高数上册第5章定积分
高等数学-第五章-定积分
不定积分 积分学
定积分
第一节
第五章
定积分的概念及性质
一、定积分问题举例 二、 定积分的定义 三、 定积分的近似计算 四、 定积分的性质
一、定积分问题举例
矩形面积 a h
h a
梯形面积 h (a b) 2
1. 曲边梯形的面积
a
b
h
设曲边梯形是由连续曲线 y y f (x) y f (x) ( f (x) 0)
四、定积分的性质 (设所列定积分都存在)
b
a
1. a f (x) dx b f (x) dx
b
2. a dx b a
b
b
3. a k f (x) dx k a f (x) dx
a
a f (x)dx 0
( k 为常数)
b
b
b
4. a[ f (x) g(x)]dx a f (x) dx a g(x) dx
(0,
π 2
)
故
π 2 0
2
dx
π
2 f (x) dx
0
π
2 1dx
0
即
1
π
2 0
sin x
x
dx
π 2
推论2.
b
b
a f (x)dx a f (x) dx
(a b)
证: f (x) f (x) f (x)
b
b
b
a f (x) dx a f (x) dx a f (x) dx
b
• 可把 a f (x) dx f ( )
y
ba
理解为 f (x)在[a,b]上的平均值. 因
Oa b x
b
高等数学第五章定积分
a
(a < b)
b
推论: 推论: 1) 如果在区间[a , b]上 f ( x ) ≤ g ( x ) , (
则 ∫ f ( x )dx ≤
a b
∫a g( x )dx
f ( x )dx
(a < b)
(2) )
∫a f ( x )dx ≤ ∫a
8
b
b
(a < b)
返回
第五章
定积分
1
复习
1、问题的提出 求曲边梯形的面积A 实例 (求曲边梯形的面积A)
曲 边 梯 形 由 连 续 曲 线 y = f (x)( f ( x) ≥ 0)、
x 轴与两条直线 x = a 、 = b 所 围 成 . x
A = lim ∑ f (ξ i )∆xi
λ → 0 i =1
n
方法:分割、代替、求和、取极限. 方法:分割、代替、求和、取极限. 返回
也不论在小区间 怎样的分法, 如果不论对[a , b] 怎样的分法,
[ x i −1 , x i ] 上 点 ξ i 怎样 的取法, 的取法, 只要当λ
→ 0 时,
我们称这个极限 I 和 S 总趋于 确定的极限 I , 为函数 f ( x ) 在区间[a , b]上的定积分, 上的定积分 记为 定积分,
x
d 证 dx
∫0
x
d x tf ( t )dt = xf ( x ), f ( t )dt = f ( x ) dx 0
∫
F ′( x ) =
xf ( x ) ⋅ ∫0 f ( t )dt −f ( x ) ⋅ ∫0 tf ( t )dt
( ∫ f ( t )dt )2
高等数学第五章定积分总结
高等数学第五章定积分总结定积分作为微积分的重要概念,是无穷积分的一种形式,并在多个领域中有着广泛的应用。
本章主要介绍了定积分的定义和性质,以及定积分的计算方法和应用。
首先,本章介绍了定积分的概念和定义。
定积分是一个数值,表示在给定的区间上,函数曲线与x轴之间的面积。
定积分可以分为两个部分:积分号和被积函数。
积分号表示积分的区间,被积函数表示要求积分的函数。
定积分的计算可以通过数值方法或解析方法进行,具体方法和结论有不少。
其次,本章介绍了定积分的性质。
定积分具有线性性、区间可加性和保号性等性质。
线性性质表示定积分可以进行加减运算,并且可以乘以一个常数。
区间可加性是指定积分的区间可以分为多个子区间,进行分段积分。
保号性表示如果被积函数在一些区间上恒大于等于0,那么该区间上的定积分也大于等于0。
这些性质为定积分的计算和应用提供了更多的方便性。
然后,本章介绍了定积分的计算方法。
定积分的计算可以通过不定积分和定积分的关系来进行。
通过求解原函数,并利用牛顿-莱布尼茨公式,可以简化计算过程。
本章还介绍了定积分的几何意义,即定积分表示函数曲线与x轴围成的面积,也可以表示其中一种物理量在一定时间或一定空间内的累积变化量。
最后,本章介绍了定积分的应用。
定积分在几何学、物理学、经济学等多个领域中有着广泛的应用。
例如,通过定积分可以计算曲线的弧长、曲线围成的面积、质心的坐标等几何问题;通过定积分可以计算物体的质量、重心、转动惯量等物理问题;通过定积分可以计算收益、成本、利润等经济问题。
这些应用都是建立在定积分的几何意义和计算方法的基础之上,对于深入理解和运用定积分具有重要意义。
总之,定积分是微积分中的重要概念,不仅具有丰富的理论性质,还有着广泛的应用价值。
通过学习定积分的定义、性质、计算方法和应用,可以帮助学生更好地理解和掌握微积分的知识,为解决实际问题提供更有效的数学工具。
大一高数上 PPT课件 第五章.
[a, b] — —积分
.
∫a f ( x )dx = I = lim ∑ f (ξ i )∆xi λ → 0 i =1
注:
) 积分仅与被积函数及积分区间有关, (1) 积分仅与被积函数及积分区间有关,
与积分变量的字母的选择无关. 而 与积分变量的字母的选择无关 .
b
n
∫a f ( x )dx = ∫a f ( t )dt = ∫a f ( u)du
2
i =1
i =1
exdx 练习 利用定义计算定积分 ∫
0
1
解 f ( x) = e x 在 [0,1]上连续,故f(x)在[0,1]上可积 上连续, 上可积. 上连续 在 上可积 等分, 将 [0,1]n 等分,左侧取点 i −1 i −1 1 ξi = , ∆x i = f (ξ i ) = e n n n 1 2 n −1 n 1 0 ∑ f (ξ i )∆xi = n [e + e n + e n + L + e n ] i =1 1 等比数列求和 1 1 1 − (e n )n = ( e − 1) n = ⋅ 1 1 n en − 1 1 − en 1
∑
i =1 n
n
f (ξ i )∆xi = ∑ ξ i ∆xi = ∑ xi2∆xi ,
2
n
n
1 n 2 1 n( n + 1)(2n + 1) i 1 = i = 3⋅ = ∑ ⋅ 3∑ n 6 n n i =1 i =1 n 1 1 1 = 1 + 2 + , λ → 0 ⇔ n → ∞ 6 n n n 1 1 1 1 1 2 2 ∫0 x dx = lim ∑ ξ i ∆xi = lim 6 1 + n 2 + n = 3 . n→ ∞ λ → 0 i =1
高等数学(第五章)定积分
二、定积分的定义
定义 设 f ( x) 在[ a , b ]上有界
(1) 将[ a , b ] 任意分成 n 个小区间 [ x0 , x1 ],[ x1 , x2 ],, [ xi 1 , xi ] ,, [ xn 1 , xn ], x0 a , xn b . xi xi xi 1 (i 1, 2,, n), 为第 i 个小区间的长度 .
f ( )x . 在 x 与 x x 之间 . x 0 , x
定理 2 (变上限的积分求导定理) 设 f ( x) 在[ a , b ] 上连续 , x 则 f (t )dt f ( x) .
a
x a
f (t )dt
f (t)
b a
o a
c1
c2
b
f ( x) dx .
x
根据定积分的几何意义 我们可以计算一些简单的定积分 .
y
yx
例1
b a
1dx b a . ?
ab 1 2 2 x dx ? (b a) (b a ) . 2 2
o
a
b
x
例2
例3
b a
R 0
R x dx
2 2
0
i 1
n
并称极限值为 f ( x) 在[ a , b ]上的定积分.
记为
b a
f ( x)dx
上限
b a
f ( x)dx lim f (i )xi .
0
i 1
n
下限
a 叫积分下限 , b 叫积分上限 ,[ a , b ]叫积分区间. f ( x) 叫被积函数 , x 叫积分变量 . f ( x)dx叫被积表达式 .
高等数学 上交大 课件 PPT 第五章 定积分
ii):令 x u, 原式=2 2 eudu 2(e 2 e) 1
DMU
第四节 定积分的计算方法
•定积分所特有的换元技巧
π
例 I 4 ln(1 tan x)dx 0
解 x π t
4
I
0 π 4
ln[1
tan(
π 4
t)]d(
π 4
t)
π 4
ln[1
1
tan
t
]dt
π
4 ln
2
(t
)
d
t
x
a
f
o (t) d
a t
x
b xh
x
1 xh f (t) d t f ( )
hx
(x x h)
x h ,0 1
(x) lim f (x h) f (x) h0 DMU
第三节 微积分基本定理
说明: 1) 上述定理证明了连续函数的原函数是存在的. 同时
为通过原函数计算定积分开辟了道路 .
s(t) v(t)
物体在时间间隔
内经过的路程为
T2 T1
v(t)
d
t
s(T2
)
s(T1)
这种积分与原函数的关系在一定条件下具有普遍性 .
DMU
第三节 微积分基本定理
基本公式:
b
a f (x) dx F (b) F (a)
(F(x)
f (x))
x
推导步骤:(1)变上限函数 (x) a f (t) d t
i
DMU
第一节 定积分的概念
利用定积分定义解题
划分[a,b]为n等分:a a b a a 2(b a) b.
n
n
高等数学第5章 定积分
本章基本要求
1.理解定积分概念和定积分的几何意义, 了解定积分的性质和积分中值定理.
2.理解变上限的积分作为其上限的函数及 其求导定理。掌握牛顿(Newton)—莱布尼茨 (Leibniz)公式.
3. 掌握定积分的换元法与分部积分法. 4. 了解两类反常积分及其收敛性的概念. 5. 了解定积分的近似计算法(梯形法和抛物 线法)的思想.
求在运动时间内经过的路程 s.
解决的步骤
初等公式 s = v0t
v变化, 公式失效
1) 分割 任意插入 n − 1个分点, 将 [T1,T2 ] 分成
n 小段 [ ti−1 , t i ] (i = 1, L, n),
第i 段上物体经过的路程为 Δ si (i = 1, 2,L, n)
2) 取近似 任取 ξi ∈[ti−1 , ti ] , 以v(ξi )代替变速 ,
性质6(定积分中值定理)
若 f ( x) ∈ C[a ,b], 则至少存在一点 ξ ∈ [a ,b], 使
∫b f ( x)dx = f (ξ )(b − a) a
• 定积分中值定理的几何意义: (f (ξ ) :平均高度)
曲边梯形面积 = 某矩形面积
y y = f (x)
• 定积分中值定理的数学意义:
bx
a = x0 < x1 < x2 <L< xn−1 < xn = b
用直线 x = xi 将曲边梯形分成 n 个小曲边梯形;
2) 取近似 任取ξi ∈[ xi−1 , xi ],第i个窄曲边梯形
面积
ΔAi ≈ f (ξi )Δxi
3) 求和
高底
n
n
∑ ∑ A = ΔAi ≈ f (ξi )Δxi
同济大学(高等数学)_第五章_定积分及其应用
(x)dx
7
推论
2
|
b
a
f
(x)dx| ab|
f
(x) | dx
(ab)
这是因为|f (x)| f (x) |f (x)|所以
ab|
f
(x) | dx
b
a
f
(x)dx
ab|
f
(x) | dx
b
b
即 | a
f (x)dx | a
f (x)dx.
ab[
f
(x)
g(x)]dx
b
a
f
(x)dx
abg(x)dx
证明:
ab[ f
(x) g(x)]dx
n
lim [ f 0 i1
(i) g(i)]xi
6
n
n
lim
0
i1
fபைடு நூலகம்
(i)xi
lim
0
i1
g(i)xi
b
a
f
( x)dx
第 1 节 定积分的概念与性质
1.1 定积分问题举例 1.1.1 曲边梯形的面积
曲边梯形 设函数 y f (x) 在区间 a,b上非负、连续 由直线 x a, x b, y 0 及
曲线 y f (x) 所围成的图形称为曲边梯形 其中曲线弧 y f (x) 称为曲边
把 a,b分成 n 个小区间
x0 , x1 , x1, x2 , x2 , x3 , L ,xn1, xn ,
它们的长度依次为 x1 x1 x0 , x2 x2 x1,L , xn xn xn1. 经过每一个分点作平行于 y 轴的直线段 把曲边梯形分成 n 个窄曲边梯形在每个小区
(完整版)高等数学(上)第五章定积分总结
第五章 定积分内容:定积分的概念和性质、微积分基本公式、换元积分法、分部积分法、广义积分。
要求:理解定积分的概念和性质。
掌握牛顿-莱布尼兹公式、定积分的换元法和分部积分法,理解变上限的定积分作为其上限的函数及其求导定理,理解广义积分的概念和计算方法。
重点:定积分的概念和性质;微积分基本公式;换元积分法、分部积分法。
难点:定积分的概念;变上限积分函数及其导数;换元积分法、分部积分法。
§1。
定积分的概念一、实例分析1.曲边梯形的面积设函数)(x f y =∈C[a , b ], 且)(x f y =〉0。
由曲线0,,),(====y b x a x x f y 围成的图形称为曲边梯形.如何定义曲边梯形的面积? (1) 矩形面积=底高。
(2) 预备一张细长条的纸, 其面积底高。
(3) 预备一张呈曲边梯形状的纸, 将其撕成许多细长条. (4) 启示:将曲边梯形分割为许多细长条, 分割得越细, 误差越小。
第i 个细长条面积)],,[()(11---=∆∈∀∆≈∆i i i i i i i i i x x x x x x f S ξξ曲边梯形面积: ∑=∆≈ni i i x f S 1)(ξ定积分概念示意图.ppt定义: ),,2,1,max {()(lim 10n i x x f S i ni ii =∆=∆=∑=→λξλy =f (x )x =a x =by =f (x )a=x 0 x 1 x i-1 x i x n =b抛开上述过程的几何意义,将其数学过程定义为定积分. 二、定积分的定义 1. 定义设)(x f y =在[a , b ]有定义, 且有界。
(1) 分割: 用分点b x x x a n =<<<= 10把[a , b ]分割成n 个小区间:},,2,1,max{,,,2,1],,[11n i x x x x ni x x i i i i i i =∆=-=∆=--λ记(2) 取点: 在每个小区间],[1i i x x -上任取一点i, 做乘积: i i x f ∆)(ξ。
高等数学 课件 PPT 第五章 定积分
在[0,1]上是有界函数,但不可积.因为不论对[0,1]怎样分 割,在任意被分割的小区间[xi-1,xi]上,总能取到ξi为有理数, 这时f(ξi)=1,也总能取到ξi为无理数,这时f(ξi)=0.所以对[0,1] 的任何一种分法,我们总可以得到
一、定积分的概念
思考
一个函数在什么条件下可积?什么条件下不可积?
一、定积分的概念
3. 定积分存在的充分条件
若f(x)在[a,b]上无界,则f(x)在[a,b]上一定是不可积 的.这是因为,若f(x)在[a,b]上无界,那么无论对[a,b] 怎样分割,都至少有一个区间[xi-1,xi],函数f(x)在其上无 界.因此,在[xi-1,xi]上一定可以取一点ξi,使得f(ξi)大于任 意一个正数M,因而也就使得和式 ∑ =1f(ξi)Δxi可以任意的 大.当λ→0时,这个和就不可能趋向于任何极限.由此可知, f(x)在[a,b]上可积的必要条件是f(x)在[a,b]上有界.
一、变速直线运动中位置函数与速度函数之间的联系
为了讨论质点在变速直线运动中位置函数与速度函数间的 联系,有必要沿质点的运动方向建立坐标轴.设时刻t时质点所 在位置st,速度vtvt≥0. 已知质点在时间间隔T1,T2内经过的路程可以用速度函数vt在 T1,T2上的定积分
一、定积分的概念
在区间[a,b]上,f(x)既有正值又有负值时,函数y=f(x) 的图形某些部分在x轴的上方,而其他部分在x轴的下方.如果 规定在x轴的上方的图形的面积为正,在x下方的图形面积为负, 那么∫baf(x) 的几何意义就是介于曲线y=f(x)、x轴及两条直线 x=a,x=b之间的各部分面积的代数和,如图5-2所示.
把区间[a,b]分成个n小区间 [x0,x1],[x1,x2],…,[xn-1,xn],
高等数学 第5章 定积分及其应用
5.1.4 定积分的性质
5.2 微积分基本定理
5.2.1 5.2.2 5.2.3
引例 积分上限的函数
微积分基本定理
本节我们要证明微积分理论中最重要的一个定理:微积分基本定理,它 将告诉我们求定积分的问题可以转化为求原函数的问题,即不定积分的问 题. 定积分与不定积分是两个完全不同的概念.本节将讨论两者之间的内 在联系,即微积分基本定理,从而得到定积分的有效计算方法.
5.3.1 换元法
5.3.1 换元法
注意:例题6的结论是定积分的一个重要的性质,当积分区间的形式 是时,首先考察被积函数的奇偶性,用这个性质简化计算.
5.3.2 分部积分法
5.3.2 分部积分法
注意: 定积分的分部积分法选择和的原则与不定积分的分部积分法相同.
5.3.2 分部积分法
5.4 广义积分
5.1.4 定积分的性质
说明:利用定积分的定义和极限的运算法则与性质,可以得出下面定 积分的几个性质.如无特别声明,下列各性质中定积分上、下限的大小均 不加限制,并假定下列性质中所出现的定积分都是存在的.
5.1.4 定积分的性质
5.1.4 定积分的性质
5.1.4 定积分的性质
5.1.4 定积分的性质
5.4.2 无界函数的广义积分
5.4.2 无界函数的广义积分
5.4.2 无界函数的广义积分
5.5 定积分的应用
5.5. 1 平面图形的面积 5.5.2 旋转体的体积
5.5.3 平面曲线的弧长
5.5.4 定积分的物理应用
5.5 定积分的应用
本章第一节,我们从实际问题引进定积分的概念 . 在几何、物理、 经济学等各个领域,有许多问题都可用定积分予以解决,本节首先阐明 定积分的元素法,再举例说明定积分的具体应用.
同济大学(高等数学)_第五章_定积分及其应用
第五章 定积分及其应用本章开始讨论积分学中的另一个基本问题:定积分.首先我们从几何学与力学问题引进定积分的定义,之后讨论它的性质与计算方法.最后,来讨论定积分的应用问题.第1节 定积分的概念与性质定积分问题举例曲边梯形的面积 曲边梯形设函数)(x f y =在区间[]b a ,上非负、连续由直线0,,===y b x a x 及曲线)(x f y =所围成的图形称为曲边梯形 其中曲线弧)(x f y =称为曲边求曲边梯形的面积的近似值将曲边梯形分割成一些小的曲边梯形每个小曲边梯形的面积都近似地等于小矩形的面积则所有小矩形面积的和就是曲边梯形面积的近似值 具体方法是在区间[]b a ,中任意插入若干个分点(图5-1),1210b x x x x x a n n =<<<<<=-Λ把[]b a ,分成n 个小区间[],,10x x [],,21x x [],,32x x [],,,1n n x x -Λ它们的长度依次为.,,,1122011--=∆-=∆-=∆n n n x x x x x x x x x Λ 经过每一个分点作平行于y 轴的直线段 把曲边梯形分成n 个窄曲边梯形在每个小区间[]i i x x ,1-上任取一点,i ξ 以[]i i x x ,1-为底、)(i f ξ为高的窄矩形近似替代第i 个窄曲边梯形,n i ,,3,2,1Λ=,把这样得到的n 个窄矩形面积之和作为所求曲边梯形面积A 的近似值 即 ∑=∆=∆++∆+∆≈ni i i n n x f x f x f x f A 12211.)()()()(ξξξξΛ求曲边梯形的面积的精确值显然 分点越多、每个小曲边梯形越窄所求得的曲边梯形面积A 的近似值就越接近曲边梯形面积A 的精确值 因此 要求曲边梯形面积A 的精确值 只需无限地增加分点 使每个小曲边梯形的宽度趋于零 记{},,,,m ax 21n x x x ∆∆∆=Λλ于是 上述增加分点使每个小曲边梯形的宽度趋于零相当于令.0→λ所以曲边梯形的面积为∑=→∆=ni i i x f A 1.)(lim ξλ图5-11.1.2 变速直线运动的路程 设物体作直线运动已知速度)(t v v =是时间间隔[]21,T T 上t 的连续函数且,0)(≥t v 计算在这段时间内物体所经过的路程S求近似路程我们把时间间隔[]21,T T 分成n 个小的时间间隔i t ∆ 在每个小的时间间隔i t ∆内物体运动看成是均速的其速度近似为物体在时间间隔i t ∆内某点i τ的速度)(i v τ 物体在时间间隔i t ∆内 运动的路程近似为.)(i i i t v s ∆=∆τ把物体在每一小的时间间隔i t ∆内 运动的路程加起来作为物体在时间间隔[]21,T T 内所经过的路程S 的近似值 具体做法是在时间间隔[]21,T T 内任意插入若干个分点,21210T t t t t t T n n i =<<<<<=-Λ[]21,T T 分成n 个小段 [][][],,,,,,12110n n t t t t t t -Λ各小段时间的长依次为.,,,1122011--=∆-=∆-=∆n n n t t t t t t t t t Λ相应地在各段时间内物体经过的路程依次为.,,,21n s s s ∆∆∆Λ在时间间隔[]i i t t ,1-上任取一个时刻),(1i i i i t t <<-ττ 以i τ时刻的速度)(i v τ来代替[]i i t t ,1-上各个时刻的速度得到部分路程i s ∆的近似值即).,,2,1()(n i t v s i i i Λ=∆=∆τ于是这n 段部分路程的近似值之和就是所求变速直线运动路程S 的近似值即∑=∆≈ni ii t v S 1)(τ 求精确值记{},,,,m ax 21n t t t ∆∆∆=Λλ当0→λ时 取上述和式的极限 即得变速直线运动的路程∑=→∆=ni ii t v S 10)(lim τλ定积分的概念抛开上述问题的具体意义 抓住它们在数量关系上共同的本质与特性加以概括就抽象出下述定积分的定义定义 设函数)(x f y =在[]b a ,上有界在[]b a ,中任意插入若干个分点,1210b x x x x x a n n =<<<<<=-Λ把区间[]b a ,分成n 个小区间[],,10x x [],,21x x [],,32x x [],,,1n n x x -Λ各小段区间的长依次为.,,,1122011--=∆-=∆-=∆n n n x x x x x x x x x Λ在每个小区间[]i i x x ,1-上任取一个点,i ξ作函数值)(i f ξ与小区间长度i x ∆的乘积),,2,1()(n i x f i i Λ=∆ξ并作出和∑=∆=ni ii x f S 1)(ξ记{},,,,m ax 21n x x x ∆∆∆=Λλ如果不论对[]b a ,怎样分法也不论在小区间[]i i x x ,1-上点,i ξ怎样取法 只要当0→λ时 和S 总趋于确定的极限I 这时我们称这个极限I 为函数)(x f 在区间[]b a ,上的定积分 记作⎰ba dx x f )( 即∑⎰=→∆=ni i i ba x f dx x f 1)(lim )(ξλ其中)(x f 叫做被积函数 dx x f )(叫做被积表达式x 叫做积分变量 a 叫做积分下限 b叫做积分上限[]b a ,叫做积分区间根据定积分的定义曲边梯形的面积为⎰=badxx f A )(变速直线运动的路程为dt t v S T T )(21⎰=说明(1)定积分的值只与被积函数及积分区间有关而与积分变量的记法无关即⎰⎰⎰==ba ba ba duu f dt t f dx x f )()()((2)和∑=∆n i i i x f 1)(ξ通常称为f (x )的积分和(3)如果函数)(x f 在[]b a ,上的定积分存在 我们就说)(x f 在区间[]b a ,上可积函数)(x f 在[]b a ,上满足什么条件时 )(x f 在[]b a ,上可积呢 定理1 设)(x f 在区间[]b a ,上连续 则f (x ) 在[]b a ,上可积定理2 设)(x f 在区间[]b a ,上有界 且只有有限个间断点则)(x f 在[]b a ,上可积定积分的几何意义设)(x f 是[]b a ,上的连续函数,由曲线)(x f y =及直线0,,===y b x a x 所围成的曲边梯形的面积记为A .由定积分的定义易知道定积分有如下几何意义:(1)当0)(≥x f 时,A dx x f b a =⎰)( (2)当0)(≤x f 时,A dx x f b a-=⎰)((3)如果)(x f 在[]b a ,上有时取正值,有时取负值时,那么以[]b a ,为底边,以曲线 )(x f y =为曲边的曲边梯形可分成几个部分,使得每一部分都位于x 轴的上方或下方.这时定积分在几何上表示上述这些部分曲边梯形面积的代数和,如图所示,有321)(A A A dx x f b a+-=⎰其中321,,A A A 分别是图5-2中三部分曲边梯形的面积,它们都是正数.图5-2例1. 利用定义计算定积分dxx 210⎰解 把区间[0 1]分成n 等份分点和小区间长度分别为ni x i =(i 1 2n1) nx i 1=∆(i 1 2 n )取),,,2,1(n i niiΛ==ξ作积分和 ∑∑∑===⋅=∆=∆ni in i i i ni i n ni x x f 121211)()(ξξ)12)(1(61113123++⋅==∑=n n n n i n ni )12)(11(61n n ++=因为n1=λ 当0→λ时∞→n 所以31)12)(11(61lim )(lim 10210=++=∆=∞→=→∑⎰n n x f dx x n n i i i ξλ图5-3例2 用定积分的几何意义求⎰-10)1(dxx解 函数x y -=1在区间[]1,0上的定积分是以x y -=1为曲边以区间[]1,0为底的曲边梯形的面积因为以x y -=1为曲边以区间[]1,0为底的曲边梯形是一直角三角形其底边长及高均为1所以211121)1(10=⨯⨯=-⎰dx x图5-4例3利用定积分的几何意义,证明21112π=-⎰-dx x .证明 令]1,1[,12-∈-=x x y,显然0≥y ,则由21x y -=和直线1,1=-=x x ,0=y 所围成的曲边梯形是单位圆位于x 轴上方的半圆.如图5-5所示. 因为单位圆的面积π=A ,所以半圆的面积为2π. 由定积分的几何意义知:21112π=-⎰-dx x .图5-5定积分的性质 两点规定(1)当b a =时 0)(=⎰ba dx x f (2)当b a>时 ⎰⎰-=ab ba dx x f dx x f )()(性质1 函数的和(差)的定积分等于它们的定积分的和(差) 即⎰⎰⎰±=±ba ba ba dxx g dx x f dx x g x f )()()]()([证明:⎰±badx x g x f )]()([∑=→∆±=ni i i i x g f 10)]()([lim ξξλ∑∑=→=→∆±∆=ni i i n i i i x g x f 1010)(lim )(lim ξξλλ⎰⎰±=bab adxx g dx x f )()(性质2 被积函数的常数因子可以提到积分号外面 即⎰⎰=ba b a dxx f k dx x kf )()(这是因为∑⎰=→∆=ni i i b ax kf dx x kf 10)(lim )(ξλ⎰∑=∆==→bani i i dxx f k x f k )()(lim 10ξλ性质如果将积分区间分成两部分则在整个区间上的定积分等于这两部分区间上定积分之和即⎰⎰⎰+=bcca ba dxx f dx x f dx x f )()()(这个性质表明定积分对于积分区间具有可加性值得注意的是不论c b a ,,的相对位置如何总有等式⎰⎰⎰+=bc c a b a dx x f dx x f dx x f )()()(成立例如当c b a <<时由于 ⎰⎰⎰+=cb ba ca dxx f dx x f dx x f )()()(于是有⎰⎰⎰-=cb ca ba dx x f dx x f dx x f )()()(⎰⎰+=bc c a dxx f dx x f )()(性质4 如果在区间[]b a ,上f (x ) 1 则ab dx dx ba b a -==⎰⎰1性质5 如果在区间[]b a ,上 f (x )则⎰≥ba dx x f 0)((ab )推论1 如果在区间[]b a ,上 f (x )g (x ) 则⎰⎰≤b a ba dx x g dx x f )()((ab )这是因为g (x )f (x )0 从而⎰⎰⎰≥-=-ba ba ba dx x f x g dx x f dx x g 0)]()([)()(所以⎰⎰≤b a ba dxx g dx x f )()(推论2 ⎰⎰≤b abadx x f dx x f |)(||)(|(ab )这是因为|f (x )| f (x ) |f (x )|所以⎰⎰⎰≤≤-ba b a b a dxx f dx x f dx x f |)(|)(|)(|即⎰⎰≤babadx x f dx x f .)(|)(|性质6 设M 及m 分别是函数)(x f 在区间[]b a ,上的最大值及最小值则⎰-≤≤-ba ab M dx x f a b m )()()((a b )证明 因为 mf (x ) M所以⎰⎰⎰≤≤ba ba ba Mdxdx x f mdx )(从而⎰-≤≤-ba ab M dx x f a b m )()()(性质7 (定积分中值定理) 如果函数)(x f 在闭区间[]b a ,上连续 则在积分区间[]ba ,上至少存在一个点使下式成立⎰-=ba ab f dx x f ))(()(ξ这个公式叫做积分中值公式证明 由性质6⎰-≤≤-ba ab M dx x f a b m )()()(各项除以a b - 得⎰≤-≤ba Mdx x f ab m )(1再由连续函数的介值定理在[]b a ,上至少存在一点使⎰-=ba dxx f ab f )(1)(ξ于是两端乘以a b -得中值公式⎰-=ba ab f dx x f ))(()(ξ注意不论b a <还是ba > 积分中值公式都成立并且它的几何意义是:由曲线)(x f y =,直线b x a x ==,和x 轴所围成曲边梯形的面积等于区间],[b a 上某个矩形的面积,这个矩形的底是区间],[b a ,矩形的高为区间],[b a 内某一点ξ处的函数值)(ξf ,如图5-6所示.图5-6习题 5-11.利用定积分的概念计算下列积分. (1)()axb dx +⎰01; (2)a dx x 01⎰ (a >0).2.说明下列定积分的几何意义,并指出它们的值. (1)dx x ⎰+1)12(; (2)dx x r rr ⎰--22; (3)dx x ⎰3; (4)dx x ⎰--3329.3.不经计算比较下列定积分的大小 (1)dx x⎰12与dx x ⎰13; (2)dx x ⎰40sin π与dx x ⎰40cos π;(3)dx x ⎰1与dx x ⎰+10)1ln(; (4)dx x ⎰10与dx x ⎰12.4.设)(x f 为区间[]b a ,上单调增加的连续函数,证明:))(()())((a b b f dx x f a b a f ba-≤≤-⎰5.用定积分定义计算极限)21(lim 22222nn nn n n n n ++++++∞→Λ微积分基本公式变速直线运动中位置函数与速度函数之间的联系设物体从某定点开始作直线运动在t 时刻所经过的路程为)(t S 速度为),0)()(()(≥'==t v t S t v v 则在时间间隔[]21,T T 内物体所经过的路程S 可表示为)()(12T S T S -及dtt v TT )(21⎰ 即)()()(1221T S T S dt t v T T -=⎰上式表明速度函数)(t v 在区间[]21,T T 上的定积分等于)(t v 的原函数)(t S 在区间[]21,T T 上的增量这个特殊问题中得出的关系是否具有普遍意义呢积分上限函数及其导数定义 设函数)(x f 在区间[]b a ,上连续并且设x 为[]b a ,上的一点我们把函数)(x f 在部分区间[]x a ,上的定积分dx x f xa )(⎰称为积分上限的函数它是区间[]b a ,上的函数记为dxx f x xa)()(⎰=Φ 或dtt f x xa)()(⎰=Φ定理1 如果函数)(x f 在区间[]b a ,上连续 则函数dt t f x xa)()(⎰=Φ在[]b a ,上具有导数并且它的导数为)()()(x f dt t f dxd x xa ==Φ'⎰)(b x a ≤≤ 证明 若),(b a x ∈取x ∆使).,(b a x x ∈∆+)()(x x x Φ-∆+Φ=∆Φdt t f dt t f xa xx a)()(⎰⎰-=∆+ dt t f dt t f axxx a)()(⎰⎰+=∆+xf dt t f xx x∆==⎰∆+)()(ξ应用积分中值定理有,)(x f ∆=∆Φξ其中ξ在x 与x x ∆+之间0→∆x 时 x →ξ 于是),()(lim )(lim lim00x f f f x x x x ===∆∆Φ→→∆→∆ξξξ即)()(x f x =Φ'若a x =取0>∆x 则同理可证)()(a f x =Φ'+ 若b x= 取0<∆x 则同理可证)()(b f x =Φ'-推论 如果)(x ϕ可导,则)()]([])([])([)()(x x f dt t f dt t f dx d x x a x aϕϕϕϕ'='=⎰⎰更一般的有[][]).()()()()()()(x x f x x f dt t f x x ψψϕϕϕψ'-'=⎰例1 计算tdt e dxd x tsin 0⎰-. 解 tdt e dx d x t sin 0⎰-=]sin [0'⎰-tdt e x t=x e x sin -. 例2 求极限42sin limxtdt x x ⎰→.解 因为0lim4=→x x ,⎰⎰==→20sin sin lim x x tdt tdt ,所以这个极限是型的未定式,利用洛必达法则得42sin limx tdt x x ⎰→=32042sin lim x x x x ⋅→=2202sin lim xx x → =220sin lim 21x x x → =21. 例3 设)(x f 在[)+∞,0内连续且0)(>x f 证明函数⎰⎰=xxdtt f dt t tf x F 00)()()(在),0(+∞内为单调增加函数证明)()( 0x xf dt t tf dx d x =⎰)()(0x f dt t f dx d x =⎰ 故2000))(()()()()()(⎰⎰⎰-='xxxdt t f dtt tf x f dt t f x xf x F 200))(()()()(⎰⎰-=xxdt t f dt t f t x x f按假设当x t<<0时,0)()(,0)(>->t f t x t f 所以0)(0>⎰dt t f x)()(0>-⎰dt t f t x x从而),0(0)(>>'x x F 这就证明了)(x F 在),0(+∞内为单调增加函数定理2 如果函数)(x f 在区间[]b a ,上连续则函数dt t f x xa)()(⎰=Φ就是)(x f 在[]b a ,上的一个原函数定理的重要意义一方面肯定了连续函数的原函数是存在的另一方面初步地揭示了积分学中的定积分与原函数之间的联系牛顿莱布尼茨公式定理3 如果函数)(x F 是连续函数)(x f 在区间[]b a ,上的一个原函数则)()()(a F b F dx x f ba -=⎰此公式称为牛顿莱布尼茨公式也称为微积分基本公式证明 已知函数)(x F 是连续函数)(x f 的一个原函数又根据定理2积分上限函数dt t f x xa)()(⎰=Φ也是)(x f 的一个原函数于是有一常数C 使).()()(b x a C x x F ≤≤=Φ-当a x =时有C a a F =Φ-)()(,而0)(=Φa ,所以)(a F C = 当b x =时)()()(a F b b F =Φ-所以)()()(a F b F b -=Φ 即)()()(a F b F dx x f ba -=⎰ 为了方便起见可把)()(a F b F -记成b ax F )]([ 于是)()()]([)(a F b F x F dx x f ba ba -==⎰该公式进一步揭示了定积分与被积函数的原函数或不定积分之间的联系例4 计算⎰102dxx解 由于331x 是2x 的一个原函数所以31031131]31[33103102=⋅-⋅==⎰x dx x例5 计算2311x dx+⎰-解 由于x arctan 是211x +的一个原函数 所以 31231][arctan 1--=+⎰x x dx)1arctan(3arctan --=πππ127)4 (3 =--=例6 计算⎰--121dxx解1212|]|[ln 1----=⎰x dx x ln 1ln 2ln 2例7 求dx x ⎰--312.解dx x ⎰--312=⎰⎰⎰⎰---+-=-+-21322132)2()2(|2||2|dx x dx x dx x dx x=322212)221()212(x x x x -+--=2129+=5.例8 计算正弦曲线ysin x 在[0 ]上与x 轴所围成的平面图形的面积解 这图形是曲边梯形的一个特例 它的面积 ππ0]cos [sin x xdx A -==⎰(1)(1)2习题5-21.设0()d xf x t t =⎰,求2()4f π';2.设30()cos d xf x x t t =⎰,求()f x '';3.求下列函数的导数 (1)dt e x f xt ⎰-=0)(; (2)dt t x f x ⎰+=121)(; (3)dt t f ⎰=θθθcos sin )(; (4)dt t x f x ⎰+=221)(.4.计算下列导数(1)2220d d d x t t e t x ⎰; (2)22d d 1x x t x t +⎰; (3)220d ()sin d d x t x t t x -⎰. 5.求下列极限(1))cos(1)sin(lim11t dtt xx ππ+⎰→; (2)dtte dt e xt xt x ⎰⎰→02222)(lim.6.计算下列定积分 (1)dx x x )1(212-+⎰; (2)dx x x )2(210+⎰; (3)dx x⎰211;(4)dx x ⎰πcos ; (5)dx x ⎰π20sin ; (6)10e d x x ⎰;(7)dx x ⎰-1)cos 32(; (8)dx x⎰1100; (9)dx x x ⎰+-12211; (10)dx x ⎰+π2cos 1; (11)dx x x ⎰+41)1(; (12)dx x⎰+331211; (13)dx x⎰-210211; (14)1100d xx ⎰; (15)dx x x x ⎰-+++012241133;(16)dx x e ⎰---+2111; (17)dx x ⎰402tan π; (18)10max{,1}d x x x -⎰8.设()21,11,12x x f x x x +≤⎧⎪=⎨>⎪⎩,求()20d f x x ⎰.定积分的计算定积分的换元积分法定理 假设函数)(x f 在区间[]b a ,上连续 函数)(t x ϕ=满足条件(1);)(,)(b a ==βϕαϕ(2) )(t ϕ在[]βα, (或[]αβ,)上具有连续导数且其值域不越出[]ba ,则有dtt t f dx x f ba )()]([)(ϕϕβα'=⎰⎰这个公式叫做定积分的换元公式证明 由假设知)(x f 在区间[]b a ,上是连续因而是可积的 [])()(t t fϕϕ'在区间[]βα, (或[]αβ,)上也是连续的因而是可积的假设)(x F 是)(x f 的一个原函数则).()()(a F b F dx x f ba-=⎰另一方面因为[]{}[][])()()()()(t t f t t F t F ϕϕϕϕϕ'=''=' 所以F [(t )]是[])()(t t f ϕϕ'的一个原函数 从而[]dt t t f ⎰'βαϕϕ)()([][]).()()()(a F b F F F -=-=αϕβϕ因此dtt t f dx x f ba )()]([)(ϕϕβα'=⎰⎰例1 求dx xx ⎰+301.解 令t x =+1,则12-=t x ,tdt dx 2=,当0=x 时,1=t ,当3=x 时,2=t ,于是dx xx ⎰+301=tdt tt 21212⋅-⎰=dt t ⎰-212)1(2=213]31[2t t -=38例2 求dx e x ⎰-2ln 01.解 令t e x =-1,则)1ln(2t x +=,dt t tdx 212+=,当0=x 时,0=t ;当2ln =x 时,1=t ,于是dx e x⎰-2ln 01=dt t t t ⎰+⋅10212=dt t t ⎰+102212=dt t )111(2102⎰+- =10]arctan [2t t -=22π-.例3 计算⎰-adx x a 022(a >0)解 令t a x sin =,则t a t a a x a cos sin 22222=-=-,.cos tdt a dx = 当0=x时0=t 当a x =时2π=t⎰⎰⋅-=20sin 022cos cosπtdt a t a dx x a ta x a令⎰⎰+==2022022)2cos 1(2cos ππdt t atdt a220241]2sin 21[2a t t a ππ=+=例4 计算xdxx sin cos 520⎰π解:令,cos x t =则当0=x 时1=t 当2π=x 时0=txxd xdx x cos cos sin cos 520520⎰⎰-=ππ61]61[ 106105015cos ===-⎰⎰=t dt t dt t tx 令 或x xd xdx x cos cos sin cos 52052⎰⎰-=ππ610cos 612cos 61]cos 61[66206=+-=-=ππx例5 计算⎰-π53sin sin dxx x解dx x x dx x x |cos |sin sin sin 230053⎰⎰=-ππ⎰⎰-=πππ2232023cos sin cos sin xdx x xdx x⎰⎰-=πππ2232023sin sin sin sin x xd x xd54)52(52]sin 52[]sin 52[2252025=--=-=πππx x提示 |cos |sin )sin1(sin sin sin 232353x x x x x x =-=-在]2 ,0[π上,cos cos x x =在] ,2[ππ上.cos cos x x -=例6 计算dx x x ⎰++40122解 令,12t x =+则212-=t x , ,tdt dx =当0=x 时1=t 当4=x 时3=t⎰⎰⎰+=⋅+-++=+312312124)3(21221 122dt t tdt t t dx x x t x 令322)]331()9327[(21]331[21313=+-+=+=t t例7设)(x f 在区间],[a a -上连续,证明: (1)如果)(x f 为奇函数,则⎰-=a a dx x f 0)(; (2)如果)(x f 为偶函数,则⎰⎰-=a aadx x f dx x f 0)(2)(.证明 由定积分的可加性知x d x f x d x f x d x f a aaa⎰⎰⎰+=--0)()()(,对于定积分⎰-0)(adxx f ,作代换tx -=,得⎰-0)(adx x f =⎰--0)(adt t f =⎰-adt t f 0)(=⎰-a dx x f 0)(,所以⎰⎰⎰-+-=aaaadx x f dx x f dx x f 0)()()(=⎰-+adx x f x f 0)]()([(1)如果)(x f 为奇函数,即)()(x f x f -=-,则0)()(=-+x f x f , 于是⎰-=aadx x f 0)(.(2)如果)(x f 为偶函数,即)()(x f x f =-,)(2)()()()(x f x f x f x f x f =+=-+, 于是⎰⎰-=aaadx x f dx x f 0)(2)(.例8 若)(x f 在[]1,0上连续 证明 (1)⎰⎰=2020)(cos )(sin ππdxx f dx x f (2)⎰⎰=πππ00)(sin 2)(sin dxx f dx x xf证明 (1)令tx -=2π 则dt t f dx x f )]2[sin()(sin 0220--=⎰⎰πππ⎰⎰⎰==-=20202)(cos )(cos )]2[sin(ππππdxx f dt t f dt t f(2)令t x -=π则⎰⎰---=0)][sin()()(sin ππππdt t f t dx x xf ⎰⎰-=--=πππππ00)(sin )()][sin()(dt t f t dt t f t⎰⎰-=πππ0)(sin )(sin dt t tf dt t f ⎰⎰-=πππ0)(sin )(sin dxx xf dx x f所以⎰⎰=πππ00)(sin 2)(sin dx x f dx x xf例9 设函数⎪⎩⎪⎨⎧<<-+≥=-01 cos 11)(2x xx xe x f x 计算⎰-41)2(dxx f解 设t x =-2 则;dt dx =当1=x 时1-=t当4=x 时2=t⎰⎰⎰⎰---++==-200121412cos 11)()2(dt te dt t dt t f dx x f t 212121tan ]21[]2[tan 420012+-=-=---e e t t定积分的分部积分法设函数)()(x v x u 、在区间[]b a ,上具有连续导数)()(x v x u ''、 由v u v u uv '+'=')(得v u uv v u '-='式两端在区间[]b a ,上积分得vdx u uv dx v u ba ba ba '-='⎰⎰][ 或vduuv udv bab a ba⎰⎰-=][这就是定积分的分部积分公式分部积分过程][][⋅⋅⋅='-=-=='⎰⎰⎰⎰vdx u uv vdu uv udv dx v u ba ba ba ba ba ba例10 计算xdx arcsin 21⎰解xdx arcsin 21⎰x xd x x arcsin ]arcsin[210210⎰-=dx x x 22101621--⋅=⎰π)1(1121122221x d x --+=⎰π212]1[12x -+=π12312-+=π例11 计算⎰1dxe x解 令t x = 则⎰⎰=10102tdt e dx e t x ⎰=102t tde ⎰-=1010 2 ][2dt e te t t 2][2210 =-=t e e例12求⎰21ln xdx x .解⎰21ln xdx x =⎰212)(ln 21x xd =)(ln 21ln 21212212x d x x x ⎰-=⎰-21212ln 2xdx =212412ln 2x -=432ln 2-.例13求⎰πsin xdx x .解 ⎰πsin xdx x =⎰-πcos x xd =⎰+-ππ0cos cos xdx x x=ππ0sin x +=π.例14 设⎰=20sin πxdx I n n 证明(1)当n 为正偶数时22143231π⋅⋅⋅⋅⋅--⋅-=n n n n I n(2)当n 为大于1的正奇数时 3254231⋅⋅⋅⋅--⋅-=n n n n I n证明 ⎰=20sin πxdx I n n ⎰--=201cos sin πx xd n ⎰--+-=2012 01sin cos ]sin[cos ππx xd x x n n⎰--=2022sin cos )1(πxdx x n n ⎰--=-202)sin (sin )1(πdx x x n n n⎰⎰---=-20202sin )1(sin )1(ππxdx n xdx n n n(n 1)I n2(n 1)I n由此得 21--=n n I n n I02214342522232212I m m m m m m I m ⋅⋅⋅⋅--⋅--⋅-=112325432421222122I m m m m m m I m ⋅⋅⋅⋅--⋅--⋅+=+而2200ππ==⎰dx I 1sin 201==⎰πxdx I因此22143425222322122π⋅⋅⋅⋅⋅--⋅--⋅-=m m m m m m I m 32543242122212212⋅⋅⋅⋅--⋅--⋅+=+m m m m m m I m定积分的近似计算虽然牛顿——莱布尼兹公式解决了定积分的计算问题,但它的使用是有一定局限 性的。
大一高等数学第五章知识点
大一高等数学第五章知识点第五章:定积分定积分是微积分中的重要概念,也是几何中面积计算的工具之一。
本章主要介绍定积分的定义、性质以及计算方法等相关知识点。
1. 定积分的定义定积分是对被积函数在一定区间上的积分运算。
设函数f(x)在区间[a,b]上有定义,将该区间分成若干小区间,其中每个小区间的长度趋于0。
若存在数I,使得当区间的长度趋于0时,每个小区间上的函数值乘以小区间的长度的和趋于I,则称I为函数f(x)在区间[a,b]上的定积分。
2. 定积分的性质(1)可加性:若函数f(x)在区间[a,b]上可积,且c位于区间[a,b]内,则有定积分的可加性质,即∫[a,b]f(x)dx=∫[a,c]f(x)dx+∫[c,b]f(x)dx。
(2)积分中值定理:若函数f(x)在区间[a,b]上连续,则存在一点ξ位于[a,b]内,使得定积分等于函数在[a,b]上的某一点的函数值乘以区间长度,即∫[a,b]f(x)dx=f(ξ)(b-a)。
(3)定积分的性质:定积分的结果与积分区间有关,与被积函数在积分区间以外的取值无关。
3. 定积分的计算方法(1)基本积分表:根据被积函数的特点和常用积分公式,可以利用基本积分表来计算定积分。
(2)换元法:通过变量代换的方法,将被积函数进行化简,然后计算定积分。
(3)分部积分法:对于乘积形式的被积函数,可以利用分部积分法将其转化为更易计算的形式,然后求解定积分。
(4)定积分的几何意义:定积分可以用于计算函数图像与x 轴所围成的面积,利用横纵坐标的变化可以计算出面积值。
4. 定积分的应用定积分在几何、物理、经济等领域中具有广泛应用。
例如,可以利用定积分计算曲线与x轴所围成的面积,求解物体的质量、重心等物理问题,计算经济中的总收益、总成本等。
总结:大一高等数学第五章主要介绍了定积分的定义、性质、计算方法以及应用。
掌握定积分的概念和计算方法对于进一步学习微积分以及相关领域的应用具有重要意义。
定积分及其应用(高数) PPT课件
定理2 设 u( x),v( x)在区间[a,b]上有连续的导数,
则
aabbuuddvvu[uvvba]ba
bb
vvdduu
aa
定积分的分部积分公式
由不定积分的分部积分法 及N--L公式.
类似于不定积分的分部积分法:“反、对、幂、指、三”
(3)重要公式
奇、偶函数在对称区间上的定积分性质 三角函数的定积分公式 周期函数的定积分公式
方的面积取正号; 在 x 轴下方的面积取负号.
A1 A2
A3 A4
b
a f ( x)dx
A1 A2
A3
A4
2.定积分的性质
性质1
b
a [
f
(
x)
g(
x)]dx
b
a
f
(
x)dx
b
a g(
x)dx
性质2
b
a kf
(
x)dx
k
b
a
f
(
x)dx
( k 为常数)
性质3 (区间可加性)
b
c
b
a f ( x)dx a f ( x)dx c f ( x)dx
区间上的定积分都相等.
例1 设
f
(
x)
2 5
x
0
x
1
,
求
1 x2
2
0
f
( x)dx.
解
2
0
f
( x)dx
1 0
f
( x)dx
2
1
f
( x)dx
1
2xdx
2
5dx
6.
0
1
例2 求
高数第五章定积分及其应用(第129-163页,共35页张勇)
129第五章 定积分及其应用§5.1 学习的要求1. 理解定积分的概念及几何意义,了解可积的条件.2. 掌握定积分的基本性质.3. 理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法.4. 熟练掌握牛顿—莱布尼茨公式.5. 掌握定积分的换元积分法和分部积分法6. 理解无穷区间的广义积分,掌握其计算方法.7. 熟练掌握定积分求平面图形面积和掌握平面图形绕坐标轴旋转所成的旋转体体积 8. 会用定积分求变力直线做功和不均匀细棒的质量.§5.2内容提要一、 定积分的概念 (一)定积分的概念定义 设函数)(x f y =在区间],[b a 上有定义,用任一组分点: 01....a x x =<<,i n x x b <<<=把区间],[b a 分成n 个小区间),...3,2,1](,[1n i x x i i =-在每个小区],[1i i x x -上任意取一点i ξi i i x x ≤≤-ξ1() 用函数值)(i f ξ与该区间的长度1--=∆i i i x x x 相乘,作和式i ni i x f ∑=∆1)(ξ 如果不论对区间],[b a 采取何种分法及i ξ如何选取,当 {}0(max (1)i x x x i n ∆→∆=∆≤≤)时,和式的极限存在,则称函数)(x f 在],[b a 上可积,此极限称为函数在区间],[b a 上的定积分(简称积分).记为dx x f ba)(⎰,即1()()limnbiiai x f x dx f x ξ=∆→=∆∑⎰,其中变量x 称为积分变量,)(x f 称为被积函数,dx x f )(称为被积表达式b a ,分别称为积分下限和积分上限, ],[b a 称为积分区间.⎰badx x f )( 是 一个常量(b a ,为常数),其值只与被积函数和积分上下限有关,与积分变量用什么字母无关.(二).几何意义 1. 若)(x f ≥0,定积分⎰ba dx x f )(表示曲线)(x f y =,直线x =a 和x =b 以及x 轴所围成的曲边梯形的面积. 2. 若)(x f ≤0,定积分⎰badx x f )(表示相应曲边梯形面积的负值.(三) 定积分存在定理定理 如果函数)(x f 在区间],[b a 上连续,则)(x f 在],[b a 上的定积分必定存在. 二 、定积分的性质130 性质1 若],,[b a x ∈恒有)(x f =1,则有⎰⎰-==⋅bab aa b dx dx 1.性质2 ⎰ba dx x f )(=-⎰abdx x f )(.性质3 ⎰=badx x kf )(⎰badx x f k )( (k 是常数)性质4⎰⎰⎰±=±b ab abadx x f dx x f dx x f x f )()()]()([2121推论1 112[()()]()()()bb bbn n aaaaf x f x dx f x dx f x dx f x dx ±±=±±±⎰⎰⎰⎰性质5 ],[b a c ∈∀,则⎰badx x f )(=⎰c adx x f )(+⎰bcdx x f )(推论2 c b a ,,为任意的常数⎰badx x f )(=⎰c adx x f )(+⎰bcdx x f )(.性质6(积分中值定理) 若函数)(x f 在],[b a 上连续,则至少存在一点ξ()b a ,(∈ξ),使⎰badx x f )(=))((a b f -ξ三 、牛顿—莱布尼茨公式 (一) 积分上限函数1. 定义 设)(x f 在],[b a 上连续,],,[b a x ∈则)(t f 在],[x a 上可积 , 即⎰xadt t f )(存在,因此⎰xadt t f )(是上限x 的函数,记为()x φ=⎰xadt t f )(,称)(x φ为积分上限函数(或变上限积分) .2.积分上限函数的导数设)(x f 在],[b a 上连续, )(x φ在],[b a 上可导,则⎰∈==xa b a x x f dt t f dxd x ].,[),()()('φ )(x φ就是)(x f 在],[b a 上的一个原函数.(二)牛顿—莱布尼茨公式定理 如果函数()F x 是连续函数)(x f 在区间],[b a 上的任一原函数, 则)()()(a F b F dx x f ba-=⎰,这个公式称为牛顿—莱布尼茨公式,也称为微积分学基本定理. 公式表明:一个连续函数在区间],[b a 上的定积分等于它的任一原函数在区间],[b a 上的增量.四. 定积分的换元法和分部积分法 (一) 定积分的换元法设函数)(x f 在区间],[b a 上连续,令)(t x φ=,如果 (1) )(t φ在[βα,]上连续,当],[βα∈t 时, )(t φ的值不超出],[b a ,且有连续导函数)('t φ;(2) b a ==)(,)(βφαφ, 则⎰badx x f )(=⎰βαφφdx t t f )('))((.用)(t x φ=进行变换时,积分限也要随之换成新变量t 的积分限,不必像不定积分那样将变量还原.131(二)定积分的分部积分法设函数),(x u )(x v 在],[b a 上具有连续的一阶导数 ),('),('x v x u 则''bb aaba uv dx u vdx uv =-⎰⎰;或bbaaba udv vdu uv =-⎰⎰ .(三)偶,奇函数在对称区间],[a a -上的积分(1)当)(x f 是],[a a -上连续的偶函数时,⎰⎰-=aaadx x f dx x f 0)(2)(;(2)当)(x f 是],[a a -上连续的奇函数时,⎰-=aadx x f 0)(.五.广义积分(反常积分)(一) 无穷区间上的积分(无穷积分)定义 设)(x f 在区间[,)a +∞上连续,取b a >,若极限lim ()bab f x dx →∞⎰,则称此极限值为 )(x f 在),[+∞a 上的广义积分,记作 ⎰+∞adx x f )(=lim ()bab f x dx →∞⎰;(1)类似地,可以定义如下反常积分⎰∞-bdx x f )(=lim()baa f x dx →-∞⎰; (2)⎰-∞∞-dx x f )(=⎰∞-cdx x f )(+⎰+∞cdx x f )(lim()caa f x dx →-∞=⎰+lim()bcb f x dx →+∞⎰, (3)其中c 为任何实数;当(1)(2)(3)式右端极限存在时,反常积分收敛,否则是发散的. (二) 无界函数的积分定义 设)(x f 在],(b a 上连续,且lim ()x af x +→=∞,取0>ε若极限0lim ()ba f x dxεε+→⎰存在,则称此极限为无界函数)(x f 在],[b a 上的广义积分,记作⎰badx x f )(=0lim ()ba f x dx εε++→⎰.类似地,可定义在x b =附近无界函数()f x 的反常积分⎰b adx x f )(=0lim ()b af x dx εε-→⎰,以及在(a ,b )内一点x c =附近无界函数()f x 的反常积分⎰badx x f )(=⎰c adx x f )(+⎰bcdx x f )(=0lim ()c af x dx εε-→⎰+0lim ()bc f x dx εε++→⎰.六 定积分的应用(二) 定积分的元素法.(1) 任取],[b a 上的代表性的小区间[,]x x dx + ,作出欲求量Q 在此小区间上增量Q ∆的近似值即微元: dx x f dQ )(= .(2)求积分,Q =⎰badx x f )(.注:关键是找出微元,例如求面积要找出“面积微元”,求体积要找出“体积微元”等. (三)定积分的几何应用1)平面图形的面积(1)直角坐标系下的面积公式①由曲线(),()(()())y f x y g x f x g x ==≥与)(,b a b x a x <==所围成的图形面积132 S=⎰-badx x g x f )]()([;②由曲线 (),()(()())x y x y y y φϕφϕ==≥与)(,d c d y c y <==所围成的图形面积[()()]dcs y y dy φϕ=-⎰.(2)极坐标系下的面积,求立体的体积由曲线],,[),(βαθθ∈=r r 与两条射线βθαθ==, 所围成的曲边扇形的面积 21()2s r d βαθθ=⎰. 2)已知平行截面的面积,求立体的体积设某立体由一曲面和垂直于x 轴的两个平面 b x a x ==,围成,用垂直于x 轴的平面去截这个立体,若截面面积()A x (b x a ≤≤)是已知的连续函数,则该立体体积()baV A x dx =⎰.3)旋转体的体积①连续曲线))((b x a x f y ≤≤=与b x a x =-,及x 轴所围成的图形绕x 轴旋转一周所得的旋转体体积⎰=bax dx x f V )(2π②连续曲线))((d y c y x ≤≤=φ与d y c y ==,及y 轴所围成的图形绕y 轴旋转一周所得的旋转体体积⎰=dcy dy y V )(2φπ.(三)定积分在物理上的应用 1.变力沿直线作功变力)(x f 作用于物体,使物体由点a x =移动到b x =,)(x f 在],[b a 上连续,由微元法,任取],[b a 上的小区间[,],x x dx +其上的变力)(x f 近似看着常数,得功元素dx x f dw )(=,以a 到b 求定积分,得所求的功 w =⎰badx x f )(.2.非均匀直线细棒的质量.直线细棒的线密度为∈=x x ),(ρρ],[b a ,在],[b a 上由微元法,任取],[b a 上的小区间[,],x x dx +其上的密度近似看着常数,得质量元素 dx x dm )(ρ=,从a 到b 求定积分,得到所求的直线细棒的质量m =⎰badx x )(ρ.3. 非均匀细棒的转动惯量细棒AB 的方程为,b kx y +=密度∈=x x ),(ρρ],[b a ,任取],[b a 上的小区间],[dx x x +,视该小区间上密度与],[dx x x +对应的细棒段CD 到转轴x 轴的距离y 为常数,得转动惯量微元dx x b kx k dx x k ydI x )()(1)(12222ρρ++=+=转动惯量为 ⎰++=bax dx x b kx k I )()(122ρ§5.3基本例题及分析133例1.比较下列积分的大小关系.(1)⎰21sin dx x x 与⎰212)sin (dx x x ; (2)⎰⎰++1010)1ln(1dx x dx xx 与. 分析 在积分上下限都相同的情况下,积分大小由被积函数的大小决定. 比较两个函数的大小可以根据函数本身的图形关系、利用单调函数的定义等方法来判断.解 (1)当0x >时sin x x <,当1<x <2时,有1sin >x x ,即有 ,sin )sin (2xx x x > 则⎰⎰<21212)sin (sin dx x x dx x x . (2) 令0)0(),1ln(1)(=+-+=F x x xx F ,,)1(11)1(1)('22x xx x x F +-=+-+= 当0x >时,0)('<x F 时,()F x 单调下降,0)0()(,0=<>F x F x ,即)1l n (1x xx+<+, 则⎰⎰+<+1010)1ln(11dx x dx x .例2.估计积分1214xe ⎰的值.解 当]21,41[∈x 时, x y =单增, x y arcsin=单增, u e y =是单增,所以x xe x f y arcsin )(==在]21,41[也是单增的,因此)21()()41(f x f f <<,由641111(),()4422f e f e ππ==,得 6411()42e f x e ππ<<,同时积分得42141681)(161ππe dx x f e <<⎰. 例3.设)(x f 在a x =处连续,求极限ax dt t f xaax -⎰→)(lim.分析 x a →时,分子趋向()aaf t dt ⎰(=0),所以是型极限,一般对变上限积分很常用“(())()xaf t dt f x '=⎰”这种运算方式,所以很自然想到用洛必达法则求解.解 这是型未定式,用洛必达法则求解. 原式=)(1)(lim)'())((lim'a af x xf a x dt t tf ax xa ax ==-→→⎰.134 例 4. 设)(x f 在 ],[b a 上连续,且)(x f >0,证明:方程⎰⎰=+xaxbdt t f dt t f 0)(1)( 在区间),(b a 内恰有一个根.分析 证明根的存在可以考虑零点定理:连续函数的端点函数值符号相反则函数至少有一个零点(即函数值为0的点),如果函数是单调函数,则只能有一次穿过x 轴.本例中出现变上限积分,一般要用到它的导数,注意变上限积分函数的自变量由变上限确定.证 设 )(x F =⎰⎰+xaxbdt t f dt t f )(1)(,由于)(x f 连续, )(x f >0,则)(1x f 连续,所以)(x F 在],[b a 上也连续.又因为11()0,()()0()()ab b b a a F a dt dt F b f t dt f t f t ==-<=>⎰⎰⎰,由零点定理可知, )(x F =0在),(b a 内至少有一个根.又.0)(1)()('>+=x f x f x F 则)(x F 在],[b a 上单增,()0F x =在 ],[b a 上最多有一个根,由上述证明可知:)(x F 在),(b a 内恰好有一个根.例5. 计算下列积分 (1)⎰94sin dx xx ; (2)⎰2052sin cos πxdx x ;(3)⎰-adx x a x222(a >0); (4) ⎰---1221x x dx ;(5)⎰-+1)1ln(e dx x ; (6)⎰-+223)cos (sin ππdx x x .分析 (1)题出现了复合函数和其中间变量的导数,比较明显是用凑微分法;另外也项,可以尝试第二换元法.(2)题先用倍角公式化简后明显是用凑微分法的情形.(32xdx -的组成,所以用第二换元法的三角代换法.(4)题同(3)题,另外注意到和(arcsin )x '=.(5)题是幂函数乘对数函数的积分,显然用分部积分.(6)题的上下限是对称区间,根据奇偶函数在对称区间的积分来做.解:(1)法一:,21x d dx x=⎰⎰-=-==949494)3cos 2(cos 2cos 2sin 2sin xx d x dx xx .法二:(用第二换元法). 令,2,,2tdt dx t x x t === 当x =4时, t =2;当x =9时t =3,则93332422sin 22sin 2cos 2(cos 2cos3)t tdt tdt tt ===-=-⎰⎰⎰.(2)原式=2⎰⎰=-=-=2020276672cos 72cos cos 2sin cos πππx x xd xdx x .135(3)令tdt a dx t t a x cos ),20(,sin =≤≤=π,当x =0时, t =0;当x =a 时, t =2π,则22422220(sin )(cos )(cos )sin cos axa t a t a t dt at tdt ππ==⎰⎰⎰4422201cos 4sin 2442a a t tdt dt ππ-==⎰⎰4420sin 4()8416a t a t ππ=-=.(4)法一:用第二换元积分法,令sec ,sec tan x t dx t tdt ==,当2-=x 时,π32=t ;当1-=x 时, t =π,则⎰⎰⎰---=-=-=-12323223)1()tan (sec tan sec 1πππππdt dt t t t t x x dx . 法二:运用恒等变形和凑微分法. 当[2,1],x ∈--x =-1()x'==,令1u x =,则1121/----=⎰⎰11/2arcsin ()263u πππ--==---=-. (5)1111ln(1)ln(1)(1)[(1)ln(1)](1)ln(1)e e e e x dx x d x x x x d x ----+=++=++-++⎰⎰⎰11001(1)11e e e x dx e x x --=-+=-=+⎰ . (6)积分区间关于点对称, x 3sin 是奇函数,x 3cos 是偶函数.原式=/2/232/2/2sin cos 02cos 2xdx xdx xdx πππππ--+=+=⎰⎰⎰.例6.求证(sin )(sin )2xf x dx f x dx πππ=⎰⎰.分析 等式两边被积函数均含有)(sin x f ,注意到sin()sin t t π-=,如果t x -=π,其上下限互换了,并注意到定积分与积分变量用什么符号无关.证 令t x -=π,,dt dx -=,当0=x 时, t =π;当x =π时, t =0.00(sin )()(sin())()()(sin )xf x dx t f t dt t f t dt ππππππ=---=--⎰⎰⎰=()(sin )(sin )(sin )t f t dt f t dt tf t dt πππππ-=-⎰⎰⎰,而定积分与积分变量无关,得⎰⎰=ππ00)(sin )(sin dx x xf dt t tf ,整理得⎰⎰=πππ)(sin 2)(sin dx x f dx x xf .例7.计算⎰∞-0sin xdx e x .136 分析 被积函数的指数函数乘正弦函数,两次同型的分部积分就可以解出原函数.本题是广义积分,其实就是先求定积分,然后取上限或下限的极限.解:由不定积分⎰⎰---+-=xdxe x e xdx e x x x cos sin sin =dx x e x e x e xx x )sin (cos sin -+-----⎰,则⎰++-=--c x x e dx ex x)cos (sin 21sin ,⎰⎰∞-∞→-=00sin lim sin b xb x xdx e xdx e . 则 0lim[(/2)(sin cos )]x bb e x x -→∞-+=2/1)2/12cos sin (lim =++-∞→b b eb b 则⎰∞-0sin xdx e x 收敛,其值为1/2.例8.求曲线24x y -=与直线x =4, x 轴, y 轴在区间[0,4]上围成图形的面积S . 解S =42424222330224(4)(4)(4(34)16x dx x dx x dx x x x x -=-+-=-+-=⎰⎰⎰.例9.求由曲线θ2cos 22=r 所围成图形在r =1内的面积.分析 本题没有明确指出极坐标下θ的变化范围,那么肯定要根据已知条件找出来,注意2r >0. 题意是求两个图形围成的图形面积,而r =1是一个半径为1的圆,它和曲线一定要相交,所以首先要求出交点,从而确定积分的限.解 由 θ2cos 22=r 0≥ ,则 cos20θ≥,2,2244ππππθθ-≤≤-≤≤.令 {22cos21r r θ==,得6πθ±= ,交点(1,6π±).由于对称性,先计算第一象限内的部分.当6/0πθ<<时, r =1 ,阴影部分面积⎰⎰===660211212121πππθθd d r A ;当46πθπ<<时,,2cos 22θ=r 阴影部分的面积为2442661112cos 2(1222A r d d ππππθθθ===⎰⎰323)(421-+=+=πA A A .例10.求由曲线22x y -=与直线0),0(=≥=x x x y . 围成的平面图形绕x 轴旋转而成的旋转体体积.分析 两曲线围成图形的旋转体体积可以看成大的旋转体去掉小的旋转体,曲线绕x 轴旋转,任意点x 处的截面半径是()r y f x ==,旋转体体积微元是22()y dx f x dx ππ=.解 解方程组{22y xy x ==-且x 0≥,得x =1.则所求旋转体的体积为111222240(2)(45)x V x dx x dx x x dx πππ=--=-+⎰⎰⎰137=π513058(4)23515x x x π-+=例11.自地面垂直向上发射火箭,火箭质量为m , 试计算将火箭发射到距离地面高度为h 处所做的功.解:设地球质量M ,半径为R ,坐标原点在地心,地球对于r 点处火箭的引力大小为2rMmGf = (r 是地心到火箭的距离) . 火箭从r 处到dr r +处. 引力近似看成不变,为2)(rMmG r f =, 则功元素为dr r f dW )(=,2111()()()R R R R RRRRhhhhMm W dW f r dr Gdr GMm GMm r rR R h++++====-=-+⎰⎰⎰.§5.4 教材习题选解习题 5-11、判断题(1)定积分⎰ba x f )(由被积函数)(x f 与积分区间],[b a 确定. (√)(2)定积分⎰b a dx x f )(是x 的函数. (×) (3)若⎰=b adx x f 0)(,则0)(=x f . (×)(4)定积分⎰badx x f )(在几何上表示相应曲边梯形面积的代数和. (√)2、选择题(根据右图(见教材P122图)写出答案): (1)⎰=bdx x f 0)((B );(A )21A A +; (B )21A A -; (C )12A A +; (D )231A A A -+. (2)⎰=dcC dx x f )()(;(A )32A A +; (B )32A A -; (C )23A A -; (D )213A A A -+. (3)⎰=d dx x f 0)((C ).(A )321A A A ++;(B )321A A A -+;(C )321A A A +-;(D )213A A A +-.习题 5-21、判断题 (1)⎰⎰=2112)()(dx x f dx x f ;(×)138 (2)当c x f =)(时,⎰⎰+=11)()(a adx x f dx x f ;(√)(3)⎰⎰=babadx x f k dx x kf )()(只对非零常数k 成立;(×)(4)⎰⎰⎰±=±bababadx x f k dx x f k dx x f k x f k )()()]()([22112211;(√)(5)⎰⎰⎰--+=ππππππ2339929sin sin sin xdx xdx xdx . (√)2、已知⎰=10341dx x ,⎰=10231dx x ,⎰=1021xdx ,⎰=201cos πxdx ,⎰=201sin πxdx ,求定积分:(1)130(421)x x dx ++⎰;(2)120(2)x dx +⎰;(3)11(3)3x dx +⎰; (4)130(1)x dx +⎰; (5)220sin 2x dx π⎰; (6)20(sin cos )a x b x dx π+⎰.解 (1)⎰⎰⎰⎰=+⨯+⨯=++=++101010103331212414124)124(dx xdx dx x dx x x ;(2)⎰⎰⎰⎰⎰=+⨯+=++=++=+1010*******2231642143144)44()2(dx xdx dx x dx x x dx x ; (3)⎰⎰⎰=+=⨯+⨯=+=+101010611629131213313)313(dx xdx dx x ;(4)⎰⎰⎰⎰⎰⎰+++=+++=+10101010123231333)133()1(dx xdx dx x dx x dx x x x dx x419121331341=+⨯+⨯+=; (5)2222200001cos 11111sin cos (2)22222224x x dx dx dx xdx ππππππ-==-=⨯-=-⎰⎰⎰⎰; (6)⎰⎰⎰+=⨯+⨯=+=+2020211cos sin )cos sin (πππb a b a xdx b xdx a dx x b x a .3、设)(x f 和)(x g 在],[b a 上连续,且)()(0x g x f ≤≤试用定积分的几何意义说明⎰⎰≤babadx x g dx x f )()(.解 令)()()(x f x g x h -=,则在],[b a 上,≥)(x h 0,()0b ah x dx ∴≥⎰,即⎰⎰⎰≥-=-b a b a badx x f dx x g dx x f x g 0)()())()((,()()bbaaf x dxg x dx ≤⎰⎰.4、用第3题的结论比较定积分的大小: (1)⎰21xdx 与⎰212dx x ;(2)⎰43ln xdx 与⎰432)(ln dx x ;(3)⎰20πxdx 与⎰20sin πxdx ;(4)⎰10sin xdx 与⎰12sin xdx .139解(1) 在[1,2]上,x x >2,⎰⎰<∴21212dx x xdx .(2) 在[3,4]上,ln 1x >,知2ln (ln )x x <∴⎰43ln xdx <⎰432)(ln dx x .(3) 在]20[π,上,x x x f sin )(-=,'()1cos 0f x x =-≥,即()f x 在]2,0[π是增函数,显然在]20[π,上,当0=x 时,)(x f 取到最小值0,即在]20[π,上0sin )(≥-=x x x f ,有sin x x ≤,则220sin xdx xdx ππ>⎰⎰.(4) 在[0,1]上,0sin 1x <<,2sin sin x x >⎰⎰>∴1012sin sin xdx xdx .习题 5-31、判断题 (1)当⎰=Φxadt t f x )()(时,)()('x f x =Φ;(√)(2)对任意函数)(x f 有⎰-=baa Fb F dx x f )()()(;(×)(3)⎰=--122)11(πdx x;(×)(4)0sin 20=⎰kxdx π. (√)2、计算定积分(2))0()13(211>+-⎰+a dx x x x a ;(3)⎰+2142)1(dx xx ;(4)4dx +⎰; (5)⎰+33121x dx ; (6)⎰--212121xdx ; (7)⎰>+a a x a dx 3022)0(; (8)⎰-4221x dx; (9)⎰-1024xdx ; (10)⎰-+++11241133dx x x x ; (11)⎰23sin πxdx ; (12)dx x |sin |20⎰π;(13)⎩⎨⎧>-≤=1,121,)(2x x x x x f ,求⎰20)(dx x f ; (14)⎰+π0)cos 3sin 2(dx x x ; (15)⎰402tan πxdx ;(16)⎰++212123dx xx x ; (17)⎰+π02)2cos (dx xe x .140 解(2)1211(3)a x x dx x +-+⎰1123|)|ln 2(++-=a x x x0211)1ln(2)1()1(23-+-+++-+=a a a)1ln(22523++++=a a a a .(3) ⎰+2142)1(dx x x 8212463)3131(3183138)3131(2133==--⨯-=-=-x x .(4) ⎰⎰+=+=+94942232194)2132()()1(x x dx x x dx x x)1621832()81212732(⨯+⨯-⨯+⨯= 6145621110)8316()28118(=+=+-⨯=.(5) ⎰+33121xdx663arctan 331πππ=-==x .(6)⎰--212121x dx 3)6(6arcsin 2121πππ=--==-x. (7)220dx a x +aa a xaa 3031arctan130ππ=-⋅==. (8)⎰-4221x dx 5ln 213ln 31ln 2153ln 21|11|ln 2142-=-=+-=x x . (9) ⎰-1024xdx60arcsin 21arcsin 2arcsin 10π=-==x . (10) ⎰-+++11241133dx x x x ⎰-++++-+=112222143)1(3)1(3dx x x x x x ⎰⎰⎰--+++++=1111222141)1(23x dx x x d dx 1111211113arctan 4)1ln(233----++-=x x x x 2604[()]2444πππ=-++--=-.(11)⎰23sin πxdx⎰=---=-=-=2020203232)10()10(31cos cos 31)(cos )1(cos πππx x x d x .141(12)dx x |sin |20⎰π⎰⎰+-=-=ππππππ0202cos cos sin sin xx xdx xdx4)11()11(=+++=.(13) ⎰⎰⎰=-+=-+=-+=21212121032312)02(31)(3)12()(x x x dx x dx x dx x f .(14)⎰+π)cos 3sin 2(dx x x ⎰⎰+-=+=ππππ0sin 3cos 2cos 3sin 2x x xdx xdx4)00(3)11(2=-++=(15)⎰402tan πxdx ⎰-=-=-=4040241)(tan )1(sec οππx x dx x .(16)⎰++212123dx xxx 42121)2t t t dt =++)13253(2)222322453(2)3253(22135++-+⋅+⋅=++=t t t1568215142-=. (17) ⎰+π02)2cos (dx x e x ⎰⎰++=ππ002cos 1dx x dx e x 12)00(21)02()1(sin 2121000-+=-+-+-=++=πππππππe e x x e x.3、设k 为正整数,证明:(1)sin 0kxdx ππ-=⎰;(2)⎰-=ππ0cos kxdx .证明 :(1)⎰⎰---=---=-==ππππππππ0))cos((cos 1cos 1)(sin 1sin k k k kx k kx kxd k kxdx ; (2)⎰⎰---=--===ππππππππ0))sin((sin 1sin 1)(cos 1cos k k k kx k kx kxd k kxdx .4、设某公司拟在市场推出一种新产品,据市场预测,产品最终可占有全国市场的4%,即每年可销售480万元,产品刚上市时大家陌生,故开始时达不到预测数,若收益函数变化率])1(11[480)('3+-=t t R (万元/年),问第二年的收益为多少?第三年呢? 解 第二年的收益为:⎰⎰+-=21213])1(11[480)('dt t dt t R32446]4121191212[480])1(121[480212=⋅--⋅+=+⋅+=t t (万), 第三年的收益为:142 ⎰⎰+-=32323])1(11[480)('dt t dt t R 31468]91212161213[480])1(121[480212=⋅--⋅+=+⋅+=t t (万).习题 5-41、判断题:(1)定积分换元时要交换上、下限;(×)(2)⎰-=++2232110)2)(cos 1(ππdx x x x ;(√) (3)222sin 4cos x u udu π=⎰⎰;(√) (4)dx xdx x e e +-=+⎰⎰--11)1ln(11;(×) (5)⎰-=--124)1(πdx x . (√)2、计算定积分(1)⎰+2024t dt; (2)⎰+10431dx x x ; (3)dt t t ⎰-211; (4)31e ⎰; (5)21211cos dt t tππ⎰; (6)⎰203cos sin πxdx x ; (7)⎰+ωπϕω02)(sin dt t ; (8)⎰-222cos cos ππxdx x ; (9)222)1(x xdx+⎰; (10)⎰-121dx x ; (11)⎰>-2022)0(a a xa dx.解(1)⎰+224t dt ⎰⎰===40402821sec 4)tan 2(tan 2πππdu u u d u t . (2) ⎰+10431dx x x ⎰=+=++=1014442ln 41)1ln(411)1(41x x x d . (3) dt tt ⎰-21121122220011(1)2111u u u d u du t u u u =+-+==+++⎰⎰ 22arctan 22)111(21010102π-=-=+-=⎰u u du u .(4)31e⎰222221122221111111()2222t t t t t t d e t e dt dt tx etet e-----=⋅=====⋅⎰⎰⎰.143(5)22111cos dt t t ππ⎰2121111cos ()sin sin sin 12d t t t ππππππ=-=-=-=-⎰. (6)⎰203cos sin πxdx x ⎰=-===2204341)01(41sin 41)(sin sin ππxx xd . (7)20sin ()tdt πωωϕ+⎰1cos 2()2tdt πωωϕ-+=⎰11cos 2()(2())24t t d t ππωωωϕωϕω=-++⎰ 011sin 2()[sin(22)sin 2]24242t πωπππωϕπϕϕωωωωω=-+=-+-=. (8) ⎰-222cos cos ππxdx x 222222sin 213sin 61)cos 3(cos 21ππππππ---+=+=⎰x x dx x x 32)11(21)11(61=++--=. (9) 2220)1(x xdx +⎰222201(1)(1)2x d x -=++⎰52)151(211121202=--=+-=x . (10) ⎰-1021dx x ⎰⎰⎰+===202022022cos 1cos )(sin cos sin πππdu u udu u ud u x 42sin 414)2(2cos 4121202020πππππ=+=+=⎰u u ud u . 969323 (11)20a ⎰⎰⎰===60606cos )sin (sin πππdu u a u a d ua x . 3、计算定积分: (1)10xxe dx -⎰; (2)0sin t tdt π⎰; (3)120arcsin xdx ⎰;(4)1arctan x xdx ⎰; (5)⎰202cos πxdx e x ; (6)⎰π2sin xdx x .解(1) 11111102()1xx xx xxe dx xdx e xee dx e ee ------=-=-+=--=-⎰⎰⎰;(2)00sin (cos )cos cos sin t tdt td t t ttdt tπππππππ=-=-+=+=⎰⎰⎰.(3)111122220001arcsin arcsin (arcsin )26xdx x xxd x π=-=⋅-⎰⎰⎰112222011(1)(1)1122122122x d x πππ-=++-=+⋅+-⎰.144 (4) 211112220000111arctan arctan (arctan )22821x dx x xdx x x x d x x π=-=-+⎰⎰⎰ 112001111(1)[arctan )]8218242dx x x x πππ=--=--=-+⎰. (5)⎰22cos πxdx e x ⎰⎰-==202022022)(sin sin )(sin πππx x x e xd x e x d e⎰⎰⎰-+=+=-=202020220222)(cos 2cos 2)(cos 2sin 2πππππππx xxxe xd x e e x d e e xdx e e22024cos x e e xdx ππ=--⎰,⎰-=∴202)2(51cos πx x e xdx e . (6)⎰π2sin xdx x ⎰⎰+-=-=πππ22cos 2cos )(cos xdx x x x x d x222202(sin )2sin 2sin 2cos 4xd x x xxdx xππππππππ=+=+-=+=-⎰⎰.4、求定积分(1)⎰--+12511x dx ;(2)⎰-10221dt t t ;(3)⎰414ln dx xx ;(4)11ln e x dx x +⎰;(5)⎰-ππxdx x 34sin ;(6)⎰-+11231)1cos (dx x x .解(1) ⎰--+12511x dx 6ln 51)1ln 6(ln 51|511|ln 51511)511(511212=-=+=++=----⎰x x x d .(2) ⎰-1221dt t t ⎰⎰⋅=⋅=202022)cos (sin )(sin cos sin sin ππdu u u u ud u u t 222220000111cos 411sin 2cos 444288u udu du u udu ππππ-===-⎰⎰⎰201sin 4163216u πππ=-=. (3) ⎰414ln dx xx 2222221111ln 1()ln ln 4t d t tdt t t t dt t t ==-⎰⎰ 12ln 22ln 221-=-=t .(4) 11ln ex dx x +⎰2211113(1ln )(1ln )(1ln )[(11)1]222e e x d x x =++=+=+-=⎰.145(5) ⎰-ππxdx x 34sin 0=(奇函数).(6)⎰-+11231)1cos (dx x x ⎰⎰⎰--=+=+=11111231220)cos (dx dx dx x x (奇函数). 5、证明在区间],[a a -上,若)(x f 为偶函数,则⎰⎰-=aaadx x f dx x f 0)(2)(.证明00()()()aa a af x dx f x dx f x dx --=+⎰⎰⎰,对0()()af x d x -⎰,令x u =-,有00()()()()()()()()()()aaaaaf x d x f u d u f u d u f u d u f u d u -=--=-=-=⎰⎰⎰⎰⎰,又因为积分与变量形式无关,知()()()()aaf u d u f x d x =⎰⎰,从而⎰⎰-=aaadx x f dx x f 0)(2)(.6、设k 为自然数,试证: (1)2cos kxdx πππ-=⎰;(2)2sin kxdx πππ-=⎰.证明 (1)⎰⎰⎰----+=+=ππππππππkxdx x dx kx kxdx 2cos 212122cos 1cos 2111cos 2(2)sin 2(00)444kxd kx kxk kkππππππππ--=+=+=+-=⎰. (2)21cos 211sin cos 2222kx kxdx dx xkxdx ππππππππ-----==-⎰⎰⎰ ⎰--=--=-=-=ππππππππ)00(412sin 41)2(2cos 41k kx k kx kxd k .7、证明:⎰⎰>+=+11122)0(11x x x x dx x dx . 证明 1211111112212211()1111111x t x x x x x d dx t t dt dt x t t t t==-=-+=+++⎰⎰⎰⎰ 11221111x xdt dx t x ==++⎰⎰.(积分与变量形式无关,只与积分上下限和函数有关)习题 5-51、某河床的横断面如下图所示(图形见教材P134),为了计算最大排洪量,需要计算它的横断面的面积,试根据图示的测量数据(单位:m )用梯形法计算其横断面面积.解26.67277279.529.55.225.21.121.10(4)(36+++++++++++≈⎰dx x f146 )22.222.21.421.46.6++++++)2.21.46.6779.55.21.1(4+++++++= 6.145=(2m ). 2、用矩形法,梯形法与抛物线法近似计算定积分⎰21xdx ,以求2ln 的近似值(取10=n ,被积函数值取四位小数).解 取10=n ,分点为:10=x ,1.11=x ,2.12=x ,…,9.19=x ,210=x 且101=∆x矩形法:用外接矩形21(1 3.4595+2.7282)0.7187710x ≈+=⎰,或者用内接矩形211(0.5 3.4595+2.7282)0.6687710dx x ≈+=⎰梯形法:2111( 1.5000 3.4595+2.7282)0.6938102dx x ≈⨯+=⎰,抛物线法:211(1.50002 2.72824 3.4595)0.69316*5dx x ≈+⨯+⨯=⎰.习题 5-61、计算反常积分 (1)41x dx ⎰∞+;(2)dx e ax-+∞⎰0(0a >);(3)⎰∞+a dx x x ln (0a >);(4)⎰∞+∞-++222x x dx ; (5)⎰-121x xdx ;(6)⎰-e x x dx 12)(ln 1;(7)xdx e xsin 0-+∞⎰;(8)⎰242cos ππx dx . 解(1)41x dx ⎰∞+31)1lim (3131331341=--=-==--+∞→∞+--∞+⎰b x dx x b .147(2) dx eax-+∞⎰ae e a e aax d e a ab b axax 1)lim (11)(1000=--=-=--=-+∞→∞+--∞+⎰.(3) ⎰∞+adx x x ln +∞=-===+∞→∞+∞+⎰)ln ln lim (21ln 21)(ln ln 222a b x x xd b aa (发散).(4) ⎰∞+∞-++222x x dx∞+∞-∞+∞-+=+++=⎰)1arctan(1)1()1(2x x x dlim arctan(1)lim arctan(1)a b a b →+∞→-∞=+-+πππ=--=)2(2.(5)⎰-121x xdx101)1(1lim 211)1(21201022=-+---=---=+→⎰εεxx d . (6)⎰-ex x dx 12)(ln1101(ln )lim arcsin(ln )122ee x x εεππ+→-===-=⎰.(7)xdx e xsin 0-+∞⎰(cos )cos cos ()xxx e d x e xxd e +∞+∞+∞---=-=-+⎰⎰00lim cos cos 0(sin )a x a e a e e d x +∞--→+∞=-+-⎰01sin sin xx e xxde +∞+∞--=-+⎰xdx e e b e x bb sin 0sin sin lim 10-∞+-+∞→⎰-+-=xdx e x sin 10-+∞⎰-=,21sin 0=∴-∞+⎰xdx e x . (8) ⎰242cos ππx dx 2242004sec lim tan lim tan()12xdx x πππεπεεπε++-→→===--=+∞⎰(发散). 2、求分开数值为1C 的两个相反电荷所需要的能量,假定正负电荷开始相距1m ,将一个电荷移动至另一个电荷的无穷远处.解 设两个相反电荷的横坐标分别为0,1,则将2C 移至无穷远处所需能量为2221111()(lim ()1)a C k dx kC kC kC x xa+∞+∞→+∞=-=-+=⎰.习题 5-71、判断题(1)微元dx x f dA )(=是所求量A 在任意微小区间].[dx x x +上部分量A ∆的近似值;(√)148 (2)由曲线2x y =与3x y =围成图形面积为⎰-=13)(dx x x A ; (×)(3)由曲线3x y =与x y =在[0,1]上围成图形绕y 轴旋转所得旋转体体积⎰-=126)(dy y y V ππ; (√)(4))(x f y =在任意微小区间],[dx x x +上的弧微分为21y ds '+=. (×) 2、将阴影部分的面表用定积分表示出来(图形见教材P144): 解 (4)令223x x =+,有(1)(3)0x x +-=,∴两曲线交点横坐标为1-=a ,3=b ,∴ ⎰--+=312)32(dx x x A .4、求由曲线围成图形的面积(1)xy 1=与直线x y =及2=x ;(2)x e y =,xe y -=与直线1=x ; (3)x y ln =,2ln =y ,7ln =y ,0=x ;(4)22,4y x x y =+=;(5)2x y =与直线x y =及x y 2=.解(1) ⎰-=---=-=-=212122ln 23)021(2ln 2|)|ln 2()1(x x dx x x A .(2) 21)11(1)()(11-+=+-+=+=-=⎰--e e e e e e dx e e A xxxx(3) 由ln y x =,有yx e =,则⎰=-===7ln 2ln 7ln 2ln 527yy edy e A .(4) 由242y y =-有2280y y +-=,即(2)(4)0y y -+=, 解得两曲线交点纵坐标为4-=a ,2=b ,从而2232244(4)(4)18226y y y A y dx y --=--=--=⎰.(5) 显然2x y =与x y =交点横坐标为0,1,2x y =与x y 2=交点横坐标为0,2,⎰⎰⎰⎰-+=-+-=1021102122)2()2()2(dx x x xdx dx x x dx x x A67)311()384(21)3(2213212=---+=-+=x x x .5、求由曲线围成图形的面积: (1)θρcos 2=,0=θ,6πθ=;(2))cos 1(2θρ+=a ,0=θ,πθ2=.解(1) 266001(2cos )(1cos 2)2A d d ππθθθθ==+⎰⎰66011sin 2262264ππππθθ=+=+⋅=+.149(2) θθθθθππd a d a A )cos cos 21(2)]cos 1(2[212202220++=+=⎰⎰ 2203cos 22(2cos )22a d πθθθ=++⎰ππθθθπ222026)003(2)42sin sin 223(2a a a =++=++=.6、求曲线围成图形绕指定轴旋转所得旋转体的体积:(1)042=+-y x ,0=x 及0=y ,绕x 轴;(2)42-=x y ,0=y 绕x 轴;(3)12222=+by a x ,绕x 轴;(4)x y =2,y x =2,绕y 轴;(5)x y sin =,x y cos =及x 轴上的线段]2,0[π绕x 轴旋转.解(1) 因为 dx x dV 2)42(+=π,所以3222222(24)4(44)4(24)3x V x dx x x dx x x πππ---=+=++=++⎰⎰8324(88)33ππ=--+-=.(2) 因为 dx x dV 22)4(-=π,所以dx x x V )168(2422+-=⎰-π2235)16385(-+-=x x x ππ15512=.(3) 因为 2222(1)x dV y dx b dx aππ==-,所以a aa a x a xb dx a x b V ---=-=⎰)31()1(322222ππ234ab π=.(4) 因为 dy y y dy y dy y dV )()()(4222-=-=πππ,所以2514013()()02510y y V y y dy πππ=-=-=⎰.(5) 因为 xdx dV 2sin π=,]4,0[π∈x ,xdx dV 2cos π=,]2,4[ππ∈x ,224204sin cos V xdx xdx πππππ=+⎰⎰4(1cos 2)2x dx ππ=-⎰)2(4)2cos 1(224-=++⎰πππππdx x .7、有一铸铁件,它是由三条线:抛物线2110y x =,11012+=x y 与直线10=y 围成的图形,绕y 轴旋转而成的旋转体,算出它的重量(长度单位是厘米(cm),铁的比重是7.8g/cm 3).。
高等数学 上册 第5章 定积分及其应用
y
y f (x)
边梯形面积
A?
ao
bx
一、定积分问题举例
y
y
oa
bx
(四个小矩形)
oa
bx
(九个小矩形)
显然,小矩形越多,矩形总面积越接近曲边梯形面积。
一、定积分问题举例
在区间 [a, b]内插入若干个分点,
y
a x0 x1 x2
xn 1 xn b,
把区间[a,b] 分成 n 个小区间[xi 1, xi ],长度为 xi xi xi 1;
b
c
c
a f (x)dx a f (x)dx b f (x)dx
c
b
a f (x)dx c f (x)dx
比如 a b c ,
ab
c
三、定积分的性质
性质6. 若在[a,b]上
则
n
证: f (i ) xi 0
i 1
b
f (x)d x
n
lim
0 i1
f
( i
)
xi
0
推论1. 若在[a,b]上
二、定分的定义
说明1:如果不论对[a,b]怎样的分法,也不论在小区间 [xi1, xi ] 点i怎样的取法,
只要, 总有S趋于确定的极限I,就称f 在 [a,b] 上可积,
说明2:定积分仅与被积函数及积分区间有关 ,而与积分变量用什么字
母表示无关 ,即:
b
a f (x)dx
b
a
f
(t)
d
t
b
a
f
(u)
第五章 定积分及其应用
第一节 定积分的概念及性质
目录
一、定积分问题举例 二、 定积分的定义 三、 定积分的性质
高等数学第五章_定积分总结
第五章 定积分创新生技102班 张梦菲2010015066一、主要内容Ⅰ. 定积分概念:1. 定积分定义:设()f x 在区间[,]a b 上有界,在[,]a b 中任意插入若干个分点 0121n n a x x x x x b -=<<<<<=.把[,]a b 分成n 个小区间1[,],(1,2,,)i i x x i n -=,小区间的长度记为1,(1,2,,)i i i x x x i n -∆=-=,在1[,]i i x x -上任意取一点i ξ,作1()ni i i f x ξ=∆∑,若01lim()niii f x λξ→=⋅∆∑ 1(max{})ii nx λ≤≤=∆存在. 就称该极限为()f x 在[,]a b 上的定积分.记为1()lim ()nbi i ai f x dx f x λξ→==⋅∆∑⎰当上述极限存在时,称()f x 在[,]a b 上可积. 2. 若()f x 在[,]a b 上连续,则()f x 在[,]a b 上可积。
3. 若()f x 在[,]a b 上有界,且只有有限个间断点,则()f x 在[,]a b 上可积. Ⅱ. 定积分的几何意义 定积分()baf x dx ⎰在几何上表示:由曲线()y f x =,直线x a =和x b =以及x 轴所围图形面积的代数和 (x 轴上方的面积取正,x 轴下方的面积取负) Ⅲ. 定积分的性质1. 补充规定:(1)当a b =时,()0baf x dx =⎰(2)当a b >时,()()baabf x dx f x dx =-⎰⎰2. 性质:(1) [()()]()()bbbaaaf xg x dx f x dx g x dx --+=+⎰⎰⎰(2) ()(),()bba akf x dx k f x dx k =⎰⎰为常数(3) ()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰(4)b adx b a =-⎰(5) 若在[,]a b 上,()0f x ≥,则()0,()baf x dx a b ≥<⎰推论1:若在[,]a b 上,()()f x g x ≤,则()(),()bbaaf x dxg x dx a b ≤<⎰⎰.推论2:()(),()bbaaf x dx f x dx a b ≤<⎰⎰.(6 ) 若在[,]a b 上,()m f x M ≤≤,则()()(),()bam b a f x dx M b a a b -≤≤-<⎰(7) (定积分中值定理):若()f x 在[,]a b 上连续,则在[,]a b 上至少存在ξ,使()()(),()baf x dx f b a a b ξξ=-≤≤⎰. 3. 连续函数()f x 在[,]a b 上的平均值,1()ba y f x dxb a-=-⎰ Ⅳ. 积分上限函数及其导数 1. 若对任意[,]x a b ∈,()xaf t dt ⎰存在,则称()()xax f t dt Φ=⎰为积分上限的函数.2. 若()f x 在[,]a b 上可积,则()f x 在[,]a b 上有界. 且积分上限函数()()xax f t dt Φ=⎰在[,]a b 上连续.3. 设()f x 在[,]a b 上连续,则()()xax f t dt Φ=⎰在[,]a b 上可导,且'()()(),()xa d x f t dt f x a xb dxΦ==≤≤⎰. 4. 设()f x 连续,()x φ可导,则()''()()[()]()x ad x f t dt f x x dx φφφΦ==⎰. 5. 设()f x 连续,()x φ,()x ϕ可导,则 ()'''()()()[()]()[()]()x x d x f t dt f x x f x x dxφϕφφϕϕΦ==-⎰. Ⅴ. 牛顿——莱布尼兹公式.(微积分基本定理)设()f x 在[,]a b 上连续,()F x 为()f x 在[,]a b 上的一个原函数,则()()()baf x dx F b F a =-⎰.Ⅵ. 定积分的换元法设()f x 在[,]a b 上连续,()x t φ=满足: (1) (),()a b φαφβ==.(2)()t φ在[,]αβ(或[,]βα)上具有连续导数,且()x t φ=的值域不越出[,]a b 的范围,则有'()[()]()baf x dx f t t dt βαφφ=⎰⎰.注:当()t φ的值域[,]R A B φ=越出[,]a b 的范围,但满足其余条件时,只要()f x 在[,]A B 上连续,则换元法的结论仍然成立.Ⅶ. 定积分的分部积分法设()u x 与()v x 在[,]a b 上具有连续导数,则有()()()()()()bbbaaau x dv x u x v x v x du x =-⎰⎰ Ⅷ. 几类特殊的积分公式1. 设()f x 在[,]a a -上连续,则有0()[()()]aaaf x dx f x f x dx -=+-⎰⎰.2()()[,]()()[,]aaaf x dx f x a a f x dx f x a a -⎧-⎪=⎨⎪-⎩⎰⎰当为上连续的偶函数时0当为上连续的奇函数时2. 设()f x 是以l 为周期的连续函数,则对任意实数a ,有()()a llaf x dx f x dx +=⎰⎰.3. 设()f x 在[0,1]上连续,则220(sin )(cos )f x dx f x dx ππ=⎰⎰(sin )(sin )2xf x dx f x dx πππ=⎰⎰20(sin )2(sin )f x dx f x dx ππ=⎰⎰4. 2200123134221242sin cos 13531n n n n n n n n n xdx xdx n n n n πππ--⎧⎪-⎪--⎪==⎨-⎪=⎪⎪⎩⎰⎰为正偶数为大于1的正奇整数1 Ⅸ. 反常积分(广义积分) 1. 无穷限的反常积分(1) 设()f x 在[,)a +∞上连续, ()lim ()ba ab f x dx f x dx ∞→+∞=⎰⎰(2) 设()f x 在(,]b -∞上连续,()lim ()bbaa f x dx f x dx -∞→-∞=⎰⎰(3) 设()f x 在(,)-∞+∞上连续,000()()()lim ()lim ()baa b f x dx f x dx f x dx f x dx f x dx ∞∞-∞-∞→-∞→+∞=+=+⎰⎰⎰⎰⎰若上述各式右端的极限存在,则对应的反常积分收敛,否则称该反常积分发散. 注:(3)的右端是两个独立的极限,只有当两个极限都存在使,才有()f x dx ∞-∞⎰收敛. 只要有一个极限不存在,()f x dx ∞-∞⎰就发散.2. 无界函数的反常积分(1) 设()f x 在(,]a b 上连续,点a 为()f x 的瑕点,()lim ()bba tt af x dx f x dx +→=⎰⎰(2) 设()f x 在[,)a b 上连续,点b 为()f x 的瑕点,()lim ()btaat bf x dx f x dx -→=⎰⎰(3) 设()f x 在[,]a b 上除点c ()a c b <<外连续,点c 为()f x 的瑕点,()()()lim ()lim ()bc b t baacatt ct cf x dx f x dx f x dx f x dx f x dx -+→→=+=+⎰⎰⎰⎰⎰若上述各式右端的极限存在,则对应的反常积分收敛,否则称该反常积分发散. 注:(3)的右端是两个独立的极限,只有当两个极限都存在使,才有()baf x dx ⎰收敛. 只要有一个极限不存在,()baf x dx ⎰就发散.3. 反常积分的审敛法(1) (比较审敛法1) 设()f x 在[,)(0)a a +∞>上连续,且()0f x ≥. 若存在常数0M >及1p >,使得()p Mf x x≤ ()a x ≤<+∞,则反常积分()a f x dx +∞⎰收敛;若存在常数0N >,使得()Nf x x≥ ()a x ≤<+∞,则反常积分()a f x dx +∞⎰发散.(2) (极限审敛法1) 设()f x 在[,)a +∞上连续,且()0f x ≥. 若存在常数1p >,使得lim ()px x f x →∞存在,则反常积分()af x dx +∞⎰收敛;若lim ()0x xf x d →∞=>,(或lim ()x xf x →∞=+∞)则反常积分()af x dx +∞⎰发散.(3) (比较审敛法2)设()f x 在(,]a b 上连续,且()0f x ≥. x a =为()f x 的瑕点.若存在常数0M >及1q <,使得()()()q Mf x a x b x a ≤<≤-,则反常积分()b a f x dx ⎰收敛;若存在常数0N >,使得()Nf x x a≥- ()a x b <≤,则反常积分()b a f x dx ⎰发散.(4) (极限审敛法2) 设()f x 在(,]a b 上连续,且()0f x ≥. x a =为()f x 的瑕点. 若存在常数01q <<,使得l i m ()()qx ax a f x +→-存在,则反常积分()baf x dx ⎰收敛;若lim ()()0x ax a f x d +→-=>,(或lim ()()x ax a f x +→-=+∞)则反常积分()baf x dx ⎰发散.2'0'02)()()(a M dx x M dx x f dx x f dx x f aa aa=≤≤=⎰⎰⎰⎰ξξ.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
si v( i )t i
(i 1, 2,, n)
机动 目录 上页 下页 返回 结束
(c) 近似和.
(d) 取极限 .
上述两个问题的共性: • 解决问题的方法步骤相同 :
“大化小 , 常代变 , 近似和 , 取极限 ”
• 所求量极限结构式相同: 特定乘积和式的极限
机动
目录
上页
下页
返回
机动
目录
上页
下页
返回
结束
三、定积分的基本性质 (设所列定积分都存在)
a f ( x ) dx 0
2.
a
a dx b a
( k 为常数)
b
4.
a [ f ( x) g ( x)] dx a f ( x) dx a g ( x) dx
b
b
b
机动
目录
上页
下页
返回
结束
a
机动 目录 上页 下页 返回 结束
b
第 5章
§5.2 微积分基本定理
一、 积分上限的函数
二、 牛顿-莱布尼茨公式
引例:
在变速直线运动中, 已知位置函数
之间有关系:
T2
1
与速度函数
s(t ) v(t )
内经过的路程为
物体在时间间隔
T
v(t ) d t s (T2 ) s (T1 )
A5 b x
a f ( x) d x A1 A2 A3 A4 A5
各部分面积的代数和(几何意义)
机动 目录 上页 下页 返回 结束
可积的充分条件:
定理1.
定理2.
且只有有限个间断点
例1. 利用定义计算定积分
解: 将 [0,1] n 等分, 分点为 取
y
yx
o
机动 目录 上页
1 1 lim n i n i 1 1 ( )2 n
n
1 1 dx arctan x 0 . 2 0 1 x 4
证明
只要证
在 证:
内为单调递增函数 .
F ( x) 0
x 0
x f ( x) f (t ) d t f ( x) t f (t ) d t
0
x
f ( x) ( x t ) f (t ) d t
x
0 f (t ) d t
2
x
2
0 f (t ) d t
0 x
说明: • 积x ) dx
ba
b
f ( )
y
y f ( x)
o a
性质7 目录 上页 下页 返回
b x
结束
例3. 设函数 f (x)可导,且 求极限 解: 由积分中值定理,存在
故
3
2 lim sin
lim f ( )
0 i 1
n
n
y
lim f ( i )xi
0 i 1
o a x1
xi 1 xi
i
机动
目录
上页
下页
返回
结束
(2) 变速直线运动的路程
设某物体作直线运动, 已知速度 且
求在运动时间内物体所经过的路程 s.
解决步骤: (a) 大化小. n 个小段 过的路程为 (b) 常代变. 得 将它分成 在每个小段上物体经
bx
a f ( x) dx y0x y1x yn1x
a ( y y y b 0 1 n 1 ) n
2.
a f ( x) dx y1x y2x yn x
a ( y y y ) b 1 2 n n
b
(右矩形公式)
积 分 和
说明:定积分仅与被积函数及积分区间有关 ,而与积分 变量用什么字母表示无关 ,即
a f ( x) d x a f (t ) d t a f (u) d u
机动 目录 上页 下页 返回 结束
b
b
b
定积分的几何意义:
曲边梯形面积 曲边梯形面积的负值
y
A1 a
b
A3 A2 A4
o a
( x) lim
( x h) ( x ) lim f ( ) f ( x) h 0 h 0 h
机动 目录 上页 下页 返回 结束
说明:
(1) 定理 1 证明了连续函数的原函数是存在的.同时为
通过原函数计算定积分开辟了道路 .
(2) 变限积分求导:
d ( x) f (t ) d t f [ ( x)] ( x) dx a u ( x) d a d u ( x) f ( t ) d t f ( t ) d t f ( t ) d t v( x) a v ( x ) d x dx
6. 若在 [a , b] 上 推论1. 若在 [a , b] 上
则 则
推论2.
7. 设 M max f ( x) , m min f ( x) , 则
[a , b] [a , b]
机动
目录
上页
下页
返回
结束
8. 积分中值定理 则至少存在一点 使
a f ( x) dx f ( )(b a)
f [u ( x)] u ( x) f [v( x)] v( x)
机动 目录 上页 下页 返回 结束
例1. `` ( x) 3x 2 sin x 6 `` 例2. `` 例3. ``
dy cos x `` `` y4 dx 2 ye
说明 目录 上页 下页 返回 结束
6.
机动 目录 上页 下页 返回 结束
例4.
证明:根据条件必定存在
由连续函数的局部保号性,
(这里,U ( x0 , ) [a, b], 当x0取端点a、b时,则为右、左邻域)
又定积分对积分区间的可加性,得
上式右端的第一、第三个积分均非负,而第二积分满足
从而 f ( x) dx 0.
i xi 1 xi b x
此时称 f ( x ) 在 [ a , b ] 上可积 .
机动 目录 上页 下页 返回 结束
积分上限
[a , b] 称为积分区间
a
积分下限
b
f ( x) d x lim f ( i ) xi
0 i 1
n
被 积 函 数
被 积 表 达 式
积 分 变 量
dx lim i xi
2
n
y x2
0 i 1
lim
1 3
n
o
i n
1x
注
目录
上页
下页
返回
结束
[注] 利用 (n 1)3 n3 3n 2 3n 1 , 得
(n 1)3 n3 3n 2
3n
1
n3 (n 1)3 3(n 1) 2 3(n 1) 1
2
则
2 i f (i )xi i2 xi 3 n
i n
下页 返回
1x
结束
1 n 2 1 1 f (i )xi 3 i 3 n(n 1)(2n 1) n i 1 n 6 i 1
n
注
1 1 1 (1 )(2 ) 6 n n
y
1 2 x 0
机动 目录 上页 下页 返回 结束
y
3.
a f ( x) dx
1 [ yi 1 yi ]x o a xi 1xi 2 bx i 1 ba 1 ( y0 yn ) ( y1 yn1 ) (梯形公式) n 2
b
n
为了提高精度, 还可建立更好的求积公式, 例如辛普森 公式, 复化求积公式等, 并有现成的数学软件可供调用.
b
积分上限函数可导性
定理1. 若
x a
( x) f (t ) d t
则积分上限函数 y f ( x) y
( x)
x b x 证: x , x h [a , b] , 则有 xh x ( x h) ( x ) 1 x h f (t ) d t f (t ) d t a h h a 1 xh f (t ) d t f ( ) ( x x h) h x
第 5章
§5.1 定积分的概念与性质
一、 定积分问题举例
二、 定积分的定义 三、 定积分的基本性质
一、 定积分问题举例
矩形面积 梯形面积 (1) 曲边梯形的面积 设曲边梯形是由连续曲线 以及两直线 所围成 , 求其面积 A .
y f ( x)
A?
机动
目录
上页
下页
返回
结束
解决步骤 : (a) 大化小. 在区间 [a , b] 中任意插入 n –1 个分点
n
i 1
n ( n 1) i 3 2 n
2
例2. 用定积分表示下列极限:
1 i (1) lim 1 n n i 1 n
n
1p 2 p n p (2) lim n n p 1
n 1 n i i 1 解: (1) lim 1 lim 1 n n i 1 n n i 1 n n
23 13 3 12
两端分别相加, 得
3 1
1
(n 1)3 1 3(12 22 n 2 ) 3(1 2 n) n
即
n 3n 3n 3
3 2
n
2 1 n (n 1)(2n 1) i 6 i 1