人教版七年级数学上册第二章整式复习试题四(含答案) (26)
人教版七年级上数学第二章《整式加减》综合测试卷(含答案)
人教版七年级上数学第二章《整式加减》综合测试卷(含答案)一、选择题1.下列式子书写正确的是( )A.a48B.x÷yabcC.a(x+y)D.112答案 C2化简-16(x-0.5)的结果是( )A.-16x-0.5B.16x+0.5C.16x-8D.-16x+8答案 D. -16(x-0.5)=-16x+8,故选择D.3.下列说法正确的是( )A.ab+c是二次三项式B.多项式2x+3y2的次数是4C.5是单项式是整式D.ba答案 Cx a+2y3与-3x3y2b-1是同类项,那么a,b的值分别是( )4.如果13A.a=1,b=2B.a=0,b=21C.a=2,b=1D.a=1,b=1答案 Ax-10)元出售,则下列说法中, 5.某商店举办促销活动,促销的方法是将原价x元的衣服以(45能正确表达该商店促销方法的是( )A.原价减去10元后再打8折B.原价打8折后再减去10元C.原价减去10元后再打2折D.原价打2折后再减去10元答案 B6.当x=-2时,-(x-3)+(2-x)+(3x-1)的值为( )A.2B.3C.4D.5答案 A7.若(3x2-3x+2)-(-x2+3x-3)=Ax2-Bx+C,则A、B、C的值分别为( )A.4、-6、5B.4、0、-1C.2、0、5D.4、6、5答案 D8.多项式1x|n|-(n+2)x+7是关于x的二次三项式,则n的值是( )2A.2B.-2C.2或-2D.3答案 A239. 已知多项式ax 5+bx 3+cx,当x=1时多项式的值为5,那么当x=-1时该多项式的值为( )A.-5B.5C.1D.无法求出 答案 A10.已知m 、n 为常数,代数式2x 4y+mx|5-n|y+xy 化简之后为单项式,则m n的值共有( ) A.1个 B.2个 C.3个 D.4个 答案 C11.若x 2+ax-2y+7-(bx 2-2x+9y-1)的值与x 的取值无关,则-a+b 的值为( )A.3B.1C.-2D.2答案 A12.如果关于x 的代数式-3x 2+ax+bx 2+2x+3合并后不含x 的一次项,那么( )A.a+b=0B.a=0C.b=3D.a=-2 答案 D 二、填空题(每小题3分,共30分)13.一台电视机原价是2 500元,现按原价的8折出售,则购买a 台这样的电视机需要 元.答案 2 000a14.在代数式:a 2-12,-3xy 3,0,4ab,3x 2-4,xy 7,n 中,单项式有 个.答案 5 15.多项式6x 3-xy 5+y 2中共有 项,各项系数分别为 .答案 三;6,-15,115.若单项式-2m2n x-1和5a4b2c的次数相同,则代数式x2-2x+3的值为.3答案2716.已知3a-2b=2,则9a-6b+5= .答案1117.已知a2+2ab=-8,b2+2ab=14,则a2+4ab+b2= ,a2-b2= .答案6;-2218.图2-3-1是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,……,则第n(n为正整数)个图案由个▲组成.图2-3-1答案(3n+1)三、解答题19.化简:(1)2m-3n+[6m-(3m-n)] (2)(2a2-1+3a)-2(a+1-a2).答案(1)5m-2n.(2)4a2+a-3.20.已知A=-x2+5-4x,B=5x-4+2x2,C=-2x2+8x-3.(1)化简A+B-C;45(2)在(1)的结果中,若x 取最大负整数,结果是多少?答案 (1)3x 2-7x+4.(2)4.21.化简求值:12x-2(x -13y 2)+(-32x +13y 2),其中x=-2,y=-23答案 原式=-3x+y 2.当x=-2,y=-23时,原式=-3×(-2)+(-23)2=6+49=649. 22.已知m,x,y 满足:35(x-5)2+|m-2|=0,-3a 2·b y+1与a 2b 3是同类项,求整式(2x 2-3xy+6y 2)-m(3x 2-xy+9y 2)的值.答案-158.23.课堂上李老师给出了一道整式求值的题目,李老师把要求的整式(7a 3-6a 3b+3a 2b)-(-3a 3-6a 3b+3a 2b+10a 3-3)写完后,让王红同学顺便给出一组a 、b 的值,老师自己说答案,当王红说完:“a=65,b=-2 005”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?答案 相信.(7a 3-6a 3b+3a 2b)-(-3a 3-6a 3b+3a 2b+10a 3-3)=7a 3-6a 3b+3a 2b+3a 3+6a 3b-3a 2b-10a 3+3=(7a 3+3a 3-10a 3)+(-6a 3b+6a 3b)+(3a 2b-3a 2b)+3=3,则不管a 、b 取何值,整式的值都为3.。
人教版七年级数学上册第二章整式复习试题二(含答案) (4)
人教版七年级数学上册第二章整式复习试题二(含答案)下列各式中,不是代数式的是( ) A .3a B .0C .2x =1D .216a π-【答案】C 【解析】 【分析】根据代数式的定义逐项判断. 【详解】A 、3a 是代数式,不符合题意;B 、0是代数式,不符合题意;C 、2x =1是方程,不是代数式,符合题意;D 、216a π-是代数式,不符合题意;故选:C . 【点睛】本题主要考查了代数式的定义,正确把握代数式的定义是解题关键. 32.下列说法中正确的是( ) A .0不是单项式 B .2abc -的系数是12- C .3232a b c -的次数是8 D .2x y 的系数是0【答案】B 【解析】 【分析】根据单项式的定义、单项式的系数和次数的概念逐项判断即可.【详解】解:A 、0是单项式,所以本选项错误; B 、2abc -的系数是12-,所以本选项正确;C 、3232a b c -的次数是6,所以本选项错误;D 、2x y 的系数是1,所以本选项错误.故选:B. 【点睛】本题考查了单项式的相关定义,属于基础概念题,熟知单项式及其有关概念是解题的关键.33.如果代数式4y 2﹣2y +5的值为9,那么2y 2﹣y +3的值等于( ) A .5 B .3C .﹣3D .﹣5【答案】A 【解析】 【分析】由4y 2﹣2y +5=9求得2y 2﹣y =2,再代入2y 2﹣y +3计算可得. 【详解】解:∵4y 2﹣2y +5=9, ∴4y 2﹣2y =4, 则2y 2﹣y =2, ∴2y 2﹣y +3=2+3=5, 故选:A . 【点睛】此题主要考查代数式求值,解题的关键是把所求的式子进行变形.34.如图,用棋子摆出一组三角形,按此规律推断:当三角形每边有n 枚棋子时,每个三角形棋子总数为S ,该三角形的棋子总数S 与n 的关系是( )A .32S n =-B .33=-S nC .22S n =-D .23S n =-【答案】B 【解析】 【分析】观察可发现,用每一条边上的棋子数乘以边数3,再减去三角形顶点处公共棋子,列式整理即可得解.【详解】解:观察图形的变化可知:当三角形每边有2枚棋子时,三角形棋子总数为3×2-3=3, 当三角形每边有3枚棋子时,三角形棋子总数为3×3-3=6, 当三角形每边有4枚棋子时,三角形棋子总数为3×4-3=9, …发现规律:当三角形每边有n 枚棋子时,三角形棋子总数S 为3n-3. 故选:B .【点睛】本题考查规律型-图形的变化类,解题的关键是观察图形的变化寻找规律. 35.下列各组单项式中,次数相同的是()A .3ab 与24xy -B .3与xC .2213x y -与xyD .3a 与2xy【答案】D 【解析】 【分析】将每组单项式的次数比较即可. 【详解】A. 3ab 与24xy -,次数分别为2和3,故不相同;B. 3与x ,次数分别为0和1,故不相同;C. 2213x y -与xy ,次数分别为4和2,故不相同;D. 3a 与2xy ,次数分别为3和3,故相同,故选:D. 【点睛】此题考查单项式的次数,单项式中所有字母指数的和是单项式的次数,一个常数的次数为0.36.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色地砖________块(1) (2) (3)A .nB .6nC .42n +D .44n +【答案】C 【解析】 【分析】观察发现:第1个图里有白色地砖6+4(1-1)=6;第2个图里有白色地砖6+4(2-1)=10;第3个图里有白色地砖6+4(3-1)=14;那么第n 个图里有白色地砖6+4(n-1)=4n+2.【详解】根据图示得:每个图形都比其前一个图形多4个白色地砖, 第1个图里有白色地砖6+4(1-1)=6; 第2个图里有白色地砖6+4(2-1)=10; 第3个图里有白色地砖6+4(3-1)=14;则第n 个图形中有白色地砖6+4(n-1)=(4n+2)块; 故选:C . 【点睛】此题考查图形的变化规律,重点考查了通过特例分析从而归纳总结出一般结论的能力.37.下列说法中,正确的是( )A .13a b +-是多项式B .23x x +是五次二项式C .22x y -是二次二项式D .322mn -的次数是5【答案】A 【解析】【分析】利用多项式次数与系数定义判断即可. 【详解】 A.13a b +-是多项式,故此选项正确; B. 23x x +是三次二项式,故此选项错误;C. 22x y -是三次二项式,故此选项错误;D. 322mn -的次数是3,故此选项错误; 故选:A 【点睛】此题考查了多项式以及多项式的次数,熟练掌握其概念是解本题的关键. 38.先阅读再计算:取整符号[]a 表示不超过实数a 的最大整数,例如:[3.14]3=;[0.618]0=;如果在一列数1x ,2x ,3x ,a x 中,已知11x =,且当2k ≥时,满足1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭,则2019x 的值等于( ) A .2 B .3C .2018D .2019【答案】B 【解析】 【分析】首先由11x =,且当2k ≥时,满足1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭求得:x 2,x 3,x 4,x 5,x 6,x 7,x 8,x 9的值,则可得规律:x n 每4次一循环,又由2019÷4=504…3,可知x 2019=x 3,则问题得解.【详解】解:∵11x =,且当2k ≥时,满足1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭ ∴x 2=2,x 3=3,x 4=4,x 5=1,x 6=2,x 7=3,x 8=4,x 9=1,… ∴x n 每4次一循环, ∵2019÷4=504…3, ∴x 2019=x 3=3. 故选:B .【点睛】此题考查了取整函数的应用.解题的关键是找到规律:x n 每4次一循环. 39.电子跳蚤游戏盘(如图)为ABC ,8AB =,9AC =,10BC =,如果电子跳蚤开始时在BC 边的0P 点,04BP =,第一步跳蚤从0P 跳到AC 边上1P 点,且10CP CP =;第二步跳蚤从1P 跳到AB 边上2P 点,且2=1AP AP ;第三步跳蚤从2P 跳回到BC 边上3P 点,且2=3BP BP ;……跳蚤按上述规则跳下去,第n 次落点为n P .则4P 与2014P 之间的距离为( )A .0B .1C .4D .5【答案】A 【解析】 【分析】根据题意分别求出电子跳蚤每次跳后的位置,从而得到点P6与点P4重合,然后用2014除以6,根据余数是4可得P2014与P4重合,从而得解.【详解】解:∵BC=10,BP0=4,∴CP0=6,第一步:CP1=CP0=6,∵AC=9,∴AP1=9-6=3,第二步:AP2=AP1=3,∵AB=8,∴BP2=5,第三步:BP3=BP2=5,依此类推,第四步,CP4=CP3=5,第五步,AP5=AP4=4,第六步,BP6=BP5=4,此时P6与P0重合,即经过6次跳,电子跳蚤回到起跳点,∵2014÷6=335余4,∴P2014是第336循环组的第4步,与P4重合,此时P4与P2014之间的距离是0.故选:A.【点睛】本题是对图形变化规律的考查,读懂题目信息求出各步跳动后的位置,并且得到经过6次跳,电子跳蚤回到起跳点是解题的关键.40.下列说法中,正确的是( )A .258mn 不是整式B .223-a b 的系数是-2,次数是3C .5是单质式,2x -是多项式D .多项式23241x y -+是五次三项式【答案】C 【解析】 【分析】利用单项式、多项式及整式的定义判定即可. 【详解】解:A 、258mn 是整式,此选项不符合题意;B 、223-a b的系数是23-,此选项不符合题意; C 、5是单质式,2x -是多项式,此选项符合题意;D 、多项式23241x y -+是三次三项式, 此选项不符合题意;故选:C .【点睛】本题主要考查了单项式、多项式及整式,解题的关键是熟记单项式、多项式及整式的定义.二、填空题。
人教版初中七年级数学上册第二单元《整式的加减》经典复习题(含答案解析)
一、选择题1.点 1A 、 2A 、 3A 、…… 、 n A (n 为正整数)都在数轴上.点 1A 在原点 O 的左边,且 1A O 1=;点 2A 在点 1A 的右边,且 21A A 2=;点 3A 在点 2A 的左边,且32A A 3=;点 4A 在点 3A 的右边,且 43A A 4=;……,依照上述规律,点 2008A 、2009A 所表示的数分别为( )A .2008 、 2009-B .2008- 、 2009C .1004 、 1005-D .1004 、 1004-2.下列对代数式1a b-的描述,正确的是( ) A .a 与b 的相反数的差 B .a 与b 的差的倒数 C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数3.已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( ) A .2x 2﹣5x ﹣1B .﹣2x 2+5x+1C .8x 2﹣5x+1D .8x 2+13x ﹣14.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A .64B .77C .80D .855.设a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式﹣x 3y 的系数和次数,则a ,b ,c ,d 四个数的和是( ) A .1B .2C .3D .46.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( ) A .-7B .-1C .5D .117.一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ). A .5y 3+3y 2+2y -1B .5y 3-3y 2-2y -6C .5y 3+3y 2-2y -1D .5y 3-3y 2-2y -18.下列变形中,正确的是( ) A .()x z y x z y --=--B .如果22x y -=-,那么x y =C .()x y z x y z -+=+-D .如果||||x y =,那么x y = 9.下列去括号运算正确的是( ) A .()x y z x y z --+=--- B .()x y z x y z --=--C .()222x x y x x y -+=-+D .()()a b c d a b c d -----=-+++10.将正整数按如图的规律排列:平移表中的方框,方框中的4个数的和可能是( )A .2010B .2014C .2018D .202211.有20个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是2,这20个数的和是( ) A .2 B .﹣2C .0D .412.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差 B .2倍的x 与1的差除以3的商 C .x 与1的差的2倍除以3的商 D .x 与1的差除以3的2倍13.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( ) A .1个B .2个C .3个D .4个14.根据图中数字的规律,则x y +的值是( )A .729B .593C .528D .73815.多项式33x y xy +-是( ) A .三次三项式B .四次二项式C .三次二项式D .四次三项式二、填空题16.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______. 17.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n =__________(用含n 的代数式表示).所剪次数 1 2 3 4 … n 正三角形个数471013…a n18.如图,是由一些点组成的图形,按此规律,在第n 个图形中,点的个数为_____.19.一个关于x 的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12,则这个二次三项式为________________________.20.已知轮船在静水中的速度为(a +b )千米/时,逆流速度为(2a -b )千米/时,则顺流速度为_____千米/时21.观察下列图形它们是按一定规律排列的,依照此规律,第 20 个图形共有________________ 个★.22.单项式20.8a h π-的系数是______.23.已知在没有标明原点的数轴上有四个点,且它们表示的数分别为a 、b 、c 、d .若|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,则|b ﹣c |=___.24.如图,有一种飞镖游戏,将飞镖圆盘八等分,每个区域内各有一个单项式,现假设你的每支飞镖均能投中目标区域,如果只提供给你四支飞镖且都要投出,那么要使你投中的目标区域内的单项式之和为a+2b ,共有_____种方式(不考虑投中目标的顺序).25.如果13k x y 与213x y -是同类项,则k =______,21133k x y x y ⎛⎫+-= ⎪⎝⎭______.26.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m +n+p =_________;三、解答题27.已知多项式22622452x mxyy xy x中不含xy 项,求代数式32322125m m m m mm 的值.28.若关于x ,y 的多项式my 3+3nx 2y +2y 3-x 2y +y 不含三次项,求2m +3n 的值. 29.已知2223,Ax xy y B x xy()1若()2230x y ++-=,求2A B -的值()2若2A B -的值与y 的值无关,求x 的值30.生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为26cm ,宽为cm x ,分别回答下列问题:(1)为了保证能折成图④的形状(即纸条两端均超出点P ),试求P 的取值范围.(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点P的距离(用P表示)。
人教版七年级数学上册第二章《整式的加减》考试卷(含答案)
人教版七年级数学上册第二章《整式的加减》考试卷(含答案)一、单选题1.下列代数式中,为单项式的是( ) A .5xB .aC .3a ba+ D .22x y +2.代数式1x, 2x +y , 13a 2b , x y π-, 54yx , 0.5 中整式的个数( )A .3个B .4个C .5个D .6个3.单项式322π3a b c -的系数和次数分别是( ) A .2π3-,6B .23-,6C .2π3-,5D .2π3,64.某品牌冰箱进价为每台m 元,提高20%作为标价.元旦期间按标价的9折出售,则出售一台这种冰箱可获得利润( ) A .0.1m 元B .0.2m 元C .0.8m 元D .0.08m 元5.若A 是一个四次多项式,B 是一个三次多项式,则A B -是( ) A .七次多项式B .七次整式C .四次多项式D .四次整式6.多项式﹣2x 2y ﹣9x 3+3x 3+6x 3y +2x 2y ﹣6x 3y +6x 3的值是( ) A .只与x 有关B .只与y 有关C .与x ,y 都无关D .与xy 都有关7.如图,两个大小正方形的边长分别是4cm 和x cm (0<x <4).用含x 的式子表示图中阴影部分的面积为( )cm 2.A .214xB .212xC .()2144x + D .()2142x + 8.若当x =2时,335ax bx ++=,则当x =-2时,求多项式2132ax bx --的值为( ) A .-5 B .-2 C .2 D .59.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为a ,宽为b )的盒子底部(如图①),盒子底面未被卡片覆盖的部分用阴影表示.则图①中两块阴影部分周长和是( )A .4aB .4bC .()2a b +D .()4a b -10.按框图的程序计算,若开始输入的n 值为3,则最后输出的结果是( ).A .2B .151C .153D .168二、填空题11.在代数式23xy ,m ,263a a -+,12,22145x yzx xy -,23ab 中,单项式有___________个.12.甲、乙两地相距400千米,某车以80千米/小时的速度从甲地开往乙地,行驶了t (t ≤5)小时,此时该车距乙地的路程为____________千米. 13.多项式2342x y xy x -++-的次数与项数之比为______.14.已知多项式4916252581114357911a a a a a b b b b b-+-+……,(0)ab ≠,该多项式的第7项为_______,用字母a 、b 和n 表示多项式第n 项____________.(n 为正整数) 15.观察下列式子:22222210101;21213;32325;-=+=-=+=-=+=222243437;54549-=+=-=+=……若字母n 表示自然数,请把你观察到的规律用字母n 表示出来:_______________________. 三、解答题的指出项和次数:4232223431,,1,,331,32,227m n a b x y x x y xy x t x y -+--++--.17.列式表示(1)某地冬季一天的温差是15℃,这天最低气温是t ℃,最高气温是多少? (2)买单价c 元的商品n 件要花多少钱?支付100元,应找回多少元?(3)某种商品原价每件b 元,第一次降价打“八折”,第二次降价每件又减10元,第一次降价后的售价是多少?第二次降价后的售价是多少?(4)30天中,小张长跑路程累计达到45000m ,小李跑了()m 45000a a >,平均每天小李和小张各跑多少米?平均每天小李比小张多跑多少米?18.已知A=3a 2b ﹣2ab 2+abc ,小明同学错将“2A ﹣B”看成“2A+B”,算得结果为4a 2b ﹣3ab 2+4abc .(1)计算B 的表达式; (2)求出2A ﹣B 的结果;(3)小强同学说(2)中的结果的大小与c 的取值无关,对吗?若a=18,b=15,求(2)中式子的值.19.观察下列各式:(1)-a +b =-(a -b);(2)2-3x =-(3x -2);(3)5x +30=5(x +6);(4)-x -6=-(x +6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目: 已知a 2+b 2=5,1-b =-2,求-1+a 2+b +b 2的值.20.有理数,,a b c 在数轴上的位置如图所示,化简代数式||||||||a c b b a b a ----++.21.如图是某居民小区的一块长为2a 米,宽为 b 米的长方形空地,为了美化环境,b 米的扇形花台,然后在花台内种花,准备在这个长方形的四个顶点处修建一个半径为12其余种草.如果建造花台及种花费用每平方米需要资金100 元,种草每平方米需要资金50 元,那么美化这块空地共需资金多少元?参考答案1.B 2.B 3.A 4.D 5.D 6.C 7.B 8.B 9.B 10.D 11.312.(400﹣80t )13.3414.492015ab ()()23121nn n a b -+-15.22(1)(1)21n n n n n --=+-=- 16.17.(1)(15)t +℃;(2)nc 元,(100)nc -元;(3)0.8b 元,(0.810)b -元;(4)m,1500m,1500.3030a a m ⎛⎫- ⎪⎝⎭18.解:(1)①2A +B =4a 2b ﹣3ab 2+4abc ,①B =4a 2b ﹣3ab 2+4abc -2A=4a 2b -3ab 2+4abc -2(3a 2b -2ab 2+abc) =4a 2b -3ab 2+4abc -6a 2b +4ab 2-2abc =-2a 2b +ab 2+2abc ;(2)2A -B =2(3a 2b -2ab 2+abc)-(-2a 2b +ab 2+2abc) =6a 2b -4ab 2+2abc +2a 2b -ab 2-2abc =8a 2b -5ab 2;(3)对,由(2)化简的结果可知与c 无关,将a =18,b =15代入,得8a 2b -5ab 2=8×218⎛⎫ ⎪⎝⎭×15-5×18×21()5=0.19.添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号. ①a 2+b 2=5,1-b =-2,①-1+a 2+b +b 2=(a 2+b 2)-(1-b)=5-(-2)=7. 20.由题意可知0a c -<,0b >,0b a ->,0b a +<, ||||||||a c b b a b a ----++3a c b b a b a a b c =-+--+--=--+.故答案为:3a b c --+. 21.解:100×14πb 2+50(2ab ﹣14πb 2)=252πb 2+100ab (元).。
完整版人教版七年级上册数学第二章 整式的加减含答案(含解析)
人教版七年级上册数学第二章整式的加减含答案一、单选题(共15题,共计45分)1、下列判断错误的是()A.1-a-2ab是二次三项式B.-a 2b 2c与2ca 2b 2是同类项C.是多项式 D. πa 2的系数是π2、一个多项式加上多项式2x﹣1后得3x﹣2,则这个多项式为()A.x﹣1B.x+1C.x﹣3D.x+33、下列运算正确的是()A. B. C. D.4、多项式3x3﹣2x2﹣15的次数为()A.2B.3C.4D.55、下列说法正确的是()A.单项式的系数是-5,次数是2B.单项式a的系数为1,次数是0 C. 是二次单项式 D.单项式-ab的系数为-,次数是26、若﹣x2y n与3yx2是同类项,则n的值是()A.﹣1B.3C.1D.27、下列计算正确的是()A.2x+3y=5xyB.x 2•x 3=x 6C.(a 3)2=a 6D.(ab)3=ab 38、下列计算正确的是()A.2x+3y=5xyB.5a 2﹣3a 2=2C.(﹣7)÷ =﹣7D.(﹣2)﹣(﹣3)=19、去括号后结果错误的是()A.2(a+2b)=2a+4bB.3(2m﹣n)=6m﹣3nC.﹣[c﹣(a﹣b)]=﹣c ﹣a+bD.﹣(x﹣y+z)=﹣x+y﹣z10、在一张某月的日历上,任意圈出同一列上的三个数的和不可能是( )A.14B.33C.51D.2711、在﹣3x,6﹣a=2,4ab2, 0,,,>,x中,是代数式的共有()A.7个B.6个C.5个D.4个12、下列说法中正确的是( )A.若,则B.若,则C. 的系数是D.若,则13、下列叙述①单项式- 的系数是- ,次数是3次;②用一个平面去截一个圆锥,截面的形状可能是一个三角形;③在数轴上,点A、B分别表示有理数a、b,若a >b,则A到原点的距离比B到原点的距离大;④从八边形的一个顶点出发,最多可以画五条对角线;⑤六棱柱有八个面,18条棱.其中正确的有()A.2个B.3个C.4个D.5个14、下列结论正确的是( )A.3a 2b-a 2b=2B.单项式-x 2的系数是-1C.使式子(x+2)0有意义的x的取值范围是x≠0D.若分式的值等于0,则a=±115、下列结论正确的是()A.2 ﹣1=﹣2B.单项式﹣x 2的系数是﹣1C.使式子有意义的x的取值范围是x<2D.若分式的值等于0,则a=﹣1二、填空题(共10题,共计30分)16、体育课上,甲、乙两班学生进行“引体向上”身体素质测试,测试统计结果如下:甲班:全班同学“引体向上”总次数为;乙班:全班同学“引体向上”总次数为.(注:两班人数均超过30人)请比较一下两班学生“引体向上”总次数,________班的次数多,多________次.17、写出一个单项式,使它的系数是,次数是,________.18、某同学在做计算2A+B时,误将“2A+B”看成了“2A﹣B”,求得的结果是9x2﹣2x+7,已知B=x2+3x+2,则2A+B的正确答案为________.19、若5x3y n和﹣x m y2是同类项,则3m﹣7n=________.20、观察下面由※组成的图案和算式,解答问题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52请用上述规律计算:1+3+5+…+2003+2005=________.21、﹣πa2b的系数是________,次数是________.22、单项式﹣πa3bc的次数是________,系数是________.23、若﹣2x m﹣n y2与3x4y2m+n是同类项,则m﹣3n的立方根是________.24、已知a、b、c是△ABC的三边,化简|a﹣b﹣c|+|b+c﹣a|+|c+a+b|得________.25、有理数,,在数轴上的位置如图所示,试化简________.三、解答题(共6题,共计25分)26、下列代数式中,哪些是整式?①x2+y2;②﹣x;③;④6xy+1;⑤;⑥0;⑦.27、已知A=3x2-ax+6x-2,B=-3x2+4ax-7,若A+B的值不含x项,求a的值.28、先化简,再求值:已知,求代数式2xy2-[6x-4(2x-1)-2xy2]+9的值。
人教版数学七年级上册第二章《整式的加减》综合测试卷(含答案)
人教版数学七年级上册第二章《整式的加减》综合测试卷(含答案)一、单选题1.代数式22a b +的意义是( ).A .a 的平方与b 的和B .a 与b 的平方的和C .a 与b 两数的平方和D .a 与b 的和的平方 2.用a 表示的数一定是( )A .正数B .正数或负数C .正整数D .以上全不对 3.若2x y +=,3z y -=-,则x z +的值等于( )A .5B .1C .-1D .-54.已知3,2a b c d +=-=,则()()a c b d +--+的值是( )A .5B .-5C .1D .-15.若a ,b 互为相反数,c 的倒数是4,则334a b c +-的值为( )A .8-B .5-C .1-D .166.不改变代数式22a a b c +-+的值,下列添括号错误的是( )A .2(2)a a b c +-+B .2(2)a a b c --+-C .2(2)a a b c --+D .22()a a b c ++-+ 7.用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第①个图案中有9个正方形,第①个图案中有13个正方形,第①个图案中有17个正方形,此规律排列下去,则第①个图案中正方形的个数为( )A .32B .34C .37D .418.化简(2a ﹣b )﹣(2a +b )的结果为( )A .2bB .﹣2bC .4aD .4a9.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==10.某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为( ) A .20a 元 B .()2024a +元 C .()17 3.6a +元 D .()20 3.6a +元 11.如图,将图1中的长方形纸片前成①号、①号、①号、①号正方形和①号长方形,并将它们按图2的方式无重叠地放入另一个大长方形中,若需求出没有覆盖的阴影部分的周长,则下列说法中错误的是( )A .只需知道图1中大长方形的周长即可B .只需知道图2中大长方形的周长即可C .只需知道①号正方形的周长即可D .只需知道①号长方形的周长即可12.将全体正偶数排成一个三角形数阵:按照以上排列的规律,第10行第5个数是( )A .98B .100C .102D .10413.化简1(93)2(1)3x x --+的结果是( ) A .21x - B .1x + C .53x + D .3x -14.把图1中周长为16cm 的长方形纸片分割成四张大小不等的正方形纸片A 、B 、C 、D 和一张长方形纸片E ,并将它们按图2的方式放入周长为24cm 的的长方形中.设正方形C 的边长为cm x ,正方形D 的边长为cm y .则下结论中正确的是( )A .正方形C 的边长为1cmB .正方形A 的边长为3cmC .正方形B 的边长为4cmD .阴影部分的周长为20cm15.某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是( )A .先打九五折,再打九五折B .先提价50%,再打六折C .先提价30%,再降价30%D .先提价25%,再降价25%16.多项式2835x x -+与多项式323257x mx x +-+相加后,不含二次项,则常数m 的值是( )A .2B .4-C .2-D .8-17.代数式4x 3–3x 3y +8x 2y +3x 3+3x 3y –8x 2y –7x 3的值A .与x ,y 有关B .与x 有关C .与y 有关D .与x ,y 无关18.有n 个依次排列的整式:第一项是a 2,第二项是a 2+2a +1,用第二项减去第一项,所得之差记为b 1,将b 1加2记为b 2,将第二项与b 2相加作为第三项,将b 2加2记为b 3,将第三项与b 3相加作为第四项,以此类推;某数学兴趣小组对此展开研究,得到4个结论: ①b 3=2a +5;①当a =2时,第3项为16;①若第4项与第5项之和为25,则a =7;①第2022项为(a +2022)2;①当n =k 时,b 1+b 2+…+bk =2ak +k 2;以上结论正确的是( )A .①①①B .①①①C .①①①D .①①①19.将正整数按如图所示的规律排列下去,若有序数对(n ,m )表示第n 排,从左到右第m 个数,如(4,3)表示8,已知1+2+3+…+n=()12n n +,则表示2020的有序数对是( ).A .(64,4)B .(65,4)C .(64,61)D .(65,61) 20.当1x =-时,3238ax bx -+的值为18,则1282b a -+的值为( )A .40B .42C .46D .56二、填空题21.化简()x y x y +--=___________.22.在代数式23xy ,m ,263a a -+,12,22145x yzx xy -,23ab 中,单项式有___________个.23.如图,在数轴上,点A 表示1,现将点A 沿x 轴做如下移动:第一次将点A 向左移动3个单位长度到达点1A ,第二次将点1A 向右移动6个单位长度到达点2A ,第三次将点2A 向左移动9个单位长度到达点3A ,按照这种移动规律移动下去,第n 次移动到点n A ,如果点n A 与原点的距离不小于20,那么n 的最小值是_________.24.22213x x ⎛⎫-+ ⎪⎝⎭-_________________=2325x x -+. 25.a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.已知112a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则2020a =________.三、解答题26.有这样一道题:“求(2x 3﹣3x 2y ﹣2xy 2)﹣(x 3﹣2xy 2+y 3)+(﹣x 3+3x 2y ﹣y 3)的值,其中x =2020,y =﹣1”.小明同学把“x =2a ab --”错抄成了“x =﹣3m n -”,但他的计算结果竟然正确,请你说明原因,并计算出正确结果.27.如图,用字母表示图中阴影部分的面积.28.小刘、小张两位同学玩数学游戏,小刘说“任意选定一个数,然后按下列步骤进行计算:加上20,乘2,减去4,除以2,再减去你所选定的数”,小张说“不用算了,无论我选什么数,结果总是18”,小张说得对吗?说明理由.29.(1)若(a﹣2)2+|b+3|=0,则(a+b)2019=.(2)已知多项式(6x2+2ax﹣y+6)﹣(3bx2+2x+5y﹣1),若它的值与字母x的取值无关,求a、b的值;(3)已知(a+b)2+|b﹣1|=b﹣1,且|a+3b﹣3|=5,求a﹣b的值.30.已知:a是单项式-xy2的系数,b是最小的正整数,c是多项式2m2n-m3n2-m-2的次数.请回答下列问题:(1)请直接写出a、b、c的值.a=,b=,c=.(2)数轴上,a、b、c三个数所对应的点分别为A、B、C,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC.①t秒钟过后,AC的长度为(用含t的关系式表示);①请问:BC-AB的值是否会随着时间t的变化而改变?若变化,请说明理由;若不变,请求出其值.参考答案1--10CDCAC CCBCD 11--20BBDDB BDACB21.2y22.323.1324.2443x x -+- 25.12- 26.解:原式=2x 3﹣3x 2y ﹣2xy 2﹣x 3+2xy 2﹣y 3﹣x 3+3x 2y ﹣y 3=﹣2y 3,①此题的结果与x 的取值无关,y =﹣1时,原式=﹣2×(﹣1)3=2.27.解:由题意得:==S S S mn pq --阴影大长方形空白长方形,①阴影部分的面积为mn pq -.28.正确,理由如下:设此整数是a ,由题意得()a 20242+⨯--a =a+20-2=18,所以说小张说的对.29.解:(1)①(a ﹣2)2+|b +3|=0,且(a ﹣2)2≥0,|b +3|≥0,①a ﹣2=0,b +3=0,解得a =2,b =﹣3,①(a +b )2019=(2﹣3)2019=﹣1.故答案为:﹣1;(2)原式=6x 2+2ax ﹣y +6﹣3bx 2﹣2x ﹣5y +1,=(6﹣3b )x 2+(2a ﹣2)x ﹣6y +7,由结果与x 取值无关,得到6﹣3b =0,2a ﹣2=0,解得:a =1,b =2;(3)①(a +b )2+|b ﹣1|=b ﹣1,①(a +b )2+|b ﹣1|-(b ﹣1)=0,①|b ﹣1|≥(b ﹣1),①|b ﹣1|-(b ﹣1)≥0,(a +b )2≥0,①a +b =0且|b ﹣1|=b ﹣1,①010a b b +=⎧⎨-≥⎩, 解得,1a b b =-⎧⎨≥⎩, ①|a +3b ﹣3|=5,①a +3b ﹣3=5或a +3b ﹣3=-5,①a +3b =8或a +3b =﹣2,把a =﹣b 代入上式得:b =4或﹣1(舍去),①a ﹣b =﹣4﹣4=﹣8.30.(1)解:由题意得,单项式-xy 2的系数a =-1,最小的正整数b =1,多项式2m 2n -m 3n 2-m -2的次数c =5; 故答案为:-1,1,5(2)①t 秒后点A 对应的数为a -t ,点B 对应的数为b +t ,点C 对应的数为c +3t ,故AC =|c +3t -a +t |=|5+4t +1|=6+4t ; 故答案为:6+4t ①①BC =5+3t -(1+t )=4+2t ,AB =1+t -(-1-t )=2+2t ;①BC -AB =4+2t -2-2t =2, 故BC -AB 的值不会随时间t 的变化而改变.其值为2.。
人教版七年级数学上册第二章整式的加减法试题(含答案) (26)
人教版七年级数学上册第二章整式的加减法复习试题(含答案)先化简,再求值: ()()22242 523xy x xy y x xy -+-++,其中x 1,y 2==-.【答案】(1) 25xy y +;6-.【解析】【分析】先化简,再代入求值即可.【详解】解: (1) 原式=222425 26xy x xy y x xy --+++25xy y =+当1, 2x y ==-时,原式=()()25122⨯⨯-+- 6=-.【点睛】本题考查了整式的化简求值问题,注意求值时底数是负数代入时要加上括号.52.先化简,再求值:求3223120.42( 1.5)3x x x x x x +---+的值,其中32x =-. 【答案】28 1.63-x x ,8.4 【解析】【分析】根据整式的加减运算法则即可化简,再代入x 即可求解.【详解】原式3223120.42323x x x x x x =+--+- 28 1.63x x =- 把32x =-代入得 原式的值2833() 1.6()322=⨯--⨯- 89 2.434=⨯+ 8.4=.【点睛】此题主要考查整式的化简求值,解题的关键是熟知整式的加减运算法则.53.(1)计算: ()23252⨯-+⨯- (2)化简: ()22226 32 3 a b a b ab ab ---【答案】(1) 22; (2)28ab .【解析】【分析】(1)根据有理数的运算法则即可求解;(2)根据整式的加减运算法则即可求解.【详解】(1)解:原式=3410⨯+=22.(2)原式=22226 69a b a b ab ab -+-28ab =.【点睛】此题主要考查有理数及整式的运算,解题的关键是熟知其运算法则.54.化简:5(3a 2b ﹣ab 2)﹣(ab 2+3a 2b )【答案】12a 2b ﹣6ab 2.【解析】【分析】直接去括号进而合并同类项即可得出答案.【详解】:原式=15a 2b ﹣5ab 2﹣ab 2﹣3a 2b=12a 2b ﹣6ab 2.【点睛】此题主要考查了整式的加减,正确合并同类项是解题关键.55.先化简,再求值:2(2)(2)(2)x y x y x y +-+-,其中12x =,3y =. 【答案】242xy y +,24 【解析】【分析】先去括号再合并同类项,再将x 、y 的值代入化简后的结果计算.【详解】原式()2222444x xy y x y =++--,2222444x xy y x y =++-+,242xy y =+, 12x =,3y =, ∴原式=2143232⨯⨯+⨯, 618=+,24=.【点睛】此题考查整式的化简求值,按照整式计算的步骤正确化简是解题的关键,再将未知数的值或是代数式的值整体代入计算.56.计算:()()2222533a b ab ab a b --+,其中11,23a b =-=. 【答案】12a ²b -6ab ²,43【解析】【分析】先将整式化简,再将a 、b 的值代入求解即可.【详解】5(3a ²b -ab ²)-(ab ²+3a ²b )=12a ²b -6ab ², 当11,23a b =-=时, 原式=22111111111412612612323432933⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯⨯-⨯=⨯⨯-⨯-⨯=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭-. 【点睛】本题考查整式的化简求值,关键在于熟练掌握化简方法. 57.先化简,再求值:2()5()(2)(2)a b b a b a b a b ---++-, 其中13a =-,3b =.【答案】2a 2-7ab +2b 2;2259. 【解析】【分析】根据整式的乘法公式与运算法则进行化简,再代入a,b 即可求解.【详解】 2()5()(2)(2)a b b a b a b a b ---++-=222222554a ab b ab b a b -+-++-=2a 2-7ab +2b 2 把13a =-,3b =代入原式=2×19-7×(-1)+2×9=29+7+18=2259. 【点睛】此题主要考查整式的化简求值,解题的关键是熟知整式的乘法运算法则.58.解答下列各题(1)当a =-2,b =3时,求代数式a 2-4ab +4b 2的值.(2)先化简再求值:()22221232722x xy y x xy y ⎛⎫----- ⎪⎝⎭,其中2,3x y =-=. 【答案】(1)64;(2)2x xy -+ ;-10 【解析】【分析】(1)把a=-2,b=3代入a 2-4ab+4b 2求解即可;(2)把原式去括号,合并同类项,然后把x 2,y 3=-=代入原式即可求出答案.【详解】解:(1)∵2244a ab b -+=(a-2b)² 把a=-2,b=3代入得:原式=(-2-6)²=64;(2)原式222262272x xy y x xy y =---++2x xy =-+当2,3x y =-=时,原式=()()22234610--+-⨯=--=- 【点睛】本题考查了整式的化简求值,整式的加减运算实际上就是去括号、合并同类项.59.先化简再求值:22113122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中x =-2,y =23. 【答案】23x y -+,469. 【解析】【分析】先去括号合并同类项,再把x =-2,y =23代入计算即可. 【详解】22123122323x x y x y =-+-+原式 =-3x +2y ,当x =-2,y =23时, 原式=()()22432639⎛⎫-⨯-+= ⎪⎝⎭. 【点睛】本题考查了整式的化简求值,解答本题的关键是熟练掌握整式的运算法则,将所给多项式化简.本题主要利用去括号合并同类项的知识,注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.60.先化简,再求值:()()()()3232232x y x y x y x y x +--+-÷⎡⎤⎣⎦,其中2x =,1y =- 【答案】64x y -;16.【解析】【分析】首先利用整式的乘法法则和平方差公式打开小括号,然后合并同类项,最后利用整式的除法法则计算即可求解.【详解】原式=(32)2-÷x y x x=2(32)64-=-x y x y当2x =,1y =-时,∴ 原式=12+4=16【点睛】此题主要考查了整式的混合运算-化简求值,解题的关键 是利用整式的混合运算法则,同时也注意利用乘法公式简化计算.。
人教版七年级数学上册第二章测试题含答案
人教版数学七年级上册第二章整式的加减一、选择题(每题3分,计24分) 1.下列各式中不是单项式的是( ) A .3a B .-51 C .0 D .a32.甲数比乙数的2倍大3,若乙数为x ,则甲数为( ) A .2x -3 B . 2x+3 C .21x -3 D .21x+33.如果2x 3n y m+4与-3x 9y 2n 是同类项,那么m 、n 的值分别为( ) A .m=-2,n=3 B .m=2,n=3 C .m=-3,n=2 D .m=3,n=24.已知3221A a ab =-+,3223B a ab a b =+-,则A B +=( ) A .3222331a ab a b --+ B .322231a ab a b +-+ C .322231a ab a b +-+ D .322231a ab a b --+ 5.从减去的一半,应当得到( ). A. B.C.D.6.减去-3m 等于5m 2-3m-5的式子是( )A .5(m 2-1)B .5m 2-6m-5C .5(m 2+1)D .-(5m 2+6m-5) 7.在排成每行七天的日历表中取下一个33⨯方块.若所有日期数之和为189,则n 的值为( ) A .21 B .11 C .15 D .98.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真地复习老师讲的内容,他突然发现一道题222221131(3)(4)2222x xy y x xy y x -+---+-=- +_____________+2y 空格的地方被钢笔水弄污了,那么空格中的一项是( )A .7xy -B .7xyC .xy -D .xy 二、填空题(每题4分,计32分)9.单项式2r π-的系数是 ,次数是 . 10.当 x =5,y =4时,式子x -2y的值是 .11.按下列要求,将多项式x 3-5x 2-4x+9的后两项用( )括起来. 要求括号前面带有“—”号,则x 3—5x 2—4x+9=___________________ 12.把(x —y )看作一个整体,合并同类项:5(x —y )+2(x —y )—4(x —y )=_____________.13.一根铁丝的长为54a b +,剪下一部分围成一个长为a 宽为b 的长方形,则这根铁丝还剩下_____________________. 14.用语言说出式子a+b 2的意义:______________________________________15.某校为适应电化教学的需要新建阶梯教室,教室的第一排有a 个座位,后面每一排都比前一排多一个座位,若第n 排有m 个座位,则a 、n 和m 之间的关系为 .16.小明在求一个多项式减去x 2—3x+5时,误认为加上x 2—3x+5,•得到的答案是5x 2—2x+4,则正确的答案是_______________. 三、解答题(共28分)17.(6分)化简:(1))343(4232222x y xy y xy x +---+; (2))32(5)5(422x x x x +--.18.(6分)如图所示,在下面由火柴棒拼出的一系列的图形中,第n 个图形由n•个正方形组成.n=4n=3n=2n=1(1)第2个图形中,火柴棒的根数是________; (2)第3个图形中,火柴棒的根数是________; (3)第4个图形中,火柴棒的根数是_______; (4)第n 个图形中,火柴棒的根数是________.19.(8分)有这样一道题:“当a=2009,b=—2010时,求多项式3323323-+++--+2010的值.”76336310a ab a b a a b a b a小明说:本题中a=2009,b=—2010是多余的条件;小强马上反对说:这不可能,多项式中含有a和b,不给出,a b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.20.(8分)一个三角形一边长为a+b,另一边长比这条边大•b,•第三边长比这条边小a—b.(1)求这个三角形的周长;(2)若a=5,b=3,求三角形周长的值.四、拓广探索(共16分)21.(8分)有一串单项式:x,-2x2,3x3,-4x4,……,-10x10,……(1)请你写出第100个单项式;(2)请你写出第n个单项式.22.(8分)如图所示,请你探索正方形的个数与等腰三角形的个数之间的关系.正方形个数 1 2 3 4 …n等腰三角形个数(1)照这样的画法,如果画15个正方形,可以得_______个等腰三角形;(2)若要得到152个等腰三角形,应画_______个正方形;2.1-2.2测试B1.(7分)已知x2—xy=21,xy-y2=—12,分别求式子x2-y2与x2—2xy+y2的值.2.(7分)同一时刻的北京时间、巴黎时间、东京时间如图所示.(1)设北京时间为)a,分别用代数式表示同一时刻的巴黎<a7(<23时间和东京时间;(2)2001年7月13日,北京时间22:08,国际奥委会主席萨马兰奇宣布,北京获得2008年第29届夏季奥运会的主办权.问这一时刻贩巴黎时间、东京时间分别为几时?3.(8分)按照下列步骤做一做:(1)任意写一个两位数;(2)交换这个两位数的十位数字和个位数字,得到一个新数;(3)求这两个两位数的差.再写几个两位数重复上面的过程,这些差有什么规律?这个规律对任意一个两位数都成立吗?为什么?4.(8分)有一包长方体的东西,用三种不同的方法打包,哪一种方法使用的绳子最短?哪一种方法使用的绳子最长?(a+b>2c)参考答案 一、选择题1.D 2.B 3.B 4.D 5.D 6.C 7.A 8.C 二、填空题9.2,π- 10.3 11.x 3—5x 2—(4x —9) 12.3(x —y ) 13.3a+2b 14.a 与b 的平方的和 15.m=a+n —1 16.3x 2+4x —6 三、解答题17.(1)原式=xy x y xy y xy x -=-+--+2222343423; (2)原式=x x x x x x 3561510204222--=---. 18.(1)7;(2)10;(3)13;(4)3n+1 19.∵332332376336310a a b a b a a b a b a -+++--+2010=332(731)(66)(33)a a b a b +-+-++-+2010 =2010.∴a=2009,b=—2010是多余的条件,故小明的观点正确. 20. (1) 三角形的周长为:b a b a b a b b a b a 52)()()(+=+-++++++; (2)当a =5,b =3时,周长为:25. 四、拓广探索21.(1)—100x 100;(2)(—1)n+1x n .22.0,4,8,12,4(n—1)(1)56;(2)4(n—1)=152,n=39.2.1-2.2测试B参考答案1.x2-y2= (x2-xy)+(xy-y2)=21—12=9,x2-2xy+y2= (x2-xy)—(xy-y2)=21+12=33.2.(1)巴黎时间为a+5,东京时间为a+1;(2) 巴黎时间为3:08,东京时间为23:08.3.(1)24;(2)42;(3)42—24=18;是9的倍数.设原两位数的十位数字为b,个位数字为a(b>a),则原两位数为10b+a,交换后的两位数为10a+b.10b+a-(10a+b)=10b+a-10a-b=9b-9a=9(b-a)4.第(1)种方法的绳子长为4a+4b+8c,第(2)种方法的绳子长为4a+4b+4c,第(3)种方法的绳子长为6a+6b+4c,从而第(3)种方法绳子最长,第(2)种方法绳子最短。
人教版七年级上册数学第二章《整式的加减》计算题训练(含答案)
3.计算
(1) 2 x 5y 43x 4 y
(2) 4x2 y 3xy 23xy 2 2x2 y
4.计算:
(1) 3a2b 5 5b2 6a2b 7 5b2 4a3 ;
(2) 3ab2 2 2ab2 a2b 3 1 4a2b 10ab2 . 2
5.化简:
8.化简并求值: 2 ab2 2a2b 3 ab2 a2b 1 ,其中 a 2,b 1.
9.先化简,再求值: x2 y2 2xy 3x2 4xy y2 5xy ,其中, x= 1, Nhomakorabeay 2.
10.先化简,再求值 2
ab 3a2
5a2
4ab a2
14.已知 A 3a2 ab , B 5ab a2 (1)求 2A B 的值;
(2)若 2A 与 B C 互为相反数,a、b 满足 a 22 + b+1=0 ,求 C 的值.
15.已知 A 4x2 2xy 3y2, B 4x2 3y2 . (1)求 A B ; (2)当 x 3, y 1 时,求 A B 的值.
18.已知代数式 A 2x2 5xy 7 y 3 , B x2 xy 2
(1)求 3A 2A 3B 的值;
(2)若 A 2B 值与 x 的取值无关,求 y 的值.
1.(1) 1 x2 - 3x + 2 5
(2) 1 a2b 4
2.(1) 2x2 x 1 (2) 3a2 33a 18
3.(1) 6 y 10x (2) 2x2 y 3xy 4
4.(1) 3a2b 4a3 2 (2) 4ab2 6
5.(1) a2b 8ab2 (2) x2 4x
6.(1) 2a2 7b2 ab (2)12a 10b
7. 3x2 4xy 12 , 24 8. ab2 a2b 3 , 5 9. 4x2 xy ;6 10. 2ab ;1 11. 3x2 y 5xy , 2 12. 5x2 xy ,18 13. a2b 6ab2 3 , 89 14.(1) 5a2 3ab (2) 14
七年级数学上册第二章《整式的加减》经典复习题(4)
1.把有理数a 代入|a +4|﹣10得到a 1,称为第一次操作,再将a 1作为a 的值代入得到a 2,称为第二次操作,…,若a =23,经过第2020次操作后得到的是( ) A .﹣7B .﹣1C .5D .11A解析:A【分析】先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;第7次操作,a 7=|-7+4|-10=-7;…第2020次操作,a 2020=|-7+4|-10=-7.故选:A .【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.2.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )B 解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B.考点:列代数式.3.已知5a b +=,4ab =,则代数式()()35834ab a b a ab +++-的值为( ) A .36B .40C .44D .46A 解析:A【分析】原式去括号整理后,将已知等式代入计算即可求出值.【详解】∵a+b=5,ab=4,∴原式=3ab+5a+8b+3a−4ab=8(a+b)−ab=40−4=36,故选A.【点睛】本题考查的是代数式的求值,熟练掌握先化简再求值是解题的关键.4.已知322x y 和m 2x y -是同类项,则式子4m 24-的值是( )A .21-B .12-C .36D .12B解析:B【分析】根据同类项定义得出m 3=,代入求解即可.【详解】解:∵322x y 和m 2x y -是同类项, ∴m 3=,∴4m 24432412-=⨯-=-,故选B .【点睛】本题考查了对同类项定义的应用,注意:所含字母相同,并且相同字母的指数也分别相等的项,叫同类项,常数也是同类项.5.一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( ) A .1 B .-1 C .2020 D .2020- A 解析:A【分析】首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案.【详解】 解: 11a =-,()21111,1112a a ===--- 32112,1112a a ===--43111112a a ===---, 所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=- 所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A .【点睛】 本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环. 6.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( )A .2-B .13C .23D .32A 解析:A【分析】求出数列的前4个数,从而得出这个数列以-2,13,32依次循环,用2020除以3,再根据余数可求a 2020的值.【详解】 ∵a 1=-2, ∴2111(3)3a ==--,3131213a ==-, 412312a ==-- ∴每3个结果为一个循环周期∵2020÷3=673⋯⋯1,∴202012a a ==-故选:A.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.7.下列同类项合并正确的是( )A .x 3+x 2=x 5B .2x ﹣3x =﹣1C .﹣a 2﹣2a 2=﹣a 2D .﹣y 3x 2+2x 2y 3=x 2y 3D解析:D【分析】 根据合并同类项系数相加字母及指数不变,可得答案.【详解】解:A 、x 3与x 2不是同类项,不能合并,故A 错误;B 、合并同类项错误,正确的是2x ﹣3x =﹣x ,故B 错误;C 、合并同类项错误,正确的是﹣a 2﹣2a 2=﹣3a 2,故C 错误;D 、系数相加字母及指数不变,故D 正确;故选:D .【点睛】本题考查了合并同类项,熟记合并同类项的法则,并根据合并同类项的法则计算是解题关键.8.下列各式中,去括号正确的是( )A .2(1)21x y x y +-=+-B .2(1)22x y x y --=++C .2(1)22x y x y --=-+D .2(1)22x y x y --=-- C解析:C【分析】各式去括号得到结果,即可作出判断.【详解】解:2(1)22x y x y +-=+-,故A 错误; 2(1)22x y x y --=-+,故B,D 错误,C 正确.故选:C .【点睛】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键.9.式子5x x-是( ). A .一次二项式B .二次二项式C .代数式D .都不是C 解析:C【分析】根据代数式以及整式的定义即可作出判断.【详解】 式子5x x-分母中含有未知数,因而不是整式,故A 、B 错误,是代数式,故C 正确. 故选:C .【点睛】 本题考查了代数式的定义,就是利用运算符号把数或字母连接而成的式子,单独的数或字母都是代数式.10.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于1,则()2a b cd m +-+的值是( ).A .0B .-2C .0或-2D .任意有理数A解析:A【分析】根据相反数的定义得到0a b +=,由倒数的定义得到cd=1,根据绝对值的定义得到|m|=1,将其代入()2a b cd m +-+进行求值. 【详解】∵a ,b 互为相反数,∴0a b +=,∵c ,d 互为倒数,∴cd =1,∵m 的绝对值等于1,∴m =±1,∴原式=0110-+=故选:A.【点睛】本题考查代数式求值,相反数,绝对值,倒数.能根据相反数,绝对值,倒数的定义求出+a b ,cd 和m 的值是解决此题的关键.11.在3a ,x+1,-2,3b -,0.72xy ,2π,314x -中单项式的个数有( ) A .2个B .8个C .4个D .5个C 解析:C【分析】根据单项式的定义逐一判断即可.【详解】3a中,分母含未知数,是分式,不是单项式, x+1是多项式,不是单项式,-2是单项式,3b -是单项式, 0.72xy 是单项式,2π是单项式, 314x -=3144x -,是多项式,∴单项式有-2、3b -、0.72xy 、2π,共4个, 故选C.【点睛】 本题考查单项式的定义,熟练掌握定义是解题关键.12.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y 的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( )A .1个B .2个C .3个D .4个A解析:A【分析】根据字母可以表示任意数可判断①,根据特殊例子0没有倒数可判断②,根据负数的相反数可判断③,根据特殊例子a=1,b=-2,可判断④,根据单项式次数的定义可判断⑤,根据有理数的分类判断⑥,根据同类项的概念判断⑦.【详解】字母可以表示任意数,当a <0时,-a >0,故①错误;0没有倒数,故②错误;负数的相反数是正数,正数大于负数,故③错误;若a=1,b=-2,a b >,但是22a b <,故④错误; 235x y 的次数是3,故⑤错误; 0属于整数,故⑥这种分类不正确;27m ba -与2abm 是同类项,⑦正确,故选A.【点睛】本题考查有理数和代数式的相关概念,熟记这类知识点是解题的关键.13.小明乘公共汽车到白鹿原玩,小明上车时,发现车上已有(6a ﹣2b )人,车到中途时,有一半人下车,但又上来若干人,这时车上共有(10a ﹣6b )人,则中途上车的人数为( )A .16a ﹣8bB .7a ﹣5bC .4a ﹣4bD .7a ﹣7b B解析:B【分析】根据题意表示出途中下车的人数,再根据车上总人数即可求得中途上车的人数.【详解】由题意可得:(10a ﹣6b )﹣[(6a ﹣2b )﹣(3a ﹣b )]=10a ﹣6b ﹣6a +2b +3a ﹣b=7a ﹣5b .故选B .【点睛】本题考查了整式加减的应用,根据题意正确列出算式是解决问题的关键.14.一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64B .31,32,33C .31,62,63D .31,45,46C 解析:C【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数.【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63.故选:C .【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.15.下列说法错误的是( )A .23-2x y 的系数是32- B .数字0也是单项式 C .-x π是二次单项式D .23xy π的系数是23πC 解析:C【分析】根据单项式的有关定义逐个进行判断即可.【详解】 A. 23-2x y 的系数是32-,故不符合题意; B. 数字0也是单项式 故不符合题意;C. -x π是一次单项式 ,故原选项错误D. 23xy π的系数是23π,故不符合题意. 故选C .【点睛】本题考查对单项式有关定义的应用,能熟记单项式的有关定义是解此题关键.1.观察下列顺序排列的等式:9×0+1 = 1,9×1+2 = 11,9×2+3=21, 9×3+4=31,9×4+5=41,……,猜想:第n 个等式(n 为正整数)用n 表示,可表示成_________.【分析】根据数据所显示的规律可知:第一数列都是9第2数列开始有顺序且都是所对序号的数减去1加号后的数据有顺序且与所在的序号项吻合等号右端是的规律所以第n 个等式(n 为正整数)应为【详解】根据分析:即第解析:109n -【分析】根据数据所显示的规律可知:第一数列都是9,第2数列开始有顺序且都是所对序号的数减去1,加号后的数据有顺序且与所在的序号项吻合,等号右端是()10?11n -+的规律,所以第n 个等式(n 为正整数)应为()()9110?11n n n -+=-+.【详解】根据分析:即第n 个式子是()()9110?11109n n n n -+=-+=-.故答案为:109n -.【点睛】本题主要考查了数字类规律探索题.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解. 2.在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空)【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n 条直线相交最多有1+2+3+…+(n-1)=个解析:()12n n - 【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n 条直线相交,最多有1+2+3+…+(n-1)=()12n n -个交点. 【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n 条直线相交,最多有1+2+3+…+(n-1)=()12n n - 个交点.即()12n n m -= 故答案为:()12n n -.【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.3.已知123112113114,,,...,1232323438345415a a a =+==+==+=⨯⨯⨯⨯⨯⨯依据上述规律,则 99a =________.【解析】试题解析:1009999. 【解析】试题 等号右边第一式子的第一个加数的分母是从1开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是2,结果的分子是2,分母是1×3=3;等号右边第二个式子的第一个加数的分母是从2开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是3,结果的分子是3,分母是2×4=8;等号右边第三个式子的第一个加数的分母是从3开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是4,结果的分子是4,分母是3×5=15.所以a 99=991100991019999+=⨯. 考点:规律型:数字的变化类.4.如图,图1是“杨辉三角”数阵;图2是(a+b )n 的展开式(按b 的升幂排列).若(1+x )45的展开式按x 的升幂排列得:(1+x )45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=_____.990【分析】根据图形中的规律即可求出(1+x )45的展开式中第三项的系数为前44个数的和计算得到结论【详解】解:由图2知:(a+b )1的第三项系数为0(a+b )2的第三项的系数为:1(a+b )3的解析:990【分析】根据图形中的规律即可求出(1+x )45的展开式中第三项的系数为前44个数的和,计算得到结论.【详解】解:由图2知:(a+b )1的第三项系数为0,(a+b )2的第三项的系数为:1,(a+b )3的第三项的系数为:3=1+2,(a+b )4的第三项的系数为:6=1+2+3,…∴发现(1+x )3的第三项系数为:3=1+2;(1+x )4的第三项系数为6=1+2+3;(1+x )5的第三项系数为10=1+2+3+4;不难发现(1+x )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1),∴(1+x )45=a 0+a 1x+a 2x 2+...+a 45x 45,则a 2=1+2+3+ (44)44(441)2⨯+=990; 故答案为:990.【点睛】本题考查了完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b )n 中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高.5.m ,n 互为相反数,则(3m –2n )–(2m –3n )=__________.0【解析】由题意m+n=0所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0【点睛】本题考查相反数去括号法则等解题的关键是根据题意得出m+n=0然后再对所求的式子进行去括号合并同解析:0【解析】由题意m+n=0,所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0.【点睛】本题考查相反数、去括号法则等,解题的关键是根据题意得出m+n=0,然后再对所求的式子进行去括号,合并同类项,整体代入数值即可.6.一个关于x 的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12,则这个二次三项式为________________________.【解析】根据题意要求写一个关于字母x 的二次三项式其中二次项是x2一次项是-x 常数项是1所以再相加可得此二次三项式为 解析:21122x x -+-【解析】根据题意,要求写一个关于字母x 的二次三项式,其中二次项是x 2,一次项是-12x ,常数项是1,所以再相加可得此二次三项式为211x x 22-+-. 7.关于x 的二次三项式的一次项的系数为5,二次项的系数是-3,常数项是-4.按照x 的次数逐渐减小排列,这个二次三项式为____.-3x2+5x -4【分析】由于多项式是由单项式组成的而多项式的次数是多项式中次数最高的项的次数而关于x 的二次三项式的二次项系数是-3一次项系数是5常数项是-4根据前面的定义即可确定这个二次三项式【详解析:-3x2+5x-4【分析】由于多项式是由单项式组成的,而多项式的次数是“多项式中次数最高的项的次数”,而关于x的二次三项式的二次项系数是-3,一次项系数是5,常数项是-4,根据前面的定义即可确定这个二次三项式.【详解】∵关于x的二次三项式,二次项系数是-3,∴二次项是-3x2,∵一次项系数是,∴一次项是5x,∵常数项是-4,∴这个二次三项式为:-3x2+5x-4.故答案为:-3x2+5x-4【点睛】本题考查了多项式的知识,多项式是由单项式组成的,本题首先要确定是由几个单项式组成,要记住常数项也是一项,单项式前面的符号也应带着.8.礼堂第一排有a个座位,后面每排都比第一排多1个座位,则第n排座位有________________.【分析】有第1排的座位数看第n排的座位数是在第1排座位数的基础上增加几个1即可【详解】解:∵第一排有个座位∴第2排的座位为a+1第3排的座位数为a+2…第n排座位有(a+n-1)个故答案为:(a+n解析:a n1+-【分析】有第1排的座位数,看第n排的座位数是在第1排座位数的基础上增加几个1即可.【详解】解:∵第一排有a个座位,∴第2排的座位为a+1,第3排的座位数为a+2,…第n排座位有(a+n-1)个.故答案为:(a+n-1).【点睛】考查列代数式;得到第n排的座位数与第1排座位数的关系式的规律是解决本题的关键.9.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a,b的等式表示出来是_____.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab分子用ab表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子 解析:a b -a a b +=a b ×a a b+ 【分析】 从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a ,b ,分子用a ,b 表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积. 设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b +. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.10.若单项式322m x y -与3-x y 的差仍是单项式,则m 的值为__________.【分析】根据题意可知单项式与是同类项从而可求出m 的值【详解】解:∵若单项式与的差仍是单项式∴这两个单项式是同类项∴m-2=1解得:m=3故答案为:3【点睛】本题考查合并同类项和单项式解题关键是能根据解析:3【分析】根据题意可知单项式322m x y-与3-x y 是同类项,从而可求出m 的值. 【详解】解:∵若单项式322m x y -与3-x y 的差仍是单项式, ∴这两个单项式是同类项,∴m-2=1解得:m=3.故答案为:3.【点睛】本题考查合并同类项和单项式,解题关键是能根据题意得出m=3.11.列式表示:(1)三个连续整数的中间一个是n ,用代数式表示它们三个数的和为______;(2)三个连续奇数的中间一个是n ,其他两个数用代数式表示为______;(3)设n 表示任意一个整数,试用含n 的式子表示不能被3整除的数为______.(1)或;(2)和;(3)和【分析】(1)易得最小的整数为n-1最大的整数为n+1把这3个数相加即可;(2)易得最小的奇数为n-2最大的奇数为n+2;(3)余数为1或2的数都不能被3整除从而列出代数解析:(1)()()11n n n -+++或3n ; (2)2n -和2n +; (3)31n +和32n +.【分析】(1)易得最小的整数为n-1,最大的整数为n+1,把这3个数相加即可;(2)易得最小的奇数为n-2,最大的奇数为n+2;(3)余数为1或2的数都不能被3整除,从而列出代数式.【详解】解: (1)由题意可知,最小的整数为n-1,最大的整数为n+1,∴它们的和为()()11n n n -+++=3n ;(2) 三个连续奇数的中间一个是n ,其他两个数用代数式表示为2n -和2n +;(3)3n 能被3整除,余数为1或2的数都不能被3整除,∴不能被3整除的数为31n +和32n +.【点睛】本题考查了列代数式及代数式化简的知识,;用到的知识点为:连续整数之间间隔1,连续奇数之间相隔2,余数为1或2的数都不能被3整除.1.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(______ )2= ______ .根据以上规律填空:(1)13+23+33+…+n 3=(______ )2=[ ______ ]2.(2)猜想:113+123+133+143+153= ______ .解析:1+2+3+4+5;225;1+2+…+n ;()n n 12+;11375 【解析】分析:观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空;(1)、根据上述规律填空,然后把1+2+…+n 变为2n 个(n+1)相乘,即可化简;(2)、对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值.详解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)、∵1+2+…+n=(1+n )+[2+(n-1)]+…+[n 2+(n-n 2+1)]=()n n 12+, ∴13+23+33+…+n 3=(1+2+…+n )2=[()n n 12+]2;(2)、113+123+133+143+153=13+23+33+...+153-(13+23+33+ (103)=(1+2+…+15)2-(1+2+…+10)2 =1202-552=11375.点睛:此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.2.数a 、b 、c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.解析:0;【分析】由数轴可得a >0>b >c ,并从数轴上可得出a ,b ,c 绝对值的大小,从而可以得出各项式子的正负,去绝对值可得出答案. 【详解】 解:由数轴得,c b 0a <<<,且c a b >>,a c cb a b +-++-a c cb a b =--+++- 0=.【点睛】本题考查了数轴上数的大小,去绝对值,熟悉掌握定义是解决本题的关键.3.数学课上,老师出示了这样一道题目:“当1,22a b ==-时,求多项式3233233733631061a a b a a b a b a a b +++----的值”.解完这道题后,张恒同学指出:“1,22a b ==-是多余的条件”师生讨论后,一致认为这种说法是正确的,老师及时给予表扬,同学们对张恒同学敢于提出自己的见解投去了赞赏的目光.(1)请你说明正确的理由;(2)受此启发,老师又出示了一道题目,“无论x 取任何值,多项式2233x mx nx x -++-+的值都不变,求系数m 、n 的值”.请你解决这个问题. 解析:(1)见解析;(2)3n =,1m =.【分析】(1)将原式进行合并同类项,然后进一步证明即可;(2)将原式进行合并同类项,根据“无论x 取任何值,多项式值不变”进一步求解即可.【详解】(1)3233233733631061a a b a a b a b a a b +++----=3332233731033661a a a a b a b a b a b +-+-+--=1-,∴该多项式的值与a 、b 的取值无关,∴1,22a b ==-是多余的条件. (2)2233x mx nx x -++-+=2233x nx mx x -++-+=2(3n)(1)3x m x -++-+∵无论x 取任何值,多项式值不变,∴30n -+=,10m -=,∴3n =,1m =.【点睛】本题主要考查了多项式运算中的无关类问题,熟练掌握相关方法是解题关键. 4.已知一个多项式加上223x y xy -得222x y xy -,求这个多项式. 佳佳的解题过程如下:解:222223x y xy x y xy ---①224x y xy =-②请问佳佳的解题过程是从哪一步开始出错的?并写出正确的解题过程. 解析:是从第①步开始出错的,见解析【分析】根据多项式的加减运算法则进行运算即可求解.【详解】解:佳佳是从第①步开始出错的,正确的解题过程如下:根据题意,得:()()222223x y xy x y xy ---222223x y xy x y xy =--+222x y xy =+,∴这个多项式为222x y xy +.故答案为222x y xy +.【点睛】本题考查了多项式的加减混合运算,注意:只有同类项才能进行加减运算.。
人教版七年级数学上册第二章整式的加减法试题(含答案) (40)
人教版七年级数学上册第二章整式的加减法复习试题(含答案)已知,,x y m 满足如下条件:(1)22(3)3|1|05x m -++=; (2)133y a b -与3229b a -是同类项. 求代数式()()222224623522x y m xy y x xy y +++---的值. 【答案】-4【解析】【分析】利用非负数的性质以及同类项的定义求出x ,y 及m 的值,代入原式计算即可求出值.【详解】由题意得:x −3=0,m+1=0,1-y =2,即x =3,m =-1,y =-1,则原式=2222246-2-35+2+2x y xy y x xy y +-=22-5x y +=-9+5=-4.【点睛】此题考查了整式的加减−化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.92.已知12x =,2y =且2232A x xy y =-+,222B x xy y =+- (1)化简()2A B A --;(2)对(1)的化简结果求值.【答案】(1)22107x xy y -+;(2)1184.【解析】【分析】(1)先化简()2A B A --为3A B -,再将A,B 的值代入合并同类项即可;(2)将x ,y 的值代入22107x xy y -+即可得出答案.【详解】(1)()2A B A --=2A B A -+=3A B -=()()22223322x xy y x xy y -+-+-=22223962x xy y x xy y -+--+=22107x xy y -+(2)当12x =,2y =时 ()2A B A --=22107x xy y -+=221111027218224⎛⎫-⨯⨯+⨯= ⎪⎝⎭【点睛】本题考查了整式加减的化简求值,熟练掌握整式的混合运算法则是解题的关键.93.阅读下列材料:小辉和小乐一起在学校寄宿三年了,毕业之际,他们想合理分配共同拥有的三件“财产”:一个电子词典、一台迷你唱机、一套珍藏版小说.他们本着“在尊重各自的价值偏好基础上进行等值均分”的原则,设计了分配方案,步骤如下(相应的数额如表二所示):①每人各自定出每件物品在心中所估计的价值;②计算每人所有物品估价总值和均分值(均分:按总人数均分各自估价总值);③每件物品归估价较高者所有;④计算差额(差额:每人所得物品的估价总值与均分值之差);⑤小乐拿225元给小辉,仍“剩下”的300元每人均分.依此方案,两人分配的结果是:小辉拿到了珍藏版小说和375元钱,小乐拿到的电子词典和迷你唱机,但要付出375元钱.(1)甲、乙、丙三人分配A,B,C三件物品,三人的估价如表三所示,依照上述方案,请直接写出分配结果;(2)小红和小丽分配D,E两件物品,两人的估价如表四所示(其中0<m-n<15).按照上述方案的前四步操作后,接下来,依据“在尊重各自的价值偏好基础上进行等值均分”的原则,该怎么分配较为合理?请完成表四,并写出分配结果.(说明:本题表格中的数值的单位均为“元”)【答案】(1)甲:拿到物品C和200元;乙:拿到:450元;丙:拿到物品A、B,付出650元;(2)详见解析.【解析】【分析】(1)按照分配方案的步骤进行分配即可;(2)按照分配方案的步骤进行分配即可.【详解】解:(1)如下表:故分配结果如下:甲:拿到物品C和现金:750-100-350+元.100=2003乙:拿到现金750-100-350+元.350=4503元. 丙:拿到物品A,B,付出现金:750-100-350750-=6503故答案为:甲:拿到物品C和现金: 200元.乙:拿到现金450元.丙:拿到物品A,B,付出650元.(2)因为0<m-n<15 所以1515300,152222m n n m --+<<<< 所以3022n m m n -+-> 即分配物品后,小莉获得的“价值"比小红高.高出的数额为:30-=n-m+1522n m m n -+- 所以小莉需拿(n-m+15)元给小红.所以分配结果为:小红拿到物品D 和(152n m -+)元钱,小莉拿到物品E 并付出(152n m -+)元钱. 【点睛】本题考查了代数式的应用,正确读懂题干,理解分配方案是解题的关键.94.某学生在写作业时,不慎将一滴墨水滴在了数轴上,如下图所示,而此时他要化简并求代数式()()2222352xy x x xy x xy ⎡⎤-----+⎢⎥⎣⎦的值.结果同学告诉他:x 的值是墨迹遮盖住的最大整数,y 的值是墨迹遮盖住的最小整数.请你帮助这位同学化简并求值.【答案】xy ,1-【解析】【分析】先把原式进行化简,得到最简代数式,结合x 的值是墨迹遮盖住的最大整数,y 的值是墨迹遮盖住的最小整数,得到x 、y 的值,然后代入计算,即可得到答案.【详解】解:()()2222352xy x x xy x xy ⎡⎤-----+⎢⎥⎣⎦=22226552xy x x xy x xy ⎡⎤-+--++⎣⎦=22226552xy x x xy x xy -+-+-- =xy ; ∵74-<被盖住的数2<, ∴x 的值是墨迹遮盖住的最大整数,∴1x =,∵y 的值是墨迹遮盖住的最小整数,∴1y =-,∴原式=1(1)1⨯-=-.【点睛】本题考查了整式的化简求值,以及利用数轴比较有理数的大小,解题的关键是正确求出x 、y 的值,以及掌握整式的混合运算.95.已知x 2﹣2y ﹣5=0,求多项式3(x 2﹣2xy ﹣3)﹣(x 2﹣6xy+4y )的值.【答案】1【解析】【分析】原式去括号合并同类项,并转化为得到含有代数式x 2﹣2y ﹣5的结果,把已知等式代入计算即可求出值.【详解】解:原式=3x 2﹣6xy ﹣9﹣x 2+6xy ﹣4y=2x 2﹣4y ﹣9=2x 2﹣4y ﹣10+10﹣9=2(x 2﹣2y ﹣5)+1,将x 2﹣2y ﹣5=0代入得:原式=0+1=1.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.96.先化简,再求值:()2213623x y x y ⎛⎫--- ⎪⎝⎭,其中2x =,23y =-. 【答案】23x y -+,950- 【解析】【分析】原式去括号合并得到最简结果,将x 与y 的值代入计算即可求出值.【详解】()2213623x y x y ⎛⎫--- ⎪⎝⎭, 22362x y x y =--+23x y =-+ 当223,x y ==-时,原式22323⎛⎫=-⨯+- ⎪⎝⎭ 469=-+ 095=-. 【点睛】本题考查了整式的加减—化简求值.涉及的知识有:去括号法则以及合并同类项法则,熟练掌握法则是解决本题的关键.97.化简,求值(1)﹣(a 2﹣6b ﹣1)﹣(﹣1+3b ﹣2a 2)(2)先化简,再求其值:已知2(a 2b+ab )﹣2(a 2b ﹣1)﹣2ab 2﹣2,其中a=﹣2,b=2【答案】(1)232a b ++;(2)222ab ab -,8【解析】【分析】(1)(2)利用整式的混合运算化简,然后把给定的值代入求值.【详解】解:(1)原式=2261132a b b a -+++-+=232a b ++(2)原式=222222222a b ab a b ab +-+--=222ab ab -将a=﹣2,b=2代入可得222ab ab -=8.【点睛】本题考查整式的加减-化简求值,解题的关键是熟练掌握整式的加减法则,属于中考常考题型.98.化简求值:2222222(2)3()(22)ab a b ab a b ab a b ---+-,其中 2,1a b ==.【答案】ab 2−3a 2b ;-10【解析】【分析】根据整式乘法的运算法则,去括号后合并同类项,将原式化成最简,将2,1a b ==代入求值即可.【详解】原式222222324322ab a b ab a b ab a b +=--+-222222232432ab ab ab a b a b a b =-+-+-223ab a b =-将2,1a b ==得:2×1²-3×2²×1=-10【点睛】本题考查了整式乘法的化简求值,解决本题的关键是熟练掌握整式运算的顺序,找出同类项将整式化成最简.99.(1)化简:2224()2(2)x x y y x -++-(2)先化简,再求值:22221123(1)2(3)22a b ab a b ab +-+--(),其中12,2a b == 【答案】(1)2x y -+;(2)23a b -,1【解析】【分析】(1)根据整式的加减运算法则即可求解;(2)根据整式的加减运算法则即可化简,再代入12,2a b ==即可求解. 【详解】(1)2224()2(2)x x y y x -++-=222424x x y y x --+-=2x y -+ (2)22221123(1)2(3)22a b ab a b ab +-+--(), =22222336a b ab a b ab +---+=23a b -, 代入12,2a b ==得原式=23a b -=3-2=1 【点睛】此题主要考查整式的化简求值,解题的关键是熟知整式的加减运算法则. 100.计算: (1)144153417171717-+-; (2)()()23110.52443---÷⨯+-[]; (3)22113122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中x =23,y =2- 【答案】(1)5;(2)3274-;(3)23x y -+,2. 【解析】【分析】(1)分母相同,先计算分子相同的,再相加即可;(2)先计算乘方及括号里的,再计算乘除,最后计算加减即可;(3)先去括号再合并同类项得出最简结果,再将x ,y 的值代入即可.【详解】(1)144153417171717-+- =114453417171717⎛⎫-+-+ ⎪⎝⎭=4+1=5(2)()()23110.52443---÷⨯+-[] =()2310.52443--÷⨯+-[] =30.53184--⨯⨯ =3274-- =3274- (3)22113122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭=22123122323x x y x y -+-+ =22132122233x x x y y --++ =23x y -+ 当x =23,y =2- 原式=()22323-⨯+-=2 【点睛】本题考查了含乘方的有理数混合运算及整式的加减-化简求值,熟练掌握运算法则是解题的关键.。
七年级数学上册《第二章 整式》单元测试卷-带答案(人教版)
七年级数学上册《第二章整式》单元测试卷-带答案(人教版)一、选择题1. 在式子5,x=2,a,√ 3,m+n>0,st中,代数式的个数是( )A. 3B. 4C. 5D. 62. 已知m表示一个一位数,n表示一个两位数.若把m放在n的左边,组成一个三位数,则这个三位数可表示为( )A. mnB. m+nC. 10m+nD. 100m+n3. 代数式2(y−2)的正确含义是( )A. 2乘y减2B. 2与y的积减去2C. y与2的差的2倍D. y的2倍减去24. 多项式2a2b−ab2−ab的项数及次数分别是( )A. 3,3B. 3,2C. 2,3D. 25. 若关于x,y的多项式4x2y+7mxy−5y3+6xy化简后不含二次项,则m的值为( )A. −47B. −67C. 0D. 576. 下列代数式中,值总为正数的是( )A. x+1B. |x|C. x2+2D. x37. 代数式3m2−52可表示为( )A. m的3倍的平方减去5除以2B. m的3倍减去5的一半C. m与5的差的3倍除以2D. m的平方的3倍与5的差的一半8. 如图所示的图案均是长度相同的小木棒按一定的规律拼搭而成:第1个图案需7根小木棒,第2个图案需13根小木棒⋯⋯依此规律,第10个图案需小木棒的根数是( )A. 101B. 111C. 133D. 1579. 现定义一种新运算:如:则等于( )A. −9B. −6C. 6D. 910. 按一定规律排列的单项式:x,2x3,4x5,8x7⋯则第n个单项式是( )A. 2n x2n−1B. 2n−1x2n−1C. 2n−1x2n+1D. 2n x2n+1二、填空题11. 单项式−πa2b3的系数是.12. 多项式ab−2a−b中的各项系数和多项式的次数分别是.13. 张大伯从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸.若剩余的以每份0.2元的价格退回报社,则张大伯卖报盈利元.14. 若a+2b=8,3a+4b=18,则a+b的值为.15. 将方程2x−3y3=6变形为用含y的式子表示x,那么x=______ .16. 在代数式a3,1x+y,1−x−5xy2,−x,6xy+1,a2−b2中,多项式有个.17. 某种商品原价是m元,第一次降价打“九折”,第二次降价每件又减20元,第二次降价后的售价是元.18. 某化工厂与A,B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(t⋅km),铁路运价为1.2元/(t⋅km),且这两次运输共支出公路运费15000元,铁路运费97200元.设购买xt原料,制成yt产品.则从A地到这家化工厂原料运输费是,这批产品的销售款比原料费与运输费的和.多元.19. 将面积分别是9和7的两个三角形按如图所示的方式放置,若图中对应的阴影部分面积分别是m和n,则m−n=.20. 如图,用正方形按如图所示的规律拼图案,图案 ①中有5个正方形,图案 ②中有9个正方形,图案 ③中有13个正方形,图案 ④中有17个正方形,按此规律排列下去,则图案 ⑨中正方形的个数为.三、解答题21. 已知a=8,b=−5,c=−3,求下列代数式的值.(1)a−b−c.(2)a−(c+b).22. 我们知道,人在运动时的心跳速率通常和人的年龄有关,如果用a表示一个人的年龄,b表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么有b=0.8(220−a).(1)正常情况下,在运动时一个15岁的少年所能承受的每分钟心跳的最高次数是多少?(2)一个45岁的人运动时,10秒钟的心跳次数为22次,他有危险吗?23. 已知3x2y|m|−(m−1)y+5是关于x,y的三次三项式,求2m2−3m+1的值.24. 根据下列语句列代数式:(1)b的4倍的相反数.3(2)x与y的2倍的和的立方.(3)x减去y的差的平方.(4)x与y的和的倒数.25.如图,有两摞规格相同的数学课本整齐地叠放在讲台上.请根据图中所给的数据信息解答下列问题.(1)每本书的厚度为cm,课桌的高度为cm.(2)若将该规格的x本数学课本在桌面上叠放成一摞,请用含x的式子表示该摞数学课本高出地面的高度.26. 已知m、n是正整数,a、b、c均不为0,若a m+1b2c−17ab n+1c2+112a m+3b n c是八次三项式,求m、n的值.参考答案1、B2、D3、C4、A5、B6、C7、D8、C9、A10、B11、−π312、1,−2,−1,213、0.3b−0.2a14、515、3y+18216、317、(0.9m−20)18、40000040000019、220、3721、【小题1】16【小题2】1622、【小题1】164次.【小题2】没有危险.23、624、【小题1】−43b.【小题2】(x+2y)3.【小题3】(x−y)2.【小题4】1x+y.25、【小题1】0.5、85【小题2】(85+0.5x)cm26、依题意,可得a m+1b2c的次数为m+1+2+1=m+4,−17ab n+1c2的次数为1+n+1+2=n+4,112a m+3b n c的次数为m+3+n+1=m+n+4因为m、n为正整数,所以m+n+4>m+4,m+n+4>n+4.因为a m+1b2c−17ab n+1c2+112a m+3b n c是八次三项式,所以m+n+4=8,即m+n=4,所以m=1n=3或m=2,n=2或m=3,n=1.。
人教版七年级数学上册第二章《整式的加减》综合测试卷(含答案)
人教版七年级数学上册第二章《整式的加减》综合测试卷(含答案)一、单选题(每小题3分,共30分)1.下列各式2211241,,8,,26,,,25πx y x ymn m x xa y-+-++中,单项式有( )A.3个B.4个C.6个D.7个2.(安顺中考)下列计算正确的是 ( )A.3x2-x2=3B.-3a2-2a2=-a2C.3(a-1)=3a-1D.-2(x+1)=-2x-23.下列说法正确的是 ( )A.-22x3y 的次数6B. 0不是单项C.23x y的系数是13D.2πr的系数是14.(贵州安顺期末)下列各组中的两个项不属于同类项的是 ( )A. 3x2y和-2x2yB. -xy和2yxC. 1-和1D. -2x2y与xy25.整式x2-3x的值是4,则3x2-9x+8的值是 ( )A.20B.4C.16D.-46.下面四个代数式中,不能表示图中阴影部分面积的是 ( )A.(x+3)(x+2)-2xB.x2+5xC.3(x+2)+x2D. x(x+3)+67.一台轿车标价a万元,为了促销,每台降价10%销售,则每台轿车的售价为 ( )万元A. 10a%B.(1+10% )aC.90% aD.(1+.90%)a8.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是 ( )A.-5x-1B.5x+1C.-13x-1D.13x+19.如果多项式x2+8xy-y2-kxy+5不含xy项,则k的值为( )A.0B.7C.1D.810.(青岛期末)观察如图所示图形,则第n个图形中三角形的个数是 ( )A.22n +B.44n +C.4nD.44n -二、填空题(每小题3分,共24分) 11.写出一个系数为-2且含a,b 的五次单项式 。
12.多项式3235612x y x -+-是 次 项式,最高次项的系数是 。
13.若代数式3a m b n-1与-9a 3b 6的和是单项式,则m n += 。
人教版七年级数学上册第2章第4节《整式的加减-合并同类项》课后练习题(附答案)
人教版七年级数学上册第2章第4节《整式的加减-合并同类项》课后练习题一.选择题1.下列各式中,是3a2b的同类项的是()A.2x2y B.-2ab2 C.a2b D.3ab2.如果2x2y3与x2y n+1是同类项,那么n的值是()A.1 B.2 C.3 D.43.计算-a2+3a2的结果为()A.-2a2B.2a2C.4a2D.-4a24.下列计算正确的是()A.3a2-2a2=1 B.5-2x3=3x3C.3x2+2x3=5x5D.a3+a3=2a35.当a=-5时,多项式a2+2a-2a2-a+a2-1的值为()A.29 B.-6 C.14 D.246.如果x2+xy=2,xy+y2=1,则x2+2xy+y2的值是()A.0 B.1 C.2 D.3二.填空题9.当x=-2时,代数式-x2+2x-1=,x2-2x+1= .三.解答题11.合并同类项(1)4a2+3b2-2ab-3a2-5b2;(2)3xy2-5xy+0.5x2y-3xy2-4.5x2y;(3)3x3+x3;(4)xy2−15xy2;(5)4a2+3b2+2ab−4a2−4b2.12.先化简,再求值:2x+7+3x-2,其中x=2.答案:1.C.2.B解析:∵2x2y3与x2y n+1是同类项,∴n+1=3,解得:n=2.3.B解析:原式=(-1+3)a2=2a2.4.D.5.B解析:原式=a-1,当a=-5时,原式=-5-1=-6.6.D解析:∵x2+2xy+y2=x2+xy+xy+y2,而x2+xy=2,xy+y2=1,∴x2+2xy+y2=x2+xy+xy+y2=2+1 =3.7.2,5,7解析:∵3a5b m与-2a n b2是同类项,∴m=2,n=5,则m+n=2+5=7.8.-4.5a3b49.-9,9解析:∵-x2+2x-1=-(x2-2x+1)=-(x-1)2,∴当x=-2时,-x2+2x-1=-9;∵x2+2x-1=(x-1)2,∴当x=-2时,x2-2x+1=9.10.43解析:当x4+y4=25,x2y-xy2=-6时,原式=x4+y4+3xy2-3x2y=x4+y4-3(x2y-xy2)=25-3×(-6)=25+18=43.11.解:(1)原式=a2-2b2-2ab;(2)原式=-5xy-4x2y.(3)原式=(3+1)x3=4x3.(5)原式=(4-4)a2+(3-4)b2+2ab=-b2+2ab.12.解:原式=5x+5,当x=2时,原式=5×2+5=15.。
人教版七年级上册数学 第二章 整式的加减 单元训练题 (4)(有解析)
3.下列运算正确的是( )
C. 13 8
D. 8 13
A. 3a b a b
6
2
B. 2 a b 2a b C.
3
3
a2 a
4.下列计算正确的是( )
D. a aa 0
A. 5a 2b 7ab B. 5a3 3a2 2a C. 4a2b 3ba2 a2b
D. 1 y2 1 y2 3 y4
二、填空题
13.把二元一次方程 3x﹣4y=1 变形成用含 y 的代数式表示 x,则 x=_____. 14.已知 a2﹣a﹣2=0,则 3a﹣3a2 的值为_____.
15.若单项式 2ab2c4 的系数和次数分别是 m 和 n 则 mn 的值为________. 7
16.如果 3x2 y3 与 xm1 yn1 是同类项,那么(n-3m)2018 的值为_______.
元.②若小明第二次购买 26 千克需付费
(2)若小强分两次共购买 100 千克,第一次购买 a(a<50)千克,小强两次购买苹果共 付费多少元?(用含 a 的代数式表示).
21.先化简,再求值: 2 3x2 y xy2 3 2x2 y xy 2xy2 1,其中 x 1 , y 1. 3
值.
26.先化简,再求值:3x2y-[2x2-(xy2-3x2y)-4xy2],其中|x|=2,y= 1 ,且 xy<0. 2
【答案与解析】
一、单选题
1.C 解析:C 根据两位数的表示方法列出代数式解答即可. 一个两位数,个位数字为 a,十位数字为 b,则这个两位数为 10b+a, 故选 C. 【点睛】 此题考查列代数式,理解题意,找出题目蕴含的数量关系是解决问题的关键.
7.D
解析:D 分析:根据负整数指数幂、幂的乘方与积的乘方、零指数幂、同底数幂的除法、合并同类 项等知识点进行解答.
人教版七年级数学上册单元测试卷第二章 《整式的加减》(含答案)
人教版七年级数学上册单元测试卷第二章《整式的加减》一、选择题(共6小题,每小题4分,满分24分)1、整式﹣3.5x3y2,﹣1,,﹣32xy2z,﹣x2﹣y,﹣a2b﹣1中单项式的个数有()A、2个B、3个C、4个D、5个2、在下列运算正确的是()A、2a+3b=5abB、2a﹣3b=﹣1C、2a2b﹣2ab2=0D、2ab﹣2ab=03、若代数式是五次二项式,则a的值为()A、2B、±2C、3D、±34、下列各组代数式中,是同类项的是()A、5x2y与xyB、﹣5x2y与yx2C、5ax2与yx2D、83与x35、下列各组中的两个单项式能合并的是()A、4和4xB、3x2y3和﹣y2x3C、2ab2和100ab2cD、6、某商品原价为100元,现有下列四种调价方案,其中0<n<m<100,则调价后该商品价格最低的方案是()A、先涨价m%,再降价n%B、先涨价n%,再降价m%C、行涨价%,再降价%D、先涨价%,再降价%二、填空题(共8小题,每小题4分,满分32分)8、去括号填空:3x﹣(a﹣b+c)= .9、多项式A:4xy2﹣5x3y4+(m﹣5)x5y3﹣2与多项式B:﹣2x n y4+6xy﹣3x﹣7的次数相同,且最高次项的系数也相同,则5m﹣2n= .10、一个长方形的一边为3a+4b,另一边为a+b,那么这个长方形的周长为.11、任写一个与是同类项的单项式:.12、设a﹣3b=5,则2(a﹣3b)2+3b﹣a﹣15的值是.13、已知a是正数,则3|a|﹣7a= .14、给出下列算式:32﹣12=8=8×1,52﹣32=16=8×2,72﹣52=24=8×3,92﹣72=32=8×4,…观察上面一系列等式,你能发现什么规律?设n(n≥1)表示自然数,用关于n的等式表示这个规律为:.三、解答题(共5小题,满分44分)15、化简:①(a+b+c)+(b﹣c﹣a)+(c+a﹣b);②(2x2﹣+3x)﹣4(x﹣x2+);③3a2﹣[8a﹣(4a﹣7)﹣2a2];④3x2﹣[7x﹣(﹣3+4x)﹣2x2].16、有一个两位数,它的十位数字是个位数字的8倍,则这个两位数一定是9的倍数,试说明理由.17、先化简,再求值:,其中,.18、(1)用代数式表示图中阴影部分的面积S.(2)请你求出当a=2,b=5,h=4时,S的值.19、一艘轮船顺水航行3小时,逆水航行2小时,(1)已知轮船在静水中前进的速度是m千米/时,水流的速度是a千米/时,则轮船共航行多少千米?(2)轮船在静水中前进的速度是80千米/时,水流的速度是3千米/时,则轮船共航行多少千米?参考答案一、选择题(共6小题,每小题4分,满分24分)1、整式﹣3.5x3y2,﹣1,,﹣32xy2z,﹣x2﹣y,﹣a2b﹣1中单项式的个数有()A、2个B、3个C、4个D、5个考点:单项式。
(必考题)人教版初中七年级数学上册第二章《整式的加减》模拟检测(有答案解析)(4)
一、选择题1.(0分)[ID :68033]由于受H7N9禽流感的影响,某市城区今年2月份鸡的价格比1月份下降a %,3月份比2月份下降b %,已知1月份鸡的价格为24元/kg .则3月份鸡的价格为( )A .24(1-a %-b %)元/kgB .24(1-a %)b % 元/kgC .(24-a %-b % )元/kgD .24(1-a %)(1-b %)元/kg2.(0分)[ID :68055]把有理数a 代入|a +4|﹣10得到a 1,称为第一次操作,再将a 1作为a 的值代入得到a 2,称为第二次操作,…,若a =23,经过第2020次操作后得到的是( ) A .﹣7B .﹣1C .5D .113.(0分)[ID :68053]如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1 4.(0分)[ID :68042]下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣95.(0分)[ID :68015]已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2B .3C .4D .56.(0分)[ID :68008]下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++7.(0分)[ID :68001]已知 2x 6y 2和﹣3x 3m y n 是同类项,则9m 2﹣5mn ﹣17的值是( ) A .﹣1B .﹣2C .﹣3D .﹣48.(0分)[ID :67994]下列同类项合并正确的是( ) A .x 3+x 2=x 5 B .2x ﹣3x =﹣1 C .﹣a 2﹣2a 2=﹣a 2 D .﹣y 3x 2+2x 2y 3=x 2y 39.(0分)[ID :67993]将正整数按如图的规律排列:平移表中的方框,方框中的4个数的和可能是( )A .2010B .2014C .2018D .202210.(0分)[ID :67987]下列各式中,去括号正确的是( ) A .2(1)21x y x y +-=+- B .2(1)22x y x y --=++ C .2(1)22x y x y --=-+D .2(1)22x y x y --=--11.(0分)[ID :67978]有20个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是2,这20个数的和是( ) A .2B .﹣2C .0D .412.(0分)[ID :67971]下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y 的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( )A .1个B .2个C .3个D .4个13.(0分)[ID :67970]张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b+元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元 C .赚了(5a-5b )元 D .亏了(5a-5b )元 14.(0分)[ID :67959]如果m ,n 都是正整数,那么多项式的次数是( ) A . B .m C . D .m ,n 中的较大数 15.(0分)[ID :67958]长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( ) A .3a B .6a +b C .6a D .10a -b二、填空题16.(0分)[ID :68156]多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______.17.(0分)[ID :68153]观察下列顺序排列的等式:9×0+1 = 1,9×1+2 = 11,9×2+3=21, 9×3+4=31, 9×4+5=41,……,猜想:第n 个等式(n 为正整数)用n 表示,可表示成_________.18.(0分)[ID :68146]已知123112113114,,,...,1232323438345415a a a =+==+==+=⨯⨯⨯⨯⨯⨯依据上述规律,则99a =________.19.(0分)[ID :68144]将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m 组第n 个数字,则m +n =_____. 20.(0分)[ID :68136]合并同类项(1)21123x x x --=____________________;(按字母x 升幂排列)(2)3222232223x y x y y x x y --+=_____________________;(按字母x 降幂排列)(3)222234256a b ab a b =_____________________;(按字母b 降幂排列)21.(0分)[ID :68130]如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.22.(0分)[ID :68105]将一列数1,2,3,4,5,6---,…,按如图所示的规律有序排列.根据图中排列规律可知,“峰1”中峰顶位置(C 的位置)是4,那么“峰206”中C 的位置的有理数是______.23.(0分)[ID :68104]在如图所示的运算流程中,若输出的数3y =,则输入的数x =________________.24.(0分)[ID :68099]计算7a 2b ﹣5ba 2=_____.25.(0分)[ID :68088]如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示) 26.(0分)[ID :68069]求值:(1)()()22232223a a a a a -++-=______,其中2a =-; (2)()()222291257127a ab b aab b -+-++=______,其中12a =,12b =-; (3)()()222222122a b aba b ab+----=______,其中2a =-,2b =.27.(0分)[ID :68067]图中阴影部分的面积为______.三、解答题28.(0分)[ID :67830]观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2; 13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2; ∴13+23+33+43+53=(______ )2= ______ . 根据以上规律填空:(1)13+23+33+…+n 3=(______ )2=[ ______ ]2. (2)猜想:113+123+133+143+153= ______ . 29.(0分)[ID :67807]用代数式表示: (1)a 的5倍与b 的平方的差; (2)m 的平方与n 的平方的和;(3)x ,y 两数的平方和减去它们积的2倍.30.(0分)[ID :67770]已知22332A x y xy =+-,2222B xy y x =--. (1)求23A B -.(2)若|23|1x -=,29y =,且||x y y x -=-,求23A B -的值.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.A3.B4.D5.B6.B7.A8.D9.A10.C11.A12.A13.C14.D15.C二、填空题16.【分析】根据不含xy项即xy项的系数为0求出k的值【详解】解:原式∵不舍项∴故答案为【点睛】本题考查了多项式要求多项式中不含有那一项应让这一项的系数为017.【分析】根据数据所显示的规律可知:第一数列都是9第2数列开始有顺序且都是所对序号的数减去1加号后的数据有顺序且与所在的序号项吻合等号右端是的规律所以第n 个等式(n为正整数)应为【详解】根据分析:即第18.【解析】试题19.65【分析】根据题目中数字的特点可知每组的个数依次增大每组中的数字都是连续的偶数然后即可求出2020是多少组第多少个数从而可以得到mn的值然后即可得到m+n的值【详解】解:∵将正偶数按照如下规律进行20.【分析】(1)先合并同类项再将多项式按照字母x的次数由小到大重新排列即可;(2)先合并同类项再将多项式按照字母x的次数由大到小重新排列即可;(3)先合并同类项再将多项式按照字母b的次数由大到小重新排21.【分析】根据题意列出算式利用整式的加减混合运算法则计算出结果【详解】解:设这个多项式为A则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4故答案为2m2+22.-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列所以峰n中峰顶C的位置的有理数的绝对值为以此进行分析即可【详解】解:由图可知每5个数为一组依次排列所以峰n中峰顶C的位置的有理数的绝23.或【分析】由运算流程可以得出有两种情况当输入的x为偶数时就有y=x当输入的x 为奇数就有y=(x+1)把y=3分别代入解析式就可以求出x的值而得出结论【详解】解:由题意得当输入的数x是偶数时则y=x当24.2a2b【分析】根据合并同类项法则化简即可【详解】故答案为:【点睛】本题考查了合并同类项解题的关键是熟练运用合并同类项的法则本题属于基础题型25.【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n各图形中有多少三角形【详解】分别数出图26.60【分析】先根据去括号合并同类项法则进行化简然后再代入求值即可【详解】(1)原式=当时原式=;(2)原式=当时原式=;(3)原式=【点睛】本题考查整式的化简求值掌握去括号合并同类项法则是解题的关键27.【分析】图中阴影部分面积为半径为R的半圆面积减去直径为R的圆的面积进行计算即可【详解】解:【点睛】本题考查圆的面积计算公式熟记公式并根据题意找出阴影部分面积为半径为R的半圆面积减去直径为R的圆的面积三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【分析】首先求出二月份鸡的价格,再根据三月份比二月份下降b%即可求出三月份鸡的价格.【详解】∵今年2月份鸡的价格比1月份下降a%,1月份鸡的价格为24元/kg,∴2月份鸡的价格为24(1-a%)元/kg,∵3月份比2月份下降b%,∴三月份鸡的价格为24(1-a%)(1-b%)元/kg.故选:D.【点睛】本题主要考查了列代数式,解题的关键是掌握每个月份的数量增长关系.2.A解析:A【分析】先确定第1次操作,a1=|23+4|-10=17;第2次操作,a2=|17+4|-10=11;第3次操作,a3=|11+4|-10=5;第4次操作,a4=|5+4|-10=-1;第5次操作,a5=|-1+4|-10=-7;第6次操作,a6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a1=|23+4|-10=17;第2次操作,a2=|17+4|-10=11;第3次操作,a3=|11+4|-10=5;第4次操作,a4=|5+4|-10=-1;第5次操作,a5=|-1+4|-10=-7;第6次操作,a6=|-7+4|-10=-7;第7次操作,a7=|-7+4|-10=-7;…第2020次操作,a2020=|-7+4|-10=-7.故选:A . 【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.3.B解析:B 【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n , 右边三角形的数字规律为:2,22,…,2n , 下边三角形的数字规律为:1+2,222+,…,2n n +, ∴最后一个三角形中y 与n 之间的关系式是y=2n +n. 故选B . 【点睛】考点:规律型:数字的变化类.4.D解析:D 【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答. 【详解】解:A .﹣1﹣1=﹣2,故本选项错误; B .2(a ﹣3b )=2a ﹣6b ,故本选项错误; C .a 3÷a =a 2,故本选项错误; D .﹣32=﹣9,正确; 故选:D . 【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键.5.B解析:B 【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值. 【详解】解:∵132n x y +与4313x y 是同类项, ∴n+1=4, 解得,n=3, 故选:B. 【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.6.B解析:B 【分析】依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案. 【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形;()232S S x x +=++正方形小矩形; ()36S S x x +=++小矩形小矩形.故选:B. 【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握.7.A解析:A 【分析】根据同类项是字母相同且相同字母的指数也相同,可得m ,n 的值,根据代数式求值,可得答案. 【详解】由题意,得3m =6,n =2. 解得m =2,n =2.9m 2﹣5mn ﹣17=9×4﹣5×2×2﹣17=﹣1, 故选:A . 【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.8.D解析:D 【分析】根据合并同类项系数相加字母及指数不变,可得答案. 【详解】解:A 、x 3与x 2不是同类项,不能合并,故A 错误; B 、合并同类项错误,正确的是2x ﹣3x =﹣x ,故B 错误; C 、合并同类项错误,正确的是﹣a 2﹣2a 2=﹣3a 2,故C 错误; D 、系数相加字母及指数不变,故D 正确;故选:D . 【点睛】本题考查了合并同类项,熟记合并同类项的法则,并根据合并同类项的法则计算是解题关键.9.A解析:A 【分析】设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2,分别令代数式为:2010,2014,2018,2022,算出x 再判断. 【详解】解: 设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2. 当4x+2=2010时,x=502,则x-1=501; 当4x+2=2014时,x=503,则x-1=502; 当4x+2=2018时,x=504,则x-1=503; 当4x+2=2022时,x=505,则x-1=504; 由图可知每行有9个数, ∵504÷9=56,可以除尽故504为某行的最后一位.表格如下:故选A. 【点睛】本题考查找规律的能力,关键在于通过图形找出四个相连数的关系列出方程.10.C解析:C 【分析】各式去括号得到结果,即可作出判断. 【详解】解:2(1)22x y x y +-=+-,故A 错误;2(1)22x y x y --=-+,故B,D 错误,C 正确.故选:C . 【点睛】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键.11.A解析:A 【分析】根据题意可以写出这组数据的前几个数,从而发现数字的变化规律,再利用规律求解.【详解】解:由题意可得,这列数为:0,2,2,0,﹣2,﹣2,0,2,2,…,∴这20个数每6个为一循环,且前6个数的和是:0+2+2+0+(﹣2)+(﹣2)=0, ∵20÷6=3…2,∴这20个数的和是:0×3+(0+2)=2.故选:A .【点睛】本题考查了数字的变化规律,正确理解题意,发现题目中数字的变化规律:每6个数重复出现是解题的关键.12.A解析:A【分析】根据字母可以表示任意数可判断①,根据特殊例子0没有倒数可判断②,根据负数的相反数可判断③,根据特殊例子a=1,b=-2,可判断④,根据单项式次数的定义可判断⑤,根据有理数的分类判断⑥,根据同类项的概念判断⑦.【详解】字母可以表示任意数,当a <0时,-a >0,故①错误;0没有倒数,故②错误;负数的相反数是正数,正数大于负数,故③错误;若a=1,b=-2,a b >,但是22a b <,故④错误;235x y 的次数是3,故⑤错误; 0属于整数,故⑥这种分类不正确;27m ba -与2abm 是同类项,⑦正确,故选A.【点睛】本题考查有理数和代数式的相关概念,熟记这类知识点是解题的关键.13.C解析:C【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数【详解】根据题意列得:20(-2-23020302222a b a b a b a a b a a b ++++-+-=⨯+⨯)() =10(b-a )+15(a-b )=10b-10a+15a-15b=5a-5b ,则这次买卖中,张师傅赚5(a-b )元.故选C .【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.14.D解析:D【解析】【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式的次数是m ,n 中的较大数是该多项式的次数.【详解】根据多项式次数的定义求解,由于多项式的次数是“多项式中次数最高的项的次数”,因此多项式中次数最高的多项式的次数,即m ,n 中的较大数是该多项式的次数.故选D.【点睛】此题考查多项式,解题关键在于掌握其定义. 15.C解析:C【解析】【分析】根据长方形的周长公式列出算式后化简合并即可.【详解】∵长方形一边长为2a +b ,另一边为a -b ,∴长方形周长为:2(2a +b +a -b )=6a.故选C.【点睛】本题考查了整式的加减的应用,根据长方形的周长公式列出算式是解决问题的关键.二、填空题16.【分析】根据不含xy 项即xy 项的系数为0求出k 的值【详解】解:原式∵不舍项∴故答案为【点睛】本题考查了多项式要求多项式中不含有那一项应让这一项的系数为0 解析:19【分析】根据不含xy 项即xy 项的系数为0求出k 的值.【详解】 解:原式2213383x k xy y ⎛⎫=+--+ ⎪⎝⎭,∵不舍xy 项,∴1303k -=,19k =, 故答案为19.【点睛】本题考查了多项式,要求多项式中不含有那一项,应让这一项的系数为0.17.【分析】根据数据所显示的规律可知:第一数列都是9第2数列开始有顺序且都是所对序号的数减去1加号后的数据有顺序且与所在的序号项吻合等号右端是的规律所以第n 个等式(n 为正整数)应为【详解】根据分析:即第 解析:109n -【分析】根据数据所显示的规律可知:第一数列都是9,第2数列开始有顺序且都是所对序号的数减去1,加号后的数据有顺序且与所在的序号项吻合,等号右端是()10?11n -+的规律,所以第n 个等式(n 为正整数)应为()()9110?11n n n -+=-+.【详解】根据分析:即第n 个式子是()()9110?11109n n n n -+=-+=-.故答案为:109n -.【点睛】本题主要考查了数字类规律探索题.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解. 18.【解析】试题 解析:1009999. 【解析】试题 等号右边第一式子的第一个加数的分母是从1开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是2,结果的分子是2,分母是1×3=3;等号右边第二个式子的第一个加数的分母是从2开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是3,结果的分子是3,分母是2×4=8;等号右边第三个式子的第一个加数的分母是从3开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是4,结果的分子是4,分母是3×5=15.所以a 99=991100991019999+=⨯. 考点:规律型:数字的变化类.19.65【分析】根据题目中数字的特点可知每组的个数依次增大每组中的数字都是连续的偶数然后即可求出2020是多少组第多少个数从而可以得到mn 的值然后即可得到m+n 的值【详解】解:∵将正偶数按照如下规律进行解析:65【分析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m 、n 的值,然后即可得到m +n 的值.【详解】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,∴第m 组有m 个连续的偶数,∵2020=2×1010,∴2020是第1010个偶数,∵1+2+3+ (44)44(441)2⨯+=990,1+2+3+…+45=45(451)2⨯+=1035, ∴2020是第45组第1010-990=20个数,∴m =45,n =20,∴m +n =65.故答案为:65.【点睛】本题考查探索规律,认真观察所给数据总结出规律是解题的关键. 20.【分析】(1)先合并同类项再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项再将多项式按照字母b 的次数由大到小重新排 解析:256x x -+ 32222x y x y -- 221022b ab a -- 【分析】 (1)先合并同类项,再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项,再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项,再将多项式按照字母b 的次数由大到小重新排列即可.【详解】解:(1)2222111155232366x x x x x x x x x x ⎛⎫--=-+=-=-+ ⎪⎝⎭; 故答案为:256x x -+; (2)解:322223223222232x y x y y x x y x y x y --+=--; 故答案为:32222x y x y --;(3)解:222222223425621021022a b ab a b a b ab b ab a +--+=-+-=--; 故答案为:221022b ab a --.【点睛】此题考查整式的降幂及升幂排列,合并同类项法则,将多项式按照某个字母重新排列时注意该项的次数及符号,利用交换律将多项式重新排列.21.【分析】根据题意列出算式利用整式的加减混合运算法则计算出结果【详解】解:设这个多项式为A 则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4故答案为2m2+解析:2234m m +-【分析】根据题意列出算式,利用整式的加减混合运算法则计算出结果.【详解】解:设这个多项式为A,则A=(3m 2+m-1)-(m 2-2m+3)=3m 2+m-1-m 2+2m-3=2m 2+3m-4,故答案为2m 2+3m-4.【点睛】本题考查了整式的加减运算,掌握整式的加减混合运算法则是解题的关键.22.-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝对值为以此进行分析即可【详解】解:由图可知每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝 解析:-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,以此进行分析即可.【详解】解:由图可知,每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,当206n =时,52061103011029⨯-=-=,因为1029是奇数,所以“峰206”中C 的位置的有理数是1029-.故答案为:1029-.【点睛】本题考查图形的数字规律,熟练掌握根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -是解题的关键.23.或【分析】由运算流程可以得出有两种情况当输入的x 为偶数时就有y=x 当输入的x 为奇数就有y=(x+1)把y=3分别代入解析式就可以求出x 的值而得出结论【详解】解:由题意得当输入的数x 是偶数时则y=x 当解析:5或6【分析】由运算流程可以得出有两种情况,当输入的x 为偶数时就有y=12x ,当输入的x 为奇数就有y=12(x+1),把y=3分别代入解析式就可以求出x 的值而得出结论. 【详解】解:由题意,得当输入的数x 是偶数时,则y=12x ,当输入的x 为奇数时,则y=12(x+1). 当y=3时,∴3=12x 或3=12(x+1). ∴x=6或5故答案为:5或6【点睛】本题考查了有理数的混合运算,解答此题的关键是,根据流程图,列出方程,解方程即可得出答案.24.2a2b 【分析】根据合并同类项法则化简即可【详解】故答案为:【点睛】本题考查了合并同类项解题的关键是熟练运用合并同类项的法则本题属于基础题型解析:2a 2b【分析】根据合并同类项法则化简即可.【详解】()22227a b 5ba =75a b=2a b ﹣﹣.故答案为:22a b【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型. 25.【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分别数出图 解析:()43n -【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3;图②中三角形的个数为5=4×2-3;图③中三角形的个数为9=4×3-3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.26.60【分析】先根据去括号合并同类项法则进行化简然后再代入求值即可【详解】(1)原式=当时原式=;(2)原式=当时原式=;(3)原式=【点睛】本题考查整式的化简求值掌握去括号合并同类项法则是解题的关键解析:6 0【分析】先根据去括号、合并同类项法则进行化简,然后再代入求值即可.【详解】(1)原式= 2222342268a a a a a a a --+-=-,当2a =-时,原式=()()228241620--⨯-=+=;(2)原式=222222912571272242a ab b a ab b a ab b -+---=--, 当12a =,12b =-时,原式=22111111224266222222⎛⎫⎛⎫⎛⎫⨯-⨯⨯--⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)原式=22222222220a b ab a b ab +-+--=.【点睛】本题考查整式的化简求值,掌握去括号、合并同类项法则是解题的关键. 27.【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积进行计算即可【详解】解:【点睛】本题考查圆的面积计算公式熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积 解析:21π4R【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积,进行计算即可.【详解】 解:2221=()224R R S R πππ-=阴影 【点睛】本题考查圆的面积计算公式,熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积是解题关键.三、解答题28.1+2+3+4+5;225;1+2+…+n ;()n n 12+;11375分析:观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空;(1)、根据上述规律填空,然后把1+2+…+n 变为2n 个(n+1)相乘,即可化简;(2)、对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值.详解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)、∵1+2+…+n=(1+n )+[2+(n-1)]+…+[n 2+(n-n 2+1)]=()n n 12+, ∴13+23+33+…+n 3=(1+2+…+n )2=[()n n 12+]2; (2)、113+123+133+143+153=13+23+33+...+153-(13+23+33+ (103)=(1+2+…+15)2-(1+2+…+10)2 =1202-552=11375.点睛:此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.29.(1)5a -b 2(2)m 2+n 2(3)x 2+y 2-2xy【分析】(1)a 的5倍表示为5a ,b 的平方表示为b 2,然后把它们相减即可;(2)m 与n 平方的和表示为m 2+n 2;(3)x 、y 两数的平方和表示为x 2+y 2,它们积的2倍表示为2xy ,然后把两者相减即可;【详解】解:(1)a 的5倍与b 的平方的差可表示为:5a -b 2;(2)m 的平方与n 的平方的和可表示为:m 2+n 2;(3)x ,y 两数的平方和减去它们积的2倍可表示为:x 2+y 2-2xy .【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;分清数量关系;规范地书写.30.(1)2212127x y xy +-;(2)114或99.【分析】(1)把22332A x y xy =+-,2222B xy y x =--代入23A B -计算即可;(2)根据|23|1x -=,29y =,且||x y y x -=-求出x 和y 的值,然后代入(1)中化简的结果计算即可.解:(1)()()2222232332322A B x y xy xy y x -=+----2222664366x y xy xy y x =+--++2212127x y xy =+-;(2)由题意可知:231x -=±,3=±y ,∴2x =或1,3=±y ,由于||x y y x -=-,∴2x =,3y =或1x =,3y =.当2x =,3y =时,23114A B -=.当1x =,3y =时,2399A B -=.所以,23A B -的值为114或99.【点睛】本题考查了整式的加减运算,绝对值的意义,以及分类讨论的数学思想,熟练掌握整式的加减运算法则是解(1)的关键,分类讨论是解(2)的关键.。
人教版七年级数学上册第二章整式复习试题四(含答案) (87)
人教版七年级数学上册第二章整式复习试题四(含答案) 单项式2323ab c -的系数是________,次数是____________. 【答案】23- 6. 【解析】【分析】根据单项式系数、次数的定义来求解.【详解】 单项式2323ab c -的系数是23-,次数是1+2+3=6. 故答案为:23-;6. 【点睛】本题考查单项式. 单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.62.多项式232246x y x x y -++-是______次______项式,其中最高次项系数是______,常数项是_________,按x 的升幂排列为___________.【答案】五 四 -1 -2 232264x x y x y -++-【解析】【分析】根据多项式和单项式的定义即可得出答案.【详解】232246x y x x y -++-有四项,-2为常数项;24x y的系数为4,次数为3;6x的系数为6,次数为1;32x y-的系数为-1,次数为5.故该多项式为五次四项式,最高次项的系数为-1,常数项是-2,按x的升幂排列为232-++-.x x y x y264依次填:五,四,-1,-2,,232-++-.x x y x y264【点睛】本题考查多项式的定义. 由若干个单项式相加组成的代数式叫做多项式(若有减法:减一个数等于加上它的相反数).多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这个多项式的次数.其中多项式中不含字母的项叫做常数项.63.用代数式表示:苹果的售价是每千克a元(a<10),用50元买5千克这种苹果,应找回__【答案】(50–5a)【解析】【分析】首先利用单价×数量=总价求得花费的钱数,进一步利用总钱数减去花费的钱数就是找回的钱数.【详解】每千克a元,买5kg苹果需5a元,应找回(50–5a)元,故答案是:(50–5a).【点睛】此题考查列代数式,解题关键在于理解题意列出方程.64.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为_______.【答案】3n+2.【解析】【分析】根据题意和图形,可以发现图形中棋子的变化规律,从而可以求得第n个“T”字形需要的棋子个数.【详解】解:由图可得,图①中棋子的个数为:3+2=5,图①中棋子的个数为:5+3=8,图①中棋子的个数为:7+4=11,……则第n个“T”字形需要的棋子个数为:(2n+1)+(n+1)=3n+2,故答案为:3n+2.【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中棋子的变化规律,利用数形结合的思想解答.65.单项式﹣2xy4的系数为_____,次数为_____.【答案】﹣2,5.【解析】【分析】直接利用单项式系数、次数的定义分析得出答案.【详解】单项式﹣2xy4的系数为﹣2,次数为5.故答案为:﹣2,5.【点睛】此题主要考查了单项式,正确把握单项式次数与系数的确定方法是解题关键.66.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反馈:如调整价格,每涨价1元,每星期要少卖出10件,我们设每件涨价x元,那么涨价后,每星期可卖出____件,每星期的销售额是_____元.()A.(300﹣10x),10x(60+x)B.10x,60×10xC.(300﹣10x),(60+x)(300﹣10x)D.10x,60(300﹣10x)【答案】C【解析】【分析】每件涨价x元,每星期要少卖出10x件,用300减去少卖的即为实际卖出的数量;再用实际售价乘以实际销售量即为实际销售额.据此可解.【详解】每件涨价x 元,每星期要少卖出10x 件,每星期实际卖出(300﹣10x )件,此时售价为(60+x )元,则销售额为(60+x )(300﹣10x ),故选:C .【点睛】本题考查了列代数式,理清题目中的数量关系是解题的关键.67.212x y -是_____次单项式. 【答案】3【解析】【分析】根据单项式次数的定义进行解答即可.【详解】解:∵单项式212x y -中所有字母指数的和213=+=, ∴此单项式的次数是3.故答案为:3.【点睛】本题考查的是单项式,熟知一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键68.一只小球落在数轴上的某点P 0,第一次从P 0向左跳1个单位到P 1,第二次从P 1向右跳2个单位到P 2,第三次从P 2向左跳3个单位到P 3,第四次从P 3向右跳4个单位到P 4….若小球从原点出发,按以上规律跳了6次时,它落在数轴上的点P 6所表示的数是_________;若小球按以上规律跳了2n 次时,它落在数轴上的点P 2n 所表示的数恰好是n +2,则这只小球的初始位置点所表示的数P0是_________.【答案】3 2【解析】【分析】根据题意,可以发现题目中每次跳跃后相对于初始点的距离,即可得出答案.【详解】根据题意可得,小球从原点出发,按以上规律跳了6次时,它落在数轴上的点P6所表示的数是6÷2=3小球按以上规律跳了2n次时,它落在数轴上的点P2n所表示的数恰好是n+2,则这只小球的初始位置点P0所表示的数是:n+2-(2n÷2)=2 故答案为:3,2.【点睛】本题主要考查的是找规律,理解题目意思找出对应的规律是解决本题的关键.69.1955年,印度数学家卡普耶卡(..D R Kaprekar)研究了对四位自然数的一种变换:任给出四位数a,用a的四个数字由大到小重新排列成一个四位数m,再减去它的反序数n(即将a的四个数字由小到大排列,规定反序后若左边数字有0,则将0去掉运算,比如0001,计算时按1计算),得出数1a m n=-,然后继续对1a重复上述变换,得数2a,…,如此进行下去,卡普耶卡发现,无论a是多大的四位数,只要四个数字不全相同,最多进行k次上述变换,就会出现变换前后相同的四位数t,这个数称为Kaprekar变换的核.则四位数9631的Kaprekar变换的核为______.【答案】6174【解析】【分析】用9631的四个数字由大到小排列成一个四位数9631.则9631-1369=8262,用8262的四个数字由大到小重新排列成一个四位数8622.则8622-2268=6354,类似地进行上述变换,可知5次变换之后,此时开始停在一个数6174上.【详解】解:用9631的四个数字由大到小排列成一个四位数9631.则9631-1369=8262,用8262的四个数字由大到小重新排列成一个四位数8622.则8622-2268=6354,用6354的四个数字由大到小重新排列成一个四位数6543.则6543-3456=3087,用3087的四个数字由大到小重新排列成一个四位数8730.则8730-378=8352,用8352的四个数字由大到小重新排列成一个四位数8532.则8532-2358=6174,用6174的四个数字由大到小重新排列成一个四位数7641.则7641-1467=6174…可知7次变换之后,四位数最后都会停在一个确定的数6174上.故答案为6174.【点睛】本题考查简单的合情推理.此类题可以选择一个具体的数根据题意进行计算,即可得到这个确定的数.70.如果一个单项式23a b -的系数和次数分别为m 、n ,那么2mn =_____. 【答案】﹣2.【解析】【分析】根据单项式的系数和次数的判定方法即可得出答案.【详解】解:∵单项式23a b -的数字部分是13-,所有字母的次数和是3, ∴单项式的系数是1m 3=-,次数是n 3=, ∴12mn 2323⎛⎫=⨯-⨯=- ⎪⎝⎭; 故答案为2-.【点睛】本题考查单项式的次数与系数,单项式的数字部分是单项式的系数,单项式所有字母指数的和是单项式的次数;需要注意的是π也是数字,所有属于系数部分,系数指的是数字部分,包括数字的乘方形式等.。
人教版数学七年级上册第二章《整式》练习题(含答案)
2. 1 整式班级学号姓名分数一.判断题(1) x1是关于 x 的一次两项式. () 3(2)- 3 不是单项式. ()(3)单项式 xy 的系数是 0.()(4)x3+y3是 6 次多项式. ()(5)多项式是整式. ()二、选择题1.在下列代数式:1ab,a b,ab2+b+1 ,3+2,x3 + x2- 3 中,多项式有()22x yA.2 个B. 3 个C. 4 个D5 个2.多项式- 2 3m2-n2是()A.二次二项式B.三次二项式C.四次二项式 D 五次二项式3.下列说法正确的是()A.3 x 2― 2x+5 的项是 3x2, 2x,5B.x-y与 2 x2― 2xy- 5 都是多项式33C.多项式- 2x2+4xy 的次数是3D.一个多项式的次数是 6 ,则这个多项式中只有一项的次数是6 4.下列说法正确的是()A.整式abc没有系数B.x+ y + z不是整式2 34C .- 2 不是整式D .整式 2x+1 是一次二项式5.下列代数式中, 不是整式的是 ()A 、 3x2B 、5a74b C 、3a2D 、- 20055x6.下列多项式中,是二次多项式的是()A 、 32x 1B 、 3x2C 、3xy - 1D 、 3x527.x 减去 y 的平方的差,用代数式表示正确的是()A 、 (x y)2B 、 x2y2C 、 x2yD 、 x y28.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。
已知该楼梯长S 米,同 学上楼速度是 a 米/ 分,下楼速度是 b 米/ 分,则他的平均速度是 () 米/ 分。
A 、a bB 、 sC 、s sD 、 s 2s2 ababsa b9.下列单项式次数为 3 的是 ()A.3abcB.2×3×4C. 1x 3yD.52x410.下列代数式中整式有 ()1 , 2x+y , 1 a 2b , xy ,5 y, 0.5 , ax34xA.4 个B.5 个C.6 个D.7 个11.下列整式中,单项式是 ()A.3a+1B.2x -yC.0.1D.x1212.下列各项式中,次数不是 3 的是 ()A .xyz +1B . x 2+y +1C .x 2y -xy2D .x 3- x 2+x -113.下列说法正确的是 ()A . x(x + a)是单项式B .x 21不是整式 C .0 是单项式 D .单项式- 1x 2y 的3系数是1314.在多项式 x 3-xy 2+25中,最高次项是 ()A .x3B .x 3, xy2C .x 3,- xy2D .2515.在代数式 3x 2y , 7(x1) , 1(2n 1), y 2y1中,多项式的个数是 ()483yA .1B .2C .3D . 4216.单项式-3xy的系数与次数分别是 ()2A .- , B.- 1,3 C .- 3,2D .- 3,33 322217.下列说法正确的是 ()A .x 的指数是 0B .x 的系数是 0C .- 10 是一次单项式D .-10 是单项式18 .已知:2x m y 3 与 5xy n是同类项,则代数式 m 2n 的值是 ()A 、 6B 、 5C 、 2D 、 5.系数为- 1且只含有 x 、y 的二次单项式,可以写出 ( )192A .1 个B .2 个C .3 个D . 4 个20 .多项式 1 x 22y 的次数是()A 、 1B 、 2C 、- 1D 、- 2三.填空题1.当 a =- 1 时, 4a 3=;2.单项式:4x 2 y 3的系数是,次数是;33.多项式: 4x33xy 2 5x 2 y 3y 是次 项式;4. 32005xy 2是次单项式;5. 4x23y 的一次项系数是 ,常数项是 ;6._____和_____统称整式 .7.单项式 1xy 2z 是_____次单项式 .2.多项式2- 12-b2有_____项,其中- 12 的次数是.8aab2ab2.整式① 123 2 ④⑤π1 ⑥2 a 2 ⑦中单项式,② 3x - y ③2 x y, a, x+y,,x+1 92,25有,多项式有10.x+2xy+y 是次多项式 .11.比m 的一半还少4 的数是;12.b的 11 倍的相反数是;313.设某数为x , 10 减去某数的2 倍的差是;14.n 是整数,用含n 的代数式表示两个连续奇数;15.x 43x 3 y6x 2 y 22 y 4 的次数是;16.当 x= 2, y=- 1 时,代数式| xy || x |的值是;17.当 t=时,t 1t的值等于1;318.当 y=时,代数式3y-2与y 3的值相等;419.- 23 ab 的系数是,次数是次.20.把代数式 2a2b2 c 和 a3b2的相同点填在横线上:(1)都是式;(2)都是次.21.多项式 x3y2- 2xy2-4xy-9 是___次___项式,其中最高次项的系数是,3二次项是,常数项是.22. 若1 x2y3z m与3x2y3z4是同类项,则m =. 323.在 x2,1(x+ y),1,- 3 中,单项式是,多项式2是,整式是.235ab c24.单项式的系数是____________,次数是____________.725.多项式 x2y+xy -xy2-53中的三次项是 ____________.26.当 a=____________时,整式 x2+ a- 1 是单项式.27.多项式 xy- 1 是____________次____________项式.28.当 x=- 3 时,多项式- x3+x2- 1 的值等于 ____________.29.如果整式 (m-2n)x2 y m+n-5是关于 x 和 y 的五次单项式,则 m+n 30.一个 n 次多项式,它的任何一项的次数都____________.31.系数是-3,且只含有字母x 和y 的四次单项式共有个,分别是..组成多项式1- x 2+xy- y2-xy3的单项式分别是.32四、列代数式1. 5 除以 a 的商加上32的和;32.m 与 n 的平方和;3.x 与 y 的和的倒数;4.x 与 y 的差的平方除以 a 与 b 的和,商是多少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册第二章整式复习试题四(含答案)
用火柴棒按如图所示的方式摆图形,按照这样的规律继续摆下去,则第100个图形需要火柴棒________根.
【答案】501
【解析】
【分析】
仔细观察图形,数一数①、②、③图中每个图形各有几个六边形,有几根火柴棒公用,其由几根火柴棒组成;则根据规律可得第100个图形由100个六边形组成,有99根火柴棒公用即可解答.
【详解】
仔细观察图形可知:
图形①为1个六边形,有1-1=0根火柴棒公用,其由6×1-0=6根火柴棒组成;
图形②为2个六边形,有2-1=1根火柴棒公用,其由6×2-1=11根火柴棒组成;
图形③为3个六边形,有3-1=2根火柴棒公用,其由6×3-2=16根火柴棒组成;
……
可猜想:第10个图形由100个六边形,有100-1=99根公用,其由
6×100-99=501根火柴棒组成;
故第100个图形需火柴棒501根.
故答案为:501.
【点睛】
此题考查图形的变化类,解题关键在于观察分析和寻求规律.
52.观察下面一列数,探究其中的规律:—1、1
2、1
3
-、1
4
、1
5
-、1
6
…那
么,第13个数是_____,第2012个数是_____
【答案】1
13
1 2012
【解析】
【分析】
把—1等价于—1
1
,经观察发现每一个数的分子都是1,分母等于各自的序号,又知奇数项是负数,偶数项是正数,据此规律解答即可.
【详解】
解:将−1等价于−1
1,即:−1
1
、1
2
、1
3
-、1
4
、1
5
-、1
6
…,
可以发现分子永远为1,分母等于序数,奇数项为负数,偶数项为正数,由此可以推出第n个数是1
(1)n
n
,
所以第13个数是1311
(1)
1313,第2012个数是201211
(1)
20122012
,
故答案为:1
13,1
2012
.
【点睛】
本题考查了数字类规律探索,主要是根据题中所给的一列数推出第n个数的规律,由规律进行求值.
53.如图是用棋子摆成的“T”字图案,则第2019个图案用_____个棋子.
【答案】6059
【解析】
【分析】
通过观察已知图形可得:每个图形都比其前一个图形多3枚棋子,得出规律为摆成第n个图案需要3n+2枚棋子,进而解答即可.
【详解】
解:第1个“T”字型图案需要3+2=5枚棋子,
第2个“T”字型图案需要3×2+2=8枚棋子,
第3个“T”字型图案需要3×3+2=11枚棋子,
…
第n个图案需要3n+2枚棋子.
那么当n=2019时,则有6059枚;
故答案为:6059.
【点睛】
本题考查图形的变化规律,注意由特殊到一般的分析方法,得出数字变化规律是解题的关键.
54.观察下列单项式.2x,-25x,3
17x,……。
根据你发现的规律,
10x,-4
第.8.个.式子是______
【答案】-65x8.
【解析】
首先发现字母x的指数的规律:从1开始连续的自然数,第n个的指数是n;再发现系数的规律:系数的绝对值是n2+1,符号的规律是(-1)n+1(n≥1的连续自然数);所以其第n项是(-1)n+1(n2+1)x n,问题得解.
【详解】
解:2x=(-1)1+1(12+1)x,
-5x2=(-1)2+1(22+1)x2,
10x3=(-1)3+1(32+1)x3,
-17x4=(-1)4+1(42+1)x4,
…
第8项是(-1)8+1(82+1)x8=-65x8,
故答案是:-65x8.
【点睛】
此题主要考查整式的数字类规律,分别确定系数及指数的规律是解题关键.55.单项式-1
3
x2的系数是_______
【答案】-1
3
.
【解析】
【分析】
根据单项式的系数的定义进行解答即可.
【详解】
解:单项式-1
3x2的系数是-1
3
.
故答案是:-1
3
.
本题考查了单项式的系数,注意掌握单项式中的数字因数叫做单项式的系数.56.设n是正整数,用n 表示被7 除余3 的正整数是___________
【答案】7n+3
【解析】
【分析】
根据被除数,除数,商的关系列出算式即可.
【详解】
设n是正整数,用n 表示被7 除余3 的正整数是7n+3
故答案为:7n+3
【点睛】
本题考查的是列代数式,掌握被除数,除数,商的关系是解答的关键.
57.在式子:2
a 、
3
a
、1
x y
、﹣1
2
、1﹣x﹣5xy2、﹣x、6xy+1、a2﹣b2
中,其中多项式有_____个.
【答案】3
【解析】
【分析】
根据几个单项式的和叫做多项式进行分析即可.
【详解】
解:1﹣x﹣5xy2、6xy+1、a2﹣b2是多项式,共3个,故答案为:3.
【点睛】
此题考查的是多项式的判断,掌握多项式的定义是解决此题的关键.
58.用火柴棍按下列方式摆图形,第①个图形用了4根火柴棍,第②个图形用了10根火柴棍,第③个图形用了18根火柴棍.依照此规律,第⑩个图形用了_____根火柴棍.
【答案】130
【解析】
【分析】
根据图形中火柴棒的个数得出变化规律得出第n个图形火柴棒为:n(n+3)根,进而求出n的值即可.
【详解】
解:∵第一个图形火柴棒为:1×(1+3)=4根;
第二个图形火柴棒为:2×(2+3)=10根;
第三个图形火柴棒为:3×(3+3)=18根;
第四个图形火柴棒为:4×(4+3)=28根;
…
∴第n个图形火柴棒为:n(n+3)根,
第⑩个图形火柴棒为:10×(10+3)=130根;
【点睛】
此题主要考查了图形的变化类,根据已知图形表示出第n个图形火柴棒个
数是解题关键.
59.如图是由若干个小圆圈按一定规律拼出的一组图形:
通过观察归纳可得出,第5个图形中共有_____个小圆圈,第n个图形中小圆圈的个数为_____.
【答案】40 n2+3n
【解析】
【分析】
根据题目中的图形,可以写出前四个图形中小圆圈的个数,从而可以发现小圆圈个数的变化规律,从而可以求得第5个图形和第n个图形中小圆圈的个数.【详解】
解:由图可得,
第一个图形中小圆圈的个数为:1×2+1×2=4,
第二个图形中小圆圈的个数为:2×2+2×3=10,
第三个图形中小圆圈的个数为:3×2+3×4=18,
第四个图形中小圆圈的个数为:4×2+4×5=28,
…
则第5个图形中共有:5×2+5×6=40个小圆圈,
第n个图形中小圆圈的个数为:n×2+n(n+1)=2n+n2+n=n2+3n,故填:40,n2+3n.
【点睛】
本题考查图形找规律,找出图中小圆圈个数变化的规律是关键.
60.单项式﹣35
x 2y 的系数是_____. 【答案】35
. 【解析】
【分析】
根据单项式系数的定义直接求解.
【详解】
单项式35-x 2y 的系数是35
-, 故答案为:35
-. 【点睛】
本题考查了单项式的概念,单项式中数字因数叫做单项式的系数.。