河南省南阳市唐河县2019-2020学年七年级上学期期末数学试卷 (含解析)

合集下载

2019-2020年七年级数学上学期期末试卷(含解析)(I)

2019-2020年七年级数学上学期期末试卷(含解析)(I)

2019-2020年七年级数学上学期期末试卷(含解析)(I)一、仔细选一选(本大题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分)1.﹣xx的倒数是()A.xx B.2016 C. D.2.9的平方根为()A.3 B.﹣3 C.±3 D.3.如图,数轴上的点A、B、C、D、E分别对应的数是1、2、3、4、5,那么表示的点应在()A.线段AB上B.线段BC上C.线段CD上D.线段DE上4.下列选项是无理数的为()A.﹣B. C.3.1415926 D.﹣π5.28cm接近于()A.珠穆朗玛峰的高度 B.三层楼的高度C.姚明的身高D.一张纸的厚度6.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值为()A.﹣1 B.0 C.1 D.7.小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x张,根据题意,下面所列方程正确的是()A.x+5(12﹣x)=48 B.x+5(x﹣12)=48 C.x+12(x﹣5)=48 D.5x+(12﹣x)=488.如图,点A、B、C是直线l上的三个点,图中共有线段条数是()A.1条B.2条C.3条D.4条9.在直线AB上任取一点O,过点O作射线OC、OD,使OC⊥OD,当∠AOC=30°时,∠BOD的度数是()A.60° B.120°C.60°或90°D.60°或120°10.计算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,…,归纳各计算结果中的个位数字的规律,猜测3xx+1的个位数字是()A.0 B.2 C.4 D.8二、认真填一填(本题有6小题,每小题4分,共24分)11.﹣|﹣4|= .12.精确到万位,并用科学记数法表示5 109 500≈.13.化简: = .14.x与﹣30%x的和是.15.用度、分、秒的形式表示48.32°=.16.在数轴上,点A,O,B分别表示﹣16,0,14,点P,Q分别从点A,B同时开始沿数轴正方向运动,点P的速度是每秒3个单位,点Q的速度是每秒1个单位,运动时间为t秒.若点P,Q,O三点在运动过程中,其中两点为端点构成的线段被第三个点三等分,则运动时间为秒.三、解答题(本大题有8小题,共66分)17.已知线段a,b.用直尺和圆规作图:(1)作线段AB=a+2b.(2)作线段MN=a﹣b.(温馨提醒:不用写作法,但相应字母标注到位.)18.计算(1)(﹣6)2×(﹣)﹣23(2)2×(+3)+3﹣2×.19.化简(1)﹣(a2﹣2a﹣2)+2(a2﹣1)(2)2(x2﹣xy)﹣3(x2﹣xy).20.解方程:(1)5(x﹣5)+2x=﹣4.(2)x﹣.21.已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A.(2)若|a+1|+(b﹣2)2=0,计算A的值.22.已知,如图直线AB与CD相交于点O,OE⊥AB,过点O作射线OF,∠AOD=30°,∠FOB=∠EOC.(1)求∠EOC度数;(2)求∠DOF的度数;(3)直接写出图中所有与∠AOD互补的角.23.观察下列等式:第1个等式:a1==(1﹣);第2个等式:a2==(﹣);第3个等式:a3==(﹣);第4个等式:a4==(﹣);…请解答下列问题:(1)按以上规律写出第5个等式:a5= = .(2)用含n的式子表示第n个等式:a n= = (n为正整数).(3)求a1+a2+a3+a4+…+a xx的值.24.为了加强公民的节水意识,合理利用水资源,某区采用价格调控手段达到节水的目的.价目表每月水用量单价不超出6吨的部分2元/吨超出6吨不超出10吨的部分4元/吨超出10吨的部分8元/吨注:水费按月结算.(1)该户居民8月份用水8吨,求该用户8月应交水费;(2)该户居民9月份应交水费26元,求该用户9月份用水量;(3)该户居民10月份应交水费30元,求该用户10月份用水量;(4)该户居民11月、12月共用水18吨,且已知11月用水量比12月用水量少,若11月用水a吨,用含a的代数式表示该户居民11月、12月共应交的水费.xx学年浙江省金华市金东区七年级(上)期末数学试卷参考答案与试题解析一、仔细选一选(本大题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分)1.﹣xx的倒数是()A.xx B.2016 C. D.【考点】倒数.【分析】直接利用倒数的定义分析得出答案.【解答】解:﹣xx的倒数是,故选D【点评】此题主要考查了倒数的定义,正确把握互为倒数之间关系是解题关键.2.9的平方根为()A.3 B.﹣3 C.±3 D.【考点】平方根.【专题】计算题.【分析】根据平方根的定义求解即可,注意一个正数的平方根有两个.【解答】解:9的平方根有: =±3.故选C.【点评】此题考查了平方根的知识,属于基础题,解答本题关键是掌握一个正数的平方根有两个,且互为相反数.3.如图,数轴上的点A、B、C、D、E分别对应的数是1、2、3、4、5,那么表示的点应在()A.线段AB上B.线段BC上C.线段CD上D.线段DE上【考点】实数与数轴.【分析】估算出的取值范围即可求解.【解答】解:∵9<13<16,∴3<<4,∴表示的点应在线段CD上.故选C.【点评】本题考查了实数与数轴,无理数的估算,得出的取值范围是解题的关键.4.下列选项是无理数的为()A.﹣B. C.3.1415926 D.﹣π【考点】无理数.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、﹣是有理数,故A错误;B、=2是有理数,故B错误;C、3.1415926是有理数,故C正确;D、﹣π是无理数,故D正确;故选:D.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(xx•义乌市)28cm接近于()A.珠穆朗玛峰的高度 B.三层楼的高度C.姚明的身高D.一张纸的厚度【考点】有理数的乘方.【分析】根据有理数的乘方运算法则,计算出结果,然后根据生活实际来确定答案.【解答】解:28=24×24=16×16=256(cm)=2.56(m).A、珠穆朗玛峰峰的高度约8848米,错误;B、三层楼的高度20米左右,错误;C、姚明的身高是2.23米,接近2.56米,正确;D、一张纸的厚度只有几毫米,错误.故选C.【点评】解答这样的题目有两个要点需要注意,一是有理数的乘方运算法则要记牢;二是根据生活实际情况来做出选择.6.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值为()A.﹣1 B.0 C.1 D.【考点】一元一次方程的解.【专题】计算题.【分析】根据方程的解的定义,把x=2代入方程2x+3m﹣1=0即可求出m的值.【解答】解:∵x=2是关于x的方程2x+3m﹣1=0的解,∴2×2+3m﹣1=0,解得:m=﹣1.故选:A.【点评】本题的关键是理解方程的解的定义,方程的解就是能够使方程左右两边相等的未知数的值.7.小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x张,根据题意,下面所列方程正确的是()A.x+5(12﹣x)=48 B.x+5(x﹣12)=48 C.x+12(x﹣5)=48 D.5x+(12﹣x)=48【考点】由实际问题抽象出一元一次方程.【专题】销售问题.【分析】等量关系为:1×1元纸币的张数+5×5元纸币的张数=48.【解答】解:1元纸币为x张,那么5元纸币有(12﹣x)张,∴x+5(12﹣x)=48,故选A.【点评】列方程解应用题的关键是找出题目中的相等关系.8.如图,点A、B、C是直线l上的三个点,图中共有线段条数是()A.1条B.2条C.3条D.4条【考点】直线、射线、线段.【分析】写出所有的线段,然后再计算条数.【解答】解:图中线段有:线段AB、线段AC、线段BC,共三条.故选C.【点评】记住线段是直线上两点及其之间的部分是解题的关键.9.在直线AB上任取一点O,过点O作射线OC、OD,使OC⊥OD,当∠AOC=30°时,∠BOD的度数是()A.60° B.120°C.60°或90°D.60°或120°【考点】余角和补角.【分析】可分两种情况,即OC,OD在AB的一边时和在AB的两边,分别求解.【解答】解:①当OC、OD在AB的一旁时,∵OC⊥OD,∠COD=90°,∠AOC=30°,∴∠BOD=180°﹣∠COD﹣∠AOC=60°;②当OC、OD在AB的两旁时,∵OC⊥OD,∠AOC=30°,∴∠AOD=60°,∴∠BOD=180°﹣∠AOD=120°.故选:D.【点评】此题主要考查了直角、平角的定义,解答此类问题时,要注意对不同的情况进行讨论,避免出现漏解.10.计算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,…,归纳各计算结果中的个位数字的规律,猜测3xx+1的个位数字是()A.0 B.2 C.4 D.8【考点】尾数特征.【分析】通过观察可发现个位数字的规律为4、0、8、2依次循环,再计算即可得出答案.【解答】解:∵xx÷4=504,∴即3xx+1的个位数字与34+1=82的个位数字相同为2.故选:B.【点评】此题主要考查了尾数特征,通过观察,分析、归纳并发现其中的规律,并应用发现规律是解决问题的关键.二、认真填一填(本题有6小题,每小题4分,共24分)11.(﹣7)﹣|﹣4|= ﹣11 .【考点】有理数的减法;绝对值.【专题】计算题;实数.【分析】原式利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=﹣7﹣4=﹣11,故答案为:﹣11【点评】此题考查了有理数的减法,以及绝对值,熟练掌握运算法则是解本题的关键.12.精确到万位,并用科学记数法表示5 109 500≈ 5.11×106.【考点】科学记数法与有效数字.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,且比原数的整数位少一位;取精确度时,需要精确到哪位就数到哪位,然后根据四舍五入的原理进行取舍.【解答】解:5 109 500=5109 500×106≈5.11×106;故答案为:5.11×106.【点评】此题主要考查了科学记数法与有效数字,注意对一个数进行四舍五入时,若要求近似到个位以前的数位时,首先要对这个数用科学记数法表示.13.化简: = ﹣.【考点】立方根.【分析】根据立方根的定义进行计算即可得解.【解答】解: =﹣.故答案为:﹣.【点评】本题考查了利用立方根的定义化简,是基础题,熟记概念是解题的关键.14.x与﹣30%x的和是70%x .【考点】列代数式.【分析】根据题意列出代数式解答即可.【解答】解:x与﹣30%x的和是x﹣30%x=70%x;故答案为:70%x;【点评】此题考查了列代数式,关键是读懂题意,找出题目中的数量关系,列出代数式.15.用度、分、秒的形式表示48.32°=48°19′12″.【考点】度分秒的换算.【分析】根据大单位化小单位乘以进率,可得答案.【解答】解:48.32°=48°19′12″,故答案为:48°19′12″.【点评】本题考查了度分秒的换算,利用大单位化小单位乘以进率是解题关键.16.在数轴上,点A,O,B分别表示﹣16,0,14,点P,Q分别从点A,B同时开始沿数轴正方向运动,点P的速度是每秒3个单位,点Q的速度是每秒1个单位,运动时间为t秒.若点P,Q,O三点在运动过程中,其中两点为端点构成的线段被第三个点三等分,则运动时间为、、或秒.【考点】一元一次方程的应用;数轴.【专题】几何动点问题.【分析】根据运动的规则找出点P、Q表示的数,分P、O、Q三点位置不同考虑,根据三等分点的性质列出关于时间t的一元一次方程,解方程即可得出结论.【解答】解:设运动的时间为t(t>0),则点P表示3t﹣16,点Q表示t+14,①当点O在线段AB上时,如图1所示.此时3t﹣16<0,即t<.∵点O是线段PQ的三等分点,∴PO=2OQ或2PO=OQ,即16﹣3t=2(t+14)或2(16﹣3t)=t+14,解得:t=﹣(舍去),或t=;②当点P在线段OQ上时,如图2所示.此时0<3t﹣16<t+14,即<t<15.∵点P是线段OQ的三等分点,∴2OP=PQ或OP=2PQ,即2(3t﹣16)=t+14﹣(3t﹣16)或3t﹣16=2[t+14﹣(3t﹣16)],解得:t=,或t=;③当点Q在线段OP上时,如图3所示.此时t+14<3t﹣16,即t>15.∵点Q是线段OP的三等分点,∴OQ=2QP或2OQ=QP,即t+14=2[3t﹣16﹣(t+14)]或2(t+14)=3t﹣16﹣(t+14),解得:t=,或无解.综上可知:点P,Q,O三点在运动过程中,其中两点为端点构成的线段被第三个点三等分,则运动时间为、、或秒.故答案为:、、或.【点评】本题考查了一元一次方程的应用以及数轴,解题的关键是按P、O、Q三点位置不同分类讨论.本题属于中档题,难度不大,解决该题型题目时,根据运动的过程分情况考虑,再根据三等分点的性质列出方程是关键.三、解答题(本大题有8小题,共66分)17.已知线段a,b.用直尺和圆规作图:(1)作线段AB=a+2b.(2)作线段MN=a﹣b.(温馨提醒:不用写作法,但相应字母标注到位.)【考点】作图—复杂作图.【分析】(1)先作射线AM,然后在AM上顺次截取AC=a,CD=DB=b,则AB=a+2b;(2)先作射线MP,再在MP上截取MA=a,然后在线段MA上截取AN=b,MN=a﹣b.【解答】解:(1)如图1,AB为所作;(2)如图2,MN为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.18.计算(1)(﹣6)2×(﹣)﹣23(2)2×(+3)+3﹣2×.【考点】实数的运算.【专题】计算题.【分析】(1)根据实数的运算顺序,首先计算乘方和小括号里面的算式,然后从左向右依次计算,求出算式(﹣6)2×(﹣)﹣23的值是多少即可.(2)首先应用乘法分配律,求出2×(+3)的值是多少,然后计算乘法,最后应用加法交换律和加法结合律,求出算式2×(+3)+3﹣2×的值是多少即可.【解答】解:(1)(﹣6)2×(﹣)﹣23=36×﹣8=6﹣8=﹣2(2)2×(+3)+3﹣2×=2+6+3﹣2=2﹣2+6+3=9【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.19.化简(1)﹣(a2﹣2a﹣2)+2(a2﹣1)(2)2(x2﹣xy)﹣3(x2﹣xy).【考点】整式的加减.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并即可得到结果.【解答】解:(1)原式=﹣a2+2a+2+2a2﹣2=a2+2a;(2)原式=2x2﹣2xy﹣2x2+3xy=xy.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.20.解方程:(1)5(x﹣5)+2x=﹣4.(2)x﹣.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去括号,去分母,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:5x﹣25+2x=﹣4,移项合并得:7x=21,解得:x=3;(2)去括号得:x﹣+=,去分母得:6x﹣9+9﹣3x=2,移项合并得:3x=2,解得:x=.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.21.已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A.(2)若|a+1|+(b﹣2)2=0,计算A的值.【考点】整式的加减;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题.【分析】(1)根据题意可得A=2B+(7a2﹣7ab),由此可得出A的表达式.(2)根据非负性可得出a和b的值,代入可得出A的值.【解答】解:(1)由题意得:A=2(﹣4a2+6ab+7)+7a2﹣7ab=﹣8a2+12ab+14+7a2﹣7ab=﹣a2+5ab+14.(2)根据绝对值及平方的非负性可得:a=﹣1,b=2,故:A=﹣a2+5ab+14=3.【点评】本题考查整式的加减及绝对值、偶次方的非负性,难度不大,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.22.(10分)(xx秋•金东区期末)已知,如图直线AB与CD相交于点O,OE⊥AB,过点O作射线OF,∠AOD=30°,∠FOB=∠EOC.(1)求∠EOC度数;(2)求∠DOF的度数;(3)直接写出图中所有与∠AOD互补的角.【考点】余角和补角.【分析】(1)根据垂直的定义得到∠BOE=90°,由对顶角的性质得到∠BOC=∠AOD=30°,即可得到结论;(2)根据平角的定义即可得到结论;(3)根据补角的定义即可得到结论.【解答】解:(1)∵OE⊥AB,∴∠BOE=90°,∵∠BOC=∠AOD=30°,∴∠EOC=60°;(2)∵∠FOB=∠EOC=60°,∴∠DOF=180°﹣∠AOD﹣∠BOF=90°;(3)∵∠AOD+∠BOD=180°,∠AOD+∠AOC=180°,∠AOD+∠EOF=180°,∴与∠AOD互补的角是∠AOC;∠BOD;∠EOF.【点评】本题考查了对顶角、邻补角以及角平分线的性质,主要利用对顶角相等,邻补角的定义和角平分线的定义求解.23.观察下列等式:第1个等式:a1==(1﹣);第2个等式:a2==(﹣);第3个等式:a3==(﹣);第4个等式:a4==(﹣);…请解答下列问题:(1)按以上规律写出第5个等式:a5= = (﹣).(2)用含n的式子表示第n个等式:a n= = ×(=)(n为正整数).(3)求a1+a2+a3+a4+…+a xx的值.【考点】分式的加减法.【专题】规律型.【分析】(1)根据题意得出分母的变化规律,进而得出答案;(2)根据题意得出分母的变化规律,进而得出答案;(3)利用(2)中变化规律进而化简求出答案.【解答】解:(1)第5个等式:a5==(﹣);故答案为:,(﹣);(2)第n个等式:a n==×(=);故答案为:,×(=);(3)a1+a2+a3+a4+…+a xx=(1﹣)+(﹣)+…+(﹣)=(1﹣)=.【点评】此题主要考查了分式的加减运算,正确掌握运算法则是解题关键.24.为了加强公民的节水意识,合理利用水资源,某区采用价格调控手段达到节水的目的.价目表每月水用量单价不超出6吨的部分2元/吨超出6吨不超出10吨的部分4元/吨超出10吨的部分8元/吨注:水费按月结算.(1)该户居民8月份用水8吨,求该用户8月应交水费;(2)该户居民9月份应交水费26元,求该用户9月份用水量;(3)该户居民10月份应交水费30元,求该用户10月份用水量;(4)该户居民11月、12月共用水18吨,且已知11月用水量比12月用水量少,若11月用水a吨,用含a的代数式表示该户居民11月、12月共应交的水费.【考点】列代数式.【分析】(1)因为用水量为8 吨,所以计算单价分为两段,列式计算即可;(2)先计算用水量为6吨和10吨的总价,与26对比,发现9月份用水量x的取值范围,从而列出方程求解;(3)与(2)类似,由题意得出水费30元,用水量超过了10吨,列方程求未知数即可;(4)设该户居民11月、12月共应交的水费为W元,由题意表示出11月用水量,根据11月用水量比12月用水量少,列不等式求出a的取值;分三种情况进行讨论:当0≤a≤6时,当6<a≤8时,当8<a<9时,列式表示即可.【解答】解:(1)6×2+(8﹣6)×4=20,答:该用户8月应交水费20元;(2)设该用户9月份用水量为x吨,2×6=12,2×6+(10﹣6)×4=28,∵12<26<28,∴6<x<10,则6×2+4(x﹣6)=26,x=9.5,答:该用户9月份用水量为9.5吨;(3)该用户10月份用水量为y吨,则y>10,根据题意得:6×2+(10﹣6)×4+8(y﹣10)=30,y=10.25;(4)设该户居民11月、12月共应交的水费为W元,由题意可知:11月用水(18﹣a)吨,a<18﹣a,a<9,当0≤a≤6时,18﹣a>10,W=2a+2×6+4×4+8[(18﹣a)﹣10]=﹣6a+92,当6<a≤8时,18﹣a≥10,W=2×6+4(a﹣6)+2×6+4×4+8[(18﹣a)﹣10]=﹣4a+80,当8<a<9时,9<18﹣a<10,W=2×6+4(a﹣6)+2×6+4[(18﹣a)﹣6]=48,∴该户居民11月、12月共应交的水费为:.【点评】本题是居民交水费问题,明确单价、用水量、总价的关系;因为单价分三种,较为麻烦,容易出错,因此计算时要耐心细致;首先要弄清每个单价部分的最大值,这样才能知道某月水费价格与水量之间的关系,尤其是第(4)问,不但要注意11月的用水量的范围,还要注意12月的用水量的范围.-----如有帮助请下载使用,万分感谢。

2019-2020学年七年级(上)期末考试数学试卷(解析版)

2019-2020学年七年级(上)期末考试数学试卷(解析版)

2019-2020学年七年级(上)期末考试数学试卷一、选择题(每小题3分,共30分)1.计算1+(﹣2)的正确结果是()A.﹣2 B.﹣1 C.1 D.32.﹣2019的相反数是()A.﹣2019 B.2019 C.﹣D.3.观察下列实物模型,其形状是圆柱体的是()A.B.C.D.4.温度先上升6℃,再上升﹣3℃的意义是()A.温度先上升6℃,再上升3℃B.温度先上升﹣6℃,再上升﹣3℃C.温度先上升6℃,再下降3℃D.无法确定5.把(﹣)÷(﹣)转化为乘法是()A.(﹣)×B.(﹣)×C.(﹣)×(﹣)D.(﹣)×(﹣)6.某学习小组为了了解本校2000名学生的视力情况,随机抽查了500名学生,其中有200名学生近视.对于这个问题上,下列说法中正确的是()A.每名学生是总体的一个个体B.样本容量是500C.样本是500名学生D.该校一定有1000名学生近视7.若a为有理数,且|a|=2,那么a是()A.2 B.﹣2 C.2或﹣2 D.48.某校购进价格a元的排球100个,价格b元的篮球50个,则该校一共需支付()A.100a+50b B.100a﹣50b C.50a+100b D.50a+100b 9.下列说法正确的是()A.多项式x2+2x2y+1是二次三项式B.单项式2x2y的次数是2C.0是单项式D.单项式﹣3πx2y的系数是﹣310.王先生到银行存了一笔三年期的定期存款,年利率是4.25%,若到期后取出得到本息和(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是()A.x+3×4.25%x=33825 B.x+4.25%x=33825C.3×4.25%x=33825 D.3(x+4.25%x)=33825二、填空题(每小题3分,共15分)11.比较大小:1 ﹣2(填“>,<或=”)12.把(﹣8)+(﹣5)﹣(﹣2)写成省略括号的和的形式是.13.2018年前三季度,我市社会消费品零售总额为19400000000元,该数据用科学记数法可表示为.14.“□”“△”“〇”各代表一种物品,其质量关系由下面两个天平给出(左右平衡状态),如果“〇”的质量是4kg,那么“□”的质量是千克.15.食品店一周中的盈亏情况如下(盈余为正):132元,﹣12.5元,﹣10.5元,127元,﹣87元,136.5元,98元.则该食品店这一周共盈余了元.三、解答题(共55分,解答应写出必要的文字说明,演算步骤或推理过程)16.(5分)计算:﹣32﹣(﹣2)3+4÷2×2.17.(5分)解方程:﹣=1.18.(7分)先化简,再求值:3(m2n﹣mn)﹣6(m2n﹣mn),其中m=1,n=2.19.(7分)甲、乙两列火车从相距480km的A、B两地同时出发,相向而行,甲车每小时行80km,乙车每小时行70km,问多少小时后两车相距30km?20.(7分)在我市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题:(1)本次共调查了名学生;(2)被调查的学生中,最喜爱丁类图书的有人,最喜爱甲类图书的人数占本次被调查人数的%;(3)在最喜爱丙类学生的图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.21.(8分)如图所示,已知直线AB和CD相交于点O,OM平分∠BOD,∠MON=90°,∠AOC=50°.(1)求∠AON的度数.(2)写出∠DON的余角.22.(8分)已知平面上四点A,B,C,D,如图:(1)请按要求画图:①画直线AB,射线CD;②画射线AD,连接BC;③直线AB与射线CD相交于E;④连接AC、BD相交于点F.(2)根据以上作图,请判断下列位置关系:①点C与直线AB;②点E与直线CD;③直线AB与直线CD.23.(8分)方方和圆圆的房间窗帘的装饰物如图所示,它们分别由两个四分之一圆和四个半圆组成(半径都分别相同),它们的窗户能射进阳光的面积分别是多少(窗框面积不计)谁的窗户射进阳光的面积大?参考答案一、选择题1.计算1+(﹣2)的正确结果是()A.﹣2 B.﹣1 C.1 D.3【分析】绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.解:1+(﹣2)=﹣(2﹣1)=﹣1.故选:B.【点评】本题主要考查的是有理数的加法法则,熟练掌握有理数的加法法则是解题的关键.2.﹣2019的相反数是()A.﹣2019 B.2019 C.﹣D.【分析】直接利用相反数的定义分析得出答案.解:﹣2019的相反数是:2019.故选:B.【点评】此题主要考查了相反数,正确把握定义是解题关键.3.观察下列实物模型,其形状是圆柱体的是()A.B.C.D.【分析】熟悉立体图形的基本概念和特性即可解.解:圆柱的上下底面都是圆,所以正确的是D.故选D.【点评】熟记常见圆柱体的特征,是解决此类问题的关键.4.温度先上升6℃,再上升﹣3℃的意义是()A.温度先上升6℃,再上升3℃B.温度先上升﹣6℃,再上升﹣3℃C.温度先上升6℃,再下降3℃D.无法确定【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.上升﹣3℃的意义是下降3℃.解:温度先上升6℃,再上升﹣3℃的意义是温度先上升6℃,再下降3℃.故选:C.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.5.把(﹣)÷(﹣)转化为乘法是()A.(﹣)×B.(﹣)×C.(﹣)×(﹣)D.(﹣)×(﹣)【分析】根据除以一个不等于0的数,等于乘这个数的倒数可得.解:把(﹣)÷(﹣)转化为乘法是(﹣)×(﹣),故选:D .【点评】本题主要考查有理数的除法,解题的关键是掌握有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.6.某学习小组为了了解本校2000名学生的视力情况,随机抽查了500名学生,其中有200名学生近视.对于这个问题上,下列说法中正确的是( )A .每名学生是总体的一个个体B .样本容量是500C .样本是500名学生D .该校一定有1000名学生近视【分析】根据总体,样本,个体,样本容量的定义写出即可.解:A .每名学生的视力情况是总体的一个个体,此选项错误;B .样本容量是500,此选项正确;C .样本是500名学生的视力情况,此选项错误;D .该校大约有800名学生近视,此选项错误;故选:B .【点评】本题考查了对总体,样本,个体,样本容量的理解和运用,关键是能根据定义说出一个事件的总体,样本,个体,样本容量.7.若a 为有理数,且|a |=2,那么a 是( )A .2B .﹣2C .2或﹣2D .4【分析】利用绝对值的代数意义求出a 的值即可.解:若a 为有理数,且|a |=2,那么a 是2或﹣2,故选:C.【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.8.(3分)某校购进价格a元的排球100个,价格b元的篮球50个,则该校一共需支付()A.100a+50b B.100a﹣50b C.50a+100b D.50a+100b 【分析】由总价=单价×数量,可用含a,b的代数式表示出需付金额,此题得解.解:依题意,需付(100a+50b)元.故选:A.【点评】本题考查了列代数式,根据数量之间的关系,利用含a,b的代数式表示出需付总金额是解题的关键.9.下列说法正确的是()A.多项式x2+2x2y+1是二次三项式B.单项式2x2y的次数是2C.0是单项式D.单项式﹣3πx2y的系数是﹣3【分析】根据多项式、单项式、系数、常数项的定义分别进行判断,即可求出答案.解:A.多项式x2+2x2y+1是三次三项式,此选项错误;B.单项式2x2y的次数是3,此选项错误;C.0是单项式,此选项正确;D.单项式﹣3πx2y的系数是﹣3π,此选项错误;故选:C.【点评】此题考查了多项式、单项式;把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.10.王先生到银行存了一笔三年期的定期存款,年利率是4.25%,若到期后取出得到本息和(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是()A.x+3×4.25%x=33825 B.x+4.25%x=33825C.3×4.25%x=33825 D.3(x+4.25%x)=33825【分析】根据“利息=本金×利率×时间”(利率和时间应对应),代入数值,计算即可得出结论.解:设王先生存入的本金为x元,根据题意得出:x+3×4.25%x=33825;故选:A.【点评】此题主要考查了一元一次方程的应用,计算的关键是根据利息、利率、时间和本金的关系,进行计算即可.二、填空题(每小题3分,共15分)11.比较大小:1 >﹣2(填“>,<或=”)【分析】根据有理数的大小比较法则比较即可.解:∵负数都小于正数,∴1>﹣2,故答案为:>.【点评】本题考查了对有理数的大小比较法则的应用,注意:负数都小于正数.12.把(﹣8)+(﹣5)﹣(﹣2)写成省略括号的和的形式是﹣8﹣5+2 .【分析】根据有理数的运算法则即可求出答案.解:原式=﹣8﹣5+2,故答案为:﹣8﹣5+2.【点评】本题考查有理数的运算,解题的关键熟练运用有理数的运算法则,本题属于基础题型.13.2018年前三季度,我市社会消费品零售总额为19400000000元,该数据用科学记数法可表示为 1.94×1010.【分析】根据科学记数法的表示方法:a×10n,可得答案.解:19400000000用科学记数法表示为:1.94×1010,故答案为:1.94×1010.【点评】本题考查了科学记数法,确定n的值是解题关键,n是整数数位减1.14.“□”“△”“〇”各代表一种物品,其质量关系由下面两个天平给出(左右平衡状态),如果“〇”的质量是4kg,那么“□”的质量是9 千克.【分析】设△的质量为xkg,□的质量为ykg,根据图示,列出关于x和y的二元一次方程组,解之即可.解:设△的质量为xkg,□的质量为ykg,根据题意得:,解得:,即□的质量为9kg.【点评】本题考查了等式的性质,正确掌握等式的性质是解题的关键.15.食品店一周中的盈亏情况如下(盈余为正):132元,﹣12.5元,﹣10.5元,127元,﹣87元,136.5元,98元.则该食品店这一周共盈余了383.5 元.【分析】利用有理数的加法求出已知各数的和即可求出一周总的盈亏情况.解:132+(﹣12.5)+(﹣10.5)+127+(﹣87)+136.5+98=132﹣12.5﹣10.5+127﹣87+136.5+98=132+98+127﹣87+136.5﹣12.5﹣10.5=230+40+113.5=383.5;答:这一周食品店的盈余了383.5元.故答案为:383.5.【点评】此题主要考查了正数和负数及有理数加法在实际生活中的应用,解题的关键是熟练掌握有理数的加法法则.三、解答题(共55分,解答应写出必要的文字说明,演算步骤或推理过程)16.(5分)计算:﹣32﹣(﹣2)3+4÷2×2.【分析】根据有理数的乘除法和加减法可以解答本题.解:﹣32﹣(﹣2)3+4÷2×2=﹣9﹣(﹣8)+4=﹣9+8+4=3.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.17.(5分)解方程:﹣=1.【分析】依次去分母、去括号、移项、合并同类项、系数化为1可得.解:2(x﹣3)﹣3(4x+1)=6,2x﹣6﹣12x﹣3=6,2x﹣12x=6+6+3,﹣10x=15,x=﹣.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1.18.(7分)先化简,再求值:3(m2n﹣mn)﹣6(m2n﹣mn),其中m=1,n=2.【分析】先算乘法,再合并同类项,最后代入求出即可.解:原式=3m2n﹣3mn﹣6m2n+4mn=﹣3m2n+mn,当m=1,n=2时,原式=﹣3×12×2+1×2=﹣6+2=﹣4.【点评】本题主要考查整式的化简求值,解题的关键是掌握去括号和合并同类项法则.19.(7分)甲、乙两列火车从相距480km的A、B两地同时出发,相向而行,甲车每小时行80km,乙车每小时行70km,问多少小时后两车相距30km?【分析】设x小时后两车相距30km,根据相距30km有两种情况分别列出方程求出即可.解:设x小时后两车相距30km,根据题意,得:(80+70)x=480﹣30或(80+70)x=480+30,解得:x=3或.答:3小时或小时后两车相距30km.【点评】此题主要考查了一元一次方程的应用,根据两车相距30km分类讨论得出是解题关键.20.(7分)在我市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题:(1)本次共调查了200 名学生;(2)被调查的学生中,最喜爱丁类图书的有15 人,最喜爱甲类图书的人数占本次被调查人数的40 %;(3)在最喜爱丙类学生的图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.【分析】(1)根据百分比=频数÷总数可得共调查的学生数;(2)最喜爱丁类图书的学生数=总数减去喜欢甲、乙、丙三类图书的人数即可;再根据百分比=频数÷总数计算可得最喜爱甲类图书的人数所占百分比;(3)设男生人数为x人,则女生人数为1.5x人,由题意得方程x+1.5x=1500×20%,解出x的值可得答案.解:(1)共调查的学生数:40÷20%=200(人);故答案为:50;(2)最喜爱丁类图书的学生数:200﹣80﹣65﹣40=15(人);最喜爱甲类图书的人数所占百分比:80÷200×100%=40%;故答案为:15,40;(3)设男生人数为x人,则女生人数为1.5x人,由题意得:x+1.5x=1500×20%,解得:x=120,当x=120时,1.5x=180.答:该校最喜爱丙类图书的女生和男生分别有180人,120人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(8分)如图所示,已知直线AB和CD相交于点O,OM平分∠BOD,∠MON=90°,∠AOC=50°.(1)求∠AON的度数.(2)写出∠DON的余角.【分析】(1)根据角平分线的定义求出∠MOB的度数,根据邻补角的性质计算即可.(2)根据题意得到:∠DOM为∠DON的余角.解:(1)∵∠AOC+∠AOD=∠AOD+∠BOD=180°,∴∠BOD=∠AOC=50°,∵OM平分∠BOD,∴∠BOM=∠DOM=25°,又由∠MON=90°,∴∠AON=180°﹣(∠MON+∠BOM)=180°﹣(90°+25°)=65°;(2)由∠DON+∠DOM=∠MON=90°知∠DOM为∠DON的余角,∵∠AON+∠BOM=90°,∠DOM=∠MOB,∴∠AON+∠DOM=90°,∴∠NOD+∠BOM=90°,故∠DON的余角为:∠DOM,∠BOM.【点评】本题考查的是邻补角的概念以及角平分线的定义,掌握邻补角的性质是邻补角互补是解题的关键.22.(8分)已知平面上四点A,B,C,D,如图:(1)请按要求画图:①画直线AB,射线CD;②画射线AD,连接BC;③直线AB与射线CD相交于E;④连接AC、BD相交于点F.(2)根据以上作图,请判断下列位置关系:①点C与直线AB;②点E与直线CD;③直线AB与直线CD.【分析】(1)根据直线、射线及线段的定义作图可得;(2)结合图形,依据点与直线的位置关系和直线与直线的位置关系逐一判断即可得.解:(1)如图所示:(2)由图知,①点C在直线AB外;②点E在直线CD上;③直线AB与直线CD相交.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握直线、射线及线段的定义和点与直线、直线与直线的位置关系.23.(8分)方方和圆圆的房间窗帘的装饰物如图所示,它们分别由两个四分之一圆和四个半圆组成(半径都分别相同),它们的窗户能射进阳光的面积分别是多少(窗框面积不计)谁的窗户射进阳光的面积大?【分析】第一个窗户射进的阳光的面积=长方形面积﹣半径为的一个半圆的面积;第二个窗户射进的阳光的面积=长方形面积﹣半径为的2个圆的面积.解:第一个窗户射进的阳光的面积为ab﹣×π()2=ab﹣第二个窗户射进的阳光的面积为ab﹣2×π()2=ab﹣∵>∴第一个窗户射进的阳光的面积<第二个窗户射进的阳光的面积.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.要能根据图形得到窗户射进的阳光的面积的计算公式.。

2019-2020学年七年级上学期期末考试数学试卷(解析版)

2019-2020学年七年级上学期期末考试数学试卷(解析版)

2019-2020学年七年级上学期期末考试数学试卷一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的)1.在﹣22、(﹣2)2、﹣(﹣2)、﹣|﹣2|中,负数的个数是()A.4个B.3个C.2个D.1个2.在1,﹣1,﹣2这三个数中,任意两数之和的最大值是()A.1B.0C.﹣1D.﹣33.下列各式中运算正确的是()A.3a﹣4a=﹣1B.a2+a2=a4C.3a2+2a3=5a5D.5a2b﹣6a2b=﹣a2b4.下列结论正确的是()A.﹣3ab2和b2a是同类项B.不是单项式C.a比﹣a大D.2是方程2x+1=4的解5.如图,已知直线AB,CD相交于点O,OE平分∠COB,若∠EOB=55°,则∠BOD的度数是()A.35°B.55°C.70°D.110°6.运用等式性质的变形,正确的是()A.如果a=b,那么a+c=b﹣c B.如果,那么a=bC.如果a=b,那么D.如果a=3,那么a2=3a27.有理数a,b在数轴上的点的位置如图所示,则正确的结论是()A.a<﹣4B.a+b>0C.|a|>|b|D.ab>08.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140B.120C.160D.1009.在图中,将左边方格纸中的图形绕O点顺时针旋转90°得到的图形是()A.B.C.D.10.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A.B.C.D.11.已知点A,B,C在同一条直线上,若线段AB=3,BC=2,AC=1,则下列判断正确的是()A.点A在线段BC上B.点B在线段AC上C.点C在线段AB上D.点A在线段CB的延长线上12.如图,△AOB中,∠B=30°.将△AOB绕点O顺时针旋转52°得到△A′OB′,边A′B′与边OB交于点C(A′不在OB上),则∠A′CO的度数为()A.22°B.52°C.60°D.82°13.有m辆校车及n个学生,若每辆校车乘坐40名学生,则还有10名学生不能上车;若每辆校车乘坐43名学生,则只有1名学生不能上车.现有下列四个方程:①40m+10=43m﹣1;②=;③=;④40m+10=43m+1.其中正确的是()A.①②B.②④C.②③D.③④14.下列图案是用长度相同的火柴按一定规律拼搭而成,图案①需8根火柴,图案②需15根火柴,…,按此规律,图案n需几根火柴棒()A.2+7n B.8+7n C.4+7n D.7n+1二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共18分)15.单项式﹣xy2的系数是.16.a的3倍与b的差的平方,用代数式表示为.17.计算:15°37′+42°51′=.18.如图,是一个数值转换机的示意图,若输入x的值为3,y的值为﹣2时,则输出的结果为.19.如果x=1时,代数式2ax3+3bx+4的值是5,那么x=﹣1时,代数式2ax3+3bx+4的值是.20.在排成每行七天的日历表中取下一个3×3的方块(如图所示).若所有日期数之和为189,则n的值为.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.(10分)计算:(1)﹣12014﹣(1﹣)÷[﹣32÷(﹣2)2](2)a﹣(5a﹣2b)﹣2(a﹣3b)22.(10分)解方程(1)4(2x﹣3)﹣(5x﹣1)=7(2).23.(10分)如图所示.(1)阴影部分的周长是;(2)阴影部分的面积是;(3)当x=5.5,y=4时,阴影部分的周长是多少?面积是多少?24.(10分)已知含字母x,y的多项式是:3[x2+2(y2+xy﹣2)]﹣3(x2+2y2)﹣4(xy﹣x﹣1)(1)化简此多项式;(2)小红取x,y互为倒数的一对数值代入化简的多项式中,恰好计算得多项式的值等于0,那么小红所取的字母y的值等于多少?25.(10分)周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)请根据他们的对话内容,求小明和爸爸的骑行速度.(2)爸爸第一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50m?26.(10分)已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.参考答案与试题解析一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的)1.【分析】先化简原题中的各数,然后即可判断哪些数是负数,本题得以解决.【解答】解:∵﹣22=﹣4,(﹣2)2=4,﹣(﹣2)=2,﹣|﹣2|=﹣2,∴在﹣22、(﹣2)2、﹣(﹣2)、﹣|﹣2|中,负数的个数是2个,故选:C.【点评】本题考查正数和负数,解题的关键是明确负数的定义,可以对题目中的数进行化简.2.【分析】求最大值,应是较大的2个数的和,找到较大的两个数,相加即可.【解答】解:∵在1,﹣1,﹣2这三个数中,只有1为正数,∴1最大;∵|﹣1|=1,|﹣2|=2,1<2,∴﹣1>﹣2,∴任意两数之和的最大值是1+(﹣1)=0.故选:B.【点评】考查有理数的比较及运算;得到三个有理数中2个较大的数是解决本题的突破点.3.【分析】根据合并同类项进行解答即可.【解答】解:A、3a﹣4a=﹣a,错误;B、a2+a2=2a2,错误;C、3a2与2a3不是同类项,不能合并,错误;D、5a2b﹣6a2b=﹣a2b,正确.故选:D.【点评】此题考查合并同类项问题,理解合并同类项法则,是解决这类问题的关键.4.【分析】根据同类项、单项式、有理数的大小比较、一元一次方程的解逐个判断即可.【解答】解:A、﹣3ab2和b2a是同类项,故本选项符合题意;B、是单项式,故本选项不符合题意;C、当a=0时,a=﹣a,故本选项不符合题意;D、1.5是方程2x+1=4的解,2不是方程的解,故本选项不符合题意;故选:A.【点评】本题考查了同类项、单项式、有理数的大小比较、一元一次方程的解,能熟记知识点的内容是解此题的关键.5.【分析】利用角平分线的定义和补角的定义求解.【解答】解:OE平分∠COB,若∠EOB=55°,∴∠BOC=55+55=110°,∴∠BOD=180﹣110=70°.故选:C.【点评】本题考查了角平分线和补角的定义.6.【分析】利用等式的性质对每个等式进行变形即可找出答案.【解答】解:A、利用等式性质1,两边都加c,得到a+c=b+c,所以A不成立;B、利用等式性质2,两边都乘以c,得到a=b,所以B成立;C、不成立,因为c必需不为0;D、因为a2=9,3a2=27,所以a2≠3a2;故选:B.【点评】主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.7.【分析】根据图示,可得:﹣4<a<﹣3,1<b<2,据此逐项判断即可.【解答】解:根据图示,可得:﹣4<a<﹣3,1<b<2,﹣4<a<﹣3,选项A不符合题意;∵﹣4<a<﹣3,1<b<2,∴a+b<0,选项B不符合题意;∴|a|>|b|,选项C符合题意;∵a<0,b>0,∴ab<0,选项D不符合题意.故选:C.【点评】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.8.【分析】设商品进价为每件x元,则售价为每件0.8×200元,由利润=售价﹣进价建立方程求出其解即可.【解答】解:设商品的进价为每件x元,售价为每件0.8×200元,由题意,得0.8×200=x+40,解得:x=120.故选:B.【点评】本题考查了销售问题的数量关系利润=售价﹣进价的运用,列一元一次方程解实际问题的运用,解答时根据销售问题的数量关系建立方程是关键.9.【分析】根据旋转的性质,找出图中三角形的关键处(旋转中心)按顺时针方向旋转90°后的形状即可选择答案.【解答】解:根据旋转的性质可知,绕O点顺时针旋转90°得到的图形是.故选:B.【点评】本题考查旋转的性质.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.10.【分析】根据图形,结合互余的定义判断即可.【解答】解:A、∠α与∠β不互余,故本选项错误;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β互余,故本选项正确;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选:C.【点评】本题考查了对余角和补角的应用,主要考查学生的观察图形的能力和理解能力.11.【分析】依据点A,B,C在同一条直线上,线段AB=3,BC=2,AC=1,即可得到点C在线段AB上.【解答】解:如图,∵点A,B,C在同一条直线上,线段AB=3,BC=2,AC=1,∴点A在线段BC的延长线上,故A错误;点B在线段AC延长线上,故B错误;点C在线段AB上,故C正确;点A在线段CB的反向延长线上,故D错误;故选:C.【点评】本题主要考查了两点间的距离,解决问题的关键是判段点C的位置在线段AB上.12.【分析】根据旋转变换的性质可得∠B′=∠B,因为△AOB绕点O顺时针旋转52°,所以∠BOB′=52°,而∠A'CO是△B′OC的外角,所以∠A′CO=∠B′+∠BOB′,然后代入数据进行计算即可得解.【解答】解:∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,∴∠B′=∠B=30°,∵△AOB绕点O顺时针旋转52°,∴∠BOB′=52°,∵∠A′CO是△B′OC的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.故选:D.【点评】本题考查的是图形的旋转及三角形外角与内角的关系,图形旋转角即为原三角形的一边与形成新三角形后该对应边的夹角.13.【分析】有m辆校车及n个学生,则无论怎么分配,校车和学生的个数是不变的,据此列方程即可.【解答】解:根据学生数不变可得:40m+10=43m+1,故④正确;根据校车数不变可得:=,故③正确.故选:D.【点评】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.14.【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒8+7(n﹣1)=7n+1根.【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n﹣1)=7n+1根;故选:D.【点评】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共18分)15.【分析】根据单项式系数的定义来求解.单项式中数字因数叫做单项式的系数.【解答】解:单项式﹣xy2的系数是﹣,故答案为:﹣.【点评】本题考查了单项式系数的定义,确定单项式的系数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数的关键.注意π是数字,应作为系数.16.【分析】先算差,再算平方.【解答】解:所求代数式为:(3a﹣b)2.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.注意抓住关键词,找到相应的运算顺序.17.【分析】把分相加,超过60的部分进为1度即可得解.【解答】解:∵37+51=88,∴15°37′+42°51′=58°28′.故答案为:58°28′.【点评】本题考查了度分秒的换算,比较简单,要注意度分秒是60进制.18.【分析】首先根据已知一个数值转换机的示意图,逐步列出代数式并化简,最后表示出输出的结果的代数式,然后代入求值.【解答】解:根据已知一个数值转换机的示意图可得x×2=2x,(y)3=y3,(2x+y3)÷2=x+,把x=3,y=﹣2代入得3+×(﹣2)3=3+(﹣4)=﹣1.故答案为:﹣1.【点评】此题考查了代数式求值问题的理解和掌握.关键是首先根据示意图正确列出代数式,再代入求值.19.【分析】将x=1代入代数式2ax3+3bx+4,令其值是5求出2a+3b的值,再将x=﹣1代入代数式2ax3+3bx+4,变形后代入计算即可求出值.【解答】解:∵x=1时,代数式2ax3+3bx+4=2a+3b+4=5,即2a+3b=1,∴x=﹣1时,代数式2ax3+3bx+4=﹣2a﹣3b+4=﹣(2a+3b)+4=﹣1+4=3.故答案为:3【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.20.【分析】根据日历表中的数据列出方程,求出方程的解即可得到结果.【解答】解:根据题意得:n﹣8+n﹣7+n﹣6+n﹣1+n+n+1+n+6+n+7+n+8=189,解得:n=21,则n的值为21,故答案为:21【点评】此题考查了一元一次方程的应用,弄清日历时候数据的规律是解本题的关键.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(2)原式去括号合并即可得到结果.【解答】解:(1)原式=﹣1﹣÷(﹣)=﹣1+×=﹣1+=﹣;(2)a﹣(5a﹣2b)﹣2(a﹣3b)=a﹣5a+2b﹣2a+6b=﹣6a+8b.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.22.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:8x﹣12﹣5x+1=7,移项合并得:3x=18,解得:x=6;(2)去分母得:2(2x﹣1)﹣(5﹣x)=﹣12,去括号得:4x﹣2﹣5+x=﹣12,移项合并得:5x=﹣5,解得:x=﹣1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.23.【分析】(1)阴影部分的周长等于各边长的和,将各边长相加即可;(2)阴影部分的面积等于大长方形的面积减去小长方形的面积;(3)将x=5.5,y=4代入(1)(2)即可.【解答】解:(1)阴影部分的周长:y+2y+y+y+2x+2x=4x+6y,故答案为4x+6y;(2)阴影部分的面积2x•2y﹣y•(2x﹣x﹣0.5x)=3.5xy,故答案为3.5xy;(3)当x=5.5,y=4时,阴影部分的周长为4x+6y=4×5.5+6×4=46,阴影部分的面积为3.5xy=3.5×5.5×4=77.【点评】本题考查了代数式的值,正确列出代数式是解题的关键.24.【分析】(1)原式去括号合并即可得到结果;(2)由x,y互为倒数,得到xy=1,原式整理后即可求出y的值.【解答】解:(1)3[x2+2(y2+xy﹣2)]﹣3(x2+2y2)﹣4(xy﹣x﹣1)=3x2+6(y2+xy﹣2)﹣3x2﹣6y2﹣4xy+4x+4=3x2+6y2+6xy﹣12﹣3x2﹣6y2﹣4xy+4x+4=2xy+4x﹣8;(2)∵x,y互为倒数,∴xy=1,∴2xy+4x﹣8=4x﹣6=0,解得:x=,则y=.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.25.【分析】(1)设小明的骑行速度为x米/分钟,则爸爸的骑行速度为2x米/分钟,根据距离=速度差×时间即可得出关于x的一元一次方程,解之即可得出结论;(2)设爸爸第一次追上小明后,在第二次相遇前,再经过y分钟,小明和爸爸跑道上相距50m.根据距离=速度差×时间即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设小明的骑行速度为x米/分钟,则爸爸的骑行速度为2x米/分钟,根据题意得:2(2x﹣x)=400,解得:x=200,∴2x=400.答:小明的骑行速度为200米/分钟,爸爸的骑行速度为400米/分钟.(2)解:设爸爸第一次追上小明后,在第二次相遇前,再经过y分钟,小明和爸爸相距50m.400y﹣200y=50y=或者60×y+50﹣60×y=400,解得y=.答:爸爸第一次追上小明后,在第二次相遇前,再经过或分钟,小明和爸爸相距50m.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,由路程差找出合适的等量关系列出方程,再求解.26.【分析】(1)MN的长为3﹣(﹣1)=4,即可解答;(2)根据题意列出关于x的方程,求出方程的解即可得到x的值;(3)可分为点P在点M的左侧和点P在点N的右侧,点P在点M和点N之间三种情况计算;(4)分别根据①当点M和点N在点P同侧时;②当点M和点N在点P异侧时,进行解答即可.【解答】解:(1)MN的长为3﹣(﹣1)=4.(2)根据题意得:x﹣(﹣1)=3﹣x,解得:x=1;(3)①当点P在点M的左侧时.根据题意得:﹣1﹣x+3﹣x=8.解得:x=﹣3.②P在点M和点N之间时,PN+PM=8,不合题意.③点P在点N的右侧时,x﹣(﹣1)+x﹣3=8.解得:x=5.∴x的值是﹣3或5.(4)设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是﹣t,点M对应的数是﹣1﹣2t,点N对应的数是3﹣3t.①当点M和点N在点P同侧时,点M和点N重合,所以﹣1﹣2t=3﹣3t,解得t=4,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM=﹣t﹣(﹣1﹣2t)=t+1.PN=(3﹣3t)﹣(﹣t)=3﹣2t.所以t+1=3﹣2t,解得t=,符合题意.综上所述,t的值为或4.【点评】此题主要考查了数轴的应用以及一元一次方程的应用,根据M,N位置的不同进行分类讨论得出是解题关键.。

2019-2020学年度第一学期期末考试七年级数学试题参考答案

2019-2020学年度第一学期期末考试七年级数学试题参考答案

2019—2020学年度第一学期期末考试七年级数学试题参考答案说明:解答题各小题只给出了一种解法及评分标准.其他解法,只要步骤合理,解答正确,均应给出相应的分数.一、选择题:每小题3分,满分30分题号 1 2 3 4 5 6 7 8 9 10答案 B D C B A B A C D C二、填空题:本题共5小题,每题3分,共15分11.1;12.36;13.-6;14.250;15.8m+12.三、解答题:本题共7小题,共55分.要写出必要的文字说明或演算步骤.16.(本小题6分)(每正确画出一个图形得2分,共6分)17.(本小题6分)解:(1)(1)A-2B=(3a2-5ab)-2(a2-2ab)1分=3a2-5ab-2a2+4ab 2分=a2-ab. 3分(2)∵|3a +1|+(2-3b )2=0,∴3a +1=0,2-3b =0,解得a =13-,b =23. 4分 ∴A -2B =a 2-ab . =2112333⎛⎫⎛⎫---⨯ ⎪ ⎪⎝⎭⎝⎭ 5分 =121993+=. 6分 18.(本小题7分)(1)画图:如图所示. 4分(每正确画出一条射线得2分)(2)解:由题意知:∠MOG =110°,∠MOA =40°, 5分∴∠AOG=∠MOG -∠MOA =110°-40°=70° 射线OG 表示的方向是北偏东70°. 7分19.(本小题8分)解:(1)设甲、乙两车合作还需要x 天运完垃圾,根据题意,得31151530x x ++= 2分解得:x =8 3分答:甲、乙两车合作还需要8天运完垃圾.4分 (2)设乙车每天租金为y 元,则甲车每天租金为(y +100)元,根据题意,得 (3+8)(y +100)+8y =3950 6分解得:y =150 7分150+100=250答:甲车每天租金为250元,乙车每天租金为150元. 8分20.(本小题8分)解:(1)∵OB 平分∠AOC ,∴∠BOC =21∠COA =21×30°=15°. 1分同理:∠DOC =21∠EOC =21×90°=45°. 2分∴∠BOD =∠BOC +∠DOC =15°+45°=60°. 3分(2)∵OB 平分∠AOC ,∴∠COA =2∠BOC =2α. 4分同理:∠EOC =2∠DOC =2β. 5分∴∠AOE =∠COA +∠EOC =2α+2β. 6分(3)∠AOE =2∠BOD . 8分21.(本小题9分)(1)答:第①步错误,原因是去括号时,2这项没有乘以3;2分第④步错误,原因是应该用8除以2,小马用2除以8了. 4分【原因只要叙述合理即可得分】(2)解:7531164y y ---=,去分母得:12-2(7-5y )=3(3y -1). 6分去括号得:12-14+10y =9y -3. 7分移项得:10y -9y =-3-12+14. 8分合并同类项,得:y =-1. 9分22.(本小题11分)解:(1)EF =2020-(-2020)=4040. 2分(2)①当点P 是线段AB 的中点时,则PA =PB .所以x -(-2)=3-x .解得:x =0.5. 4分②当点A 是线段PB 的中点时,则PA =AB .所以(-2)-x =3-(-2).解得:x =-7. 6分③当点B 是线段P A 的中点时,则PB =AB .所以x -3=3-(-2).解得:x =8. 8分(3)答:在点A 左侧存在一点Q ,使点Q 到点A ,B 的距离和为19. 9分解:设点Q 表示的数是y .因为QA +QB =19,所以(-2)-y +3-y =19. 10分解得:y=-9.所以点Q表示的数是-9.11分。

河南省2019-2020学年七年级上学期数学期末考试试卷(II)卷

河南省2019-2020学年七年级上学期数学期末考试试卷(II)卷

河南省2019-2020学年七年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018七上·南宁期中) 的倒数是()A .B .C .D .2. (2分) (2017七上·北京期中) 龙庆峡冰灯于2016年1月中旬接待游客.今年的龙庆峡冰灯以奥运五环、冬奥会运动项目等奥运元素为题材,分为彩灯区、娱乐区、冰展区,总面积达到200 000平方米.将200 000用科学记数法表示应为()A . 20×104B . 0.20×106C . 2.0×106D . 2.0×1053. (2分)平面上有五个点,其中只有三点共线。

经过这些点可以作直线的条数是()A . 6条B . 8条C . 10条D . 12条4. (2分)下列几何体不属于多面体的是()A . 三棱锥B . 球体C . 立方体D . 四面体5. (2分)一个两位数,个位上的数字是a,十位上的数字是b,用代数式表示这个两位数是()A . aB . baC . 10a+bD . 10b+a6. (2分)近年来,中国中东部大部分地区持续出现雾霾天气.某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了尚不完整的统计图表.若该市人口约有800万人,请根据图表中提供的信息,请你估计其中持C组和D组“观点”的市民人数大约有()万人.A . 200B . 240C . 400D . 4807. (2分)若A是五次多项式,B也是五次多项式,则A+B的次数是()A . 十次B . 五次C . 不高于五次D . 不能确定8. (2分)某数减去它的,再加上,等于这个数的,则这个数是()A . -3B .C . 0D . -109. (2分) (2016七上·重庆期中) 下列运算正确的是()A . 3a2+5a2=8a4B . 5a+7b=12abC . 2m2n﹣5nm2=﹣3m2nD . 2a﹣2a=a10. (2分)把一张纸片剪成4块,再从所得的纸片中取若干块,每块又剪成4块,像这样依次地进行下去,到剪完某一次为止.那么下列四个数中可能是剪出的纸片数的是()A . 2009B . 2010C . 2011D . 2012二、填空题 (共6题;共12分)11. (1分)绝对值小于4的所有非零整数的积为________.12. (1分) (2011七下·河南竞赛) 定义a*b=ab+a+b,若3*x=27,则x的值是________。

2019-2020学年度上学期期末考试七年级试题解析版

2019-2020学年度上学期期末考试七年级试题解析版

2019-2020学年度上学期期末考试题七 年 级 数 学时间:120分钟 总分:120分题号一二三 总分1718192021222324得分题意的选项代号填在题后括号内,每小题3分,共36分.)1.如果一个物体向右移动2米记作移动+2米,那么这个物体又移动了-2米的意思是( C )(教材P3练习2改编)A .物体又向右移动了2米B . 物体又向右移动了4米C .物体又向左移动了2米 D .物体又向左移动了4米2.计算32---的结果为(A )(教材P51习题6(2))A .-5B .-1C .1D .53.平方等于9的数是( A )(教材P47习题7)A .±3B .3C .﹣3D .±94.一天有41064.8⨯秒,一年按365天计算,一年有(D )秒(教材P48习题10)A .4101536.3⨯B .5101536.3⨯C .6101536.3⨯D .7101536.3⨯5.下列说法错误的是(B )(教材P59习题3)A . ab 15-的系数是-15B .532yx 的系数是51C .224b a 的次数是4D .42242b b a a +-的次数是46.下列计算中,正确的是( C )(教师用书P141测试题5)A .b a b a +-=+-2)(2B .b a b a --=+-2)(2C .b a b a 22)(2--=+-D .b a b a 22)(2+-=+-7.长方形的长是x 3,宽是y x -2,则长方形的周长是( A )(教师用书P140测试题1)A .y x 210-B .y x 210+C .y x 26-D .y x -108.下列方程,是一元一次方程的是( B )(教师用书P214测试题1) A .342=-a aB .213a a =- C .12=+b a D .53=-ab9.已知等式323+=y x ,则下列变形不一定成立的是(D )(教师用书P214测试题3改编)A .y x 233=-B .132+=y x C .4213+=+y x D .523+=yz xz 10.一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损20%,这家商店(A )(教材P102探究1改编)A .亏损3元B .盈利3元C .亏损8元D .不盈不亏 11.下列说法中错误的是( C )(教材P126练习1改编)A .线段AB 和射线AB 都是直线的一部分 B .直线AB 和直线BA 是同一条直线C .射线AB 和射线BA 是同一条射线D .线段AB 和线段BA 是同一条线段 12.已知∠α的补角的一半比∠α小30°,则∠α等于( D ) (教材P148复习题8改编) A .50° B .60° C .70° D .80°二、填空题(本大题有6个小题,把各题的正确答案填在题后的横线上,每小题3分,共18分.) 13.数轴上表示-5和-14的两点之间的距离是 . (教师用书P90测试题8) 14.已知代数式a a 22-值是-4,则代数式a a 6312-+的值是 . (-11)15.若单项式b a m 15+和1425-n b a 是同类项,则nm 的值为 .(9)16.若方程6x +2=0与关于y 的方程3y +m =15的解互为相反数,则m =________.(16) 17.点A ,B ,C 在同一条直线上,AB=5 cm ,BC=2cm ,则AC 的长为 __ _cm .(3或 7) (教材P130习题10改编)18.南偏东50°的射线与西南方向的射线组成的角(小于平角)的度数是 .(95°) 三、解答题(本题有9个小题,共66分.) 19.(本题满分8分,每小题4分)计算: (1)43512575)522(75÷-⨯--÷ (2) ()())31(34252232-⨯+÷--⨯- (教师用书P90测试题11(1)) (教材P51复习题5(13)、(14)改编)解:(1)原式=848512584258425413512575)125(75-=---=⨯-⨯--⨯.……………4分(2)原式=)2(94)8(54-⨯+÷--⨯=418220)18()2(20=-+=-+--.………8分20.(本题满分8分,每小题4分)解方程:(1) )1(25)10(2-+=+-x x x x (2)3713321-+=-x x (教材P94例题1(1)) (教材P111复习题2(3))解:(1) 去括号,得:225102-+=--x x x x移项,得:102252--=---x x x x 合并同类项,得:86=-x系数化为1,得:34-=x .……………………………………………4分 (2) 去分母,得:63)13(3)21(7-+=-x x 去括号,得:6339147-+=-x x 移项,得:7633914--=--x x 合并同类项,得:6723-=-x系数化为1,得:2367=x ……………………………………………8分21.(本题满分6分)化简求值:]2)321(5[322x x x x +---,其中4=x .解:原式=222)321(53x x x x --+-=22232153x x x x --+-………………………………2分 =3292--x x ……………………………………………………4分 当4=x 时,原式=5342942-=-⨯-.………………………………6分22.(本题满6分)如图,BD 平分∠ABC ,BE 把∠ABC 分成的两部分∠ABE ∶∠EBC =2∶5,∠DBE =21°,求∠ABC 的度数.解:设∠ABE =2x °,则∠CBE =5x °,∠ABC =7x °.……………………1分∵BD 为∠ABC 的平分线,∴∠ABD =12∠ABC =72x °.…………………2分∴∠DBE =∠ABD -∠ABE =72x °-2x °=32x °=21°.……………………4分∴x =14.……………………………5分∴∠ABC =7x °=98°.……………………………6分23.(本题满6分)列方程解应用题:机械加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个.已知2个大齿轮与3个小齿轮配成一套,则安排多少名工人加工大齿轮,才能使每天加工的大、小齿轮刚好配套?解:设安排x 名工人加工大齿轮,根据题意得…………1分3×16x =2×10(85-x )或16x :10(85-x )=2:3 (3)分解得x =25…………………………………………………5分答:安排5名工人加工大齿轮,才能使每天加工的大、小齿轮刚好配套.………………6分24. (本题满7分)如图,点A 、B 都在数轴上,O 为原点. (1)点B 表示的数是________;(2)若点B 以每秒3个单位长度的速度沿数轴运动,则1秒后点B 表示的数是______;(3)若点A 、B 都以每秒3个单位长度的速度沿数轴向右运动,而点O 不动,t 秒后有一个点是一条线段的中点,求t 的值.解:(1)-6.………………1分(2) -9或-3.………………3分(填对一个得1分) (3)由题意可知有两种情况:①O 为BA 的中点时,由题意可得:(-6+3t )+(2+3t )=0.O B A解得t =32.……………5分 ②B 为OA 的中点时,由题意可得:2+3t =2(-6+3t ) . 解得t =314. 综上所述,t =32或314 .………………7分25.(本题满7分)用“※”定义一种新运算:对于任意有理数a 和b ,规定a ※b =ab 2+2ab +a .如:1※3=1×32+2×1×3+1=16.(1)求3 ※(-2)的值;(2)若(21+a ※3)※(21-)=4,求a 的值. 解:(1)根据题中定义的新运算得:3)※(-2)=3×(-2)2+2×3×(-2)+3=12-12+3=3.………………3分 (2)根据题中定义的新运算得:21+a ※3=21+a ×32+2×21+a ×3+21+a =8(a +1) .………………4分 8(a +1) ※(21-)=8(a +1)×(21-)2+2×8(a +1)×(21-)+8(a +1)=2(a +1) .………………5分所以2(a +1)=4,解得a =1.………………7分26.(本题满8分)小刚和小强从A ,B 两地同时出发,小刚骑自行车,小强步行,沿同一 条路线相向匀速而行.出发后两小时两人相遇.相遇时小刚比小强多行进24千米.相遇后0.5 小时小刚到达B 地.(1)两人的行进速度分别是多少?(2)相遇后经过多少时间小强到达A 地?(3)AB 两地相距多少千米? (教材P107习题10改编)解:(1)设小强的速度为x 千米/小时,则小刚的速度为(x +12)千米/小时.根据题意得:2x =0.5(x +12). 解得:x =4.x +12=4+12=16.答:小强的速度为4千米/小时,小刚的速度为16千米/小时.………………3分 (2)设在经过y 小时,小强到达目的地. 根据题意得:4y =2×16. 解得:y =8.答:在经过8小时,小强到达目的地.………………6分 (3)2×4+2×16=40(千米).答:AB 两地相距40千米.………………8分27.(本题满10分)如图①,点O 为直线AB 上一点,过点O 作射线OC ,将一直角三角板如图摆放(∠MON=90°) .(1)若∠BOC=35°,求∠MOC 的大小.(2)将图①中的三角板绕点O旋转一定的角度得图②,使边OM恰好平分∠BOC,问:ON是否平分∠AOC?请说明理由.(3)将图①中的三角板绕点O旋转一定的角度得图③,使边ON在∠BOC的内部,如果∠BOC=50°,则∠BOM与∠NOC之间存在怎样的数量关系? 请说明理由.解:(1) ∵∠MON=90°,∠BOC=35°,∴∠MOC=∠MON+∠BOC=90°+35°=125°.………………2分(2)ON平分∠AOC.理由如下:………………3分∵∠MON=90°,∴∠BOM+∠AON=90°,∠MOC+∠NOC=90°. ………………4分又∵OM平分∠BOC,∴∠BOM=∠MOC. ………………5分∴∠AON=∠NOC.∴ON平分∠AOC. ………………6分(3)∠BOM=∠NOC+40°.理由如下:………………7分∵∠CON+∠NOB=50°,∴∠NOB=50°-∠NOC. ………………8分∵∠BOM+∠NOB=90°,∴∠BOM=90°-∠NOB=90°-(50°-∠NOC)=∠NOC-40°. ………………10分。

2019-2020年七年级数学上期期末考试参考答案

2019-2020年七年级数学上期期末考试参考答案

2019-2020年七年级数学上期期末考试参考答案说明:1.如果考试的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分的多少,但原则上不超过后继部分应得分数之半.3.评分标准中,如无特殊说明,均为累计给分.4.评分过程中,只给整数分数. 一、选择题(每小题3分,共18分) 题号 1 2 3 4 5 6 答案ADDCCB二、 填空题(每小题3分,共27分) 题号 7891011 12131415 答案5-圆柱,圆锥2145°(0.8b-10)4487月14号(或7月15号)三、解答题(共55分) 16.解:21)2(6)1(2011⨯-÷--)23(1---= ……………………………………4分21=. ………………………………………………………………………6分 17.解:(1)如图;…………………………2分 (2)如图; …………………………4分 (3)MN ⊥PH . ……………………6分18.解:①. …………………………………………………………………………1分6)15()12(2=--+x x .61524=+-+x x . ………………………………………4分 62154+--=-x x .3=-x .3-=x . ……………………………………………6分19.解:理由如下:设这个数是x ,则 …………………………………………………1分[][].)10(10)10(141014)10()75(214x x x x =-÷-=-÷+--=-÷-⨯--20. 解:(1)(名)50%2412=÷.该班共50名同学; ………………………………………………3分 (2) 如图; ………………………………………6分学生平均每天完成作业用时统计图/学生平均每天完成作业用时统…………………………………………………4分…………………………………………………6分…………………………………………………8分(3)这名同学平均每天完成作业用时为1小时的可能性最大,因为从扇形统计图可以看出平均每天完成作业用时为1小时占的区域最大. ………………9分21. 解:(1)三角形个数依次为:0,5,10; ………3分(2)5(n -1)个; …………………………6分 (3)不能. ………………7分因为5(n -1)=2011, 而52016=n 不是整数,所以不能.…………………10分 22. 解:(1)设经过x 秒后,农用车发出的噪声开始使小明受到影响. 由题可得2064100+=+x x . 解得40=x .经过40秒时,农用车发出的噪声开始使小明受到影响. ……………………4分 (2)设小明受到农用车噪声的影响会持续y 秒. 由题可得202046++=y y . 解得20=y .小明受到农用车噪声的影响会持续20秒. ……………………7分(3) 农用车刚好经过小明身旁时,小明立刻停下来,受农用车噪声影响持续的时间比(2)短. …………………8分理由如下: 设农用车从离小明20米到追上小明用z 秒.由题可得2046+=z z . 解得10=z .因为313620=÷,311331310=+<20.所以农用车刚好经过小明身旁时,小明立刻停下来,受农用车噪声影响持续的时间比(2)短. ……………………10分。

2019-2020 学年七年级上学期期末数学试题(解析版 )

2019-2020 学年七年级上学期期末数学试题(解析版 )

初中2019级第一学期末教学质量监测数学第Ⅰ卷(选择题,共36分)一、选择题(本大题共12个小题,每小题3分,共36分.)1. 5的相反数是( )A. 15B.15- C. 5 D. 5-【答案】D【解析】【分析】根据相反数的定义解答.【详解】解:只有符号不同的两个数称为互为相反数,则5的相反数为-5,故选D.【点睛】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2. 下列四个几何体中,是三棱柱的为( ).A. B.C. D.【答案】C【解析】【分析】分别判断各个几何体的形状,然后确定正确的选项即可.【详解】解:A、该几何体为四棱柱,不符合题意;B、该几何体为四棱锥,不符合题意;C、该几何体为三棱柱,符合题意;D、该几何体为圆柱,不符合题意.故选C.【点睛】考查了认识立体图形的知识,解题的关键是能够认识各个几何体,难度不大.3. 中国陆地面积约为29600000km ,将数字9600000用科学记数法表示为()A. 59610⨯B. 69.610⨯C. 79.610⨯D. 80.9610⨯ 【答案】B【解析】【分析】根据科学记数法的表示方法写出即可.【详解】解:将9600000用科学记数法表示为69.610⨯.故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.4. 如果单项式312m x y +-与2x 4y n+3的差是单项式,那么(m+n)2019的值为( ) A. 1-B. 0C. 1D. 22019【答案】A【解析】 【分析】 根据312m x y +-和2x 4y n+3是同类项,求出m 和n 的值,即可得出答案. 【详解】∵单项式312m x y +-与2x 4y n+3的差是单项式 ∴m+3=4,n+3=1解得:m=1,n=-2∴(m+n)2019=[1+(-2)]2019=-1故答案选择A.【点睛】本题考查的是同类项的定义:①字母相同;②相同字母的指数相同.5. 若(k ﹣5)x |k |﹣4﹣6=0是关于x 的一元一次方程,则k 的值为( )A. 5B. ﹣5C. 5 或﹣5D. 4 或﹣4【答案】B【解析】【分析】由一元一次方程的定义可得|k |﹣4=1且k ﹣5≠0,计算即可得到答案.【详解】∵(k ﹣5)x |k |﹣4﹣6=0是关于x 的一元一次方程, ∴|k |﹣4=1且k ﹣5≠0,解得:k =﹣5.故选B .【点睛】本题考查一元一次方程的定义,解题的关键是掌握一元一次方程的定义.6. 用四舍五入法得到的近似数1.02×104,其精确度为( )A. 精确到十分位B. 精确到十位C. 精确到百位D. 精确到千位【答案】C【解析】【分析】 先把近似数还原,再求精确度,即可得出答案.【详解】1.02×104=10200,2在百位上,故答案选择C. 【点睛】本题考查的是近似数的精确度,比较简单,近似数最后一位所在的数位即为该数的精确度. 7. 下列说法错误的是 ( )A. 若a=b,则3-2a=3-2bB. 若a b c c =,则a=b C. 若a b =,则a=bD. 若a=b,则ca=cb【答案】C【解析】【分析】 根据等式的性质逐一判断即可得出答案.【详解】A :因为a=b ,所以-2a=-2b ,进而3-2a=3-2b ,故选项A 正确;B :因为a b c c =,所以a=b ,故选项B 正确;C :因为a b =,所以a=b 或a=-b ,故选项C 错误;D :因为a=b ,所以ca=cb ,故选项D 正确;故答案选择C.【点睛】本题考查的是等式的性质,比较简单,需要熟练掌握等式的基本性质.8. 一张试卷有25道选择题,做对一题得4分,做错一题得-1分,某同学做完了25道题,共得70分,那么他做对的题数是( )A. 17道B. 18道C. 19道D. 20道【答案】C【解析】【分析】设作对了x道,则错了(25-x)道,根据题意列出方程进行求解.【详解】设作对了x道,则错了(25-x)道,依题意得4x-(25-x)=70,解得x=19故选C.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系.9. 已知x2+3x=2,则多项式3x2+9x﹣4的值是()A. 0B. 2C. 4D. 6【答案】B【解析】【分析】【详解】解:∵x²+3x=2,∴3x²+9x−4=3(x²+3x)−4=3×2−4=6−4=2,故选B. 10. 已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是()A. a+bB. ﹣a﹣cC. a+cD. a+2b﹣c【答案】C【解析】【分析】首先根据数轴可以得到a、b、c的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.【详解】解:通过数轴得到a<0,c<0,b>0,|a|<|b|<|c|,∴a+b>0,c﹣b<0∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,故答案为a+c.故选C11. 观察如图所示图形,则第n个图形中三角形的个数是( )A. 2n+2B. 4n+4C. 4nD. 4n-4【答案】C【解析】【分析】由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.【详解】解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n.故选C.【点睛】此题考查了学生由特殊到一般的归纳能力.解此题时要注意寻找各部分间的联系,找到一般规律.12. 如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为()A. 36°B. 45°C. 60°D. 72°【答案】D【解析】【分析】先推出∠AOD+∠BOC=180°,结合∠AOD=4∠BOC,求出∠BOC的度数,再根据角平分线求出∠COE的度数,利用∠DOE=∠COD-∠COE即可解答.【详解】解:∵∠AOB=90°,∠COD=90°,∴∠AOB+∠COD=180°,∵∠AOB=∠AOC+∠BOC,∠COD=∠BOC+∠BOD ,∴∠AOC+∠BOC+∠BOC+∠BOD=180°,∴∠AOD+∠BOC=180°,∵∠AOD=4∠BOC,∴4∠BOC+∠BOC=180°,∴∠BOC=36°,∵OE 为∠BOC 的平分线,∴∠COE=12∠BOC=18°,∴∠DOE=∠COD−∠COE=90°−18°=72°,故选择:A.【点睛】本题考查了角平分线的定义,角的和差计算及数形结合的数学思想,根据图中的数量关系求出∠BOC=36°是解答本题的关键.第Ⅱ卷(非选择题,共64分)二、填空题:(本大题共6小题,每小题3分,共18分.)13. 建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,这样做的依据是:__________.【答案】两点确定一条直线【解析】【分析】由直线公理可直接得出答案.【详解】建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,沿着这条线就可以砌出直的墙,则其中的道理是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】本题主要考查的是直线的性质,掌握直线的性质是解题的关键.14. 用“>、=、<”符号填空:45-______78-.【答案】> 【解析】【分析】先求绝对值,再用绝对值相减即可得出答案.【详解】∵44=55-,77=88-又4732-353-==-0 584040<∴47 < 58∴47 ->-58故答案为:>【点睛】本题考查的是负数的比较大小,先取绝对值,再比较大小,绝对值大的反而小.15. 如图,OA是北偏东28°36′方向的一条射线,OB是北偏西71°24′方向的一条射线,则∠AOB=__________.【答案】100°【解析】【分析】根据题意求出∠AOC和∠BOC的度数,相加即可得出答案.【详解】根据题意可得:∠AOC =28°36′,∠BOC=71°24′∠AOB=71°24′+28°36′=100°故答案为:100°【点睛】本题考查的是角度的计算,比较简单,角度的计算记住满60进1.16. 已知|3m ﹣12|+212n ⎛⎫+ ⎪⎝⎭=0,则2m ﹣n=_____. 【答案】10【解析】【分析】【详解】∵|3m ﹣12|+2(1)2n +=0,∴|3m ﹣12|=0,2(1)2n +=0,∴m =4,n =﹣2,∴2m ﹣n =8﹣(﹣2)=10.点睛:本题考查了非负数的性质,几个非负数的和等于0,则每个数都等于0,初中范围内的非负数有:绝对值,算术平方根和偶次方.17. 规定“Δ”是一种新的运算法则,满足:a △b=ab-3b ,示例:4△(-3)=4×(-3)-3×(-3)=-12+9=-3.若-3△(x+1)=1,则x=____________. 【答案】76- 【解析】【分析】根据新定义代入得出含x 的方程,解方程即可得出答案.【详解】∵a △b=ab-3b∴-3△(x+1)=-3(x+1)-3(x+1)=-6(x+1)∴-6(x+1)=1解得:x=76- 【点睛】本题考查的是新定义,认真审题,理清题目意思是解决本题的关键.18. 在数轴上点A 对应的数为-2,点B 是数轴上的一个动点,当动点B 到原点的距离与到点A 的距离之和为6时,则点B 对应的数为_________.【答案】-4或2【解析】【分析】先设点B 对应的数为b ,再用距离公式计算即可得出答案.【详解】设点B 对应的数为b解:设点B 表示的数为b ,①当点B 在点A 的左侧时,则有-2-b-b=6,解得,b=-4,②当点B 在OA 之间时,AB+AO=2≠6,因此此时不存在,③当点B 在原点的右侧时,则有b+2+b=6,解得,b=2,故答案为:-4或2.【点睛】本题考查的是数轴的动点问题,解题关键是利用距离公式进行计算.三、解答题(本大题共6个小题,共46分.)19. 计算:100211(10.5)3(3)3⎡⎤---⨯⨯--⎣⎦ 【答案】0【解析】【分析】按照有理数的混合运算顺序:先算乘方,再算乘除,最后算加减,若有括号先算括号内的,计算即可. 【详解】解:100211(10.5)3(3)3⎡⎤---⨯⨯--⎣⎦ =-1-12×13×(3-9) =-1-16×(-6) =-1+1=0【点睛】本题考查有理数的混合运算,掌握运算顺序及法则,正确计算是本题的解题关键.20. 解方程:12136x x x -+-=- 【答案】27x =-【解析】【分析】方程两边同时乘以最小公倍数去掉分母,进而去括号、移项、合并同类项即可求解.【详解】解:去分母得:6x-2(1-x )=x+2-6,去括号得:6x-2+2x=x+2-6,移项得:6x+2x-x=2-6+2,合并同类项得:7x=-2,解得:27x =-. 【点睛】本题考查一元一次方程的解法,掌握解方程的步骤正确计算是本题的关键.21. 先化简,再求值:已知()()222242x x y x y --+- ,其中1x =-,y=2. 【答案】22x y +;5.【解析】【分析】先去括号再合并同类项,然后把1x =-,y=2代入计算.【详解】解:原式=22222422=2x x y x y x y --+++, 当1x =-,y=2时,原式=(-1)2+2×2=5. 【点睛】本题考查了整式的加减−化简求值:先去括号,再合并同类项,然后把满足条件的字母的值代入计算得到对应的整式的值.22. 如图所示,已知C ,D 是线段AB 上的两个点,M ,N 分别为AC ,BD 的中点,若AB=10cm ,CD=4cm ,求线段MN 的长;【答案】7cm【解析】【分析】根据题目求出AC+DB 的值,进而根据中点求出AM+DN 的值,即可得出答案.【详解】解:∵AB=10cm ,CD=4cm∴AC+DB=AB-CD=6cm又M ,N 分别为AC ,BD 的中点∴AM=CM=12AC ,DN=BN=12DB ∴AM+DN=12(AC+DB)=3cm ∴MN=AB-(AM+DN)=7cm【点睛】本题考查的是线段的中点问题,解题关键是根据进行线段之间等量关系的转换.23. 小魏和小梁从A ,B 两地同时出发,小魏骑自行车,小梁步行,沿同条路线相向匀速而行。

2019-2020学年七年级上学期期末考试数学试卷(含解析版)

2019-2020学年七年级上学期期末考试数学试卷(含解析版)

2019-2020学年七年级上学期期末考试数学试卷一、选择题(本大题共16个小题,每小题2分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣18的倒数是()A.18B.﹣18C.﹣D.2.下列代数式书写正确的是()A.a48B.x÷y C.a(x+y)D.abc3.下列说法不正确的是()A.0是单项式B.单项式﹣的系数是﹣C.单项式a2b的次数为2D.多项式1﹣xy+2x2y是三次三项式4.下列说法中正确的是()A.射线是直线的一半B.两点间的线叫做线段C.延长射线OA D.两点确定一条直线5.如果x=2是方程2x=5﹣a的解,那么a的值为()A.2B.6C.1D.126.下列运算正确的是()A.(﹣2)÷(﹣4)=2B.0﹣2=2C.D.﹣=﹣47.下列各式成立的是()A.2x+3y=5xy B.a﹣(b+c)=a﹣b+cC.3a2b+2ab2=5a3b3D.﹣2xy+xy=﹣xy8.如图,线段AB=18cm,BC=6cm,D为BC的中点,则线段AD的长为()A.12 cm B.15cm C.13cm D.11 cm9.长方形长为3x+2y,宽为x﹣y,则这个长方形的周长为()A.4x+y B.8x+2y C.10x+10y D.12x+8y10.一件工作,甲单独做要20小时完成,乙单独做要12小时完成,现在由甲单独做4小时,剩下的部分由甲、乙合做,那么剩下的部分需要几个小时完成?若设还要xh完成,则依题意可列方程为()A.B.C.D.11.多项式a+5与2a﹣8互为相反数,则a=()A.﹣1B.0C.1D.212.如果代数式2y2﹣y+5的值为7,那么代数式4y2﹣2y+1的值为()A.5B.4C.3D.213.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为()A.400cm2B.500cm2C.600cm2D.300cm214.如图,已知∠AOC=∠BOC=90°,若∠1=∠2,则图中互余的角共有()A.5对B.4对C.3对D.2对15.某工厂原计划用a天生产b件产品,由于技术革新实际比原计划少用x天完成,则实际每天要比原计划多生产()件.A.B.C.D.16.有理数a、b、c在数轴上的对应点如图所示,化简代数式:|a﹣b|﹣|c﹣a|=()A.﹣2a﹣b+c B.﹣b﹣c C.﹣2a﹣b﹣c D.b﹣c二、填空题(本大题共4个小题每小题3分,共12分)17.已知a、b互为相反数,c、d互为倒数,那么2a+2b﹣5cd=.18.如果x m+1与x n是同类项,那么m﹣n=.19.如图,将一副直角三角板叠在一起,使直角顶点重合于点O,若∠AOB=160°,则∠COD =.20.将图①中的正方形剪开得到图②中的4个正方形;将图②中一个正方形剪开得到图③中的7个正方形,将图③中一个正方形剪开得到图④,图④中共有10个正方形;…;如此下去.则第n个图中共有个正方形.三、解答题(本大题共6个小题共56分解答应写出文字说明、证明过程或演算步骤)21.计算(1)(﹣﹣1)×(﹣12)(2)﹣22×+(﹣3)3×(﹣)22.解方程(1)3x+7=32﹣2x;(2)﹣1=23.先化简,后求值:a+(5a﹣3b)﹣2(a﹣2b),其中a=2,b=﹣3.24.如图,已知∠AOB=114°,OF是∠AOB的平分线,∠AOE和∠AOF互余,求∠AOE和∠BOE 的度数.25.联华商场以150元/台的价格购进某款电风扇若干台,很快售完.商场用相同的货款再次购进这款电风扇,因价格提高30元,进货量减少了10台.(1)这两次各购进电风扇多少台?(2)商场以250元/台的售价卖完这两批电风扇,商场获利多少元?26.如图,边长为4的正方形ABCD中,动点P以每秒1个单位的速度从点B出发沿线段BC方向运动,动点Q同时以每秒4个单位的速度从点A出发沿正方形的边AD﹣DC﹣CB方向顺时针做折线运动,当点P与点Q相遇时停止运动,设点P的运动时间为t秒.(1)当点P在BC上运动时,PB=;(用含t的代数式表示)(2)当点Q在AD上运动时,AQ=;(用含t的代数式表示)(3)当点Q在DC上运动时,DQ=,QC=;(用含t的代数式表示)(4)当t等于多少时,点Q运动到DC的中点?(5)当t等于多少时,点P与点Q相遇?参考答案与试题解析一、选择题(本大题共16个小题,每小题2分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣18的倒数是﹣,故选:C.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.【分析】根据代数式的书写要求判断各项.【解答】解:选项A正确的书写格式是48a,B正确的书写格式是,C正确,D正确的书写格式是abc.故选:C.【点评】代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.3.【分析】根据单项式、单项式次数、单项式的系数的定义,结合各选项判断即可.【解答】解:A.0是单项式,此选项正确;B.单项式﹣的系数是﹣,此选项正确;C.单项式a2b的次数为3,此选项错误;D.多项式1﹣xy+2x2y是三次三项式,此选项正确;故选:C.【点评】本题考查了单项式的知识,属于基础题,解答本题的关键是熟练掌握单项式、单项式次数、单项式的系数的定义.4.【分析】根据直线,射线,线段的含义进行逐项判断.【解答】解:A、射线只有一个端点,是一条向一端无限延长的线,直线是可以向两端无限延长,所以两者之间并不存在什么数量关系A错;B、直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点而不只是两点间的线,所以B错;C、射线只有一个端点,只能反向延长,C错;D、两点确定一条直线,正确故选:D.【点评】本题主要考查直线、射线、线段等知识点,熟练掌握射线,线段,直线的含义.5.【分析】x=2是方程2x=5﹣a的解,那么将x=2代入方程可使得方程左右两边相等,从而转化成只含一个未知数a的方程,解一元一次方程即可求出a值【解答】解∵x=2是方程2x=5﹣a的解∴将x=2代入方程得,2×2=5﹣a,解得a=1故选:C.【点评】此题考查的是一元一次方程的解,使方程两边左右相等的未知数的值即为方程的解6.【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:∵(﹣2)÷(﹣4)=2÷4=0.5,故选项A错误,∵0﹣2=﹣2,故选项B错误,∵=,故选项C错误,∵﹣=﹣=﹣4,故选项D正确,故选:D.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.7.【分析】利用合并同类项,系数相加字母和字母的指数不变;以及去括号法则,对各选项计算后利用排除法求解.【解答】解:A、不是同类项不能合并,故选项错误;B、a﹣(b+c)=a﹣b﹣c,故选项错误;C、不是同类项不能合并,故选项错误;D、正确.故选:D.【点评】本题考查了合并同类项得法则,去括号得法则,正确认识同类项,理解同类项得定义是关键.8.【分析】根据AD=AC+CD=(AB﹣BC)+BC,再抓住已知线段来求未知线段的长度,即可得线段AD的长.【解答】解:∵AB=18cm,BC=6cm,∴AC=AB﹣BC=12cm又∵D为BC的中点,∴CD=BC=3于是AD=AC+CD=12+3=15故选:B.【点评】本题考查的线段的长度计算问题,根据图形利用线段的和、差、倍、分进行计算是解决问题的关键.9.【分析】根据题意列出代数式即可求出答案.【解答】解:长方形额周长为:2[(3x+2y)+(x﹣y)]=2(3x+2y+x﹣y)=2(4x+y)=8x+2y,故选:B.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.10.【分析】要列方程,首先要理解题意,根据题意找出等量关系:甲的工作量+乙的工作量=总的工作量,此时可设工作总量为1,由甲,乙的单独工作时间可得到两者各自的工作效率,再根据“效率×时间=工作量”可以表示甲,乙的工作量,这样再根据等量关系列方程就不难了.【解答】解:“设剩下部分要x小时完成”,那么甲共工作了4+x小时,乙共工作了x小时,设工作总量为1,则甲的工作效率为,乙的工作效率为.那么可得出方程为:+=1;即++=1,故选:D.【点评】本题主要考查一元一次方程的应用,解题的关键是理解工作效率,工作时间和工作总量的关系,从而找出题中存在的等量关系.11.【分析】利用相反数性质列出方程,求出方程的解即可得到a的值.【解答】解:根据题意得:a+5+2a﹣8=0,移项合并得:3a=3,解得:a=1,故选:C.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.12.【分析】根据已知条件,可求出2y2﹣y的值,然后将原代数式变形为:2(2y2﹣y)+1,再将(2y2﹣y)整体代入所求代数式中求值即可.【解答】解:∵2y2﹣y+5的值为7,∴2y2﹣y=2,则4y2﹣2y+1=2(2y2﹣y)+1=4+1=5.故选:A.【点评】做此类题的时候,应先得到只含字母的代数式的值为多少,把要求的式子整理成包含那个代数式的形式.13.【分析】由题意可知本题存在两个等量关系,即小长方形的长+小长方形的宽=50cm,小长方形的长+小长方形宽的4倍=小长方形长的2倍,根据这两个等量关系可列出方程组,进而求出小长方形的长与宽,最后求得小长方形的面积.【解答】解:设一个小长方形的长为xcm,宽为ycm,则可列方程组,解得,则一个小长方形的面积=40cm×10cm=400cm2.故选:A.【点评】此题考查方程组的应用问题,解答本题关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组.并弄清小长方形的长与宽的关系.14.【分析】根据互为余角的两个角的和等于90°和等角的余角相等解答.【解答】解:∵∠AOC=∠BOC=90°,∠1=∠2,∴∠1+∠AOE=90°,∠2+∠COD=90°,∠2+∠AOE=90°,∠1+∠COD=90°,∴互余的角共有4对.故选:B.【点评】本题考查了余角和补角,是基础题,熟记概念并准确识图是解题的关键.15.【分析】根据题意得出原计划每天生产件,实际每天生产件,相减即可得.【解答】解:根据题意知,原计划每天生产件,而实际每天生产件,则实际每天要比原计划多生产﹣(件),故选:C.【点评】本题主要考查根据实际问题列代数式,根据题意表示出原来和现在每天生产的件数是关键.16.【分析】根据数轴上a、b、c对应的位置,判断a﹣b、c﹣a正负,然后对绝对值进行化简即可.【解答】解:由图形可知c>0>b>a∴a﹣b<0,c﹣a>0∴|a﹣b|﹣|c﹣a|=b﹣a﹣c+a=b﹣c故选:D.【点评】本题考查的是关于绝对值的化简,利用数轴对绝对值内的代数式判断正负是解决问题的关键.二、填空题(本大题共4个小题每小题3分,共12分)17.【分析】由相反数性质和倒数的定义得出a+b=0,cd=1,再代入原式=2(a+b)﹣5cd计算可得.【解答】解:由题意知a+b=0,cd=1,则原式=2(a+b)﹣5cd=2×0﹣5×1=0﹣5=﹣5,故答案为:﹣5.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则及相反数、倒数的性质.18.【分析】根据同类项是字母相同且相同字母的指数也相同,可得m+1=n,再移项即可得.【解答】解:∵x m+1与x n是同类项,∴m+1=n,则m﹣n=﹣1,故答案为:﹣1.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.19.【分析】先根据直角三角板的性质得出∠AOC+∠DOB=180°,进而可得出∠COD的度数.【解答】解:∵△AOC△BOD是一副直角三角板,∴∠AOC+∠DOB=180°,∴∠AOB+∠COD=∠DOB+∠AOD+∠COD=∠DOB+∠AOC=90°+90°=180°,∵∠AOB=160°,∴∠COD=180°﹣∠AOB=180°﹣160°=20°.故答案为:20°.【点评】本题考查的是角的计算,熟知直角三角板的特点是解答此题的关键.20.【分析】观察图形可知,每剪开一次多出3个正方形,然后写出前4个图形中正方形的个数,再根据此规律写出第n个图形中的正方形的个数的表达式即可.【解答】解:第1个图形有正方形1个,第2个图形有正方形4个,第3个图形有正方形7个,第4个图形有正方形11个,…,第n个图形有正方形(3n﹣2)个.故答案为:(3n﹣2).【点评】本题是对图形变化规律的考查,观察出每剪开一次多出3个正方形是解题的关键.三、解答题(本大题共6个小题共56分解答应写出文字说明、证明过程或演算步骤)21.【分析】(1)利用乘法分配律展开,再计算乘法,最后计算加减可得;(2)先计算乘方,再计算乘法,最后计算加减可得.【解答】解:(1)原式=×(﹣12)﹣×(﹣12)﹣1×(﹣12)=﹣3+4+12=13;(2)原式=﹣4×+(﹣27)×(﹣)=﹣1+8=7.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.22.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【解答】解:(1)3x+7=32﹣2x,移项得:3x+2x=32﹣7,合并得:5x=25,解得:x=5;(2)﹣1=.去分母得:3(2y﹣1)﹣6=2(5y﹣7),去括号得:6y﹣3﹣6=10y﹣14,移项:6y﹣10y=﹣14+6+3,合并得:﹣4y=﹣5,解得:y=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.23.【分析】先去括号,再合并同类项,把a、b的值代入进行计算即可.【解答】解:原式=a+5a﹣3b﹣2a+4b=(1+5﹣2)a﹣(3﹣4)b=4a+b,当a=2,b=﹣3时,原式=4×2﹣3=5.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.24.【分析】首先根据∠AOB=114°,OF是∠AOB的平分线,求出∠AOF的度数,然后根据互余两角之和为90°,求出∠AOE的度数,再根据角的和差关系求出∠BOE的度数.【解答】解:因为∠AOB=114°,OF是∠AOB的平分线,所以∠AOF=∠AOB=×114°=57°,因为∠AOE与∠AOF互余,所以∠AOE+∠AOF=90°所以∠AOE=90°﹣∠AOF=90°﹣57°=33°,所以∠BOE=∠AOE+∠AOB=33°+114°=147°.【点评】本题考查了余角和补角以及角平分线的定义,解答本题的关键是掌握互余两角之和为90°.25.【分析】(1)设第一次购买了x台电风扇,则第二次购买了(x﹣10)台电风扇,根据题意可得,第一次比第二次单价低30元,据此列方程求解;(2)分别求出两次的盈利,然后求和.【解答】解:(1)设第一次购买了x台电风扇,则第二次购买了(x﹣10)台电风扇,由题意得,=150+30,解得:x=60,经检验:x=60是原分式方程的解,且符合题意,则x﹣10=60﹣10=50,答:第一次购买了60台电风扇,则第二次购买了50台电风扇;(2)两次获利:(250﹣150)×60+(250﹣150﹣30)×50=6000+3500=9500(元).答:商场获利9500元.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.26.【分析】(1)由路程=速度×时间,可得BP 的值;(2)由路程=速度×时间,可得AQ 的值;(3)由DQ =点Q 的路程﹣AD 的长度,可得DQ 的值;由QC =CD ﹣DQ ,可求QC 的长; (4)由路程=速度×时间,可得t 的值;(5)由点P 路程+点Q 路程=AD +CD +BC ,可求t 的值.【解答】解:(1)∵动点P 以每秒1个单位的速度从点B 出发沿线段BC 方向运动, ∴BP =1×t =t ,故答案为:t ,(2)∵动点Q 同时以每秒4个单位的速度从点A 出发,∴AQ =4×t =4t ,故答案为:4t ,(3)∵DQ =4t ﹣AD∴DQ =4t ﹣4,∵QC =CD ﹣DQ∴QC =4﹣(4t ﹣4)=8﹣4t故答案为:4t ﹣4,8﹣4t(4)根据题意可得:4t =4+2t =1.5答:当t 等于1.5时,点Q 运动到DC 的中点.(5)根据题意可得:4t +t =4×3t =答:当t 等于时,点P 与点Q 相遇.【点评】本题四边形综合题,考查了正方形的性质,一元一次方程的应用,正确理解题意列出方程是本题的关键.。

2019-2020学年七年级上学期期末考试数学试卷(附解析)

2019-2020学年七年级上学期期末考试数学试卷(附解析)

2019-2020学年七年级上学期期末考试数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.﹣7的倒数是()A.B.7C.D.﹣72.下列说法不正确的是()A.近似数1.8与1.80表示的意义不同B.0.0200精确到万分位C.2.0万精确到万位D.1.0×104精确到千位3.下列各图中,可以是一个正方体的平面展开图的是()A.B.C.D.4.绝对值大于2且小于5的所有的整数的和是()A.7B.﹣7C.0D.55.已知x=0是关于x的方程5x﹣4m=8的解,则m的值是()A.B.﹣C.2D.﹣26.用一副三角板拼成的图形如图所示,其中B、C、D三点在同一条直线上.则图中∠ACE的大小为()A.45°B.60°C.75°D.105°7.如图,已知点C是线段AD的中点,AB=10cm,BD=4cm,则BC的长为()A.5cm B.6cm C.7cm D.8cm8.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元9.如果有4个不同的正整数a、b、c、d满足(2019﹣a)(2019﹣b)(2019﹣c)(2019﹣d)=9,那么a+b+c+d的值为()A.0B.9C.8048D.807610.观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑦中星星的颗数是()A.24B.32C.41D.51二、填空题(每题3分,共24分)11.一天早晨的气温是﹣7℃,中午的气温3℃,则中午的气温比早晨的气温高℃.12.单项式﹣的次数是.13.如图,点A位于点O的方向上.14.一个角的余角是54°38′,则这个角的补角是.15.若方程:(m﹣1)x|m|﹣2=0是一元一次方程,则m的值为.16.长方形的长是3a,它的周长是10a﹣2b,则宽是.17.在学校的一次劳动中,在甲处劳动的有27人,在乙处劳动的有19人,后因劳动任务需要,需要另外调20人来支援,使在甲处的人数是在乙处人数的2倍,问应调往乙处人.18.按下面的程序计算:若输入x=100,则输出结果是501;若输入x=25,则输出结果是631;若开始输入的数x为正整数,最后输出结果为781,则开始输入的数x的所有可能的值为.三、解答题(共66分)19.(10分)计算(1)(2).20.(10分)解方程:(1)2x﹣9=5x+3(2).21.(6分)先化简,再求值:2xy2﹣[6x﹣4(2x﹣1)﹣2xy2]+9,其中(x﹣3)2+|y+|=0 22.(6分)从甲地到乙地,公共汽车原需行驶7个小时,开通高速公路后,车速平均每小时增加了20千米,只需5个小时即可到达,求甲、乙两地的路程.23.(10分)如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.24.(12分)如图①,∠AOB=90°,∠AOC为∠AOB外的一个角,且∠AOC=30°,射线OM 平分∠BOC,ON平分∠AOC.(1)求∠MON的度数;(2)如果(1)中∠AOB=α,∠AOC=β.(α,β为锐角),其它条件不变,求出∠MON的度数;(3)其实线段的计算与角的计算存在着紧密的联系,如图②线段AB=m,延长线段AB到C,使得BC=n,点M,N分别为AC,BC的中点,求MN的长(直接写出结果).25.(12分)某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.【分析】此题根据倒数的含义解答,乘积为1的两个数互为倒数,所以﹣7的倒数为1÷(﹣7).【解答】解:﹣7的倒数为:1÷(﹣7)=﹣.故选:C.【点评】此题考查的知识点是倒数.解答此题的关键是要知道乘积为1的两个数互为倒数,所以﹣7的倒数为1÷(﹣7).2.【分析】分别分析各数的有效数字与精确数位,再作答.一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.精确到了某一位,即应看这个数字最后一位实际在哪一位.【解答】解:根据近似数有效数字的确定方法和意义可知A、B、D正确,而近似数2.0万精确到千位,故C错误.故选:C.【点评】本题考查了有效数字和近似数的确定.精确到哪一位,即对下一位的数字进行四舍五入.从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字;注意后面的单位不算入有效数字.3.【分析】正方体的展开图有“1+4+1”型,“2+3+1”型、“3+3”型三种类型,其中“1”可以左右移动.注意“一”、“7”、“田”、“凹”字型的都不是正方体的展开图.【解答】解:A、属于“田”字型,不是正方体的展开图,故选项错误;B、属于“7”字型,不是正方体的展开图,故选项错误;C、属于“1+4+1”字型,是正方体的展开图,故选项正确;D、属于“凹”字型,不是正方体的展开图,故选项错误.故选:C.【点评】考查了几何体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.4.【分析】绝对值大于2且小于5的整数绝对值有3,4.因为±3的绝对值是3,±4的绝对值是4,又因为互为相反数的两个数的和是0,所以,绝对值大于2而小于5的整数的和是0.【解答】解:因为绝对值大于2而小于5的整数为±3,±4,故其和为﹣3+3+(﹣4)+4=0.故选:C.【点评】考查了有理数的加法和绝对值,注意掌握互为相反数的两个数的绝对值相等,互为相反数的两个数的和是0.5.【分析】已知x=0是方程5x﹣4m=8的解,代入可求出m的值.【解答】解:把x=0代入5x﹣4m=8得,0﹣4m=8,解得:m=﹣2.故选:D.【点评】本题是知道一个字母的值求另一个字母的值,解决此题常用代入的方法.6.【分析】利用平角的定义计算∠ACE的度数.【解答】解:∵B、C、D三点在同一条直线上.∴∠ACE=180°﹣60°﹣45°=75°.故选:C.【点评】本题考查了角的计算:利用互余或互补计算角的度数.7.【分析】先求出AD,然后可得出CD,继而根据BC=BD+CD即可得出答案.【解答】解:∵AB=10cm,BD=4cm,∴AD=AB﹣BD=10﹣4=6(cm),∵点C是AD中点,∴CD=AD=3cm,则BC=CD+BD=7cm,故选:C.【点评】本题考查了两点之间的距离,关键是掌握中点的性质.8.【分析】设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.【解答】解:设该服装标价为x元,由题意,得0.6x﹣200=200×20%,解得:x=400.故选:B.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.9.【分析】根据a、b、c、d是四个不同的正整数可知四个括号内的值分别是:±1,±3,据此可得出结论.【解答】解:∵a、b、c、d是四个不同的正整数,∴四个括号内的值分别是:±1,±3,∴2019+1=2020,2019﹣1=2018,2019+3=2022,2019﹣3=2016,∴a+b+c+d=2020+2018+2022+2016=8076.故选:D.【点评】本题考查的是有理数的混合运算,根据题意得出四个括号中的数是解答此题的关键.10.【分析】设图形n中星星的颗数是a n(n为正整数),列出部分图形中星星的个数,根据数据的变化找出变化规律“+n﹣1”,依此规律即可得出结论.【解答】解:设图形n中星星的颗数是a n(n为正整数),∵a1=2=1+1,a2=6=(1+2)+3,a3=11=(1+2+3)+5,a4=17=(1+2+3+4)+7,∴a n=1+2+…+n+(2n﹣1)=+(2n﹣1)=+n﹣1,∴a7=×72+×7﹣1=41.故选:C.【点评】本题考查了规律型中的图形的变化类,根据图形中数的变化找出变化规律是解题的关键.二、填空题(每题3分,共24分)11.【分析】根据有理数减法的运算方法,用这天中午的气温减去早晨的气温,求出中午的气温比早晨的气温高多少即可.【解答】解:3﹣(﹣7)=10(℃)∴中午的气温比早晨的气温高10℃.故答案为:10.【点评】此题主要考查了有理数的减法,要熟练掌握.12.【分析】直接利用一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:单项式﹣的次数是:3+2+1=6.故答案为:6.【点评】此题主要考查了单项式,正确把握单项式的次数确定方法是解题关键.13.【分析】根据方位角的概念直接解答即可.【解答】解:点A位于点O的北偏西30°方向上.【点评】规律总结:方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.14.【分析】根据余角是两个角的和为90°,这两个角互为余角,两个角的和为180°,这两个角互为补角,可得答案.【解答】解:∵一个角的余角是54°38′∴这个角为:90°﹣54°38′=35°22′,∴这个角的补角为:180°﹣35°22′=144°38′.故答案为:144°38′.【点评】本题考查余角和补角,通过它们的定义来解答即可.15.【分析】根据一元二次方程的定义解答即可.【解答】解:∵(m﹣1)x|m|﹣2=0是一元一次方程,∴,∴m=﹣1;故答案为:﹣1.【点评】本题考查了一元一次方程的概念,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.16.【分析】根据长方形的周长=2(长+宽),表示出宽即可.【解答】解:根据题意得:(10a﹣2b)﹣3a=5a﹣b﹣3a=2a﹣b,故答案为:2a﹣b【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.17.【分析】设调往甲处的人数为x,则调往乙处的人数为(20﹣x),根据甲处的人数是在乙处人数的2倍列方程求解.【解答】解:设应调往甲处x人,依题意得:27+x=2(19+20﹣x),解得:x=17,∴20﹣x=3,答:应调往甲处17人,调往乙处3人.故答案是:3.【点评】考查了一元一次方程的应用.根据题目给出的条件,找出合适的等量关系,列出方程,再求解.18.【分析】根据输出的结果确定出x的所有可能值即可.【解答】解:若5x+1=781,解得:x=156;若5x+1=156,解得:x=31;若5x+1=31,解得:x=6;若5x+1=6,解得:x=1,故答案为:1或6或31或156【点评】此题考查了代数式求值,弄清程序中的运算过程是解本题的关键.三、解答题(共66分)19.【分析】(1)先把除法运算转化为乘法运算,然后利用乘法的分配律进行计算;(2)先算乘方和乘法运算,然后加减运算.【解答】解:(1)原式=(﹣+)×(﹣36)=×(﹣36)﹣×(﹣36)+×(﹣36)=﹣8+9﹣2=1﹣2=﹣1;(2)原式=﹣1+6+2+1=8.【点评】本题考查了有理数的混合运算:先算乘方,再算乘除,然后进行加减运算;有括号先算括号.20.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)方程移项合并得:﹣3x=12,解得:x=﹣4;(2)去分母得:2(x﹣1)﹣3(3﹣x)=6,去括号得:2x﹣2﹣9+3x=6,移项合并得:5x=17,解得:x=3.4.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=2xy2﹣6x+4(2x﹣1)+2xy2+9=2xy2﹣6x+8x﹣4+2xy2+9=4xy2+2x+5,∵(x﹣3)2+|y+|=0,∴x=3,y=﹣,则原式=4×3×(﹣)2+2×3+5=3+6+5=14.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.22.【分析】设甲乙两地的路程是x千米,则公共汽车原来的车速是km/h,开通高速公路后的车速是(+20)km/h,根据两地的路程这个相等关系列方程得(+20)×5=x,借这个方程即可求出甲乙两地的路程.【解答】解:设:甲乙两地的路程是x千米.根据题意列方程得:(+20)×5=x,解得:x=350.答:甲乙两地的路程是350千米.【点评】本题主要考查了列一元一次方程解应用题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.【分析】先根据角平分线定义求出∠COB的度数,再求出∠BOD的度数,求出∠BOE的度数,即可得出答案.【解答】解:∵∠AOB=90°,OC平分∠AOB,∴∠COB=∠AOB=45°,∵∠COD=90°,∴∠BOD=45°,∵∠BOD=3∠DOE,∴∠DOE=15°,∴∠BOE=30°,∴∠COE=∠COB+∠BOE=45°+30°=75°.【点评】本题考查了角平分线定义和角的有关计算,能求出∠DOE的度数是解此题的关键.24.【分析】(1)根据角的平分线的特点,可以得知所分两角相等,等于原角的一半,根据角与角之间的数量关系即可得出结论;(2)根据角的平分线的特点,可以得知所分两角相等,等于原角的一半,根据角与角之间的数量关系即可得出结论;(3)根据(2)的原理,可直接得出结论.【解答】解:(1)∵∠BOC=∠AOB+∠AOC=90°+30°=120°,射线OM平分∠BOC,∴∠COM=∠BOC=×120°=60°,∵ON平分∠AOC,∴∠CON=∠AOC=×30°=15°,∴∠MON=∠COM﹣∠CON=60°﹣15°=45°.(2)∵∠BOC=∠AOB+∠AOC=α+β,∵射线OM平分∠BOC,∴∠COM=∠BOC=(α+β),∵ON平分∠AOC,∴∠CON=∠AOC=β,∴∠MON=∠COM﹣∠CON=(α+β)﹣β=α.(3)MN=m.【点评】本题考查的是角的计算,解题的关键是明白角平分线的特点,根据此特点结合角与角间的数量关系即可得出结论.25.【分析】(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据单价×数量=总价,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单件利润×销售数量,列式计算即可求出结论;(3)设第二次乙种商品是按原价打y折销售,根据总利润=单件利润×销售数量,即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据题意得:22x+30(x+15)=6000,解得:x=150,∴x+15=90.答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29﹣22)×150+(40﹣30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.(3)设第二次乙种商品是按原价打y折销售,根据题意得:(29﹣22)×150+(40×﹣30)×90×3=1950+180,解得:y=8.5.答:第二次乙商品是按原价打8.5折销售.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据总利润=单件利润×销售数量列式计算;(3)找准等量关系,正确列出一元一次方程.。

2019-2020学年七年级(上)期末数学试卷(含答案)

2019-2020学年七年级(上)期末数学试卷(含答案)

2019-2020学年七年级(上)期末数学试卷(含答案)一、选择题(本大题共10小题,共30.0分)1.−6的绝对值是()A. −6B. 6C. ±6D. 16【答案】B【解析】解:根据负数的绝对值等于它的相反数,得|−6|=6.故选:B.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.本题考查了绝对值的意义,任何一个数的绝对值一定是非负数.2.下列计算正确的是()A. 2x+3y=5xyB. 2a2+2a3=2a5C. 4a2−3a2=1D. −2ba2+a2b=−a2b 【答案】D【解析】解:A、不是同类项不能合并,故A错误;B、不是同类项不能合并,故B错误;C、系数相加字母部分不变,故C错误;D、系数相加字母部分不变,故D正确;故选:D.根据合并同类项的法则,系数相加字母部分不变,可得答案.本题考查了合并同类项,系数相加字母部分不变.3.在数−2,π,0,2.6,+3,−85中,属于整数的个数为()A. 4B. 3C. 2D. 1【答案】B【解析】解:在数−2,π,0,2.6,+3,−85中,整数有−2,0,+3,属于整数的个数,3.故选:B.整数包括正整数、负整数和0,依此即可求解.本题考查了实数的分类.实数分为有理数和无理数;整数和分数统称有理数;整数包括正整数、负整数和0.4.2018年1月的无锡市政府工作报告中指出:2017年,预计无锡全市实现地区生产总值10500亿元.将数值10500用科学记数法表示为()A. 0.105×105B. 10.5×103C. 1.05×104D. 1.05×105【答案】C【解析】解:将数值10500用科学记数法表示为1.05×104,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.已知x=2是方程3x−a=0的解,那么a的值是()A. 6B. −6C. 5D. −5【答案】A【解析】解:将x=2代入3x−a=0,∴6−a=0,∴a=6,故选:A.根据一元一次方程的解法即可求出答案.本题考查一元一次方程的解法,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.6.下列各式中,去括号错误的是()A. x−(3y−1)=x−3y+1B. m+(−n+p)=m−n+pC. 2(−3a+b)=−6a+2bD. −5(2x+3y)=−10x+15y【答案】D【解析】解:A、x−(3y−1)=x−3y+1,故原题正确;B、m+(−n+p)=m−n+p,故原题正确;C、2(−3a+b)=−6a+2b,故原题正确;D、−5(2x+3y)=−10x+15y,故原题错误;故选:D.根据去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反进行分析即可.此题主要考查了去括号,关键是掌握去括号法则.7.已知∠α是锐角,∠α与∠β互补,∠β与∠γ互余,则∠α与∠γ的关系式为()A. ∠α−∠γ=90∘B. ∠α+∠γ=90∘C. ∠α+∠γ=180∘D. ∠α=∠γ【答案】A【解析】解:∵∠α与∠β互补,∠β与∠γ互余,∴∠α+∠β=180∘,∠β+∠γ=90∘.∴∠α−∠γ=90∘.故选:A.根据补角和余角的定义关系式,然后消去∠β即可.本题主要考查的是余角和补角的定义,根据余角和补角的定义列出关系式,然后再消去∠β是解题的关键.8.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A. 2B. 3C. 4D. 5【答案】C【解析】解:若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,即一共添加4个小正方体,故选:C.若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,据此可得.本题考查简单组合体的三视图的画法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.9. 如图,点P 是直线a 外的一点,点A 、B 、C 在直线a 上,且PB ⊥a ,垂足是B ,PA ⊥PC ,则下列不正确的语句是( ) A. 线段PB 的长是点P 到直线a 的距离 B. PA 、PB 、PC 三条线段中,PB 最短C. 线段AC 的长是点A 到直线PC 的距离D. 线段PC 的长是点C 到直线PA 的距离 【答案】C【解析】解:A 、根据点到直线的距离的定义:即点到这一直线的垂线段的长度.故此选项正确; B 、根据垂线段最短可知此选项正确;C 、线段AP 的长是点A 到直线PC 的距离,故选项错误;D 、根据点到直线的距离即点到这一直线的垂线段的长度.故此选项正确. 故选:C .利用点到直线的距离的定义、垂线段最短分析.本题主要考查了点到直线的距离的定义,及垂线段最短的性质.10. 在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号“∑”.如∑k n k=1=1+2+3+⋯+(n −1)+n ,∑(n k=3x +k)=(x +3)+(x +4)+⋯+(x +n);若对于任意x 都有∑[n k=2x 2+k(x −a)]=5x 2+bx +80,则a ,b 的值分别是( ) A. 4,−20 B. 4,20 C. −4,−20 D. −4,20 【答案】D【解析】解:根据题意知x 2+2(x −a)+x 2+3(x −a)+⋯+x 2+n(x −a)=5x 2+bx +80, 则n =5,所以x 2+2(x −a)+x 2+3(x −a)+x 2+4(x −a)+x 2+5(x −a)+x 2+6(x −a)=5x 2+bx +80, 即5x 2+20x −20a =5x 2+bx +80, 则b =20,−20a =80,即a =−4, 故选:D .由新定义知x 2+2(x −a)+x 2+3(x −a)+⋯+x 2+n(x −a)=5x 2+bx +80,整理可得5x 2+20x −20a =5x 2+bx +80,据此解答即可.本题主要考查数字的变化类,解题的关键是理解新定义,并据此列出关于x 的整式.二、填空题(本大题共8小题,共16.0分) 11. −3的相反数是______. 【答案】3【解析】解:−(−3)=3, 故−3的相反数是3. 故答案为:3.一个数的相反数就是在这个数前面添上“−”号.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“−”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.12. 单项式−2x 2y 5的次数是______.【答案】3【解析】解:单项式−2x 2y 5的次数是3.故答案为:3.直接利用单项式次数确定方法分析得出答案.此题主要考查了单项式,正确把握单项式次数确定方法是解题关键.13. 如图,已知∠AOB =64∘36′,OC 平分∠AOB ,则∠AOC =______ ∘.【答案】32.3【解析】解:∵∠AOB =64∘36′,OC 平分∠AOB , ∴∠AOC =64∘36′÷2=32∘18′=32.3∘; 故答案为:32.3.根据角平分线的定义求出∠AOC 的度数,再根据度分秒之间的换算即可得出答案.此题考查了角平分线的定义,即从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线;本题也考查了度分秒的换算.14. 已知线段AB =4,延长线段AB 到C ,使AC =2AB ,点D 是BC 的中点,则AD =______. 【答案】6【解析】解:如图,∵AB =4,AC =2AB , ∴BC =AB =4, ∵点D 是BC 的中点, ∴BD =12BC =2,∴AD =AB +BD =4+2=6. 故答案为:6.先求出AC 的长,根据AC =2AB ,再求出BC ,利用线段的和即可解答. 本题考查了两点间的距离,利用了线段的和差,线段中点的性质.15. 已知x −3y =−3,则5−x +3y 的值是______. 【答案】8【解析】解:∵x −3y =−3, ∴−x +3y =3,∴5−x +3y =5+3=8. 故填:8.由已知x −3y =−3,则−x +3y =3,代入所求式子中即得到.本题考查了代数式求值,根据已知求得代数的部分值,代入到所求代数式求值.16. 定义a ∗b =a b −1,则(0∗2)∗2018=______. 【答案】0【解析】解:根据题中的新定义得:原式=−1∗2018=1−1=0, 故答案为:0原式利用已知的新定义计算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图,将一张长方形的纸片沿折痕EF翻折,使点C、D分别落在点M、N的位置,且∠AEN=13∠DEN,则∠AEF的度数为______ ∘.【答案】67.5【解析】解:∵∠AEN=13∠DEN,∠AEN+∠NED=180∘,∴∠AEN=45∘,∠DEN=135∘,由折叠可得,∠DEF=∠NEF,∴∠DEF=12(360∘−135∘)=112.5∘,∴∠AEF=180∘−∠DEF=67.5∘,故答案为:67.5依据∠AEN=13∠DEN,∠AEN+∠NED=180∘,即可得到∠AEN=45∘,∠DEN=135∘,由折叠可得,∠DEF=∠NEF,进而得出∠DEF=12(360∘−135∘)=112.5∘,最后得到∠AEF的度数.本题主要考查了平行线的性质以及折叠问题,解题时注意:在折叠中对应角相等.18.如图1所示∠AOB的纸片,OC平分∠AOB,如图2把∠AOB沿OC对折成∠COB(OA与OB重合),从O点引一条射线OE,使∠BOE=12∠EOC,再沿OE把角剪开,若剪开后得到的3个角中最大的一个角为76∘,则∠AOB=______ ∘.【答案】114【解析】解:∵OC是∠AOB的平分线则∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC 又∵剪开后得到的3个角中最大的一个角为76∘,∴2∠COE=76∘∴∠COE=38∘又∵∠BOE=12∠EOC,∴∠BOE=12×38∘=19∘∴∠BOC=∠BOE+∠EOC=19∘+38∘=57∘则∠AOB=2∠BOC=2×57∘=114∘故答案为:114∘①∠AOB是∠AOC和∠BOC的和,记作:∠AOB=∠AOC+∠BOC.∠AOC是∠AOB和∠BOC的差,记作:∠AOC=∠AOB−∠BOC.②若OC是∠AOB的平分线则∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.本题主要考查了角度平分线将角平分后角之间的倍数关系.三、计算题(本大题共3小题,共22.0分)19.计算:(1)4−|−6|−3×(−13);(2)−12018−16×[2−(−3)2].【答案】解:(1)原式=4−6+1=−1;(2)原式=−1+76=16.【解析】(1)原式先计算乘法运算,再计算加减运算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.已知A=−x2+x+1,B=2x2−x.(1)当x=−2时,求A+2B的值;(2)若2A与B互为相反数,求x的值.【答案】解:(1)∵A=−x2+x+1,B=2x2−x,∴A+2B=−x2+x+1+4x2−2x=3x2−x+1,当x=−2时,原式=3×(−2)2−(−2)+1=15;(2)2A+B=0,即:−2x2+2x+2+2x2−x=0,解得:x=−2.【解析】(1)把A与B代入A+2B中,去括号合并得到最简结果,把x的值代入计算即可求出值;(2)利用相反数性质列出方程,求出方程的解即可得到x的值.此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.21.如图,O为直线AB上一点,OC⊥OD.已知∠AOC的度数比∠BOD的度数的2倍多6∘.(1)求∠BOD的度数.(2)若OE平分∠BOD,OF平分∠BOC,求∠EOF的度数.【答案】解:(1)设∠BOD=x,则∠AOC=2x+6,∵OC⊥OD∴∠COD=90∘.∵∠AOC+∠COD+∠BOD=180∘∴2x+6+90+x=180∘,解得x=28,即:∠BOD=28∘.(2)∵OE平分∠BOD∴∠BOE=12∠BOD=14∘,∵OF平分∠BOC,∴∠BOF=12∠BOC=12(90+28)=59∘,∴∠EOF=∠BOF−∠BOE=59∘−14∘=45∘.【解析】(1)首先设∠BOD=x∘,由∠AOC的度数比∠BOD的度数的3倍多10度,且∠COD=90∘,可得方程:x+(3x+10)+90=180,解此方程即可求得答案;(2)由OE、OF分别平分∠BOD、∠BOC,可得∠BOE=12∠BOD,∠BOF=12∠BOC=12(∠BOD+∠COD),又由∠EOF=∠BOF−∠BOE=12∠COD,即可求得答案.此题考查了角的计算与角平分线的定义.此题难度适中,注意掌握数形结合思想与方程思想的应用.四、解答题(本大题共5小题,共42.0分)22.解方程:(1)5x−2=2x+1;(2)2x+13−5x−16=1.【答案】解:(1)5x−2=2x+1移项及合并同类项,得3x=3系数化为1,得x=1;(2)2x+13−5x−16=1去分母,得4(2x+1)−2(5x−1)=12去括号,得8x+4−10x+2=12移项及合并同类项,得−2x=6系数化为1,得x=−3.【解析】(1)根据解方程的方法可以解答此方程;(2)根据解方程的方法可以解答此方程.本题考查解一元一次方程,解答本题的关键是明确解方程的方法.23.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点.(1)按下列要求画图:过点C画AB的平行线CD;过点C画AB的垂线CE,并在图中标出格点D和E.(2)根据所画的图形猜测两直线CD、CE的位置关系是______.(3)求三角形ABC的面积.【答案】垂直【解析】解:(1)如图所示:DC,CE即为所求;(2)两直线CD、CE的位置关系是:垂直;故答案为:垂直;(3)△ABC的面积为:3×3−12×2×3−12×1×2−12×1×3=3.5.(1)直接利用网格进而得出符合题意的答案;(2)直接利用网格进而得出直线CD、CE的位置关系;(3)利用△ABC所在矩形面积进而减去周围三角形面积进而得出答案.此题主要考查了应用设计与作图以及三角形面积求法,正确借助网格得出符合题意图形是解题关键.24.如图,B、C两点把线段AD分成2:5:3三部分(即:AB:BC:CD=2:5:3),M为AD的中点.(1)判断线段AB与CM的大小关系,说明理由.(2)若CM=6cm,求AD的长.【答案】解:(1)AB=CM.理由:设AB=2x,BC=5x,CD=3x,则AD=10x,∵M为AD的中点,∴AM=DM=12AD=5x,∴AM=BC,即:AB+BM=BM+CM,∴AB=CM;(2)∵CM=6cm,即:DM−CD=6cm,∴5x−3x=6,解得x=3,∴AD=10x=30cm.【解析】(1)设AB=2x,BC=5x,CD=3x,则AD=10x,根据M为AD的中点,可得AM=DM=12AD=5x,得到AM=BC,即:AB+BM=BM+CM,根据等式的性质即可求解;(2)由CM=6cm,可得DM−CD=6cm,得到关于x的方程,解方程即可求解.本题考查了两点间的距离,利用线段的和差,线段中点的性质是解题关键.25.某水果零售商店分两批次从批发市场共购进“红富士”苹果100箱,已知第一、二次进货价分别为每箱50元、40元,且第二次比第一次多付款400元.(1)求第一、二次分别购进“红富士”苹果各多少箱?(2)商店对这100箱“红富士”苹果先按每箱60元销售了75箱后出现滞销,于是决定其余的每箱靠打折销售完.要使商店销售完全部“红富士”苹果所获得的利润不低于1300元,问其余的每箱至少应打几折销售?(注:按整箱出售,利润=销售总收人−进货总成本)【答案】解:(1)设第一次购进“红富士”苹果x箱,则第二次购进“红富士”苹果(100−x)箱,根据题意得:40(100−x)−50x=400,解得:x=40,∴100−x=60.答:第一次购进“红富士”苹果40箱,第二次购进“红富士”苹果60箱.(2)设其余的每箱应打y折销售,根据题意得:60×75+60×y10×25−40×60−50×40≥1300,解得:y≥8.答:其余的每箱至少应打8折销售.【解析】(1)设第一次购进“红富士”苹果x箱,则第二次购进“红富士”苹果(100−x)箱,根据总价=单价×数量结合第二次比第一次多付款400元,即可得出关于x的一元一次方程,解之即可得出结论;(2)设其余的每箱应打y折销售,根据利润=销售总收人−进货总成本结合所获得的利润不低于1300元,即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.26. 有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,A 、B 两点之间的距离是90米.甲、乙两机器人分别从A 、B 两点同时同向出发到终点C ,乙机器人始终以50米/分的速度行走,乙行走9分钟到达C 点.设两机器人出发时间为t(分钟),当t =3分钟时,甲追上乙.前4分钟甲机器人的速度保持不变,在4≤t ≤6分钟时,甲的速度变为另一数值,且甲、乙两机器人之间的距离保持不变. 请解答下面问题:(1)B 、C 两点之间的距离是______米.在4≤t ≤6分钟时,甲机器人的速度为______米/分. (2)求甲机器人前3分钟的速度为多少米/分?(3)求两机器人前6分钟内出发多长时间相距28米?(4)若6分钟后,甲机器人的速度又恢复为原来出发时的速度,直接写出当t >6时,甲、乙两机器人之间的距离S.(用含t 的代数式表示) 【答案】450;50【解析】解:(1)∵乙机器人从B 点出发,以50米/分的速度行走9分钟到达C 点, ∴B 、C 两点之间的距离是50×9=450(米).∵在4≤t ≤6分钟时,甲、乙两机器人之间的距离保持不变, ∴在4≤t ≤6分钟时,甲机器人的速度为50米/分. (2)设甲机器人前3分钟的速度为x 米/分, 则3x −50×3=90, 解得x =80.答:甲机器人前3分钟的速度为80米/分.(3)当t =4时,两人相距80−50=30米,且4≤t ≤6时,两人相距总是30米. 分三种情况说明:①甲在AB 间时,90−80t +50t =28,解得t =3115>98,此情形不存在. ②甲乙均在B 右侧,且甲在乙后时,90+50t −80t =28,解得t =3115. ③甲乙均在B 右侧,且乙在甲后时,80t −90−50t =28,解得t =5915. 答:两机器人前6分钟内出发3115s 或5915s 相距28米. (4)S ={450−50t(7.5≤t ≤8)30t−150(6<t<7.5).故答案为:450,50;(1)根据路程=速度×时间求出B 、C 两点之间的距离;根据在4≤t ≤6分钟时,甲、乙两机器人之间的距离保持不变,可得在4≤t ≤6分钟时,甲机器人的速度=乙机器人的速度=50米/分;(2)设甲机器人前3分钟的速度为x 米/分,根据当t =3分钟时,甲追上乙得出方程3x −50×3=90,解方程即可;(3)分三种情况进行讨论:①甲在AB 间时,②甲乙均在B 右侧,且甲在乙后时,③甲乙均在B 右侧,且乙在甲后时列出方程,解方程即可;(4)分两种情况进行讨论:①6<t <7.5,②7.5≤t ≤8,列出算式计算即可求解.本题考查了数轴、一元一次方程的运用,解题关键是理解题意,找到等量关系列出方程.。

2019-2020学年七年级上学期期末考试数学试卷含解析版

2019-2020学年七年级上学期期末考试数学试卷含解析版

2019-2020学年七年级上学期期末考试数学试卷一、选择題(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”如果气温升高3℃时气温变化记作+3℃,那么气温下降3℃时气温变化记作( )A .﹣6℃B .﹣3℃C .0℃D .+3℃2.在﹣6,﹣5.01,﹣5,这四个数中,最大的数是( )A .﹣6B .﹣5.01C .﹣5D . 3.|﹣2|的倒数是( )A .2B .﹣2C .D .4.下列各式中,次数为5的单项式是( )A .5abB .a 5bC .a 5+b 5D .6a 2b 35.多项式﹣2x 2+2x +3中的二次项系数是( )A .﹣1B .2C .﹣2D .36.三个立体图形的展开图如图①②③所示,则相应的立体图形是( )A .①圆柱,②圆锥,③三棱柱B .①圆柱,②球,③三棱柱C .①圆柱,②圆锥,③四棱柱D .①圆柱,②球,③四棱柱 7.在数轴上表示有理数a ,﹣a ,﹣b ﹣1的点如图所示,则( )A .﹣b <﹣aB .|b +1|<|a |C .|a |>|b |D .b ﹣1<a8.已知等式3a =b +2c ,那么下列等式中不一定成立的是( )A .3a ﹣b =2cB .4a =a +b +2cC .a =b +cD .3=+9.某商店以每件a 元的价格卖出两件衣服,其中一件盈利25%,另一件亏损20%,那么商店卖出这两件衣服总的情况是()A.盈利0.05a元B.亏损0.05a元C.盈利0.15a元D.亏损0.15a元10.若关于x的方程有无数解,则3m+n的值为()A.﹣1B.1C.2D.以上答案都不对二、填空题(本大题共6小题,每小题3分,满分18分)11.﹣2019的相反数是.12.目前我国年可利用的淡水资源总量约为38050亿立方米,是世界上严重缺水的国家之一.38050用科学记数法表示为.13.若x与3的积等于x与﹣16的和,则x=.14.若﹣x m y4与x3y n是同类项,则(m﹣n)9=.15.如图所示的运算程序中,若开始输入的x值为100,我们发现第1次输出的结果为50,第2次输出的结果为25,…,则第2019次输出的结果为.16.如图,第n个图形是由正n+2边形“扩展”而来(n=1,2,3,4…),第n个图形中共有个顶点(结果用含n的式子表示).三、解答題(本大题共8小题,满分72分,解答须写出文字说明、推理过程)17.计算:(1)(﹣7)+(﹣5)﹣(﹣13)﹣(+10)(2)﹣(﹣1)10×2+(﹣2)3÷418.先化简,再求值:,其中x=﹣2,y=﹣319.解下列方程:(1)2(x+3)=5(x﹣3)(2)20.有理数a,b,c在数轴上的位置如图所示请化简:﹣|a|﹣|b+2|+2|c|﹣|a+b|+|c﹣a|.21.我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x的一元一次方程3x=m是“和解方程”,求m的值;(2)已知关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.22.甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9折的新年优惠活动.甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为30元,乙平均每本书的价格为15元,优惠后甲乙两人的书费共283.5元(1)问甲乙各购书多少本?(2)该书店凭会员卡当日可以享受全场7.5折优惠,办理一张会员卡需交20元工本费.如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?23.如图1,已知∠AOB=126°,∠COD=54°,OM在∠AOC内,ON在∠BOD内,∠AOM=∠AOC,∠BON=∠BOD.(1)∠COD从图1中的位置绕点O逆时针旋转到OC与OB重合时,如图2,求∠MON的度数;(2)∠COD从图2中的位置绕点O逆时针旋转n°(0<n<126且n≠54),求∠MON的度数.24.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣2|+|c﹣3|=0.(1)在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴正方向运动经过t秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.参考答案与试题解析一、选择題(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”如果气温升高3℃时气温变化记作+3℃,那么气温下降3℃时气温变化记作()A.﹣6℃B.﹣3℃C.0℃D.+3℃【分析】根据负数的意义,可得气温上升记为“+”,则气温下降记为“﹣”,据此解答即可.【解答】解:因为气温上升3℃,记作+3℃,所以气温下降3℃,记作﹣3℃.故选:B.【点评】此题主要考查了负数的意义及其应用,要熟练掌握,解答此题的关键是要明确:气温上升记为“+”,则气温下降记为“﹣”.2.在﹣6,﹣5.01,﹣5,这四个数中,最大的数是()A.﹣6B.﹣5.01C.﹣5D.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣6<﹣5.01<﹣5<﹣,∴这四个数中,最大的数是﹣.故选:D.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.3.|﹣2|的倒数是()A.2B.﹣2C.D.【分析】根据绝对值和倒数的定义作答.【解答】解:∵|﹣2|=2,2的倒数是,∴|﹣2|的倒数是.故选:C.【点评】一个负数的绝对值是它的相反数.若两个数的乘积是1,我们就称这两个数互为倒数.4.下列各式中,次数为5的单项式是()A.5ab B.a5b C.a5+b5D.6a2b3【分析】直接利用单项式以及多项式次数确定方法分别分析得出答案.【解答】解:A、5ab是次数为2的单项式,故此选项错误;B、a5b是次数为6的单项式,故此选项错误;C、a5+b5是次数为5的多项式,故此选项错误;D、6a2b3是次数为5的单项式,故此选项正确.故选:D.【点评】此题主要考查了单项式以及多项式次数,正确把握单项式次数确定方法是解题关键.5.多项式﹣2x2+2x+3中的二次项系数是()A.﹣1B.2C.﹣2D.3【分析】根据多项式的概念即可求出答案.【解答】解:二次项系数为﹣2,故选:C.【点评】本题考查多项式的概念,解题的关键熟练运用多项式的概念,本题属于基础题型.6.三个立体图形的展开图如图①②③所示,则相应的立体图形是()A.①圆柱,②圆锥,③三棱柱B.①圆柱,②球,③三棱柱C.①圆柱,②圆锥,③四棱柱D.①圆柱,②球,③四棱柱【分析】根据圆柱、圆锥、三棱柱表面展开图的特点解题.【解答】解:观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是圆柱、圆锥、三棱柱.故选:A.【点评】本题考查圆锥、三棱柱、圆柱表面展开图,记住这些立体图形的表面展开图是解题的关键.7.在数轴上表示有理数a,﹣a,﹣b﹣1的点如图所示,则()A.﹣b<﹣a B.|b+1|<|a|C.|a|>|b|D.b﹣1<a【分析】因为a与﹣a互为相反数,所以根据图示知,a<0<﹣a<﹣b﹣1,由此对选项进行一一分析.【解答】解:∵a与﹣a互为相反数,∴根据图示知,a<0<﹣a<﹣b﹣1,∴|﹣a|=|a|<|﹣b﹣1|=|b+1|,则|b+1|>|a|,故B选项错误;∴﹣b>﹣a,故A选项错误;∴|a|>|b|,故C选项错误;∴b﹣1<a,故D选项正确.故选:D.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.8.已知等式3a=b+2c,那么下列等式中不一定成立的是()A.3a﹣b=2c B.4a=a+b+2c C.a=b+c D.3=+【分析】根据等式的基本性质逐一判断即可得.【解答】解:A、原等式两边都减去b即可得3a﹣b=2c,此选项正确;B、原等式两边都加上a即可得4a=a+b+2c,此选项正确;C、原等式两边都除以3即可得a=b+c,此选项正确;D、在a≠0的前提下,两边都除以a可得3=+,故此选项不一定成立;故选:D.【点评】本题主要考查等式的性质,解题的关键是掌握等式两边加同一个数(或式子)结果仍得等式、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.9.某商店以每件a元的价格卖出两件衣服,其中一件盈利25%,另一件亏损20%,那么商店卖出这两件衣服总的情况是()A.盈利0.05a元B.亏损0.05a元C.盈利0.15a元D.亏损0.15a元【分析】设盈利的衣服的进价为x元/件,亏损的衣服的进价为y元/件,根据售价﹣进价=利润,可得出关于x(y)的一元一次方程,解之即可得出x(y)的值,再利用总利润=两件衣服的售价﹣两件衣服的进价,即可得出结论.【解答】解:设盈利的衣服的进价为x元/件,亏损的衣服的进价为y元/件,依题意,得:a﹣x=25%x,a﹣y=﹣20%y,解得:x=0.8a,y=1.25a,∴2a﹣x﹣y=﹣0.05a,∴商店卖出这两件衣服总的情况是亏损0.05a元.故选:B.【点评】本题考查了一元一次方程的应用以及列代数式,找准等量关系,正确列出一元一次方程是解题的关键.10.若关于x的方程有无数解,则3m+n的值为()A.﹣1B.1C.2D.以上答案都不对【分析】原方程经过移项,合并同类项,根据“该方程有无数解”,得到关于m和关于n的一元一次方程,解之,代入3m+n,计算求值即可得到答案.【解答】解:mx+=﹣x,移项得:mx+x=﹣,合并同类项得:(m+1)x=,∵该方程有无数解,∴,解得:,把m=﹣1,n=2代入3m+n得:原式=﹣3+2=﹣1,故选:A.【点评】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.二、填空题(本大题共6小题,每小题3分,满分18分)11.﹣2019的相反数是2019.【分析】直接利用相反数的定义进而得出答案.【解答】解:﹣2019的相反数是:2019.故答案为:2019.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.12.目前我国年可利用的淡水资源总量约为38050亿立方米,是世界上严重缺水的国家之一.38050用科学记数法表示为 3.805×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:38050=3.805×104.故答案为:3.805×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.若x与3的积等于x与﹣16的和,则x=﹣8.【分析】由题意列出方程进而解方程得出答案.【解答】解:由题意可得:3x=x﹣16,解得:x=﹣8.故答案为:﹣8.【点评】此题主要考查了解一元一次方程,正确掌握解题方法是解题关键.14.若﹣x m y4与x3y n是同类项,则(m﹣n)9=﹣1.【分析】首先根据同类项定义可得m=3,n=4,再代入(m﹣n)9进行计算即可.【解答】解:由题意得:m=3,n=4,则(m﹣n)9=﹣1,故答案为:﹣1.【点评】此题主要考查了同类项,关键是掌握所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.15.如图所示的运算程序中,若开始输入的x值为100,我们发现第1次输出的结果为50,第2次输出的结果为25,…,则第2019次输出的结果为2.【分析】根据设计的程序进行计算,找到循环的规律,根据规律推导计算.【解答】解:由设计的程序,知依次输出的结果是50,25,32,16,8,4,2,1,8,4,2,1…,发现从8开始循环.则2019﹣4=2015,2015÷4=503…3,故第2019次输出的结果是2.故答案为:2【点评】此题主要考查了数字的变化规律,正确发现循环的规律,根据循环的规律进行推广.该题中除前4次不循环外,后边是4个一循环.16.如图,第n个图形是由正n+2边形“扩展”而来(n=1,2,3,4…),第n个图形中共有(n+2)(n+3)个顶点(结果用含n的式子表示).【分析】由已知图形得出顶点的个数是序数分别与2、3和的乘积,据此可得.【解答】解:由图形知,当n=1时,顶点的个数为12=3×4;当n=2时,顶点的个数20=4×5;当n=3时,顶点的个数30=5×6;当n=4时,顶点的个数42=6×7;……所以第n个图形中顶点的个数为(n+2)(n+3)(个),故答案为:(n+2)(n+3).【点评】本题主要考查图形的变化规律,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.三、解答題(本大题共8小题,满分72分,解答须写出文字说明、推理过程)17.计算:(1)(﹣7)+(﹣5)﹣(﹣13)﹣(+10)(2)﹣(﹣1)10×2+(﹣2)3÷4【分析】(1)先化简,再计算加减法即可求解;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)(﹣7)+(﹣5)﹣(﹣13)﹣(+10)=﹣7﹣5+13﹣10=﹣22+13=﹣9;(2)﹣(﹣1)10×2+(﹣2)3÷4=﹣1×2+(﹣8)÷4=﹣2﹣2=﹣4.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.先化简,再求值:,其中x=﹣2,y=﹣3【分析】先去掉括号,然后合并同类项,再把x、y的值代入进行计算即可得解.【解答】解:原式==﹣3x+y2,把x=﹣2,y=﹣3代入﹣3x+y2=﹣3×(﹣2)+(﹣3)2=6+9=15.【点评】本题考查了整式加减,先化简然后再代入数据进行求值更加简便,整式的加减实质就是去括号,合并同类项的运算.19.解下列方程:(1)2(x+3)=5(x﹣3)(2)【分析】(1)直接去括号进而合并同类项解方程即可;(2)直接去分母进而移项合并同类项解方程即可.【解答】解:(1)2(x+3)=5(x﹣3)2x+6=5x﹣15,则3x=21,解得:x=7;(2)45﹣5(2x﹣1)=3(4﹣3x)﹣15x,整理得:14x=38,解得:x=.【点评】此题主要考查了解一元一次方程,正确掌握解题方法是解题关键.20.有理数a,b,c在数轴上的位置如图所示请化简:﹣|a|﹣|b+2|+2|c|﹣|a+b|+|c﹣a|.【分析】根据数轴上点的位置,判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】根据题意得:a=﹣2.5,b=﹣0.5,c=1.5,则b+2>0,a+b<0,c﹣a<0,则化简得:a﹣(b+2)+2c+(a+b)﹣(c﹣a)=3a+c代入数值a=﹣2.5,b=﹣0.5,c=1.5,原式=﹣6.【点评】本题考查了合并同类项,利用绝对值的性质化简绝对值,利用合并同类项,代数数值得出答案.21.我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x的一元一次方程3x=m是“和解方程”,求m的值;(2)已知关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.【分析】(1)根据和解方程的定义即可得出关于m的一元一次方程,解之即可得出结论;(2)根据和解方程的定义即可得出关于m、n的二元二次方程组,解之即可得出m、n的值.【解答】解:(1)∵方程3x=m是和解方程,∴=m+3,解得:m=﹣.(2)∵关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,∴﹣2n=mn+n,且mn+n﹣2=n,解得m=﹣3,n=﹣.【点评】本题考查了一元一次方程的解、解一元一次方程以及二元二次方程组,解题的关键是:根据“和解方程“的定义列出关于m的一元一次方程;根据和解方程的定义列出关于m、n的二元二次方程组.22.甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9折的新年优惠活动.甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为30元,乙平均每本书的价格为15元,优惠后甲乙两人的书费共283.5元(1)问甲乙各购书多少本?(2)该书店凭会员卡当日可以享受全场7.5折优惠,办理一张会员卡需交20元工本费.如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?【分析】(1)设甲购书x本,则乙购书为(15﹣x)本,再根据总价格列出方程即可;(2)先计算7.5折后的价格,加上办卡的费用,与原来的价格差即为节省的钱数.【解答】解:(1)甲购书x本,则乙购书为(15﹣x)本,由题意得30x×0.9+15(15﹣x)×0.9=283.5解得x=6则15﹣x=9答:甲购书6本,乙购书9本.(2)购书7.5折的应付款表示为283.5÷0.9×0.75=236.25办卡节省的费用为283.5﹣236.25﹣20=22.25答:办卡购书比不办卡购书共节省22.25元.【点评】本题考查的是一元一次方程应用中的打折销售问题,明确等量关系,并正确列出方程是解题的关键.23.如图1,已知∠AOB=126°,∠COD=54°,OM在∠AOC内,ON在∠BOD内,∠AOM=∠AOC,∠BON=∠BOD.(1)∠COD从图1中的位置绕点O逆时针旋转到OC与OB重合时,如图2,求∠MON的度数;(2)∠COD从图2中的位置绕点O逆时针旋转n°(0<n<126且n≠54),求∠MON的度数.【分析】(1)根据∠MON=∠BOM+∠BON计算即可;(2)分两种情形分别计算即可.【解答】解:(1)由题意;∠MON=∠AOB+∠COD=86°+28°=114°;(2)①当0<n<54°时,如图1中,∠AOC=126°﹣n°,∠BOD=54°﹣n°,∴∠MON=∠MOC+∠COB+∠BON=(126°﹣n°)+n°+(54°﹣n°)=114°,②当60°<n<120°时,如图2中,∠AOC=126°﹣n°,∠COD=54°,∠BOD=n°﹣54°∴∠MON=∠MOC+∠COD+∠DON=(126°﹣n°)+54°+(n°﹣54°)=114°.综上所述,∠MON=114°【点评】本题考查角的和差定义,解题的关键是学会用分类讨论的思想思考问题,学会利用参数解决问题.24.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣2|+|c﹣3|=0.(1)在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴正方向运动经过t秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.【分析】由绝对值的非负性可求出a,b,c的值.(1)设点P对应的数为x,分x<﹣5,﹣5≤x<2,2≤x<3及x≥3四种情况考虑,由PA+PB =PC利用两点间的距离公式,即可得出关于x的一元一次方程,解之即可得出结论;(2)找出当运动时间为t秒时点A,B,C对应的数,进而可求出AB﹣BC=6,此题得解.【解答】解:∵a,b,c满足|a+5|+|b﹣2|+|c﹣3|=0,∴a=﹣5,b=2,c=3.(1)设点P对应的数为x.当x<﹣5时,﹣5﹣x+2﹣x=3﹣x,解得:x=﹣6;当﹣5≤x<2时,x﹣(﹣5)+2﹣x=3﹣x,解得:x=﹣4;当2≤x<3时,x﹣(﹣5)+x﹣2=3﹣x,解得:x=0(舍去);当x≥3时,x﹣(﹣5)+x﹣2=x﹣3,解得:x=﹣6(舍去).综上所述:在数轴上存在点P,使得PA+PB=PC,点P对应的数为﹣6或﹣4.(2)AB﹣BC的值不变,理由如下:当运动时间为t秒时,点A对应的数为t﹣5,点B对应的数为3t+2,点C对应的数为5t+3,∴AB﹣BC=3t+2﹣(t﹣5)﹣[5t+3﹣(3t+2)]=6.∴AB﹣BC的值不变.【点评】本题考查了一元一次方程的应用、数轴以及绝对值的非负性,解题的关键是:(1)分x <﹣5,﹣5≤x<2,2≤x<3及x≥3四种情况,找出关于x的一元一次方程;(2)利用两点间的距离公式求出AB﹣BC=6.。

2019-2020学年度上学期期末考试七年级试题解析版

2019-2020学年度上学期期末考试七年级试题解析版

2019-2020学年度上学期期末考试题七 年 级 数 学把符合题意的选项代号填在题后括号内,每小题3分,共36分.)1.如果一个物体向右移动2米记作移动+2米,那么这个物体又移动了-2米的意思是( C )(教材P3练习2改编)A .物体又向右移动了2米B . 物体又向右移动了4米C .物体又向左移动了2米 D .物体又向左移动了4米 2.计算32---的结果为(A )(教材P51习题6(2)) A .-5 B .-1 C .1 D .5 3.平方等于9的数是( A )(教材P47习题7) A .±3 B .3 C .﹣3D .±94.一天有41064.8⨯秒,一年按365天计算,一年有(D )秒(教材P48习题10) A .4101536.3⨯ B .5101536.3⨯ C .6101536.3⨯ D .7101536.3⨯5.下列说法错误的是(B )(教材P59习题3)A . ab 15-的系数是-15B .532y x 的系数是51C .224b a 的次数是4D .42242b b a a +-的次数是4 6.下列计算中,正确的是( C )(教师用书P141测试题5) A .b a b a +-=+-2)(2B .b a b a --=+-2)(2C .b a b a 22)(2--=+-D .b a b a 22)(2+-=+-7.长方形的长是x 3,宽是y x -2,则长方形的周长是( A )(教师用书P140测试题1) A .y x 210-B .y x 210+C .y x 26-D .y x -108.下列方程,是一元一次方程的是( B )(教师用书P214测试题1) A .342=-a aB .213a a =- C .12=+b a D .53=-ab9.已知等式323+=y x ,则下列变形不一定成立的是(D )(教师用书P214测试题3改编) A .y x 233=- B .132+=y x C .4213+=+y x D .523+=yz xz10.一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损20%,这家商店(A )(教材P102探究1改编)A .亏损3元B .盈利3元C .亏损8元D .不盈不亏 11.下列说法中错误的是( C )(教材P126练习1改编)A .线段AB 和射线AB 都是直线的一部分 B .直线AB 和直线BA 是同一条直线C .射线AB 和射线BA 是同一条射线D .线段AB 和线段BA 是同一条线段 12.已知∠α的补角的一半比∠α小30°,则∠α等于( D ) (教材P148复习题8改编)A .50°B .60°C .70°D .80°二、填空题(本大题有6个小题,把各题的正确答案填在题后的横线上,每小题3分,共18分.)13.数轴上表示-5和-14的两点之间的距离是 . (教师用书P90测试题8) 14.已知代数式a a 22-值是-4,则代数式a a 6312-+的值是 . (-11) 15.若单项式b am 15+和1425-n b a 是同类项,则n m 的值为 .(9)16.若方程6x +2=0与关于y 的方程3y +m =15的解互为相反数,则m =________.(16) 17.点A ,B ,C 在同一条直线上,AB=5 cm ,BC=2cm ,则AC 的长为 __ _cm .(3或 7) (教材P130习题10改编)18.南偏东50°的射线与西南方向的射线组成的角(小于平角)的度数是 .(95°) 三、解答题(本题有9个小题,共66分.) 19.(本题满分8分,每小题4分)计算: (1)43512575)522(75÷-⨯--÷ (2) ()())31(34252232-⨯+÷--⨯- (教师用书P90测试题11(1)) (教材P51复习题5(13)、(14)改编)解:(1)原式=848512584258425413512575)125(75-=---=⨯-⨯--⨯.……………4分(2)原式=)2(94)8(54-⨯+÷--⨯=418220)18()2(20=-+=-+--.………8分20.(本题满分8分,每小题4分)解方程: (1) )1(25)10(2-+=+-x x x x (2)3713321-+=-x x (教材P94例题1(1)) (教材P111复习题2(3))解:(1) 去括号,得:225102-+=--x x x x移项,得:102252--=---x x x x 合并同类项,得:86=-x 系数化为1,得:34-=x .……………………………………………4分 (2) 去分母,得:63)13(3)21(7-+=-x x 去括号,得:6339147-+=-x x 移项,得:7633914--=--x x 合并同类项,得:6723-=-x系数化为1,得:2367=x ……………………………………………8分 21.(本题满分6分)化简求值:]2)321(5[322x x x x +---,其中4=x .解:原式=222)321(53x x x x --+-=22232153x x x x --+-………………………………2分=3292--x x ……………………………………………………4分当4=x 时,原式=5342942-=-⨯-.………………………………6分22.(本题满6分)如图,BD 平分∠ABC ,BE 把∠ABC 分成的两部分∠ABE ∶∠EBC =2∶5,∠DBE =21°,求∠ABC 的度数.解:设∠ABE =2x °,则∠CBE =5x °,∠ABC =7x °.……………………1分∵BD 为∠ABC 的平分线,∴∠ABD =12∠ABC =72x °.…………………2分∴∠DBE =∠ABD -∠ABE =72x °-2x °=32x °=21°.……………………4分∴x =14.……………………………5分∴∠ABC =7x °=98°.……………………………6分23.(本题满6分)列方程解应用题:机械加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个.已知2个大齿轮与3个小齿轮配成一套,则安排多少名工人加工大齿轮,才能使每天加工的大、小齿轮刚好配套?解:设安排x 名工人加工大齿轮,根据题意得…………1分3×16x =2×10(85-x )或16x :10(85-x )=2:3………………………………3分 解得x =25…………………………………………………5分答:安排5名工人加工大齿轮,才能使每天加工的大、小齿轮刚好配套.………………6分24. (本题满7分)如图,点A 、B 都在数轴上,O 为原点. (1)点B 表示的数是________;(2)若点B 以每秒3个单位长度的速度沿数轴运动,则1秒后点B 表示的数是______; (3)若点A 、B 都以每秒3个单位长度的速度沿数轴向右运动,而点O 不动,t 秒后有一个点是一条线段的中点,求t 的值.解:(1)-6.………………1分(2) -9或-3.………………3分(填对一个得1分) (3)由题意可知有两种情况:①O 为BA 的中点时,由题意可得:(-6+3t )+(2+3t )=0.解得t =32.……………5分 ②B 为OA 的中点时,由题意可得:2+3t =2(-6+3t ) . 解得t =314. 综上所述,t =32或314 .………………7分25.(本题满7分)用“※”定义一种新运算:对于任意有理数a 和b ,规定a ※b =ab 2+2ab +a .如:1※3=1×32+2×1×3+1=16.(1)求3 ※(-2)的值;(2)若(21+a ※3)※(21-)=4,求a 的值. 解:(1)根据题中定义的新运算得:3)※(-2)=3×(-2)2+2×3×(-2)+3=12-12+3=3.………………3分 (2)根据题中定义的新运算得:21+a ※3=21+a ×32+2×21+a ×3+21+a =8(a +1) .………………4分 8(a +1) ※(21-)=8(a +1)×(21-)2+2×8(a +1)×(21-)+8(a +1)=2(a +1) .………………5分所以2(a +1)=4,解得a =1.………………7分26.(本题满8分)小刚和小强从A ,B 两地同时出发,小刚骑自行车,小强步行,沿同一 条路线相向匀速而行.出发后两小时两人相遇.相遇时小刚比小强多行进24千米.相遇后0.5 小时小刚到达B 地.(1)两人的行进速度分别是多少?(2)相遇后经过多少时间小强到达A 地?(3)AB 两地相距多少千米? (教材P107习题10改编)解:(1)设小强的速度为x 千米/小时,则小刚的速度为(x +12)千米/小时.根据题意得:2x =0.5(x +12). 解得:x =4. x +12=4+12=16.答:小强的速度为4千米/小时,小刚的速度为16千米/小时.………………3分O B A(2)设在经过y小时,小强到达目的地.根据题意得:4y=2×16.解得:y=8.答:在经过8小时,小强到达目的地.………………6分(3)2×4+2×16=40(千米).答:AB两地相距40千米.………………8分27.(本题满10分)如图①,点O为直线AB上一点,过点O作射线OC,将一直角三角板如图摆放(∠MON=90°) .(1)若∠BOC=35°,求∠MOC的大小.(2)将图①中的三角板绕点O旋转一定的角度得图②,使边OM恰好平分∠BOC,问:ON 是否平分∠AOC?请说明理由.(3)将图①中的三角板绕点O旋转一定的角度得图③,使边ON在∠BOC的内部,如果∠BOC=50°,则∠BOM与∠NOC之间存在怎样的数量关系? 请说明理由.解:(1) ∵∠MON=90°,∠BOC=35°,∴∠MOC=∠MON+∠BOC= 90°+35°=125°.………………2分(2)ON平分∠AOC.理由如下:………………3分∵∠MON=90°,∴∠BOM+∠AON=90°,∠MOC+∠NOC=90°.………………4分又∵OM平分∠BOC,∴∠BOM=∠MOC.………………5分∴∠AON=∠NOC.∴ON平分∠AOC.………………6分(3)∠BOM=∠NOC+40°.理由如下:………………7分∵∠CON+∠NOB=50°,∴∠NOB=50°-∠NOC.………………8分∵∠BOM+∠NOB=90°,∴∠BOM=90°-∠NOB=90°-(50°-∠NOC)=∠NOC-40°.………………10分。

河南省南阳市唐河县2019-2020学年七年级上学期期末数学试题(word无答案)

河南省南阳市唐河县2019-2020学年七年级上学期期末数学试题(word无答案)

河南省南阳市唐河县2019-2020学年七年级上学期期末数学试题(word 无答案)一、单选题(★) 1 . 下列各组数中,数值相等的是() A .和 B .和 C .和 D .和(★★) 2 . 下面不是同类项的是()A .-2与12B .与C .与D .与(★★) 3 . 如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为A .圆锥,正方体,三棱锥,圆柱B .圆锥,正方体,四棱锥,圆柱C .圆锥,正方体,四棱柱,圆柱D .圆锥,正方体,三棱柱,圆柱(★★) 4 . 下面去括号正确的是() A .B .C .D .(★★) 5 . 如图所示,该立体图形的俯视图是()A .B .C .D .(★) 6 . 如图,将一副三角板叠放在一起,使直角的顶点重合于点 O,若∠ AOC=120°,则∠BOD等于()A.40°B.50°C.60°D.70°(★★) 7 . 如图,有、、三个地点,且,从地测得地在地的北偏东的方向上,那么从地测得地在地的()A.南偏西B.北偏西C.北偏东D.南偏东(★★) 8 . 一个正方体的表面展开图如图所示,把它折成正方体后,与“山”字相对的字是()A.水B.绿C.建D.共(★) 9 . 已知∣a∣=-a,化简∣a-1∣-∣a-2∣所得的结果是()A.-1B.1C.2a-3D.3-2a(★) 10 . 下列所示的四个图形中,∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④二、填空题(★★) 11 . 把多项式按的升幂排列为___________________________.(★★) 12 . 将一张纸如图所示折叠后压平,点在线段上,、为两条折痕,若,,则__________度.(★★) 13 . 如图,DE∥BC,EF∥AB,图中与∠BFE互补的角有__________________;(★★) 14 . 如图,下列推理正确的是__________________.①∵直线,相交于点(如图1),∴ ;②∵ (如图2),∴ ;③∵ 平分(如图3),∴ ;④∴ ,(如图4),∴ .(★★) 15 . 如图是用正三角形、正方形、正六边形设计的一组图案,按照规律,第个图案中正三角形的个数是__________.三、解答题(★★) 16 . 计算(1)计算:(2)先化简,再求值:,其中是最大的负整数,是倒数等于它本身的自然数(★★) 17 . 在图1、图2中的无阴影的方格中选出两个画出阴影,使它们与图中4个有阴影的正方形一起可以构成一个正方体的表面展开图.(★★) 18 . 利用运算律有时可以简便计算,请你结合你的经验,完成以下问题:(1)观察计算过程,在括号内填入相应的运算律:原式()()(2)用运算律进行简便计算:(★★) 19 . 在平整的地面上,有若干个完全相同的棱长为的小正方体堆成一个几何体,如下图所示.(1)该几何体是由个小正方体组成,请画出它的主视图、左视图、俯视图(网格中所画的图形要画出各个正方形边框并涂上阴影).(2)如果在这个几何体露在外面的表面喷上黄色的漆,每平方厘米用2克,则共需克漆.(3)这个几何体上,再添加一些相同的小正方体并保持这个几何体的俯视图和左视图不变,那么最多可以再添加个小正方体.(★★) 20 . 学着说点理:补全证明过程:如图,已知,,垂足分别为,,,试证明:.请补充证明过程,并在括号内填上相应的理由.证明:∵ ,(已知)∴ (___________________),∴ (___________________),∴________ (___________________).又∵ (已知),∴ (___________________),∴ ________(___________________),∴ (___________________).(★★) 21 . 拓展探究初一年级某班举行乒乓球比赛,需购买5副乒乓球拍,和若干盒乒乓球,现了解情况如下:甲、乙两家商店出售同样品牌的乒乓球拍和乒乓球、乒乓球拍每副定价48元,乒乓球每盒12元,经洽谈后,甲店每买一副乒乓球拍就赠送一盒乒乓球;乙店则全部按定价9折优惠,设该班需购乒乓球x盒(不少于5盒)(1)通过计算和化简后,用含x的代数式分别表示甲、乙两店购买所需的费用?(2)当需要购40盒乒乓球时,请你去办这件事,你打算去哪家商店购买划算?为什么?(3)试探究,当购买乒乓球的盒数x取什么值时去哪家商店购买划算?(直接写出探究的结论)(★★) 22 . 课题学习:平行线的“等角转化功能.(1)问题情景:如图1,已知点是外一点,连接、,求的度数.天天同学看过图形后立即想出:,请你补全他的推理过程.解:(1)如图1,过点作,∴ , .又∵ ,∴ .解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”功能,将,,“凑”在一起,得出角之间的关系,使问题得以解决.(2)问题迁移:如图2,,求的度数.(3)方法运用:如图3,,点在的右侧,,点在的左侧,,平分,平分,、所在的直线交于点,点在与两条平行线之间,求的度数.(★★) 23 . 如图1,是线段上一动点,沿的路线以的速度往返运动1次,是线段的中点,,设点的运动时间为.(1)当时,则线段,线段.(2)用含的代数式表示运动过程中的长.(3)在运动过程中,若的中点为,问的长是否变化?与点的位置是否无关?(4)知识迁移:如图2,已知,过角的内部任一点画射线,若、分别平分和,问∠EOC的度数是否变化?与射线的位置是否无关?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南省南阳市唐河县2019-2020学年七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列各组数中,两个数相等的是()A. 32与23B. −23与(−2)3C. −32与(−3)2D. [−2×(−3)]2与2×(−3)22.下列各组整式中不是同类项的是()A. 3a2b与−2ba2B. 2xy与12yx C. 16与−12D. −2xy2与3yx23.某几何体如下图所示,则下列选项的四个图形中是其展开图的是()A. B. C. D.4.下列去括号运算中,正确的是()A. a2−(a−2b+3c)=a2−a−2b+3cB. a+(−x+y−2)=a−x+y−2C. (2a+b)−2(a2−b2)=2a+b−2a2+b2D. −(x+y)+(a−1)=−x−y+a5.下列几何体中,主视图与俯视图不相同的是()A. B. C. D.6.如图所示,将一副三角板叠放在一起,使直角顶点重合,且∠AOD=2∠BOC,则∠AOC的等于( )A. 45°B. 30°C. 25°D. 20°7.如图,用A,B,C分别表示学校、小明家、小红家.已知学校在小明家的南偏东25°方向上,小红家在小明家的正东方向上,小红家在学校的北偏东35°方向上,则∠ACB的度数为()A. 35°B. 55°C. 60°D. 65°8.如图,是正方体包装盒的平面展开图,如果在其中的三个正方形A、B、C内分别填上适当的数,使得将这个平面展开图折成正方体后,相对面上的两数字互为相反数,则填在A、B、C内的三个数字依次为()A. 0,1,−2B. 1,0,−2C. −2,0,1D. 0,−2,19.若−|a|=−3.2,则a是()A. 3.2B. −3.2C. ±3.2D. 以上都不对10.下列图形中,和不.是.同位角的是()A. B.C. D.二、填空题(本大题共5小题,共15.0分)11.多项式3x3y−y4+5xy2−x4按x的升幂排列为______ .12.如图,在正方形ABCD中,E为DC边上的一点,沿线段BE对折后,若∠ABF比∠EBF大15°,则∠EBF的度数是________°.13.如图所示,∠ABC=36°40′,DE//BC,DF⊥AB于点F,则∠D=__________.14.如图,直线AB与CD相交于点O,OB平分∠DOE.若∠DOE=60°,则∠AOC的度数是________.15.用形状大小完全相同的等边三角形和正方形按如图所示的规律拼图案,即从第2个图案开始每个图案比前一个图案多4个等边三角形和1个正方形,则第n个图案中等边三角形的个数为____个.三、解答题(本大题共8小题,共75.0分)16.计算与化简(1)−3+12×(13−14+16);(2)−32+(−1)2019÷(−12)2−(0.25−38)×6(3)3(x2−3x)−2(1−4x)−2x2(4)5x2y−2xy−4(x2y−12xy)17.如图,在无阴影的方格中选出两个画出阴影,使它们与图中4个有阴影的正方形一起可以构成一个正方体的表面展开图.(在图1和图2中任选一个进行解答,只填出一种答案即可)18.探索规律:观察下面的算式,解答问题:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52(1)请猜想1+3+5+7+9+⋯+19=______ ;(2)请猜想1+3+5+7+9+⋯+(2n−1)+(2n+1)+(2n+3)=______ ;(3)请用上述规律计算:103+105+107+⋯+2003+2005.19.在平整的地面上,有若干个完全相同的小立方体堆成一个几何体,如图.(1)从正面、左面、上面观察这个几何体,分别画出你所看到的形状.(2)若在这个几何体的表面(不包括底面)喷上黄色的漆,则在所有的小立方体中,有多少个小立方体只有一个面是黄色的?有多少个小立方体只有两个面是黄色的?有多少个小立方体只有三个面是黄色的?(3)若现在你手头还有一些相同的小立方体,如果保持俯视图和左视图不变,最多可以再添加几个小立方体?20.如图,在三角形ABC中,CE⊥AB于点E,DF⊥AB于点F,DE//CA,CE平分∠ACB,试说明∠EDF=∠BDF.21.为了丰富学生的课外活动,某校决定购买100个篮球和a(a>10)副羽毛球拍.经调查发现:甲、乙两个体育用品商店以同样的价格出售同种品牌的篮球和羽毛球拍.已知每个篮球比每副羽毛球拍贵25元,两个篮球与三副羽毛球拍的费用正好相等.经洽谈,甲商店的优惠方案是:每购买十个篮球,送一副羽毛球拍;乙商店的优惠方案是:若购买篮球数超过80个,则购买羽毛球拍可打八折.(1)设每个篮球x元,则每副羽毛球拍________元(用含x的代数表示);并求出每个篮球和每副羽毛球拍的价格分别是多少?(2)请用含a的代数式分别表示出到甲商店和乙商店购买所花的费用;(3)请你决策:在哪一家商店购买划算?(直接写出结论)22.已知:如图,AB//CD,AP平分∠BAC,CP平分∠ACD,求∠APC的度数.解:过P点作PM//AB交AC于点M.∵AB//CD,(______ )∴∠BAC+∠ACD=180°.(______ )∵PM//AB,∴∠1=∠______ ,(______ )且PM//______ .(平行于同一直线的两直线也互相平行)∴∠3=∠______ .(______ )∵AP平分∠BAC,CP平分∠ACD,(______ )∴∠1=12∠BAC,∠4=12ACD.∴∠1+∠4=12∠BAC+12∠ACD=90°.∴∠APC=∠2+∠3=∠1+∠4=90°.总结:两直线平行时,同旁内角的角平分线______ .23.如图①,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若点C恰好是AB中点,则DE=______cm;(2)若AC=4cm,求DE的长;(3)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(4)知识迁移:如图②,已知∠AOB=120°,过角的内部任一点C画射线OC,若OD、OE分别平分∠AOC和∠BOC,试说明∠DOE=60°与射线OC的位置无关.-------- 答案与解析 --------1.答案:B解析:此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.原式各项利用乘方的意义计算得到结果,即可做出判断.解:A、32=9,23=8,不相等;B、−23=−8,(−2)3=−8,相等;C、−32=−9,(−3)2=9,不相等;D、[−2×(−3)]2=36,2×(−3)2=18,不相等.故选B.2.答案:D解析:解:(A)3a2b与−2ba2中,同类项与字母顺序无关,故A是同类项,yx中,同类项与字母顺序无关,故B是同类项,(B)2xy与12(C)常数都是同类项,故C是同类项.(D)−2xy2与3yx2中,相同字母的指数不相等,故D不是同类项,故选:D.同类项是指相同字母的指数要相等.本题考查同类项,解题的关键是正确理解同类项的概念,本题属于基础题型.3.答案:A解析:本题考查的是几何体的展开图,熟记各种几何体展开图的特点是关键.利用棱锥及其表面展开图的特点解题.解:该题图形为三棱锥,其展开图为,B是三棱柱的展开图;C是三棱柱的展开图;D是四棱锥的展开图.故选A.4.答案:B解析:解:A、a2−(a−2b+3c)=a2−a+2b−3c,故此选项错误;B、a+(−x+y−2)=a−x+y−2,正确;C、(2a+b)−2(a2−b2)=2a+b−2a2+2b2,故此选项错误;D、−(x+y)+(a−1)=−x−y+a−1,故此选项错误;故选:B.直接利用去括号法则分别化简得出答案.此题主要考查了去括号法则,正确掌握去括号法则是解题关键.5.答案:C解析:解:四棱锥的主视图与俯视图不相同.故选:C.根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.6.答案:B解析:本题考查了角度的计算,能求出∠AOD+∠BOC=180°是解此题的关键.根据已知求出∠AOD+∠BOC=180°,求出∠BOC,即可求出答案.解:∵∠AOB=∠COD=90°,∴∠AOD+∠BOC=∠AOB+∠DOB+∠BOC=∠AOB+∠COD=90°+90°=180°,∵∠AOD=2∠BOC,∴3∠BOC=180°,∴∠BOC=60°,∴∠AOC=∠AOB−∠BOC=90°−60°=30°,故选:B.7.答案:B解析:解答此类题需要从运动的角度,正确画出方位角,找准中心是解答此类题的关键.根据方位角的概念,画图正确表示出方位角,即可求解.解:从图中我们会发现∠ACB=180°−∠BAC−∠ABC=180°−60°−65°=55°.故选B.8.答案:C解析:本题主要考查的是正方体对面上的文字,根据正方体的展开图的特点找出A、B、C的对面是解题的关键.依据正方体对面的特点先确定出A、B、C的对面,然后依据相反数的定义解答即可.解:由正方体的展开图的特点可知B的对面是0,C的对面是−1,A的对面是2.由相反数的定义可知:A、B、C表示的数分别为−2,0,1.故选C.9.答案:C解析:计算绝对值要根据绝对值的定义求解.解答此题的关键是熟知绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.解:∵−|a|=−3.2,∴|a|=3.2,∴a=±3.2.故选C.10.答案:C解析:此题主要考查了同位角,属于基础题.根据同位角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.解:根据同位角的定义,选项A、B、D中,∠1与∠2是同位角;选项C中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故选C.11.答案:−y4+5xy2+3x3y−x4解析:此题考查多项式的书写习惯,注意是按某一个字母的升幂排列,而不是每一项的指数.把多项式按x的升幂排列,也就是按x的指数从低到高排列即可.解:3x3y−y4+5xy2−x4按x的升幂排列为−y4+5xy2+3x3y−x4.故答案为−y4+5xy2+3x3y−x4.12.答案:25°解析:本题考查了折叠的性质,根据折叠角相等和正方形各内角为直角的性质即可求得∠EBF的度数.解:∵∠FBE是∠CBE折叠形成,∴∠FBE=∠CBE,∵∠ABF−∠EBF=15°,∠ABF+∠EBF+∠CBE=90°,∴∠EBF=25°,故答案为25°.13.答案:53°20′解析:本题考查平行线的性质,关键在于掌握两直线平行,同位角相等,内错角相等,同旁内角互补.由平行线的性质可得出∠DAF=∠ABC=36°40′,再由DF⊥AB于F,可得出∠D的值.解:∵DE//BC,∴∠DAF=∠ABC=36°40′,又∵DF⊥AB,∴∠D=90°−∠DAF=53°20′.故答案为53°20′.14.答案:30°解析:本题考查的是角平分线的性质及对顶角的性质,属于简单题.根据角平分线的定义和对顶角相等即可求得.解:∵AB、CD相交于点O,∠DOE=60°,OB平分∠DOE,∴∠BOD=12∠DOE=12×60°=30°,又∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD=30°.故答案为30°.15.答案:(4n−2)解析:【分析】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中三角形个数的变化规律,利用数形结合的思想解答.根据题目中的图形,可以发现正三角形个数的变化情况,从而可以求得第n 个图案中等边三角形的个数.解:当n =1时,等边三角形的个数为:2,当n =2时,等边三角形的个数为:2+4×1=6,当n =3时,等边三角形的个数为:2+4×2=10,当n =4时,等边三角形的个数为:2+4×3=14,故第n 个图案中等边三角形的个数为:2+4(n −1)=4n −2,故答案为:(4n −2).16.答案:解:(1)原式=−3+(4−3+2)=−3+3=0;(2)原式=−9−1×4−(−18)×6=−9−4+34=−1214;(3)原式=3x 2−9x −2+8x −2x 2=x 2−x −2;(4)原式=5 x 2y −2xy −4x 2y +2xy =x 2y.解析:(1)原式利用乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(3)原式去括号合并即可得到结果;(4)原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.17.答案:解:只写出一种答案即可.图1:图2:解析:和一个正方体的平面展开图相比较,可得出一个正方体11种平面展开图.正方体共有11种表面展开图,把11种展开图都去掉一个面得无盖的正方体展开图,把相同的归为一种得无盖正方体有8种表面展开图.18.答案:(1)100;(2)(n+2)2;(3)103+105+107+⋯+2003+2005,=(1+3+⋯+2003+2005)−(1+3+⋯+99+101),=10032−512=1006009−2601,=1003408.解析:解:(1)由题知:第1个算式为:1=12;第2个算式为:1+3=4=22;第3个算式为:1+3+5=9=32;…依此类推:第n个算式为:1+3+5+⋯+(2n−1)=n2;故当2n−1=19,即n=10时,1+3+5+⋯+19=102.(2)由(1)可知:1+3+5+7+9+⋯+(2n−1)+(2n+1)+(2n+3),=1+3+5+7+9+⋯+(2n−1)+[2(n+1)−1]+[2(n+2)−1],=(n+2)2.(3)见答案.(1)由等式可知左边是连续奇数的和,右边是数的个数的平方,由此规律解答即可;(2)由(1)的结论可知是n个连续奇数的和,得出结果;(3)1+3+5+⋯+2003+2005是连续1003个奇数的和,再由(2)直接得出结果.此题重在发现连续奇数和的等于数的个数的平方,利用此规律即可解决问题.19.答案:解:(1)如图所示(2)只有一个面是黄色的应该是第一列正方体中最底层中间那个,共1个;有2个面是黄色的应是第一列最底层最后面那个和第二列最后面那个,共2个;只有三个面是黄色的应是第一列第二层最后面的那个,第二列最前面那个,第三列最底层那个,共3个.答:只有一个面是黄色的有1个,有2个面是黄色的有2个,有三个面四是黄色的有3个;(3)保持俯视图和左视图不变,可往第二列前面的几何体上放一个小正方体,后面的几何体上放3个小正方体,则可以最多添加3+1=4个.解析:本题考查简单组合体的三视图的画法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,2;左视图有3列,每列小正方形数目分别为3,2,1;俯视图有3列,每列小正方数形数目分别为3,2,1.据此可画出图形;(2)只有一个面是黄色的应该是第一列正方体中最底层中间那个;有2个面是黄色的应是第一列最底层最后面那个和第二列最后面那个;只有三个面是黄色的应是第一列第二层最后面的那个,第二列最前面那个,第三列最底层那个;(3)保持俯视图和左视图不变,可往第二列前面的几何体上放一个小正方体,后面的几何体上放3个小正方体,从而求得答案.20.答案:证明∵CE⊥AB于E,DF⊥AB于F,∴CE//DF,∴∠1=∠4,∠2=∠3,∵AC//DE,∴∠3=∠5,∴∠2=∠5,∵CE是∠ACB的平分线,∴∠4=∠5,∴∠1=∠2,即∠EDF=∠BDF.解析:本题考查了平行线的判定与性质:垂直于同一条直线的两直线平行;两直线平行,内错角相等;两直线平行,同位角相等.由于CE⊥AB,DF⊥AB,则CE//DF,根据平行线的性质得∠1=∠4,∠2=∠3,再由AC//DE得∠3=∠5,所以∠2=∠5,因为CE是∠ACB的平分线,则∠4=∠5,于是得到∠1=∠2,结论得证.21.答案:解:(1)(x−25);依题意,得:2x=3(x−25),解得:x=75,∴x−25=50.答:每个篮球的价格是75元,每副羽毛球拍的价格是50元.)=50a+7000(元);(2)到甲商店购买所花的费用为:75×100+50×(a−10010到乙商店购买所花的费用为:75×100+0.8×50×a=40a+7500(元).(3)令50a+7000=40a+7500,解得:a=50.∴当10<a<50时,在甲商店购买划算;当a=50时,在甲、乙两个商店购买所花的费用一样;当a>50时,在乙商店购买划算.解析:解:(1)设每个篮球的价格是x元,则每幅羽毛球拍的价格是(x−25)元,故答案为(x−25);见答案;(2)见答案;(3)见答案.本题考查了一元一次方程的应用、列代数式,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,利用含a的代数式表示出到甲商店和乙商店购买所花的费用;(3)通过解一元一次方程找出到两家商店购买费用相同时a的值.(1)设每个篮球的价格是x元,则每幅羽毛球拍的价格是(x−25)元,根据总价=单价×数量结合两个篮球与三副羽毛球拍的费用正好相等,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总价=单价×数量,结合甲、乙两家商店的优惠政策,即可用含a的代数式表示出到甲商店和乙商店购买所花的费用;(3)令两店的费用相等可得出关于a的一元一次方程,解之可得出a的值,即可找出a取不同范围时的购买方案.22.答案:已知;两直线平行,同旁内角互补;2;两直线平行,内错角相等;DC;4;两直线平行,内错角相等;已知;互相垂直解析:解:过P点作PM//AB交AC于点M.∵AB//CD,(已知)∴∠BAC+∠ACD=180°.(两直线平行,同旁内角互补)∵PM//AB,∴∠1=∠2,(两直线平行,内错角相等)且PM//DC.(平行于同一直线的两直线也互相平行)∴∠3=∠4.(两直线平行,内错角相等)∵AP平分∠BAC,CP平分∠ACD,(已知)∴∠1=12∠BAC,∠4=12ACD.∴∠1+∠4=12∠BAC+12∠ACD=90°.∴∠APC=∠2+∠3=∠1+∠4=90°.总结:两直线平行时,同旁内角的角平分线互相垂直.故答案为:已知;两直线平行,同旁内角互补;2;两直线平行,内错角相等,DC;4;两直线平行,内错角相等;已知;互相垂直.直接利用平行线的性质与判定以及平行公理分别分析得出答案.此题主要考查了平行线的性质以及平行公理等知识,正确利用平行线的性质分析是解题关键.23.答案:(1)6;(2)∵AB=12cm,∴AC=4cm,∴BC=8cm,∵点D、E分别是AC和BC的中点,∴CD=2cm,CE=4cm,∴DE=6cm,(3)设AC=acm,∵点D、E分别是AC和BC的中点,∴DE=CD+CE=12(AC+BC)=12AB=6cm,∴不论AC取何值(不超过12cm),DE的长不变,(4)∵OD、OE分别平分∠AOC和∠BOC,∴∠DOE=∠DOC+∠COE=12(∠AOC+∠COB)=12∠AOB,∵∠AOB=120°,∴∠DOE=60°,∴∠DOE的度数与射线OC的位置无关.解析:解:(1)∵AB=12cm,点D、E分别是AC和BC的中点,C点为AB的中点,∴AC=BC=6cm,∴CD=CE=3cm,∴DE=6cm,(2)∵AB=12cm,∴AC=4cm,∴BC=8cm,∵点D、E分别是AC和BC的中点,∴CD=2cm,CE=4cm,∴DE=6cm,(3)设AC=acm,∵点D、E分别是AC和BC的中点,∴DE=CD+CE=12(AC+BC)=12AB=6cm,∴不论AC取何值(不超过12cm),DE的长不变,(4)∵OD、OE分别平分∠AOC和∠BOC,∴∠DOE=∠DOC+∠COE=12(∠AOC+∠COB)=12∠AOB,∵∠AOB=120°,∴∠DOE=60°,∴∠DOE的度数与射线OC的位置无关.(1)由AB=12cm,点D、E分别是AC和BC的中点,即可推出DE=12(AC+BC)=12AB=6cm,(2)由AC=4cm,AB=12cm,即可推出BC=8cm,然后根据点D、E分别是AC和BC的中点,即可推出AD=DC=2cm,BE=EC=4cm,即可推出DE的长度,(3)设AC=acm,然后通过点D、E分别是AC和BC的中点,即可推出DE=12(AC+BC)=12AB=a2cm,即可推出结论,(4)由若OD、OE分别平分∠AOC和∠BOC,即可推出∠DOE=∠DOC+∠COE=12(∠AOC+∠COB)=12∠AOB=60°,即可推出∠DOE的度数与射线OC的位置无关.本题主要考察角平分线和线段的中点的性质,关键在于认真的进行计算,熟练运用相关的性质定理.。

相关文档
最新文档