数字图像处理_领域平均滤波_中值滤波

合集下载

图像滤波的三个用途

图像滤波的三个用途

图像滤波的三个用途图像滤波是数字图像处理中的重要技术,它可以在空域或频域对图像进行操作,用以改善图像质量或提取图像特征。

图像滤波主要有三个常见的用途,包括降噪、增强和特征提取。

首先,降噪是图像滤波的主要应用之一。

在图像获取过程中,由于各种因素的干扰,图像中会受到噪声的影响,导致图像质量下降。

噪声可以分为两种类型:加性噪声和乘性噪声。

加性噪声是指在原图像的每个像素值上加上一个噪声值,如高斯噪声;乘性噪声是指原图像的每个像素值与一个噪声值相乘,如盐椒噪声。

为了提高图像质量,我们可以使用图像滤波技术对图像进行降噪处理。

图像降噪的方法很多,常用的方法包括均值滤波、中值滤波、高斯滤波等。

均值滤波是指用邻域内像素的平均值代替当前像素值,以达到降低图像噪声的目的;中值滤波是指用邻域内像素的中值代替当前像素值,能够有效地消除椒盐噪声;高斯滤波是一种根据高斯核来进行滤波操作的方法,可以对图像进行平滑处理,降低高频噪声。

其次,图像滤波还可以用于图像增强。

图像增强是指通过图像处理技术改善图像的视觉效果,使图像在视觉上更加鲜明、清晰,以更好地满足人类视觉的需求。

图像增强的目标通常有多样性,比如增强对比度、增强细节、增加色彩饱和度等。

在图像增强中,滤波操作主要用于对图像进行平滑或锐化处理,以达到增强图像细节、增强边缘等目的。

常见的图像增强滤波器有高通滤波器和锐化滤波器。

高通滤波器可以增强图像的边缘和细节信息,常用的高通滤波器有拉普拉斯滤波器和Sobel滤波器;锐化滤波器可以增强图像的边缘和轮廓,常用的锐化滤波器有增强滤波器和梯度滤波器。

这些滤波器能够通过突出图像的边缘和细节信息来提高图像的质量,使图像看起来更加清晰和饱满。

最后,图像滤波还可以用于图像特征提取。

图像特征是指从图像中提取出的在某种背景下具有差异性和可区分性的信息。

图像特征提取是机器视觉、模式识别等领域中的关键步骤,它可以用于目标检测、图像分类、图像匹配等任务。

数字图像处理------中值滤波

数字图像处理------中值滤波

数字图像处理------中值滤波⼀中值滤波概念中值滤波算法以某像素的领域图像区域中的像素值的排序为基础,将像素领域内灰度的中值代替该像素的值[1];如:以3*3的领域为例求中值滤波中像素5的值图11)int pixel[9]中存储像素1,像素2...像素9的值;2)对数组pixel[9]进⾏排序操作;3)像素5的值即为数组pixel[9]的中值pixel[4]。

中值滤波对处理椒盐噪声⾮常有效。

⼆中值滤波代码实现//中值滤波:本算法采⽤3*3的领域范围void MyImage::MedianFilterOper(){//0. 准备:获取图⽚的宽,⾼和像素信息,int const num = 3 * 3;unsigned char pixel[num] = { 0 }; //保存领域的像素值int width = m_bmpInfo.biWidth;int height = m_bmpInfo.biHeight;int widthbyte = (width * m_bmpInfo.biBitCount / 8 + 3) / 4 * 4; //保证为4的倍数//相对于中⼼点,3*3领域中的点需要偏移的位置int delta[3 * 3][2] = {{ -1, -1 }, { -1, 0 }, { -1, 1 }, { 0, -1 }, { 0, 0 }, { 0, 1 }, { 1, -1 }, { 1, 0 }, {1, 1}};//1. 中值滤波,没有考虑边缘for (int i = 1; i < height-1; ++i){for (int j = 1; j < widthbyte-1; ++j){//1.1 提取领域值for (int k = 0; k < num; ++k){pixel[k] = m_imagedata[(i + delta[k][0])*widthbyte + j + delta[k][1]];}//1.2 排序qsort(pixel, num, sizeof(unsigned char), compa);//1.3 获取该中⼼点的值m_imagedata[i*widthbyte + j] = pixel[num / 2];}}}3 中值滤波概述 滤波是基于排序统计理论的⼀种能有效抑制噪声的⾮线性信号平滑处理技术,它将每⼀点的设置为该点某邻域窗⼝内的所有像素点灰度值的。

数字图像处理-知识点总结

数字图像处理-知识点总结

图像分类:根据图像空间坐标和幅度(亮度或色彩)的连续性可分为模拟(连续)图像和数字图像。

模拟图像是空间坐标和幅度都连续变化的图像,而数字图像是空间坐标和幅度均用离散的数字(一般是整数)表示的图像。

图像的数学表示:一幅图像所包含的信息首先表现为光的强度(intensity),即一幅图像可看成是空间各个坐标点上的光强度I 的集合,其普遍数学表达式为:I = f (x,y,z,λ,t) 式中(x,y,z)是空间坐标,λ是波长,t是时间,I是光点(x,y,z)的强度(幅度)。

上式表示一幅运动的(t)、彩色/多光谱的(λ)、立体的(x,y,z)图像。

图像的特点:1.空间有界:人的视野有限,一幅图像的大小也有限。

2.幅度(强度)有限:即对于所有的x,y都有0≤f(x,y) ≤Bm其中Bm为有限值。

图像三大类:在每一种情况下,图像的表示可省略掉一维,即1.静止图像:I = f(x,y,z, λ)2.灰度图像:I = f(x,y,z,t )3.平面图像:I = f(x,y,λ,t)而对于平面上的静止灰度图像,其数学表达式可简化为:I = f(x,y)数字图像处理的基本步骤:1.图像信息的获取:采用图像扫描仪等将图像数字化。

2.图像信息的存储:对获取的数字图像、处理过程中的图像信息以及处理结果存储在计算机等数字系统中。

3.图像信息的处理:即数字图像处理,它是指用数字计算机或数字系统对数字图像进行的各种处理。

4.图像信息的传输:要解决的主要问题是传输信道和数据量的矛盾问题,一方面要改善传输信道,提高传输速率,另外要对传输的图像信息进行压缩编码,以减少描述图像信息的数据量。

5.图像信息的输出和显示:用可视的方法进行输出和显示。

数字图像处理系统五大模块:数字图像处理系统由图像输入、图像存储、图像通信、图像处理和分析五个模块组成。

1.图像输入模块:图像输入也称图像采集或图像数字化,它是利用图像采集设备(如数码照相机、数码摄像机等)来获取数字图像,或通过数字化设备(如图像扫描仪)将要处理的连续图像转换成适于计算机处理的数字图像。

中值滤波与均值滤波

中值滤波与均值滤波

06
中值滤波与均值滤波的优缺点 分析
中值滤波的优缺点分析
在此添加您的文本17字
优点
在此添加您的文本16字
能够有效去除椒盐噪声:中值滤波对于去除由异常值引起 的椒盐噪声非常有效,因为它会将异常值视为非正常值而 进行替换。
在此添加您的文本16字
保护边缘信息:与均值滤波相比,中值滤波在处理过程中 更不容易模糊图像的边缘信息。
分治算法实现中值滤波
总结词
时间复杂度较低,适用于较大数据量
详细描述
分治算法实现中值滤波的基本思路是将待处理的像素点及其邻域内的像素值分为两个子集,分别计算子集的中值, 然后将两个子集的中值进行比较,选取较小的一个作为输出。这种方法能够显著降低时间复杂度,提高处理效率, 适用于大规模数据量。
并行算法实现中值滤波
在此添加您的文本16字
缺点
在此添加您的文本16字
处理速度相对较慢:中值滤波需要将像素点与邻近像素点 进行排序,因此处理速度相对较慢,尤其是在处理大图像 时。
在此添加您的文本16字
对非椒盐噪声效果有限:中值滤波对于非椒盐噪声的处理 效果可能不如其他滤波器。
均值滤波的优缺点分析
优点
对均匀区域平滑效果好:均值滤波器能够有效地平滑图 像中的均匀区域,减少图像中的细节。
迭代法实现均值滤波
要点一
总结词
迭代法是一种通过不断迭代更新像素值来实现均值滤波的 方法。
要点二
详细描述
迭代法的基本思想是通过不断迭代更新图像中每个像素的 值来实现均值滤波。具体实现时,通常先对图像进行一次 初步的滤波处理,然后根据滤波后的图像和原始图像之间 的差异,不断迭代更新像素值,直到达到预设的迭代次数 或迭代精度要求。迭代法能够更好地处理图像中的细节和 噪声,但计算复杂度较高,需要更多的计算资源和时间。

中值滤波和均值滤波

中值滤波和均值滤波

中值滤波和均值滤波中值滤波和均值滤波是数字图像处理中常用的两种滤波方法,它们在图像去噪和平滑处理中起着重要的作用。

本文将从原理、应用以及优缺点等方面介绍这两种滤波方法。

一、中值滤波中值滤波是一种非线性滤波方法,其基本原理是用像素点周围邻域内的中值来代替该像素点的灰度值。

中值滤波可以有效地去除图像中的椒盐噪声和脉冲噪声,同时能够保持图像的边缘信息。

其处理过程如下:1.选取一个模板,模板的大小根据噪声的程度来确定;2.将模板中的像素点按照灰度值大小进行排序,取其中位数作为中心像素点的灰度值;3.将中心像素点的灰度值替换为中值;4.重复以上步骤,对整个图像进行滤波。

中值滤波的优点是能够有效地去除椒盐噪声和脉冲噪声,同时保持图像的边缘信息。

然而,中值滤波也存在一些缺点,例如不能处理高斯噪声和均匀噪声,对图像细节信息的保护效果较差。

二、均值滤波均值滤波是一种线性平滑滤波方法,其基本原理是用像素点周围邻域内的平均值来代替该像素点的灰度值。

均值滤波可以有效地去除高斯噪声和均匀噪声,同时能够保持图像的整体平滑。

其处理过程如下:1.选取一个模板,模板的大小根据滤波效果来确定;2.计算模板内所有像素点的灰度值的平均值;3.将中心像素点的灰度值替换为平均值;4.重复以上步骤,对整个图像进行滤波。

均值滤波的优点是能够有效地去除高斯噪声和均匀噪声,同时能够保持图像的整体平滑。

然而,均值滤波也存在一些缺点,例如不能处理椒盐噪声和脉冲噪声,对图像细节信息的保护效果较差。

中值滤波和均值滤波在图像处理中各有优劣。

中值滤波适用于去除椒盐噪声和脉冲噪声,能够保持图像的边缘信息,但在处理高斯噪声和均匀噪声时效果较差。

而均值滤波适用于去除高斯噪声和均匀噪声,能够保持图像的整体平滑,但对于细节信息的保护效果较差。

在实际应用中,根据图像的特点和噪声的类型选择合适的滤波方法是很重要的。

如果图像受到椒盐噪声和脉冲噪声的影响,可以选择中值滤波进行去噪处理;如果图像受到高斯噪声和均匀噪声的影响,可以选择均值滤波进行平滑处理。

数字图像加权平均滤波与中值滤波计算

数字图像加权平均滤波与中值滤波计算

加权平均滤波:
给出下面5x5的图像和一个滤波模版
右图给的是4领域加权平均滤波模版
加权均值滤波计算答案:
计算步骤:先选取左上角这个区域,计算加权均值替换中心点0的值。

原图像每个点对应值与滤波模版的值对应相乘求和取均值,依次往后 计算其它8个点。

计算方法:(0x0+4x1+2x0+1x1+0x1+1x1+2x0+0x1+4x0)x0.25=1.5 取2 注意: 1. 周围的像素值保持不变
2. 计算每个点的值时都应该按照原图像的灰度值计算
3. 计算结果四舍五入
0 4 2 3 4 1 2 2 2 3 2 3 2 2 2 4 3 4 3 3 0 5 6 7 3 042310112041440143230567301111141000
中值滤波:
1. 选取邻域
2. 计算中值替换中心点的像素值
例如对于下面的5x5图像,选取菱形邻域
求中值: 1 2 2 3 4 中值为2,替换原来的2 后面的依次计算剩下的8点 最后结果:
注意: 1. 周围的像素值保持不变
2. 计算每个点的值时都应该按照原图像的灰度值参与计算
0 4 2 3 4 1 2 2 2 3 2 3 2 2 2 4 3 4 3 3 0 5 6 7 3 0 4 2 3 4 1 2 2 2 3
2 2 2 2 2 4 4
3 3 3 0 5 6 7 3。

均值滤波,高斯滤波,中值滤波

均值滤波,高斯滤波,中值滤波

均值滤波,高斯滤波,中值滤波均值滤波,高斯滤波和中值滤波是数字图像处理中常用的三种平滑滤波技术,用于降低图像噪声和去除图像中的不相关细节。

本文将对这三种滤波方法进行介绍、比较和分析。

一、均值滤波均值滤波是一种简单的平滑滤波方法,它的原理是用滤波窗口内像素的平均值来代替中心像素的值。

具体来说,对于滤波窗口内的每个像素,计算其邻域内所有像素的平均值,然后将结果作为中心像素的值。

这样可以有效地平滑图像并去除高频噪声。

然而,均值滤波的缺点是它不能很好地保留图像的边缘信息,使得图像看起来模糊且失去细节。

二、高斯滤波高斯滤波是一种基于高斯分布的平滑滤波方法,它认为像素点的邻域内的像素值与中心像素点的距离越近,其权重越大。

它的滤波过程是在滤波窗口内,对每个像素点进行加权平均。

加权的权重由高斯函数决定,距离中心像素点越近的像素点的权重越大,距离越远的像素点的权重越小。

通过这种加权平均的方式,可以更好地保留图像的细节和边缘信息,同时有效地去除噪声。

高斯滤波的唯一缺点是计算复杂度较高,特别是对于大型滤波窗口和高分辨率图像来说。

三、中值滤波中值滤波是一种统计滤波方法,它的原理是用滤波窗口内像素的中值来代替中心像素的值。

具体来说,对于滤波窗口内的每个像素,将其邻域内的像素按照大小进行排序,然后将排序后像素的中值作为中心像素的值。

中值滤波对于椒盐噪声和脉冲噪声有很好的去噪效果,能够保持图像的边缘信息,避免了均值滤波和高斯滤波的模糊问题。

然而,中值滤波的缺点是不能去除高斯噪声和高频噪声,因为当滤波窗口内的像素含有这些噪声时,中值滤波会产生失真效果。

比较和分析:三种滤波方法各有优劣,应根据实际需求选择合适的滤波方法。

均值滤波是最简单、计算复杂度最低的方法,在去除高斯噪声和低频噪声方面效果较差,但对边缘信息的保留效果较差。

高斯滤波通过加权平均的方式更好地保留了图像的细节和边缘信息,适用于处理高斯噪声并且具有一定的平滑效果。

中值滤波对于椒盐噪声和脉冲噪声有很好的去噪效果,并保持了图像的边缘信息,但对于高斯噪声和高频噪声则效果较差。

数字图像处理

数字图像处理

826 1012 834 1020 828 981 92 90 97 91 90 88
100 101 98 97 100 79 916 1026 1103 95 89 67 827 1231 827 94 87 72 816 1323 919 103 85 75 92 99 111 102 78 74 95 102 121 111 112 73
86 102 84 100 88 98 92 90 97 91 90 88
12
1
23
2
12
1
1010 1021 918 97 100 79 926 1036 1203 95 89 67 817 1221 817 94 87 72 86 133 99 103 85 75 92 99 111 102 78 74 95 102 121 111 112 73
86 102 84 100 88 98 92 90 97 91 90 88
100 1011 928 971 100 79 96 1026 1033 952 89 67 87 1211 827 941 87 72 86 133 99 103 85 75 92 99 111 102 78 74 95 102 121 111 112 73
T1,1f x,y T1,2f x,y 1
T2,0f x 1, y 1 T2,1f x 1, y
T2, 2f x 1, y 1
1 引言
4)相关与卷积的物理含义
相关运算是将模板当权重矩阵作加权平均; 而卷积先沿纵轴翻转,再沿横轴翻转后再加
权平均。 如果模板是对称的,那么相关与卷积运算结
86 102 84 100 88 98 92 90 97 91 90 88
1 引言

图像去噪算法性能与对比分析

图像去噪算法性能与对比分析

图像去噪算法性能与对比分析引言:图像去噪是数字图像处理领域的重要研究内容之一,其目的是将存在于图像中的噪声信号或干扰信号去除,提高图像质量。

随着数字图像处理技术的发展,现在有许多不同类型的图像去噪算法被广泛应用于图像处理领域。

本文将对几种主流的图像去噪算法进行性能与对比分析。

一、经典去噪算法1. 均值滤波器均值滤波器是一种简单且广泛使用的图像去噪算法。

它通过计算像素周围邻域像素的平均值来取代该像素的值。

然而,均值滤波器的性能有限,对于复杂的噪声类型效果较差。

2. 中值滤波器中值滤波器是另一种常见的图像去噪算法。

它基于中心像素周围邻域像素值的中值来替代该像素的值。

中值滤波器能够有效地去除椒盐噪声等离群点噪声,但对于高斯噪声效果较差。

3. 总变差去噪(TV)总变差去噪是一种最小化图像总变差的优化算法。

它基于假设图像在相邻像素之间具有平滑性。

总变差去噪算法在去噪图像的同时能够保持图像的边缘和细节信息,因此在去除噪声的同时能够保持图像的清晰度。

二、基于机器学习的去噪算法1. 自编码器自编码器是一种无监督学习算法,通过将输入映射到隐藏层,再将隐藏层的特征映射重构为输出层,从而实现对输入信号的噪声去除。

自编码器通过对训练样本的学习来还原输入信号,从而能够保留原始图像的重要信息,同时去除噪声。

2. 条件生成对抗网络(CGAN)条件生成对抗网络是一种通过生成模型来进行图像去噪的算法。

它引入条件信息,将噪声图像作为输入,并生成一个与原始输入噪声图像对应的真实图像。

CGAN通过生成器和判别器之间的对抗学习来实现去噪效果的优化。

三、性能与对比分析1. 去噪效果比较:经典去噪算法如均值滤波器和中值滤波器能够有效去除一些简单的噪声,但对于复杂的噪声类型如高斯噪声等效果不佳。

基于机器学习的去噪算法如自编码器和CGAN则能够更好地处理复杂的噪声类型,恢复图像的清晰度和细节信息。

2. 处理速度比较:经典去噪算法通常具有较快的处理速度,适用于实时应用场景。

图像去除噪声方法

图像去除噪声方法

图像去除噪声方法图像去噪是数字图像处理的一种重要技术,在数字图像传输、存储和分析过程中都会遇到噪声的干扰。

目前图像去噪的方法主要分为基于空域的滤波方法和基于频域的滤波方法。

基于空域的滤波方法是指直接对图像的像素进行处理,常见的方法有均值滤波、中值滤波和高斯滤波等。

1. 均值滤波是一种简单的图像平滑方法,它通过对图像的每个像素值周围像素的平均值进行计算来减小噪声。

具体步骤是,对于图像中的每个像素,以该像素为中心取一个固定大小的窗口,然后计算窗口内所有像素的平均灰度值作为该像素的新值。

由于均值滤波是线性滤波器,因此它对于高斯噪声具有一定的去噪效果,但对于细节部分的保护能力较弱。

2. 中值滤波是一种非线性滤波方法,它通过在窗口内对像素值进行排序,将中间值作为该像素的新值来减小噪声。

相比于均值滤波,中值滤波更能保护图像的细节,对椒盐噪声(指图像中的黑白颗粒噪声)有较好的去噪效果。

3. 高斯滤波是基于高斯函数的一种线性滤波方法,它通过对图像像素的邻域像素进行加权平均来减小噪声。

高斯滤波的核函数是一个二维高斯函数,它具有旋转对称性和尺度不变性。

高斯滤波可通过调整窗口的大小和标准差来控制平滑程度,窗口越大、标准差越大,平滑程度越高。

高斯滤波对高斯噪声的去噪效果较好,但对于椒盐噪声则效果较差。

基于频域的滤波方法是指通过将图像进行傅立叶变换后,在频率域对图像进行滤波,然后再进行逆傅立叶变换得到去噪后的图像。

这种方法的优点是可以同时处理图像中的各种频率成分。

1. 傅立叶变换是一种将图像从空间域转换为频率域的方法,它将图像表示为了频率和相位信息的叠加。

在频率域中,图像可以分解为不同频率的成分,其中低频成分代表图像的平滑部分,高频成分代表图像的细节部分。

因此,通过滤除高频成分可以达到去噪的效果。

2. 基于小波变换的图像去噪方法利用小波变换的多分辨率分析特性来实现。

小波变换将图像分解成不同尺度的频带,通过选择合适的阈值来滤除噪声分量,然后再进行逆变换得到去噪后的图像。

图像预处理—图像平滑(数字图像处理课件)

图像预处理—图像平滑(数字图像处理课件)
S={(x,y+1),(x,y-l),(x+1,y),(x-1,y)}
4
项目五
下图给出了两种从图像阵列中选取邻域的方法。图(a)的方法是一个点的邻域,定义为 以该点为中心的一个圆的内部或边界上的点的集合。图中选取点的灰度值就是圆周上4个像素灰 度值的平均值。
图(b)是选择圆的边界上的点和在圆内的点为S的集合。
项目五
1.2空域低通滤波
将空间域模板用于图像处理通常称为空间滤波,而空间域模板称为空间滤 波器。空间域滤波按线性的和非线性特点有:线性、非线性平滑滤波器。
线性平滑滤波器包括邻域平均法(均值滤波器)、非线性平滑滤波器有中 值滤波器。
1
项目五
(1)邻域平均法
邻域平均法是简单的空域处理方法。这种方法的基本思想是用几个像素灰度
15
项目五
空间域滤波原理基础
用3×3的模板进行空间滤波的示意图
N
R
ki si k0 s0 k1s1 k8 s8
i0
16
项目五
例:空域中利用模板求卷积和相关计算 例如,假设图像矩阵为A,卷积核为h。如图3.4.4所示。
17
项目五
空域中利用模板求卷积
计算得出输出像素A(2,4)的卷积值为
1
8
15 2 9 4
A(2,4)
7
14
16 7
5
3
13
20
22 6
1
8
=575
18
10
项目五
• 1.1滤波原理与分类
空间域的三种滤波器剖面示意图
11
项目五
• 1.2 空间域滤波
空域滤波是在图像空间借助模板进行邻域操作完成的,空域滤波按线性的和非线性特点有: (1)基于傅里叶变换分析的线性滤波器; (2)直接对邻域进行操作的非线性空间滤波器。 空域滤波器根据功能主要分成平滑滤波和锐化滤波。 平滑滤波可用低通滤波实现。 平滑的目的: (1)消除噪声,(2)去除太小的细节或将目标内的小间断连按起来实现模糊。

遥感数字图像处理第7章 图像滤波

遥感数字图像处理第7章 图像滤波
优点:对高斯噪声比较有效
不足:会造成图像模糊,削弱边缘和细节
均值滤波模板
1 1 1 1 1 1 1 ,或 1 1 1 1 1 1 1 9 8 1 1 1 1 1 1
中值滤波(Median filtering)
中值滤波取每个领域像素值的中均作为该像素的新值。
图像滤波的方法:
1. 空间域滤波
通过窗口或卷积核
2. 频率域滤波
通过傅立叶变换和逆变换
相关概念
1. 邻域、4-邻域、8-邻域
2. 卷积、窗口卷积
噪声
噪声是影响对图像信息理解或分析的成分
遥感图像中常见的噪声:
1. 高斯噪声
在信号上附加均值为0,具有高斯概率密度的函数值
2. 椒盐噪声(脉冲噪声)
随机改变一些像素值
优点:对椒盐噪声比较有效,能保留部分细节信息,
减少模糊
不足:计算复杂,对随机噪声效果不好
高斯低通滤波(Gaussian low-pass filtering)
高斯低通滤波的模板由二维高斯分布计算得到,使用
窗口卷积计算像素新值。
优点:对高斯噪声比较有效
不足:计算复杂
梯度倒数加权法
在离散图像内部相邻区域的变化大于区域内部的变化,
通过微分过程来实现。
梯度
梯度反映了相邻像素之间灰度的变化率,图像中的边
缘部分灰度变化率大,因此梯度值较大;相应的灰
度值变化小的地方,梯度值也较小。
f ( x , y ) ' f x x gradf ( x , y ) ' f ( x , y ) fy y
1 1 1 0 或1 0 1 1 0 0 1 1 2 2 1 1 或 1 2 1 1 1 1 1 2

均值滤波、中值滤波、高斯滤波公式

均值滤波、中值滤波、高斯滤波公式

均值滤波、中值滤波、高斯滤波的公式如下:
1.均值滤波:使用邻域平均法,用均值代替原图像中的各个像素值。

设有一个滤波
模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在该点上的灰度g(x,y),即g(x,y)=∑f(x,y)/m m为该模板中包含当前像素在内的像素总个数。

2.中值滤波:其数学公式为y[n]=median(x[n-k],…,x[n],…,x[n+k]) 其中x xx是原始
信号,y yy是滤波后的信号,n nn是当前位置,k kk是窗口大小。

3.高斯滤波:高斯函数可以用来模拟存在噪声的图像。

假设有一幅大小为N×N像
素的图像f(x,y),那么任意一点(x,y)上的像素值可以用高斯函数来描述:
f(x,y)=∫∫f(u,v)exp[-{(u-x)^2+(v-y)^2}/2σ^2]dudv 其中,f(u,v)是原始图像上(u,v)点的像素值,σ是高斯滤波参数,表示高斯函数的“宽度”。

以上信息仅供参考,如有需要,建议咨询专业人士。

中值滤波与均值滤波

中值滤波与均值滤波
详细描述
排序算法实现中值滤波的过程包括以下步骤:首先,将像素邻域内的所有像素值读入一个数组中;然后,对这个 数组进行排序;最后,选择排序后的中间值作为输出。这种方法的时间复杂度较高,为O(nlogn),其中n是像素 邻域内的像素个数。
分治算法实现中值滤波
总结词
分治算法实现中值滤波是一种改进的方 法,它将问题分解为若干个子问题,递 归地解决子问题,最后将结果合并。
中值滤波与均值滤波
• 中值滤波器概述 • 均值滤波器概述 • 中值滤波与均值滤波的比较 • 中值滤波的实现方法 • 均值滤波的实现方法 • 中值滤波与均值滤波的未来发展
01
中值滤波器概述
中值滤波的定义
01
中值滤波是一种非线性信号处理 技术,用于消除噪声和异常值。
02
它通过将一个滑动窗口内的所有 像素值按大小排序,并将中值作 为输出,来达到去除异常值的目 的。
THANKS
感谢观看
值的平均值,得到滤波后的像素值。
高斯滤波器实现均值滤波
总结词
高斯滤波器是一种常用的均值滤波方法,通过将高斯函数作为滤波器核,对图像进行卷 积运算,实现均值滤波。
详细描述
高斯滤波器的基本思想是,将高斯函数作为滤波器核,对图像中的每个像素及其邻近像 素进行卷积运算。高斯函数具有平滑的形状和逐渐减小的振幅,能够有效地平滑图像并
中值滤波对异常值较为鲁棒,能 够有效地去除由异常值引起的噪 声。均值滤波对异常值的敏感性 较高,容易受到异常值的影响。
边缘保护
中值滤波在处理图像边缘时能够 较好地保留边缘信息,而均值滤 波可能会对图像边缘造成模糊。
适用场景比较
中值滤波适用于去除椒盐噪声和去除由异常值引起的噪声。 均值滤波适用于去除高斯噪声和减少图像细节。

图像去噪算法效果评估说明

图像去噪算法效果评估说明

图像去噪算法效果评估说明图像去噪是指通过算法处理图像中的噪声,使图像变得更加清晰和可视。

随着数字图像在各个领域的广泛应用,图像去噪算法的研究和应用也越来越受到关注。

本文将对几种常见的图像去噪算法进行效果评估,并分析其优缺点和适用场景。

首先,本文将介绍几种常见的图像去噪算法,包括均值滤波、中值滤波、高斯滤波、小波去噪等。

这些算法在去除图像噪声方面各有特点和适用范围。

均值滤波是一种简单直观的去噪算法,它通过计算像素周围领域的像素平均值来消除噪声。

中值滤波则是将像素周围领域的像素值排序,取中间值作为去噪结果的算法。

高斯滤波则是基于图像的像素与周围像素的高斯权重来进行计算。

小波去噪算法则是利用小波变换将信号进行分解和重建,通过对小波系数的阈值处理来实现去噪效果。

在进行图像去噪算法的效果评估时,一般会选择一些公开的图像去噪测试库作为评估数据集。

这些数据集包含了不同的图像噪声情况和难度等级,用于评估算法在不同场景下的表现。

常用的图像去噪评估指标包括峰值信噪比(PSNR)、结构相似度(SSIM)等。

PSNR是通过计算原始图像和去噪后图像之间的均方误差来评估其质量的指标,数值越高说明去噪效果越好。

SSIM则通过比较图像的亮度、对比度和结构来评估图像质量,数值范围从0到1,越接近1表示图像质量越好。

对于不同的图像去噪算法,其效果评估结果会有所不同。

在实验结果的分析中,可以对算法的去噪效果进行定性和定量分析。

定性分析可以通过观察去噪后图像的视觉效果来评估算法的优劣,包括图像边缘的保留情况、细节的恢复程度等。

定量分析则可以通过计算评估指标(如PSNR、SSIM)来对算法进行比较。

可以采用对比实验的方法,将不同的图像去噪算法在相同的评估数据集上进行对比,从而得出其优劣和适用性。

除了性能评估外,还需要考虑图像去噪算法的计算复杂度和实际应用场景。

一些算法可能在去噪效果上表现良好,但计算复杂度较高,不适合实时应用。

而一些算法则可能在噪声较强的情况下表现较好,但对噪声较弱的图像效果有限。

【数字图像处理】图像的平滑处理

【数字图像处理】图像的平滑处理

【数字图像处理】图像的平滑处理图像平滑的⽬的模糊:在提取较⼤⽬标前,去除太⼩细节,或将⽬标内的⼩间断连接起来。

消除噪声:改善图像质量,降低⼲扰。

平滑处滤波对图像的低频分量增强,同时削弱⾼频分量,⽤于消除图像中的随机噪声,起到平滑作⽤。

图像平滑处理的基本⽅法领域平均法领域加权平均法选择式掩模法中值滤波领域平均法模板在图像上移动,模板的中⼼对应⽬标像素点,在模板范围内对⽬标像素点进⾏卷积运算(对应系数乘对应像素点),然后相加除上模板⼤⼩得到均值,这个均值就是⽬标像素点处理后的值。

如图,对5⾏四列的图像进⾏3*3模板的邻域平均法处理:邻域平均法存在的问题抑制了⾼频成分,使⽤图像变得模糊,平滑效果不好,减少噪⾳的同时,损失了⾼频信息。

注意:模板不宜过⼤,因为模板越⼤对速度有直接影响,且模板⼤⼩越⼤变换后图像越模糊,特别是在边缘和细节处优点:算法简答,计算速度快。

缺点:造成图像⼀定程度上的模糊。

3*3模板邻域平均法⽰例:Use_ROWS:⾏Use_Line:列图像边界不处理:只处理1-----n-1。

int count = 0;for(int i = 1; i < Use_ROWS-1; i++){for(int j = 1; j < Use_Line-1; j++){//邻域平均法count=0;count = Image_Use[i][j]+Image_Use[i][j-1]+Image_Use[i][j+1]+Image_Use[i-1][j]+Image_Use[i-1][j-1]+Image_Use[i-1][j+1]+Image_Use[i+1][j]+Image_Use[i+1][j-1]+Image_Use[i+1][j+1]; Image_Use[i][j] = (int)(count/9);}}邻域加权平均法加权:系数不再全部为1。

选择式掩模法中值滤波中值滤波器,使⽤滤波器窗⼝包含区域的像素值的中值来得到窗⼝中⼼的像素值,本质上是⼀种⾮线性平滑滤波器。

均值滤波和顺序统计滤波

均值滤波和顺序统计滤波

均值滤波和顺序统计滤波1.引言markdown1.1 概述在数字图像处理领域,滤波是一种常用的图像增强和降噪的技术。

其中,均值滤波和顺序统计滤波是两种经典的滤波方法。

均值滤波,也称为平均滤波,是一种简单但有效的图像平滑技术。

它通过对每个像素周围邻域的像素值进行平均,来减小图像中的噪声和细节。

均值滤波对于高斯噪声等随机分布的噪声有较好的效果,可以较好地保留图像的整体结构。

顺序统计滤波,又称为中值滤波,是一种非线性滤波方法。

它通过对每个像素周围邻域的像素值进行排序,并取中间值作为该像素的新值。

中值滤波对于椒盐噪声等脉冲型噪声有较好的效果,可以有效地去除孤立噪声点。

本文将首先介绍均值滤波的原理和应用场景,然后详细讨论顺序统计滤波的原理和应用场景。

在结尾部分,我们将对这两种滤波方法进行对比分析,并总结它们的优缺点和适用范围。

通过深入了解和比较均值滤波和顺序统计滤波的特点和应用,读者将能够更好地理解和运用这两种滤波技术,提高图像处理的质量和效果。

文章1.1 概述部分的内容如上所示,它简要介绍了均值滤波和顺序统计滤波这两种经典的滤波方法,并说明了它们各自的原理和应用场景。

此外,文章还提到了本文的目的是通过对这两种滤波方法进行比较分析,帮助读者更好地理解和运用它们。

1.2 文章结构文章结构部分的内容可以包括以下信息:文章结构部分的目的是为读者提供对整篇文章的概述和组织架构,以帮助读者更好地理解和阅读文章。

下面是对文章结构的详细说明:本文共分为三个部分:引言、正文和结论。

在引言部分,我们会首先对均值滤波和顺序统计滤波进行概述,介绍其基本概念和作用。

接着,我们将详细介绍文章的结构和各个部分的内容。

最后,我们会明确本文的目的,即通过对比分析均值滤波和顺序统计滤波的原理和应用场景,总结它们的优缺点和适用性。

正文部分主要包括两个小节:均值滤波和顺序统计滤波。

在均值滤波的小节中,我们将详细介绍均值滤波的原理和实现方式,以及它在图像处理和信号处理中的应用场景。

利用digitalmicrograph进行滤波处理的方法_概述说明

利用digitalmicrograph进行滤波处理的方法_概述说明

利用digitalmicrograph进行滤波处理的方法概述说明1. 引言1.1 概述本文旨在介绍利用Digital Micrograph(以下简称DM)进行滤波处理的方法。

随着数字图像处理技术的发展,滤波处理在图像分析和增强中扮演着重要角色。

而DM作为一款强大的图像处理软件,具有丰富的功能和灵活的操作性,提供了几种滤波器算法的实现,可广泛应用于各个领域。

本文将对DM进行简介,并讨论其在滤波处理中的应用价值。

1.2 文章结构本文将按照以下结构展开讨论:第2部分:DigitalMicrograph简介- 介绍DM的基本概念与功能,并探讨其在不同领域中所具有的优势;- 探究DM在滤波处理领域中所能提供的功能和应用价值。

第3部分:滤波处理基础知识- 解释信号与噪声的概念,并探讨二者之间关系;- 介绍滤波器原理及其分类;- 总结数字图像滤波处理方法并进行概述。

第4部分:在DigitalMicrograph中实现滤波处理- 着重说明图像导入与数据准备阶段的操作;- 提供常用滤波器算法的具体实现方法示例;- 探讨滤波效果评估与参数调优的方法和技巧。

第5部分:结论- 总结基于DigitalMicrograph的滤波处理方法;- 讨论方法的应用限制以及未来发展方向。

1.3 目的本文的目标是为读者提供在DM中进行滤波处理时所需的基础知识、操作流程以及一些实用技巧。

通过学习本文,读者将能够了解DM软件工具的使用方式,并且能够根据自身需求从多个滤波器算法中选择合适的方法进行图像处理。

我们希望本文能够为使用DM进行滤波处理的研究人员和工程师提供一定的参考和指导。

2. DigitalMicrograph简介2.1 基本概念与功能介绍:DigitalMicrograph是一款专业的图像处理软件,主要用于对数字图像进行分析、处理和可视化。

它以强大的算法和丰富的功能而闻名。

该软件提供了一系列底层操作与高级处理工具,可适用于各种科学研究领域。

数字图像处理实验三(邻域平均法和中值滤波)

数字图像处理实验三(邻域平均法和中值滤波)

数字图像处理实验三(邻域平均法和
中值滤波)
部门: xxx
时间: xxx
整理范文,仅供参考,可下载自行编辑
数字图像处理实验三
邻域平均法(box 模板>和中值滤波处理
加入脉冲噪声后的图像:
testnoise.bmp 去噪过程结果图像
请设计程序,分别用邻域平均法,其模板为:
和中值滤波法对testnoise 图像进行去噪处理<中值滤波的模板的大小也设为3×3)。

得出实验结果图像后,比较这两种方法去噪的效果好坏,并分析具体原因。

b5E2RGbCAP 完成上述工作后,使用程序进行验证分析:使用邻域平均法时,3×3和5×5模板大小对图像进行处理的效果有何差别?并分析原因。

p1EanqFDPw 附加说明:程序框架可以参考第二次实验指导书上给出的示例程
序。

申明:
所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

数字图形处理 实验 图像的平滑与锐化

数字图形处理 实验 图像的平滑与锐化

XXXXXXXX 大学(数字图形处理)实验报告 实验名称 图像的平滑与锐化 实验时间 年 月 日专 业 姓 名 学 号 预 习 操 作 座 位 号 教师签名 总 评一、实验目的:1.了解图像平滑的邻域平均和中值滤波以及锐化的梯度法和Sobel 法的基本思想;2.掌握图像平滑的邻域平均和中值滤波以及锐化的梯度法和Sobel 法的基本步骤;二、实验原理:1. 邻域平均法的思想是用像素及其指定邻域内像素的平均值或加权平均值作为该像素的新值,以便去除突变的像素点,从而滤除一定的噪声。

邻域平均法的数学含义可用下式表示:∑∑==⎪⎭⎫ ⎝⎛=mn i imn i i i w z w y x g 11),( (1) 上式中:i z 是以),(y x 为中心的邻域像素值;i w 是对每个邻域像素的加权系数或模板系数; m n 是加权系数的个数或称为模板大小。

邻域平均法中常用的模板是:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡*=11111111191Box T (2) 为了解决邻域平均法造成的图像模糊问题,采用阈值法(又叫做超限邻域平均法,如果某个像素的灰度值大于其邻域像素的平均值,且达到一定水平,则判断该像素为噪声,继而用邻域像素的均值取代这一像素值;否则,认为该像素不是噪声点,不予取代),给定阈值0T :⎩⎨⎧≥-<-=00),(),(),(),(),(),(),(T y x g y x f y x g T y x g y x f y x f y x h (3) (3)式中,),(y x f 是原始含噪声图像,),(y x g 是由(1)式计算的平均值,),(y x h 滤波后的像素值。

2.中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。

方法是去某种结构的二维滑动模板,将板内像素按照像素值的大小进行排序,生成单调上升(或下降)的为二维数据序列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东华大学实验报告课程 数字图像处理 名称 数字图像变换实验名称: 邻域平均法(box 模板)和中值滤波处理 一、 实验目的图像变换是数字图像处理中的一种综合变换,如直方图变换、几何变换等。

通过本实验,使得学生掌握两种变换的程序实现方法。

二、 实验任务请设计程序,分别用邻域平均法,其模板为:和中值滤波法对testnoise 图像进行去噪处理(中值滤波的模板的大小也设为3×3)。

三、实验环境本实验在Windows 平台上进行,对内存及cpu 主频无特别要求,使用VC 或者MINGW (gcc )编译器均可。

四、设计思路 介绍代码的框架结构、所用的数据结构、各个类的介绍(类的功能、类中方法的功能、类的成员变量的作用)、各方法间的关系 试验要求中以给出大致的编程思路和源代码以及代码注释,只有黑框部分需要自己填⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1111*1111191写。

在此不进行赘述。

五、具体实现实现设计思路中定义的所有的数据类型,对每个操作给出实际算法。

对主程序和其他模块也都需要写出实际算法。

注意:源代码中要加上注释。

代码:(红色为重点代码)<邻域平均法>(3*3)/*------利用第一次实验课提供的 dhc.h 和 dhc.c文件以获取位图的高宽以及从文件头到实际的位图数据的偏移字节数,从而实现对位图实际数据的操作。

------*/#include <stdio.h>#include <stdlib.h>#include <memory.h>#include "hdr.h"/*------定义结构指针------*/struct bmphdr *hdr;//定义用于直方图变量unsigned char *bitmap,*count,*new_color;/*------main()函数编写------*/int main(){//定义整数 i, j 用于函数循环时的,nr_pixels为图像中像素的个数int i, j ,nr_pixels,nr_w,nr_h;//定义两个文件指针分别用于提取原图像的数据和生成直方图均衡化后的图像FILE *fp, *fpnew;//定义主函数的参数包括:输入的位图文件名和输出的位图文件名,此处内容可以不要,在DOS下执行命令的时候再临时输入也可,为了方便演示,我这里直接把函数的参数确定了。

// argc=3;// argv[1]="test.bmp";// argv[2]="testzf.bmp";//参数输入出错显示/* if (argc != 3) {printf("please input the name of input and out bitmap files\n");exit(1);}*/// 获取位图文件相关信息// hdr = get_header(argv[1]);hdr = get_header("testnoise.bmp");if (!hdr) exit(1);//以二进制可读方式打开输入位图文件fp = fopen("testnoise.bmp", "rb");if (!fp) {printf("File open error!\n");exit(1);}// 文件指针指向数据区域fseek(fp, hdr->offset, SEEK_SET);//计算位图像素的个数nr_pixels = hdr->width * hdr->height;nr_w = hdr->width;nr_h = hdr->height;bitmap = malloc(nr_pixels);new_color = malloc(nr_pixels);count = malloc((nr_w+2)*(+nr_h+2));//读取位图数据到bitmap中fread(bitmap, nr_pixels, 1, fp);fclose(fp);//因为图像边缘无法使用邻域平均,所以根据邻近颜色填补图像的周围一圈,存入count[]数组中//中心图像存入count[]for(i=nr_w+3;i<(nr_w+2)*(+nr_h+2)-nr_w-3;i++){j=i/(nr_w+2);if(i%(nr_w+2)!=0&&(i+1)%(nr_w+2)!=0) count[i]=bitmap[i-nr_w-1-2*j];}//填补第一排for(i=1;i<nr_w+1;i++){count[i]=bitmap[i-1];}//填补最后一排for(i=1;i<nr_w+1;i++){count[(nr_w+2)*(nr_h+1)+i]=bitmap[nr_w*(nr_h-1)+i-1];}//填补左边一排for(i=0;i<nr_h+3;i++){count[i*(nr_w+2)]=count[i*(nr_w+2)+1];}//填补右边一排for(i=0;i<nr_h+3;i++){count[(i+1)*(nr_w+2)-1]=count[(i+1)*(nr_w+2)-2];}//邻域平均3*3for(j=nr_w+3,i=0;j<(nr_w+2)*(+nr_h+2)-nr_w-3;j++){if(j%(nr_w+2)!=0&&(j+1)%(nr_w+2)!=0)new_color[i]=(count[j]+count[j-1]+count[j+1]+count[j-nr_w-2]+count[j-1-nr_w -2]+count[j+1-nr_w-2]+count[j+nr_w+2]+count[j-1+nr_w+2]+count[j+1+nr_w+2])/9,i++;}//结果存入bitmap[]中for (i = 0; i < nr_pixels; i++)bitmap[i]=new_color[i];// 打开一个以输出文件名命名的文件,设为可写的二进制形式fpnew = fopen("test_lynoise.bmp", "wb+");//由于位图文件的头部信息并没有因直方图均衡化而改变,因此输出图像的头部信息从原位图文件中拷贝即可:fwrite(hdr->signature, 2, 1, fpnew);fwrite(&hdr->size, 4, 1, fpnew);fwrite(hdr->reserved, 4, 1, fpnew);fwrite(&hdr->offset, 4, 1, fpnew);fwrite(&hdr->hdr_size, 4, 1, fpnew);fwrite(&hdr->width, 4, 1, fpnew);fwrite(&hdr->height, 4, 1, fpnew);fwrite(&hdr->nr_planes, 2, 1, fpnew);fwrite(&hdr->bits_per_pixel, 2, 1, fpnew);fwrite(&hdr->compress_type, 4, 1, fpnew);fwrite(&hdr->data_size, 4, 1, fpnew);fwrite(&hdr->resol_hori, 4, 1, fpnew);fwrite(&hdr->resol_vert, 4, 1, fpnew);fwrite(&hdr->nr_colors, 4, 1, fpnew);fwrite(&hdr->important_color, 4, 1, fpnew);if (hdr->offset > 54)fwrite(hdr->info, (hdr->offset - 54), 1, fpnew);//直方图均衡化的数据(bitmap)赋值fwrite(bitmap, nr_pixels, 1, fpnew);//关闭fclose(fpnew);//释放内存(优化程序必需)free(hdr);free(bitmap);free(new_color);free(count);return 0; }<中值滤波>/*------利用第一次实验课提供的 dhc.h 和 dhc.c文件以获取位图的高宽以及从文件头到实际的位图数据的偏移字节数,从而实现对位图实际数据的操作。

------*/#include <stdio.h>#include <stdlib.h>#include <memory.h>#include "hdr.h"/*------定义结构指针------*/struct bmphdr *hdr;//定义用于直方图变量unsigned char *bitmap,*count,*new_color;/*------main()函数编写------*/int main(){//定义整数 i, j 用于函数循环时的,nr_pixels为图像中像素的个数int i, j, m, n, nr_pixels,nr_w,nr_h,temp,t[9];//定义两个文件指针分别用于提取原图像的数据和生成直方图均衡化后的图像FILE *fp, *fpnew;//定义主函数的参数包括:输入的位图文件名和输出的位图文件名,此处内容可以不要,在DOS下执行命令的时候再临时输入也可,为了方便演示,我这里直接把函数的参数确定了。

// argc=3;// argv[1]="test.bmp";// argv[2]="testzf.bmp";//参数输入出错显示/* if (argc != 3) {printf("please input the name of input and out bitmap files\n");exit(1);}*/// 获取位图文件相关信息// hdr = get_header(argv[1]);hdr = get_header("testnoise.bmp");if (!hdr) exit(1);//以二进制可读方式打开输入位图文件fp = fopen("test.bmp", "rb");if (!fp) {printf("File open error!\n");exit(1);}// 文件指针指向数据区域fseek(fp, hdr->offset, SEEK_SET);//计算位图像素的个数nr_pixels = hdr->width * hdr->height;nr_w = hdr->width;nr_h = hdr->height;bitmap = malloc(nr_pixels);new_color = malloc(nr_pixels);count = malloc((nr_w+2)*(+nr_h+2));//读取位图数据到bitmap中fread(bitmap, nr_pixels, 1, fp);fclose(fp);//因为图像边缘无法使用邻域平均,所以根据邻近颜色填补图像的周围一圈,存入count[]数组中//中心图像存入count[]for(i=nr_w+3;i<(nr_w+2)*(+nr_h+2)-nr_w-3;i++){j=i/(nr_w+2);if(i%(nr_w+2)!=0&&(i+1)%(nr_w+2)!=0) count[i]=bitmap[i-nr_w-1-2*j];}//填补第一排for(i=1;i<nr_w+1;i++){count[i]=bitmap[i-1];}//填补最后一排for(i=1;i<nr_w+1;i++){count[(nr_w+2)*(nr_h+1)+i]=bitmap[nr_w*(nr_h-1)+i-1];}//填补左边一排for(i=0;i<nr_h+3;i++){count[i*(nr_w+2)]=count[i*(nr_w+2)+1];}//填补右边一排for(i=0;i<nr_h+3;i++){count[(i+1)*(nr_w+2)-1]=count[(i+1)*(nr_w+2)-2];}//中值平均3*3for(j=nr_w+3,i=0;j<(nr_w+2)*(+nr_h+2)-nr_w-3;j++){if(j%(nr_w+2)!=0&&(j+1)%(nr_w+2)!=0){t[0]=count[j];t[1]=count[j-1];t[2]=count[j+1];t[3]=count[j-nr_w-2];t[4]=count[j-1-nr_w-2];t[5]=count[j+1-nr_w-2];t[6]=count[j+nr_w+2];t[7]=count[j-1+nr_w+2];t[8]=count[j+1+nr_w+2];for(m=0;m<9;m++)for(n=0;n<9-m;n++)if(t[n]>t[n+1]){temp=t[n];t[n]=t[n+1];t[n+1]=temp;}new_color[i]=t[4];i++;}}//结果存入bitmap[]中for (i = 0; i < nr_pixels; i++)bitmap[i]=new_color[i];// 打开一个以输出文件名命名的文件,设为可写的二进制形式fpnew = fopen("test_zznoise.bmp", "wb+");//由于位图文件的头部信息并没有因直方图均衡化而改变,因此输出图像的头部信息从原位图文件中拷贝即可:fwrite(hdr->signature, 2, 1, fpnew);fwrite(&hdr->size, 4, 1, fpnew);fwrite(hdr->reserved, 4, 1, fpnew);fwrite(&hdr->offset, 4, 1, fpnew);fwrite(&hdr->hdr_size, 4, 1, fpnew);fwrite(&hdr->width, 4, 1, fpnew);fwrite(&hdr->height, 4, 1, fpnew);fwrite(&hdr->nr_planes, 2, 1, fpnew);fwrite(&hdr->bits_per_pixel, 2, 1, fpnew);fwrite(&hdr->compress_type, 4, 1, fpnew);fwrite(&hdr->data_size, 4, 1, fpnew);fwrite(&hdr->resol_hori, 4, 1, fpnew);fwrite(&hdr->resol_vert, 4, 1, fpnew);fwrite(&hdr->nr_colors, 4, 1, fpnew);fwrite(&hdr->important_color, 4, 1, fpnew);if (hdr->offset > 54)fwrite(hdr->info, (hdr->offset - 54), 1, fpnew);//直方图均衡化的数据(bitmap)赋值fwrite(bitmap, nr_pixels, 1, fpnew);//关闭fclose(fpnew);//释放内存(优化程序必需)free(hdr);free(bitmap);free(new_color);free(count);return 0;}得出实验结果图像后,比较这两种方法去噪的效果好坏,并分析具体原因。

相关文档
最新文档