汽车制动器摩擦盘的设计

合集下载

集成电磁与摩擦的车辆盘式制动器优化设计

集成电磁与摩擦的车辆盘式制动器优化设计
( S c h o o l o f Me c h a n i c a l a n d Au t o mo b i l e E n g i n e e r i n g , J i a n g s u T e a c h e r s Un i v e r s i t y o f T e c h n o l o g y ,J i a n g s u C h a n g z h o u 2 l 3 0 0 1
机 械 设 计 与 制 造
1 32
Ma c h i n e r y De s i g n

Ma n u f a c 与摩擦 的车辆盘式制动器优化设计
王奎 洋 , 唐金 花 , 李国庆 , 袁传义
( 江苏技术师范学院 机械与汽车工程学院, 江苏 常州 2 1 3 0 0 1 )
Op t i ma l De s i g n o f Ve h i c l e Di s c Br a k e I n t e g r a t e d E l e c t r o ma g n e t i s m a n d F r i c t i o n
W ANG Ku i - y a n g , T ANG J i n - h u a , L I G u o — q i n g , YU AN C h u a n — y i

要: 介绍 了集成电磁 与摩擦的车辆盘式制动器的结构和工作原理 , 基于多 目标优化理论 , 通过对集成电磁 与摩擦盘
式 制动 器 的深入 研 究 , 分 析 了该 集成 化 制动 器设 计 过 程 中必须 满足 的性 能指 标 和 几何 约 束 条件 , 建立 了以制 动 力矩 最 大
和制动温升 最小为 目标函数的多 目标化的优化数学模型 ,采用统一 目标 函数法中的乘除法将 多目标转化 为单一 目标进

《盘式制动器》课件

《盘式制动器》课件
商用车
随着物流运输业的快速发展,盘式制动器在 商用车领域的应用也逐渐增多,提高了车辆 的制动安全性和稳定性。
环境友好性
总结词
随着环保意识的提高,盘式制动 器在环保方面也表现出良好的性
能,成为绿色出行的选择。
低噪音
盘式制动器在制动过程中产生的噪 音较低,对周围环境的影响较小。
节能减排
采用新型高强度材料和结构设计, 提高了制动器的能效和可靠性,有 助于减少能源消耗和排放污染物。
盘式制动器的优点
相比鼓式制动器,盘式制动器具有更好的散热性 能和更快的响应速度,更适合于高速行驶和高负 荷制动。
盘式制动器的结构与工作原理
详细介绍了盘式制动器的组成部件,如制动盘、 制动钳、摩擦片和液压系统等,以及其工作原理 。
摩托车制动系统
摩托车盘式制动器概述
01
摩托车盘式制动器是现代摩托车的重要安全装置,具有轻量化
刹车盘状况
检查刹车盘表面是否光滑 ,有无裂纹或损伤,如有 需要应及时修复或更换。
制动液水平
检查制动液液面高度,确 保制动液充足,无泄漏现 象。
更换摩擦片
摩擦片磨损
摩擦片是制动器中的易损件,随着使用次数 的增加,摩擦片会逐渐磨损,当磨损到一定 程度时,制动力会下降,影响制动效果。
更换时机
当摩擦片磨损到一定程度时,应及时更换。 一般来说,当摩擦片厚度小于原厚度的1/3时 ,应考虑更换。
、高响应和良好的抗热衰退性能。
摩托车盘式制动器的特点
02
相比传统的鼓式制动器,摩托车盘式制动器具有更好的制动力
分配和更短的制动距离,提高了驾驶安全性。
摩托车盘式制动器的安装与调整
03
提供了关于如何正确安装和调整摩托车盘式制动器的详细指南

汽车全封闭湿式多盘制动器的设计与计算

汽车全封闭湿式多盘制动器的设计与计算

汽车全封闭湿式多盘制动器的设计与计算发布时间:2021-12-21T05:45:00.582Z 来源:《防护工程》2021年26期作者:吴剑增[导读] 随着我国经济建设的突飞猛进,矿用车的需求激增,特别是大型矿山用自卸装载车越来越受欢迎,矿山道路泥泞崎岖且高低不平,为适应恶劣的工作环境,保证矿用车的安全行驶,矿用车的制动器就显得尤为关键和重要。

为此,本文将对一款矿用车全封闭湿式多盘制动器进行详细分析与计算,并设计其结构及参数。

吴剑增河北恒昇机械科技有限公司河北邯郸 056800摘要:随着我国经济建设的突飞猛进,矿用车的需求激增,特别是大型矿山用自卸装载车越来越受欢迎,矿山道路泥泞崎岖且高低不平,为适应恶劣的工作环境,保证矿用车的安全行驶,矿用车的制动器就显得尤为关键和重要。

为此,本文将对一款矿用车全封闭湿式多盘制动器进行详细分析与计算,并设计其结构及参数。

关键词:汽车;全封闭;制动器1 盘式制动器的特点根据固定元件结构形式的不同,盘式制动器分为钳盘式制动器和全盘式制动器,全盘式制动器又分为封闭干式和封闭湿式两种。

盘式制动器以静止的刹车碟片夹住随轮胎转动的刹车碟盘,以产生摩擦力,使车轮转动速度降低。

当踩下刹车踏板时,刹车总泵内的活塞在刹车油路中建立压力,压力经由刹车油传送到刹车卡钳上的刹车分泵活塞,刹车分泵的活塞在受到压力后,会向外移动并推动制动块去夹紧刹车盘,使得制动块与刹车盘发生摩擦,以降低车轮转速。

通风盘式制动器是在两块刹车盘之间预留出一个空隙,使气流在空隙中穿过,通风盘式刹车利用风流作用,其制动效果要比普通盘式刹车更好。

2 全封闭湿式多盘制动器的工作原理和特点全封闭湿式多盘制动器采用液压制动,摩擦片浸在润滑油的环境中,同时摩擦片上开有许多沟槽,车辆制动时摩擦片摩擦产生的大部分热量将通过润滑油循环及壳体散发出去,使制动器不会因为内部温度过高而损坏元部件。

动摩擦片内缘通过花键与动壳连接,可随动壳一起转动,并可沿轴向左右移动。

盘式制动器

盘式制动器
制动盘直径D应尽可能取大些,这时制动盘的有效半径得到增加,可以降低制动钳的夹紧力,减少衬块的单位 压力和工作温度。受轮辋直径的限制,制动盘的直径通常选择为轮辋直径的70%一79%。总质量大于2t的汽车应取 上限。
2.制动盘厚度
制动盘厚度对制动盘质量和工作时的温升有影响。为使质量小些,制动盘厚度不宜取得很大;为了降低温度, 制动盘厚度又不宜取得过小。制动盘可以做成实心的,或者为了散热通风的需要在制动盘中间铸出通风孔道。一 般实心制动盘厚度可取为10—20mm,通风式制动盘厚度取为20~50mm,采用较多的是20—30mm。在高速运动下 紧急制动,制动盘会形成热变形,产生颤抖。为提高制动盘摩擦面的散热性能,大多把制动盘做成中间空洞的通风 式制动盘,这样可使制动盘温度降低20 %~30%。
谢谢观看
盘式制动器沿制动盘向施力,制动轴不受弯矩,径向尺寸小。
用途
盘式制动器已广泛应用于轿车,现在大部分轿车用于全部车轮,少数轿车只用作前轮制动器,与后轮的鼓式 制动器配合,以使汽车有较高的制动时的方向稳定性。在商用车中,目前盘式制动器在新车型及高端车型中逐渐 被采用。
主要组成
制动盘
摩擦衬块
1.制动盘直径
制动力疲软,不总的原因有:(a)制动器漏油;(b)制动油路中有空气;(c)轮毂油封破损,钳盘上有油污; (d)制动严重磨损,摩擦面烧损;(e)气路气压调整过低。
解决方法: 1、改变制动衬块材料 可换用稍软的制动衬块材料,使摩擦系数相对得到提高,制动力变大。 2、清除制动衬块排屑槽中的异物 如果制动衬块的排屑槽被异物覆盖,制动时将失却排出尘土、刮去水分的作用,使制动力降低。 制动后跑偏 跑偏的直接原因是两侧车轮的制动力矩不等所致,常见的故障原因:(a)制动钳盘油污严重,摩擦系统数严 重下降,造成制动力矩不平衡,此时应清除制动钳盘上的油污;(b)分泵活塞卡滞不能工作。静车踩制动,观察 分泵工作情况,视情拆检。

乘用车钳盘式制动器的结构设计与建模

乘用车钳盘式制动器的结构设计与建模

乘用车钳盘式制动器的结构设计与建模乘用车钳盘式制动器是一种常见的汽车制动系统。

它由制动钳、制动盘和制动片组成,通过压缩制动片让制动盘减速来实现对车辆的制动控制。

本文将详细介绍该制动器的结构设计与建模,以便更好地理解制动器的工作原理和优化设计方法。

首先,我们来介绍一下乘用车钳盘式制动器的结构组成。

1. 制动钳制动钳是钳盘式制动器中的重要组件,其主要作用是将制动力传递给制动片。

制动钳有固定式和浮动式两种形式。

其中,固定式制动钳是通过螺栓固定在车轮大盘上,而浮动式制动钳则是直接安装在车轮悬挂系统上。

2. 制动盘制动盘是制动器中的另一个主要部件。

它通常由铁质或铝合金制成,可抵御高温和高压。

制动盘的厚度、直径和形状都会影响制动器的效果。

制动盘的直径越大,其转动惯量就越大,散热效果也会更好。

3. 制动片制动片包括了摩擦块和支撑杆,为钳盘式制动器的摩擦元件。

制动片的材料通常是硬质合金、软质合金、有机纤维材料等。

制动片可以根据需求分为正向和反向两种形式。

以上是乘用车钳盘式制动器的主要结构部件,接下来我们来具体介绍这些部件的建模方法。

1. 制动钳建模制动钳的建模是基于先前钳子设计的工作,在CAD中的三维建模便于看到钳子的结构,同时也可以分别看到每个组成部分,例如压力板,油路和现车等。

CAD中的建模不但方便实现钳子良好的设计,还能准确测量和划算CAD图纸的尺寸。

2. 制动盘建模制动盘的建模基于其形状和尺寸,通常使用CAD模型进行建模。

CAD建模可以保证尺寸的准确性,以及实现盘形、直径和制动片安装孔的设计。

3. 制动片建模制动片建模通常使用计算机辅助设计(CAE)技术。

CAE 技术能够计算和模拟制动片的摩擦力,从而提高其强度和耐久性。

制动片的建模过程中,需要确定其材料和工艺,并确定制动片的生产和安装方法。

通过以上建模方法,我们可以将乘用车钳盘式制动器各部分进行建模,并实现组合和设计优化。

这使我们可以更好地理解制动器的工作原理,提高制动器的性能和效率。

汽车盘式制动器设计

汽车盘式制动器设计

机械工程学院毕业设计题目:汽车盘式制动器设计专业:车辆工程班级:姓名:学号:指导教师:日期:2016.5.26目录摘要 (3)前言 (3)1绪论 (4)1.1 制动系统设计的意义 (4)1.2 本次制动系统应达到的目标 (4)2制动系统方案论证分析与选择 (4)2.1 盘式制动器 (5)2.2 简单制动系 (5)2.3 动力制动系 (5)2.4 伺服制动系 (6)2.5 液压分路系统的形式的选择 (6)2.6 液压制动主缸的设计方案 (6)3盘式制动器概述 (8)3.1制动盘 (8)3.2制动摩擦衬块 (9)3.3 盘式制动器操纵机构 (9)4制动系统设计计算 (10)4.1 相关主要参数 (10)4.2 同步附着系数的分析 (11)4.3 分析计算法向作用力 (11)4.4 制动力矩分配系数的选取和计算 (12)4.5 制动器制动力矩的确定 (12)4.6 盘式制动器主要参数确定 (13)4.7 盘式制动器的制动力计算 (15)4.8 制动器主要零部件的结构设计 (16)5液压制动驱动机构的设计计算 (17)5.1 前轮制动轮缸直径d的确定 (17)5.2 制动主缸直径0d的确定 (17)5.3 制动踏板力p F和制动踏板工作行程p S (18)第6章制动性能分析 (19)6.1 制动性能评价指标 (20)6.2 制动效能 (20)6.3 制动效能的恒定性 (20)6.4 制动时汽车方向的稳定性 (20)6.5 制动器制动力分配曲线分析 (21)6 .6制动减速度j和制动距离。

(22)6.7 摩擦衬块的磨损特性计算 (22)7总结 (24)参考文献 (25)致谢 (25)Abstract (26)附录 (26)汽车盘式制动器设计摘要此片设计主要讲述了盘式制动器的整体设计,有对于整体机构的设计分析,还有数据的比对和选取。

盘式制动器主要的工作原理和结构原理等等,这样我自己会更好的更熟练的掌握设计这一方面,除此外本文还讲述了盘式制动器中的摩擦衬块特性。

盘式制动器设计范文

盘式制动器设计范文

盘式制动器设计范文盘式制动器是一种常见的汽车制动系统,在汽车制动过程中起到关键作用。

它由刹车盘、刹车片、刹车卡钳、刹车片卡钳、制动油管等组成。

以下是关于盘式制动器设计的一些信息,涵盖了设计原则、材料选择、结构设计等方面。

1.设计原则:(1)刹车力的均匀分布:刹车力要均匀分布到所有刹车片中,以确保制动效果稳定。

(2)热量散发和通风:盘式制动器在制动过程中会产生大量的热量,需要在设计中考虑热量的散发和通风,以避免制动效果因过热而下降。

(3)轻量化:盘式制动器需要在保证安全性能的基础上尽可能轻量化,以减少整车的质量。

(4)材料的选择:盘式制动器的材料需要具备高温抗磨损和耐腐蚀性能。

2.材料选择:(1)刹车盘:常见的刹车盘材料有钢铁、复合材料和碳陶瓷等。

钢铁材料价格低廉,但其热膨胀系数较大,容易导致制动时的变形;复合材料在热量散发和通风方面较好,但价格较高;碳陶瓷材料具有较好的高温抗磨损性能和轻量化特点,但价格昂贵。

(2)刹车片:常见的刹车片材料有有机材料、半金属材料和陶瓷材料等。

有机材料制动片具有制动效果较好、噪音小、对刹车盘磨损小的特点,但耐高温性能较差;半金属材料制动片具有耐高温性能较好,但噪音大、对刹车盘磨损大;陶瓷材料制动片具有良好的高温抗磨损性能和耐腐蚀性能,但价格昂贵。

(3)刹车卡钳:刹车卡钳一般采用铝合金材料制作,具有较好的强度和轻量化特点。

3.结构设计:(1)刹车盘:刹车盘一般为圆盘状,中间部分为锁定于车轮轮毂上的固定盘,可用螺栓与车轮连接;外边缘为可摩擦的刹车片接触面。

刹车盘一般具有散热孔,以增强热量散发和通风效果。

(2)刹车片:刹车片一般为半圆形,两片作用在刹车盘两侧。

刹车片与刹车盘之间的摩擦产生刹车力。

(3)刹车卡钳:刹车卡钳用于固定刹车片,通常采用活塞和活塞密封圈结构。

活塞在制动过程中施加压力使刹车片与刹车盘接触,并在松开刹车时将刹车片与刹车盘分离。

以上是关于盘式制动器设计的一些信息,涉及了设计原则、材料选择、结构设计等方面。

盘式制动器毕业设计

盘式制动器毕业设计

盘式制动器毕业设计盘式制动器毕业设计引言:盘式制动器是现代汽车制动系统中的重要组成部分,它通过摩擦力将车轮减速或停止,保证了行车的安全性。

在汽车工程领域,盘式制动器的设计和优化是一个重要的研究方向。

本文将探讨盘式制动器的毕业设计,包括设计的基本原理、材料选择、结构设计和性能评估等方面。

一、设计的基本原理盘式制动器的基本原理是利用摩擦力将车轮减速或停止。

当驾驶员踩下制动踏板时,制动液通过液压系统传递到制动器,使制动器的制动钳夹紧刹车盘,产生摩擦力。

刹车盘与车轮相连,当刹车盘受到摩擦力作用时,车轮减速或停止。

设计盘式制动器时,需要考虑制动力的大小、传递的稳定性以及制动器的磨损等因素。

二、材料选择盘式制动器的材料选择对其性能和寿命有着重要影响。

常见的刹车盘材料包括铸铁、钢铁和复合材料等。

铸铁刹车盘具有良好的制动性能和耐磨性,但重量较大。

钢铁刹车盘重量相对较轻,但制动性能略逊于铸铁刹车盘。

复合材料刹车盘由碳纤维和树脂复合而成,具有轻量化、耐高温和制动性能优越等特点。

在设计盘式制动器时,需要根据车辆类型、使用环境和经济成本等因素选择合适的材料。

三、结构设计盘式制动器的结构设计包括制动钳、刹车盘和制动片等部分。

制动钳是盘式制动器的核心部件,通过夹紧刹车盘产生制动力。

制动钳的结构设计需要考虑夹紧力的大小、传递的稳定性和制动片的磨损等因素。

刹车盘的结构设计需要考虑其散热性能和制动片的接触面积等因素。

制动片的结构设计需要考虑其材料和形状,以提高制动性能和寿命。

四、性能评估盘式制动器的性能评估是毕业设计中的重要环节。

常用的性能评估指标包括制动力、制动距离、制动稳定性和磨损等。

制动力是盘式制动器的重要性能指标,需要根据车辆类型和使用需求确定。

制动距离是指车辆从刹车开始到完全停止所需的距离,需要通过实验和仿真等方法进行评估。

制动稳定性是指制动过程中制动力的稳定性和传递的稳定性,需要通过试验和分析等方法进行评估。

磨损是盘式制动器寿命的重要指标,需要通过试验和监测等方法进行评估。

汽车设计课程设计—盘式制动器

汽车设计课程设计—盘式制动器

汽车设计计算说明书汽车设计课程设计前轮制动器部分设计说明书学号:姓名:指导老师:成绩:教师寄语:________________________________________目录一、轿车主要性能参数---------------- 4二、制动器形式的-------------------- 5三、盘式制动器主要参数的确定------------- 7四、盘式制动器制动力矩的设计计算---------- 9五、盘式制动器制器的校核计算------------ 101. 前轮制动器制动力矩的校核计算2. 摩擦衬片的磨损特性计算六、经过计算最终确定后轮制动器的参数------- 13七、设计小结--------------------- 13八、设计参考资料-------------------- 13轿车前轮制动器设计说明书前言汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。

随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全,汽车制动系的工作可靠性显得日益重要。

也只有制动性能良好、制动系工作可靠的汽车,才能充分发挥其动力性能。

本次课程设计根据任务要求只进行轿车前轮制动器的设计,后轮部分由同组同学钟恩伟完成。

轿车主要性能参数主要尺寸和参数:(1) 、轴距:L=3.05m(2) 、总质量:M=2200kg(3) 、质心高度:1.0m(4) 、前轴负荷率:35%即质心到前后轴距离分别为L i = L ?(1 - 35% = 1.9825mL 2 = L ?35%= 1.0675m(5) 、轮胎参数:225/60R16;即轮胎的名义断面宽度为225mm 高宽比为60%轮辋直径为16英寸(406.4mm 则轮胎有效半径r轮胎有效半径二轮辋半径+ (名义断面宽度X 高宽比)所以轮胎有效半径r e = (40614+ 225 X 60% = 338mm(6) 、制动性能要求:初速度为50KM/h 时,制动距离为15m1 ( T足制动性能要求的制动减速度由:S =36( T 2 + ¥) a o +冥92 3-6 2 25.92 a bmax 计算最大减速度 a bmax,其中口 0 = U 0 = 50Kmh = 13.89n/s ; S =15m T 2 = 0.02s ; T 2 = 0.02s 。

毕业设计-汽车制动器设计

毕业设计-汽车制动器设计

摘要汽车的设计与生产涉及到许多领域,其独有的安全性、经济性、舒适性等众多指标,也对设计提出了更高的要求。

汽车制动系统是汽车行驶的一个重要主动安全系统,其性能的好坏对汽车的行驶安全有着重要影响。

随着汽车的形式速度和路面情况复杂程度的提高,更加需要高性能.长寿命的制动系统。

其性能的好坏对汽车的行驶安全有着重要影响,如果此系统不能正常工作,车上的驾驶员和乘客将会受到车祸的伤害。

鉴于制动系统的重要性,本次设计的主要内容就是运输车辆中的制动器,目前广泛使用的是摩擦式制动器,摩擦式制动器就其摩擦副的结构形式可分成鼓式、盘式和带式三种。

其中;盘式制动器较为广泛。

盘式制动器的摩擦力产生于同汽车固定部位相连的部件与一个或几个制动盘两端面之间。

其中摩擦材料仅能覆盖制动盘工作表面的一小部分的盘式制动器称为钳盘式制动器;摩擦材料覆盖制动盘全部工作表面盘式制动器称为全盘式制动器。

现代汽车中以单盘单钳式的钳盘式制动器应用最为广泛,仅有个别大吨位矿用自卸车采用单盘三钳和双盘单钳的钳盘式制动器,以及全盘式制动器。

钳盘制动器和浮钳盘式制动器。

式制动器分为定钳盘式定钳盘式为制动钳固定在制动盘两侧,且在其两侧均设有加压机构。

浮钳盘式制动器仅在制动盘一侧设有加压机构的制动钳,借其本身的浮动,而在制动盘的另一侧产生压紧力。

又分为制动钳可相对于制动钳可相对于制动盘轴向滑动钳盘式制动器;与制动钳可在垂直于制动盘的平面内摆动的摆动钳盘式制动器。

关键词:制动系统;盘式制动器;重要安全系统目录摘要 (2)1 盘式制动器概述 (5)1.1 盘式制动器原理及特点 (5)1.2 盘式制动器的主要元件 (6)1.2.1 制动盘 (6)1.2.2 制动摩擦衬块 (7)1.3 盘式制动器操纵机构 (8)2 盘式制动器设计 (9)2.1 制动器设计中的分析 (9)2.2 制动器的基本参数 (9)2.2.1 先确定制动力矩M (10)r2.2.2 确定摩擦盘尺寸 (10)2.2.3 制动器的磨损验算 (11)2.2.4 踏板操纵力 (12)2.2.5 踏板操纵行程Sc计算 (16)2.3 制动器机构设计 (17)3 盘式制动器摩擦盘设计 (19)3.1 摩擦盘结构 (19)3.2 摩擦材料类型 (19)4 盘式制动器压盘的设计 (22)4.1 压盘的结构 (22)4.2 压盘的球槽 (23)5 盘式制动器弹簧 (25)5.1 圆柱螺旋弹簧的结构 (25)5.2 圆柱螺旋弹簧的制造 (26)5.3 圆柱螺旋弹簧参数 (26)6 盘式制动器花键设计 (28)6.1 花键类型特点及应用 (28)6.2 花键参数的确定与强度校核 (28)7 结论 (31)参考文献 (32)第一章盘式制动器概述§1.1盘式制动器原理及特点图.1-1增力式盘式制动器零件图1、2—压盘3、7—摩擦盘4—半轴壳5—半轴6—回位弹簧8—中间壳体9—调整螺栓 10—斜拉杆11—调节叉 12—拉杆13—压盘凸肩14—壳体肩台上图是运输车辆增力式盘式制动器零件图。

湿式多盘停车制动器设计

湿式多盘停车制动器设计

湿式多盘停车制动器设计首先,设计湿式多盘停车制动器需要确定所需的制动力大小。

制动器的制动力大小直接影响到其使用的车辆的制动性能,所以需要根据车辆的质量、速度和制动要求等因素确定制动力的大小。

其次,设计湿式多盘停车制动器需要确定使用的材料。

湿式多盘停车制动器中的摩擦盘由于长时间与油液接触,所以需要选择耐磨、耐热、耐腐蚀的材料。

一般来说,常用的材料有碳素纤维复合材料、金属复合材料等。

接下来,设计湿式多盘停车制动器需要确定制动器的结构。

制动器的结构包括制动盘、制动盘壳、制动片和压紧机构等部分。

制动盘的设计应保证其足够的刚度和强度,并且要保证制动片的压力均匀分布,以避免制动片磨损不均衡和制动不稳定的问题。

此外,湿式多盘停车制动器还需要考虑散热的问题。

由于制动过程中会产生大量的热量,所以制动器的散热性能需要足够好,以确保长时间使用时不会因为温度过高而失去制动效果。

为了增强散热效果,制动器的结构应设计合理,并可以选择增加散热片或者散热沟槽等措施。

最后,湿式多盘停车制动器在设计过程中还应考虑制动器的可靠性和可维修性。

制动器的可靠性是指在任何工况下都能保证制动力和制动效果的稳定性,可维修性是指制动器在出现故障时能够方便、快速地进行维修和更换零件。

在设计湿式多盘停车制动器时,需要综合考虑以上几个因素,并进行合理的选择和设计。

同时,需要注意制动器的制动性能测试和验证,以确保其满足要求。

制动器的设计和制造需要经验丰富的工程师进行,并遵循相应的标准和规范。

只有合理的设计和制造才能保证湿式多盘停车制动器的性能和安全。

总之,设计湿式多盘停车制动器需要考虑制动力大小、材料的选择、结构设计、散热性能、可靠性和可维修性等因素。

只有综合考虑这些因素,并进行合理的选择和设计,才能设计出满足要求的湿式多盘停车制动器。

轿车盘式制动器结构设计设计

轿车盘式制动器结构设计设计

摘要汽车的设计与生产涉及到许多的领域,其独有的安全性、经济性、舒适性等众多指标,也对设计提出了更高的要求。

汽车制动系统是汽车行驶的一个重要主动安全系统,其性能的好坏对汽车的行驶安全有着重要影响。

随着汽车的行驶速度和路面情况复杂程度的提高,更加需要高性能,长寿命的制动系统。

鉴于制动系统的重要性,本次设计的主要内容是轿车制动器结构设计。

本文从制动系的功用及设计的要求出发,依据给定的设计参数,进行了方案论证,对各种形式制动器的优缺点进行了比较后,在前盘后鼓的基础上改为前后均为盘式制动器。

在此基础上选择了简单液压驱动机构和双管路系统,选用了间隙自动调节装置,采用比例阀作为制动力的调节装置。

仿真结果表明,轿车制动器结构的设计保持了制动力分配系数的稳定,改善了汽车的制动稳定性,简化了汽车的制动装置,减轻了整车质量,从而提高了汽车在行驶过程中的安全性与稳定性。

关键词:制动钳,制动盘,制动轮缸,制动衬片ABSTRACTAutomobile design and production are involved in many fields, its unique safety, economy, comfort and so many indicators, also raised taller requirement to the design. Automobile braking system is an important vehicle active safety system, and its performance depends on car has an important influence on road safety. As the vehicle of the speed and pavement situation was complex degree rise, more require high-performance, long life of brake system.In view of the importance of brake system, the design of the main content is a transport vehicles, the brake from brake system function and design, according to the requirement of design parameters, given the scheme comparison. On all forms of brake their advantages and disadvantages are discussed, based on HouGu have in QianPan instead of before and after are disc brakes, maintain braking force distribution coefficient, improves the stability of the braking stability and simplify the automobile braking device, reduce the vehicle quality, thereby improving the car while driving in the process of security and stability. Choose a simple hydraulic driving mechanism and double pipeline system, chose clearance automatic adjusting device, proportional valve as brake force adjusting deviceKeywords: brake disc, Brake wheel cylinder, Brake caliper, Braking facings formulations轿车盘式制动器结构设计1、引言1.1 汽车制动系概述使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已经停驶的汽车保持不动,这些作用统称为汽车制动。

液压盘式制动器零部件设计规范

液压盘式制动器零部件设计规范

液压盘式制动器零部件设计规范一、制动盘制动盘是液压盘式制动器的重要组成部分,其设计规范如下:1.制动盘的材料应具有良好的耐磨性、耐高温性和耐腐蚀性,常见的材料有铸铁和钢材。

2.制动盘的直径和厚度应根据具体的应用场景确定,需要考虑到制动力矩和散热能力等因素。

3.制动盘的表面应进行特殊处理,以提高其与摩擦片之间的黏着力和摩擦系数。

二、摩擦片摩擦片是液压盘式制动器的另一个重要零部件,其设计规范如下:1.摩擦片的材料应具有良好的摩擦性能和热稳定性,常见的材料有有机材料和金属材料。

2.摩擦片的形状和尺寸应与制动盘相匹配,确保制动力的传递和分配。

3.摩擦片的摩擦系数应根据具体的应用场景确定,需要满足制动器的制动要求。

三、油缸和活塞油缸和活塞是液压盘式制动器的液压部分,其设计规范如下:1.油缸和活塞的材料应具有耐腐蚀性和高强度,常见的材料有铝合金和不锈钢等。

2.油缸和活塞的密封性能应良好,可以采用密封圈或密封垫等密封件来实现。

3.油缸和活塞的体积和尺寸应根据具体的应用场景确定,需要考虑到液压系统的工作压力和制动力的需求。

四、液压管路液压管路是液压盘式制动器的输送介质的通道,其设计规范如下:1.液压管路的材料应具有高压强度和耐腐蚀性,常见的材料有钢管和钢丝编织软管等。

2.液压管路的连接方式应牢固可靠,可以使用焊接、螺纹连接或压接等方式。

3.液压管路的布局和路径应合理,避免过长或过弯的管道,以减小液压阻力和压力损失。

总之,在液压盘式制动器的零部件设计中,需要考虑材料的性能、尺寸的匹配、连接方式的可靠性以及系统的安全性等因素。

只有符合这些设计规范,才能确保液压盘式制动器的正常运行和安全性。

毕业设计论文轿车盘式制动器设计及优化

毕业设计论文轿车盘式制动器设计及优化
轿车盘式制动器设计及优化
摘要
盘式制动器主要用于行车制动,其制动效能稳定,在汽车中得到广泛的应用。首先通过了解制动器的设计要求,对盘式制动器进行初始设计;然后再对盘式制动器进行优化设计。本设计通过对摩擦片的中心圆半径、摩擦片直径、制动盘的直径、活塞直径、制动盘厚度、油缸内的油压等参数的优化设计,以制动时间、制动盘的厚度、制动盘的温升作为优化设计目标,建立盘式制动器的优化设计数学模型。选用合理的优化设计方法,编写MATALB程序,通过优化程序的运行,得到最终优化结果,从而得出盘式制动器较合理的尺寸。
制动系至少有行车制动装置和驻车制动装置。前者用来保证第一项功能和在不长的坡道上行驶时保证第二项功能,而后者则用来保证第三项功能。除此之外,有些汽车还设有应急制动和辅助制动装置。
汽车质量是汽车生产企业的生命线,其中安全性能尤为重要。汽车制动系统是汽车行驶的一个重要主动安全系统,其性能的好坏对汽车的行驶安全有着重要影响。随着汽车的行驶速度和路面情况复杂程度的提高,更加需要高性能长寿命的制动系统。其中汽车制动器是汽车制动系统的制动执行装置,制动器的性能直接影响到汽车制动系统的可靠性,因此对汽车汽车制动器的安全性设计提出了更高的要求。
汽车优化设计理论与方法的推广和普及,大大地缩短了产品开发周期,降低了生产成本。这对于那些面临着要进行多型号小批量生产并且客户的要求在不断地改变的企业来说,采用优化设计将大大减少设计的工作量并节省从客户发单到开始生产的时间,从而增强企业的竞争力。
本设计以小轿车为例进行汽车盘式制动器的优化设计,并且前后轮都使用盘ห้องสมุดไป่ตู้制动器为前提条件的。此次毕业设计的题目是“轿车盘式制动器设计及优化”,首先对盘式制动器进行初始设计,然后建立优化设计数学模型,编写程序,通过程序运行后得到盘式制动器的合理结构尺寸。

盘式制动器的设计

盘式制动器的设计
汽车制动器按其在汽车上的位置分为中央制动器和车轮制动器。前者是安装在传动系的某个轴上,例如装在变速器或分动器的第二轴的后端或传动轴的前端,并用手操纵杆进行操纵,故又称为手制动;后者安装在车轮处,并采用脚踩制动踏板进行操作,故又称为脚制动。
摩擦式制动器按其旋转元件的不同又可分为鼓式制动器和盘式制动器。盘式制动器和鼓式制动器的结构如下:
1.制动踏板 2.推杆 3.主缸活塞 4.制动主缸 5.油管 6.制动轮缸 7.轮缸活塞 8.制动鼓 9.摩擦片 10.制动蹄 11.制动底板 12.支承销 13.制动蹄回位弹簧
一个以内圆面为工作表面的金属制动鼓固定在车轮轮毂上,随车轮一同旋转。在固定不动的制动底板上,有两个支承销,支撑着两个弧形制动蹄的下端。制动蹄的外圆面上装有摩擦片。制动底板上还装有液压制动轮缸,用油管5与装在车架上的液压制动主缸相连通。主缸中的活塞3可由驾驶员通过制动踏板机构来操纵。
图2-1盘式制动器和鼓式制动器
本次设计车型为中档轿车,全部车轮选择盘式制动器,下面对其进行介绍和计算。
§
按摩擦副中固定元件的结构不同,盘式制动器分为钳盘式和全盘式两类。盘式制动器的结构如右图所示:
图2-2盘式制动器安装结构
钳盘式制动器(图2—3)的固定摩擦元件是制动块,装在与车轴连接且不能绕车轴轴线旋转的制动钳中。制动衬块与制动盘接触面很小,
2)水稳定性好。制动块对盘的单位压力高,易于将水挤出,因而浸水后效能降低不多;又由于离心力作用及衬块对盘的擦拭作用,出水后只需经一、二次制动即能恢复正常。鼓式制动器则需经十余次制动方能恢复。
3)制动力矩与汽车运动方向无关。
4)易于构成双回路制动系,使系统有较高的可靠性和安全性。
5)尺寸小、质量小、散热良好。
图1-1制动系统简单示意图

轿车盘式制动器的设计

轿车盘式制动器的设计

轿车盘式制动器的设计
轿车盘式制动器通常由以下部分组成:
1. 制动盘:制动盘通常是由灰铸铁或钢铁材料制成,可以承受
高温和高压。

制动盘通常与车轮紧密连接,作为制动器的旋转部件。

2. 制动钳:制动钳是制动器的关键部件。

它可以固定在车轮组
件上,通常由两个活塞构成。

当你踩下刹车踏板时,制动液会进入
制动钳,使活塞向外移动,压住制动盘,从而产生摩擦力。

3. 制动片:制动片通常由摩擦材料制成,比如陶瓷或有机材料。

制动盘表面搭配刹车片,制动碟掌握汽车的刹车效果,平时对汽车
很多细节控制具备很强的主导作用
4. 制动器液:液压制动系统使用的液体称为制动器液。

当你踩
下刹车踏板时,制动液会进入制动钳和活塞中,产生摩擦力,使车
轮减速或停止。

轿车盘式制动器的设计主要涉及制动盘的材质、尺寸和形状、
制动钳设计的精度和信心、制动片选择和制动器液的选择。

高质量
的设计可以确保轿车制动器的可靠性、安全性和耐用性。

盘式制动器设计计算

盘式制动器设计计算

盘式制动器设计计算盘式制动器是一种常见的制动装置,广泛应用于汽车、摩托车和一些机械设备中。

它通过将制动力转化为摩擦力来实现制动效果,具有制动力大、制动平稳、制动距离短等优点。

在设计盘式制动器时,需要考虑多个因素,包括制动力的计算、制动器的尺寸选择和材料选用等。

首先,制动力的计算是盘式制动器设计的重要一步。

计算制动力需要考虑车辆质量、速度和刹车时加速度等因素。

根据物理学原理,制动力的大小与车辆的动能和刹车时加速度成正比。

通常,制动力的计算可以使用以下公式:制动力=车辆质量×刹车时加速度其次,盘式制动器的尺寸选择是另一个关键因素。

制动器的尺寸主要包括盘径、盘厚和刹车片面积等。

盘径的选择需要考虑车辆的重量和速度,较大的盘径可以提供更大的制动力。

盘厚的选择通常是根据制动器的散热性能来决定,较薄的盘厚有助于散热,但也容易导致盘片的变形。

刹车片面积的大小影响着制动器的摩擦力,一般情况下,较大的刹车片面积可以提供更大的制动力。

此外,盘式制动器的材料选用也需要仔细考虑。

盘片和刹车片是制动器的核心部件,其材料的选择直接影响着制动器的性能。

常见的盘片材料包括铸铁、钢和复合材料等,而刹车片材料通常是由摩擦材料制成。

铸铁盘片具有较好的散热性能,但容易产生裂纹;钢盘片的散热性能较差,但较为耐用;复合材料盘片则具有较好的散热性能和耐用性。

刹车片材料的选择主要考虑其摩擦性能和耐磨性,常见的刹车片材料有有机材料、半金属材料和陶瓷材料等。

最后,盘式制动器的设计还需要考虑安装的方式和制动系统的调节等。

盘式制动器通常有两种安装方式,一种是固定式,即制动器直接固定在车轮上;另一种是浮动式,即制动器和轮轴连接的部分可以浮动,以减小由于温度变化而引起的失真。

制动系统的调节主要包括两个方面,一是制动压力的调节,通过调节制动液压缸的工作压力来达到合适的制动力;二是制动器的磨损调节,通过调节制动踏板的行程来保证刹车片的磨损均匀。

综上所述,盘式制动器的设计计算需要考虑多个因素,包括制动力的计算、制动器的尺寸选择和材料选用等。

盘式制动器参数化设计

盘式制动器参数化设计

制动轮缸直径与前轮制动力矩关系为d==56.8mm
轮缸直径应在标准规定的尺寸中选故制动轮缸直径为:
d=55mm
零件三维模型建立设计零部件图见图1。

图1制动器主要零部件图
3.2制动器装配设计
图1为制动器模型建立的模型,通过设计处零件模型并将零件模型进行装配,并添加相关约束包括相合约束、接触约束及距离约束等,从而实现制动器的装配,工程设计人员可以借此画出零件设计图纸,极大节约了制动器的设计时间,其中图2是制动器整体装配图。

图2制动器装配图
本文通过研究汽车制动的性能要求,从而经过计算得出制动器设计的主要参数,通过参数化进行模型设计,
软件中的零件设计、创成式外形设计、
面三个模块完成制动器各个零部件的建模并进行装配,。

电动汽车摩擦制动器的轻量化设计

电动汽车摩擦制动器的轻量化设计

关键 词 :制 动 器 附着 条件 能量 负荷 遗 传算 法
与传统 汽车制动不同 ,电动 汽 和重量是可行的 。本文对前轮钳盘 制动器制动性 的部分 要求。 车 的制动是 由摩擦 制动和再 生制动 式制动器进行轻量 化设计 。
共 同完成的 。但是 ,在当前的电动 按 照该制动 规范 的部分 要求 , 利用 AD IOR进行制动仿真 ,设 VS
维普资讯
技 术 与 研 究
电动汽车摩擦制动器的轻量化设计
陆 志 成
内容 提要 :本文主要 对制 动 器的性 能要 求 ,在 某一 附着 条件 下所 需的制 动 器制动 力 , 在制 动过 程 中的
能量 负荷 及 约束 条件 进行 了描述 ,并 运 用遗 传 算 法对 摩擦 制 动器轻量 化进 行 计算和 设计
试 验 项
载 重

干 水 泥路 面
满 载
变为 了电能 ,由摩擦 制动器承担 的 值 ,即制动器制动力矩上 限值 。 制动 能量耗散 任务相 应地减小 了, 下面将 根据 相关 的制动 规范 , 对制动器承载热负荷 的要 求也会 降 确定制动器制动力矩的下 限值。 1 表 低 。因此 ,减小摩 擦制动器 的尺寸 列 出了我 国的轿车制动规范对 行车
摩擦制动器所 能提供 的制动 力 要求 。 富余的制动 能力 。 ——开始制动时汽车 已行 矩大小 ,一方面 ,为了保 证制动性 式中:S, 对 电动 汽车而 言 ,在 采用再生 能 ,满足制动法规 ,摩擦制动器 所 驶的距离 ( ) i n 制动后 ,由于 电机提供 的再生制动 能提供的制动力矩不能小于某一 数 S —— 制动结束时汽车 已行 转矩承担了制动总需求转 矩的一部 值 ,即制动器制动力矩下限值 ;另 驶的距离 ( m)

乘用车盘式制动器设计(课程设计必备)

乘用车盘式制动器设计(课程设计必备)

提供全套毕业论文,各专业都有盘式制动器设计目录摘要.................................................. 错误!未定义书签。

1 绪论............................................... 错误!未定义书签。

1.1研究意义....................................... 错误!未定义书签。

1.2国内外发展现状................................. 错误!未定义书签。

1.3制动系统应具有的功能和应满足的要求 (3)1.4课题任务 (3)2 制动器方案的选择................................... 错误!未定义书签。

2.1方案选择的依据................................. 错误!未定义书签。

2.2方案的选定..................................... 错误!未定义书签。

2.2.1制动器选择............................... 错误!未定义书签。

2.2.2前、后制动器的选择 (4)2.3行车制动器的标准和法规 (6)3 制动器的主要参数及其选择 (7)3.1 制动力与制动力分配系数 (7)3.2 同步附着系数计算 (11)3.3 制动器最大制动力矩 (14)3.4 利用附着系数和制动效率 (15)3.4.1利用附着系数 (16)3.4.2制动效率E f、E r (17)3.5制动器制动性能核算 (18)4 制动器主要零件的设计计算 (18)4.1制动盘主要参数的确定 (18)4.1.1制动盘 (18)4.1.2制动盘直径D (19)4.1.3制动盘厚度h (19)4.2摩擦衬块主要参数的确定 (20)4.2.1 摩擦衬块内半径R1和外半径R2 (20)4.2.2 摩擦衬块有效半径 (20)4.2.3 摩擦衬块的面积和磨损特性计算 (21)4.2.4 摩擦衬块参数设计核算 (23)4.3液压制动驱动机构的设计计算 (24)4.3.1制动轮缸直径d与工作容积V (24)4.3.2制动主缸直径与工作容积 (25)4.3.3制动踏板力 (26)4.3.4踏板工作行程S (26)P5 制动器主要零件的结构设计 (26)5.1制动钳 (26)5.2制动块 (27)5.3摩擦材料 (27)5.4盘式制动器工作间隙的调整 (28)致谢.................................................. 错误!未定义书签。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

济源职业技术学院毕业设计题目汽车制动器摩擦盘的设计系别机电工程系专业机电一体化技术班级机电0915 姓名吴亮学号 09011535 指导教师章明日期 2011年9月16日设计任务书设计题目汽车制动器设计设计要求1.了解汽车制动器的作用。

2.设计适应有关标准和法规的规定。

3.确定汽车制动器的基本结构。

4.盘式制动器摩擦盘的设计。

5.盘式制动器花键的选择。

设计进度第一周技能训练第二周搜集相关资料第三周前期准备工作第四周部分零件尺寸计算第五至六周进行设计第七周毕业论文的校核修改第八周准备答辩指导教师(签名):摘要汽车的设计与生产涉及到许多领域,其独有的安全性、经济性、舒适性等众多指标,也对设计提出了更高的要求。

汽车制动系统是汽车行驶的一个重要主动安全系统,其性能的好坏对汽车的行驶安全有着重要影响。

随着汽车的形式速度和路面情况复杂程度的提高,更加需要高性能.长寿命的制动系统。

其性能的好坏对汽车的行驶安全有着重要影响,如果此系统不能正常工作,车上的驾驶员和乘客将会受到车祸的伤害。

鉴于制动系统的重要性,本次设计的主要内容就是运输车辆中的制动器,目前广泛使用的是摩擦式制动器,摩擦式制动器就其摩擦副的结构形式可分成鼓式、盘式和带式三种。

其中盘式制动器较为广泛。

盘式制动器的摩擦力产生于同汽车固定部位相连的部件与一个或几个制动盘两端面之间。

其中摩擦材料仅能覆盖制动盘工作表面的一小部分的盘式制动器称为钳盘式制动器;摩擦材料覆盖制动盘全部工作表面盘式制动器称为全盘式制动器。

现代汽车中以单盘单钳式的钳盘式制动器应用最为广泛,仅有个别大吨位矿用自卸车采用单盘三钳和双盘单钳的钳盘式制动器,以及全盘式制动器。

钳盘制动器和浮钳盘式制动器。

钳式制动器分为定钳盘式定钳盘式为制动钳固定在制动盘两侧,且在其两侧均设有加压机构。

浮钳盘式制动器仅在制动盘一侧设有加压机构的制动钳,借其本身的浮动,而在制动盘的另一侧产生压紧力。

又分为制动钳可相对于制动钳可相对于制动盘轴向滑动钳盘式制动器;与制动钳可在垂直于制动盘的平面内摆动的摆动钳盘式制动器。

关键词:盘式制动器、盘式制动器摩擦盘、盘式制动器压盘、盘式制动器弹簧目录设计进度 (I)摘要 (II)目录 (III)1盘式制动器概述 (1)1.1盘式制动器原理及特点 (1)1.2盘式制动器的主要元件 (2)1.2.1制动盘 (2)1.2.2制动摩擦衬块 (3)1.3盘式制动器操纵机构 (4)2盘式制动器设计 (5)2.1制动器设计中的分析 (5)2.2制动器的基本参数 (6)2.2.1先确定制动力矩M (6)2.2.3制动器的磨损验算 (6)2.2.4踏板操纵力 (7)2.2.5踏板操纵行程Sc计算 (12)2.3制动器操纵机构设计 (12)3 盘式制动器摩擦盘的设计 (13)3.1摩擦盘结构 (15)3.2摩擦材料类型 (15)4 盘式制动器压盘的设计 (18)4.1压盘的结构 (18)4.2压盘的球槽 (18)5 盘式制动器弹簧 (20)5.1圆柱螺旋弹簧的结构形式 (20)5.2圆柱螺旋弹簧的制造 (20)5.3圆柱螺旋弹簧参数 (21)6 盘式制动器花键设计 (23)6.1花键的类型、特点和应用 (23)6.2花键参数的确定与强度校核 (23)结论 (26)致谢 (27)参考文献 (28)1盘式制动器概述1.1盘式制动器原理及特点图.1-1增力式盘式制动器零件图1、2—压盘 3、7—摩擦盘 4—半轴壳 5—半轴 6—回位弹簧 8—中间壳体 9—调整螺栓 10—斜拉杆11—调节叉 12—拉杆13—压盘凸肩14—壳体肩台上图是运输车辆增力式盘式制动器零件图。

在差速器的每一侧半轴上,用花键安装着两个粘有摩擦衬面的摩擦盘3和7,它们能在花键轴上来回滑动,是制动器的旋转部分。

在两摩擦盘之间有一对可锻铸铁的圆形压盘1和2,它们的表面支承在半轴壳4的三个凸肩上,并能在较小的弧度内转动。

两压盘内侧面的五个卵圆形凹坑中装有五个钢球,两压盘用三根弹簧6拉紧。

在中间盖8和摩擦盘4上,与摩擦盘相对着的表面经过加工。

摩擦盘与压盘间,以及摩擦盘与半轴壳和中间盖间,在不制动时都有一定间隙。

制动时,制动踏板通过斜拉杆使两压盘相对转动,此时凹坑中夹着的五个钢球就从坑底向坑边滚动,将两压盘挤开,两压盘就将旋转着的两个摩擦盘分别推向半轴壳和中间盖,使各相对摩擦表面间产生摩擦扭矩,最终将半轴制动。

如果放松制动踏板,则弹簧6又将两压盘拉紧复原,使钢球进入坑底,恢复了摩擦盘两侧的间隙。

盘式制动器在上述制动过程中有增力作用。

当摩擦盘顺时针旋转时;作用在压盘上的摩擦扭矩将使它们跟随旋转,但当压盘1由于其凸起13受到半轴壳上的凸肩14的限制而不能转动时,压盘2则在摩擦扭矩的作用下将相对于压盘1作顺时针转动,协助钢球继续将两压盘挤开,使操纵省力。

当摩擦盘反时针旋转时,和上述过程相似地起增力作用。

因此不管运输车辆前进还是倒退,制动时盘式制动器都有增力作用。

与带式和蹄式制动器相比,盘式制动器除了结构复杂外有一系列优点:如结构紧凑,操纵省力,制动效果好,衬面磨损较均匀,间隙不需调整,封闭性好不易进泥水,且散热容易,故使用寿命较长等。

这些特点使它得到越来越广泛的应用。

1.2 盘式制动器的主要元件1.2.1制动盘1.制动盘直径D制动盘直径D应尽可能取大些,这时制动盘的有效半径得到增加,可以降低制动钳的夹紧力,减少衬块的单位压力和工作温度。

受轮辋直径的限制,制动盘的直径通常选择为轮辋直径的70%一79%。

总质量大于2t的汽车应取上限[1]。

2.制动盘厚度h制动盘厚度对制动盘质量和工作时的温升有影响。

为使质量小些,制动盘厚度不宜取得很大;为了降低温度,制动盘厚度又不宜取得过小。

制动盘可以做成实心的,或者为了散热通风的需要在制动盘中间铸出通风孔道。

一般实心制动盘厚度可取为10—20mm,通风式制动盘厚度取为20~50mm,采用较多的是20—30mm。

在高速运动下紧急制动, 制动盘会形成热变形, 产生颤抖。

为提高制动盘摩擦面的散热性能, 大多把制动盘做成中间空洞的通风式制动盘, 这样可使制动盘温度降低20 %~30 %[2]。

3.制动盘的安装制动盘安装在轮毂上, 与车轮形成整体旋转。

制动盘是旋转部件, 与摩擦衬块之间只有微小的间隙。

从制动盘中心到摩擦衬块磨合中心称为制动盘有效半径。

根据杠杆原理,如摩擦力相同,则制动盘的有效半径越大, 制动力就越大。

4.制动盘的维修制动盘都是标准设计,以使在制动盘使用期限内保持制动表面各项指标的允差,这些指标是平行度、平面度以及横向摆差。

保持关于制动表面形状的精度的允差,有助于尽量减少制动粗暴及踏板脉动。

制动盘表面粗糙度必须保持在60μm 特定范围内,或者更小些。

需要控制制动表面粗糙度,尽量减少踏板费力、过大的制动衰退、反常性能的问题。

控制表面粗糙度同样能提高摩擦衬片的寿命。

每当维修制动摩擦块或卡钳、或者换位车轮或为了其他类型工作而拆卸车轮,总要检查盘式制动器制动盘。

不要忘记,伴随盘式制动器制动盘而发生的许多问题,一般用肉眼检查一下,可能不是很明显的。

制动盘厚度、平行度、摆差、平面度。

以及刮痕深度等,只能用准确的测量仪和千分尺进行测量。

精密的测量工具及现代的精加工设备,对维修好制动盘来说,是至关重要的。

1.2.2制动摩擦衬块摩擦衬块是指钳夹活塞推动挤压在制动盘上的摩擦材料。

摩擦衬块分为摩擦材料和底板,两者直接压嵌在一起。

摩擦衬块外半径只与内半径及推荐摩擦衬块外半径2R 与内半径1R 的比值不大于1.5。

若此比值偏大,工作时衬块的外缘与内侧圆周速度相差较多,磨损不均匀,接触面积减少,最终导致制动力矩变化大。

对于盘式制动器衬块工作面积A ,推荐根据制动衬块单位面积占有的汽车质量在1.6~3.52/kg mm 范围内选用。

由于摩擦,摩擦衬块会产生磨损。

摩擦材料使用完后, 底板和制动盘直接接触会丧失制动效果, 损坏制动盘。

制动盘损坏后,修理费用十分昂贵。

为避免损坏制动盘,过去,用户靠定期车检来确定摩擦衬块的剩余量; 后来, 在底板上安装摩擦衬块磨损指示器, 当摩擦衬块已磨损到剩余量很少时, 指示器与制动盘接触, 当司机踏制动踏板时, 就发出异常的声响; 现在有一种更加准确提醒摩擦衬块磨损的方法, 即安装电子式磨损指示器, 当摩擦衬块磨损后, 磨损指示器中的线路断掉,警示灯亮[3]。

1.3 盘式制动器操纵机构在一般拖拉机上,制动操纵机构几乎都是机械式的。

制动踏板通过一些杆件与制动元件相连。

当摩擦衬面磨损后,为了调整踏板的自由行程,有一些杆件的长度是可调的,如利用调节叉来调节长度。

左右制动器的踏板可用连接板连接,以便同时制动两驱动轮。

当松开制动时,制动踏板都应该有回位弹簧使其自动回位。

为使运输车辆能在斜坡上停车或在作固定作业时不让其随意移动位置,在操纵机构中都有停车锁定装置,它能卡住已踏下的制动踏板,使其不能回位,以使制动器能在没有驾驶员操纵的情况下长时间地处于制动状态[9]。

带式和蹄式制动器踏板的自由行程一般为40~80mm,盘式制动器踏板的自由行程稍大些,这是因为盘式制动器的旋转元件和制动元件间的总间隙较小,如果自由行程过小,驾驶员稍一踏下踏板就已开始了制动,这样易使摩擦衬面加速磨损。

左右踏板的行程必须一致,否则拖拉机在紧急制动时会容易发生偏转而发生安全事故。

如果用作直线行驶中降速或停车,则必须注意首先分离主离合器然后再制动;如果用作协助履带拖拉机转向,则必须注意首先分离慢速侧的转向离合器,然后再制动该侧驱动轮。

2盘式制动器设计2.1 制动器设计中的分析在制动器的设计中,p R 和g R 是根据制动力矩的大小,允许的表面单位压力和制动器结构的合理布置等决定的,一般不考虑对加力效果的影响,当摩擦材料选定后,系数μ也是一个既定的数值。

因此要使制动器满足一定的加力效果,关键在于合理的确定球槽斜角α。

可以看出,当球槽斜角α减少时,加力系数变大,操纵省力。

但是,α的减少受到自刹的限制。

如果α较小,则只要压盘与摩擦片开始接触后,不需要驾驶员的操纵力,制动器就会自行制动,这是我们不希望的。

因此,不自刹的条件为:tg >μ(p R /g R ) (2-1)式中 μ-摩擦系数pR -擦力合力的作用半径; g R -钢球至中心O 的距离。

加力系数愈大,表示操纵力减少愈多。

但必须指出,加力系数并不代表操纵力实际减少的比例。

因为实际操纵力取决于主拉杆的拉力p ,即1p 与2p 的合力,而不是1p 与2p 数和。

其中为1p 斜拉杆对压盘1的拉力, 2p 为斜拉杆对压盘2的拉力。

从以上分析看出,盘式制动器之所以结构紧凑,在于它在同样体积下可获得较多的摩擦面积。

它的加力效果显著,使操纵力很小。

并与被制动轴的转动方向无关。

相关文档
最新文档