2016-2017学年天津市河西区天津四中八年级(上)期末数学冲刺试卷

合集下载

2016-2017学年天津市部分区八年级上学期期末数学试卷

2016-2017学年天津市部分区八年级上学期期末数学试卷

2016-2017学年天津市部分区八年级上学期期末数学试卷一、选择题1.下列式子是分式的是(??)A、B、C、+y D、+2.计算(﹣3a3)2的结果是(??)A、﹣6a5B、6a5C、9a6D、﹣9a6+3.如果一个三角形的两边长分别为2和5,则此三角形的第三边长可能为(??)A、2B、3C、6D、7+4.下列平面图形中,不是轴对称图形的是(??)A、B、C、D、+5.下列运算正确的是(??)A、﹣2(a+b)=﹣2a+2bB、x5+x5=xC、a6﹣a4=a2D、3a2?2a3=6a5+6.下列从左到右的变形是因式分解的是(??)A、6a2b2=3ab?2abB、﹣8x2+8x﹣2=﹣2(2x﹣1)2C、2x2+8x﹣1=2x(x+4)﹣1D、a 2﹣1=a(a﹣)+7.下列说法正确的是()A、形状相同的两个三角形全等B、面积相等的两个三角形全等C、完全重合的两个三角形全等D、所有的等边三角形全等+8.下列多项式中,含有因式(y+1)的多项式是()A、y2﹣2xy﹣3x2B、(y+1)2﹣(y﹣1)2C、(y+1)2﹣(y2﹣1)D、(y+1)2+2(y+1)+1+9.若一个多边形的内角和与它的外角和相等,则这个多边形是()A、三角形B、四边形C、五边形D、六边形+10.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积= AC?BD,其中正确的结论有(??)A、0个B、1个C、2个D、3个+11.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是(??)A、﹣=20B、﹣=20C、﹣=D、﹣=+12.已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形;②是直角三角形;③是钝角三角形;④是等边三角形,其中正确说法的个数是(??)A、4个B、3个C、2个D、1个+二、填空题13.若分式有意义,则x的取值范围是.+14.若a2+ab+b2+M=(a﹣b)2,那么M= .+15.在实数范围内分解因式:x2y﹣4y= .+16.如图,已知AD所在直线是△ABC的对称轴,点E、F是AD上的两点,若BC=4,AD=3,则图中阴影部分的面积的值是.+17.若关于x的方程无解,则m的值是.+18.如图,在第一个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一D,延长CA2 到A2,使A1A2=A1D,得到第2个△A1A2D,在边A2B上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第三个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是度.+三、解答题19.计算下面各题(1)、计算(12a3﹣6a2+3a)÷3a;(2)、计算(x﹣y)(x2+xy+y2).+20.解方程:﹣=+21.如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,点F在AC上,B D=DF,求证:CF=BE.+22.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.+23.按要求完成小题:(1)、计算:+(2)、先化简,再求值:()÷,其中x=3.+24.一项工程,若由甲、乙两公司合作18天可以完成,共需付施工费144000元,若甲、乙两公司单独完成此项工程,甲公司所用时间是乙公司的1.5倍,已知甲公司每天的施工费比乙公司每天的施工费少2000元.(1)、求甲、乙两公司单独完成此项工程,各需多少天?(2)、若由一个公司单独完成这项工程,哪个公司的施工费较少?+25.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M ,连接MB.度.(1)、若∠ABC=70°,则∠MNA的度数是(2)、若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.+。

2016-2017年天津市部分区八年级上学期期末数学试卷与答案

2016-2017年天津市部分区八年级上学期期末数学试卷与答案

赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。

DBC2016-2017学年天津市部分区八年级(上)期末数学试卷一、选择题(本题包括12小题,每小题3分,共36分)1.(3分)下列式子是分式的是()A.B. C.+y D.2.(3分)计算(﹣3a3)2的结果是()A.﹣6a5B.6a5C.9a6D.﹣9a63.(3分)如果一个三角形的两边长分别为2和5,则此三角形的第三边长可能为()A.2 B.3 C.6 D.74.(3分)下列平面图形中,不是轴对称图形的是()A.B.C. D.5.(3分)下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.x5+x5=x C.a6﹣a4=a2D.3a2•2a3=6a56.(3分)下列从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.﹣8x2+8x﹣2=﹣2(2x﹣1)2C.2x2+8x﹣1=2x(x+4)﹣1 D.a2﹣1=a(a﹣)7.(3分)下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等8.(3分)下列多项式中,含有因式(y+1)的多项式是()A.y2﹣2xy﹣3x2B.(y+1)2﹣(y﹣1)2C.(y+1)2﹣(y2﹣1)D.(y+1)2+2(y+1)+19.(3分)若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形10.(3分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD,其中正确的结论有()A.0个 B.1个 C.2个 D.3个11.(3分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=12.(3分)已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形;②是直角三角形;③是钝角三角形;④是等边三角形,其中正确说法的个数是()A.4个 B.3个 C.2个 D.1个二、填空题(本题包括6小题,每小题3分,共18分)13.(3分)若分式有意义,则x的取值范围是.14.(3分)若a2+ab+b2+M=(a﹣b)2,那么M=.15.(3分)在实数范围内分解因式:x2y﹣4y=.16.(3分)如图,已知AD所在直线是△ABC的对称轴,点E、F是AD上的两点,若BC=4,AD=3,则图中阴影部分的面积的值是.17.(3分)若关于x的方程无解,则m的值是.18.(3分)如图,在第一个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一D,延长CA2到A2,使A1A2=A1D,得到第2个△A1A2D,在边A2B上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第三个△A2A3E,…按此做法继续下去,第n个等腰三角形的底角的度数是度.三、解答题(本题共46分)19.(6分)(1)计算(12a3﹣6a2+3a)÷3a;(2)计算(x﹣y)(x2+xy+y2).20.(4分)解方程:﹣=21.(6分)如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,点F在AC上,BD=DF,求证:CF=BE.22.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.23.(8分)(1)计算:+(2)先化简,再求值:()÷,其中x=3.24.(8分)一项工程,若由甲、乙两公司合作18天可以完成,共需付施工费144000元,若甲、乙两公司单独完成此项工程,甲公司所用时间是乙公司的1.5倍,已知甲公司每天的施工费比乙公司每天的施工费少2000元.(1)求甲、乙两公司单独完成此项工程,各需多少天?(2)若由一个公司单独完成这项工程,哪个公司的施工费较少?25.(8分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.2016-2017学年天津市部分区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题包括12小题,每小题3分,共36分)1.(3分)下列式子是分式的是()A.B. C.+y D.【解答】解:A、分母中不含有字母的式子是整式,故A错误;B、分母中含有字母的式子是分式,故B正确;C、分母中不含有字母的式子是整式,故C错误;D、分母中不含有字母的式子是整式,故D错误;故选:B.2.(3分)计算(﹣3a3)2的结果是()A.﹣6a5B.6a5C.9a6D.﹣9a6【解答】解:(﹣3a3)2=9a6.故选C.3.(3分)如果一个三角形的两边长分别为2和5,则此三角形的第三边长可能为()A.2 B.3 C.6 D.7【解答】解:设第三边长为x,则由三角形三边关系定理得5﹣2<x<5+2,即3<x<7.故选:C.4.(3分)下列平面图形中,不是轴对称图形的是()A.B.C. D.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.5.(3分)下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.x5+x5=x C.a6﹣a4=a2D.3a2•2a3=6a5【解答】解:A、﹣2(a+b)=﹣2a﹣2b,故此选项错误;B、x5+x5=2x5,故此选项错误;C、a6﹣a4,无法计算,故此选项错误;D、3a2•2a3=6a5,正确.故选:D.6.(3分)下列从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.﹣8x2+8x﹣2=﹣2(2x﹣1)2C.2x2+8x﹣1=2x(x+4)﹣1 D.a2﹣1=a(a﹣)【解答】解:把一个多项式在一个范围(如有理数范围内分解,即所有项均为有理数)化为几个整式的积的形式,称为多项式的因式分解故选(B)7.(3分)下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.8.(3分)下列多项式中,含有因式(y+1)的多项式是()A.y2﹣2xy﹣3x2B.(y+1)2﹣(y﹣1)2C.(y+1)2﹣(y2﹣1)D.(y+1)2+2(y+1)+1【解答】解:A、y2﹣2xy﹣3x2=(y﹣3x)(y+x),故不含因式(y+1).B、(y+1)2﹣(y﹣1)2=[(y+1)﹣(y﹣1)][(y+1)+(y﹣1)]=4y,故不含因式(y+1).C、(y+1)2﹣(y2﹣1)=(y+1)2﹣(y+1)(y﹣1)=2(y+1),故含因式(y+1).D、(y+1)2+2(y+1)+1=(y+2)2,故不含因式(y+1).故选C.9.(3分)若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故这个多边形是四边形.故选B.10.(3分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD,其中正确的结论有()A.0个 B.1个 C.2个 D.3个【解答】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故①正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故②正确;四边形ABCD的面积==AC•BD,故③正确;故选D.11.(3分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=【解答】解:由题意可得,﹣=,故选C.12.(3分)已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形;②是直角三角形;③是钝角三角形;④是等边三角形,其中正确说法的个数是()A.4个 B.3个 C.2个 D.1个【解答】解:∵a2+b2+c2=ab+bc+ca,∴2a2+2b2+2c2=2ab+2bc+2ca,即(a﹣b)2+(b﹣c)2+(a﹣c)2=0,∴a=b=c,∴此三角形为等边三角形,同时也是锐角三角形.故选C.二、填空题(本题包括6小题,每小题3分,共18分)13.(3分)若分式有意义,则x的取值范围是x≠1.【解答】解:由题意得:x﹣1≠0,解得:x≠1,故答案为:x≠1.14.(3分)若a2+ab+b2+M=(a﹣b)2,那么M=﹣3ab.【解答】解:∵a2+ab+b2+M=(a﹣b)2=a2﹣2ab+b2,∴M=﹣3ab.故答案为:﹣3ab.15.(3分)在实数范围内分解因式:x2y﹣4y=y(x+2)(x﹣2).【解答】解:原式=y(x2﹣4)=y(x+2)(x﹣2),故答案为:y(x+2)(x﹣2)16.(3分)如图,已知AD所在直线是△ABC的对称轴,点E、F是AD上的两点,若BC=4,AD=3,则图中阴影部分的面积的值是3.【解答】解:∵△ABC关于直线AD对称,∴B、C关于直线AD对称,∴△CEF和△BEF关于直线AD对称,=S△CEF,∴S△BEF∵△ABC的面积是:×BC×AD=×3×4=6,=3.∴图中阴影部分的面积是S△ABC故答案为:3.17.(3分)若关于x的方程无解,则m的值是2.【解答】解:关于x的分式方程无解即是x=1,将方程可转化为m﹣1﹣x=0,当x=1时,m=2.故答案为2.18.(3分)如图,在第一个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一D,延长CA2到A2,使A1A2=A1D,得到第2个△A1A2D,在边A2B上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第三个△A2A3E,…按此做法继续下去,第n个等腰三角形的底角的度数是度.【解答】解:∵在△ABA1中,∠B=30°,AB=A1B,∴∠BA1A==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°=37.5°;同理可得,∠EA3A2=,∠FA4A3=,∴第n个等腰三角形的底角的度数=.故答案为.三、解答题(本题共46分)19.(6分)(1)计算(12a3﹣6a2+3a)÷3a;(2)计算(x﹣y)(x2+xy+y2).【解答】解:(1)(12a3﹣6a2+3a)÷3a=12a3÷3a﹣6a2÷3a+3a÷3a=4a2﹣2a+1(2)(x﹣y)(x2+xy+y2)=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.20.(4分)解方程:﹣=【解答】解:方程两边同乘以(x+1)(x﹣1),得2(x﹣1)﹣3(x+1)=6,∴2x﹣2﹣3x﹣3=6,∴x=﹣11.经检验:x=﹣11是原方程的根.21.(6分)如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,点F在AC上,BD=DF,求证:CF=BE.【解答】证明:∵∠C=90°,∴DC⊥AC.∵AD是∠BAC的平分线,DE⊥AB,∴DC=DE.在Rt△DCF和Rt△DEB中,,∴Rt△DCF≌Rt△DEB(HL),∴CF=EB.22.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.【解答】解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,将a+b=3,ab=2代入得,ab(a+b)2=2×32=18.故代数式a3b+2a2b2+ab3的值是18.23.(8分)(1)计算:+(2)先化简,再求值:()÷,其中x=3.【解答】解:(1)原式=+=+=;(2)原式=[﹣]•=•=,当x=3时,原式=.24.(8分)一项工程,若由甲、乙两公司合作18天可以完成,共需付施工费144000元,若甲、乙两公司单独完成此项工程,甲公司所用时间是乙公司的1.5倍,已知甲公司每天的施工费比乙公司每天的施工费少2000元.(1)求甲、乙两公司单独完成此项工程,各需多少天?(2)若由一个公司单独完成这项工程,哪个公司的施工费较少?【解答】解:(1)设乙公司单独完成此项工程需x天,则甲公司单独完成需要1.5x天.由题意,得=.解得:x=30经检验x=30是原方程的解.则1.5x=45.答:甲公司单独完成需要45天,乙公司单独完成需要30天.(2)设甲公司每天的施工费用为y元,则乙公司每天的施工费用为(y+2000)元.由题意,得18(y+y+2000)=144000.解得y=3000.则y+2000=5000.甲公司施工费为:3000×45=135000乙公司施工费为:5000×30=150000答:甲公司施工费用较少.25.(8分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是50度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.【解答】解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°,∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°,故答案为:50;(2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC,∵AB=8,△MBC的周长是14,∴BC=14﹣8=6;②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PB=PA+PC,PA+PC≥AC,∴P与M重合时,PA+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=14.。

2016-2017学年天津市河西区天津四中八上期末数学试卷

2016-2017学年天津市河西区天津四中八上期末数学试卷

2016-2017学年天津市河西区天津四中八上期末数学冲刺试卷一、选择题(共10小题;共50分)1. 在平面直角坐标系中,点关于轴的对称点在A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 下列四个图形:其中是轴对称图形,且对称轴的条数为的图形的个数是A. B. C. D.3. 若,,则等于A. B. C. D.4. 计算的正确结果是A. B. C. D.5. 如图,是中的平分线,于点,,,,则长是A. B. C. D.6. 如图,的三边,,长分别是,,,其三条角平分线将分为三个三角形,则等于A. B. C. D.7. 下列分式中,最简分式有,,,,A. 个B. 个C. 个D. 个8. 如与的乘积中不含的一次项,则的值为A. B. C. D.9. 一段坡路的上坡部分与下坡部分路程相同,小明骑自行车上坡的速度为每小时千米,下坡的速度为每小时千米,则他在这段路上、下坡的平均速度是每小时A. 千米B. 千米C. 千米D. 无法确定10. 如图,为线段上一动点(不与点,重合),在同侧分别作等边三角形和等边三角形,与交于点,与交于点,与交于点,连接.以下六个结论:①;②;③;④;⑤;平分.其中不正确的有个.A. B. C. D.二、填空题(共6小题;共30分)11. 计算:.12. 若分式有意义,则的取值范围是.13. 填空:.14. 如图,,,,图中全等三角形共有对.15. 三角形两外角平分线和第三个角的内角平分线一点,且该点在三角形部.16. 如图,已知点在锐角内部,,在边上存在一点,在边上存在一点,能使最小,此时.三、解答题(共7小题;共91分)17. 如图在平面直角坐标系中,各顶点的坐标分别为:,,.(1)在图中作使和关于轴对称;(2)写出点的坐标;(3)求的面积.18. 计算:(1);(2).19. 先化简,再求值:,其中,.20. 如图,在中,,,求的度数.21. 如图,是等边三角形,,分别是,上的点,,求的度数.22. 李老师家距学校米,某天他步行去上班,走到路程的一半时发现忘带手机,此时离上班时间还有分钟,于是他立刻步行回家取手机,随后骑电瓶车返回学校.已知李老师骑电瓶车到学校比他步行到学校少用分钟,且骑电瓶车的平均速度是步行速度的倍,李老师到家开门、取手机、启动电瓶车等共用分钟.(1)求李老师步行的平均速度;(2)请你判断李老师能否按时上班,并说明理由.23. 已知为等边三角形,点为直线上的一动点(点不与,重合),以为边作等边(顶点,,按逆时针方向排列),连接.(1)如图,当点在边上时,求证:①,②;(2)如图,当点在边的延长线上且其他条件不变时,结论是否成立?若不成立,请写出,,之间存在的数量关系,并说明理由;(3)如图,当点在边的反向延长线上且其他条件不变时,补全图形,并直接写出,,之间存在的数量关系.答案第一部分1. C2. C3. B4. C5. A【解析】过点作于.因为,平分,所以,所以,所以.6. C7. C8. A9. C 10. B第二部分11.12.13. ,14.15. 相交于,外16.【解析】如图所示,作关于的对称点,过作,此时,最小.,,,.第三部分17. (1)如图,(2)点的坐标为,点的坐标为,点的坐标为.(3)原式18. (1)(2)原式原式19.当,时,原式20. ,,,是的外角,,,.21. 是等边三角形,,.在和中,,.由三角形外角的性质得.22. (1)设李老师步行的平均速度为分钟,骑电瓶车的平均速度为分钟,由题意得,解得:经检验,是原分式方程的解,且符合题意,则,答:李老师步行的平均速度为分钟,骑电瓶车的平均速度为分钟.(2)由()得,李老师走回家需要的时间为:(分钟),骑车走到学校的时间为:(分钟),,答:李老师能按时上班.23. (1)因为和都是等边三角形,所以,,.所以,即.在和中,所以,所以 .因为,,所以.(2)不成立,,,之间存在的数量关系是:.理由:因为和都是等边三角形,所以,,.所以,所以.在和中,所以,所以,所以,所以.(3)补全图形(如图),,之间存在的数量关系是:.。

河西区八上期末数学试卷

河西区八上期末数学试卷

一、选择题(每题4分,共40分)1. 若a、b、c是等差数列,且a+b+c=0,则b的值为()A. 0B. 1C. -1D. 22. 已知等比数列的首项为2,公比为3,则第10项为()A. 3B. 6C. 18D. 543. 若x²+3x-4=0,则x的值为()A. -4B. -3C. 1D. 24. 已知函数f(x)=2x+1,则f(-3)的值为()A. -5B. -1C. 1D. 55. 若x²-5x+6=0,则x²-5x的值为()A. -6B. -5C. 5D. 66. 在直角坐标系中,点A(2,3)关于y轴的对称点为()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)7. 已知等腰三角形的底边长为6,腰长为8,则该三角形的面积为()A. 24B. 32C. 48D. 568. 已知圆的半径为r,则圆的面积为()A. πr²B. 2πr²C. 4πr²D. 8πr²9. 已知平行四边形的对边长分别为5和7,则该平行四边形的周长为()A. 18B. 20C. 22D. 2410. 若a、b、c是等差数列,且a+b+c=0,则b的值为()A. 0B. 1C. -1D. 2二、填空题(每题5分,共25分)11. 若等差数列的首项为3,公差为2,则第10项为______。

12. 已知等比数列的首项为1,公比为2,则第6项为______。

13. 若x²-4x+3=0,则x的值为______。

14. 已知函数f(x)=x²-2x+1,则f(2)的值为______。

15. 在直角坐标系中,点B(-3,4)关于x轴的对称点为______。

三、解答题(共100分)16. (10分)已知数列{an}的通项公式为an=2n-1,求该数列的前5项。

17. (10分)已知等比数列的首项为3,公比为2,求该数列的前5项。

2016-2017年天津市部分区八年级上学期期末数学试卷和答案

2016-2017年天津市部分区八年级上学期期末数学试卷和答案

2016-2017年天津市部分区八年级上学期期末数学试卷和答案2016-2017学年天津市部分区八年级(上)期末数学试卷一、选择题(本题包括12小题,每小题3分,共36分)1.下列式子是分式的是()A。

B。

C。

D。

2.计算(-3a^3)^2的结果是()A。

-6a^5B。

6a^5C。

9a^6D。

-9a^63.如果一个三角形的两边长分别为2和5,则此三角形的第三边长可能为()A。

2B。

3C。

6D。

74.下列平面图形中,不是轴对称图形的是()A。

B。

C。

D。

5.下列运算正确的是()A。

-2(a+b) = -2a+2bB。

x^5+x^5 = xC。

a^6-a^4 = a^2D。

3a^2×2a^3 = 6a^56.下列从左到右的变形是因式分解的是()A。

6a^2b^2 = 3ab×2abB。

-8x^2+8x-2 = -2(2x-1)^2C。

2x^2+8x-1 = 2x(x+4)-1D。

a^2-1 = a(a-1)7.下列说法正确的是()A。

形状相同的两个三角形全等B。

面积相等的两个三角形全等C。

完全重合的两个三角形全等D。

所有的等边三角形全等8.下列多项式中,含有因式(y+1)的多项式是()A。

y^2-2xy-3x^2+2(y+1)+1B。

(y+1)^2-(y-1)^2C。

(y+1)^2-(y^2-1)D。

(y+1)9.若一个多边形的内角和与它的外角和相等,则这个多边形是()A。

三角形B。

四边形C。

五边形D。

六边形10.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC×BD,其中正确的结论有()A。

0个B。

1个C。

2个D。

3个11.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍。

2016-2017年天津市河西区八年级上学期数学期中模拟试卷与答案

2016-2017年天津市河西区八年级上学期数学期中模拟试卷与答案

赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P 2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。

DBC2016-2017学年天津市河西区八年级(上)期中数学模拟试卷一、选择题(共12小题,每小题3分,满分36分)1.(3.00分)下列图案中既是中心对称图形,又是轴对称图形的是()A. B.C.D.2.(3.00分)下列说法:①能够完全重合的图形叫做全等形;②全等三角形的对应边相等、对应角相等;③全等三角形的周长相等、面积相等;④所有的等边三角形都全等;⑤面积相等的三角形全等.其中正确的说法有()A.5个 B.4个 C.3个 D.2个3.(3.00分)在△ABC内一点P满足PA=PB=PC,则点P一定是△ABC()A.三条角平分线的交点B.三边垂直平分线的交点C.三条高的交点D.三条中线的交点4.(3.00分)等腰三角形的一个角是80°,则它的顶角的度数是()A.30°B.80°或20°C.80°或50°D.20°5.(3.00分)如图,把△ABC沿AD折叠,使点C落在AB上点E处,那么折痕AD是△ABC的()A.角平分线B.中线C.高线D.角平分线6.(3.00分)如图,∠CBD、∠ADE为△ABD的两个外角,∠CBD=70°,∠ADE=149°,则∠A的度数是()A.28°B.31°C.39°D.42°7.(3.00分)如图是由线段AB,CD,DF,BF,CA组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F的度数为()A.62°B.152° C.208° D.236°8.(3.00分)如图,∠x的两条边被一直线所截,用含α和β的式子表示∠x为()A.α﹣βB.β﹣αC.180°﹣α+βD.180°﹣α﹣β9.(3.00分)如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.30°B.40°C.50°D.60°10.(3.00分)如图所示,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC 于S,则三个结论:①AS=AR;②QP∥AR;③△BPR≌△QPS中()A.全部正确B.仅①和③正确C.仅①正确D.仅①和②正确11.(3.00分)如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则()A.∠1=∠EFD B.BE=EC C.BF=DF=CD D.FD∥BC12.(3.00分)为了加快灾后重建的步伐,我市某镇要在三条公路围成的一块平地上修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址()A.仅有一处B.有四处C.有七处D.有无数处二、填空题:13.(3.00分)如图,△ABC中,∠A=40°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=度.14.(3.00分)如图,若△ABC≌△ADE,且∠B=65°,则∠BAD=.15.(3.00分)直角三角形的两个锐角的平分线所交成的角的度数是.16.(3.00分)如图:(1)在△ABC中,BC边上的高是;(2)在△AEC中,AE边上的高是;(3)在△FEC中,EC边上的高是;=,CE=,BE=.(4)若AB=CD=2cm,AE=3cm,则S△ACE17.(3.00分)如图,OP平分∠AOB,PD⊥OA于点D,点Q是射线OB上一个动点,若PD=2,则PQ的取值范围为.18.(3.00分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为64和42,则△EDF的面积为.19.(3.00分)如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是.20.(3.00分)如图,已知AB=A1B,A1C=A1A2,A2D=A2A3,A3E=A3A4,…,以此类推,若∠B=20°,则∠A=.三、综合题:21.如图,∠AOB=30°,OA表示草地边,OB表示河边,点P表示家且在∠AOB 内.某人要从家里出发先到草地边给马喂草,然后到河边喂水,最后回到家里.(1)请用尺规在图上画出此人行走的最短路线图(保留作图痕迹,不写作法和理由).(2)若OP=30米,求此人行走的最短路线的长度.22.如图,∠ABC=38°,∠ACB=100°,AD平分∠BAC,AE是BC边上的高,求∠DAE的度数.23.已知:如图,在四边形ABCD中,AD∥BC,∠BDC=∠BCD,点E是线段BD 上一点,且BE=AD.证明:△ADB≌△EBC.24.如图,△ABC中,AD平分∠CAB,BD⊥AD,DE∥AC.求证:AE=BE.25.如图,OC是∠AOB平分线,点P为OC上一点,若∠PDO+∠PEO=180°,试判断PD和PE大小关系,并说明理由.26.已知△ABC中,∠A=50°.(1)如图①,∠ABC、∠ACB的角平分线交于点O,则∠BOC=°.(2)如图②,∠ABC、∠ACB的三等分线分别对应交于O1、O2,则∠BO2C=°.(3)如图③,∠ABC、∠ACB的n等分线分别对应交于O 1、O2…O n﹣1(内部有n ﹣1个点),求∠BO nC(用n的代数式表示).﹣1(4)如图③,已知∠ABC、∠ACB的n等分线分别对应交于O1、O2…O n﹣1,若∠BO n﹣1C=60°,求n的值.27.已知△ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,若E、F分别是AB、AC上的点,且BE=AF.求证:△DEF为等腰直角三角形;(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么△DEF是否仍为等腰直角三角形?证明你的结论.28.如图,△ABC和△ADE都是等边三角形,BD与CE相交于O.(1)求证:BD=CE;(2)OA平分∠BOE吗?说明理由.2016-2017学年天津市河西区八年级(上)期中数学模拟试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3.00分)下列图案中既是中心对称图形,又是轴对称图形的是()A. B.C.D.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.故选:A.2.(3.00分)下列说法:①能够完全重合的图形叫做全等形;②全等三角形的对应边相等、对应角相等;③全等三角形的周长相等、面积相等;④所有的等边三角形都全等;⑤面积相等的三角形全等.其中正确的说法有()A.5个 B.4个 C.3个 D.2个【解答】解:①中能够完全重合的图形叫做全等形,正确;②中全等三角形的对应边相等、对应角相等,正确;③全等三角形的周长相等、面积相等,也正确;④中所有的等边三角形角都是60°,但由于边不相等,所以不能说其全等,④错误;⑤中面积相等的三角形并不一定是全等三角形,⑤中说法错误;故选:C.3.(3.00分)在△ABC内一点P满足PA=PB=PC,则点P一定是△ABC()A.三条角平分线的交点B.三边垂直平分线的交点C.三条高的交点D.三条中线的交点【解答】解:∵在△ABC内一点P满足PA=PB=PC,∴点P一定是△ABC三边垂直平分线的交点.故选:B.4.(3.00分)等腰三角形的一个角是80°,则它的顶角的度数是()A.30°B.80°或20°C.80°或50°D.20°【解答】解:①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.故选:B.5.(3.00分)如图,把△ABC沿AD折叠,使点C落在AB上点E处,那么折痕AD是△ABC的()A.角平分线B.中线C.高线D.角平分线【解答】解:∵把△ABC沿AD折叠得到△ADE,∴△ACD≌△AED,∴∠CAD=∠EAD,∴AD是△ABC的角平分线.故选:A.6.(3.00分)如图,∠CBD、∠ADE为△ABD的两个外角,∠CBD=70°,∠ADE=149°,则∠A的度数是()A.28°B.31°C.39°D.42°【解答】解:∵∠ABD+∠CBD=180°,∠CBD=70°,∴∠ABD=110°,∵∠ADE=∠ABD+∠A,∠ADE=149°,∴∠A=39°.故选:C.7.(3.00分)如图是由线段AB,CD,DF,BF,CA组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F的度数为()A.62°B.152° C.208° D.236°【解答】解:∵如图可知∠BED=∠F+∠B,∠CGE=∠C+∠A,又∵∠BED=∠D+∠EGD,∴∠F+∠B=∠D+∠EGD,又∵∠CGE+∠EGD=180°,∴∠C+∠A+∠F+∠B﹣∠D=180°,又∵∠D=28°,∴∠A+∠B+∠C+∠F=180°+28°=208°,故选:C.8.(3.00分)如图,∠x的两条边被一直线所截,用含α和β的式子表示∠x为()A.α﹣βB.β﹣αC.180°﹣α+βD.180°﹣α﹣β【解答】解:如图,∵α=∠1,∴β=x+∠1整理得:x=β﹣α.故选:B.9.(3.00分)如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.30°B.40°C.50°D.60°【解答】解:∵∠AEC=110°,∴∠AED=180°﹣∠AEC=180°﹣110°=70°,∵△ABD≌△ACE,∴AD=AE,∴∠AED=∠ADE,∴∠DAE=180°﹣2×70°=180°﹣140°=40°.故选:B.10.(3.00分)如图所示,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC 于S,则三个结论:①AS=AR;②QP∥AR;③△BPR≌△QPS中()A.全部正确B.仅①和③正确C.仅①正确D.仅①和②正确【解答】解:如图,在RT△APR和RT△APS中,,∴RT△APR≌RT△APS(HL),∴AR=AS,①正确;∠BAP=∠1,∵AQ=PQ,∴∠1=∠2,∴∠BAP=∠2,∴QP∥AB,②正确,∵△BRP和△QSP中,只有一个条件PR=PS,再没有其余条件可以证明△BRP≌△QSP,故③错误.故选:D.11.(3.00分)如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则()A.∠1=∠EFD B.BE=EC C.BF=DF=CD D.FD∥BC【解答】解:在△AFD和△AFB中,∵AF=AF,∠1=∠2,AD=AB,∴△ADF≌△ABF,∴∠ADF=∠ABF.∵AB⊥BC,BE⊥AC,即:∠BAC+∠C=∠BAC+∠ABF=90°,∴∠ABF=∠C,即:∠ADF=∠ABF=∠C,∴FD∥BC,故选:D.12.(3.00分)为了加快灾后重建的步伐,我市某镇要在三条公路围成的一块平地上修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址()A.仅有一处B.有四处C.有七处D.有无数处【解答】解:满足条件的点有一个,三角形内部:三个内角平分线交点一个.三角形外部,外角的角平分线三个(不合题意).故选:A.二、填空题:13.(3.00分)如图,△ABC中,∠A=40°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=75度.【解答】解:∵∠A=40°,∠B=70°,∴∠ACB=180°﹣∠A﹣∠B=70°.∵CE平分∠ACB,∴∠ACE=∠ACB=35°.∵CD⊥AB于D,∴∠CDA=90°,∠ACD=180°﹣∠A﹣∠CDA=50°.∴∠ECD=∠ACD﹣∠ACE=15°.∵DF⊥CE,∴∠CFD=90°,∴∠CDF=180°﹣∠CFD﹣∠DCF=75°.故答案为:75.14.(3.00分)如图,若△ABC≌△ADE,且∠B=65°,则∠BAD=50°.【解答】解:∵△ABC≌△ADE,∴AB=AD,∴∠B=∠ADB,∵∠B=65°,∴∠BAD=180°﹣2×65°=50°,故答案为50°.15.(3.00分)直角三角形的两个锐角的平分线所交成的角的度数是45°或135°.【解答】解:直角三角形的两个锐角的平分线所交成的锐角是×90°=45°,则直角三角形的两个锐角的平分线所交成的钝角是180°﹣45°=135°.故答案为:45°或135°.16.(3.00分)如图:(1)在△ABC中,BC边上的高是AB;(2)在△AEC中,AE边上的高是CD;(3)在△FEC中,EC边上的高是EF;=3cm2,CE=3cm,BE=cm.(4)若AB=CD=2cm,AE=3cm,则S△ACE【解答】解:如图:(1)在△ABC中,BC边上的高是AB;(2)在△AEC中,AE边上的高是CD;(3)在△FEC中,EC边上的高是EF;(4)∵CD⊥AE,=AE•CD=3×2=3cm2,∴S△ACE在△ABE与△CDE中,,∴△ABE≌△CDE,∴CE=AE=3,∴BE==,故答案为:AB,CD,EF,3cm2,3cm,cm.17.(3.00分)如图,OP平分∠AOB,PD⊥OA于点D,点Q是射线OB上一个动点,若PD=2,则PQ的取值范围为PQ≥2.【解答】解:由垂线段最短可得PQ⊥OB时,PQ最短,∵OP平分∠AOB,PD⊥OA,∴PQ=PD=2,即线段PQ的最小值是2.∴PQ的取值范围为PQ≥2,故答案为PQ≥2.18.(3.00分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为64和42,则△EDF的面积为11.【解答】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△ADF和Rt△ADH中,,∴Rt△ADF≌Rt△ADH(HL),=S Rt△ADH,∴S Rt△ADF在Rt△DEF和Rt△DGH中,,∴Rt△DEF≌Rt△DGH(HL),=S Rt△DGH,∴S Rt△DEF∵△ADG和△AED的面积分别为64和42,∴42+S Rt=64﹣S Rt△DGH,△DEF=11.∴S Rt△DEF故答案为11.19.(3.00分)如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).【解答】解:△ABD与△ABC有一条公共边AB,当点D在AB的下边时,点D有两种情况:①坐标是(4,﹣1);②坐标为(﹣1,﹣1);当点D在AB的上边时,坐标为(﹣1,3);点D的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).20.(3.00分)如图,已知AB=A1B,A1C=A1A2,A2D=A2A3,A3E=A3A4,…,以此类推,若∠B=20°,则∠A=.【解答】解:∵在△ABA1中,∠B=20°,AB=A1B,∴∠BA1A==80°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1==40°;同理可得,∠DA3A2=20°,∠EA4A3=10°,∴∠A n=.故答案为:.三、综合题:21.如图,∠AOB=30°,OA表示草地边,OB表示河边,点P表示家且在∠AOB 内.某人要从家里出发先到草地边给马喂草,然后到河边喂水,最后回到家里.(1)请用尺规在图上画出此人行走的最短路线图(保留作图痕迹,不写作法和理由).(2)若OP=30米,求此人行走的最短路线的长度.【解答】解:(1)如图所示:此人行走的最短路线为:PC→CD→DP;(2)连接OP′,OP″,由题意可得:OP′=OP″,∠P′OP″=60°,则△P′OP″是等边三角形,∵OP=30米,∴PC+CD+DP=P′P″=30(m),答;此人行走的最短路线的长度为30m.22.如图,∠ABC=38°,∠ACB=100°,AD平分∠BAC,AE是BC边上的高,求∠DAE的度数.【解答】解:∵∠ABC=38°,∠ACB=100°(己知)∴∠BAC=180°﹣38°﹣100°=42°(三角形内角和180°).又∵AD平分∠BAC(己知),∴∠BAD=21°,∴∠ADE=∠ABC+∠BAD=59°(三角形的外角性质).又∵AE是BC边上的高,即∠E=90°,∴∠DAE=90°﹣59°=31°.23.已知:如图,在四边形ABCD中,AD∥BC,∠BDC=∠BCD,点E是线段BD 上一点,且BE=AD.证明:△ADB≌△EBC.【解答】证明:∵AD∥BC,∴∠ADB=∠CBE,∵∠BDC=∠BCD,∴BD=BC,在△ABD和△ECB中,,∴△ABD≌△ECB(SAS).24.如图,△ABC中,AD平分∠CAB,BD⊥AD,DE∥AC.求证:AE=BE.【解答】证明:∵DE∥AC,∴∠CAD=∠ADE,∵AD平分∠CAB,∴∠CAD=∠EAD,∴∠EAD=∠ADE,∴AE=ED,∵BD⊥AD,∴∠ADE+∠EDB=90°,∠DAB+∠ABD=90°,又∠ADE=∠DAB,∴∠EDB=∠ABD,∴DE=BE,∴AE=BE.25.如图,OC是∠AOB平分线,点P为OC上一点,若∠PDO+∠PEO=180°,试判断PD和PE大小关系,并说明理由.【解答】解:PD=PE.理由:如图,过点P作PM⊥OA,PN⊥OE;∵OC平分∠AOB,∴PM=PN;∵∠OEP+∠ODP=180°,∠ODP+∠PDM=180°,∴∠OEP=∠PDM,在△PMD与△PNE中,,∴△PMD≌△PNE(AAS),∴PD=PE.26.已知△ABC中,∠A=50°.(1)如图①,∠ABC、∠ACB的角平分线交于点O,则∠BOC=115°.(2)如图②,∠ABC、∠ACB的三等分线分别对应交于O1、O2,则∠BO2C=°.(3)如图③,∠ABC、∠ACB的n等分线分别对应交于O1、O2…O n﹣1(内部有nC(用n的代数式表示).﹣1个点),求∠BO n﹣1(4)如图③,已知∠ABC、∠ACB的n等分线分别对应交于O1、O2…O n﹣1,若∠BO n﹣1C=60°,求n的值.【解答】解:(1)∵△ABC中,∠ABC+∠ACB=180°﹣∠A=180°﹣50°=130°,BO、CO是∠ABC,∠ACB的两条角平分线.∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=65°,∴△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=115°.故答案为:115°;(2)∵点O2是∠ABC与∠ACB的三等分线的交点,∴∠O2BC+∠O2CB=(∠ABC+∠ACB)=×130°=()°,∴∠BO2C=180°﹣()°=()°.故答案为:;是∠ABC与∠ACB的n等分线的交点,(3)∵点O n﹣1BC+∠O n﹣1CB=(∠ABC+∠ACB)=×130°,∴∠O n﹣1∴∠BO nC=180°﹣×130°;﹣1C=60°,(4)∵∠BO n﹣1∴180°﹣×130°=60°,解得n=13.27.已知△ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,若E、F分别是AB、AC上的点,且BE=AF.求证:△DEF为等腰直角三角形;(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么△DEF是否仍为等腰直角三角形?证明你的结论.【解答】解:(1)证明:连接AD∵AB=AC,∠A=90°,D为BC中点∴AD==BD=CD且AD平分∠BAC∴∠BAD=∠CAD=45°在△BDE和△ADF中,,∴△BDE≌△ADF(SAS)∴DE=DF,∠BDE=∠ADF∵∠BDE+∠ADE=90°∴∠ADF+∠ADE=90°即:∠EDF=90°∴△EDF为等腰直角三角形.(2)解:仍为等腰直角三角形.理由:∵△AFD≌△BED∴DF=DE,∠ADF=∠BDE∵∠ADF+∠FDB=90°∴∠BDE+∠FDB=90°即:∠EDF=90°∴△EDF为等腰直角三角形.28.如图,△ABC和△ADE都是等边三角形,BD与CE相交于O.(1)求证:BD=CE;(2)OA平分∠BOE吗?说明理由.【解答】(1)证明:∵△ABC和△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE;(2)OA平分∠BOE.理由如下:作AF⊥BD,AG⊥CE,垂足分别是F、G,如图,∵AF、AG恰好是两个全等三角形△BAD与△CAE对应边上的高,∴AF=AG,∴OA平分∠BOE.。

天津市河西区八年级上学期数学期末试卷附答案

天津市河西区八年级上学期数学期末试卷附答案

八年级上学期数学期末试卷一、单选题(共10题;共20分)1.计算的结果是( )A. B. C. 5 D.2.下列计算正确的是()A. a6+a6=a12B. a6×a2=a8C. a6÷a2=a3D. (a6)2=a83.在一些美术字体中,有的英文字母是轴对称图形. 下面4个字母中,可以看作是轴对称图形的是()A. B. C. D.4.若,则的值为()A. B. C. D.5.如图,点D在AB上,点E在AC上,与BE相交于点O,且,则判定与全等的依据是()A. B. C. D.6.请你观察图形,依据图形面积之间的关系,不需要添加辅助线,便可得到一个你非常熟悉的公式,这个公式是()A. B.C. D.7.分式方程的解是()A. B. C. D.8.甲从地到地要走小时,乙从地到地要走小时,甲、乙两人分别从两地同时出发相向而行到相遇需要的时间是()A. B. C. D.9.若先化简,再求值,且是满足的整数,则化简求值的结果为()A. 0或或-2或4B. -2或C. -2D.10.如图,在中,,以为圆心,任意长为半径画弧分别交于点和,再分别以为圆心,大于的长为半径画弧,两弧交于点,连接并延长交于点,则下列结论一定成立的个数为()①是的平分线;②若,则;③;④点在的垂直平分线上.A. 1个B. 2个C. 3个D. 4个二、填空题(共6题;共8分)11.分解因式:3ax2+6axy+3ay2=________.12.计算的结果等于________.13.一个n边形的内角和为1080°,则n=________ .14.如图的三角形纸片中,,沿过点的直线折叠这个三角形,使点落在边上的点处,折痕为,则的周长为________.15.如图,等边的边长为4,是边上的中线,是边上的动点,是边上一点.若,当取得最小值时,则的度数为________.16.一个容器装有水,按照如下要求把水倒出:第1次倒出水,第2次倒出的水是的,第3次倒出的水量是的,第4次倒出的水量是的……第次倒出的水量是的……按照这种倒水的方法,这水经次,倒出的总水量为________.三、解答题(共7题;共58分)17.计算:(1)(2)18.解方程.19.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.20.如图(1)如图①,点在直线两侧,请你在直线上画出一点,使得的值最小,简述画法、画出图形;(2)如图②,点在直线同侧,请你在直线上画出一点,使得的值最小,简述画法并画出示意图.21.一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?(1)设江水的流速为千米/时,填空:轮船顺流航行速度为________千米/时,逆流航行速度为________千米/时,顺流航行100千米所用时间为________小时,逆流航行60千米所用时间为________小时. (2)列出方程,并求出问题的解.22.在日历上,我们可以发现其中某些数满足一定的规律,如图是2012年8月份的日历. 我们任意选择其中所示的方框部分,将每个方框部分中4个位置上的数交叉相乘,再相减,例如:,,不难发现,结果都是7.(1)请你再选择两个类似的部分试一试,看看是否符合这个规律;(2)请你利用整式的运算对以上的规律加以证明.日一二三四五六1234567891011121314151617181920212223242526272829303123.如图所示,直线交轴于点,交轴于点.(1)如图①,若的坐标为,且于点,交于点,试求点的坐标;(2)如图②,在(I)的条件下,连接,求的度数;(3)如图③,若点为的中点,点为轴正半轴上一动点,连接,过作交轴于点,当点在轴正半轴上运动的过程中,式子的值是否发生改变?如发生改变,求出该式子的值的变化范围;若不改变,求该式子的值.答案解析部分一、单选题1.【解析】【解答】原式=4+1=5.故答案为:C.【分析】根据平方运算和零次幂的性质,即可得到答案.2.【解析】【解答】解:A.∵a6+a6=2a6,故错误,A不符合题意;B.∵a6×a2=a6+2=a8,故正确,B符合题意;C.∵a6÷a2=a6-2=a4,故错误,C不符合题意;D.∵(a6)2=a2×6=a12,故错误,D不符合题意;故答案为:B.【分析】A.根据合并同类项法则计算即可判断错误;B.根据同底数幂的乘法:底数不变,指数相加,依此计算即可判断正确;C.根据同底数幂的除法:底数不变,指数相减,依此计算即可判断错误;D.根据幂的乘方:底数不变,指数相乘,依此计算即可判断错误.3.【解析】【解答】∵W是轴对称图形,∴A符合题意;∵h不是轴对称图形,∴B不符合题意;∵a不是轴对称图形,∴C不符合题意;∵t不是轴对称图形,∴D不符合题意.故答案为:A.【分析】根据轴对称图形的定义,逐一判断选项,即可.4.【解析】【解答】原式==当时,原式= = ,故答案为:A.【分析】根据同分母分式的加法法则,先化简,再代入求值,即可.5.【解析】【解答】在与中,∵,∴≅(SAS),故答案为:B.【分析】根据三角形全等的判定定理,即可得到答案.6.【解析】【解答】解:大正方形面积为:(x+y)2,大正方形面积=4个小图形的面积和=x2+y2+xy+xy,∴可以得到公式:(x+y)2=x2+2xy+y2.故答案为:B.【分析】通过图中几个图形的面积的关系进行解答即可.7.【解析】【解答】∵,∴,去分母得:,去括号,移项,合并同类项得:,解得:x= ,经检验:x= ,不是增根,是分式方程的解.故答案为:D.【分析】通过去分母,去括号,移项,合并同类项,方程两边同除以未知数的系数,即可求解.8.【解析】【解答】设地到地的距离为单位“1”,∴甲的速度是,乙的速度是,∴= = ,故答案为:B.【分析】设 A 地到 B 地的距离为单位“1”,分别求出甲乙的速度,根据时间=路程÷速度,即可得到答案.9.【解析】【解答】原式== ,∵是满足的整数,且P≠±2,p≠0,p≠1,∴当p=-1时,原式= ,故答案为:D.【分析】根据分式的混合运算法则,先通分,求和,再把除法化为乘法,进行约分,化简,代入求值,即可.10.【解析】【解答】连接PM,PN,在∆APN和∆APM中,∵,∴∆APN≅∆APM(SSS),∴∠PAN=∠PAM,∴是的平分线,故①符合题意;∵在中,,,∴∠BAC=60°,∵是的平分线,∴∠BAD=30°,∴∠BAD=∠ABD,∴,故②符合题意;过点D作DH⊥AB,∵是的平分线,,∴CD=HD,∵∠C=∠BHD=90°∴,∴,即:,∴,故③符合题意;∵AD和BD不一定相等,∴点不一定在的垂直平分线上,故④不符合题意,故答案为:C.【分析】连接PM,PN,证明∆APN≅∆APM,即可判断①;由,,得:∠BAC=60°,结合是的平分线,得∠BAD=∠ABD,即可判断②;过点D作DH⊥AB,由,得:,结合CD=HD,即可判断③;根据垂直平分线性质定理的逆定理,即可判断④.二、填空题11.【解析】【解答】解:3ax2+6axy+3ay2=3a(x2+2xy+y2)=3a(x+y)2.故答案为:3a(x+y)2.【分析】先提取公因式3a,再对余下的多项式利用完全平方公式继续分解12.【解析】【解答】原式==== ,故答案是:【分析】先把除法化为乘法,再进行约分,即可.13.【解析】【解答】解:(n﹣2)•180°=1080°,解得n=8.【分析】直接根据内角和公式(n﹣2)•180°计算即可求解.14.【解析】【解答】∵沿过点的直线折叠这个三角形,使点落在边上的点处,折痕为,∴BE=BC,DE=DC,∴的周长=AD+DE+AE=AD+DC+AE=AC+AE=AB+BC+AC-BC-BE=8+6+5-6-6=7cm,故答案是:【分析】由折叠的性质,可知:BE=BC,DE=DC,通过等量代换,即可得到答案.15.【解析】【解答】∵是等边三角形,是边上的中线,∴AD⊥BC,∴点B和点C关于AD轴对称,连接BE交AD于点F,则BF=CF,∴=EF+BF=BE,即:此时,取得最小值,∵等边的边长为4,,∴E是AC的中点,∴BE平分∠ABC,即:∠FBC= ∠ABC= ×60°=30°,∴=∠FBC=30°.故答案是:30°.【分析】由等边三角形三线合一,可知:点B和点C关于AD轴对称,连接BE交AD于点F,此时,取得最小值,进而,求出的度数,即可.16.【解析】【解答】根据题意得:=== ,故答案是:【分析】根据题意,列出每次倒出水量的式子,求和,即可.三、解答题17.【解析】【分析】(1)根据完全平方公式,即可求解;(2)先把除法化为乘法,再进行约分,即可.18.【解析】【分析】根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证.19.【解析】【分析】由平行线的性质可得∠A=∠B,用边角边可证△ACD≌△BEC,由全等三角形的性质得DC=CE,然后根据等腰三角形的三线合一可求解.20.【解析】【分析】(1)根据两点之间线段最短,连接AB,与直线l的交点,即为所求;(2)先作点E关于直线l的对称点E′,连接FE′,与直线l的交点,即为所求.21.【解析】【解答】解:(1)∵轮船顺流航行速度=轮船在静水中的最大航速+江水的流速,∴轮船顺流航行速度为千米/时,∵逆流航行速度=轮船在静水中的最大航速-江水的流速,∴逆流航行速度为 千米/时,∴顺流航行100千米所用时间为 小时,逆流航行60千米所用时间为小时.故答案是: ,, , ;【分析】(1)根据轮船顺流航行速度=轮船在静水中的最大航速+江水的流速,逆流航行速度=轮船在静水中的最大航速-江水的流速,即可得到答案;(2)根据沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,列出方程,即可求解.22.【解析】【分析】(1)根据题意,列出算式,进行验证,即可;(2)设方框中左上最小的数字为 ,列出整式的减法,化简,即可.23.【解析】【分析】(1)由余角的性质,可得:,从而证明: ,进而求出点P 的坐标;(2)过分别作 于 点,作 于 点,易证: ,可得:,从而可得: 平分 ,即可得到答案;(3)连接 ,易证:, , ,进而可证: ,得到:,即 ,即可得到结论.。

天津市2016-2017学年八年级数学上册期末模拟题及答

天津市2016-2017学年八年级数学上册期末模拟题及答

2016-2017年八年级数学上册期末模拟题一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列分式中,最简分式有()A.2个B.3个C.4个D.5个2.△ABC的两条中线AD、BE交于点F,连接CF,若△ABC的面积为24,则△ABF的面积为( )A.10 B.8 C.6 D. 43.下列式子正确的是()A.(a﹣b)2=a2﹣2ab+b2B.(a﹣b 2=a2﹣b2C.(a﹣b 2=a2+2ab+b2D.(a﹣b 2=a2﹣ab+b24.下列算式中,你认为错误的是()A. B.C. D.5.等腰三角形的一条边长为6,另一边长为13,则它的周长为( )A.25B.25或32C.32D.196.下列计算正确的是()A.a6÷a2=a3B.a2+a2=2a4C.(a﹣b)2=a2﹣b2D.(a2)3=a67.化简,可得()A. B. C. D.8.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A.8 B.9 C.10 D.119.方格纸中,每个小格顶点叫做一个格点,以格点连线为边的三角形叫做格点三角形.如图,在4×4的方格纸中,有两个格点三角形△ABC、△DEF,下列说法中成立的是()A.∠BCA=∠EDFB.∠BCA=∠EFDC.∠BAC=∠EFDD.这两个三角形中,没有相等的角10.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=( )A.118°B.119°C.120°D.121°11.如图,D为BC上一点,且AB=AC=BD,则图中∠1与∠2关系是()A.∠1=2∠2B.∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°12.在一段坡路,小明骑自行车上坡的速度为每小时v千米,下坡时的速度为每小时v2千米,则1他在这段路上、下坡的平均速度是每小时()A.千米B.千米C.千米D.无法确定二、填空题(本大题共6小题,每小题3分,共18分)13.已知﹣(x﹣1)0有意义,则x的取值范围是.14.分解因式:8(a2+1)﹣16a= .15.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A= °.16.已知等腰三角形的两边长分别为4cm和7cm,且它的周长大于16cm,则第三边长为_____.17.已知a+=3,则a2+的值是.18.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为.三、计算题(本大题共6小题,共24分)19.(1) (ab2)2•(﹣a3b)3÷(﹣5ab); (2)(x+1)2﹣(x+2)(x﹣2).20.化简:(1) +. (2)21.分解因式:(1)3x﹣12x3;(2)3m(2x-y)2-3mn2;四、解答题(本大题共4小题,共22分)22.如图,已知DE⊥AC,BF⊥AC,垂足分别是E、F,AE=CF,DC∥AB,(1)试证明:DE=BF;(2)连接DF、BE,猜想DF与BE的关系?并证明你的猜想的正确性.23.如图、已知∠AOB=30°,OC平分∠AOB,P为OC上任意一点,PD∥OA交OB于D,PE⊥OA于E.如果OD=4cm,求PE的长.24.在一次“手拉手”捐款活动中,某同学对甲.乙两班捐款的情况进行统计,得到如下三条信息:信息一.甲班共捐款120元,乙班共捐款88元;信息二.乙班平均每人捐款数比甲班平均每人捐款数的0.8倍;信息三.甲班比乙班多5人.请你根据以上三条信息,求出甲班平均每人捐款多少元?25.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作等边△ADE(顶点A、D、E按逆时针方向排列),连接CE.(1)如图1,当点D在边BC上时,求证:①BD=CE,②AC=CE+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CE+CD是否成立?若不成立,请写出AC、CE、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的反向延长线上且其他条件不变时,补全图形,并直接写出AC、CE、CD之间存在的数量关系.2016-2017年八年级数学上册期末模拟题答案1.C.2.B3.A4.B.5.C6.D7.B.8.C9.B 10.C 11.D 12.C.13.答案为:x≠2且x≠1.14.【解答】解:8(a2+1)﹣16a=8(a2+1﹣2a)=8(a﹣1)2.故答案为:8(a﹣1)2.15.【解答】解:∵三角形△ABC绕着点C时针旋转35°,得到△AB′C′∴∠ACA′=35°,∠A'DC=90°∴∠A′=55°,∵∠A的对应角是∠A′,即∠A=∠A′,∴∠A=55°;故答案为:55°.16.7cm17.【解答】解:∵a+=3,∴a2+2+=9,∴a2+=9﹣2=7.故答案为:7.18.【解答】解:∵∠AOB=60°,OC平分∠AOB,∴∠AOC=30°,①当E在E1时,OE=CE,∵∠AOC=∠OCE=30°,∴∠OEC=180°﹣30°﹣30°=120°;②当E在E2点时,OC=OE,则∠OCE=∠OEC=(180°﹣30°)=75°;③当E在E3时,OC=CE,则∠OEC=∠AOC=30°;故答案为:120°或75°或30°.19.(1)原式=a2b4•(﹣a9b3)÷(﹣5ab)=a10b6;(2)原式=x2+2x+1﹣x2+4=2x+5.20.(1)原式=+•=+==.(2)原式=﹣÷=﹣•=﹣.21.(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)原式=3m(2x-y+n)(2x-y-n);22.【解答】(1)证明:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,∵DE⊥AC,BF⊥AC,∴∠AFB=∠DEC=90°,∵DC∥AB,∴∠DCE=∠BAF,在△AFB和△CED中∴△AFB≌△CED,∴DE=EF;(2)DF=BE,DF∥BE,证明:∵DE⊥AC,BF⊥AC,∴DE∥BF,∵DE=BF,∴四边形DEBF是平行四边形,∴DF=BE,DF∥BE.23.【解答】解:过P作PF⊥OB于F,∵∠AOB=30°,OC平分∠AOB,∴∠AOC=∠BOC=15°,∵PD∥OA,∴∠DPO=∠AOP=15°,∴∠BOC=∠DPO,∴PD=OD=4cm,∵∠AOB=30°,PD∥OA,∴∠BDP=30°,∴在Rt△PDF中,PF=PD=2cm,∵OC为角平分线,PE⊥OA,PF⊥OB,∴PE=PF,∴PE=PF=2cm.24.【解答】解:设甲班平均每人捐款为x元,依题意得整理得:4x=8,解之得x=2经检验,x=2是原方程的解.答:甲班平均每人捐款2元25.(1)∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC-∠CAD=∠DAE-∠CAD,即∠BAD=∠CAE.在△ABD和△ACE中,AB=AC,∠BAD=∠CAE,AD=AE∴△ABD≌△ACE(SAS),∴BD=CE.∵BC=BD+CD,AC=BC,∴AC=CE+CD;(2)AC=CE+CD不成立,AC、CE、CD之间存在的数量关系是:AC=CE-CD.理由:∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE在△ABD和△ACE中,AB=AC,∠BAD=∠CAE,AD=AE∴△ABD≌△ACE(SAS)∴BD=CE ∴CE-CD=BD-CD=BC=AC,∴AC=CE-CD;(3)补全图形(如图)AC、CE、CD之间存在的数量关系是:AC=CD-CE.理由:∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC-∠BAE=∠DAE-∠BAE,∴∠BAD=∠CAE在△ABD和△ACE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS)∴BD=CE.∵BC=CD-BD,∴BC=CD-CE,∴AC=CD-CE.。

2016-2017学年天津市部分区八年级第一学期期末数学试卷带答案

2016-2017学年天津市部分区八年级第一学期期末数学试卷带答案

2016-2017学年天津市部分区初二(上)期末数学试卷一、选择题(本题包括12小题,每小题3分,共36分)1.(3分)下列式子是分式的是()A.B. C.+y D.2.(3分)计算(﹣3a3)2的结果是()A.﹣6a5B.6a5C.9a6D.﹣9a63.(3分)如果一个三角形的两边长分别为2和5,则此三角形的第三边长可能为()A.2 B.3 C.6 D.74.(3分)下列平面图形中,不是轴对称图形的是()A. B. C.D.5.(3分)下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.x5+x5=x C.a6﹣a4=a2D.3a2•2a3=6a5 6.(3分)下列从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.﹣8x2+8x﹣2=﹣2(2x﹣1)2C.2x2+8x﹣1=2x(x+4)﹣1 D.a2﹣1=a(a﹣)7.(3分)下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等8.(3分)下列多项式中,含有因式(y+1)的多项式是()A.y2﹣2xy﹣3x2B.(y+1)2﹣(y﹣1)2C.(y+1)2﹣(y2﹣1)D.(y+1)2+2(y+1)+19.(3分)若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形10.(3分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD,其中正确的结论有()A.0个 B.1个 C.2个 D.3个11.(3分)初二学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=12.(3分)已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形;②是直角三角形;③是钝角三角形;④是等边三角形,其中正确说法的个数是()A.4个 B.3个 C.2个 D.1个二、填空题(本题包括6小题,每小题3分,共18分)13.(3分)若分式有意义,则x的取值范围是.14.(3分)若a2+ab+b2+M=(a﹣b)2,那么M=.15.(3分)在实数范围内分解因式:x2y﹣4y=.16.(3分)如图,已知AD所在直线是△ABC的对称轴,点E、F是AD上的两点,若BC=4,AD=3,则图中阴影部分的面积的值是.17.(3分)若关于x的方程无解,则m的值是.18.(3分)如图,在第一个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一D,延长CA2到A2,使A1A2=A1D,得到第2个△A1A2D,在边A2B上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第三个△A2A3E,…按此做法继续下去,第n个等腰三角形的底角的度数是度.三、解答题(本题共46分)19.(6分)(1)计算(12a3﹣6a2+3a)÷3a;(2)计算(x﹣y)(x2+xy+y2).20.(4分)解方程:﹣=21.(6分)如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,点F在AC上,BD=DF,求证:CF=BE.22.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.23.(8分)(1)计算:+(2)先化简,再求值:()÷,其中x=3.24.(8分)一项工程,若由甲、乙两公司合作18天可以完成,共需付施工费144000元,若甲、乙两公司单独完成此项工程,甲公司所用时间是乙公司的1.5倍,已知甲公司每天的施工费比乙公司每天的施工费少2000元.(1)求甲、乙两公司单独完成此项工程,各需多少天?(2)若由一个公司单独完成这项工程,哪个公司的施工费较少?25.(8分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.2016-2017学年天津市部分区初二(上)期末数学试卷参考答案与试题解析一、选择题(本题包括12小题,每小题3分,共36分)1.(3分)下列式子是分式的是()A.B. C.+y D.【解答】解:A、分母中不含有字母的式子是整式,故A错误;B、分母中含有字母的式子是分式,故B正确;C、分母中不含有字母的式子是整式,故C错误;D、分母中不含有字母的式子是整式,故D错误;故选:B.2.(3分)计算(﹣3a3)2的结果是()A.﹣6a5B.6a5C.9a6D.﹣9a6【解答】解:(﹣3a3)2=9a6.故选:C.3.(3分)如果一个三角形的两边长分别为2和5,则此三角形的第三边长可能为()A.2 B.3 C.6 D.7【解答】解:设第三边长为x,则由三角形三边关系定理得5﹣2<x<5+2,即3<x<7.故选:C.4.(3分)下列平面图形中,不是轴对称图形的是()A. B. C.D.【解答】解::A、不是轴对称图形,本选项正确;B、是轴对称图形,本选项错误;C、是轴对称图形,本选项错误;D、是轴对称图形,本选项错误.故选:A.5.(3分)下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.x5+x5=x C.a6﹣a4=a2D.3a2•2a3=6a5【解答】解:A、﹣2(a+b)=﹣2a﹣2b,故此选项错误;B、x5+x5=2x5,故此选项错误;C、a6﹣a4,无法计算,故此选项错误;D、3a2•2a3=6a5,正确.故选:D.6.(3分)下列从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.﹣8x2+8x﹣2=﹣2(2x﹣1)2C.2x2+8x﹣1=2x(x+4)﹣1 D.a2﹣1=a(a﹣)【解答】解:把一个多项式在一个范围(如有理数范围内分解,即所有项均为有理数)化为几个整式的积的形式,称为多项式的因式分解故选:B.7.(3分)下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.8.(3分)下列多项式中,含有因式(y+1)的多项式是()A.y2﹣2xy﹣3x2B.(y+1)2﹣(y﹣1)2C.(y+1)2﹣(y2﹣1)D.(y+1)2+2(y+1)+1【解答】解:A、y2﹣2xy﹣3x2=(y﹣3x)(y+x),故不含因式(y+1).B、(y+1)2﹣(y﹣1)2=[(y+1)﹣(y﹣1)][(y+1)+(y﹣1)]=4y,故不含因式(y+1).C、(y+1)2﹣(y2﹣1)=(y+1)2﹣(y+1)(y﹣1)=2(y+1),故含因式(y+1).D、(y+1)2+2(y+1)+1=(y+2)2,故不含因式(y+1).故选:C.9.(3分)若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故这个多边形是四边形.故选:B.10.(3分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD,其中正确的结论有()A.0个 B.1个 C.2个 D.3个【解答】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故①正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故②正确;四边形ABCD的面积==AC•BD,故③正确;故选:D.11.(3分)初二学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=【解答】解:由题意可得,﹣=,故选:C.12.(3分)已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形;②是直角三角形;③是钝角三角形;④是等边三角形,其中正确说法的个数是()A.4个 B.3个 C.2个 D.1个【解答】解:∵a2+b2+c2=ab+bc+ca,∴2a2+2b2+2c2=2ab+2bc+2ca,即(a﹣b)2+(b﹣c)2+(a﹣c)2=0,∴a=b=c,∴此三角形为等边三角形,同时也是锐角三角形.故选:C.二、填空题(本题包括6小题,每小题3分,共18分)13.(3分)若分式有意义,则x的取值范围是x≠1.【解答】解:由题意得:x﹣1≠0,解得:x≠1,故答案为:x≠1.14.(3分)若a2+ab+b2+M=(a﹣b)2,那么M=﹣3ab.【解答】解:∵a2+ab+b2+M=(a﹣b)2=a2﹣2ab+b2,∴M=﹣3ab.故答案为:﹣3ab.15.(3分)在实数范围内分解因式:x2y﹣4y=y(x+2)(x﹣2).【解答】解:原式=y(x2﹣4)=y(x+2)(x﹣2),故答案为:y(x+2)(x﹣2)16.(3分)如图,已知AD所在直线是△ABC的对称轴,点E、F是AD上的两点,若BC=4,AD=3,则图中阴影部分的面积的值是3.【解答】解:∵△ABC关于直线AD对称,∴B、C关于直线AD对称,∴△CEF和△BEF关于直线AD对称,=S△CEF,∴S△BEF∵△ABC的面积是:×BC×AD=×3×4=6,=3.∴图中阴影部分的面积是S△ABC故答案为:3.17.(3分)若关于x的方程无解,则m的值是2.【解答】解:关于x的分式方程无解即是x=1,将方程可转化为m﹣1﹣x=0,当x=1时,m=2.故答案为2.18.(3分)如图,在第一个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一D,延长CA2到A2,使A1A2=A1D,得到第2个△A1A2D,在边A2B上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第三个△A2A3E,…按此做法继续下去,第n个等腰三角形的底角的度数是度.【解答】解:∵在△ABA1中,∠B=30°,AB=A1B,∴∠BA1A==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°=37.5°;同理可得,∠EA3A2=,∠FA4A3=,∴第n个等腰三角形的底角的度数=.故答案为.三、解答题(本题共46分)19.(6分)(1)计算(12a3﹣6a2+3a)÷3a;(2)计算(x﹣y)(x2+xy+y2).【解答】解:(1)(12a3﹣6a2+3a)÷3a=12a3÷3a﹣6a2÷3a+3a÷3a=4a2﹣2a+1(2)(x﹣y)(x2+xy+y2)=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.20.(4分)解方程:﹣=【解答】解:方程两边同乘以(x+1)(x﹣1),得2(x﹣1)﹣3(x+1)=6,∴2x﹣2﹣3x﹣3=6,∴x=﹣11.经检验:x=﹣11是原方程的根.21.(6分)如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,点F在AC上,BD=DF,求证:CF=BE.【解答】证明:∵∠C=90°,∴DC⊥AC.∵AD是∠BAC的平分线,DE⊥AB,∴DC=DE.在Rt△DCF和Rt△DEB中,,∴Rt△DCF≌Rt△DEB(HL),∴CF=EB.22.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.【解答】解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,将a+b=3,ab=2代入得,ab(a+b)2=2×32=18.故代数式a3b+2a2b2+ab3的值是18.23.(8分)(1)计算:+(2)先化简,再求值:()÷,其中x=3.【解答】解:(1)原式=+=+=;(2)原式=[﹣]•=•=,当x=3时,原式=.24.(8分)一项工程,若由甲、乙两公司合作18天可以完成,共需付施工费144000元,若甲、乙两公司单独完成此项工程,甲公司所用时间是乙公司的1.5倍,已知甲公司每天的施工费比乙公司每天的施工费少2000元.(1)求甲、乙两公司单独完成此项工程,各需多少天?(2)若由一个公司单独完成这项工程,哪个公司的施工费较少?【解答】解:(1)设乙公司单独完成此项工程需x天,则甲公司单独完成需要1.5x天.由题意,得=.解得:x=30经检验x=30是原方程的解.则1.5x=45.答:甲公司单独完成需要45天,乙公司单独完成需要30天.(2)设甲公司每天的施工费用为y元,则乙公司每天的施工费用为(y+2000)元.由题意,得18(y+y+2000)=144000.解得y=3000.则y+2000=5000.甲公司施工费为:3000×45=135000乙公司施工费为:5000×30=150000答:甲公司施工费用较少.25.(8分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是50度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.【解答】解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°,∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°,故答案为:50;(2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC,∵AB=8,△MBC的周长是14,∴BC=14﹣8=6;②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PB=PA+PC,PA+PC≥AC,∴P与M重合时,PA+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=14.附赠:初中数学考试答题技巧一、答题原则大家拿到考卷后,先看是不是本科考试的试卷,再清点试卷页码是否齐全,检查试卷有无破损或漏印、重印、字迹模糊不清等情况。

2016-2017年天津市部分区八年级上学期期末数学试卷和答案

2016-2017年天津市部分区八年级上学期期末数学试卷和答案

2016-2017学年天津市部分区八年级(上)期末数学试卷一、选择题(本题包括12小题,每小题3分,共36分)1.(3分)下列式子是分式的是()A.B. C.+y D.2.(3分)计算(﹣3a3)2的结果是()A.﹣6a5B.6a5C.9a6D.﹣9a63.(3分)如果一个三角形的两边长分别为2和5,则此三角形的第三边长可能为()A.2 B.3 C.6 D.74.(3分)下列平面图形中,不是轴对称图形的是()A.B.C. D.5.(3分)下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.x5+x5=x C.a6﹣a4=a2D.3a2•2a3=6a5 6.(3分)下列从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.﹣8x2+8x﹣2=﹣2(2x﹣1)2C.2x2+8x﹣1=2x(x+4)﹣1 D.a2﹣1=a(a﹣)7.(3分)下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等8.(3分)下列多项式中,含有因式(y+1)的多项式是()A.y2﹣2xy﹣3x2B.(y+1)2﹣(y﹣1)2C.(y+1)2﹣(y2﹣1)D.(y+1)2+2(y+1)+19.(3分)若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形10.(3分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD,其中正确的结论有()A.0个 B.1个 C.2个 D.3个11.(3分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=12.(3分)已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形;②是直角三角形;③是钝角三角形;④是等边三角形,其中正确说法的个数是()A.4个 B.3个 C.2个 D.1个二、填空题(本题包括6小题,每小题3分,共18分)13.(3分)若分式有意义,则x的取值范围是.14.(3分)若a2+ab+b2+M=(a﹣b)2,那么M=.15.(3分)在实数范围内分解因式:x2y﹣4y=.16.(3分)如图,已知AD所在直线是△ABC的对称轴,点E、F是AD上的两点,若BC=4,AD=3,则图中阴影部分的面积的值是.17.(3分)若关于x的方程无解,则m的值是.18.(3分)如图,在第一个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一D,延长CA2到A2,使A1A2=A1D,得到第2个△A1A2D,在边A2B上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第三个△A2A3E,…按此做法继续下去,第n个等腰三角形的底角的度数是度.三、解答题(本题共46分)19.(6分)(1)计算(12a3﹣6a2+3a)÷3a;(2)计算(x﹣y)(x2+xy+y2).20.(4分)解方程:﹣=21.(6分)如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,点F在AC上,BD=DF,求证:CF=BE.22.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.23.(8分)(1)计算:+(2)先化简,再求值:()÷,其中x=3.24.(8分)一项工程,若由甲、乙两公司合作18天可以完成,共需付施工费144000元,若甲、乙两公司单独完成此项工程,甲公司所用时间是乙公司的1.5倍,已知甲公司每天的施工费比乙公司每天的施工费少2000元.(1)求甲、乙两公司单独完成此项工程,各需多少天?(2)若由一个公司单独完成这项工程,哪个公司的施工费较少?25.(8分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.2016-2017学年天津市部分区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题包括12小题,每小题3分,共36分)1.(3分)下列式子是分式的是()A.B. C.+y D.【解答】解:A、分母中不含有字母的式子是整式,故A错误;B、分母中含有字母的式子是分式,故B正确;C、分母中不含有字母的式子是整式,故C错误;D、分母中不含有字母的式子是整式,故D错误;故选:B.2.(3分)计算(﹣3a3)2的结果是()A.﹣6a5B.6a5C.9a6D.﹣9a6【解答】解:(﹣3a3)2=9a6.故选C.3.(3分)如果一个三角形的两边长分别为2和5,则此三角形的第三边长可能为()A.2 B.3 C.6 D.7【解答】解:设第三边长为x,则由三角形三边关系定理得5﹣2<x<5+2,即3<x<7.故选:C.4.(3分)下列平面图形中,不是轴对称图形的是()A.B.C. D.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.5.(3分)下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.x5+x5=x C.a6﹣a4=a2D.3a2•2a3=6a5【解答】解:A、﹣2(a+b)=﹣2a﹣2b,故此选项错误;B、x5+x5=2x5,故此选项错误;C、a6﹣a4,无法计算,故此选项错误;D、3a2•2a3=6a5,正确.故选:D.6.(3分)下列从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.﹣8x2+8x﹣2=﹣2(2x﹣1)2C.2x2+8x﹣1=2x(x+4)﹣1 D.a2﹣1=a(a﹣)【解答】解:把一个多项式在一个范围(如有理数范围内分解,即所有项均为有理数)化为几个整式的积的形式,称为多项式的因式分解故选(B)7.(3分)下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.8.(3分)下列多项式中,含有因式(y+1)的多项式是()A.y2﹣2xy﹣3x2B.(y+1)2﹣(y﹣1)2C.(y+1)2﹣(y2﹣1)D.(y+1)2+2(y+1)+1【解答】解:A、y2﹣2xy﹣3x2=(y﹣3x)(y+x),故不含因式(y+1).B、(y+1)2﹣(y﹣1)2=[(y+1)﹣(y﹣1)][(y+1)+(y﹣1)]=4y,故不含因式(y+1).C、(y+1)2﹣(y2﹣1)=(y+1)2﹣(y+1)(y﹣1)=2(y+1),故含因式(y+1).D、(y+1)2+2(y+1)+1=(y+2)2,故不含因式(y+1).故选C.9.(3分)若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故这个多边形是四边形.故选B.10.(3分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD,其中正确的结论有()A.0个 B.1个 C.2个 D.3个【解答】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故①正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故②正确;四边形ABCD的面积==AC•BD,故③正确;故选D.11.(3分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=【解答】解:由题意可得,﹣=,故选C.12.(3分)已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形;②是直角三角形;③是钝角三角形;④是等边三角形,其中正确说法的个数是()A.4个 B.3个 C.2个 D.1个【解答】解:∵a2+b2+c2=ab+bc+ca,∴2a2+2b2+2c2=2ab+2bc+2ca,即(a﹣b)2+(b﹣c)2+(a﹣c)2=0,∴a=b=c,∴此三角形为等边三角形,同时也是锐角三角形.故选C.二、填空题(本题包括6小题,每小题3分,共18分)13.(3分)若分式有意义,则x的取值范围是x≠1.【解答】解:由题意得:x﹣1≠0,解得:x≠1,故答案为:x≠1.14.(3分)若a2+ab+b2+M=(a﹣b)2,那么M=﹣3ab.【解答】解:∵a2+ab+b2+M=(a﹣b)2=a2﹣2ab+b2,∴M=﹣3ab.故答案为:﹣3ab.15.(3分)在实数范围内分解因式:x2y﹣4y=y(x+2)(x﹣2).【解答】解:原式=y(x2﹣4)=y(x+2)(x﹣2),故答案为:y(x+2)(x﹣2)16.(3分)如图,已知AD所在直线是△ABC的对称轴,点E、F是AD上的两点,若BC=4,AD=3,则图中阴影部分的面积的值是3.【解答】解:∵△ABC关于直线AD对称,∴B、C关于直线AD对称,∴△CEF和△BEF关于直线AD对称,∴S△BEF =S△CEF,∵△ABC的面积是:×BC×AD=×3×4=6,∴图中阴影部分的面积是S△ABC=3.故答案为:3.17.(3分)若关于x的方程无解,则m的值是2.【解答】解:关于x的分式方程无解即是x=1,将方程可转化为m﹣1﹣x=0,当x=1时,m=2.故答案为2.18.(3分)如图,在第一个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一D,延长CA2到A2,使A1A2=A1D,得到第2个△A1A2D,在边A2B上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第三个△A2A3E,…按此做法继续下去,第n个等腰三角形的底角的度数是度.【解答】解:∵在△ABA1中,∠B=30°,AB=A1B,∴∠BA1A==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°=37.5°;同理可得,∠EA3A2=,∠FA4A3=,∴第n个等腰三角形的底角的度数=.故答案为.三、解答题(本题共46分)19.(6分)(1)计算(12a3﹣6a2+3a)÷3a;(2)计算(x﹣y)(x2+xy+y2).【解答】解:(1)(12a3﹣6a2+3a)÷3a=12a3÷3a﹣6a2÷3a+3a÷3a=4a2﹣2a+1(2)(x﹣y)(x2+xy+y2)=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.20.(4分)解方程:﹣=【解答】解:方程两边同乘以(x+1)(x﹣1),得2(x﹣1)﹣3(x+1)=6,∴2x﹣2﹣3x﹣3=6,∴x=﹣11.经检验:x=﹣11是原方程的根.21.(6分)如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,点F在AC上,BD=DF,求证:CF=BE.【解答】证明:∵∠C=90°,∴DC⊥AC.∵AD是∠BAC的平分线,DE⊥AB,∴DC=DE.在Rt△DCF和Rt△DEB中,,∴Rt△DCF≌Rt△DEB(HL),∴CF=EB.22.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.【解答】解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,将a+b=3,ab=2代入得,ab(a+b)2=2×32=18.故代数式a3b+2a2b2+ab3的值是18.23.(8分)(1)计算:+(2)先化简,再求值:()÷,其中x=3.【解答】解:(1)原式=+=+=;(2)原式=[﹣]•=•=,当x=3时,原式=.24.(8分)一项工程,若由甲、乙两公司合作18天可以完成,共需付施工费144000元,若甲、乙两公司单独完成此项工程,甲公司所用时间是乙公司的1.5倍,已知甲公司每天的施工费比乙公司每天的施工费少2000元.(1)求甲、乙两公司单独完成此项工程,各需多少天?(2)若由一个公司单独完成这项工程,哪个公司的施工费较少?【解答】解:(1)设乙公司单独完成此项工程需x天,则甲公司单独完成需要1.5x天.由题意,得=.解得:x=30经检验x=30是原方程的解.则1.5x=45.答:甲公司单独完成需要45天,乙公司单独完成需要30天.(2)设甲公司每天的施工费用为y元,则乙公司每天的施工费用为(y+2000)元.由题意,得18(y+y+2000)=144000.解得y=3000.则y+2000=5000.甲公司施工费为:3000×45=135000乙公司施工费为:5000×30=150000答:甲公司施工费用较少.25.(8分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是50度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.【解答】解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°,∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°,故答案为:50;(2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC,∵AB=8,△MBC的周长是14,∴BC=14﹣8=6;②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PB=PA+PC,PA+PC≥AC,∴P与M重合时,PA+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=14.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;xyB CAO2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;(3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

2016-2017学年天津四中八上期末数学试卷

2016-2017学年天津四中八上期末数学试卷

2016-2017学年天津四中八上期末数学模拟试卷一、选择题(共10小题;共50分)1. 下面所给的交通标志图中是轴对称图形的是A. B.C. D.2. 如图所示,在正方形网格中,已有三个小正方形被涂黑,将剩余的白色小正方形再任意涂黑一个,则所得黑色图案是轴对称图形的情况有A. 种B. 种C. 种D. 种3. 如图所示,在边长为的正方形中,剪去一个边长为的小正方形,将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于,的恒等式为A. B.C. D.4. 下列分式中,最简分式有,,,,A. 个B. 个C. 个D. 个5. 中,,,边上中线,则,关系为A. B. C. D. 无法确定6. 如图,的三边,,长分别是,,,其三条角平分线将分为三个三角形,则等于A. B. C. D.7. 如果,那么等于A. B. C. D.8. 下列运算正确的是A. B.C. D.9. 小明上月在某文具店正好用元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜元,结果小明只比上次多用了元钱,却比上次多买了本.若设他上月买了本笔记本,则根据题意可列方程A. B. C. D.10. 在平面直角坐标系中,已知点,在轴上确定点,使为等腰三角形,则符合条件的点有A. 个B. 个C. 个D. 个二、填空题(共6小题;共30分)11. 计算:.12. .13. 计算:.14. 如图所示,有一块三角形的镜子,小明不小心弄破裂成①,②两块,现需配成同样大小的一块.为了方便起见,需带上,其理由是.15. 已知是的角平分线,于,且,则点到的距离为.16. 如图,,平分,如果射线上的点满足是等腰三角形,那么的度数为.三、解答题(共8小题;共104分)17. 化简:.18. 化简:.19. 如图在平面直角坐标系中,各顶点的坐标分别为:,,.(1)在图中作使和关于轴对称;(2)写出点的坐标;(3)求的面积.20. 如图,边长为,的矩形,它的周长为,面积为,求下列各式的值:(1);(2).21. 已知,如图,是正三角形,,,分别是各边上的一点,且.请你说明是正三角形.22. 已知:如图,和都是等边三角形,且,,三点在同一条直线上.请你说明.23. 从甲地到乙地有两条公路,一条是全长的普通公路,另一条是全长的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.24.(1)问题背景:如图1:在四边形中,,,.,分别是,上的点.且.探究图中线段,,之间的数量关系.小王同学探究此问题的方法是,延长到点.使.连接,先证明,再证明,可得出结论,他的结论应是;(2)探索延伸:如图2,若在四边形中,,.,分别是,上的点,且,上述结论是否仍然成立,并说明理由;(3)实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(处)北偏西的处,舰艇乙在指挥中心南偏东的处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以海里/小时的速度前进,舰艇乙沿北偏东的方向以海里/小时的速度前进.小时后,指挥中心观测到甲、乙两舰艇分别到达,处,且两舰艇与指挥中心之间的夹角为,试求此时两舰艇之间的距离.答案第一部分;1. A2. C3. C 【解析】正方形中,阴影;梯形中,阴影故所得恒等式为.4. C5. B6. C7. B 【解析】由,得,.8. C 【解析】A、,故选项错误;B、,故选项错误;C、正确;D、,故选项错误.9. B 10. D第二部分11.12.13.14. ①,利用得出全等三角形,即可配成与原来同样大小的一块15.16. 或或第三部分17. 原式原式18.19. (1)如图,(2)点的坐标为,点的坐标为,点的坐标为.(3)20. (1),,.(2),.21. 为正三角形,且,,.在和中,.在和中,..,是正三角形.22. 和都是等边三角形,,,.,.在和中,..,.23. 设客车由高速公路从甲地到乙地需小时,则走普通公路需小时,根据题意得:解得经检验,是原方程的根,且符合题意.答:客车由高速公路从甲地到乙地需小时.24. (1).(2)仍然成立.证明如下:如图,延长到,使,连接,,,,在和中,(),,,,,,在和中,(),,,.(3)如图,连接,延长,相交于点,,,,又,,符合探索延伸中的条件,结论成立,即海里.答:此时两舰艇之间的距离是海里.。

河西区2016八上期末考数学卷及答案

河西区2016八上期末考数学卷及答案

河西区2015-2016学年度第一学期八年级数学期末检测一、选择题:本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有 一项是符合题目的要求。

1.点(1,-5)关于y 轴的对称点为A. (1,5)B. (-1,-5)C. (5,-1)D. (-1,5)2.下列图形中,可以看做是轴对称图形的有A.1个B. 2个C. 3个D.4个3.下列等式不成立的是A.()222ab a b = B.523a a a ÷= C.()()22a b b a -=- D.()()22a b a b +=-+ 4.化简22322375102a b a b ab a b ⎛⎫+÷⎪⎝⎭的结果为 A.27a b B.2710a b C. 25a b D. 2107a b5.如图,地面上有三个洞口A 、B 、C ,老鼠可以从任意一个洞口跑出,假设使得猫能够同时 最省力地顾及到三个洞口(到A 、B 、C 三个点的距离相等),尽快抓到老鼠,那么猫应该蹲守在A. △ABC 三边垂直平分线的交点B. △ABC 三条角平分线的交点C. △ABC 三条高所在直线的交点D. △ABC 三条中线的交点6.要使六边形木架(用六根木条钉成)不变形,至少要再钉上的木条数为( ) A. 1 B. 2 C. 3 D. 47.纳米是非常小的长度单位,1nm=10-9m ,那么,1mm 3的空间可以放多少个1nm 3的物体(不 及物体之间的间隙)( )A. 1018B. 10-9C. 10-18D. 1098.如图所示,在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b ),再把剩余的部 分拼成一个矩形,通过计算图形(阴影部分的面积),验证了一个等式是A.()2222a b a ab b +=++ B. ()2222a b a ab b -=-+ C. ()()22a b a b a b -=+- D. ()()2222a b a b a ab b +-=+-9.绿化队原来用漫灌方式浇绿地,a 天用水m 吨,现在改用喷灌方式,可使这些水多用3天, 那么现在比原来每天节约用水的吨数为( ) A.3a m B. 3ama + C. 3m a D. ()33m a a +10.如图,先将正方形纸片对折,折痕为MN ,再把B 点折叠在折痕MN 上,折痕为AE ,点 B 在MN 上的对应点为H ,沿AH 和DH 剪下得到△ADH ,则下列选项正确个数为 ①AE 垂直平分HB ;②∠HBN =15°;③DH =DC ;④△ADH 是一个等边三角形。

八年级上册天津数学期末试卷测试卷(含答案解析)

八年级上册天津数学期末试卷测试卷(含答案解析)

八年级上册天津数学期末试卷测试卷(含答案解析)一、八年级数学全等三角形解答题压轴题(难)1.(1)问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是延长FD到点G,使DG=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;(2)探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=12∠BAD,上述结论是否仍然成立,并说明理由;(3)结论应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇与指挥中心O 之间夹角∠EOF=70°,试求此时两舰艇之间的距离.(4)能力提高:如图4,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,试求出MN的长.【答案】(1)EF=BE+FD;(2)EF=BE+FD仍然成立;(3)210;(4)MN10.【解析】试题分析:(1)由△AEF≌△AGF,得EF=GF,又由BE=DG,得EF=GF=DF+DG=DF+BE;(2)延长FD到点G,使DG=BE,连接AG,证明△ABE≌△ADG,再证△AEF≌△AGF,得EF=FG,即可得到答案;(3)连接EF,延长AE,BF相交于点C,根据探索延伸可得EF=AE+FB,即可计算出EF的长度;(4)在△ABC外侧作∠CAD=∠BAM,截取AD=A M,连接CD,DN,证明△ACD≌△ABM,得到CD=BM,再证MN=ND,则求出ND的长度,即可得到答案.解:(1)由△AEF≌△AGF,得EF=GF,又由BE=DG,得EF=GF=DF+DG=DF+BE;(2)EF=BE+FD仍然成立.证明:如答图1,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG,在△ABE与△ADG中,AB=AD,∠B=∠ADG,BE=DG,∴△ABE≌△ADG.∴AE=AG,∠BAE=∠DAG.又∵∠EAF=12∠BAD,∴∠F AG=∠F AD+∠DAG=∠F AD+∠BAE=∠BAD-∠EAF=∠BAD-12∠BAD=12∠BAD,∴∠EAF=∠GAF.在△AEF与△AGF中,AE=AG,∠EAF=∠GAF,AF=AF,∴△AEF≌△AGF.∴EF=FG.又∵FG=DG+DF=BE+DF.∴EF=BE+FD.(3)如答图2,连接EF,延长AE,BF相交于点C,在四边形AOBC中,∵∠AOB=30°+90°+20°=140°,∠FOE=70°=12∠AOB,又∵OA=OB,∠OAC+∠OBC=60°+120°=180°,符合探索延伸中的条件,∴结论EF=AE+FB成立.∴EF=AE+FB=1.5×(60+80)=210(海里).答:此时两舰艇之间的距离为210海里;(4)如答图3,在△ABC外侧作∠CAD=∠BAM,截取AD=AM,连接CD,DN,在△ACD与△ABM中,AC=AB,∠CAD=∠BAM,AD=AM,则△ACD≌△ABM,∴CD=BM=1,∠ACD=∠ABM=45°,∵∠NAD=∠NAC+∠CAD=∠NAC+∠BAM=∠BAC-∠MAN=45°,∴∠MAD=∠MAN+∠NAD=90°=2∠NAD,又∵AM=AD,∠NCD+∠MAD=(∠ACD+∠ACB)+90°=180°,∴对于四边形AMCD符合探索延伸,则ND=MN ,∵∠NCD=90°,CD=1,CN=3,∴MN=ND=10.2.综合实践如图①,90,,,ACB AC BC AD CE BE CE ∠=︒=⊥⊥,垂足分别为点D E 、,2.5, 1.7AD cm DE cm ==.(1)求BE 的长;(2)将CE 所在直线旋转到ABC ∆的外部,如图②,猜想AD DE BE 、、之间的数量关系,直接写出结论,不需证明;(3)如图③,将图①中的条件改为:在ABC ∆中,,AC BC D C E =、、三点在同一直线上,并且BEC ADC BCA α∠=∠=∠=,其中α为任意钝角.猜想AD DE BE 、、之间的数量关系,并证明你的结论.【答案】(1)0.8cm;(2)DE=AD+BE;(3)DE=AD+BE ,证明见解析.【解析】【分析】(1)本小题只要先证明ACD CBE ≅,得到AD CE =,CD BE =,再根据2.5, 1.7AD cm DE cm ==,CD CE DE =-,易求出BE 的值;(2)先证明ACD CBE ≅,得到AD CE =,CD BE =,由图②ED=EC+CD ,等量代换易得到AD DE BE 、、之间的关系;(3)本题先证明EBC DCA ∠=∠,然后运用“AAS”定理判定BEC CDA ≅,从而得到,BE CD EC AD ==,再结合图③中线段ED 的特点易找到AD DE BE 、、之间的数量关系.【详解】解:(1)∵,AD CD BE CE ⊥⊥∴90ADC E ︒∠=∠=∴90ACD DAC ︒∠+∠=∵90ACB ︒∠=∴90ACD BCE ︒∠+∠=∴ACD BCE ∠=∠在ACD 与CBE △中,90ADC E ACD BCEAC BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ 2.5, 1.7AD cm DE cm ==, 2.5 1.70.8()CD CE DE AD DE cm =-=-=-= ∴0.8BE cm =(2)∵,AD CD BE CE ⊥⊥∴90ADC E ︒∠=∠=∴90ACD DAC ︒∠+∠=∴90ACB ︒∠=∴90ACD BCE ︒∠+∠=∴ACD BCE ∠=∠在ACD 与CBE △中,90ADC E ACD BCE AC BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ED EC CD =+∴ED AD BE =+(3)∵BEC ADC BCA α∠=∠=∠=∴180BCE ACD a ︒∠+∠=-180BCE BCE a ︒∠+∠=-∴ACD BCE ∠=∠在ACD 与CBE △中, ADC E a ACD BCE AC BC ∠=∠=⎧⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE==又∵ED EC CD=+∴ED AD BE=+【点睛】本题考查的知识点是全等三角形的判定,确定一种判定定理,根据已知条件找到判定全等所需要的边相等或角相等的条件是解决这类题的关键.3.如图,ABC∆是等腰直角三角形,090BAC∠=,点D是直线BC上的一个动点(点D与点B C、不重合),以AD为腰作等腰直角ADE∆,连接CE.(1)如图①,当点D在线段BC上时,直接写出,BC CE的位置关系,线段,BC CD,CE之间的数量关系;(2)如图②,当点D在线段BC的延长线上时,试判断线段BC,CE的位置关系,线段,,BC CD CE之间的数量关系,并说明理由;(3)如图③,当点D在线段CB的延长线上时,试判断线段,BC CE的位置关系,线段,,BC CD CE之间的数量关系,并说明理由.【答案】(1)见解析;(2)BC CE⊥,CE BC CD=+,理由见解析;(3),BC CE CD BC CE⊥=+,理由见解析【解析】【分析】(1)根据条件AB=AC,∠BAC=90°,AD=AE,∠DAE=90°,判定△ABD≌△ACE(SAS),利用两角的和即可得出BC CE⊥;利用线段的和差即可得出BC CE CD=+;(2)同(1)的方法根据SAS证明△ABD≌△ACE,得出BD=CE,∠ACE=∠ABD,从而得出结论;(3)先根据SAS证明△ABD≌△ACE,得出ADB AEC∠=∠,BD CE=,从而得出结论.【详解】(1)∵△ABC、△ADE是等腰直角三角形,∴AB=AC,AE=AD,在△△ABD和△ACE中90AB ACBAC DAEAD AE⎧⎪∠∠=︒⎨⎪⎩===,∴△ABD ≌△ACE (SAS ),∴∠B =∠ACE ,BD=CE,又∵△ABC 是等腰直角三角形,∴∠B+∠ACB=90︒,∴∠ACE +∠ACB=90︒,即BC CE ⊥,∵BC=BD+CD, BD=CE ,∴BC CE CD =+;(2)BC CE ⊥,CE BC CD =+,理由如下:∵ABC ∆、ADE ∆是等腰直角三角形,∴0,,90AB AC AD AE BAC DAE ==∠=∠=,∴BAC DAC DAE DAC ∠+∠=∠+∠即BAD CAE ∠=∠,在ABD ∆和ACE ∆中AB AC BAD CAE AD AE ⎧⎪∠=∠⎨⎪⎩== ∴()ABD ACE SAS ∆≅∆∴BD CE =∵BD BC CD =+∴CE BC CD =+,∴ABD ACE ∠=∠,∵090ABD ACE ∠+∠=∴090ACE ACB ∠+∠=∴BC CE ⊥.(3),BC CE CD BC CE ⊥=+,理由如下:∵ABC ADE ∆∆、是等腰直角三角形,∴0,,90AB AC AD AE BAC DAE ==∠=∠=,∴BAC BAE DAE BAE ∠-∠=∠-∠,即BAD CAE ∠=∠,在ABD ∆和ACE ∆中 AB AC BAD CAE AD AE ⎧⎪∠=∠⎨⎪⎩== ∴()ABD ACE SAS ∆≅∆,∴ADB AEC ∠=∠,BD CE =,∵CD BD BC =+,∴CD CE BC =+,∵090ADE AED ∠+∠=,即090ADB CDE AED ∠+∠+∠=∴090AEC CDE AED ∠+∠+∠=,∴090DCE ∠=,即BC CE ⊥.【点睛】考查了全等三角形的判定与性质以及等腰直角三角形的性质的运用,解题关键是根据利用两边及其夹角分别对应相等的两个三角形全等判定三角形全等.4.已知点P 是线段MN 上一动点,分别以PM ,PN 为一边,在MN 的同侧作△APM ,△BPN ,并连接BM ,AN .(Ⅰ)如图1,当PM =AP ,PN =BP 且∠APM =∠BPN =90°时,试猜想BM ,AN 之间的数量关系与位置关系,并证明你的猜想;(Ⅱ)如图2,当△APM ,△BPN 都是等边三角形时,(Ⅰ)中BM ,AN 之间的数量关系是否仍然成立?若成立,请证明你的结论;若不成立,试说明理由.(Ⅲ)在(Ⅱ)的条件下,连接AB 得到图3,当PN =2PM 时,求∠PAB 度数.【答案】(1)BM =AN ,BM ⊥AN .(2)结论成立.(3)90°.【解析】【分析】(1)根据已知条件可证△MBP ≌△ANP ,得出MB =AN ,∠PAN =∠PMB ,再延长MB 交AN 于点C ,得出MCN 90∠=︒,因此有BM ⊥AN ;(2)根据所给条件可证△MPB ≌△APN ,得出结论BM =AN ;(3) 取PB 的中点C ,连接AC ,AB ,通过已知条件推出△APC 为等边三角形,∠PAC =∠PCA =60°,再由CA =CB ,进一步得出∠PAB 的度数.【详解】解:(Ⅰ)结论:BM =AN ,BM ⊥AN .理由:如图1中,∵MP=AP,∠APM=∠BPN=90°,PB=PN,∴△MBP≌△ANP(SAS),∴MB=AN.延长MB交AN于点C.∵△MBP≌△ANP,∴∠PAN=∠PMB,∵∠PAN+∠PNA=90°,∴∠PMB+∠PNA=90°,∴∠MCN=180°﹣∠PMB﹣∠PNA=90°,∴BM⊥AN.(Ⅱ)结论成立理由:如图2中,∵△APM,△BPN,都是等边三角形∴∠APM=∠BPN=60°∴∠MPB=∠APN=120°,又∵PM=PA,PB=PN,∴△MPB≌△APN(SAS)∴MB=AN.(Ⅲ)如图3中,取PB的中点C,连接AC,AB.∵△APM ,△PBN 都是等边三角形∴∠APM =∠BPN =60°,PB =PN∵点C 是PB 的中点,且PN =2PM ,∴2PC =2PA =2PM =PB =PN ,∵∠APC =60°,∴△APC 为等边三角形,∴∠PAC =∠PCA =60°,又∵CA =CB ,∴∠CAB =∠ABC =30°,∴∠PAB =∠PAC +∠CAB =90°.【点睛】本题是一道关于全等三角形的综合性题目,充分考查了学生对全等三角形的判定定理及其性质的应用的能力,此类题目常常需要数形结合,借助辅助线才得以解决,因此,作出合理正确的辅助线是解题的关键.5.已知:4590ABC A ACB ∆∠=∠=,,,点D 是AC 延长线上一点,且22AD =+,,M 是线段CD 上一个动点,连接BM ,延长MB 到H ,使得HB MB =,以点B 为中心,将线段BH 逆时针旋转45,得到线段BQ ,连接AQ .(1)依题意补全图形;(2)求证:ABQ AMB ∠=∠;(3)点N 是射线AC 上一点,且点N 是点M 关于点D 的对称点,连接BN ,如果QA BN =, 求线段AB 的长.【答案】(1)见解析;(2)证明见解析;(3)22AB =【解析】【分析】(1)根据题意可以补全图形;(2)根据三角形外角的性质即可证明;(3)作QE ⊥AB ,根据AAS 证得QEB BCM ≅,根据HL 证得Rt QEA Rt BCN ≅,设法证得2AB CD =,设AC BC x ==,则2AB x =,22CD x =,结合已知22AD =+,构建方程即可求解. 【详解】(1)补全图形如下图所示:(2)解:∵∠ABH 是ABM 的一个外角,∴ ABH BAM AMB ∠=∠+∠∵ABH HBQ ABQ ∠=∠+∠ 又∵45HBQ BAM ∠=∠=︒∴ ABQ AMB ∠=∠(3)过Q 作QE ⊥AB ,垂足为E , 如下图:∵⊥QE AB∴90QEB BCM ∠=∠=︒,在QEB 和BCM 中,QEB BCM QBE BMC QB BM ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ QEB BCM ≅(AAS) ∴EB CM =,QE BC =,在Rt QEA 和Rt BCN 中∵QE BC =,Q A BN = ∴Rt QEA Rt BCN ≅ (HL)∴AE CN CM MD DN ==++∵点N 是点M 关于点D 的对称点,∴MD DN =∴22AE CM MD EB MD =+=+∴ ()2222AB AE EB EB MD EB MD CD =+=+=+=设AC BC x ==,则2AB x =,22CD x =, 又∵22AD =+,2 2AD AC CD x x =+=+ ∴222x x +=+ 解得:2x =∴ 22AB =【点睛】本题主要考查了全等三角形的判定与性质、三角形外角定理、等腰直角三角形的判定与性质等知识点.熟悉全等三角形的判定方法以及正确作出辅助线、构建方程是解答的关键.二、八年级数学 轴对称解答题压轴题(难)6.(问题情境)学习《探索全等三角形条件》后,老师提出了如下问题:如图①,△ABC 中,若AB=12,AC=8,求BC 边上的中线AD 的取值范围.同学通过合作交流,得到了如下的解决方法:延长AD 到E ,使DE=AD ,连接BE.根据SAS 可证得到△ADC ≌△EDB ,从而根据“三角形的三边关系”可求得AD 的取值范围是 .解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.(直接运用)如图②,AB ⊥AC ,AD ⊥AE ,AB=AC ,AD=AE ,AF 是ACD 的边CD 上中线.求(灵活运用)如图③,在△ABC中,∠C=90°,D为AB的中点,DE⊥DF,DE交AC于点E,DF交AB于点F,连接EF,试判断以线段AE、BF、EF为边的三角形形状,并证明你的结论.【答案】(1)2<AD<10;(2)见解析(3)为直角三角形,理由见解析.【解析】【分析】(1)根据△ADC≌△EDB,得到BE=AC=8,再根据三角形的构成三角形得到AE的取值,再根据D为AE中点得到AD的取值;(2)延长AF到H,使AF=HF,故△ADF≌△HCF,AH=2AF,由AB⊥AC,AD⊥AE,得到∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°,根据∠D=∠FCH,∠DAF=∠CHF,得到∠ACH+∠CAD=180°,故∠BAE= ACH,再根据AB=AC,AD=AE即可利用SAS证明△BAE≌△ACH,故BE=AH,故可证明BE=2AF.(3)延长FD到点G,使DG=FD,连结GA,GE,证明△DBF≌△DAG,故得到FD=GD,BF=AG,由DE⊥DF,得到EF=EG,再求出∠EAG=90°,利用勾股定理即可求解.【详解】(1)∵△ADC≌△EDB,∴BE=AC=8,∵AB=12,∴12-8<AE<12+8,即4<AE<20,∵D为AE中点∴2<AD<10;(2)延长AF到H,使AF=HF,由题意得△ADF≌△HCF,故AH=2AF,∵AB⊥AC,AD⊥AE,∴∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°,∵∠D=∠FCH,∠DAF=∠CHF,∴∠ACH+∠CAD=180°,故∠BAE= ACH,又AB=AC,AD=AE∴△BAE≌△ACH(SAS),故BE=AH,又AH=2AF(3)以线段AE、BF、EF为边的三角形为直角三角形,理由如下:延长FD到点G,使DG=FD,连结GA,GE,由题意得△DBF≌△ADG,∴FD=GD,BF=AG,∵DE⊥DF,∴DE垂直平分GF,∴EF=EG,∵∠C=90°,∴∠B+∠CAB=90°,又∠B=∠DAG,∴∠DAG +∠CAB=90°∴∠EAG=90°,故EG2=AE2+AG2,∵EF=EG, BF=AG∴EF2=AE2+BF2,则以线段AE、BF、EF为边的三角形为直角三角形.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是根据题意作出辅助线,根据垂直平分线与勾股定理进行求解.7.定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.【答案】(1)∠A=36°;(2)如图所示:见解析;(3)如图所示:见解析;∠C为20°或40°的角.【解析】【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.(2)根据(1)的解题过程作出△ABC的三等分线;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作30°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C 在同一直线上,易得2种三角形ABC;根据图形易得∠C的值;【详解】(1)∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=180?-x2,可得2x=180?-x2,解得:x=36°,则∠A=36°;(2)根据(1)的解题过程作出△ABC的三等分线,如图1;由45°自然想到等腰直角三角形,有两种情况,①如图2,过底角一顶点作对边的高,形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;②如图3,以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;(3)如图4所示:①当AD =AE 时,∵2x +x =30°+30°,∴x =20°;②当AD =DE 时,∵30°+30°+2x +x =180°,∴x =40°;综上所述,∠C 为20°或40°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.8.小明在学习了“等边三角形”后,激发了他的学习和探究的兴趣,就想考考他的朋友小崔,小明作了一个等边ABC ∆,如图1,并在边AC 上任意取了一点F (点F 不与点A 、点C 重合),过点F 作FH AB ⊥交AB 于点H ,延长CB 到G ,使得BG AF =,连接FG 交AB 于点l .(1)若10AC =,求HI 的长度;(2)如图2,延长BC 到D ,再延长BA 到E ,使得AE BD =,连接ED ,EC ,求证:ECD EDC ∠=∠.【答案】(1)HI =5;(2)见解析.【解析】【分析】(1)作FP ∥BC 交AB 于点P ,证明APF ∆是等边三角形得到AH=PH , 再证明PFI BGI ∆≅∆得到PI=BI ,于是可得HI =12AB ,即可求解; (2)延长BD 至Q ,使DQ=AB ,连结EQ ,就可以得出BE=BQ ,得出△BEQ 是等边三角形,就可以得出BE=QE ,得出△BCE ≌△QDE 就可以得出结论.【详解】解:如图1,作FP ∥BC 交AB 于点P ,∵ABC ∆是等边三角形,∴∠ABC=∠A=60°,∵FP ∥BC,∴∠APF=∠ABC=60°, ∠PFI=∠BGI,∴∠APF=∠A=60°,∴APF ∆是等边三角形,∴PF=AF,∵FH AB ⊥,∴AH=PH,∵AF=BG,∴PF=BG,∴在PFI ∆和BGI ∆中,PIF BIGPFI BGIPF BG∠=∠⎧⎪∠=∠⎨⎪=⎩,∴PFI BGI∆≅∆,∴PI=BI,∴PI+PH=BI+AH=12AB,∴HI=PI+PH =12AB=1102⨯=5;(2)如图2,延长BD至Q,使DQ=AB,连结EQ,∵△ABC是等边三角形,∴AB=BC=AC,∠B=60°.∵AE=BD,DQ=AB,∴AE+AB=BD+DQ,∴BE=BQ.∵∠B=60°,∴△BEQ为等边三角形,∴∠B=∠Q=60°,BE=QE.∵DQ=AB,∴BC=DQ.∴在△BCE和△QDE中,BC DQB QBE QE=⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△QDE(SAS),∴EC=ED.∴∠ECD=∠EDC.【点睛】本题考查了等边三角形的判定及性质的运用,全等三角形的判定及性质的运用,解答时作出相应辅助线构造全等三角形是关键.本题难度较大,需要有较强的综合能力.9.如果一个三角形能被一条线段割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如图1,ABC ∆是等腰锐角三角形,()AB AC AB BC =>,若ABC ∠的角平分线BD 交AC 于点D ,且BD 是ABC ∆的一条特异线,则BDC ∠= 度.(2)如图2,ABC ∆中,2B C ∠=∠,线段AC 的垂直平分线交AC 于点D ,交BC 于点E ,求证:AE 是ABC ∆的一条特异线;(3)如图3,若ABC ∆是特异三角形,30A ∠=,B 为钝角,不写过程,直接写出所有可能的B 的度数.【答案】(1)72;(2)证明见解析;(3)∠B 度数为:135°、112.5°或140°.【解析】【分析】(1)根据等腰三角形性质得出∠C=∠ABC=∠BDC=2∠A ,据此进一步利用三角形内角和定理列出方程求解即可;(2)通过证明△ABE 与△AEC 为等腰三角形求解即可;(3)根据题意分当BD 为特异线、AD 为特异线以及CD 为特异线三种情况分类讨论即可.【详解】(1)∵AB=AC ,∴∠ABC=∠C ,∵BD 平分∠ABC ,∴∠ABD=∠CBD=12∠ABC , ∵BD 是△ABC 的一条特异线,∴△ABD 与△BCD 为等腰三角形,∴AD=BD=BC ,∴∠A=∠ABD ,∠C=∠BDC ,∴∠ABC=∠C=∠BDC ,∵∠BDC=∠A+∠ABD=2∠A ,设∠A=x ,则∠C=∠ABC=∠BDC=2x ,在△ABC 中,∠A+∠ABC+∠C=180°,即:x+2x+2x=180°,∴x=36°,∴∠BDC=72°,故答案为:72;(2)∵DE是线段AC的垂直平分线,∴EA=EC,∴△EAC为等腰三角形,∴∠EAC=∠C,∴∠AEB=∠EAC+∠C=2∠C,∵∠B=2∠C,∴∠AEB=∠B,∴△EAB为等腰三角形,∴AE是△ABC的一条特异线;(3)如图3,当BD是特异线时,如果AB=BD=DC,则∠ABC=∠ABD+∠DBC=120°+15°=135°;如果AD=AC,DB=DC,则∠ABC=∠ABD+∠DBC=75°+37.5°=112.5°;如果AD=DB,DC=DB,则∠ABC=∠ABD+∠DBC=30°+60°=90°,不符合题意,舍去;如图4,当AD是特异线时,AB=BD,AD=DC,则:∠ABC=180°−20°−20°=140°;当CD为特异线时,不符合题意;综上所述,∠B度数为:135°、112.5°或140°.【点睛】本题主要考查了等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.10.如图,在 ABC 中,已知 AB AC =,AD 是 BC 边上的中线,点 E 是 AB 边上一动点,点 P 是 AD 上的一个动点.(1)若 37BAD ∠=,求 ACB ∠ 的度数;(2)若 6BC =,4AD =,5AB =,且 CE AB ⊥ 时,求 CE 的长;(3)在(2)的条件下,请直接写出 BP EP + 的最小值.【答案】(1)53ACB ∠=.(2)245CE =.(3) 245. 【解析】【分析】(1)由已知得出三角形ABC 是等腰三角形,ACB ABC ∠∠=,AD 是BC 边的中线,有AD BC ⊥,求出ABC ∠的度数,即可得出ACB ∠的度数.(2)根据三角形ABC 的面积可得出CE 的长(3)连接CP ,有BP=CP ,BP+EP=EP+CP ,当点E ,P ,C 在同一条直线上时BP+EP 有最小值,即CE 的长度.【详解】解:(1)AB AC =,ACB ABC ∴∠=∠,AD 是 BC 边上的中线, 90ADB ∴∠=,37BAD ∠=,903753ABC ∴∠=-=,53ACB ∴∠=.(2)CE AB ⊥,1122ABC S BC AD AB CE ∴=⋅=⋅, 6BC =,4=AD ,5AB =,245CE ∴=. (3) 245【点睛】本题考查的知识点主要有等腰三角形的“三线合一”,三角形的面积公式等,充分利用等腰三角形的“三线合一”是解题的关键.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.观察下列各式:()()2111,x x x -+=-()()23 111,x x x x -++=-()()324 111,x x x x x -+++=-()()4325 1 11,x x x x x x -++++=-······()1根据规律()()122 1 ...1n n x x x x x ---+++++=(其中n 为正整数) ;()()3029282(51)5555251-+++++()3计算:201920182017321(2)(2)(2)(2)(2)(2)1-+-+-++-+--++ 【答案】(1)1n x -;(2)311-5;(3)2020213-- 【解析】【分析】(1)归纳总结得到一般性规律,即可得到结果;(2)根据一般性结果,将n=31,x=5代入(1)中即可;(3)将代数式适当变形为(1)的形式,根据前面总结的规律即可计算出结果.【详解】(1)根据上述规律可得()()122 1 ...1n n x x x x x ---+++++=1n x -,故填:1n x -;(2)由(1)可知()3029282(51)555551-+++++=311-5()3 201920182017321(2)(2)(2)(2)(2)(2)1-+-+-+⋅+-+-+-+ =201920182011732[(2)1](2)(2)(2)(2)(2)(2)13⎡⎤---+-+-+⋯+-+--+⎣⎦-+ =2020(2)13--- =2020213-- 【点睛】本题考查整式的乘法,能根据题例归纳总结出一般性规律是解题关键,(3)中能对整式适当变形是解题关键,但需注意变形时要为等量变形.12.先阅读下列材料,然后解后面的问题. 材料:一个三位自然数abc (百位数字为a ,十位数字为b ,个位数字为c ),若满足a+c=b ,则称这个三位数为“欢喜数”,并规定F (abc )=ac .如374,因为它的百位上数字3与个位数字4之和等于十位上的数字7,所以374是“欢喜数”,∴F (374)=3×4=12. (1)对于“欢喜数abc ”,若满足b 能被9整除,求证:“欢喜数abc ”能被99整除; (2)已知有两个十位数字相同的“欢喜数”m ,n (m >n ),若F (m )﹣F (n )=3,求m ﹣n 的值.【答案】(1)详见解析;(2)99或297.【解析】【分析】(1)首先由题意可得a +c =b ,将欢喜数展开,因为要证明“欢喜数abc ”能被99整除,所以将展开式中100a 拆成99a +a ,这样展开式中出现了a +c ,将a +c 用b 替代,整理出最终结果即可;(2)首先设出两个欢喜数m 、n ,表示出F (m )、F (n )代入F (m )﹣F (n )=3中,将式子变形分析得出最终结果即可.【详解】(1)证明:∵abc 为欢喜数,∴a +c =b . ∵abc =100a +10b +c =99a +10b +a +c =99a +11b ,b 能被9整除,∴11b 能被99整除,99a 能被99整除,∴“欢喜数abc ”能被99整除;(2)设m =11a bc ,n =22a bc (且a 1>a 2),∵F (m )﹣F (n )=a 1•c 1﹣a 2•c 2=a 1•(b ﹣a 1)﹣a 2(b ﹣a 2)=(a 1﹣a 2)(b ﹣a 1﹣a 2)=3,a 1、a 2、b 均为整数,∴a 1﹣a 2=1或a 1﹣a 2=3.∵m ﹣n =100(a 1﹣a 2)﹣(a 1﹣a 2)=99(a 1﹣a 2),∴m ﹣n =99或m ﹣n =297.∴若F (m )﹣F (n )=3,则m ﹣n 的值为99或297.【点睛】做此类阅读理解类题目首先要充分理解题目,会运用因式分解将式子变形.13.把代数式通过配凑等手段,得到完全平方式,再运用完全平方式是非负性这一性质增加问题的条件,这种解题方法通常被称为配方法.配方法在代数式求值、解方程、最值问题等都有着广泛的应用.例如:若代数式M =a 2﹣2ab +2b 2﹣2b +2,利用配方法求M 的最小值:a 2﹣2ab +2b 2﹣2b +2=a 2﹣2ab +b 2+b 2﹣2b +1+1=(a ﹣b )2+(b ﹣1)2+1.∵(a ﹣b )2≥0,(b ﹣1)2≥0,∴当a =b =1时,代数式M 有最小值1.请根据上述材料解决下列问题:(1)在横线上添上一个常数项使之成为完全平方式:a 2+4a + ;(2)若代数式M =214a +2a +1,求M 的最小值; (3)已知a 2+2b 2+4c 2﹣2ab ﹣2b ﹣4c +2=0,求代数式a +b +c 的值. 【答案】(1)4;(2)M 的最小值为﹣3;(3)a +b +c=122. 【解析】【分析】(1)根据常数项等于一次项系数的一半进行配方即可;(2)先提取14,将二次项系数化为1,再配成完全平方,即可得答案; (3)将等式左边进行配方,利用偶次方的非负性可得a ,b ,c 的值,从而问题得解.【详解】(1)∵a 2+4a+4=(a+2)2故答案为:4;(2)M =21a 4+2a+1 =14(a 2+8a+16)﹣3 =14(a+4)2﹣3 ∴M 的最小值为﹣3(3)∵a 2+2b 2+4c 2﹣2ab ﹣2b ﹣4c+2=0,∴(a ﹣b )2+(b ﹣1)2+(2c ﹣1)2=0,∴a ﹣b =0,b ﹣1=0,2c ﹣1=0∴a =b =1,1c=2 , ∴a+b+c=122.. 【点睛】本题考查了配方法的应用,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.14.阅读下列解题过程,再解答后面的题目.例题:已知224250x y y x ++-+=,求x y +的值.解:由已知得22(21)(44)0x x y y -++++=即22(1)(2)0x y -++=∵2(1)0x -≥,2(2)0y +≥ ∴有1020x y -=⎧⎨+=⎩,解得12x y =⎧⎨=-⎩∴1x y +=-.题目:已知22464100x y x y +-++=,求xy 的值. 【答案】-32【解析】【分析】 先将左边的式子写成两个完全平方的和的形式,根据非负数的性质求出x 、y 的值,再代入求出xy 的值.【详解】解:将22464100x y x y +-++=,化简得22694410x x y y -++++=,即()()223210x y -++=.∵()230x -≥,()2210y +≥,且它们的和为0,∴3x = ,12y, ∴12233xy ⎛⎫=⨯-=- ⎪⎝⎭. 【点睛】本题考查的是完全平方公式的应用,解题的关键是将左边的式子写成两个完全平方的和的形式.15.在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分.而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的6位数密码就很有必要了.有一种用“因式分解法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x 3+2x 2﹣x ﹣2因式分解的结果为(x ﹣1)(x +1)(x +2),当x =18时,x ﹣1=17,x +1=19,x +2=20,此时可以得到数字密码171920.(1)根据上述方法,当x =21,y =7时,对于多项式x 3﹣xy 2分解因式后可以形成哪些数字密码?(写出两个)(2)若多项式x 3+(m ﹣3n )x 2﹣nx ﹣21因式分解后,利用本题的方法,当x =27时可以得到其中一个密码为242834,求m 、n 的值.【答案】(1)可以形成的数字密码是:212814、211428;(2)m 的值是56,n 的值是17.【解析】【分析】(1)先将多项式进行因式分解,然后再根据数字密码方法形成数字密码即可;(2)设x3+(m﹣3n)x2﹣nx﹣21=(x+p)(x+q)(x+r),当x=27时可以得到其中一个密码为242834,得到方程解出p、q、r,然后回代入原多项式即可求得m、n【详解】(1)x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y),当x=21,y=7时,x+y=28,x﹣y=14,∴可以形成的数字密码是:212814、211428;(2)设x3+(m﹣3n)x2﹣nx﹣21=(x+p)(x+q)(x+r),∵当x=27时可以得到其中一个密码为242834,∴27+p=24,27+q=28,27+r=34,解得,p=﹣3,q=1,r=7,∴x3+(m﹣3n)x2﹣nx﹣21=(x﹣3)(x+1)(x+7),∴x3+(m﹣3n)x2﹣nx﹣21=x3+5x2﹣17x﹣21,∴3517m nn-=⎧⎨-=-⎩得,5617mn=⎧⎨=⎩即m的值是56,n的值是17.【点睛】本题属于阅读理解题型,考查知识点以因式分解为主,本题第一问关键在于理解题目中给到的数字密码的运算规则,第二问的关键在于能够将原多项式设成(x+p)(x+q)(x+r),解出p、q、r四、八年级数学分式解答题压轴题(难)16.已知:方程﹣=﹣的解是x=,方程﹣=﹣的解是x=,试猜想:(1)方程+=+的解;(2)方程﹣=﹣的解(a、b、c、d表示不同的数).【答案】(1)x=4;(2)x=.【解析】通过解题目中已知的两个方程的过程可以归纳出方程的解与方程中的常数之间的关系,利用这个关系可得出两个方程的解.解:解方程﹣=﹣,先左右两边分别通分可得:,化简可得:,整理可得:2x =15﹣8,解得:x =,这里的7即为(﹣3)×(﹣5)﹣(﹣2)×(﹣4),这里的2即为[﹣2+(﹣4)]﹣[﹣3+(﹣5)]; 解方程﹣=﹣,先左右两边分别为通分可得:,化简可得:, 解得:x =, 这里的11即为(﹣7)×(﹣5)﹣(﹣4)×(﹣6),这里的2即为[﹣4+(﹣6)]﹣[﹣7+(﹣5)];所以可总结出规律:方程解的分子为右边两个分中的常数项的积减去左边两个分母中的常数项的积,解的分母为左边两个分母中的常数项的差减去右边两个分母中常数项的差. (1)先把方程分为两边差的形式:方程﹣=﹣,由所总结的规律可知方程解的分子为:(﹣1)×(﹣6)﹣(﹣7)×(﹣2)=﹣8,分母为[﹣7+(﹣2)]﹣[﹣6+(﹣1)]=﹣2,所以方程的解为x ==4;(2)由所总结的规律可知方程解的分子为:cd ﹣ab ,分母为(a +b )﹣(c +d ),所以方程的解为x =.17.某小麦改良品种后平均每公顷增加产量a 吨,原来产m 吨小麦的一块土地,现在小麦的总产量增加了20吨.(1)当a =0.8,m =100时,原来和现在小麦的平均每公顷产量各是多少?(2)请直接接写出原来小麦的平均每公顷产量是 吨,现在小麦的平均每公顷产量是 吨;(用含a 、m 的式于表示)(3)在这块土地上,小麦的改良品种成熟后,甲组收割完需n 小时,乙组比甲组少用0.5小时就能收割完,求两组一起收割完这块麦田需要多少小时?【答案】(1)原来和现在小麦的平均每公顷产量各是4吨,4.8吨;(2)20ma ,+2020ma a ;(3)两组一起收割完这块麦田需要2241n n n --小时. 【解析】【分析】(1)设原来小麦平均每公顷产量是x 吨,根据题意列出分式方程求解并验根即可;(2)设原来小麦平均每公顷产量是y 吨,根据题意列出分式方程求解并验根即可;(3)由题意得知,工作总量为m+20,甲的工作效率为:20m n +,乙的工作效率为:200.5m n +-,再由工作总量除以甲乙的工作效率和即可得出工作时间. 【详解】解:(1)设原来平均每公顷产量是x 吨,则现在平均每公顷产量是(x +0.8)吨, 根据题意可得:100100200.8x x +=+ 解得:x =4,检验:当x =4时,x (x +0.8)≠0,∴原分式方程的解为x =4,∴现在平均每公顷产量是4.8吨,答:原来和现在小麦的平均每公顷产量各是4吨,4.8吨.(2)设原来小麦平均每公顷产量是y 吨,则现在玉米平均每公顷产量是(y +a )吨, 根据题意得:20m m y y a +=+ 解得;y =20ma , 经检验:y =20ma 是原方程的解, 则现在小麦的平均每公顷产量是:202020ma ma a a ++= 故答案为:20ma ,2020ma a +; (3)根据题意得:()20.5202202020.5410.5n n m n n m m n n n n -+-==++--+- 答:两组一起收割完这块麦田需要2241n n n --小时. 【点睛】本题考查的知识点主要是根据题意列分式方程并求解,找出题目中的等量关系式是解题的关键.18.在计算23224x x x x +-++-的过程中,三位同学给出了不同的方法: 甲同学的解法:原式=222222(3)(2)26284444x x x x x x x x x x x +--+-----==----; 乙同学的解法:原式=3231312(2)(2)222x x x x x x x x x x +-++--=-=++-+++=1; 丙同学的解法:原式=(x+3)(x ﹣2)+2﹣x=x 2+x ﹣6+2﹣x=x 2﹣4.(1)请你判断一下, 同学的解法从第一步开始就是错误的, 同学的解法是完全正确的.(2)乙同学说:“我发现无论x 取何值,计算的结果都是1”.请你评价一下乙同学的话是否合理,并简要说明理由.【答案】(1)丙,乙;(2)不合理,理由见解析.【解析】试题分析:(1)根据分式的加减法,由分解因式和同分母的分式加减,可知甲第2步去括号时没变号;乙正确;丙第一步的计算漏掉了分母,由此可知答案;(2)根据乙的正确化简结果可知最终结果与x 值无关,但是要注意所选取的x 不能使分式无意义.试题解析:(1)丙同学的解法从第一步开始就是错误的,乙同学的解法是完全正确的; 故答案为:丙,乙;(2)不合理,理由:∵当x≠±2时,22232(3)(2)22444x x x x x x x x x +-+--+=-+---=222262444x x x x x x +--+-=--=1, ∴乙同学的话不合理,19.(1)请你写出五个正的真分数,____,____,____,____,____,给每个分数的分子和分母加上同一个正数得到五个新分数:____,____,____,_____,____.(2)比较原来每个分数与对应新分数的大小,可以得出下面的结论: 一个真分数是a b (a 、b 均为正数),给其分子分母同加一个正数m ,得a m b m++,则两个分数的大小关系是a mb m ++_____a b . (3)请你用文字叙述(2)中结论的含义:(4)你能用图形的面积说明这个结论吗?(5)解决问题:如图1,有一个长宽不等的长方形绿地,现给绿地四周铺一条宽相等的路,问原来的长方形与现在铺过小路后的长方形是否相似?为什么?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年天津市河西区天津四中八年级(上)期末数学冲刺试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(3分)在平面直角坐标系中,点P (﹣2,3)关于x 轴的对称点在( )A .第一象限B .第二象限C .第三象限D .第四象限2.(3分)下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是( )A .1B .2C .3D .43.(3分)若3x =15,3y =5,则3x ﹣y 等于( )A .5B .3C .15D .104.(3分)计算的正确结果是( )A .0B .C .D . 5.(3分)如图,AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,S △ABC =7,DE=2,AB=4,则AC 长是( )A .3B .4C .6D .56.(3分)如图,△ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO :S △BCO :S △CAO 等于( )A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:57.(3分)下列分式中,最简分式有()①②③④⑤.A.2个 B.3个 C.4个 D.5个8.(3分)如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.19.(3分)在一段坡路,小明骑自行车上坡的速度为每小时v1千米,下坡时的速度为每小时v2千米,则他在这段路上、下坡的平均速度是每小时()A.千米 B.千米C.千米 D.无法确定10.(3分)如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作等边三角形ABC和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下六个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°;⑥OC平分∠AOE.其中不正确的有()个.A.0 B.1 C.2 D.3二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)计算:﹣y2•(﹣y)3•(﹣y)4=.12.(3分)若分式有意义,则x的取值范围是.13.(3分)填空:x2+10x+ =(x+ )2.14.(3分)如图,AB∥CD,AD∥BC,OE=OF,图中全等三角形共有对.15.(3分)三角形两外角平分线和第三个角的内角平分线一点,且该点在三角形部.16.(3分)如图,已知点P在锐角∠AOB内部,∠AOB=α,在OB边上存在一点D,在OA边上存在一点C,能使PD+DC最小,此时∠PDC=.三、综合题(本大题共7小题,共66分)17.如图在平面直角坐标系中,△ABC各顶点的坐标分别为:A(4,0),B(﹣1,4),C(﹣3,1)(1)在图中作△A′B′C′使△A′B′C′和△ABC关于x轴对称;(2)写出点A′B′C′的坐标;(3)求△ABC的面积.18.计算:(1)(2x+3y)2﹣(4x﹣9y)(4x+9y)+(3x﹣2y)2.(2)(a﹣2b)2﹣(2a+b)(b﹣2a)﹣4a(a﹣b)19.先化简,再求值:2(x﹣3)(x+2)﹣(3+a)(3﹣a),其中a=﹣2,x=1.20.如图,在△ABC中,AC=DC=DB,∠ACD=100°,求∠B的度数.21.如图,△ABC是等边三角形,D、E分别是BC、AC上的点,BD=CE,求∠AFE 的度数.22.李老师家距学校1900米,某天他步行去上班,走到路程的一半时发现忘带手机,此时离上班时间还有23分钟,于是他立刻步行回家取手机,随后骑电瓶车返回学校.已知李老师骑电瓶车到学校比他步行到学校少用20分钟,且骑电瓶车的平均速度是步行速度的5倍,李老师到家开门、取手机、启动电瓶车等共用4分钟.(1)求李老师步行的平均速度;(2)请你判断李老师能否按时上班,并说明理由.23.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作等边△ADE(顶点A、D、E按逆时针方向排列),连接CE.(1)如图1,当点D在边BC上时,求证:①BD=CE,②AC=CE+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CE+CD是否成立?若不成立,请写出AC、CE、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的反向延长线上且其他条件不变时,补全图形,并直接写出AC、CE、CD之间存在的数量关系.2016-2017学年天津市河西区天津四中八年级(上)期末数学冲刺试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(3分)在平面直角坐标系中,点P(﹣2,3)关于x轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点P(﹣2,3)关于x轴的对称点为(﹣2,﹣3),(﹣2,﹣3)在第三象限.故选:C.2.(3分)下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A.1 B.2 C.3 D.4【解答】解:第一个是轴对称图形,有2条对称轴;第二个是轴对称图形,有2条对称轴;第三个是轴对称图形,有2条对称轴;第四个是轴对称图形,有3条对称轴;∴对称轴的条数为2的图形的个数是3;故选:C.3.(3分)若3x=15,3y=5,则3x﹣y等于()A.5 B.3 C.15 D.10【解答】解:3x﹣y=3x÷3y=15÷5=3,故选:B .4.(3分)计算的正确结果是( ) A .0 B . C . D .【解答】解:原式==,故选C .5.(3分)如图,AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,S △ABC =7,DE=2,AB=4,则AC 长是( )A .3B .4C .6D .5【解答】解:如图,过点D 作DF ⊥AC 于F ,∵AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB ,∴DE=DF ,由图可知,S △ABC =S △ABD +S △ACD , ∴×4×2+×AC ×2=7,解得AC=3.故选:A .6.(3分)如图,△ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO :S △BCO :S △CAO 等于( )A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:5【解答】解:利用同高不同底的三角形的面积之比就是底之比可知选C.故选C.7.(3分)下列分式中,最简分式有()①②③④⑤.A.2个 B.3个 C.4个 D.5个【解答】解:①是最简分式,②是最简分式,③是最简分式,④=,不是最简分式,⑤是最简分式,故选C.8.(3分)如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.1【解答】解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故选:A.9.(3分)在一段坡路,小明骑自行车上坡的速度为每小时v1千米,下坡时的速度为每小时v2千米,则他在这段路上、下坡的平均速度是每小时()A.千米 B.千米C.千米 D.无法确定【解答】解:依题意得:2÷(+)=2÷=千米.故选C.10.(3分)如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作等边三角形ABC和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下六个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°;⑥OC平分∠AOE.其中不正确的有()个.A.0 B.1 C.2 D.3【解答】解:①∵△ABC和△CDE为等边三角形∴AC=BC,CD=CE,∠BCA=∠DCB=60°∴∠ACD=∠BCE∴△ACD≌△BCE∴AD=BE,故①正确;由(1)中的全等得∠CBE=∠DAC,进而可求证△CQB≌△CPA,∴AP=BQ,故③正确;又∵∠PCQ=60°可知△PCQ为等边三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE②成立,∵∠QCP=60°,∠DPC=∠BCA+∠PAC>60°,∴PD≠CD,∴DE≠DP,故④DE=DP错误;∵BC∥DE,∴∠CBE=∠BED,∵∠CBE=∠DAE,∴∠AOB=∠OAE+∠AEO=60°,故⑤正确;同理可得出∠AOE=120°,∠OAC=∠OCD,∴∠DCE=∠AOC=60°,∴OC平分∠AOE,故⑥正确,故正确的有①②③⑤⑥共5个,故选:B二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)计算:﹣y2•(﹣y)3•(﹣y)4=y9.【解答】解:原式=﹣y2•(﹣y)3+4=﹣y2•(﹣y7)=y9,故答案为:y9.12.(3分)若分式有意义,则x的取值范围是x≠3的全体实数.【解答】解:∵3﹣x≠0,∴x≠3.13.(3分)填空:x2+10x+ 25=(x+ 5)2.【解答】解:∵10x=2×5x,∴x2+10x+52=(x+5)2.故答案是:25;5.14.(3分)如图,AB∥CD,AD∥BC,OE=OF,图中全等三角形共有6对.【解答】解:∵AD∥BC,OE=OF,∴∠FAC=∠BCA,又∠AOF=∠COE,∴△AFO≌△CEO,∴AO=CO,进一步可得△AOD≌△COB,△FOD≌△EOB,△ACB≌△ACD,△ABD≌△DCB,△AOB≌△COD共有6对.故填615.(3分)三角形两外角平分线和第三个角的内角平分线相交于一点,且该点在三角形外部.【解答】解:如图:AP与CP是△ABC两外角平分线,过点P作PE⊥AB于E,作PD⊥BC于D,PF⊥AC于F,∴PE=PF,PF=PD,∴PE=PD,∴PB是△ABC第三个角∠ABC的内角平分线.∴三角形两外角平分线和第三个角的内角平分线相交于一点,且该点在三角形外部.故答案为:相交于,外.16.(3分)如图,已知点P在锐角∠AOB内部,∠AOB=α,在OB边上存在一点D,在OA边上存在一点C,能使PD+DC最小,此时∠PDC=2α.【解答】解:过P的作关于OB的对称点P',作P′C⊥OA于C,交OB于D,此时PD=PD′,根据点到直线的距离最短可知PD+DC=P′C最短,∵∠PDB=∠P′DB,∠CDO=∠P′DB,∴∠CDO=∠PDB,∵P′C⊥OA,∠AOB=α,∴∠CDO=90°﹣α,∴∠PDC=180°﹣2(90°﹣α)=2α.故答案为:2α.三、综合题(本大题共7小题,共66分)17.如图在平面直角坐标系中,△ABC各顶点的坐标分别为:A(4,0),B(﹣1,4),C(﹣3,1)(1)在图中作△A′B′C′使△A′B′C′和△ABC关于x轴对称;(2)写出点A′B′C′的坐标;(3)求△ABC的面积.【解答】解:(1)如图所示:△A′B′C′,即为所求;(2)点A′的坐标为(4,0),点B′的坐标为(﹣1,﹣4),点C′的坐标为(﹣3,﹣1);(3)△ABC的面积为:7×4﹣×2×3﹣×4×5﹣×1×7=11.5.18.计算:(1)(2x+3y)2﹣(4x﹣9y)(4x+9y)+(3x﹣2y)2.(2)(a﹣2b)2﹣(2a+b)(b﹣2a)﹣4a(a﹣b)【解答】解:(1)原式=4x2+9y2+12xy﹣16x2+81y2+9x2+4y2﹣12xy=﹣3x2+94y2;(2)原式=a2﹣4ab+4b2﹣b2+4a2﹣4a2+4ab=a2+3b2.19.先化简,再求值:2(x﹣3)(x+2)﹣(3+a)(3﹣a),其中a=﹣2,x=1.【解答】解:原式=2(x2﹣x﹣6)﹣(9﹣a2)=2x2﹣2x+a2﹣21,当a=﹣2,x=1时,原式=2×12﹣2×1+(﹣2)2﹣21=﹣17.20.如图,在△ABC中,AC=DC=DB,∠ACD=100°,求∠B的度数.【解答】解:∵AC=DC=DB,∠ACD=100°,∴∠CAD=(180°﹣100°)÷2=40°,∵∠CDB是△ACD的外角,∴∠CDB=∠A+∠ACD=100°=40°+100°=140°,∵DC=DB,∴∠B=(180°﹣140°)÷2=20°.21.如图,△ABC是等边三角形,D、E分别是BC、AC上的点,BD=CE,求∠AFE 的度数.【解答】解;△ABC是等边三角形,∴AB=BC,∠ABC=∠C=60°.在△ABD和△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE.由三角形弯角的性质得∠AFE=∠BAF+∠ABF,∠AFE=∠CBE+∠ABF=60°.22.李老师家距学校1900米,某天他步行去上班,走到路程的一半时发现忘带手机,此时离上班时间还有23分钟,于是他立刻步行回家取手机,随后骑电瓶车返回学校.已知李老师骑电瓶车到学校比他步行到学校少用20分钟,且骑电瓶车的平均速度是步行速度的5倍,李老师到家开门、取手机、启动电瓶车等共用4分钟.(1)求李老师步行的平均速度;(2)请你判断李老师能否按时上班,并说明理由.【解答】解:(1)设李老师步行的平均速度为xm/分钟,骑电瓶车的平均速度为5xm/分钟,由题意得,﹣=20,解得:x=76,经检验,x=76是原分式方程的解,且符合题意,则5x=76×5=380,答:李老师步行的平均速度为76m/分钟,骑电瓶车的平均速度为380m/分;(2)由(1)得,李老师走回家需要的时间为:=12.5(分钟),骑车走到学校的时间为:=5,则李老师走到学校所用的时间为:12.5+5+4=21.5<23,答:李老师能按时上班.23.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作等边△ADE(顶点A、D、E按逆时针方向排列),连接CE.(1)如图1,当点D在边BC上时,求证:①BD=CE,②AC=CE+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CE+CD是否成立?若不成立,请写出AC、CE、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的反向延长线上且其他条件不变时,补全图形,并直接写出AC、CE、CD之间存在的数量关系.【解答】解:(1)∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE.∵BC=BD+CD,AC=BC,∴AC=CE+CD;(2)AC=CE+CD不成立,AC、CE、CD之间存在的数量关系是:AC=CE﹣CD.理由:∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE在△ABD和△ACE中,∴△ABD≌△ACE(SAS)∴BD=CE∴CE﹣CD=BD﹣CD=BC=AC,∴AC=CE﹣CD;(3)补全图形(如图)AC、CE、CD之间存在的数量关系是:AC=CD﹣CE.理由:∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,∴∠BAD=∠CAE在△ABD和△ACE中,∴△ABD≌△ACE(SAS)∴BD=CE.∵BC=CD﹣BD,∴BC=CD﹣CE,∴AC=CD﹣CE.。

相关文档
最新文档