2019四年级下数学奥数练习-排列组合综合应用练习题附答案
精选四年级排列组合奥数题及答案
精选四年级排列组合奥数题及答案奥数的世界更是魅力无穷 ,它会激发学生对数学的好奇心 ,拓宽学生的思路。
下面是为大家收集到的四年级排列组合奥数题及答案 ,供大家参考。
1.排列、组合等问题从6幅国画 ,4幅油画 ,2幅水彩画中选取两幅不同类型的画布置教室 ,问有几种选法?解答:6×4=24种6×2=12种4×2=8种24+12+8=44种【小结】首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况 ,即可分三类 ,自然考虑到加法原理。
当从国画、油画各选一幅有多少种选法时 ,利用的乘法原理。
由此可知这是一道利用两个原理的综合题。
关键是正确把握原理。
符合要求的选法可分三类:设第一类为:国画、油画各一幅 ,可以想像成 ,第一步先在6张国画中选1张 ,第二步再在4张油画中选1张。
由乘法原理有6×4=24种选法。
第二类为:国画、水彩画各一幅 ,由乘法原理有6×2=12种选法。
第三类为:油画、水彩画各一幅 ,由乘法原理有4×2=8种选法。
这三类是各自独立发生互不相干进行的。
因此 ,依加法原理 ,选取两幅不同类型的画布置教室的选法有 24+12+8=44种。
2.排列组合从1到100的所有自然数中 ,不含有数字4的自然数有多少个?解答:从1到100的所有自然数可分为三大类 ,即一位数 ,两位数 ,三位数.一位数中 ,不含4的有8个 ,它们是1、2、3、5、6、7、8、9;两位数中 ,不含4的可以这样考虑:十位上 ,不含4的有l、2、3、5、6、7、8、9这八种情况.个位上 ,不含4的有0、1、2、3、5、6、7、8、9这九种情况 ,要确定一个两位数 ,可以先取十位数 ,再取个位数 ,应用乘法原理 ,这时共有8×9=72 个数不含4.三位数只有100.所以一共有8+8×9+1=81 个不含4的自然数.以上是查字典数学网为大家准备的四年级排列组合奥数题及答案 ,希望对大家有所帮助。
小学数学《排列组合的综合应用》练习题(含答案)
小学数学《排列组合的综合应用》练习题(含答案)例1 从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?分析首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理.当从国画、油画各选一幅有多少种选法时,利用的乘法原理.由此可知这是一道利用两个原理的综合题.关键是正确把握原理.解:符合要求的选法可分三类:不妨设第一类为:国画、油画各一幅,可以想像成,第一步先在5张国画中选1张,第二步再在3张油画中选1张.由乘法原理有 5×3=15种选法.第二类为国画、水彩画各一幅,由乘法原理有 5×2=10种选法.第三类油画、水彩各一幅,由乘法原理有3×2=6种选法.这三类是各自独立发生互不相干进行的.因此,依加法原理,选取两幅不同类型的画布置教室的选法有 15+10+ 6=31种.注运用两个基本原理时要注意:①抓住两个基本原理的区别,千万不能混.不同类的方法(其中每一个方法都能各自独立地把事情从头到尾做完)数之间做加法,可求得完成事情的不同方法总数.不同步的方法(全程分成几个阶段(步),其中每一个方法都只能完成这件事的一个阶段)数之间做乘法,可求得完成整个事情的不同方法总数.②在研究完成一件工作的不同方法数时,要遵循“不重不漏”的原则.请看一些例:从若干件产品中抽出几件产品来检验,如果把抽出的产品中至多有2件次品的抽法仅仅分为两类:第一类抽出的产品中有2件次品,第二类抽出的产品中有1件次品,那么这样的分类显然漏掉了抽出的产品中无次品的情况.又如:把能被2、被3、或被6整除的数分为三类:第一类为能被2整除的数,第二类为能被3整除的数,第三类为能被6整除的数.这三类数互有重复部分.③在运用乘法原理时,要注意当每个步骤都做完时,这件事也必须完成,而且前面一个步骤中的每一种方法,对于下个步骤不同的方法来说是一样的.例2 一学生把一个一元硬币连续掷三次,试列出各种可能的排列.分析要不重不漏地写出所有排列,利用树形图是一种直观方法.为了方便,树形图常画成倒挂形式.解:由此可知,排列共有如下八种:正正正、正正反、正反正、正反反、反正正、反正反、反反正、反反反.例3 用0~9这十个数字可组成多少个无重复数字的四位数.分析此题属于有条件限制的排列问题,首先弄清楚限制条件表现为:①某位置上不能排某元素.②某元素只能排在某位置上.分析无重复数字的四位数的千位、百位、十位、个位的限制条件:千位上不能排0,或说千位上只能排1~9这九个数字中的一个.而且其他位置上数码都不相同,下面分别介绍三种解法.解法1:分析某位置上不能排某元素.分步完成:第一步选元素占据特殊位置,第二步选元素占据其余位置.解:分两步完成:第一步:从1~9这九个数中任选一个占据千位,有9种方法.第二步:从余下的9个数(包括数字0)中任选3个占据百位、十位、个位,百位有9种.十位有8种,个位有7种方法.由乘法原理,共有满足条件的四位数9×9×8×7=4536个.答:可组成4536个无重复数字的四位数.解法2:分析对于某元素只能占据某位置的排列可分步完成:第一步让特殊元素先占位,第二步让其余元素占位.在所给元素中0是有位置限制的特殊元素,在组成的四位数中,有一类根本无0元素,另一类含有0元素,而此时0元素只能占据百、十、个三个位置之一.解:组成的四位数分为两类:第一类:不含0的四位数有9×8×7×6=3024个.第二类:含0的四位数的组成分为两步:第一步让0占一个位有3种占法,(让0占位只能在百、十、个位上,所以有3种)第二步让其余9个数占位有9×8×7种占法.所以含0的四位数有3×9×8×7=1512个.∴由加法原理,共有满足条件的四位数3024+1512=4536个.解法3:从无条件限制的排列总数中减去不合要求的排列数(称为排除法).此题中不合要求的排列即为0占据千位的排列.解:从0~9十个数中任取4个数的排列总数为10×9×8×7,其中0在千位的排列数有9×8×7个(0确定在千位,百、十、个只能从9个数中取不同的3个)∴共有满足条件的四位数10×9×8×7-9×8×7=9×8×7×(10-1)=4536个.注用解法3时要特别注意不合要求的排列有哪几种?要做到不重不漏.例4 从右图中11个交点中任取3个点,可画出多少个三角形?分析首先,构成三角形与三个点的顺序无关因此是组合问题,另外考虑特殊点的情况:如三点在一条直线上,则此三点不能构成三角形,四点在一条直线上,则其中任意三点也不能构成三角形.此题采用排除法较方便.解:组合总数为C311,其中三点共线不能构成的三角形有7C33,四点共线不能构成的三角形有2C34,∴C311-(7C33+2C34)=165-(7+8)=150个.例5 7个相同的球,放入4个不同的盒子里,每个盒子至少放一个,不同的放法有多少种?(请注意,球无区别,盒是有区别的,且不允许空盒)分析首先研究把7分成4个自然数之和的形式,容易得到以下三种情况:①7=1+1+1+4②7=1+2+2+2③7=1+1+2+3其次,将三种情况视为三类计算不同的放法.第一类:有一个盒子里放了4个球,而其余盒子里各放1个球,由于4个球可任意放入不同的四个盒子之一,有4种放法,而其他盒子只放一个球,而球是相同的,任意调换都是相同的放法,所以第一类只有4种放法.第二类:有一个盒子里放1个球,有4种放法,其余盒子里都放2个球,与第一类相同,任意调换都是相同的放法,所以第二类也只有4种放法.第三类:有两个盒子里各放一个球,另外两个盒子里分别放2个及3个球,这时分两步来考虑:第一步,从4个盒子中任取两个各放一个球,这种取法有C24种.第二步,把余下的两个盒子里分别放入2个球及3个球,这种放法有P22种.由乘法原理有C24×P22=12种放法.∴由加法原理,可得符合题目要求的不同放法有4+4+12=20(种)答:共有20种不同的放法.注本题也可以看成每盒中先放了一个球垫底,使盒不空,剩下3个球,放入4个有区别盒的放置方式数.例6 用红、橙、黄、绿、蓝、青、紫七种颜色中的一种,或两种,或三种,或四种,分别涂在正四面体各个面上,一个面不能用两色,也无一个面不涂色的,问共有几种不同涂色方式?分析首先介绍正四面体(模型).正四面体四个面的相关位置,当底面确定后,(从上面俯视)三个侧面的顺序有顺时针和逆时针两种(当三个侧面的颜色只有一种或两种时,顺时针和逆时针的颜色分布是相同的).先看简单情况,如取定四种颜色涂于四个面上,有两种方法;如取定一种颜色涂于四个面上,只有一种方法.但取定三种颜色如红、橙、黄三色,涂于四个面上有六种方法,如下图①②③(图中用数字1,2,3分别表示红、橙、黄三色)如果取定两种颜色如红、橙二色,涂于四个面上有三种方法.如下图④⑤⑥但是从七种颜色里,每次取出四种颜色,有C47种取法,每次取出三种颜色有C37种取法,每次取出两种颜色有C27种取法,每次取出一种颜色有C17种取法.因此着色法共有2C47+6C37+3C27+C17=350种.习题六1.有3封不同的信,投入4个邮筒,一共有多少种不同的投法?2.甲、乙两人打乒乓球,谁先连胜头两局,则谁赢.如果没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止,问有多少种可能情况?3.在6名女同学,5名男同学中,选4名女同学,3名男同学,男女相间站成一排,问共有多少种排法?4.用0、1、2、3、4、5、6这七个数字可组成多少个比300000大的无重复数字的六位偶数?5.如右图:在摆成棋盘眼形的20个点中,选不在同一直线上的三点作出以它们为顶点的三角形,问总共能作多少个三角形?6.有十张币值分别为1分、2分、5分、1角、2角、5角、1元、2元、5元、10元的人民币,能组成多少种不同的币值?并请研究是否可组成最小币值1分与最大币值(总和)之间的所有可能的币值.习题六解答1.若投一封信看作一个步骤,则完成投信的任务可分三步,每封信4个邮筒都可投,即每个步骤都有4种方法.故由乘法原理:共有不同的投法4×4×4=64种.2.甲(或乙)胜就写一个甲(或乙)字,画树形图:由图可见共有14种可能.甲甲、甲乙甲甲、甲乙甲乙甲、甲乙甲乙乙、甲乙乙甲甲、甲乙乙甲乙、甲乙乙乙、乙甲甲甲、乙甲甲乙甲、乙甲甲乙乙、乙甲乙甲甲、乙甲乙甲乙、乙甲乙乙、乙乙.3.现有4名女同学,3名男同学,男女相间站成一排,则站在两端的都是女同学.将位置从右到左编号,第1、3、5、7号位是女同学,第2、4、6号位是男同学.于是完成适合题意的排列可分两步:第一步:从6名女同学中任选4名排在第1、3、5、7号位.有P46种排法.第二步:从5名男同学中任选3名排在第2、4、6号位,有P35种排法.因此,由乘法原理排出不同队形数为P46·P35=6×5×4×3×5×4×3=21600.4.图示:分两类:第一类:十万位上是3或5之一的六位偶数有P12·P14·P45个.第二类:十万位上是4或6之一的六位偶数有P12·P13·P45个.∴P12P14P45+P12P13P45=1680.5.五点共线有4组,四点共线的有9组,三点共线的有8组,利用排除法:C320-4C35-9C34-8C33=1140-4×10-9×4-8=1056.6.因为任一张人民币的币值都大于所有币值比它小的人民币的币值的和,例如1角的大于1分、2分、5分的和,因此不论取多少张,它们组成的币值都不重复,所以组成的币值与组合总数一致,有C110+C210+……+C1010=210-1=1023种.因为由这些人民币能组成的最小的币值是1分,最大的币值是十张币值的和,即1888分,而1023<1888,可见从1分到1888分中间有一些币值不能组成.。
四年级奥数排列组合题及答案
四年级奥数排列组合题及答案四年级奥数排列组合题及答案1.排列、组合等问题从6幅国画,4幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?解答:6×4=24种6×2=12种4×2=8种24+12+8=44种【小结】首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理。
当从国画、油画各选一幅有多少种选法时,利用的乘法原理。
由此可知这是一道利用两个原理的综合题。
关键是正确把握原理。
符合要求的选法可分三类:设第一类为:国画、油画各一幅,可以想像成,第一步先在6张国画中选1张,第二步再在4张油画中选1张。
由乘法原理有6×4=24种选法。
第二类为:国画、水彩画各一幅,由乘法原理有6×2=12种选法。
第三类为:油画、水彩画各一幅,由乘法原理有4×2=8种选法。
这三类是各自独立发生互不相干进行的。
因此,依加法原理,选取两幅不同类型的画布置教室的选法有24+12+8=44种。
2.排列组合从1到100的所有自然数中,不含有数字4的.自然数有多少个?解答:从1到100的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;两位数中,不含4的可以这样考虑:十位上,不含4的有l、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72个数不含4.三位数只有100.所以一共有8+8×9+1=81个不含4的自然数.。
【思维拓展】数学四年级思维拓展之排列组合的综合应用(附答案)
四年级奥数:排列组合的综合应用1.有3封不同的信,投入4个邮筒,一共有多少种不同的投法?2.甲、乙两人打乒乓球,谁先连胜头两局,则谁赢.如果没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止,问有多少种可能情况?3.在6名女同学,5名男同学中,选4名女同学,3名男同学,男女相间站成一排,问共有多少种排法?4.用0、1、2、3、4、5、6这七个数字可组成多少个比300000大的无重复数字的六位偶数?5.有两个小盒子,第一个盒子中有标有数字1,2,3,…,10的十张卡片,第二个盒子中有标有11,12,13,…,20的十张卡片.若从两个盒子中各拿出一张卡片相加,一共可列出多少种不同的加法式子?6.如下图:在摆成棋盘眼形的20个点中,选不在同一直线上的三点作出以它们为顶点的三角形,问总共能作多少个三角形?7.有十张币值分别为1分、2分、5分、1角、2角、5角、1元、2元、5元、10元的人民币,能组成多少种不同的币值?并请研究是否可组成最小币值1分与最大币值(总和)之间的所有可能的币值.8.从19,20,21,…,97,98,99这81个数中,选取两个不同的数,使其和为偶数的选法总数是多少?9.现有五元人民币2张,十元人民币8张,一百元人民币3张,用这些人民币可以组成多少种不同的币值?参考答案1.若投一封信看作一个步骤,则完成投信的任务可分三步,每封信4个邮筒都可投,即每个步骤都有4种方法.故由乘法原理:共有不同的投法4×4×4=64种.2.甲(或乙)胜就写一个甲(或乙)字,画树形图:由图可见共有14种可能.甲甲、甲乙甲甲、甲乙甲乙甲、甲乙甲乙乙、甲乙乙甲甲、甲乙乙甲乙、甲乙乙乙、乙甲甲甲、乙甲甲乙甲、乙甲甲乙乙、乙甲乙甲甲、乙甲乙甲乙、乙甲乙乙、乙乙.3.现有4名女同学,3名男同学,男女相间站成一排,则站在两端的都是女同学.将位置从右到左编号,第1、3、5、7号位是女同学,第2、4、6号位是男同学.于是完成适合题意的排列可分两步:第一步:从6名女同学中任选4名排在第1、3、5、7号位.有P46种排法.第二步:从5名男同学中任选3名排在第2、4、6号位,有P35种排法.因此,由乘法原理排出不同队形数为P46·P35=6×5×4×3×5×4×3=21600.4.图示:分两类:第一类:十万位上是3或5之一的六位偶数有P12·P14·P45个.第二类:十万位上是4或6之一的六位偶数有P12·P13·P45个.∴P12P14P45+P12P13P45=1680.5.200种第一个盒子中的每一张卡片都可以与第二个盒子中的十张卡片组成20种加法式子(包括被加数与加数交换位置,例如将1+11与11+1看成为两个加法式子),而第一个盒子中共有十张卡片,则由乘法原理,共10×20=200种不同的加法式子。
小学数学《排列组合》练习题(含答案)
小学数学《排列组合》练习题(含答案)小学数学《排列组合》练习题(含答案)加乘原理,排列组合是四年级一个重要的学习内容,在之前的学习中,我们已经对它们有所了解,对于加乘原理我们只需要记住:加法分类,类类独立;乘法分步,步步相关!排列组合的应用具有一定难度.突破难点的关键:首先必须准确、透彻的理解加法原理、乘法原理;即排列组合的基石.其次注意两点:①对问题的分析、考虑是否能归纳为排列、组合问题?若能,再判断是属于排列问题还是组合问题?②对题目所给的条件限制要作仔细推敲认真分析.可利用图示法,可使问题简化便于正确理解与把握.本讲主要巩固加强此部分知识,注重排列组合的综合应用.排列在实际生活中常遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法.就是排列问题.在排的过程中,不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关.一般地,从n个不同的元素中任取出m个(m≤n)元素,按照一定的顺序排成一列.叫做从n个不同元素中取出m个元素的一个排列.由排列的定义可以看出,两个排列相同,不仅要求这两个排列中的元素完全相同,而且各元素的先后顺序也一样.如果两个排列的元素不完全相同.或者各元素的排列顺序不完全一样,则这就是两个不同的排列.从n个不同元素中取出m个(m≤n)元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,我们把它记做mnp(m≤n),m(1)(2) (1)mnp n n n n m=---+共个数.其中!(1) (1)nnP n n n==?-??.【例1】4名男生和2名女生去照相,要求两各女生必须紧挨着站在正中间,有几种排法?分析:分两步进行,先安排两个女生有22P 种方法,4个男生站的位置有44P 种方法,共有2424P P ?=2×1×4×3×2×1=48(种),故有48种排法.【巩固】停车站划出一排12个停车位置,今有8辆不同的车需要停放,若要求剩余的4个空车位连在一起,一共有多少种不同的停车方案? 分析:把4个空车位看成一个整体,(4个空车位看成一样的)与8辆车一块儿进行排列.99362880P =.【前铺】讲解此部分例题之前,请根据本班情况,将排列公式的计算练习一下!计算:(1)321414P P - ;(2)53633P P - 分析:(1)321414P P -=14×13×12-14×13=2002 ;(2)53633P P -=3×(6×5×4×3×2)-3×2×1=2154 .【例2】书架上有4本不同的漫画书,5本不同的童话书,3本不同的故事书,全部竖起排成一排,如果同类型的书不要分开,一共有多少种排法?如果同类书可以分开,一共有多少种排法?(只写出表达式,不用计算)分析:每种书内部任意排序,分别有44P ,55P ,33P 种排法,然后再排三种类型的顺序,有33P 种排法,整个过程分4步完成.44P ×55P ×33P ×33P =103680(种).如果同类书可以分开,就相当于4+5+3=12本书随意排,有1212P 种排法.【例3】用0,1,2,3,4可以组成多少个没重复数字的三位数?分析:(法1)在本题中要注意的是0不能为首位数字,因此,百位上的数字只能从1,2,3,4这四个数字中选择1个,有4种方法;十位和个位上的数字可以从余下的4个数字中任选两个进行排列,有2 4P 种方法.由分步计数原理得,三位数的个数是:4×24P =48(个).(法2):从0,1,2,3,4中任选三个数字进行排列,再减去其中不合要求的,即首位是0.从0,1,2,3,4这五个数字中任选三个数字的排列数为35P ,其中首位是0的三位数有24P 个.三位数的个数是:35P -24P =5×4×3-4×3=60-12=48(个).不是简单的全排列,有一些其它的限制,这样要么全排列再剔出不合题意的情况,要么直接在排列的时候考虑这些限制因素.【前铺】(1)用1,2,3,4,5可以组成多少个没有重复数字的三位数? (2)用1,2,3,4,5可以组成多少个三位数?分析:(1)要组成三位数,自然与三个数字的排列顺序有关,所以这是一个从五个元素中取出三个进行排列的问题,可以组成35P =5×4×3=60种没有重复数字的三位数.(2)没有要求数字不能重复,所以不能直接用35P 来计算,分步考虑,用乘法原理可得:5×5×5=125(个).注意“重复”和“没有重复”的区别!【巩固】用数码0,1,2,3,4可以组成多少个小于1000的没有重复数字的自然数? 分析:小于1000的自然数包括一位数、两位数、三位数,可以分类计算.注意“0”是自然数,且不能作两位数、三位数的首项.11124444569P P P P +?+?=(个).很自然的知道需要根据位数分类考虑,而且首位非零的限制也需要考虑.【例4】由4个不同的独唱节目和3个不同的合唱节目组成一台晚会,要求任意两个合唱节目不相邻,开始和最后一个节目必须是合唱,则这台晚会节目的编排方法共有多少种?分析:先排独唱节目,四个节目随意排,有44P =24种排法;其次在独唱节目的首尾排合唱节目,有三个节目,两个位置,对应23P =6种排法;再在独唱节目之问的3个位置中排一个合唱节目,有3种排法,由乘法原理,一共有24×6×3=432种不同的编排方法.【例5】小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法?(1)七个人排成一排;(2)七个人排成一排,小新必须站在中间.(3)七个人排成一排,小新、阿呆必须有一人站在中间. (4)七个人排成一排,小新、阿呆必须都站在两边. (5)七个人排成一排,小新、阿呆都没有站在边上. (6)七个人战成两排,前排三人,后排四人.(7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排.分析:(1)775040P =(种).(2)只需排其余6个人站剩下的6个位置.66720P =(种).(3)先确定中间的位置站谁,冉排剩下的6个位置.2×66P =1440(种).(4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置.552240P ?= (种).(5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,25552400P P ?=(种).(6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.775040P =(种).(7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所以只要求出其中一种的排法数,再乘以2即可.4×3×55P ×2=2880(种).排队问题,一般先考虑特殊情况再去全排列.【例6】某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9.为确保打开保险柜,至少要试多少次?分析:四个数字之和为9的情况有:l+1+1+6=9;1+1+2+5=9;1+1+3+4=9;1+2+2+4=9;1+2+3+3=9;2+2+2+3=9,分别计算这6种情况.对于“l+1+1+6”这种情况,我们只需考虑6,其它1放那都一样;对于“1+1+2+5”这种情况,只需考虑2和5,其它同理,可得答案:12222144444456()P P P P P P +++++=次【巩固】有3所学校共订300份中国少年报,每所学校订了至少98份,至多102份.问:一共有多少种不同的订法?分析:可以分三种情况来考虑:(1)3所学校订的报纸数量互不相同,有98,100,102;99,100,101两种组合,每种组各有33P =6种不同的排列,此时有6×2=12种订法.(2)3所学校订的报纸数量有2所相同,有98,101,101;99,99,102两种组合,每种组各有3种不同的排列,此时有3×2=6种订法.(3)3所学校订的报纸数量都相同,只有100,100,100一种订法.由加法原理,不同的订法一共有12+6+l=19种.组合一般地,从n 个不同元素中取出m 个(m≤n )元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合.由组合的定义可以看出,两个组合是否相同,只与这两个组合中的元素有关,而与取到这些元素的先后顺序无关.只有当两个组合中的元素不完全相同时,它们才是不同的组合.从n 个不同元素中取出m 个元素(m ≤n )的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作(1) (1)!m mn n n n m C m ?-??-+=个数这就是组合数公式.【例7】以右图中的8个点中的3个为顶点,共可以画出多少个不同的三角形?分析:从8个点中选3个点,一共有56种不同的选法.但是因为在一条直线上的3个点不能组成三角形,所以应去掉两条直线上不合要求的选法.5个点选3个的选法有10种.4个点选3个的选法有4种.所以一共可以画出56-(10+4)=42不同的三角形.【前铺】右图共有11条射线,那么图中有多少个锐角?分析:如图,最大的为锐角,它内部的各个角一定也是锐角,图中共有11条射线,任取两条作为角的两边便可确定一个锐角.因为角的两边不存在顺序关系,所以应该用组合.211C =55.几何题中的数个数问题往往可以采用这样的组合方法来解题.【前铺】讲解例题之前请根据本班情况先将组合公式计算练习一下!计算:(1)241655,,C C C ,(2)352777,,C C C分析:(1)26651521C ?==?,45543254321C ==,15551C == ;(2)3776535321C ??==?? ,57765432154321C == ,57765432154321C ==注意:从上发现规律m n mn n C C -=.【巩固】从3、5、7、11这四个质数中任取两个相乘,可以得到多少个不同的乘积?分析:由于3,5,7,11都是质数,因此所得乘积各不相同,因此只要求出不同的质数对的个数就可以了.24C =6.【巩固】一个口袋中有4个球,另一个口袋中有6个球,这些球颜色各不相同.从两个口袋中各取2个球,共有多少种不同结果?分析:分步考虑,224661590C C ?=?=(种).【例8】有13个队参加篮球比赛,比赛分两个组,第一组七个队,第二组六个队,各组先进行单循环赛(即每队都要与其它各队比赛一场),然后由各组的前两名共四个队再进行单循环赛决定冠亚军.问:共需比赛多少场?分析:分三部分考虑,第一组预赛、第二组顶赛和最后的决赛.第一组要赛:27C =21(场),第二组要赛:26C =15(场),决赛阶段要赛:24C =6(场),总场数:21+15+6=42(场).【拓展】一个盒子装有10个编号依次为1,2,3,…,10的球,从中摸出6个球,使它们的编号之和为奇数,则不同的摸法种数是多少?分析:10个编号中5奇5偶,要使6个球的编号之和为奇数,有以下三种情形:(1)5奇1偶,对奇数只有1种选择,对偶数有5种选择.由乘法原理,有1×5=5种选择; (2)3奇3偶,对奇数有35C =10种选择,对偶数也有35C =10种选择.由乘法原理,有10×10=100种选择;(3)1奇5偶,对奇数有5种选择,对偶数只有1种选择.由乘法原理,有5×1=5种选择.由加法原理,不同的摸法有:5+100+5=110种.【例9】某年级6个班的数学课,分配给甲、乙、丙三名数学老师任教,每人教两个班,分派的方法有多少种?分析:分三步进行:第一步,取两个班分配给甲,与先后顺序无关,是组合问题,有15种选法;第二步,从余下的4个班中选取两个班给6种选法;第三步,剩余的两个班给丙,有1种选法.根据乘法原理,一共有15×6×l=90种不同的分配方法.【拓展】从8名候选人中选出正、副班长各1人,再选出3名班委会成员.一共有多少种不同的选法?分析:先选正、副班长,分别有8种和7种选法.再从剩下的6人中选出3人,有36C =20种选法.由乘法原理,共有8×7×20=1120种不同的选法.【例10】工厂从100件产中任意抽出三件进行检查,问: (1)一共有多少种不同的抽法?(2)如果100件产品有2件次品,抽出的3件中恰好有一件是次品的抽法有多少种?(3)如果100件产品中有2件次品,抽出的3件中至少有一件是次品的抽法有多少种? 、分析:从100件产品中抽出3件检查,与抽出3件产品的顺序无关,是一个组合问题. (1)不同的抽法数就是从100个元素中取3个元素的组合数.3100C =161700(种). (2)可分两步考虑,第一步:从2件次品中抽出一件次品的抽法有12C 种;第二步:从98件合格品中抽出2件合格品的抽法有298C 种.再用分步计数原理求出总的抽法数,122989506C C ?=.(3)可以从反面考虑,从抽法总数3100C 中减去抽出的三件都是合格品的情况,便得到抽出的三件产品中至少有一件是次品的抽法总数.33100981617001520969604C C -=-=.【例11】从10名男生,8名女生中选出8人参加游泳比赛.在下列条件下,分别有多少种选法?(1)恰有3名女生入选;(2)至少有两名女生入选;(3)某两名女生,某两名男生必须入选;(4)某两名女生,某两名男生不能同时入选;(5)某两名女生,某两名男生最多入选两人.分析:(1)恰有3名女生入选,说明男生有5人入选,应为:35 81014112C C ?=;(2)要求至少两名女生人选,那么“只有一名女生入选”和“没有女生入选”都不符合要求.运用包含与排除的方法,从所有可能的选法中减去不符合要求的情况:8871181010842753C C C C --?=.(3)4人必须入选,则从剩下的14人中再选出另外4人. 4141001C =.(4)从所有的选法818C 中减去这4个人同时入选的414C 种可能:818C -414C =42757.(5)分三类情况:4人无人入选,4人仅有1人入选,4人中有2人入选,共:8172614414414C C C C C +?+?=34749.【例12】用2个1,2个2,2个3可以组成多少个互不相同的六位数?用2个0,2个1,2个2可以组成多少个互不相同的六位数?分析:先考虑在6个数位上选2个数位放1,这两个1的顺序无所谓,故是组合问题有26C =15种选法;再从剩下的4个数位上选2个放2,有24C =6种选法;剩下的2个数位放3,只有1种选法.由乘法原理,这样的六位数有15×6×l=90个.在前一问的情况下组成的90个六位数中,首位是1、2、3的各30个.如果将3全部换成0,这30个首位是0的数将不是六位数,所以可以组成互不相同的六位数90—30=60个.【例13】从1,3,5,7,9中任取三个数字,从2,4,6,8中任取两个数字,组成没有重复数字的五位数,一共可以组成多少个数?分析:整个过程可以分三步完成:第一步,从1,3,5,7,9中任取三个数字,这是一个组合问题,有35C 种方法;第二步,从2,4,6,8中任取两个数字,也是一个组合问题,有24C 种方法;第三步,用取出的5个数字组成没有重复数字的五位数,有55P 种方法.再由分步计数原理求总的个数:35C ×24C ×55P =7200(个).附加题目【附1】小明的书架上原来有6本书,不重新排列,再放上3本书,可以有多少种不同的放法?分析:放第一本书时,有原来的6本书之间和两端的书的外侧共7个位置可以选择;放第二本书时,有已有的7本书之间和两端的书的外侧共8个位置可以选择.同样道理,放第三本书时,有9个位置可以选择.由乘法原理,一共可以有7×8×9=504种不同的放法.【附2】一栋12层楼房备有电梯,第二层至第六层电梯不停.在一楼有3人进了电梯,其中至少有一个要上12楼,则他们到各层的可能情况共有多少种?分析:每个人都可以在第7层至第12层中任何一层下,有6种情况,那么三个人一共有6×6×6=216种情况,其中,都不到12楼的情况有5×5×5=125种.因此,至少有一人要上12楼的情况有216-125=91种.【附3】某校组织进行的一次知识竞赛共有三道题,每道题满分为7分,给分时只能给出自然数l,2,3,…,7分.已知参加竞赛者每人三道题的得分的乘积都是36,而且任意二人各题得分不完全相同,那么请问参加竞赛的最多有多少人?分析:将36分解为不大于7的三个数的乘积,有1×6×6;3×3×4;2×3×6三种情况.考虑到因数的先后顺序,第一种情况,考虑1有三个位置可选择,其余位置放6,有3种顺序;第二种情况与第一种情况相似,有3种顺序;最后一种情况,有3×2×l=6种顺序.由加法原理,一共有12种顺序,所以参赛的最多有12人.【附4】某市的电视台有八个节目准备分两天播出,每天播出四个,其中某动画片和某新闻播报必须在第一天播出一场,体育比赛必须在第二天播出,那么一共有多少种不同的播放节目方案?分析:某动画片和某新闻播报在第一天播放,对于动画片而言,可以选择当天四个节目时段的任何一个时段,一共有4种选择,对于新闻播报可以选择动画片之外的三个时段中的任何一个时段,一共有3种选择,体育比赛可以在第二天的四个节目时段中任选一个,一共有4种选择.剩下的5个节目随意安排顺序,有55P=120种选择.由乘法原理,一共有4×3×4×120=5760种不同的播放节目方案.【附5】某旅社有导游9人,其中3人只会英语,2人只会日语,其余4个既会英语又会日语.现要从中选6人,其中3人做英语导游,另外3人做日语导游.则不同的选择方法有多少种?分析:此题若从“多面手”出发来做,不太简便,由于只会日语的人较少,所以针对只会日语的人讨论,分三类:(1)只会日语的2人都出场,则还需1个多面手做日语导游,有4种选择.从剩下的只会英语的人和多面手共6人中选3人做英语导游,有36C=20种,由乘法原理,有4×20=80种选择.(2)只会日语的2人中有1人出场,有2种选择.还需从多面手中选2人做日语导游,有24C=6种选择.剩下的只会英语的人和多面手共5人中选3人做英语导游,有3 5C=10种选择.由乘法原理,有2×6×10=120种选择.(3)只会日语的人不出场,需从多面手中选3人做日语导游,有34C=4种选择.剩下的只会英语的人和多面手共4人中选3人做英语导游,有34C=4种选择.由乘法原理,有4×4=16种选择.根据加法原理,不同的选择方法一共有80+120+16=216种.【附6】五个瓶子都贴了标签,其中恰好贴错了三个,贴错的可能情况共有多少个?分析:首先考虑哪三个瓶子贴错了,有35C 种可能,3个瓶子贴错后互相贴错标签又分成两种不同情况.所以共有35C ×2=20(种).此题容易出错的是三个出错的瓶子确定后,他们之间错误的可能情况数目,有的同学很容易忽略这一环节,而有的会不假思索的把它当作一个全排列,这都是不正确的.【附7】马路上有编号为1,2,3,…,l0的十只路灯,为节约用电又能看清路面,可以把其中的三只灯关掉,但又不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法有多少种?分析:l0只灯关掉3只,实际上还亮7只灯,而又要求不关掉两端的灯和相邻的灯,此题可以转化为在7只亮着的路灯之问的六个空档中插入三只熄灭的灯,有36C =20种插法.练习十二1.给出1,2,3,4四个数字,试求:(1)可组成多少个数字不重复的四位数? (2)可组成多少个数字不重复的自然数? (3)可组成多少个不超过四位的自然数?分析:(1)44P =4×3×2×1=24个数字不重复的四位数.(2)利用1,2,3,4可组成数字不重复的一位、两位、三位、四位自然数,分类考虑:12344444P P P P +++=64个.(3)此题数位上的数字允许重复,利用1,2,3,4可组成一位、两位、三位、四位自然数.进一步考虑,一位数有4个,两位数有4×4=16个,三位数有4×4×4=64个,四位数有4×4×4×4=256个.故共有4+16+64+256=340个.2.由四个不同的非0数字组成的所有四位数中,数字和等于12的共有多少个?分析:四个数字都不同而数字和为12的数字有1,2,3,6和1,2,4,5两种情况,对于每种情况,可以组成44P =24个不同的四位数.对于所以,共可以组成24+24=48个不同的四位数.3.桌子上有3张红卡片,2张黄卡片,和1张蓝卡片,如果将它们横着排成一排,同种颜色的卡片不分开,一共有多少种排法?分析:32133213P P P P =72种.4.在1~100中任意取出两个不同的数相加,其和是偶数的共有多少种不同的取法?分析:两个数的和是偶数,这两个数必然同是奇数或同是偶数,而取出的两个数与顺序无关,所以是组合问题;从50个偶数中取出2个,有250C =1225种取法;从50个奇数中取出2个,也有250C =l225种取法.根据加法原理,一共有1225+1225=2450种不同的取法.5.在一个口袋内装有大小相同的7个白球和1个黑球.(1)从口袋内取出3个球,共有多少种取法?(2)从口袋取出3个球,使其中含有1个黑球,有多少种取法? (3)从口袋内取出3个球,使其中不含黑球,有多少种取法?分析:(1)从口袋内的8个球中取出3个球,与顺序无关,是组合问题,其取法种数是56种.(2)从口袋内取出的3个球中有1个是黑球,于是还要从7个白球中再取出2个,其取法种数是21种.(3)由于所取出的3个球中不含黑球,也就是要从7个白球中取出3个球,其取法种数是35种.6.在6名女同学,5名男同学中选出4名女同学,3名男同学站成一排,有多少种排法?分析:男女同学分别考虑,再整体排列.437657C C P ?? =756000(种).。
四年级下册数学试题-奥数专题练习:第六讲 排列组合的综合应用(含答案)全国通用
第六讲:排列组合的综合应用基础班1.有3封不同的信,投入4个邮筒,一共有多少种不同的投法?2.甲、乙两人打乒乓球,谁先连胜头两局,则谁赢.如果没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止,问有多少种可能情况?3.在6名女同学,5名男同学中,选4名女同学,3名男同学,男女相间站成一排,问共有多少种排法?4.用0、1、2、3、4、5、6这七个数字可组成多少个比300000大的无重复数字的六位偶数?5.有两个小盒子,第一个盒子中有标有数字1,2,3,…,10的十张卡片,第二个盒子中有标有11,12,13,…,20的十张卡片.若从两个盒子中各拿出一张卡片相加,一共可列出多少种不同的加法式子?6.小文和小静两位同学帮花店扎花,要从三只篮子中各取一只花扎在一起,已知每只篮子里都有3种不同的花,问她们可以扎成多少种不同式样的花束?7.某学校组织学生开展登山活动.在山的北坡有两条路直通山项;在山的南坡也有两条路,一条直通山顶,另一条通向山腰小亭,从小亭有两条路通向山顶;山的西坡有两条路通向山间寺庙,由寺庙有两条路通向山顶.要登上山顶共有多少种不同的道路?解答1.若投一封信看作一个步骤,则完成投信的任务可分三步,每封信4个邮筒都可投,即每个步骤都有4种方法.故由乘法原理:共有不同的投法4×4×4=64种.2.甲(或乙)胜就写一个甲(或乙)字,画树形图:由图可见共有14种可能.甲甲、甲乙甲甲、甲乙甲乙甲、甲乙甲乙乙、甲乙乙甲甲、甲乙乙甲乙、甲乙乙乙、乙甲甲甲、乙甲甲乙甲、乙甲甲乙乙、乙甲乙甲甲、乙甲乙甲乙、乙甲乙乙、乙乙.3.现有4名女同学,3名男同学,男女相间站成一排,则站在两端的都是女同学.将位置从右到左编号,第1、3、5、7号位是女同学,第2、4、6号位是男同学.于是完成适合题意的排列可分两步:第一步:从6名女同学中任选4名排在第1、3、5、7号位.有P46种排法.第二步:从5名男同学中任选3名排在第2、4、6号位,有P35种排法.因此,由乘法原理排出不同队形数为P46·P35=6×5×4×3×5×4×3=21600.4.图示:分两类:第一类:十万位上是3或5之一的六位偶数有P12·P14·P45个.第二类:十万位上是4或6之一的六位偶数有P12·P13·P45个.∴P12P14P45+P12P13P45=1680.5. 200种第一个盒子中的每一张卡片都可以与第二个盒子中的十张卡片组成 20种加法式子(包括被加数与加数交换位置,例如将 1+11与11+1看成为两个加法式子),而第一个盒子中共有十张卡片,则由乘法原理,共10×20=200种不同的加法式子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合综合应用练习题一.夯实基础:1. 由 0,2,5,6,7,8 组成无重复数字的数.⑴ 四位偶数有多少个?⑵ 四位奇数有多少个?⑶ 四位偶数有多少个?2. 由 0,2,5,6,7,8 组成无重复数字的数.⑴整数有多少个?⑵是 5 的倍数的三位数有多少个?3. 由 0,2,5,6,7,8 组成无重复数字的数.⑴是 25 的倍数的四位数有多少个?⑵大于 5860 的四位数有多少个?4.一个小组共 10 名学生,其中 4 女生,6 男生.现从中选出 3 名代表,其中至少有一名女生共有多少种选法?二.拓展提高:5.正六边形的中心和顶点共 7 个点,以其中 3 个点为顶点的三角形共有多少个?6.从10 件产品中有4 件次品,现抽取3 件检查,(1)恰好有一件次品的取法有种;(2)既有正品又有次品的取法有种.7.圆周上有十个点,任两点之间连一条弦,这些弦在圆内共有多少个交点?8.用 2,4,6 三个数字来构造六位数,但是不允许有两个连着的 2 出现在六位数中(例如626442 是允许的,但226426 就不允许),问这样的六位数有多少个?三. 超常挑战9.有5 个标签分别对应着 5 个药瓶,恰好贴错 3 个标签的可能情况有多少种?10.由 1447,1005,1231 这三个数字有许多相同之处:它们都是四位数,最高位都是 1,都恰有两个相同数字,一共有多少个这样的数?11.某旅社有导游9 人,其中3 人只会英语,2 人只会日语,其余4 个既会英语又会日语.现要从中选6 人,其中3 人做英语导游,另外3 人做日语导游.则不同的选择方法有多少种?ADB12. 在10 名学生中,有5 人会装电脑,有3 人会安装音响设备,其余2 人既会安装电脑,又会安装音响设备,今选派由6 人组成的安装小组,组内安装电脑要3 人,安装音响设备要3 人,共有多少种不同的选人方案?13. 在四位数中,各位数字之和是 4 的四位数有多少?四.杯赛演练:14. (迎春杯初赛)6 个人传球,每两人之间至多传 1 次,那么至多共进行几次传球?15. (华杯赛冬令营培训题)如图,A 、B 、C 、D 为海上的四个小岛,要建三座桥,将这四个岛连接起来,则不同的建桥方案共有几种?C5 2 4 45 46 5 5 5 5 5 5 5 5 5 5 5 5 54 43 34 3 35 46 4 6 4 10 6 10 67 4 6 4 6 4 6 答案:1. (1)注意 0 不能做首位, 5A 3 = 300 个.(2) 个位为特殊位置,只能从 5,7 中选一个;0 是特殊元素,它不能放在千位;综上,四位奇数有C 1C 1 A 2 = 96 个. (3) 位只能在 0,2,6,8 中选择,进一步分成两种情况:若个位为 0,则共有 A 3= 60种;若个位不是 0,则个位从 2,6,8 中选一个,有 3 种方法,然后选择千位,有 4 种方法,最后再选剩余的两位,有 A 2 = 12 种,所以四位偶数有 60 + 3⨯ 4⨯12 = 204 个.2. ⑴包括一位数、二位数、三位数、…、六位数,共有A 1 + A 1A 1 + A 1A 2 + A 1A 3 + A 1A 3 + A 1A 4 + A 1A 5 = 1631个.⑵5 的倍数,则个位为 0 或 5,分两种情况:若个位为 0,则有 A 2 = 20 个;若个位为 5, 则有 A 1 A 1 = 16 个,所以共有 36 个是 5 的倍数的三位数.3. ⑴25 的倍数,在本题的条件下,末两位只可能是 25,50 或 75. 若末两位为 25,则这样的四位数有 A 1A 1 = 9 个;若末两位为 50,则这样的四位数有 A 2 = 12 个;若末两位为 75,则这样的四位数有 A 1A 1 = 9 个,因此能被 25 整除的四位数共有 30 个. ⑵千位如果为 5,则前三位为 586,第四位有 2 或 7 两种选择;前三位若为 587,则四位有 0,2,6 三种选择,所以,千位为 5 总共有 5 个数; 千位如果为 6、7、8,则均有 A 3 = 60 个数,因此,大于 5860 的四位数有5 + 3⨯ 60 =185 个.4. “至少有一名女生”意味着存在女生,也就是说不能都是男生.所以,理解这句话的意思至关重要!我们可以从直接与间接两种方法解这道题,同学们可以比较一下.方法一:直接法.由于共有 4 个候选女生,因此至少有一名女生,包括如下几种情况:⑴1 名女生,2 名男生: C 1C 2= 60 种选法;⑵2 名女生,1 名男生: C 2C 1 = 36 种选法;⑶3 名女生, C 3 = 4 种选法.所以,共有60 + 36 + 4 =100 种选法. 方法二:间接法.先从 10 名学生中任意选出 3 名学生,有C 3 种选法;然后从中扣除没有女生的情况( 即全是男生的情况), 有 C 3 种选法. 所以, 至少有一名女生的选法数有C 3 - C 3 = 120 - 20 = 100 .5. 7 个点中选出 3 个点的方法为C 3 = 35 种,其中三条对角线上的 3 点组合是共线的,不合 要求. 35 - 3 = 32 种.6. ⑴ C 1C 2= 60 种;⑵既有正品又有次品分为:1 件次品,2 件正品;2 件次品,1 件正品两类,即: C 1C 2 + C 2C 1= 60 + 36 = 96 种.10 6 5 4 5 9 1 9 4 4 4 4 5 57. 两条弦的交点与四边形的个数一一对应,因而有C 4 = 210 个交点.8. (1)若六位数中没有 2,则每一位只能从 4 或 6 中选一个,这时有26 = 64 个.(2) 若六位数中只有 1 个 2,则 2 有C 1= 6 种位置选择,其余 5 个位置从 4 或 6 中选取,则有6⨯ 25 =192 个. (3) 若六位数中有 2 个 2,这时有24 ⋅ C 2 =160个(插空法). (4) 若六位数中有 3 个 2,这时有23⋅ C 3= 32 个;由题意,不可能在六位数中出现4 个4 个以上的2.于是共有64 +192 +160 + 32 = 448 个.9. 将瓶子命名为 1,2,3,4,5 号,如果是 1,2 号瓶贴对,则其余 3 个瓶子都贴错的, 简单枚举可发现有 2 种贴错的情况;而另选两个瓶子贴对,则剩余 3 个瓶子都贴错也是 2 种情况,因此共有C 2 ⨯ 2 = 20 种.10. 由于首位是 1,因此那两个相同数字应该以是否是 1 而分类:⑴若相同数字是 1:另一个 1 有 3 种位置可以选择,另两位数字不能是 1 且不能相同,故有 A 2 种不同排法,因而有m =3A 2= 216 个. ⑵若相同数字不是 1:这时相同数字有 9 种不同选法,这两个相同数字在后 3 位只 有 3 种不同排法,另一位数字既不是 1,又不能与相同数字相同,因此有 8 种不同取法.因而有m 2 = 9⨯ 3⨯8 = 216 个.综上,满足条件的四位数共有216 + 216 = 432 个.11. 此题若从“多面手”出发来做,不太简便,由于只会日语的人较少,所以针对只会日语的人讨论,分三类:⑴只会日语的 2 人都出场,则还需1 个多面手做日语导游,有 4 种选择.从剩下的只会英语的人和多面手共6 人中选3 人做英语导游,有C 3 = 6 ⨯ 5⨯ 4= 20 种选择.由63⨯ 2 ⨯1乘法原理,有4⨯ 20 = 80 种选择.⑵只会日语的2 人中有1 人出场,有2 种选择.还需从多面手中选2 人做日语导游,有C 2 = 4 ⨯ 3= 6 种选择.剩下的只会英语的人和多面手共5 人中选3 人做英语导游,42 ⨯1 有C3 = 5⨯4 ⨯ 3= 10 种选择.由乘法原理,有2⨯ 6⨯10 =120 种选择.53⨯ 2 ⨯1⑶只会日语的人不出场,需从多面手中选3 人做日语导游,有C 3 = C 1 = 4 种选择.剩下的只会英语的人和多面手共4 人中选3 人做英语导游,有C 3 = C 1 = 4 种选择.由乘法原理, 有 4⨯ 4 =16 种选择. 根据加法原理, 不同的选择方法一共有 80 +120 +16 = 216 种.12. 按具有双项技术的学生分类:⑴两人都不选派,有C 3 =10 种选派方法;⑵两人中选派1 人,有2 种选法.而针对此人的任务又分两类:若此人要安装电脑,有C 2 = 10 种选法, 而另外会安装音响设备的3 人全选派上,只有1 种选法.由乘法原理,有10⨯1 =10 种选法;若此人安装音响设备,有C 2 = 3 种选法,需从5 人中选3 人安装电脑,有C 3 = 10 种35选法.由乘法原理,有3⨯10 = 30 种选法.根据加法原理,有10 + 30 = 40 种选法;综上 所述一共有2⨯ 40 = 80 种选派方法.⑶两人全派,针对两人的任务可分类讨论如下:① 两人全安装电脑,有5⨯1 = 5 种选派方案;②两人一个安装电脑,一个安装音响设备, 有C 2 ⨯ C 2 = 60 种选派方案;③两人全安装音响设备,有3⨯ C 3 = 30 种选派方案.根据加5356 法原理,共有5 + 60 + 30 = 95 种选派方案.综合以上所述,符合条件的方案一共有10 + 80 + 95 =185 种.13. 设原四位数为 ABCD ,按照题意,我们有 A + B + C + D = 4 ,但是对 A 、 B 、C 、 D 要求不同,因为这是一个四位数,所以应当有 A ≠ 0 ,而其他三个字母都可以等于 0,这样就不能使用我们之前的插板法了,因此我们考虑将 B 、C 、 D 都加上 1,这样 B 、C 、 D 都至少是 1,而且这个时候它们的和为4 + 3 = 7 ,即问题变成如下表达:一个各位数字不为 0 的四位数,它的各位数字之和为 7,这样的四位数有多少个?采用插板法,共有 6 个间隔,要插入 3 个板,可知这样的四位数有C 3= 20 个,对应着原 四位数也应该有 20 个.14. 6 个点间进行连线,共可以连成15 条,但是由题意知这是个一笔画问题,若把这些线全连上,则图形中有 6 个奇点,不能一笔画,因此至少要去掉 2 条线(以去掉 4 个奇点),所以至多共进行15 - 2 =13 次传球.15. 本题考察对应与转化思想.可以这样考虑:先把四个点间所有能连的线都连起来,共有C 2 = 6 种方法,然后从这 6 条线中选择 3 条将其去掉,有C 3 = 20 种选法,但是连在同46一个点上的三条线不能同时去掉,所以必须再去掉 4 种情况,所以共有 16 种.。