次方程:(1)32102(1)x x -=-+ (2)2+151136x x -=-2.整式的化简求值 先化简再求值:2222332232a b a ab a b ab a ⎡⎤⎛⎫---++ ⎪⎢⎥⎝⎭⎣⎦,其中a ,b 满足()2120a b ++-=.3.小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.4.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A 的坐标为(﹣6,3),求点B的坐标.5.某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、B4、B5、D6、B7、B8、A9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)11、4或012、62°13、()2 x x1-.14、a≤2.15、x>3 216、5三、解答题(本大题共6小题,共72分)17、(1)x=2;(2)x=-318、2a ab+,1-.19、(1)家与图书馆之间路程为4000m,小玲步行速度为100m/s;(2)自变量x的范围为0≤x≤403;(3)两人相遇时间为第8分钟.20、(1,4).21、(1)P(转动一次转盘获得购物券)=12;(2)选择转转盘对顾客更合算.22、(1)120件;(2)150元.。
七年级数学下册期末考试题及完整答案
七年级数学下册期末考试题及完整答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若方程:()2160x --=与3103a x --=的解互为相反数,则a 的值为( ) A .-13 B .13C .73D .-1 2.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .3.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,4.如图,直线a ,b 被直线c 所截,下列条件中,不能判定a ∥b ( )A .∠2=∠4B .∠1+∠4=180°C .∠5=∠4D .∠1=∠35.下列各式﹣12mn ,m ,8,1a ,x 2+2x +6,25x y -,24x y π+,1y 中,整式有( )A .3 个B .4 个C .6 个D .7 个6.在平面直角坐标系中,将点A (1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A ′,则点A ′的坐标是( )A .(﹣1,1)B .(﹣1,﹣2)C .(﹣1,2)D .(1,2)7.如图,两条直线l1∥l2,Rt△ACB中,∠C=90°,AC=BC,顶点A、B分别在l 1和l2上,∠1=20°,则∠2的度数是()A.45°B.55°C.65°D.75°8.如图,在数轴上,点A、B、C对应的数分别为a、b、c,若以下三个式子:b c<①,0a c②+<,0a b+<③都成立,则原点在()A.点A的左侧 B.点A和点B之间 C.点B和点C之间 D.点C的左侧9.若|abc|=-abc,且abc≠0,则||||ba ca b c++=()A.1或-3 B.-1或-3 C.±1或±3 D.无法判断10.实数a在数轴上的位置如图所示,则下列说法不正确的是()A.a的相反数大于2 B.a的相反数是2C.|a|>2 D.2a<0二、填空题(本大题共6小题,每小题3分,共18分)1.81的平方根是________.2.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是________.3.不等式组34012412xx+≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________.4.已知4x =,12y =,且0xy <,则x y 的值等于_________. 5.因式分解:34a a -=_____________.6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.计算那列各式(1)计算:﹣14+(﹣2)3÷4×[5﹣(﹣3)2](2)解方程435x -﹣1=723x -2.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,求m 的取值范围.3.已知:如图,∠C=∠1,∠2和∠D 互余,BE ⊥FD 于点G .试说明:AB ∥CD .4.如图所示,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC=78°,求∠DAC 的度数.5.四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值是;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.6.为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?参考答案一、选择题(本大题共10小题,每题3分,共30分) 1、A2、D3、D4、D5、C6、A7、C8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)11、±312、55°13、014、8-15、(2)(2)a a a +-16、7三、解答题(本大题共6小题,共72分)17、(1)7;(2)x =﹣142318、m >﹣219、略20、44°21、(1)50; 32;(2)16;10;15;(3)608人.22、甲乙两个工程队还需联合工作10天.。
2024年人教版七7年级下册数学期末考试题及答案
2024年人教版七7年级下册数学期末考试题及答案一、选择题1.100的算术平方根是() A .100B .10±C .10-D .102.下列图中的“笑脸”,由如图平移得到的是( )A .B .C .D .3.平面直角坐标系中,点M (1,﹣5)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.下列命题中是假命题的是( )A .对顶角相等B .8的立方根是±2C .实数和数轴上的点是一一对应的D .平行于同一直线的两条直线平行 5.下列几个命题中,真命题有( ) ①两条直线被第三条直线所截,内错角相等; ②如果1∠和2∠是对顶角,那么12∠=∠; ③一个角的余角一定小于这个角的补角; ④三角形的一个外角大于它的任一个内角. A .1个B .2个C .3个D .46.下列等式正确的是( ) A .93-=-B .49714412=± C .23(8)4-=D .327382--=- 7.一副直角三角板如图所示摆放,它们的直角顶点重合于点O ,//CO AB ,则BOD ∠=( )A .30B .45︒C .60︒D .90︒8.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P 1,P 2,P 3,…均在格点上,其顺序按图中“→”方向排列,如:P 1(0,0),P 2(0,1),P 3(1,1),P 4(1,﹣1),P 5(﹣1,﹣1),P 6(﹣1,2)…根据这个规律,点P 2021的坐标为( )A .(﹣505,﹣505)B .(﹣505,506)C .(506,506)D .(505,﹣505)九、填空题9.9的算术平方根是 .十、填空题10.已知点P (3,﹣1)关于y 轴的对称点Q 的坐标是_____________.十一、填空题11.如图,在ABC 中,40B ︒∠=.三角形的外角DAC ∠和ACF ∠的角平分线交于点E ,则AEC ∠=_____度.十二、填空题12.如图,点D 、E 分别在AB 、BC 上,DE ∥AC ,AF ∥BC ,∠1=70°,则∠2=_____°.十三、填空题13.如图,将四边形纸片ABCD 沿MN 折叠,点A 、D 分别落在点A 1、D 1处.若∠1+∠2=130°,则∠B +∠C =___°.十四、填空题14.新定义一种运算,其法则为32a ca d bcb d =÷,则223x x xx--=__________ 十五、填空题15.已知点M 在y 轴上,纵坐标为4,点P (6,﹣4),则△OMP 的面积是__.十六、填空题16.如图,在平面直角坐标系中,点()10,0A ,点()22,1A ,点()34,2A ,点()46,3A ,,按照这样的规律下去,点2021A 的坐标为__________.十七、解答题17.(1)计算:16125-(2)计算: 3223-- (3)计算:310.0484+--(4)计算:16122+--十八、解答题18.求下列各式中的x 值:(1)16(x +1)2=25; (2)8(1﹣x )3=125十九、解答题19.完成下面的说理过程:如图,在四边形ABCD 中,E 、F 分别是CD AB 、,延长线上的点,连接EF ,分别交AD ,BC 于点G 、H .已知12∠=∠,A C ∠=∠,对//AD BC 和//AB CD 说明理由.理由:∵12∠=∠(已知),1AGH ∠=∠( ),∴2AGH ∠=∠(等量代换). ∴//AD BC ( ). ∵ADE C ∠=∠( ). ∵A C ∠=∠(已知), ∴.ADE A ∠=∠( ). ∴//AB CD ( ).二十、解答题20.如图,三角形ABC 的顶点都在格点上,将三角形ABC 向右平移5个单位长度,再向上平移3个单位长度请回答下列问题:(1)平移后的三个顶点坐标分别为:1A ______,1B ______,1C ______; (2)画出平移后三角形111A B C ; (3)求三角形ABC 的面积.二十一、解答题21.一个正数的两个平方根为21n 和4n -,2n 是24m +39的小数部分是k ,求39m n k +-二十二、解答题22.已知在44⨯的正方形网格中,每个小正方形的边长为1. (1)计算图①中正方形ABCD 的面积与边长.(2)利用图②中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数88-二十三、解答题23.如图1,已AB ∥CD ,∠C =∠A . (1)求证:AD ∥BC ;(2)如图2,若点E 是在平行线AB ,CD 内,AD 右侧的任意一点,探究∠BAE ,∠CDE ,∠E 之间的数量关系,并证明.(3)如图3,若∠C =90°,且点E 在线段BC 上,DF 平分∠EDC ,射线DF 在∠EDC 的内部,且交BC 于点M ,交AE 延长线于点F ,∠AED +∠AEC =180°, ①直接写出∠AED 与∠FDC 的数量关系: .②点P 在射线DA 上,且满足∠DEP =2∠F ,∠DEA ﹣∠PEA =514∠DEB ,补全图形后,求∠EPD 的度数二十四、解答题24.已知//a b ,直角ABC 的边与直线a 分别相交于O 、G 两点,与直线b 分别交于E ,F 点,且90ACB ∠=︒.(1)将直角ABC 如图1位置摆放,如果56AOG ∠=︒,则CEF ∠=________; (2)将直角ABC 如图2位置摆放,N 为AC 上一点,180NEF CEF ∠+∠=︒,请写出NEF ∠与AOG ∠之间的等量关系,并说明理由;(3)将直角ABC 如图3位置摆放,若135GOC ∠=︒,延长AC 交直线b 于点Q ,点P 是射线GF 上一动点,探究,POQ OPQ ∠∠与PQF ∠的数量关系,请直接写出结论.二十五、解答题25.如图1,已知AB ∥CD ,BE 平分∠ABD ,DE 平分∠BDC . (1)求证:∠BED =90°;(2)如图2,延长BE 交CD 于点H ,点F 为线段EH 上一动点,∠EDF =α,∠ABF 的角平分线与∠CDF 的角平分线DG 交于点G ,试用含α的式子表示∠BGD 的大小; (3)如图3,延长BE 交CD 于点H ,点F 为线段EH 上一动点,∠EBM 的角平分线与∠FDN 的角平分线交于点G ,探究∠BGD 与∠BFD 之间的数量关系,请直接写出结论: .【参考答案】一、选择题 1.D 解析:D 【分析】根据算术平方根的定义求解即可求得答案. 【详解】 解:∵102=100, ∴100算术平方根是10; 故选:D . 【点睛】本题考查了算术平方根的定义.注意熟记定义是解此题的关键.2.D 【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等. 【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的. 故选:D . 【点睛】解析:D 【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A、B、C都是由旋转得到的,D是由平移得到的.故选:D.【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3.D【分析】根据各个象限点坐标的符号特点进行判断即可得到答案.【详解】解:∵1>0,-5<0,∴点M(1,-5)在第四象限.故选D.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号特征是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据平行线的判定、对顶角、立方根和实数与数轴关系进行判断即可.【详解】解:A、对顶角相等,是真命题;B、8的立方根是2,原命题是假命题;C、实数和数轴上的点是一一对应的,是真命题;D、平行于同一直线的两条直线平行,是真命题;故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的判定、对顶角、立方根和实数与数轴,属于基础题,难度不大.5.B【分析】根据平行线的性质对①进行判断;根据对顶角的性质对②进行判断;根据余角与补角的定义对③进行判断;根据三角形外角性质对④进行判断.【详解】解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;一个角的余角一定小于这个角的补角,所以③正确;三角形的外角大于任何一个与之不相邻的一个内角,所以④错误.故选:B.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.C【分析】根据算术平方根、立方根的定义计算即可【详解】A、负数没有平方根,故错误B712,故错误C,故正确D、3322⎛⎫--=⎪⎝⎭,故错误故选:C【点睛】本题考查算术平方根、立方根的计算,熟知任何数都有立方根、负数没有平方根是关键7.C【分析】由AB//CO得出∠BAO=∠AOC,即可得出∠BOD.【详解】解://AB CO,60OAB AOC∴∠=∠=︒6090150BOC∴∠=︒+︒=︒90AOC DOA DOA BOD∠+∠=∠+∠=︒60AOC BOD∴∠=∠=︒故选:C.【点睛】本题考查两直线平行内错角相等的知识点,掌握这一点才能正确解题.8.A【分析】先分别求出点的坐标,再归纳类推出一般规律即可得.【详解】解:由题意得:点的坐标为,即,点的坐标为,即,点的坐标为,即,归纳类推得:点的坐标为,其中为正整数, ,点的坐标为,解析:A 【分析】先分别求出点5913,,P P P 的坐标,再归纳类推出一般规律即可得. 【详解】解:由题意得:点5P 的坐标为5(1,1)P --,即411(1,1)P ⨯+--, 点9P 的坐标为9(2,2)P --,即421(2,2)P ⨯+--, 点13P 的坐标为13(3,3)P --,即431(3,3)P ⨯+--,归纳类推得:点41n P +的坐标为41(,)n n P n +--,其中n 为正整数,202145051=⨯+,∴点2021P 的坐标为2021(505,505)P --,故选:A . 【点睛】本题考查了点坐标的规律探索,正确归纳类推出一般规律是解题关键.九、填空题 9.【分析】根据一个正数的算术平方根就是其正的平方根即可得出. 【详解】 ∵,∴9算术平方根为3. 故答案为3. 【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.解析:【分析】根据一个正数的算术平方根就是其正的平方根即可得出. 【详解】 ∵239=,∴9算术平方根为3. 故答案为3. 【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.十、填空题 10.(-3,-1) 【分析】根据关于y 轴对称的点的坐标为,纵坐标不变,横坐标互为相反数即可解答. 【详解】解:∵点Q 与点P (3,﹣1)关于y 轴对称, ∴Q (-3,-1). 故答案为(-3,-1).解析:(-3,-1) 【分析】根据关于y 轴对称的点的坐标为,纵坐标不变,横坐标互为相反数即可解答. 【详解】解:∵点Q 与点P (3,﹣1)关于y 轴对称, ∴Q (-3,-1). 故答案为(-3,-1). 【点睛】本题主要考查关于对称轴对称的点的坐标特征,解此题的关键在于熟练掌握其知识点.十一、填空题 11.【分析】如图,先根据三角形的内角和定理求出∠1+∠2的度数,再求出∠DAC+∠ACF 的度数,然后根据角平分线的定义可求出∠3+∠4的度数,进而可得答案. 【详解】解:如图,∵∠B=40°,∴∠解析:【分析】如图,先根据三角形的内角和定理求出∠1+∠2的度数,再求出∠DAC +∠ACF 的度数,然后根据角平分线的定义可求出∠3+∠4的度数,进而可得答案. 【详解】解:如图,∵∠B =40°,∴∠1+∠2=180°-∠B =140°, ∴∠DAC +∠ACF =360°-∠1-∠2=220°, ∵AE 和CE 分别是DAC ∠和ACF ∠的角平分线, ∴113,422DAC ACF ∠=∠∠=∠,∴()113422011022DAC ACF ∠+∠=∠+∠=⨯=, ∴()1803418011070E ∠=-∠+∠=-=. 故答案为:70.【点睛】本题考查了三角形的内角和定理和角平分线的定义,属于基础题型,熟练掌握三角形的内角和定理和整体的数学思想是解题的关键.十二、填空题12.70【分析】根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C.【详解】∵DE∥AC,∴∠C=∠1=70°,∵AF∥BC,∴∠2=∠C=70°.故答解析:70【分析】根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C.【详解】∵DE∥AC,∴∠C=∠1=70°,∵AF∥BC,∴∠2=∠C=70°.故答案为70.【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.十三、填空题13.115【分析】先根据∠1+∠2=130°得出∠AMN+∠DNM的度数,再由四边形内角和定理即可得出结论.解:∵∠1+∠2=130°,∴∠AMN+∠DNM= =115°.∵∠A+∠解析:115【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒-︒ =115°. ∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°,∴∠B +∠C =∠AMN +∠DNM =115°.故答案为:115.【点睛】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.十四、填空题14.【分析】按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得.【详解】故答案为:【点睛】本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解解析:3x【分析】按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得.【详解】222322333()()x x x x x x x x x--=-⋅÷-⋅= 故答案为:3x【点睛】本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解.十五、填空题15.【分析】由M 点的位置易求OM 的长,在根据三角形的面积公式计算可求解.解:∵M 在y 轴上,纵坐标为4,∴OM =4,∵P (6,﹣4),∴S △OMP =OM•|xP|=×4×6=12解析:【分析】由M 点的位置易求OM 的长,在根据三角形的面积公式计算可求解.【详解】解:∵M 在y 轴上,纵坐标为4,∴OM =4,∵P (6,﹣4),∴S △OMP =12OM •|x P | =12×4×6=12.故答案为12.【点睛】本题考查了三角形的面积,坐标与图形的性质,根据三角形的面积公式求解是解题的关键. 十六、填空题16.【分析】观察点,点,点,点点的横坐标为,纵坐标为,据此即可求得的坐标;【详解】,,,,,故答案为:【点睛】本题考查了坐标系中点的规律,找到规律是解题的关键.解析:(4040,2020)【分析】观察点()10,0A ,点()22,1A ,点()34,2A ,点()46,3A ,,点的横坐标为22n -,纵坐标为1n -,据此即可求得2021A 的坐标;【详解】()10,0A ,()22,1A ,()34,2A ,()46,3A ,,(22,1)n A n n --,∴2021(4040,2020)A故答案为:(4040,2020)【点睛】本题考查了坐标系中点的规律,找到规律是解题的关键.十七、解答题17.(1);(2);(3);(4)【分析】(1)根据算术平方根的求法计算即可;(2)先化简绝对值,再合并即可;(3)分别进行二次根式的化简、开立方,然后合并求解;(4)先化简绝对值和二次根式,解析:(1)35;(2)3)2310-;(4)3 【分析】(1)根据算术平方根的求法计算即可;(2)先化简绝对值,再合并即可;(3)分别进行二次根式的化简、开立方,然后合并求解;(4)先化简绝对值和二次根式,再合并即可.【详解】解:(1==35=(2)==(310.222=-- 2205)(1010+=- 2310=-(414=3=【点睛】本题考查了实数的运算,涉及了二次根式的化简、绝对值的化简、开立方等知识. 十八、解答题18.(1)或;(2)【分析】(1)根据平方根,即可解答;(2)根据立方根,即可解答.【详解】解:(1)等式两边都除以16,得.等式两边开平方,得.所以,得.所以,解析:(1)14x =或94x =-;(2)3.2x =- 【分析】(1)根据平方根,即可解答;(2)根据立方根,即可解答.【详解】解:(1)等式两边都除以16,得()225116x +=. 等式两边开平方,得514x +=±. 所以,得5511-44x x +=+=或. 所以,19-44x =或(2)等式两边都除以8,得()31251-8x=.等式两边开立方,得51-2x=.所以,3.2 x=-【点睛】本题考查平方根、立方根,解题关键是熟记平方根、立方根..十九、解答题19.对顶角相等;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.【分析】先根据同位角相等,两直线平行,判定AD∥BC,进而得到∠ADE=∠C,再根据内错角相等,两直解析:对顶角相等;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.【分析】先根据同位角相等,两直线平行,判定AD∥BC,进而得到∠ADE=∠C,再根据内错角相等,两直线平行,即可得到AB∥CD.【详解】证明:∵∠1=∠2(已知)∠1=∠AGH(对顶角相等)∴∠2=∠AGH(等量代换)∴AD∥BC(同位角相等,两直线平行)∴∠ADE=∠C(两直线平行,同位角相等)∵∠A=∠C(已知)∴∠ADE=∠A∴AB∥CD(内错角相等,两直线平行).【点睛】本题考查了平行线的判定与性质,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.二十、解答题20.(1),,;(2)见解析;(3)【分析】(1)先画出平移后的图形,结合直角坐标系可得出三点坐标;(2)根据平移的特点,分别找到各点的对应点,顺次连接即可得出答案;(3)将△ABC补全为长方形解析:(1)()4,7,()1,2,()6,4;(2)见解析;(3)192【分析】 (1)先画出平移后的图形,结合直角坐标系可得出三点坐标;(2)根据平移的特点,分别找到各点的对应点,顺次连接即可得出答案;(3)将△ABC 补全为长方形,然后利用作差法求解即可.【详解】解:(1)平移后的三个顶点坐标分别为:()14,7A ,()11,2B ,()16,4C ;(2)画出平移后三角形111A B C ;(3)1519255322ABC ABE GBC AFC EBGF S S S S S =---=---=长方形.【点睛】本题考查了平移作图的知识,解答本题的关键是根据平移的特点准确作出图形,第三问求解不规则图形面积的时候可以先补全,再减去.二十一、解答题21.【分析】根据平方根的性质即可求出的值,根据立方根的定义求得的值,根据求得的小数部分是,即可求得答案.【详解】∵一个正数的两个平方根为和,∴,解得:,∵是的立方根,∴,解得:,∵,解析:3±【分析】根据平方根的性质即可求出n 的值,根据立方根的定义求得m 的值,根据67<求得k ,即可求得答案.【详解】∵一个正数的两个平方根为21n 和4n -,∴()2140n n ++-=,解得:1n =,∵2n 是24m +的立方根,∴()3224n m =+, 解得:2m =, ∵67<,∴6,则小数部分是:6k =,∴m n k +-)2169=+-, ∴m n k +-3=±.【点睛】本题考查了平方根的性质,立方根的定义,估算无理数的大小,解题的关键是正确理解平方根的定义以及“夹逼法”的运用.二十二、解答题22.(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画解析:(1)正方形ABCD 的面积为10,正方形ABCD 2)见解析(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形ABCD的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论.【详解】×3×1=10解:(1)正方形ABCD的面积为4×4-4×12则正方形ABCD的边长为10;×2×2=8,所以该正方形即为所求,如图建立(2)如下图所示,正方形的面积为4×4-4×12数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点∴8∴弧与数轴的左边交点为8888【点睛】此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键.二十三、解答题23.(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EF∥AB,根解析:(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EF∥AB,根据平行线的性质得AB∥CD∥EF,然后由两直线平行内错角相等可得结论;(3)①根据∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可导出角的关系;②先根据∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根据∠DEA-∠DEB,求出∠AED=50°,即可得出∠EPD的度数.∠PEA=514解:(1)证明:AB∥CD,∴∠A+∠D=180°,∵∠C=∠A,∴∠C+∠D=180°,∴AD∥BC;(2)∠BAE+∠CDE=∠AED,理由如下:如图2,过点E作EF∥AB,∵AB∥CD∴AB∥CD∥EF∴∠BAE=∠AEF,∠CDE=∠DEF即∠FEA+∠FED=∠CDE+∠BAE∴∠BAE+∠CDE=∠AED;(3)①∠AED-∠FDC=45°;∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,∴∠AEC=∠DEC+∠AEB,∴∠AED=∠AEB,∵DF平分∠EDC∠DEC=2∠FDC∴∠DEC=90°-2∠FDC,∴2∠AED+(90°-2∠FDC)=180°,∴∠AED-∠FDC=45°,故答案为:∠AED-∠FDC=45°;②如图3,∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,∴∠F=45°,∴∠DEP=2∠F=90°,∵∠DEA-∠PEA=514∠DEB=57∠DEA,∴∠PEA=27∠AED,∴∠DEP=∠PEA+∠AED=97∠AED=90°,∴∠AED=70°,∵∠AED+∠AEC=180°,∴∠DEC+2∠AED=180°,∴∠DEC=40°,∵AD∥BC,∴∠ADE=∠DEC=40°,在△PDE中,∠EPD=180°-∠DEP-∠AED=50°,即∠EPD=50°.【点睛】本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键.二十四、解答题24.(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析【分析】(1)作CP//a,则CP//a//b,根据平行线的性质求解.(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠N解析:(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析【分析】(1)作CP//a,则CP//a//b,根据平行线的性质求解.(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠NEF=∠ACP+∠PCB=90°.(3)分类讨论点P在线段GF上或线段GF延长线上两种情况,过点P作a,b的平行线求解.【详解】解:(1)如图,作CP//a,∵a//b,CP//a,∴CP//a//b,∴∠AOG=∠ACP=56°,∠BCP+∠CEF=180°,∴∠BCP=180°-∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°-∠CEF=90°,∴∠CEF=180°-90°+∠AOG=146°.(2)∠AOG+∠NEF=90°.理由如下:如图,作CP//a,则CP//a//b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∵∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°.(3)如图,当点P在GF上时,作PN//a,连接PQ,OP,则PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ=∠OPN+∠NPQ=∠GOP+∠PQF,∵∠GOC=∠GOP+∠POQ=135°,∴∠GOP=135°-∠POQ,∴∠OPQ=135°-∠POQ+∠PQF.如图,当点P在GF延长线上时,作PN//a,连接PQ,OP,则PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∵∠OPN=∠OPQ+∠QPN,∴∠GOP=∠OPQ+∠PQF,∴135°-∠POQ=∠OPQ+∠PQF.【点睛】本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解.二十五、解答题25.(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°解析:(1)见解析;(2)∠BGD=902a︒-;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=12(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°,从而根据∠BED=180°﹣(∠EBD+∠EDB)即可得到答案;(2)过点G作GP∥AB,根据AB∥CD,得到GP∥AB∥CD,从而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根据∠EBD+∠EDB=90°,∠ABD+∠BDC=180°,得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分线的定义求出2∠ABG+2∠CDG=90°﹣α即可得到答案;(3)过点F、G分别作FM∥AB、GM∥AB,从而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根据BG平分∠FBP,DG平分∠FDQ,∠4=12∠FBP=12(180°﹣∠3),∠6=12∠FDQ=12(180°﹣∠5),即可求解.【详解】解:(1)证明:∵BE平分∠ABD,∴∠EBD=12∠ABD,∵DE平分∠BDC,∴∠EDB=12∠BDC,∴∠EBD+∠EDB=12(∠ABD+∠BDC),∵AB∥CD,∴∠ABD+∠BDC=180°,∴∠EBD+∠EDB=90°,∴∠BED=180°﹣(∠EBD+∠EDB)=90°.(2)解:如图2,由(1)知:∠EBD+∠EDB=90°,又∵∠ABD+∠BDC=180°,∴∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,∵BG平分∠ABE,DG平分∠CDF,∴∠ABE=2∠ABG,∠CDF=2∠CDG,∴2∠ABG+2∠CDG=90°﹣α,过点G作GP∥AB,∵AB∥CD,∴GP∥AB∥CD∴∠ABG=∠BGP,∠PGD=∠CDG,∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=902α-;(3)如图,过点F、G分别作FN∥AB、GM∥AB,∵AB∥CD,∴AB∥GM∥FN∥CD,∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM,∴∠BFD=∠BFN+∠DFN=∠3+∠5,∠BGD=∠BGM+∠DGM=∠4+∠6,∵BG平分∠FBP,DG平分∠FDQ,∴∠4=12∠FBP=12(180°﹣∠3),∠6=12∠FDQ=12(180°﹣∠5),∴∠BFD+∠BGD=∠3+∠5+∠4+∠6,=∠3+∠5+12(180°﹣∠3)+12(180°﹣∠5),=180°+12(∠3+∠5),=180°+12∠BFD,整理得:2∠BGD+∠BFD=360°.【点睛】本题主要考查了平行线的性质与判定,角平分线的性质和三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-初一数学下册期末考试试题及答案满分:120分 时间:120分钟一、选一选,比比谁细心(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.-31的绝对值的倒数是( ). (A) 31 (B)-31(C)-3 (D) 32.方程5-3x=8的解是( ).(A )x=1 (B )x=-1 (C )x=133 (D )x=-1333.如果收入15元记作+15元,那么支出20元记作( )元. (A)+5 (B)+20 (C)-5 (D)-204.有理数2(1)-,3(1)-,21-, 1-,-(-1),11--中,其中等于1的个数是( ). (A)3个 (B)4个 (C)5个 (D)6个 5.已知p 与q 互为相反数,且p ≠0,那么下列关系式正确的是( ). (A).1p q = (B) 0p q += (C)1qp= (D) p=q 6.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m ,用科学记数法表示这个数为( ).(A)1.68×104m (B)16.8×103 m (C)0.168×104m (D)1.68×103m 7.下列变形中, 不正确的是( ).(A) a +b -(-c -d)=a +b +c +d (B) a +(b +c -d)=a +b +c -d (C) a -b -(c -d)=a -b -c -d (D)a -(b -c +d)=a -b +c -d8.如图,若数轴上的两点A 、B 表示的数分别为a 、b ,则下列结论正确的是( ). (A) b -a>0(B) a -b>0(C) ab >0(D) a +b>09.按括号内的要求,用四舍五入法,对1022.0099(A)1022.01(精确到0.01) (B)1.0×(C)1020(精确到十位) (D)1022.010(精确到千分位10.“一个数比它的相反数大-14”,若设这数是x ,则可列出关于x . (A)x=-x+14 (B)x=-x+(-14) (C)x=-x-(-14) (D)x-(-x )=14 11. 下列等式变形:①若a b =,则a b x x =;②若a b x x =,则a b =;③若47a b =,则74a b =;④若74a b =,则47a b =.其中一定正确的个数是( ). (A)1个 (B)2个 (C)3个 (D)4个 12.已知a 、b 互为相反数,c 、d 互为倒数,x 等于-4的2次方,则式子1()2cd a b x x ---的值为( ).(A)2 (B)4 (C)-8 (D)8二、填一填, 看看谁仔细(本大题共4小题, 每小题3分, 共12分, 请将你的答案写在“_______”处)13.写出一个比0.1大的最小整数: .14.已知甲地的海拔高度是300m ,乙地的海拔高度是-50m ,那么甲地比乙地高____________m . 15.十一国庆节期间,吴家山某眼镜店开展优 惠学生配镜的活动,某款式眼镜的广告如图,请你 为广告牌补上原价.16那么,当输入数据为时,输出的数据为 . 三、 解一解, 试试谁更棒(本大题共9小题,共72分) 17.(本题10分)计算(1)13(1(48)64-+⨯- (2)4)2(2)1(310÷-+⨯- 解: 解:18.(本题10分)解方程(1)37322x x +=- (2) 111326x x -=- 解: 解:19.(本题6分)某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):(1) 生产量最多的一天比生产量最少的一天多生产多少辆?(3分)(2) 本周总的生产量是多少辆?(3分) 解:20.(本题7分)统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的3倍多52座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座? 解:21. (本题9分)观察一列数:1、2、4、8、16、…我们发现,这一列数从第二项起,每一项与它前一项的比都等于2.一般地,如果一列数从第二项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数就叫做等比数列的公比.(1)等比数列5、-15、45、…的第4项是_________.(2分)(2)如果一列数1234,,,a a a a 是等比数列,且公比为q .那么有:21a a q =,23211()a a q a q q a q ===,234311()a a q a q q a q ===则:5a = .(用1a 与q 的式子表示)(2分) (3)一个等比数列的第2项是10,第4项是40,求它的公比. (5分) 解:22.(本题8分)两种移动电话记费方式表(1)一个月内本地通话多少分钟时,两种通讯方式的费用相同?(5分)(2)若某人预计一个月内使用本地通话费180元,则应该选择哪种通讯方式较合算?(3分)解:23.(本题10分)关于x 的方程234x m x -=-+与2m x -=的解互为相反数.(1)求m 的值;(6分) (2)求这两个方程的解.(4分) 解:24.(本题12分)如图,点A 从原点出发沿数轴向左运动,同时,点B 也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B 的速度是点A 的速度的4倍(速度单位:单位长度/秒).(1)求出点A 、点B 运动的速度,并在数轴上标出A 、B 两点从原点出发运动3秒时的位置;(4分) 解:(2)若A 、B 两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A 、点B 的正中间?(4分) 解:(3)若A 、B 两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C 同时从B 点位置出发向A 点运动,当遇到A 点后,立即返回向B 点运动,遇到B 点后又立即返回向A 点运动,如此往返,直到B 点追上A 点时,C 点立即停止运动.若点C 一直以20单位长度/秒的速度匀速运动,那么点C 从开始运动到停止运动,行驶的路程是多少个单位长度?(4分) 解:七年级数学参考答案与评分标准一、选一选,比比谁细心1.D2.B3.D4.B5.B6.A7.C8.A9.A 10.B 11.B 12.D 二、填一填,看看谁仔细13.1 14. 350 15.200 16. 865三、解一解,试试谁更棒 17.(1)解: 13(1)(48)64-+⨯- = -48+8-36 ………………………………3分 =-76 ………………………………5分 (2)解: 4)2(2)1(310÷-+⨯-=1×2 +(-8)÷4 ………………………………2分 =2-2=0 ………………………………5分 18.(1)解:37322x x +=-3x+2x=32-7 ………………………………2分5x=25 ………………………………4分 x=5 ………………………………5分 (2) 解:111326x x -=- 113126x x -+=- ………………………………2分 13x -=2 ………………………………4分x=-6 ………………………………5分19. 解: (1)7-(-10)=17 ………………………………3分(2) (-1+3-2+4+7-5-10 )+100×7=696 ………………………………6分20.解:设严重缺水城市有x 座,依题意有: ………………………………1分 3522664x x x +++= ………………………………4分 解得x=102 ………………………………6分答:严重缺水城市有102座. ………………………………7分 21.(1)81……2分 (2) 41a q …………………4分 (3)依题意有:242a a q = ………………………………6分 ∴40=10×2q ∴2q =4 ………………………………7分 ∴2q =± ……………………………9分 22.(1)设一个月内本地通话t 分钟时,两种通讯方式的费用相同.依题意有:50+0.4t=0.6t ………………………………3分 解得t=250 ………………………………4分 (2)若某人预计一个月内使用本地通话费180元,则使用全球通有:50+0.4t=180 ∴1t =325 ………………………………6分 若某人预计一个月内使用本地通话费180元,则使用神州行有: 0.6t=180 ∴2t =300∴使用全球通的通讯方式较合算. ………………………………8分 23.解:(1) 由234x m x -=-+得:x=112m + …………………………2分 依题意有:112m ++2-m=0解得:m=6 ………………………6分 (2)由m=6,解得方程234x m x -=-+的解为x=4 ……………8分解得方程2m x -=的解为x=-4 ………………………10分24. (1)设点A 的速度为每秒t 个单位长度,则点B 的速度为每秒4t 个单位长度. 依题意有:3t+3×4t=15,解得t=1 …………………………2分 ∴点A 的速度为每秒1个单位长度, 点B 的速度为每秒4个单位长度. …3分画图 ……………4分 (2)设x 秒时,原点恰好处在点A 、点B 的正中间. ………………5分根据题意,得3+x=12-4x ………………7分 解之得 x=1.8即运动1.8秒时,原点恰好处在A 、B 两点的正中间 ………………8分 (3)设运动y 秒时,点B 追上点A 根据题意,得4y-y=15,解之得 y=5 ………………10分即点B 追上点A 共用去5秒,而这个时间恰好是点C 从开始运动到停止运动所花的时间,因此点C 行驶的路程为:20×5=100(单位长度) ………………12分七年级数学下册考试卷一、选择题(本大题共10小题,每小题2分;共20分。
每小题只有一个选项是正确的,把正确选项前的字母填入下表中)1.计算a6÷a3A.a2B.a3C.a-3D.a 92 如果a<b,则下列各式中成立的是A.a+4>b+4 B.a-b>b-6C.2+3a>2+3b D.-3a>-3b3.已知21xy=-⎧⎨=⎩是方程mx+y=3的解,m的值是A.3 B.-2 C.1 D.-14.2009年5月26日,中国一新加坡工业园区开发建设15周年,在这15年间实际利用外资16 200000000美元,用科学记数法表示为A.1.62×108美元B.1.62×1010美元C.162×108美元D.0.162×1011美元5.为了解我市中学生中15岁女生的身高状况,随机抽商了10个学校的200名15岁女生的身高,则下列表述正确的是A.总体指我市全体15岁的女中学生B.个体是10个学校的女生C.个体是200名女生的身高D.抽查的200名女生的身高是总体的一个样本6.有一个两位数,它的十位数数字与个位数字之和为5,则符合条件的数有A.4个B.5个C.6个D.无数个7.下列说法正确的是A.调查某灯泡厂生产的10000只灯泡的使用寿命不宜用普查的方式.B.2012年奥运会刘翔能夺得男子110米栏的冠军是必然事件.C.为了了解我市今夏冰淇淋的质量,应采用普查的调查方式进行.D.某种彩票中奖的概率是1%,买100.张该种彩票一定会中奖.8.下列条件中,不能判定△AB C≌△A′B′C′的是A.∠A=∠A,∠C=∠C,AC=A′C′B.∠C=∠C′=90°,BC=B′C′,AB=A′B′C.∠A=∠A′=80°,∠B=60°,∠C′=40°,AB=A′B′D.∠A=∠A,BC=B′C′,AB=A′B′9.火柴棒摆成如图所示的象形“口”字,平移火柴棒后,原图形可变成的象形文字是10.现有纸片:l张边长为a的正方形,2张边长为b的正方形,3张宽为a、长为b的长方形,用这6张纸片重新拼出一个长方形,那么该长方形的长为:A.a+b B.a-+2b C.2a+b D.无法确定二、填空题(本大题共10小题,每小题2分,共20分)请把最后结果填在题中横线上.11.3x-5>5x+3的解集___X<﹣4____.12.分解因式:2x2-18=_2(X+3)____(x-3)_________.13.已知,253x y kx y k+=⎧⎨-=+⎩如果x与y互为相反数,那么k=_____-1______.14.不等式1223x->-的最大整数解是______3______.15.要使右图饺接的六边形框架形状稳定,至少需要添加___3______条对角线.16.一次测验中共有20道题,规定答对一题得5分,答错或不答均得负2分,某同学在这次测验中共得79分.则该生答对_______17__题。