(精品)《电力拖动自动控制系统》毕业课程设计变频液位自动控制

合集下载

电力拖动自动控制系统课程设计

电力拖动自动控制系统课程设计

电力拖动自动控制系统课程设计电力拖动自动控制系统课程设计基于转速负反馈闭环调速系统的matlab7.1仿真基于转速、电流反馈控制直流调速系统的matlab7.1仿真学院班级:自动化学院09电本二指导老师:xxx姓名:邹xx学号:20091041xxx日期: 2012-6-14(一)基于转速负反馈闭环调速系统的matlab7.1 仿真一、设计思路转速闭环控制可以降低转速降落,降低转差率,扩大调速范围。

根据自动控制原理,采用了PI调节器,加大比例系数可以减少静差,积分环节的加入有助于消除系统静差。

但Kp过大时,会使动态品质变坏;而在Kp不变的情况下,积分时间过小,将使稳定性降低,振荡加剧等。

总的来说,matlab只需要调节两个参数:(1)比例系数Kp,参数由小到大调节(2)积分系数Ki(1/τ),1/τ参数是倒数,所以由小到大调节(下面把Ki定义为Ti)二、系统的各环节参数设置1、直流电动机:额定电压U N = 220V额定电流I dN = 55 A额定转速nN = 1000r/ min电动机电势系数Ce = 0.192V ⋅min/ r2、晶闸管整流装置输出电流可逆,装置的放大系数K s = 44滞后时间常数Ts = 0.00167s3、电枢回路总电阻R = 1.0Ω电枢回路电磁时间常数T l = 0.00167s电力拖动系统机电时间常数Tm = 0.075s4、转速反馈系数 α = 0.01V ⋅min /r5、对应额定转速时的给定电压U n = 10V6、PI调节器的直暂定为Kp=0.56 ,Ti=1/τ=11.43三、比例积分控制的直流调速系统的仿真框图四、建立 matlab 仿真模块模块地方数目Step(阶跃输入模块)Source 组1个Sum (加法器模块)Math Operations组3个Gain(增益模块)Math Operations组4个Transfer Fcn(控制器模块)Continuous 组3个Integrator(积分模块) Continuous 组1个Scope(示波器模块)Sinks 组2个五、仿真图初值效果1.系统框图2.参数设计(1)在本例中,额定转速的给定是10V,所以修改step time=1,final time=10(2)PI调节器的比例环节的Kp初值=0.56,积分时间Ti初值=11.43(3)把积分饱和值改为-10~10,键入传递函数模块数据,键入增益比值,仿真时间修改为0~0.6s。

电力拖动控制系统课程设计任务书

电力拖动控制系统课程设计任务书

安徽工程大学课程设计说明书课程设计名称:课程设计题目:指导教师:专业班级:学生姓名:学号:起止日期:总评成绩:某金属加工机床主轴运动控制系统,采用Z2—71型直流电动机拖动,参数如下:额定功率P nom = 10 Kw额定电压U nom = 220 V额定电流I nom = 55 A额定转速n nom=1000 r.p.m飞轮矩GD2 = 1.0 Kg-m2(考虑系统总飞轮矩扩大一倍)励磁方式采用他励(220V)根据生产工艺的要求,调速系统的性能指标为:调速范围 D = 20静差率S≤5 %电动机空载起动到额定转速的时间t s≤2秒负载基本为恒转矩性质,车间交流电源为三相五线制,试设计一个满足要求的机床主轴运动不可逆调速系统。

设计内容:(1)系统方案分析、比较、选择;(2)系统主电路设计及功率元件计算、选择;(3)控制电路设计及系统动、静态参数计算;(4)绘制系统原理图设计成品:设计说明书一份,系统原理图一张(A3号图纸)某金属加工机床主轴运动控制系统,采用Z2—52型直流电动机拖动,参数如下:额定功率P nom = 7.5 Kw额定电压U nom = 440 V额定电流I nom = 20 A额定转速n nom = 1500 r.p.m电枢电阻Ra=0.3飞轮矩GD2 = 0.5 Kg-m2(考虑系统总飞轮矩扩大一倍)励磁方式采用他励(220V)根据生产工艺的要求,调速系统的性能指标为:调速范围D = 30静差率S≤10 %电动机空载起动到额定转速的时间t s≤2秒负载基本为恒转矩性质,车间交流电源为三相五线制,试设计一个满足要求的机床主轴运动不可逆调速系统。

设计内容:(1)系统方案分析、比较、选择;(2)系统主电路设计及功率元件计算、选择;(3)控制电路设计及系统动、静态参数计算;(4)绘制系统原理图设计成品:设计说明书一份,系统原理图一张(A3号图纸)某金属加工机床主轴运动控制系统,采用Z2—42型直流电动机拖动,参数如下:额定功率P nom = 2.2 Kw额定电压U nom = 180 V额定电流I nom = 15.6 A额定转速n nom= 1000 r.p.m飞轮矩GD2 = 0.4 Kg-m2(考虑系统总飞轮矩扩大一倍)励磁方式采用他励(220V)根据生产工艺的要求,调速系统的性能指标为:调速范围 D = 25静差率S≤5 %电动机空载起动到额定转速的时间t s≤2秒负载基本为恒转矩性质,车间交流电源为三相五线制,试设计一个满足要求的机床主轴运动不可逆调速系统。

电力拖动自动控制系统课程设计

电力拖动自动控制系统课程设计

《运动控制系统设计》课程设计报告设计题目:转速、电流双闭环直流调速系统设计与实践班级:04 级自动化一班学号:姓名:指导教师:设计时间:2007.11.20 —2007.12.14目录摘要第一章概述第二章设计任务及要求2.1设计任务:2.2设计要求:2.3理论设计3.1方案论证3.2系统设计3.2.1电流调节器设计3.2.1.1确定时间常数3.2.1.2 选择电流调节器结构3.2.1.3计算电流调节器参数3.2.1.4 校验近似条件3.2.1.5 计算调节器电阻和电容3.2.2速度调节器设计3.2.2.1 确定时间常数3.2.2.2 选择转速调节器结构3.2.2.3 计算转速调节器参数3.2.2.4 校验近似条件3.2.2.5 计算调节器电阻和电容3.2.2.6 校核转速超调量第三章系统建模及仿真实验4.1MATLAB 仿真软件介绍4.2仿真建模及实验4.2.1单闭环仿真实验4.2.2双闭环仿真实验4.2.3仿真波形分析第四章实际系统设计及实验5.1 系统组成及工作原理5.2 设备及仪器5.3 实验过程5.3.1 实验内容5.3.2 实验步骤第五章总结与体会参考文献摘要从七十年代开始,由于晶闸管直流调速系统的高效、无噪音和快速响应等优点而得到广泛应用。

双闭环直流调速系统就是一个典型的系统,该系统一般含晶闸管可控整流主电路、移相控制电路、转速电流双闭环调速控制电路、以及缺相和过流保护电路等.给定信号为0~10V直流信号,可对主电路输出电压进行平滑调节。

由于其机械特性硬,调速范围宽,而且是无级调速,所以可对直流电动机进行调压调速。

动静态性能好,抗扰性能佳。

速度调节及抗负载和电网扰动,采用双PI调节器,可获得良好的动静态效果。

电流环校正成典型I型系统。

为使系统在阶跃扰动时无稳态误差,并具有较好的抗扰性能,速度环设计成典型Ⅱ型系统。

根据转速、电流双闭环调速系统的设计方法,用Simulink做了带电流补偿的电压负反馈直流调速系统进行仿真综合调试,分析系统的动态性能,并进行校正,得出正确的仿真波形图。

电力拖动自动控制系统课设

电力拖动自动控制系统课设

电力拖动自动控制系统课设一、引言电力拖动自动控制系统是一种用于控制和驱动电力动力设备的自动化系统。

它通过将电力传递到动力设备上,实现自动控制和驱动,在工业生产中起到重要的作用。

本文将介绍电力拖动自动控制系统的设计和实施。

二、系统设计2.1 系统需求分析在设计电力拖动自动控制系统之前,首先需要进行需求分析。

根据实际情况和用户要求,明确电力拖动自动控制系统所需的功能和性能。

2.2 系统功能设计基于系统需求分析的结果,确定电力拖动自动控制系统的功能设计。

包括控制模块、驱动模块、传感模块等,以实现系统的自动化控制和驱动。

2.3 系统硬件设计根据系统功能设计的结果,进行系统硬件设计。

选择适当的硬件设备,包括计算机、PLC、电机、传感器等,以满足系统的需求,并确保硬件设备的稳定性和可靠性。

2.4 系统软件设计在系统硬件设计的根底上,进行系统软件设计。

包括编写控制程序、驱动程序和界面程序等,以实现系统的自动化控制和监控。

3.1 系统搭建根据系统设计的结果,进行系统搭建。

连接硬件设备,安装软件程序,并进行测试和调试,确保系统能够正常工作。

3.2 系统运行在系统搭建完成后,进行系统运行。

对系统进行实际操作和测试,验证系统的功能和性能是否符合需求。

3.3 系统优化在系统运行过程中,发现问题和缺乏之处,进行系统优化。

对硬件设备和软件程序进行调整和改进,提高系统的性能和稳定性。

电力拖动自动控制系统广泛应用于工业生产中,具有自动化程度高、效率高、平安可靠等优点。

例如,在生产线上实现自动化装配和操作,提高生产效率和产品质量。

五、系统总结电力拖动自动控制系统是一种重要的自动化系统,能够满足工业生产中对于控制和驱动设备的需求。

本文介绍了电力拖动自动控制系统的设计和实施过程,包括系统需求分析、功能设计、硬件设计、软件设计、系统搭建、系统运行和系统优化等。

通过系统的实施和应用,可以提高生产效率和产品质量,为工业生产带来重要的价值。

《电力拖动自动控制系统》课程设计指导书

《电力拖动自动控制系统》课程设计指导书

《电力拖动自动控制系统》课程设计指导书直流电机双闭环调速控制系统设计档案袋封皮(统一)目录格式:目录1 设计任务1.1 技术数据 (1)1.2 要求完成的任务 (2)2 直流电机双闭环系统的组成…………………………………………………..2.1 双闭环系统总体原理结构方案设计…………………………………….2.2 双闭环系统各组成部分电路方案设计…………………………………2.2.1 晶闸管整流电路及保护电路………………………………………….2.2.2 触发控制电路………………………………………………………2.2.3 系统给定…………………………………………………………….2.2.4 检测电路…………………………………………………………….2.2.5 调节器的选择…………………………………………………………2.2.6 电气控制…………………………………………………………..3 转速、电流调节器的设计计算……………………………………………..3.1 电流调节器的设计计算…………………………………………………3.2 转速调节器的设计计算………………………………………………..4 参考文献……………………………………………………………………….5 附录直流电机双闭环系统设计图纸附件一:设计说明书书格式要求:1 设计任务:1.1 技术数据(1)用线性集成电路运算放大器作为调节器的转速、电流无静差直流控制系统,主电路由晶闸管可控整流电路供电的V-M系统电动机:额定数据 10KW,220V,55A,1000r/min,电枢电阻Ra=0.5Ω晶闸管可控整流电路:三相桥式整流电路,整流变压器Y/Y连接,二次测线电压U2l=230VV-M系统电枢回路总电阻:R=1Ω测速发电机:永磁式,额定数据23.1W,110V,0.21A,1900r/min(2)稳态性能指标生产机械要求调速范围: D=10;静态率: s%≤5%(3)动态性能指标超调量:σn %≤15% σi %≤5%扰动产生的动态偏差:(n max-n min)/n min *100%≤10% ;恢复时间: t≤0.5sf(4)对起动、停车的快速性无特别要求1.2 要求完成的任务(1)完成直流转速、电流双闭环系统整体设计(2)按性能系统调节器的设计及相关计算(3)在实验室完成转速、电流双闭环系统的实验(4)呈交一份不少于5000字课程设计说明书,一套设计图纸, 一份实验报告2 直流电机双闭环系统的组成2.1 双闭环系统总体原理结构方案设计…………………………………….●直流电机双闭环系统原理图及其描述2.2 双闭环系统各组成部分电路方案设计…………………………………2.2.1 晶闸管整流电路及保护电路………………………………………….●三相整流桥●整流变压器●施加保护电路说明2.2.2 触发控制电路………………………………………………………●触发电路●同步变压器2.2.3 系统给定…………………………………………………………….●电位器给定方式●(+15V,-15V)稳压电源2.2.4 检测电路……………………………………………………………●电流检测电路●转速检测电路2.2.5 调节器的选择………………………………………………………●转速调节器●电流调节器2.2.6 电气控制…………………………………………………………..电机启动,运行,停车控制及指示,电压表、电流表3 调节器的设计计算3.1 电流调节器(1)已知参数(2)确定时间常数(3)选择电流调节器结构(4)计算电流调节器参数(5)校验近似条件(6)计算调节器电阻电容*要求列出查的工程设计表,所用公式必须有序号3.2 转速调节器(1)已知参数(2)确定时间常数(3)选择转速调节器结构(4)计算转速调节器参数(5)校验近似条件(6)计算调节器电阻电容(7)校核转速超调量4 参考文献(不少于5篇)[1]作者,文章标题,期刊名,期号,页码[2] 作者,书名,出版社,出版时间5 附录直流电机双闭环系统设计图纸(1)整流电源:三相整流桥,整流变压器,施加保护电路,触发电路,同步变压器,稳压电源(2)系统给定(3)检测电路:电流检测电路,转速检测电路(4)调节器:转速调节器,电流调节器(附电阻电容计算结果列表)(5)电气控制(启动,运行,停车控制及指示,电压表、电流表)**要求:全部手稿,不收打印稿,不允许有复印图片******主要参考资料1.电力拖动控制系统教材;2.电力电子技术教材3.电工电子手册;4.电气工程技术手册表的编号:表1-1 ********公式编号:T=a+b-c (3-1)图形编号:电机参数1.电动机:额定数据2.2KW,220V,12.5A,1000r/min,电枢电阻Ra=0.2Ω,Rrec=1.5,ks=35飞轮转矩:Kgm*m=3.1, 过载倍数1.52.电动机:额定数据 2.8KW,220V,94A,1000r/min,电枢电阻Ra=0.15Ω,Rrec=0.3,ks=35飞轮转矩:Kgm*m=3.2, 过载倍数1.53.电动机:额定数据 3.7KW,220V,20A,1000r/min,电枢电阻Ra=0.5 Ω,Rrec=0.8,ks=40飞轮转矩:Kgm*m=3.5, 过载倍数1.54.电动机:额定数据 10KW,220V,55A,1000r/min,电枢电阻Ra=0.6Ω, Rrec=0.7,ks=44飞轮转矩:Kgm*m=4.0, 过载倍数1.55.电动机:额定数据 18KW,220V,94A,1000r/min,电枢电阻Ra=0.7Ω,Rrec=0.5,ks=40飞轮转矩:Kgm*m=4.8, 过载倍数1.56.电动机:额定数据 30KW,220V,159A,1000r/min,电枢电阻Ra=0.5 Ω,Rrec=1.0,ks=35飞轮转矩:Kgm*m=5.9, 过载倍数1.57.电动机:额定数据 40KW,220V,210A,1000r/min,电枢电阻Ra=0.5 Ω,Rrec=0.8,ks=40飞轮转矩:Kgm*m=7.0, 过载倍数1.58.电动机:额定数据 55KW,220V,286A,1000r/min,电枢电阻Ra=0.6 Ω,Rrec=0.8,ks=35飞轮转矩:Kgm*m=10.3, 过载倍数1.59.电动机:额定数据 60KW,220V,308A,1000r/min,电枢电阻Ra=0.5Ω,Rrec=0.9,ks=40飞轮转矩:Kgm*m=10.8, 过载倍数1.510.电动机:额定数据75KW,220V,385A,1000r/min,电枢电阻Ra=0.6Ω, Rrec=0.9,ks=35飞轮转矩:Kgm*m=12.0, 过载倍数1.5每个班,按学号每10个一个轮回。

电力拖动自动控制系统课程设计

电力拖动自动控制系统课程设计

电力拖动自动控制系统课程设计设计目的本课程设计旨在让学生掌握电力拖动自动控制系统的基本原理和设计方法,通过实际操作和仿真,深化对电力拖动自动控制系统的理解和应用。

设计背景电力拖动自动控制系统被广泛应用于各种工业设备和交通工具中,通过自动电控技术实现设备的高效、安全和稳定运行。

本课程设计旨在让学生通过实际操作和仿真,深化对电力拖动自动控制系统的理解和应用。

设计内容本课程设计包括以下三个部分:1. 电力拖动自动控制系统的原理本部分主要介绍电力拖动自动控制系统的基本原理,包括:•电力拖动系统的结构和组成•电力拖动系统的各种传感器和执行器的工作原理•电力拖动系统的信号处理和控制方法2. 电力拖动自动控制系统的实际操作本部分主要介绍电力拖动自动控制系统的实际运行和操作方法,包括:•电力拖动系统的系统参数和性能测试•电力拖动系统的PID控制器的参数设置和校准•电力拖动系统的自动控制模式的设置和调试3. 电力拖动自动控制系统的仿真本部分主要介绍电力拖动自动控制系统的仿真和模拟方法,包括:•电力拖动系统的MATLAB/Simulink仿真模型的建立和调试•电力拖动系统的虚拟仿真平台的使用和应用案例分析设计流程本课程设计的流程如下:1.学习电力拖动自动控制系统的基本原理和相关知识。

2.利用实际设备进行电力拖动自动控制系统的实际操作和调试。

3.利用MATLAB/Simulink软件进行电力拖动自动控制系统的仿真模拟。

4.根据仿真结果进行电力拖动自动控制系统的优化和改进。

设计要求本课程设计的要求如下:1.学生需要按要求完成每个部分的实验和作业。

2.学生需要完成一份课程设计报告,内容应涵盖各个部分,报告格式为Markdown文本格式。

3.学生需要在规定时间内提交课程设计报告,否则视为未完成课程设计。

设计评价本课程设计的评价主要考核以下方面:1.学生是否达到了课程设计目的和要求。

2.学生对电力拖动自动控制系统的掌握程度和应用能力。

电力拖动自动控制系统课程设计

电力拖动自动控制系统课程设计

《电力拖动自动控制系统》课程设计题目:直流电机双闭环调速系统设计专业:自动化班级:学号:姓名:2009022时间:2013年1月6日--2013年1月10日直流电机双闭环调速系统设计1 序言电力拖动自动控制系统课程设计与综合实验是工业电气自动化专业的一门专业课程,它是一次综合性的理论与实践相结合的训练,也是本专业的一次基本技能训练。

1.1 目的和意义1) 理论联系实际,掌握根据实际工艺要求设计电力拖动自动控制系统的基本方法。

2) 对一种典型的双闭环调速自动控制系统进行综合性的分析设计,掌握各部件和整个系统的设计调试步骤、方法及操作实际系统的方法。

加强基本技能训练。

3) 掌握参数变化对系统性能影响的规律,培养灵活运用所学理论解决控制系统中各种实际问题的能力。

4) 培养分析问题、解决问题的独立工作能力,学会实验数据的分析与处理能力及编写设计说明书和技术总结报告的能力。

为下学期毕业设计作准备。

5) 通过设计熟练地查阅有关资料和手册。

1.2 设计要求要求设计一个直流双闭环调速系统。

其主要内容为: 1) 测定综合实验中所用控制对象的参数(由实验完成)。

2) 根据给定指标设计电流调节器和转速调节器,并选择调节器参数和具体实现电路。

3) 按设计结果组成系统,以满足以下性能指标。

a.调速范围D =5~10,静差率10%S ≤。

b.空载启动时电流超调5%i σ≤,转速超调10%n σ≤ (在额定转速时)。

c.动态速降小于10%。

d.振荡次数小于2次。

4) 研究参数变化对系统性能的影响。

5) 在时间允许的情况下进行调试。

1.3 设计对象及有关数据直流电机:185W ,220V ,1.2A ,1600转/分。

直流测速机:10W ,10V ,0.2A ,1900转/分。

T oi =0.0011s ,T on =0.005s ,两个调节器的输入电阻020R K =Ω ,λ=1.5。

2 系统结构方案的选择2.1 调压、变组、及弱磁方案调速的选择与论证直流电动机的转速和其他参量的关系可用式(2-1)表达e U IRn K -=Φ(2-1)式中 n ——转速,单位为/min r ;U ——电枢电压,单位为V ; I ——电枢电流,单位为A ;R ——电枢回路总电阻,单位为Ω;Φ——励磁磁通,单位为b W ;e K ——由电机结构决定的电动势常数。

《电力拖动自动控制系统》课程设计报告

《电力拖动自动控制系统》课程设计报告

《电力拖动自动控制系统》课程设计报告(1)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊目录一﹑前言 (2)1. 1设计目的 (2)1. 2设计内容 (2)二﹑伺服系统的基本组成原理及电路设 (2)1.伺服系统基本原理及系统框图 (2)三﹑调试后的图 (8)四﹑设计心得与体会 (13)五﹑参考文献 (14)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊《电力拖动自动控制系统》课程设计报告一、前言1.1设计目的和要求1.使学生进一步掌握电力拖动自动控制系统的理论知识,培养学生工程设计能力和综合分析问题、解决问题的能力;2.使学生基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力;3.熟悉并学会选用电子元器件,为以后从事生产和科研工作打下一定的基础。

1.2设计内容1、分析和设计具有三环结构的伺服系统,用绘图软件(matlab)画原理图还有波形图;2、分析并理解具有三环结构的伺服系统原理。

二﹑伺服系统的基本组成原理及电路设计2.1伺服系统基本原理及系统框图伺服系统三环的PID控制原理以转台伺服系统为例,其控制结构如图2-1所示,其中r为框架参考角位置输入信号, 为输出角位置信号.┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊图2-1 转台伺服系统框图伺服系统执行机构为典型的直流电动驱动机构,电机输出轴直接与负载-转动轴相连,为使系统具有较好的速度和加速度性能,引入测速机信号作为系统的速度反馈,直接构成模拟式速度回路.由高精度圆感应同步器与数字变换装置构成数字式角位置伺服回路.转台伺服系统单框的位置环,速度环和电流环框图如图2-2,图2-3和图2-4所示.图2-2 伺服系统位置环框图┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊图2-3 伺服系统速度环框图图2-4 伺服系统电流框图图中符号含义如下:r为位置指令;θ为转台转角;u K为PWM功率放大倍数;d K为速度环放大倍数;v K为速度环反馈系数;i K为电流反馈系数;L为电枢电感;R为电枢电阻;m K为电机力矩系数;e C为电机反电动势系数;J为等效到转轴上的转动惯量;b为粘性阻尼系数,其中J=m J+L J,b=m b+L b,m J和L J分别为电机和负载的转动惯量,m b和L b分别为电机和负载的粘性阻尼系数;f T为扰动力矩,包括摩擦力矩和耦合力矩。

电力拖动自动控制系统课程设计(DOC)

电力拖动自动控制系统课程设计(DOC)

HENAN INSTITUTE OF ENGINEERING实训报告题目十机架连轧机分部传动直流调速系统的设计学生姓名李东盼专业班级电气工程1222 学号************系部电气信息工程学院指导教师程辉完成时间 2014年 1 月 3 日实训报告评语一、实训期间个人表现□1.尊敬师长,团结他人,能吃苦耐劳。

□2.在现场能坚持不迟到,不早退,勤奋学习。

□3.出现少于3次迟到和早退现象,表现一般。

□4.能主动向指导老师提问,能积极做好各项设计任务。

□5.在实训中能灵活运用相关专业知识,有较强的创新意识。

二、实训报告内容完成质量□1.能按时完成报告内容等实训成果资料,无任务遗漏。

□2.能按时完成报告内容等实训成果资料,有少许任务遗漏。

□3.不能按时完成报告内容等实训成果资料,有多处任务遗漏。

□4.条理清晰,书写规范工整,图文并茂,报告内容全面,主要内容阐述详细,能体现实训过程中做了大量工作,与专业相关知识能紧密联系,认识体会深刻,起到了实训的作用。

□5.条理清晰,书写规范工整,图文并茂,报告内容全面,主要内容阐述详细,能体现实训过程中做了大量工作,与专业相关知识能较紧密联系,认识体会较深刻,起到了实训的作用。

□6.条理清晰,书写较规范工整,报告内容全面,主要内容阐述较详细,能体现实训工作过程,能与专业相关知识联系起来,认识体会较深刻,起到了实训的作用。

□7.条理较清晰,书写较规范工整,报告内容较全面,主要内容阐述较详细,能体现实训过程中的相关工作,与专业相关知识不能紧密联系,认识体会不太深刻,基本起到了实训的作用。

□8.内容有雷同现象。

三、成绩不合格原因□1.实训期间旷课超过3次。

□2.报告有严重抄袭现象。

□3.未同时上交实训报告。

四、需要改进之处□1.进一步端正实训态度。

□2.加强报告书写的规范化训练,对主要内容要加强理解。

□3.加强相关专业知识的学习,深刻理解各设计步骤具体的要求。

五、其他说明等级:评阅人:职称:讲师年月日交直流调速系统的设计摘要直流调速系统具有调速范围广精度高动态性能好和易于控制等优点,因此本设计运用《电力拖动控制系统》的理论知识设计出可行的直流调速系统,并详细分析系统的原理及其静态和动态性能,且利用SIMULINK对系统进行各种参数的给定下的仿真。

电力拖动控制系统课程设计

电力拖动控制系统课程设计

图3-4 双闭环直流调速系统的静特性
• 在负载电流小于Idm时表现为转速无静差,转速 负反馈起主要调节作用。 • 当负载电流达到Idm时,转速调节器为饱和输出 U*im,电流调节器起主要调节作用,系统表现为 电流无静差。 • 采用两个PI调节器形成了内、外两个闭环的效果。 • 当ASR处于饱和状态时,Id=Idm,若负载电流减 小,Id<Idm,使转速上升,n>n0,Δn<0,ASR反 向积分,使ASR调节器退出饱和。
1.起动过程分析
• 电流Id从零增长到Idm,然后在一段时间内维 持其值等于Idm不变,以后又下降并经调节 后到达稳态值IdL。 • 转速波形先是缓慢升速,然后以恒加速上 升,产生超调后,到达给定值n*。 • 起动过程分为电流上升、恒流升速和转速 调节三个阶段, • 转速调节器在此三个阶段中经历了不饱 和、饱和以及退饱和三种情况。
2.2 调节器的工程设计方法
3.3.1 控制系统的动态性能指标 • 在控制系统中设置调节器是为了改善系统 的静、动态性能。 • 控制系统的动态性能指标包括对给定输入 信号的跟随性能指标和对扰动输入信号的 抗扰性能指标。
1、跟随性能指标
• 以输出量的初始值为零,给定信号阶跃 变化下的过渡过程作为典型的跟随过程, • 此跟随过程的输出量动态响应称作阶跃 响应。 • 常用的阶跃响应跟随性能指标有上升时 间、超调量和调节时间。
稳态结构图与参数计算
图3-2
转速、电流反馈控制直流调速系统原理图
ASR——转速调节器 ACR——电流调节器 TG——测速发电机
1. 稳态结构图和静特性
• 转速调节器ASR的输出限幅电压决定了电流给定 的最大值,电流调节器ACR的输出限幅电压限制 了电力电子变换器的最大输出电压, • 当调节器饱和时,输出达到限幅值,输入量的变 化不再影响输出,除非有反向的输入信号使调节 器退出饱和; • 当调节器不饱和时,PI调节器工作在线性调节状 态,其作用是使输入偏差电压在稳态时为零。 • 对于静特性来说,只有转速调节器饱和与不饱和 两种情况,电流调节器不进入饱和状态 。

电力拖动自动控制系统课程设计

电力拖动自动控制系统课程设计

电力拖动自动控制系统课程设计电力拖动自动控制系统课程设计是电力工程专业的一门重要课程。

该课程旨在培养学生的电力拖动系统设计与控制能力,为学生今后从事相关工作打下坚实的基础。

本文将对电力拖动自动控制系统课程设计进行详细介绍。

1.课程设计目标:本课程设计旨在通过理论与实践相结合的方式,培养学生综合运用所学知识进行电力拖动控制系统的设计与调试的能力。

重点培养学生的动力电气控制技术、电动机的控制与保护技术、传感器与信号处理技术以及自动化控制系统的设计与实现能力。

2.课程设计内容:本课程设计主要包括以下几个方面的内容:(1)电力拖动系统的基本原理与构成要素。

(2)电动机的类型、特性及其控制方法。

(3)传感器与信号处理技术在电力拖动控制系统中的应用。

(4)自动化控制系统的设计与实现。

(5)电力拖动系统的运行与维护。

3.课程设计过程:(1)学生通过自主学习,查阅相关资料,掌握电力拖动系统的基本原理与构成要素。

(2)学生根据所学知识,设计一套电力拖动自动控制系统。

(3)学生搭建实验平台,完成电力拖动自动控制系统的硬件连接与软件编程。

(4)学生进行实验测试,对系统进行调试与优化,确保系统的正常运行。

(5)学生撰写课程设计报告,详细介绍自己设计的电力拖动自动控制系统的原理、设计过程与实验结果。

4.课程设计评价:学生的课程设计成绩将根据以下几个方面进行评价:(1)设计方案的合理性与可行性。

包括电力拖动系统的设计思路、硬件选型与连接方案等。

(2)实验结果的准确性与稳定性。

包括系统调试过程中的测试数据与系统运行的稳定性。

(3)报告内容的完整性与条理性。

包括设计思路的论述、实验步骤的说明以及实验结果的分析等。

综上所述,电力拖动自动控制系统课程设计是一门重要的实践性课程。

通过该课程的学习和实践,学生将能够全面掌握电力拖动系统的设计与调试技术,并具备工程实践能力。

同时,本课程也为学生今后从事相关工作提供了一定的实践基础和理论指导。

电力拖动自动控制系统课程设计(25页)

电力拖动自动控制系统课程设计(25页)

图2 模型编辑窗 口
■ (3)修改模块参数:
双击模块图案,则出现关于该图 案的对话框,
通过修改对话框内容来设定模块 的参数。
描述加法器 三路输入的 符号,|表示 该路没有信 号,用|+-取 代原来的符 号。得到减 法器。
图3 加法器模块对话 框
图4 传递函数模块对话框
分子多项式 系数
分母多项式 系数
■ 设计要求:系统中各个参数计算过程 双闭环调速系统的仿真模型 ASR、ACR的仿真模型 转速、电流波形图 转速超调量的验证
■ 设计说明书内容 1 目录
2 正文(可分几章来写) 3 总结 4 参考文献
转速反馈控制直流调速系统的仿真
■ MATLAB下的SIMULINK软件进行系 统仿真是十分简单和直观的,
例如,0.002s+1是 用向量[0.002 1]来 表示的。
阶跃时刻, 可改到0 。
阶跃值,可 改到10 。
图5 阶跃输入模块对话框
填写所需要 的放大系数
图6 增益模块对话框
图7 Integrator模块对话框
积分饱和值, 可改为10。
积分饱和值,可 改为-10。
(4)模块连接
■ 以鼠标左键点击起点模块输出端,拖动鼠标至 终点模块输入端处,则在两模块间产生“→” 线。
图 SIMULINK模块浏览 器窗口
■ (1)打开模型编辑窗口:通过单击SIMULINK工具栏 中新模型的图标或选择→Model菜单项实现。
■ (2)复制相关模块:双击所需子模块库图标,则可打 开它,以鼠标左键选中所需的子模块,拖入模型编 辑窗口。
■ 在本例中拖入模型编辑窗口的为:Source组中的 Step模块;Math Operations组中的Sum模块和Gain 模块;Continuous组中的Transfer Fcn模块和 Integrator模块;Sinks组中的Scope模块;

【参考样本】电力拖动自动控制系统课程设计

【参考样本】电力拖动自动控制系统课程设计

课程设计课程名称电力拖动自动控制系统课程设计设计题目 V-M双闭环不可逆直流调速系统设计专业电气工程及其自动化姓名梁鑫鑫班级学号自B041 (20)指导教师刘松完成时间摘要电力拖动自动控制系统是把电能转换成机械能的装置,它被广泛地应用于一般生产机械需要动力的场合,也被广泛应用于精密机械等需要高性能电气传动的设备中,用以控制位置、速度、加速度、压力、张力和转矩等。

直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到应用。

晶闸管问世后,生产出成套的晶闸管整流装置,组成晶闸管—电动机调速系统(简称V-M系统),和旋转变流机组及离子拖动变流装置相比,晶闸管整流装置不仅在经济性和可靠性上都有很大提高,而且在技术性能上也显示出较大的优越性。

而转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。

本设计报告首先根据设计要求确定调速方案和主电路的结构型式,主电路和闭环系统确定下来后,重在对电路各元件参数的计算和器件的选型,包括整流变压器、整流元件、平波电抗器、保护电路以及电流和转速调节器的参数计算。

最后给出参考资料和设计体会。

关键字:直流调速晶闸管双闭环目录第1章设计任务书--------------------------------------------------4第2章主电路选型和闭环系统的组成--------------------------5晶闸管结构型式的确定 (5)闭环调速系统的组成 (6)第3章调速系统主电路元部件的确定及其参数计算--------8整流变压器容量计算 (8)晶闸管的电流、电压定额计算 (9)平波电抗器电感量计算 (10)保护电路的设计计算 (11)3.4.1过电压保护 (11)3.4.2过电流保护……………………………………………………………13第4章驱动控制电路的选型设计---------------------------------14第5章双闭环系统调节器的动态设计----------------------------155.1电流调节器的设计 (15)5.2转速调节器的设计 (17)设计小结-----------------------------------------------------------------18参考文献----------------------------------------------------------------18附录V-M双闭环不可逆直流调速系统电气原理总图-------19设计任务书一.题目:V-M双闭环不可逆直流调速系统设计二.技术要求:1.该调速系统能进行平滑的速度调节,负载电机不可逆运行,具有较宽的调速范围(D≥10),系统在工作范围内能稳定工作2.系统静特性良好,无静差(静差率s≤2)3.动态性能指标:转速超调量δn <8%,电流超调量δi<5%,动态速降Δn≤8-10%,调速系统的过渡过程时间(调节时间)ts≤1s4.系统在5%负载以上变化的运行范围内电流连续5.调速系统中设置有过电压、过电流等保护,并且有制动措施三.设计内容:1.根据题目的技术要求,分析论证并确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图2.调速系统主电路元部件的确定及其参数计算(包括有变压器、电力电子器件、平波电抗器与保护电路等)3.驱动控制电路的选型设计(模拟触发电路、集成触发电路、数字触发器电路均可)4.动态设计计算:根据技术要求,对系统进行动态校正,确定ASR调节器与ACR调节器的结构型式及进行参数计算,使调速系统工作稳定,并满足动态性能指标的要求5.绘制V-M双闭环直流不可逆调速系统的电气原理总图(要求计算机绘图) 6.整理设计数据资料,课程设计总结,撰写设计计算说明书四.技术数据:晶闸管整流装置:R rec =ΩΩ,K s =45-48。

电力拖动自动控制系统课程设计

电力拖动自动控制系统课程设计

2
安徽工业大学
摘要
本课程设计是设计一个转速、电流双闭环控制系统。转速、电 流反馈控制直流调速系统是静态特性和动态特性优良、 应用最广泛的 直流调速系统。为了实现转速和电流两种负反馈分别起作用,可在系 统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈 和电流负反馈,二者之间实行嵌套联接。本设计介绍了双闭环调速系 统的基本原理,转速环、电流环的设计,最后使用 Matalab 中的 Simulink 对系统进行仿真验证。
6
安徽工业大学
三.参数计算 3.1 电流调节器参数计算:
电流反馈系数: 电机转矩时间常数:
电机电磁时间常数:
三相晶闸管整流电路平均失控时间:
电流环的小时间常数为:
电流环可按典型 I 型系统进行设计,电流调节器选用 PI 调节器,其传 递函数为
其中:
7
电力拖动自动控制系统课程设计
3.2 转速调节器参数计算:
图 4.1a 仿真模型图
图 4.1b ASR-BLOCK
9
电力拖动自动控制系统课程设计
图 4.1c ACR-BLOCK
4.2 设定模型仿真参数
按工程设计方法和选择转速和电流调节器部分参数设定如下:
图 4.2a
10
安徽工业大学
图 4.2b
图 4.2c
11
电力拖动自动控制系统课程设计
图 4.2d
图 4.2e
14
安徽工业大学
五.总结
本次课程设计是根据给定的初始值设计一个双闭环直流调速系统, 并进行仿 真验证。经过了一段时间的努力,终于完成了这个课程设计,并且很好的满足课 题要求。在完成课程设计的过程中,虽然遇到了一些困难,也发费了不少时间, 但是从中学到了大量的的知识,这些知识都是在课堂上无法学到的。 经过这

电力拖动课程设计--变频液位自动控制系统

电力拖动课程设计--变频液位自动控制系统

目录1前言 (1)1.1变频液位系统的应用 (1)1.2设计任务 (2)2变频液位系统的基本构成与工作原理 (3)2.1变频液位系统的结构框图 (3)2.2液位自动控制系统原理 (3)2.3电动机的调速原理 (3)2.4变频调速节能原理分析 (4)2.5变频液位系统的工作原理 (5)3变频液位系统主电路设计及元件清单 (6)3.1主电路设计结果 (6)3.2主要参数计算及器件选择 (6)3.3主电路元件清单 (6)4变频液位系统保护电路设计及元件清单 (7)4.1保护电路设计结果 (7)5变频液位系统驱动电路设计 (8)5.1驱动电路设计结果 (8)5.2驱动电路主要参数计算及器件选择 (8)5.3驱动电路元件清单 (10)6设计心得 (11)6.1变频液位自动系统设计的优点 (11)6.2变频液位自动系统设计的缺点 (11)7参考文献 (11)8附录:设计总图 (12)1前言水是一个和人的生存息息相关的物质,而水位换言之即液位,它则是一种生产、生活中需要测量和控制的重要物理量,液位控制广泛应用于农业生产与居民生活中。

比如,民用水塔的供水,如果水位太低,则会影响居民的生活用水;工矿企业的排水与进水,如果排水或进水控制得当与否,关系到车间的生产状况;锅炉汽包液位的控制,如果锅炉内液位过低,会使锅炉过热,可能发生事故;精流塔液位控制,控制精度与工艺的高低会影响产品的质量与成本等。

液位控制技术在现实生活、生产中发挥了重要作用,在这些生产领域里,基本上都是劳动强度大或者操作有一定危险性的工作性质,极容易出现操作失误,引起事故,造成厂家的的损失。

随着经济的发展,能源的过分消耗日益成为影响经济稳定快速增长的阻力,为了响应国家节能减排的号召,实现能源充分利用,就需要对电机进行转速调节,研究变频液位就是节能研究的主要内容之一。

随着电力电子技术以及工业自动控制技术的不断发展,使得变频液位系统在工业生产与居民生活领域得到了广泛应用。

电力拖动自动控制系统课程设计

电力拖动自动控制系统课程设计

课程设计任务书
m。

Ks=
路总电
m。

采用三相全平波电抗器电阻R
图1 系统电气原理框图
图4 转速环仿真图形
图5 电流环仿真图形
从图中可以看出,扰动很快得到了调节,这是两个PI型调节器自动调节的作用。

另外从图中也可以看到,系统是无静差运行的,符合设计的要求。

从仿真的结果来看,得到这样结论:
(1) 工程设计方法在推导过程中为了简化计算做了许多近似的处理
而这些简化处理必须在一定的条件下才能成立。

例如: 将可控硅触发和整流环节近似地看作一阶惯性环节, 设计电流环时不考虑反电势变化的影响; 将小时间常数当作小参数近似地合并处理; 设计转速环时将电流闭环从二阶振荡环节近似地等效为一阶惯性环节等。

(2) 仿真实验得到的结果也并不是和系统实际的调试结果完全相同
课程设计说明书N O.10。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

扬州大学能源与动力工程学院本科生课程设计题目:变频液位自动控制系统课程:电力拖动自动控制系统专业:电气工程及其自动化班级:电气学号:姓名:指导教师:完成日期:第一部分任务书电力拖动自动控制系统课程设计任务书一、课程设计的目的通过电力拖动自动控制系统的设计、了解一般交直流调速系统设计过程及设计要求,并巩固交直流调速系统课程的所学内容,初步具备设计电力拖动自动控制系统的能力。

为今后从事技术工作打下必要的基础。

二、课程设计的要求1、熟悉交直流调速系统设计的一般设计原则,设计内容以及设计程序的要求。

2、掌握控制系统设计制图的基本规范,熟练掌握电气控制部分的新图标。

3、学会收集、分析、运用自动控制系统设计的有关资料和数据。

4、培养独立工作能力、创造能力及综合运用专业知识解决实际工程技术问题的能力。

三、课程设计的内容完成某一给定课题任务,按给出的工艺要求、运用变频调速对系统进行控制。

四、进度安排:共1.5周本课程设计时间共1.5周,进度安排如下:1、设计准备,熟悉有关设计规范,熟悉课题设计要求及内容。

(1.5天)2、分析控制要求、控制原理设计控制方案(1.5天)3、绘制控制原理图、控制流程图、端子接线图。

(2天)4、编制程序、梯形图设计、程序调试说明。

(1.5天)5、整理图纸、写课程设计报告。

(1.5天)五、课程设计报告内容完成下列课题的课程设计及报告(课题工艺要求由课程设计任务书提供)1、退火炉温度控制系统2、变频液位自动控制系统设计3、变频流量自动控制系统设计4、变频供水系统设计5、变频调速恒张力控制系统设计6、变频器在温度控制系统中的应用7、线缆设备恒张力变频器控制设计六、参考书1、陈伯时主编电力拖动自动控制系统(第二版) 机械工业出版社19922、陈伯时, 陈敏逊交流调速系统机械工业出版社19983、张燕宾著SPWM变频调速应用技术机械工业出版社19974、王兆义主编《可编程控制器教程》主编5、徐世许主编《可编程控制器教程原理、应用、网络》主编6、《工厂常用电气设备手册》(第2版)上、下册中国电力出版社第二部分课程设计报告目录一液位自动控制系统方案设计 (6)(一)概述 (6)(二)系统控制要求 (6)(三)系统控制方案设计 (7)二系统硬件选型 (8)(一)PLC选型 (8)(二)变频器选型 (10)(三)液位传感器选型 (11)三液位自动控制系统的原理图 (12)(一)主电路 (12)(二)PLC控制电路 (13)(三)变频器控制电路 (13)四液位控制系统变频器的节能控制分析 (14)五PID原理分析及应用 (16)六设计小结 (19)七参考文献 (20)一、液位自动控制系统方案设计(一)概述随着电力电子技术以及工业自动控制技术的发展,使得交流变频调速系统在工业电机拖动领域得到了广泛应用。

另外,由于PLC的功能强大、容易使用、高可靠性,常常被用来作为现场数据的采集和设备的控制。

此处的设计就是利用变频器和PLC实现水池水位的控制。

变频器技术是一门综合性的技术,它建立在控制技术、电子电力技术、微电子技术和计算机技术的基础上。

它与传统的交流拖动系统相比,利用变频器对交流电动机进行调速控制,有许多优点,如节电、容易实现对现有电动机的调速控制、可以实现大范围内的高效连续调速控制、实现速度的精确控制。

容易实现电动机的正反转切换,可以进行高额度的起停运转,可以进行电气制动,可以对电动机进行高速驱动。

完善的保护功能:变频器保护功能很强,在运行过程中能随时检测到各种故障,并显示故障类别(如电网瞬时电压降低,电网缺相,直流过电压,功率模块过热,电机短路等),并立即封锁输出电压。

这种“自我保护”的功能,不仅保护了变频器,还保护了电机不易损坏。

本课题就是应该PLC和变频器,设计液位自动控制系统。

PLC的作用是运用PID 算法对系统进行控制,而变频器的作用则是最电机进行调速,最终达到维持提气塔液位稳定的目的。

(二)系统控制要求汽提塔液位自动控制系统用浮子液位计、PLC与变频器构成反馈的闭环液位控制系统。

用调节2.2KW化工泵转速,保证废水液位稳定、满足汽提塔的工艺要求、并可根据现场处理情况自动切换流量,满足工业现场废水处理要求。

两台变频器、两台化工泵一用一备(互为备用)保证系统运行可靠。

汽提塔液位实时显示。

在废水处理液位自动控制系统中,采用PLC的PID 积分分离智能型PI调节控制、编程简单、控制可靠,适合于汽提塔液位自动控制系统。

汽提塔液位控制稳定、控制精度高、液位稳定在20cm±1cm,满足汽提塔液位控制要求。

3#水泵PLC Pc 工控机3#变频器4#变频器阀门汽提塔热交换器 隔离开关SF 4断路器SF 5断路器KM3KM4M4M34#水泵处理后废水蒸汽电动调节器电磁阀隔离变压器SF3断路器回收废气安全阀磁性浮子液位传感器温度传感器1压差传感器2压力表………………处理废水厌氧池图1.1 汽提塔液位控制系统的工作原理(三)系统控制方案实现本系统恒压变量供水系统是在2台2.2kW电机拖动的水泵机组能够满足废水总量设计要求的前提下,达到全自动闭环液位控制系统,并具有手动控制功能,同时还应达到以下要求:液位稳定在20cm ±1cm ,满足汽提塔液位控制要求;具有短路、欠压、过载、过流等诸多保护功能。

根据系统的总体原理图以及系统的控制要求,可以初步构建出液位自动控制系统的结果框图,如图1.2所示。

图1.2 液位自动控制系统结构框图二、系统硬件选型(一)PLC的选型1、机型的选择PLC机型选择的基本原则是,在功能满足要求的前提下,选择最可靠、维护使用最方便以及性能价格比的最优化机型。

在工艺过程比较固定、环境条件较好(维修量较小)的场合,建议选用整体式结构的PLC;其它情况则最好选用模块式结构的PLC。

对于开关量控制以及以开关量控制为主、带少量模拟量控制的工程项目中,一般其控制速度无须考虑,因此,选用带AD转换、DA转换、加减运算、数据传送功能的低档机就能满足要求。

而在控制比较复杂,控制功能要求比较高的工程项目中(如要实现PID运算、闭环控制、通信联网等),可视控制规模及复杂程度来选用中档或高档机。

其中高档机主要用于大规模过程控制、全PLC的分布式控制系统以及整个工厂的自动化等。

对于一个大型企业系统,应尽量做到机型统一。

这样,同一机型的PLC模块可互为备用,便于备品备件的采购和管理;同时,其统一的功能及编程方法也有利于技术力量的培训、技术水平的提高和功能的开发;此外,由于其外部设备通用,资源可以共享,因此,配以上位计算机后即可把控制各独立系统的多台PLC联成一个多级分布式控制系统,这样便于相互通信,集中管理。

2、输入输出的选择PLC的输入输出选择包括以下几部分:1)确定IO点数根据控制系统的要求确定所需要的IO点数时,应再增加10%~20%的备用量,以便随时增加控制功能。

对于一个控制对象,由于采用的控制方法不同或编程水平不同,IO 点数也应有所不同。

2)开关量输入输出通过标准的输入输出接口可从传感器和开关(如按钮、限位开关等)及控制(开关)设备(如指示灯、报警器、电动机起动器等)接收信号。

典型的交流输入输出信号为24~240V,直流输入输出信号为5~240V。

3)模拟量输入输出模拟量输入输出接口一般用来感知传感器产生的信号。

这些接口可用于测量流量、温度和压力,并可用于控制电压或电流输出设备。

这些接口的典型量程为-10~+10V、0~+10V、4~20mA或10~50mA。

4)特殊功能输人输出5)智能式输入输出3、PLC存储器类型及容量选择PLC系统所用的存储器基本上由PROM、E-PROM及PAM三种类型组成,存储容量则随机器的大小变化,一般小型机的最大存储能力低于6kB,中型机的最大存储能力可达64kB,大型机的最大存储能力可上兆字节。

使用时可以根据程序及数据的存储需要来选用合适的机型,必要时也可专门进行存储器的扩充设计。

PLC的存储器容量选择和计算的第一种方法是:根据编程使用的节点数精确计算存储器的实际使用容量。

第二种为估算法,用户可根据控制规模和应用目的,按照表4的公式来估算。

为了使用方便,一般应留有25%~30%的裕量,获取存储容量的最佳方法是生成程序,即用了多少字。

知道每条指令所用的字数,用户便可确定准确的存储容量。

4、软件选择在系统的实现过程中,PLC的编程问题是非常重要的。

用户应当对所选择PLC产品的软件功能有所了解。

通常情况下,一个系统的软件总是用于处理控制器具备的控制硬件的。

但是,有些应用系统也需要控制硬件部件以外的软件功能。

例如,一个应用系统可能包括需要复杂数学计算和数据处理操作的特殊控制或数据采集功能。

指令集的选择将决定实现软件任务的难易程度。

可用的指令集将直接影响实现控制程序所需的时间和程序执行的时间。

5、支撑技术条件的考虑选用PLC时,有无支撑技术条件同样是重要的选择依据。

支撑技术条件包括下列内容:1)编程手段2)进行程序文本处理3)程序储存方式4)通信软件包6、PLC的环境适应性(二)变频器选型1、变频器简介变频器是利用电力半导体器件的通断作用将工频电电源变换为另一频率的电能控制装置。

可分为交——交变频器,交——直——交变频器。

交——交变频器可直接把交流电变成频率和电压都可变的交流电;交——直——交变频器则是先把交流电经整流器先整流成直流电,再经过逆变器把这个直流电流变成频率和电压都可变的交流电。

为了产生可变的电压和频率,该设备首先要把电源的交流电变换为直流电(DC),这个过程叫整流。

把直流电(DC)变换为交流电(AC)的装置,其科学术语为“inverter”(逆变器)。

一般逆变器是把直流电源逆变为一定的固定频率和一定电压的逆变电源。

对于逆变为频率可调、电压可调的逆变器我们称为变频器。

变频器主要是由主电路、控制电路组成。

主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。

电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。

它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路”,以及将直流功率变换为交流功率的“逆变器”。

2、变频器选型通用变频器的选择包括通用变频器的型式选择和容量选择两个方面,选择的原则是:首先其功能特性能保证可靠地事项工艺要求,其次是获得较好的性能价格比。

通用变频器类型的选择要根据负载特性进行。

对于风机、泵类等平方转矩,低速下负载转矩较小,通常可选择专用或普通功能型通用变频器。

对于恒转矩类负载或有较高静态转速精度要求的机械应选用具有转矩控制功能的高功能型通用变频器,这种通用变频器低速转矩、静态机械特性硬度大,不怕负载冲击,具有挖土机特性。

相关文档
最新文档