12.2三角形全等的判定第3课时“角边角”、“角角边”精选练习(1)含答案(新人教版八年级上)
人教版八年级数学上册《12.2三角形全等的判定》练习题(附答案)
人教版八年级数学上册《12.2三角形全等的判定》练习题(附答案)一选择题1.下列条件不能判定两个直角三角形全等的是( )A. 斜边和一直角边对应相等B. 两个锐角对应相等C. 一锐角和斜边对应相等D. 两条直角边对应相等2.一块三角形玻璃被打碎后店员带着如图所示的一片碎玻璃去重新配一块与原来全等的三角形玻璃能够全等的依据是( )A. ASAB. AASC. SASD. SSS3.如图OD⊥AB于点D OP⊥AC于点P且OD=OP则△AOD与△AOP全等的理由是( )A. SSSB. ASAC. SSAD. HL4.如图为6个边长相等的正方形的组合图形则∠1+∠2+∠3的度数为( )A. 90°B. 135°C. 150°D. 180°5.如图AC是△ABC和△ADC的公共边下列条件中不能判定△ABC≌△ADC的是( )A. AB=AD,∠2=∠1B. AB=AD,∠3=∠4C. ∠2=∠1,∠3=∠4D. ∠2=∠16.如图已知点B、E、C、F在同一直线上且BE=CF,∠ABC=∠DEF那么添加一个条件后.仍无法判定△ABC≌△DEF的是( )A. AC=DFB. AB=DEC. AC//DFD. ∠A=∠D7.如图点C D在AB同侧∠CAB=∠DBA下列条件中不能判定△ABD≌△BAC的是( )A. ∠D=∠CB. BD=ACC. AD=BCD. ∠CAD=∠DBC8.如图D是AB上一点DF交AC于点E,DE=FE,FC//AB若AB=4,CF=3则BD的长是( )A. 0.5B. 1C. 1.5D. 29.如图△ABC中AB=AC,AD是角平分线BE=CF则下列说法中正确的有( )①AD平分∠EDF;②△EBD≌△FCD;③BD=CD;④AD⊥BC.A. 1个B. 2个C. 3个D. 4个10.两组邻边分别相等的四边形叫做“筝形”如图四边形ABCD是一个筝形其中AD=CD AB=CB 在探究筝形的性质时得到如下结论:③四边形ABCD的面积其中正确的结论有.( )A. 0个B. 1个C. 2个D. 3个二填空题11.如图在3×3的正方形网格中∠1+∠2=_______度.12.如图已知AB=AC,EB=EC,AE的延长线交BC于D则图中全等的三角形共有______对.13.如图所示的网格是正方形网格点A,B,C,D均落在格点上则∠BAC+∠ACD=____°.14.如图∠A=∠E,AC⊥BE,AB=EF,BE=10,CF=4则AC=______.15.如图在△ABC和△DEF中点B,F,C,E在同一直线上BF=CE,AB//DE请添加一个条件使△ABC≌△DEF这个添加的条件可以是______(只需写一个不添加辅助线).16.如图在△ABC中高AD和BE交于点H且DH=DC则∠ABC=°.17.如图在四边形ABCD中AB=AD,∠BAD=∠BCD=90∘连接AC若AC=6则四边形ABCD的面积为.18.如图∠C=90°,AC=20,BC=10,AX⊥AC点P和点Q同时从点A出发分别在线段AC和射线AX上运动且AB=PQ当AP=______时以点A,P,Q为顶点的三角形与△ABC全等.19.如图△ABC中AB=AC,AD⊥BC于D点DE⊥AB于点E BF⊥AC于点F,DE=3cm则BF=cm.20.如图所示∠E=∠F=90∘,∠B=∠C,AE=AF结论:①EM=FN②AF//EB③∠FAN=∠EAM④△ACN≌△ABM.其中正确的有______ .三解答题21.如图点A,D,C,F在同一条直线上AD=CF,AB=DE,AB//DE.求证:BC=EF.22.如图点C、F、E、B在一条直线上∠CFD=∠BEA,CE=BF,DF=AE写出CD与AB之间的关系并证明你的结论.23.如图B、C、E三点在同一条直线上AC//DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE24.已知:如图在△ABC中BE⊥AC垂足为点E,CD⊥AB垂足为点D且BD=CE.求证:∠ABC=∠ACB.25.如图在△ABC中AB=CB,∠ABC=90°,D为AB延长线上一点点E在BC边上且BE=BD 连接AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°求∠BDC的度数.答案和解析1.【答案】B【解析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS做题时要结合已知条件与全等的判定方法逐一验证.【解答】解:A.符合判定HL故本选项正确不符合题意;B.全等三角形的判定必须有边的参与故本选项错误符合题意;C.符合判定AAS故本选项正确不符合题意;D.符合判定SAS故本选项正确不符合题意.故选B.2.【答案】A【解析】本题考查了全等三角形的判定:全等三角形的判定方法中选用哪一种方法取决于题目中的已知条件若已知两边对应相等则找它们的夹角或第三边;若已知两角对应相等则必须再找一组对边对应相等若已知一边一角则找另一组角或找这个角的另一组对应邻边.利用全等三角形判定方法进行判断.【解答】解:这片碎玻璃的两个角和这两个角所夹的边确定从而可根据“ASA”重新配一块与原来全等的三角形玻璃.故选:A.3.【答案】D【解析】本题考查了直角三角形全等的判定的知识点解题关键点是熟练掌握直角三角形全等的判定方法HL.根据直角三角形全等的判别方法HL可证△AOD≌△AOP.【解答】解:∵OD⊥AB且OP⊥AC∴△AOD和△AOP是直角三角形又∵OD=OP且AO=AO∴△AOD≌△AOP(HL).故选D.4.【答案】B【解析】本题考查了全等图形准确识图并判断出全等的三角形是解题的关键标注字母利用“边角边”证明△ABC和△DEA全等根据全等三角形对应角相等可得∠1=∠4从而求出∠1+∠3=90°再判断出∠2=45°进而计算即可得解.【解答】解:如图在△ABC和△DEA中{AB=DE∠ABC=∠DEA=90°BC=EA,∴△ABC≌△DEA(SAS)∴∠1=∠4∵∠3+∠4=90°∴∠1+∠3=90°又∵∠2=45°∴∠1+∠2+∠3=90°+45°=135°.故选B.5.【答案】A【解析】本题考查三角形全等的判定方法判定两个三角形全等的一般方法有:SSS SAS ASA AAS等.利用全等三角形的判定定理:SSS SAS ASA AAS等逐项进行分析即可.判定两个三角形全等时必须有边的参与若有两边一角对应相等时这个角必须是两边的夹角.【解答】解:A.AB=AD∠2=∠1再加上公共边AC=AC不能判定△ABC≌△ADC故此选项符合题意;B.AB=AD∠3=∠4再加上公共边AC=AC可利用SAS判定△ABC≌△ADC故此选项不合题意;C.∠2=∠1∠3=∠4再加上公共边AC=AC可利用ASA判定△ABC≌△ADC故此选项不合题意;D.∠2=∠1∠B=∠D再加上公共边AC=AC可利用AAS判定△ABC≌△ADC故此选项不合题意;故选A.6.【答案】A【解析】解:∵BE=CF∴BE+EC=EC+CF即BC=EF且∠ABC=∠DEF∴当AC=DF时满足SSA无法判定△ABC≌△DEF故A不能;当AB=DE时满足SAS可以判定△ABC≌△DEF故B可以;当AC//DF时可得∠ACB=∠F满足ASA可以判定△ABC≌△DEF故C可以;当∠A=∠D时满足AAS可以判定△ABC≌△DEF故D可以;故选:A.根据全等三角形的判定方法逐项判断即可.本题主要考查全等三角形的判定方法 掌握全等三角形的判定方法是解题的关键 即SSS SAS ASA AAS 和HL .7.【答案】C【解析】本题考查了全等三角形的判定定理的应用 能熟记全等三角形的判定定理是解此题的关键 注意:全等三角形的判定定理有SAS ASA AAS SSS 符合SSA 和AAA 不能推出两三角形全等. 根据图形知道隐含条件BC =BC 根据全等三角形的判定定理逐个判断即可.【解答】解:A 添加条件∠D =∠C 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理AAS 能推出△ABD ≌△BAC 故本选项错误;B 添加条件BD =AC 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理SAS 能推出△ABD ≌△BAC 故本选项错误;C 添加条件AD =BC 还有已知条件∠CAB =∠DBA BC =BC 不符合全等三角形的判定定理 不能推出△ABD ≌△BAC 故本选项正确;D ∵∠CAB =∠DBA ∠CAD =∠DBC∴∠DAB =∠CBA 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理ASA 能推出△ABD ≌△BAC 故本选项错误;故选C .8.【答案】B【解析】解:∵CF//AB∴∠A =∠FCE ∠ADE =∠F∴在△ADE 和△CFE 中{∠A =∠FCE∠ADE =∠F DE =FE∴△ADE ≌△CFE(AAS)∴AD =CF =3∵AB =4∴DB =AB −AD =4−3=1.故选B .根据平行线的性质 得出∠A =∠FCE ∠ADE =∠F 再根据全等三角形的判定证明△ADE ≌△CFE得出AD=CF根据AB=4CF=3即可求线段DB的长.本题考查了全等三角形的性质和判定平行线的性质的应用能判定△ADE≌△FCE是解此题的关键解题时注意运用全等三角形的对应边相等对应角相等.9.【答案】C【解析】解:∵AB=AC AD平分∠BAC∴BD=DC AD⊥BC故③④正确在RT△BDE和RT△CDF中{BE=CFBD=CD∴RT△BDE≌RT△CDF故②正确∵AD⊥BC∴∠ADC=∠CDF=90°∴BC平分∠EDF.故①错误.故选:C.根据等腰三角形的三线合一可以判断③④正确根据HL可以证明RT△BDE≌RT△CDF可以判断②正确由BC平分∠EDF得出①错误故不难得到结论.本题考查全等三角形的判定和性质等腰三角形的性质角平分线的定义等知识解题的关键是等腰三角形三线合一的性质的应用属于中考常考题型.10.【答案】C【解析】此题考查全等三角形的判定和性质关键是根据SSS证明△ABD与全等和利用SAS证明与全等.【解答】解:如图在△ABD与中故①正确;∴∠ADB=∠CDB在与中∴∠AOD=∠COD=90°∴AC⊥DB故②正确;故③错误.故选C.11.【答案】90【解析】本题考查了全等三角形的判定和性质能看懂图形是解题的关键.首先判定两个三角形全等然后根据全等三角形的性质及直角三角形的性质即可判断得出结论.【解答】解:如图所示:∵∠ACB=∠DCE=90°AC=DC BC=EC∴Rt△ACB≌Rt△DCE∴∠2=∠EDC在Rt△DCE中∠1+∠EDC=90°∴∠1+∠2=90°.12.【答案】3【解析】解:①△ABE≌△ACE∵AB=AC EB=EC∴△ABE≌△ACE;②△EBD≌△ECD∵△ABE≌△ACE∴∠ABE=∠ACE∴∠EBD=∠ECD∵EB=EC∴△EBD≌△ECD;③△ABD≌△ACD∵△ABE≌△ACE△EBD≌△ECD∴∠BAD=∠CAD∵∠ABC=∠ABE+∠BED∴∠ABC=∠ACB∵AB=AC∴△ABD≌△ACD∴图中全等的三角形共有3对.在线段AD的两旁猜想所有全等三角形再利用全等三角形的判断方法进行判定三对全等三角形是△ABE≌△ACE△EBD≌△ECD△ABD≌△ACD.本题考查学生观察猜想全等三角形的能力同时也要求会运用全等三角形的几种判断方法进行判断.13.【答案】90【解析】【解答】解:在△DCE和△ABD中∵{CE=BD=1∠E=∠ADB=90°DE=AD=3∴△DCE≌△ABD(SAS)∴∠CDE =∠DAB∵∠CDE +∠ADC =∠ADC +∠DAB =90°∴∠AFD =90°∴∠BAC +∠ACD =90°故【答案】90.【分析】本题网格型问题 考查了三角形全等的性质和判定及直角三角形各角的关系 本题构建全等三角形是关键.证明△DCE ≌△ABD(SAS) 得∠CDE =∠DAB 根据同角的余角相等和三角形的内角和可得结论. 14.【答案】6【解析】本题考查了全等三角形的判定与性质有关知识 由AAS 证明△ABC ≌△EFC 得出对应边相等AC =EC BC =CF =4 求出EC 即可得出AC 的长.【解答】解:∵AC ⊥BE∴∠ACB =∠ECF =90°在△ABC 和△EFC 中{∠ACB =∠ECF ∠A =∠E AB =EF∴△ABC ≌△EFC(AAS)∴AC =EC BC =CF =4∵EC =BE −BC =10−4=6∴AC =EC =6;故答案为6. 15.【答案】AB =ED【解析】解:添加AB =ED∵BF =CE∴BF +FC =CE +FC即BC =EF∵AB//DE∴∠B =∠E在△ABC 和△DEF 中{AB =ED∠B =∠E CB =FE,∴△ABC ≌△DEF(SAS)故【答案】AB =ED .根据等式的性质可得BC =EF 根据平行线的性质可得∠B =∠E 再添加AB =ED 可利用SAS 判定△ABC ≌△DEF .本题考查三角形全等的判定方法 判定两个三角形全等的一般方法有:SSS SAS ASA AAS HL .注意:AAA SSA 不能判定两个三角形全等 判定两个三角形全等时 必须有边的参与 若有两边一角对应相等时 角必须是两边的夹角.16.【答案】45【解析】本题考查了全等三角形的判定与性质 余角的性质 等腰直角三角形 由三角形的高得到∠ADB =∠ADC =∠BEC =90° 结合余角的性质得到∠HBD =∠CAD 易证△HBD ≌△CAD 得到AD =BD 根据等腰直角三角形得到∠ABD =45° 即可得出结论.【解答】解:∵AD ⊥BC BE ⊥AC∴∠ADB =∠ADC =∠BEC =90°∴∠HBD +∠C =∠CAD +∠C =90°∴∠HBD =∠CAD∵在△HBD 和△CAD 中{∠HBD =∠CAD,HDB =∠CDA,DH =DC,∴△HBD ≌△CAD(AAS)∴AD =BD∵∠ADB =90°∴△ABD 为等腰直角三角形∴∠ABD =45° 即∠ABC =45°故答案为45.17.【答案】18【解析】本题考查全等三角形的判定和性质和三角形的面积.过点A 作AE ⊥AC 交CD 的延长线于点E.做出辅助线是解答本题的关键.过点A 作AE ⊥AC 交CD 的延长线于点E 证明△AED ≌△ACB 将四边形ABCD 的面积转化为△ACE 的面积 利用三角形面积公式求解即可.【解答】解:过点A 作AE ⊥AC 交CD 的延长线于点E∵∠EAC =∠BAD =90°∴∠EAD =∠CAB∵∠BAD =∠BCD =90∘∴∠ADC +∠ABC =360°−(∠BAD +∠BCD)=180°又∵∠ADE +∠ADC =180∘∴∠ADE =∠ABC在△AED 与△ACB 中{∠EAD =∠CABAD =AB ∠ADE =∠ABC∴△AED ≌△ACB(ASA)∴AE =AC =6 四边形ABCD 的面积等于△ACE 的面积故S 四边形ABCD =12AC ⋅AE =12×6×6=18.故答案为18. 18.【答案】10或20【解析】解:∵AX ⊥AC∴∠PAQ =90°∴∠C=∠PAQ=90°分两种情况:①当AP=BC=10时在Rt△ABC和Rt△QPA中{AB=PQBC=AP∴Rt△ABC≌Rt△QPA(HL);②当AP=CA=20时在△ABC和△PQA中{AB=PQAP=AC∴Rt△ABC≌Rt△PQA(HL);综上所述:当点P运动到AP=10或20时△ABC与△APQ全等;故【答案】10或20.分两种情况:①当AP=BC=10时;②当AP=CA=20时;由HL证明Rt△ABC≌Rt△PQA(HL);即可得出结果.本题考查了直角三角形全等的判定方法;熟练掌握直角三角形全等的判定方法本题需要分类讨论难度适中.19.【答案】6【解析】本题考查了全等三角形的判定与性质三角形的面积利用面积公式得出等式是解题的关键.先利用HL证明Rt△ADB≌Rt△ADC得出S△ABC=2S△ABD=2×12AB⋅DE=AB⋅DE=3AB又S△ABC=12AC⋅BF将AC=AB代入即可求出BF.【解答】解:在Rt△ADB与Rt△ADC中{AB=ACAD=AD ∴Rt△ADB≌Rt△ADC∴S△ABC=2S△ABD=2×12AB⋅DE=AB⋅DE=3AB∵S△ABC=12AC⋅BF∴12AC⋅BF=3AB ∵AC=AB∴12BF=3cm∴BF=6cm.故【答案】6.20.【答案】①③④【解析】此题考查了全等三角形的性质与判别考查了学生根据图形分析问题解决问题的能力.其中全等三角形的判别方法有:SSS SAS ASA AAS及HL.学生应根据图形及已知的条件选择合适的证明全等的方法.由∠E=∠F=90°∠B=∠C AE=AF利用“AAS”得到△ABE与△ACF全等根据全等三角形的对应边相等且对应角相等即可得到∠EAB与∠FAC相等AE与AF相等AB与AC相等然后在等式∠EAB=∠FAC两边都减去∠MAN得到∠EAM与∠FAN相等然后再由∠E=∠F=90°AE=AF∠EAM=∠FAN利用“ASA”得到△AEM与△AFN全等利用全等三角形的对应边相等对应角相等得到选项①和③正确;然后再∠C=∠B AC=AB∠CAN=∠BAM利用“ASA”得到△ACN与△ABM全等故选项④正确;若选项②正确得到∠F与∠BDN相等且都为90°而∠BDN不一定为90°故②错误.【解答】解:在△ABE和△ACF中∠E=∠F=90°AE=AF∠B=∠C∴△ABE≌△ACF(AAS)∴∠EAB=∠FAC AE=AF AB=AC∴∠EAB−∠MAN=∠FAC−∠NAM即∠EAM=∠FAN在△AEM和△AFN中∠E=∠F=90°AE=AF∠EAM=∠FAN∴△AEM≌△AFN(ASA)∴EM=FN∠FAN=∠EAM故选项①和③正确;在△ACN和△ABM中∠C=∠B∠CAN=∠BAM AC=AB∴△ACN≌△ABM(ASA)故选项④正确;若AF//EB∠F=∠BDN=90°而∠BDN不一定为90°故②错误则正确的选项有:①③④.21.【答案】解:∵AB//DE∴∠A =∠EDF∵AC =AD +DC DF =DC +CF 且AD =CF∴AC =DF在△ABC 和△DEF 中{AB =DE∠A =∠EDF AC =DF∴△ABC ≌△DEF(SAS)∴BC =EF .【解析】先证明AC =DF 再根据SAS 推出△ABC ≌△DEF 便可得结论.本题考查了全等三角形的判定和性质的应用 证明三角形的边相等 往往转化证明三角形的全等. 22.【答案】解:CD//AB CD =AB理由是:∵CE =BF∴CE −EF =BF −EF∴CF =BE在△CFD 和△BEA 中{CF =BE∠CFD =∠BEA DF =AE∴△CFD ≌△BEA(SAS)∴CD =AB ∠C =∠B∴CD//AB .【解析】本题考查了平行线的判定和全等三角形的性质和判定的应用.全等三角形的判定是结合全等三角形的性质证明线段和角对应相等的重要工具.在判定三角形全等时 关键是选择恰当的判定条件. 求出CF =BE 根据SAS 证△CFD ≌△BEA 推出CD =AB ∠C =∠B 根据平行线的判定推出CD//AB .23.【答案】证明:∵AC//DE∴∠ACB =∠E ∠ACD =∠D∵∠ACD =∠B∴∠D =∠B在△ABC 和△EDC 中{∠B =∠D∠ACB =∠E AC =CE∴△ABC ≌△CDE(AAS).【解析】此题主要考查了全等三角形的判定 平行线的性质.首先根据AC//DE 利用平行线的性质可得:∠ACB =∠E ∠ACD =∠D 再根据∠ACD =∠B 证出∠D =∠B 然后根据全等三角形的判定定理AAS 证出△ABC ≌△CDE 即可.24.【答案】证明:∵BE ⊥AC CD ⊥AB∴∠BDC =∠CEB =90°在Rt △BCD 和Rt △CBE 中{BC =CB BD =CE∴Rt △BCD ≌Rt △CBE(HL)∴∠DBC =∠ECB即∠ABC =∠ACB .【解析】本题考查了全等三角形的判定与性质;证明三角形全等是解题的关键.证明Rt △BCD ≌Rt △CBE(HL) 即可得出结论.25.【答案】(1)证明:∵∠ABC =90°∴∠DBC =90°在△ABE 和△CBD 中{AB =CB∠ABE =∠CBD BE =BD∴△ABE ≌△CBD(SAS);(2)解:∵AB =CB ∠ABC =90°∴∠BCA =45°∴∠AEB =∠CAE +∠BCA =30°+45°=75°∵△ABE ≌△CBD∴∠BDC =∠AEB =75°.【解析】(1)由条件可利用SAS证得结论;(2)由等腰直角三角形的性质可先求得∠BCA利用三角形外角的性质可求得∠AEB再利用全等三角形的性质可求得∠BDC.本题主要考查全等三角形的判定和性质掌握全等三角形的判定方法(即SSS SAS ASA AAS和HL)和全等三角形的性质(即全等三角形的对应边相等对应角相等)是解题的关键.。
人教版数学八年级上册:12.2.3 三角形全等的判定(三)ASA、AAS 同步练习(附答案)
第十二章全等三角形12.2.3 三角形全等的判定(三)ASA、AAS1.如图,已知△ABC三条边、三个角,则甲、乙两个三角形中和△ABC全等的是( ) A.甲B.乙C.甲和乙都是D.都不是2.如图,∠ABC=∠DCB,BD,CA分别是∠ABC,∠DCB的平分线.求证:AB=DC.3.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.4.如图,在△ABC中,∠B=∠C,D为BC的中点,过点D分别向AB,AC作垂线段,则能够说明△BDE≌△CDF的理由是( )A.SSS B.SASB.C.ASA D.AAS5.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,CE=BF,∠A =∠D.求证:AB=CD.6.如图,∠B=∠DEF,AB=DE,要说明△ABC≌△DEF.(1)若以“SAS”为依据,还需添加的条件为;(2)若以“ASA”为依据,还需添加的条件为;(3)若以“AAS”为依据,还需添加的条件为.7.如图,AE∥DF,AE=DF,则添加下列条件还不能确定△EAC≌△FDB( ) A.AB=CD B.CE∥BF C.CE=BF D.∠E=∠F第7题图第8题图第9题图第10题图8.如图,已知D是△ABC的边AB上一点,DF交AC于点E,DE=EF,FC∥AB,若BD =2,CF=5,则AB的长为( )A.2 B.5C.7 D.39.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是.10.如图,要测量河两岸相对的两点A,B的距离,在AB的垂线BF上取两点C,D,使BC=CD,过点D作BF的垂线DE,与AC的延长线交于点E,则∠ABC=∠CDE=90°,BC=DC,∠1=,△ABC≌.若测得DE的长为25米,则河宽AB的长为.11.如图,已知点A,F,E,C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.12.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.求证:(1)BD=CE;(2)∠M=∠N.13.如图1,在△ABC中,∠ACB=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN 于点M,BN⊥MN于点N.(1)求证:MN=AM+BN;(2)如图2,若过点C作直线MN与线段AB相交,AM⊥MN于点M,BN⊥MN于点N(AM>BN),(1)中的结论是否仍然成立?说明理由.参考答案1.B2.证明:∵∠ABC =∠DCB ,BD ,CA 分别是∠ABC ,∠DCB 的平分线,∴∠DBC =∠ACB.在△ABC 和△DCB 中,⎩⎪⎨⎪⎧∠ABC =∠DCB ,BC =CB ,∠ACB =∠DBC ,∴△ABC ≌△DCB(ASA ).∴AB =DC.3.证明:∵BD ⊥AC 于点D ,CE ⊥AB 于点E ,∴∠ADB =∠AEC =90°.在△ABD 和△ACE 中,⎩⎪⎨⎪⎧∠ADB =∠AEC ,AD =AE ,∠A =∠A ,∴△ABD ≌△ACE(ASA ).∴AB =AC.又∵AD =AE ,∴AB -AE =AC -AD ,即BE =CD.4.D5.证明:∵AB ∥CD ,∴∠B =∠C.∵CE =BF ,∴CE +EF =BF +EF ,即CF =BE.在△ABE 和△DCF 中,⎩⎪⎨⎪⎧∠A =∠D ,∠B =∠C ,BE =CF ,∴△ABE ≌△DCF(AAS ),∴AB =CD.6. (1) BC =EF 或BE =CF ;(2) ∠A =∠D ;(3) ∠ACB =∠F .7.C8.C9.AC =BC .10.25米.11.解:(1)△ABE ≌△CDF ,△AFD ≌△CEB.(2)选△ABE ≌△CDF ,证明:∵AB ∥CD ,∴∠BAE =∠DCF.∵AF =CE ,∴AF +EF =CE +EF ,即AE =CF.在△ABE 和△CDF 中,⎩⎪⎨⎪⎧∠BAE =∠DCF ,∠ABE =∠CDF ,AE =CF ,∴△ABE ≌△CDF(AAS ).12.证明:(1)在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠1=∠2,AD =AE ,∴△ABD ≌△ACE(SAS ).∴BD =CE.(2)∵∠1=∠2,∴∠1+∠DAE =∠2+∠DAE ,即∠BAN =∠CAM.由(1),得△ABD ≌△ACE ,∴∠B =∠C. 在△ACM 和△ABN 中,⎩⎪⎨⎪⎧∠C =∠B ,AC =AB ,∠CAM =∠BAN ,∴△ACM ≌△ABN(ASA ).∴∠M =∠N.13.解:(1)证明:∵∠ACB =90°,∴∠ACM +∠BCN =90°.又∵AM ⊥MN ,BN ⊥MN ,∴∠AMC =∠CNB =90°.∴∠BCN +∠CBN =90°.∴∠ACM =∠CBN. 在△ACM 和△CBN 中,⎩⎪⎨⎪⎧∠ACM =∠CBN ,∠AMC =∠CNB ,AC =CB ,∴△ACM ≌△CBN(AAS ).∴MC =NB ,MA =NC.∵MN =MC +CN ,∴MN =AM +BN.(2)(1)中的结论不成立,结论为MN =AM -BN. 理由如下:同(1)中证明可得△ACM ≌△CBN ,∴CM=BN,AM=CN.∵MN=CN-CM,∴MN=AM-BN.。
三角形全等的判定-人教版数学八年级上第十二章12.2第三课时习题和答案
第十二章 全等三角形12.2三角形全等的判定第三课时AAS ,ASA 判定定理测试题知识点:ASA 判定定理及其应用1. 如图,∠1=∠2,∠3=∠4,若证得BD=CD ,则所用的判定两三角形全等的依据是( )A .角角角B .角边角C .边角边D .角角边2. 如图,某同学不小心把一块三角形的玻璃仪器打碎成三块,现要去玻璃店配制一块完全一样的,那么最省事的办法是带________去。
3. 如图,已知∠A =∠D ,∠1=∠2,那么要得到△ABC ≌△DEF ,还应给出的条件是()A. ∠E =∠BB. ED =BCC.AB =EFD.AF =CD4. 如图,在四边形ABCD 中,AB ∥CD ,若用“ASA ”证明△ABC ≌△CDA ,需添加条件。
5. 已知:△ABC 中,D 、E 、F 分别是AB 、AC 、BC 上的点,连结DE 、EF ,∠ADE=∠EFC ,A BCD E12第4题F∠AED=∠ACB,DE=FC。
求证:△ADE≌△EFC6.已知:△ABC是等边三角形,∠GAB=∠HBC=∠DCA,∠GBA=∠HCB=∠DAC。
求证:△ABG≌△BCH≌△CAD。
知识点:AAS判定定理及其应用7.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的是( )A.甲和乙B.乙和丙C.只有乙D.只有丙8.如图,BP为∠ABC平分线,D在BP上,PA⊥BA于A,PC⊥BC于C,若∠ADP=35°,则∠BDC=。
9. 如图,∠E =∠F =900,∠B =∠C ,AE =AF .给出下列结论:①∠1=∠2;②BE =CF ;③△ACN ≌△ABM ;④CD =DN .其中正确的结论是。
10. 已知:如图,∠1=∠2,∠C =∠D ,求证:AC =AD.11. 已知:如图6,AB 、CD 交于点O ,E 、F 为AB 上两点,OA=OB ,OE=OF ,∠A=∠B ,∠ACE=∠BDF. 求证:△ACE ≌△BDF 。
部编数学八年级上册12.2三角形全等的判定(解析版)含答案
2022-2023学年八年级数学上册章节同步实验班培优题型变式训练(人教版)12.2 三角形全等的判定【题型1】SSS 证明三角形全等1.(2022·山西·运城市盐湖区教育科技局教学研究室七年级期末)小华在复习用尺规作一个角等于已知角的过程中,回顾了作图的过程,他发现OCD V 与'''O C D V 全等,请你说明小华得到全等的依据是( )A .SSSB .SASC .ASAD .AAS【答案】A 【分析】利用全等三角形的判定定理即可求解.【详解】解:在OCD D 和O C D ¢¢¢D 中,OD O D OC O C DC D C ¢¢¢¢¢=ì¢ï=íï=î,()OCD O C D SSS ¢¢¢\D @D .故选:A .【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定定理是解题的关键.【变式1-1】2.(2021·重庆·华东师范大学附属中旭科创学校八年级期中)已知,如图,AD=AC ,BD=BC ,O 为AB 上一点,那么图中共有___对全等三角形.【答案】3【分析】由已知条件,结合图形可得△ADB ≌△ACB ,△ACO ≌△ADO ,△CBO ≌△DBO 共3对.找寻时要由易到难,逐个验证.【详解】解:∵AD=AC ,BD=BC ,AB=AB,∴△ADB ≌△ACB ;∴∠CAO=∠DAO ,∠CBO=∠DBO ,∵AD=AC ,BD=BC ,OA=OA ,OB=OB∴△ACO ≌△ADO ,△CBO ≌△DBO .∴图中共有3对全等三角形.故答案为3.【题型2】SAS 证明三角形全等1.(2022·全国·八年级专题练习)如图,已知∠1=∠2,∠3=∠4,要证BC =CD ,证明中判定两个三角形全等的依据是( )A .角角角B .角边角C .边角边D .角角边【答案】B 【分析】根据已知条件,直接利用ASA 进行证明即可求解.【详解】解:在△ABC 与△ADC 中,1234AC AC Ð=Ðìï=íïÐ=Ðî,则△ABC ≌△ADC (ASA ).∴BC =CD .故选:B .【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法是解题的关键.【变式2-1】2.(2022·全国·八年级课时练习)如图,BE BA =,//AB DE ,BC DE =,若40BAC Ð=°,25E Ð=°,则BDE Ð=___.【答案】115°【分析】根据//AB DE ,推出Ð=ÐABC BED ,联合题目的条件可证明(SAS)BED ABC ≌△△,进而可求得结论.【详解】解:∵//AB DE ,∴Ð=ÐABC BED ,在BED V 与ABC V 中BE AB BED ABC DE CB =ìïÐ=Ðíï=î,∴(SAS)BED ABC ≌△△,∴40EBD BAC Ð=Ð=°,而180BDE EBD E Ð=°-Ð-Ð,且25E Ð=°,∴1804025115BDE Ð=°-°-°=°,故答案为:115°.【点睛】本题考查利用SAS 判定三角形全等,三角形内角和定理,利用平行推出角等,进而推出三角形全等是解题关键.【题型3】ASA 或AAS 证明三角形全等1.(2022·河北·平乡县第二中学八年级阶段练习)已知如图,要测量水池的宽AB ,可过点A 作直线AC ⊥AB ,再由点C 观测,在BA 延长线上找一点B ¢,使ACB ACB ¢ÐÐ=,这时只要出AB ¢的长,就知道AB 的长,那么判定ABC D ≌AB C D ¢的理由是( )A .ASAB .AASC .SASD .HL【答案】A 【分析】直接利用全等三角形的判定方法得出答案.【详解】解:∵AC ⊥AB ,∴90CAB CAB Ð=Т=°,在ABC D 和AB C D ¢中,ACB ACB AC ACCAB CAB Ð=Ðìï=íïТ=Ðî¢,∴ABC D ≌()ASA AB C D ¢,∴AB AB ¢=.故选A .【点睛】本题考查了全等三角形的应用,解题的关键是能够利用ASA 判定两个三角形全等.【变式3-1】2.(2021·江苏南京·八年级阶段练习)如图,AB 、CD 相交于点E ,且AE =BE ,AC BD ∥.求证:△AEC ≌△BED .【答案】见解析【分析】采用“ASA ”的全等三角形的判定方法即可求证.【详解】∵AC BD∥∴∠A =∠B ,在△AEC 和△BED 中,A B AE BEAEC BED Ð=Ðìï=íïÐ=Ðî,∴△AEC ≌△BED (ASA ),【点睛】本题考查了全等三角形的判定以及平行线的性质的知识,掌握全等三角形的判定方法是解答本题的关键.【题型4】HL 证明三角形全等1.(2022·全国·八年级专题练习)如图,已知AD BD ^,BC AC ^,AC BD =.则CAB DBA △△≌的理由是( )A .HLB .SASC .AASD .ASA 【答案】A 【分析】利用直角三角形全等的判定方法进行判断.【详解】证明:∵AD ⊥BD ,BC ⊥AC ,∴∠C =∠D =90°,在Rt △CAB 和Rt △DBA 中,AB BA AC BD =ìí=î,∴Rt △CAB ≌Rt △DBA (HL ).故选:A .【点睛】本题考查了全等三角形的判定,熟练掌握直角三角形全等的判定是解决问题的关键.【变式4-1】2.(2022·湖南·新化县东方文武学校八年级期中)如图,AB =AD ,CB ⊥AB 于点B ,CD ⊥AD 于点D ,求证△ABC ≌△ADC .【答案】见解析【分析】求出∠B =∠D =90°,根据全等三角形的判定定理得出Rt △ABC ≌Rt △ADC .【详解】解:∵CB ⊥AB ,CD ⊥AD∴∠B =∠D =90°又∵AB =AD ,AC =AC∴Rt △ABC ≌Rt △ADC (HL )【点睛】本题考查了全等三角形的判定定理和性质定理,能灵活运用定理进行推理是解此题的关键.【题型5】全等三角形判定的灵活应用1.(2021·甘肃·庄浪县阳川中学八年级期中)下列各组条件中,可以判定△ABC ≌△DEF 的条件是( )A .AB =DE 、AC =DF 、BC =EFB .∠A =∠D 、∠B =∠E 、∠C =∠F C .AB =DE 、AC =DF 、∠C =∠FD .BC =EF 、∠A =∠D 【答案】A 【分析】全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,直角三角形全等还有HL ,根据以上定理判断即可【详解】解: A 、符合全等三角形的判定定理SSS ,即能推出△ABC ≌△DEF ,故本选项符合题意;B 、只有角相等,不能判定△ABC ≌△DFE ,故本选项不合题意;C 、只满足SSA ,不符合全等三角形的判定定理,即不能推出△ABC ≌△DEF ,故本选项不合题意;D 、只有一角一边两个条件,不符合全等三角形的判定定理,即不能推出△ABC ≌△DEF ,故本选项不合题意; 故选A .【点睛】本题考查了全等三角形的判定定理的应用,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,直角三角形全等还有HL .【变式5-1】2.(2022·浙江·舟山市普陀第二中学八年级期末)如图,在ABC V 中,AD 是BC 边上的高,BE 是AC 边上的高,且AD ,BE 交于点F ,若BF AC =,BD =8,3CD =,则线段AF 的长度为______.【答案】5【分析】首先证明△BDF ≌△ADC ,再根据全等三角形的性质可得FD =CD ,AD =BD ,根据AD =8,DF =3,即可算出AF 的长.【详解】解:∵AD 是BC 边上的高,BE 是AC 边上的高,∴∠ADC =∠FDB =90°,∠AEB =90°,∴∠1+∠C =90°,∠1+∠2=90°,∴∠2=∠C ,∵∠2=∠3,∴∠3=∠C ,在△ADC 和△BDF 中,3C FDB CDA BF AC Ð=ÐìïÐ=Ðíï=î,∴△BDF ≌△ADC (AAS ),∴FD =CD ,AD =BD ,∵CD =3,BD =8,∴AD =8,DF =3,∴AF =8-3=5,故答案为:5.【点睛】本题考查的是全等三角形的判定及性质,熟练掌握性质定理是解题的关键.一.选择题1.(2022·福建·福州十八中八年级期末)如图,已知AC BD ^,垂足为O ,AO CO =,AB CD =,则可得到AOB COD D @D ,理由是( )A .HLB .SASC .ASAD .AAS【答案】A 【分析】根据全等三角形的判定定理分析即可.【详解】解:∵AC BD^∴∠AOB=∠COD=90°在Rt △AOB 和Rt △COD 中AO CO AB CD=ìí=î∴AOB COD D @D (HL )故选A .【点睛】此题考查的是全等三角形的判定定理,掌握用HL 判定两个三角形全等是解决此题的关键.2.(2022·全国·七年级期末)如图,为测量桃李湖两端AB 的距离,南开中学某地理课外实践小组在桃李湖旁的开阔地上选了一点C ,测得∠ACB 的度数,在AC 的另一侧测得∠ACD =∠ACB ,CD =CB ,再测得AD 的长,就是AB 的长.那么判定△ABC ≌△ADC 的理由是( )A .SASB .SSSC .ASAD .AAS【答案】A【分析】已知条件是∠ACD =∠ACB ,CD =CB ,AC =AC ,据此作出选择.【详解】解:在△ADC 与△ABC 中,CD CB ACD ACB AC AC =ìïÐ=Ðíï=î.∴△ADC ≌△ABC (SAS ).故选:A .【点睛】此题考查了全等三角形的应用,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS ,做题时注意选择.注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.(2021·全国·七年级课时练习)如图,△ABC 和△EDF 中,∠B =∠D =90°,∠A =∠E ,点B ,F ,C ,D 在同一条直线上,再增加一个条件,不能判定△ABC ≌△EDF 的是( )A .AB =EDB .AC =EF C .AC ∥EFD .BF =DC 【答案】C【分析】根据全等三角形的判定方法即可判断.【详解】A. AB =ED ,可用ASA 判定△ABC ≌△EDF ;B. AC =EF ,可用AAS 判定△ABC ≌△EDF ;C. AC ∥EF ,不能用AAA 判定△ABC ≌△EDF ,故错误;D. BF =DC ,可用AAS 判定△ABC ≌△EDF ;故选C.【点睛】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定方法.4.(2022·全国·八年级课时练习)如图,在ABC V 中,D ,E 是BC 边上的两点,,,12110,60AD AE BE CD BAE ==Ð=ÐÐ=°=°,则BAC Ð的度数为( )A .90°B .80°C .70°D .60°【答案】B 【分析】先证明BD =CE ,然后证明△ADB ≌△AEC ,∠ADE =∠AED =70°,得到∠BAD =∠CAE ,根据三角形内角和定理求出∠DAE =40°,从而求出∠BAD 的度数即可得到答案.【详解】解:∵BE =CD ,∴BE -DE =CD -DE ,即BD =CE ,∵∠1=∠2=110°,AD =AE ,∴△ADB ≌△AEC (SAS ),∠ADE =∠AED =70°,∴∠BAD =∠CAE ,∠DAE =180°-∠ADE -∠AED =40°,∵∠BAE =60°,∴∠BAD =∠CAE =20°,∴∠BAC =80°,故选B .【点睛】本题主要考查了全等三角形的性质与判定,邻补角互补,三角形内角和定理,熟知全等三角形的性质与判定条件是解题的关键.5.(2022·全国·八年级专题练习)如图,点B ,C ,E 在同一直线上,且AC CE =,90B D Ð=Ð=°,AC CD ^,下列结论不一定成立的是( )A .2A Ð=ÐB .90A E Ð+Ð=°C .BC DE =D .BCD ACEÐ=Ð【答案】D 【分析】根据直角三角形的性质得出∠A =∠2,∠1=∠E ,根据全等三角形的判定定理推出△ABC ≌△CDE ,再逐个判断即可.【详解】解:∵AC ⊥CD ,∴∠ACD =90°,∵∠B =90°,∴∠1+∠A =90°,∠1+∠2=90°,∴∠A =∠2,同理∠1=∠E ,∵∠D =90°,∴∠E+∠2=∠A+∠E=90°,在△ABC 和△CDE 中,2A B D AC CE Ð=ÐìïÐ=Ðíï=î,∴△ABC ≌△CDE (AAS ),∴BC DE =,∴选项A 、选项B ,选项C 都正确;根据已知条件推出∠A =∠2,∠E =∠1,但是∠1=∠2不能推出,而∠BCD =90°+∠1,∠ACE =90°+∠2,所以BCD ACE Ð=Ð不一定成立故选项D 错误;故选:D .【点睛】本题考查了全等三角形的判定定理和直角三角形的性质,能灵活运用知识点进行推理是解此题的关键,注意:全等三角形的判定定理有:ASA ,SAS ,AAS ,SSS ,两直角三角形全等,还有HL .6.(2022·江苏·八年级专题练习)如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作等边三角形ABC 和等边三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下结论错误的是( )A .∠AOB =60°B .AP =BQC .PQ ∥AED .DE =DP 【答案】D【分析】利用等边三角形的性质,BC ∥DE ,再根据平行线的性质得到∠CBE =∠DEO ,于是∠AOB =∠DAC +∠BEC =∠BEC +∠DEO =∠DEC =60°,得出A 正确;根据△CQB ≌△CPA (ASA ),得出B 正确;由△ACD ≌△BCE 得∠CBE =∠DAC ,加之∠ACB =∠DCE =60°,AC =BC ,得到△CQB ≌△CPA (ASA ),再根据∠PCQ =60°推出△PCQ 为等边三角形,又由∠PQC =∠DCE ,根据内错角相等,两直线平行,得出C 正确;根据∠CDE =60°,∠DQE =∠ECQ +∠CEQ =60°+∠CEQ ,可知∠DQE ≠∠CDE ,得出D 错误.【详解】解:∵等边△ABC 和等边△CDE ,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠BCD =∠DCE +∠BCD ,即∠ACD =∠BCE ,在△ACD 与△BCE 中,AC BC ACD BCE CD CE =ìïÐ=Ðíï=î,∴△ACD ≌△BCE (SAS ),∴∠CBE =∠DAC ,又∵∠ACB =∠DCE =60°,∴∠BCD =60°,即∠ACP =∠BCQ ,又∵AC =BC ,在△CQB 与△CPA 中,ACP BCQ AC BCPAC CBQ Ð=Ðìï=íïÐ=Ðî,∴△CQB ≌△CPA (ASA ),∴CP =CQ ,又∵∠PCQ =60°可知△PCQ 为等边三角形,∴∠PQC =∠DCE =60°,∴PQ ∥AE ,故C 正确,∵△CQB ≌△CPA ,∴AP =BQ ,故B 正确,∵AD =BE ,AP =BQ ,∴AD -AP =BE -BQ ,即DP =QE ,∵∠DQE =∠ECQ +∠CEQ =60°+∠CEQ ,∠CDE =60°,∴∠DQE ≠∠CDE ,故D 错误;∵∠ACB =∠DCE =60°,∴∠BCD =60°,∵等边△DCE ,∠EDC =60°=∠BCD ,∴BC ∥DE ,∴∠CBE =∠DEO ,∴∠AOB =∠DAC +∠BEC =∠BEC +∠DEO =∠DEC =60°,故A 正确.故选:D .【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质,利用旋转不变性,解题的关键是找到不变量.二、填空题7.(2022·全国·八年级课时练习)如图,90B D Ð=Ð=°,AB AD =,130BAD Ð=°,则DCA Ð=______°.8.(2020·北京·中考真题)在V ABC 中,AB=AC ,点D 在BC 上(不与点B ,C 重合).只需添加一个条件即可证明V ABD ≌V ACD ,这个条件可以是________(写出一个即可)【答案】∠BAD=∠CAD (或BD=CD )【分析】证明V ABD ≌V ACD ,已经具备,,AB AC AD AD == 根据选择的判定三角形全等的判定方法可得答案.【详解】解:,,AB AC AD AD ==Q\ 要使,ABD ACD V V ≌则可以添加:∠BAD=∠CAD ,此时利用边角边判定:,ABD ACD V V ≌或可以添加:,BD CD =此时利用边边边判定:,ABD ACD V V ≌故答案为:∠BAD=∠CAD 或(.BD CD =)【点睛】本题考查的是三角形全等的判定,属开放性题,掌握三角形全等的判定是解题的关键.9.(2022·全国·八年级课时练习)如图,点D 、A 、E 在直线m 上,AB =AC ,BD ⊥m 于点D ,CE ⊥m 于点E ,且BD =AE .若BD =3,CE =5,则DE =____________【答案】8【分析】根据BD ⊥m ,CE ⊥m ,得∠BDA =∠CEA =90°,再结合已知AB =AC ,BD =AE 可推出Rt △ADB ≌Rt △CEA ,最后由全等三角形的性质,即可计算出结果.【详解】解:∵BD ⊥m ,CE ⊥m ,∴∠BDA =∠CEA =90°,在Rt △ADB 和Rt △CEA 中,∵AB =AC ,BD =AE ,∴Rt △ADB ≌Rt △CEA (HL ),∵BD =3,CE =5,∴AE =BD =3,AD =CE =5,∴DE = AD + AE =8.故答案为:8.【点睛】本题考查了全等三角形的判定与性质,掌握利用HL 判定直角三角形的全等是解题的关键.10.(2022·全国·八年级专题练习)如图,在△ABC 中,∠ABC =90°,AB =CB ,F 为AB 延长线上一点,点E 在BC 上,且AE =CF ,若∠CAE =29°,则∠ACF 的度数为________°.【答案】61【分析】由“HL”可证Rt△ABE≌Rt△CBF,可得∠BAE=∠BCF=16°,即可求解.【详解】解:∵在△ABC中,∠ABC=90°,AB=CB,∴∠BAC=∠BCA=45°,∵∠CAE=29°,∴∠BAE=16°,在Rt△ABE和Rt△CBF中,AB BC AE CF=ìí=î,∴Rt△ABE≌Rt△CBF(HL),∴∠BAE=∠BCF=16°,∴∠ACF=∠BCA+∠BCF=61°,故答案为:61.【点睛】本题考查了全等三角形的判定和性质,证明Rt△ABE≌Rt△CBF是本题的关键.11.(2021·广东·深圳市龙岗区木棉湾实验学校八年级阶段练习)如图,△ABC的面积为25cm2,BP平分∠ABC,过点A作AP⊥BP于点P,则△PBC的面积为________;∵BP 平分ABC Ð,∴ABP EBP Ð=Ð.∵AP BP ^,12.(2022·全国·八年级专题练习)如图,BD 是△ABC 的中线,E 为A B 边上一点,且:2:1AE EB =,连接CE 交BD 于F ,连接AF 并延长交BC 于点G ,则:BGF ADF S S =△△______.【答案】1:3【分析】作//DK EC ,交AB 于K ,作//DH BC ,交AG 于H .通过平行线的性质证明AH GH =,GF FH =,3AH HF =,即可求出:1:3BGF ADF S S D D =.【详解】解:作//DK EC ,交AB 于K ,作//DH BC ,交AG 于H ,BD Q 是ABC D 的中线,AD CD \=,AK EK \=,AH GH =,:2:1AE EB =Q ,EB EK AK \==,//EF DK Q ,BF DF \=,//DH BC Q ,GBF HDF \Ð=Ð,在GBF D 和HDF D 中,GBF HDF BF DF BFG DFH Ð=Ðìï=íïÐ=Ðî,()GBF HDF ASA \D @D ,GF HF \=,BGF DHF S S D D =,AH GH =Q ,3AH HF \=,33ADF DHF BGF S S S D D D \==,:1:3BGF ADF S S D D \=,故答案为:1:3.【点睛】本题考查三角形的面积,三角形全等,平行线的性质,等高模型等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考常考题型.三、解答题13.(2022·江苏·八年级专题练习)如图,D 是AB 边上一点,DF 交AC 于点E ,DE =FE ,AE =CE .求证:FC //AB .【答案】见解析【分析】由DE =FE ,AE =CE ,易证得△ADE ≌△CFE ,即可得∠A =∠ECF ,则可证得FC ∥AB .【详解】证明:在△ADE 和△CFE 中,DE FE AED CEF AE CE =ìïÐ=Ðíï=î,∴△ADE ≌△CFE (SAS ),∴∠A =∠ECF ,∴FC //AB .【点睛】此题考查了全等三角形的判定与性质以及平行线的判定.此题难度不大,注意掌握数形结合思想的应用.14.(2022·江苏·八年级课时练习)已知:如图AD 为△ABC 的高,E 为AC 上一点BE 交AD 于F 且有BF =AC ,FD =CD .求证:Rt △BFD ≌Rt △ACD .【答案】证明见解析【分析】由题意可知BFD △和ACD △都为直角三角形,即可直接利用“HL ”证明BFD ACD @△△.【详解】证明:∵AD 是ABC V 的高,∴AD BC ^,即BFD △和ACD △都为直角三角形.∴在Rt BFD V 和Rt ACD △中BF AC FD CD =ìí=î,∴()BFD ACD HL @V V .【点睛】本题考查全等三角形的判定;掌握判定三角形全等的方法是解答本题的关键.15.(2022·陕西·中考真题)如图,在△ABC 中,点D 在边BC 上,CD =AB ,DE ∥AB ,∠DCE =∠A .求证:DE =BC .【答案】证明见解析【分析】利用角边角证明△CDE ≌△ABC ,即可证明DE =BC .【详解】证明:∵DE ∥AB ,∴∠EDC =∠B .又∵CD =AB ,∠DCE =∠A ,∴△CDE ≌△ABC (ASA).∴DE =BC .【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定是本题的关键.16.(2021·广东广州·中考真题)如图,点E 、F 在线段BC 上,//AB CD ,A D Ð=Ð,BE CF =,证明:AE DF =.【答案】见解析【分析】利用AAS 证明△ABE ≌△DCF ,即可得到结论.【详解】证明:∵//AB CD ,∴∠B =∠C ,∵A D Ð=Ð,BE CF =,∴△ABE ≌△DCF (AAS ),∴AE DF =.【点睛】此题考查全等三角形的判定及性质,熟记全等三角形的判定定理是解题的关键.17.(2021·全国·八年级专题练习)如图,已知AB =DC ,AC =DB ,BE =CE,求证:AE =DE.【答案】见解析【分析】利用SSS 证明△ABC ≌△DCB ,根据全等三角形的性质可得∠ABC=∠DCB ,再由SAS 定理证明△ABE ≌△CED ,即可证得AE=DE .【详解】证明:在△ABC 和△DCB 中,AB DC AC DB BC CB ìïíïî=== ,∴△ABC ≌△DCB (SSS ).∴∠ABC=∠DCB .在△ABE 和△DCE 中,AB DCABC DCB BE CE ===ìïÐÐíïî,∴△ABE ≌△DCE (SAS ).∴AE=DE .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.18.(2022·江苏泰州·九年级专题练习)如图,V ABC 中,AC =BC ,∠ACB =90°,AD 平分∠BAC 交BC 于点D ,过点B 作BE ⊥AD ,交AD 延长线于点E ,F 为AB 的中点,连接CF ,交AD 于点G ,连接BG .(1)线段BE 与线段AD 有何数量关系?并说明理由;(2)判断V BEG的形状,并说明理由.。
八年级上册数学人教版课时练《12.2 三角形全等的判定》03(含答案解析)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!《12.2三角形全等的判定》课时练一、选择题(本大题共12道小题)1.如图,已知AB=AD,若利用SSS证明△ABC≌△ADC,则需要添加的条件是()A.AC=ACB.∠B=∠DC.BC=DCD.AB=CD2.如图所示,∠C=∠D=90°,若要用“HL”判定Rt△ABC与Rt△ABD全等,则可添加的条件是()A.AC=AD B.AB=ABC.∠ABC=∠ABD D.∠BAC=∠BAD3.如图,点B,E,C,F在同一直线上,AB∥DE,∠A=∠D,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.BE=CF B.∠ACB=∠FC.AC=DF D.AB=DE4.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪一块去()A.①B.②C.③D.①和②5.如图,在正方形ABCD中,连接BD,点O是BD的中点.若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对6.如图,点B,E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是()A.BC=FD,AC=ED B.∠A=∠DEF,AC=EDC.AC=ED,AB=EF D.∠A=∠DEF,BC=FD7.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠DB.∠ACB=∠DBCC.AC=DBD.AB=DC8.如图,AB=AC,AD=AE,BE=CD,∠2=110°,∠BAE=60°,则下列结论错误的是()A.△ABE≌△ACD B.△ABD≌△ACEC.∠C=30°D.∠1=70°9.如图,点A,E,B,F在同一直线上,在△ABC和△FED中,AC=FD,BC=ED,当利用“SSS”来判定△ABC和△FED全等时,下面的4个条件中:①AE=FB;②AB=FE;③AE =BE;④BF=BE,可利用的是()A.①或②B.②或③C.①或③D.①或④10.如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=6,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE等于()A.2B.3C.2D.611.现已知线段a,b(a<b),∠MON=90°,求作Rt△ABO,使得∠O=90°,OA=a,AB=b.小惠和小雷的作法分别如下:小惠:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点A为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.小雷:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点O为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.则下列说法中正确的是()A.小惠的作法正确,小雷的作法错误B.小雷的作法正确,小惠的作法错误C.两人的作法都正确D.两人的作法都错误12.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上二、填空题(本大题共6道小题)13.如图,在△ABC中,AD⊥BC于点D,要使△ABD≌△ACD,若根据“HL”判定,还需要添加条件:____________.14.如图,已知CD=CA,∠1=∠2,要使△ECD≌△BCA,需添加的条件是__________(只需写出一个条件).15.如图,在四边形ABCD 中,∠B =∠D =90°,AB =AD ,∠BAC =65°,则∠ACD 的度数为________.16.如图,在△ABC 中,∠C =90°,AC =BC ,AD 是∠BAC 的平分线,DE ⊥AB ,垂足为E .若△DBE 的周长为20,则AB =________.17.如图,在Rt ABC △中,90C Ð=°,以顶点B 为圆心,适当长度为半径画弧,分别交AB BC ,于点M N ,,再分别以点M N ,为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .若30A Ð=°,则BCD ABDS S =△△__________.18.如图,∠C =90°,AC =10,BC =5,AX ⊥AC ,点P 和点Q 是线段AC 与射线AX 上的两个动点,且AB =PQ ,当AP =________时,△ABC 与△APQ全等.三、解答题(本大题共3道小题)19.如图,BD ,CE 是△ABC 的高,且BE =CD .求证:Rt △BEC ≌Rt △CDB .20.如图,AD ∥BC ,AB ⊥BC 于点B ,连接AC ,过点D 作DE ⊥AC 于点E ,过点B 作BF ⊥AC 于点F .(1)若∠ABF =63°,求∠ADE 的度数;(2)若AB =AD ,求证:DE =BF +EF .21.如图,ABC △中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE Ð=Ð,连接EF ,EF 与AC 交于点G .(1)求证:EF BC =;(2)若65ABC Ð=°,28ACB Ð=°,求FGC Ð的度数.参考答案一、选择题1.C2.A3.B4.C5.C6.C7.C8.C9.A10.B 11.A12.D二、填空题13.AB=AC14.答案不唯一,如CE=CB15.25°16.2017.1 218.5或10三、解答题19.证明:∵BD,CE是△ABC的高,∴∠BEC=∠CDB=90°.在Rt△BEC和Rt△CDB中,=CB,=CD,∴Rt△BEC≌Rt△CDB(HL).20.解:(1)∵AD∥BC,AB⊥BC,∴∠ABC=∠BAD=90°.∵DE⊥AC,BF⊥AC,∴∠BFA=∠AED=90°.∴∠ABF+∠BAF=∠BAF+∠DAE=90°.∴∠DAE=∠ABF=63°.∴∠ADE=27°.(2)证明:由(1)得∠DAE=∠ABF,∠AED=∠BFA=90°.在△DAE和△ABF DAE=∠ABF,AED=∠BFA,=BA,∴△DAE≌△ABF(AAS).∴AE=BF,DE=AF.∴DE=AF=AE+EF=BF+EF.21.(1)∵CAF BAE Ð=Ð,∴BAC EAF Ð=Ð,∵AE AB AC AF ==,,∴BAC EAF △≌△,∴EF BC =.(2)∵65AB AE ABC =Ð=°,,∴18065250BAE Ð=°-°´=°,∴50FAG Ð=°,∵BAC EAF △≌△,∴28F C Ð=Ð=°,∴502878FGC Ð=°+°=°.。
人教版八年级数学上册《12.2三角形全等的判定》同步练习题(带答案)
人教版八年级数学上册《12.2三角形全等的判定》同步练习题(带答案)一、选择题1.如图AB ∥DF ,且AB =DF ,添加下列条件,不能判断△ABC ≅△FDE 的是( )A .AC =EFB .BE =CDC .AC ∥FFD .∠A =∠F2.工人师傅常用角尺平分一个任意角.作法如下:如图所示,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合,过角尺顶点C 的射线OC 即是∠AOB 的平分线.这种作法的道理是( )A .HLB .SSSC .SASD .ASA3.如图,在ABC 中,∠B=40°,∠C=60°,AD 平分BAC ∠交BC 于点D ,在AB 上截取AE AC =,则EDB ∠的度数为( )A .30°B .20°C .10°D .15°4.如图,,AB CD AD BC OE OF =∥∥,图中全等三角形共有( )A .4对B .5对C .6对D .7对5.如图,已知△ABC中AD=BD,F是高AD和BE的交点CD=2,AF=3,则线段BC的长度为()A.6 B.7 C.8 D.96.如图,△PBC的面积为15cm2,PB为∠ABC的角平分线,过点A作AP⊥BP于P,则△ABC 的面积为()A.25cm2B.30cm2C.32.5cm2D.35cm27.如图所示,点A在DE上,点F在AB上,且AC=CE,∠1=∠2=∠3,则DE的长等于()A.AC B.BC C.AB+AC D.AB8.如图,点E是BC的中点AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论∶①∠AED=90°②∠ADE=∠CDE③DE=BE④AD=AB+CD,四个结论中成立的是()A.①②④B.①②③C.②③④D.①③二、填空题9.如图,在△ABC和△DEF中,点B,F,C,E在同一直线上BF=CE,AC∥DF请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是(只需写一个,不添加辅助线).10.已知:如图,AD是△ABC的边BC上的中线,AB=6中线AD=4.则AC的取值范围是.11.如图,△ABC中AB=BC,∠ABC=90∘,F为AB延长线上一点,点E在BC上,且AE=CF,若∠BAE=25∘,则∠ACF=度.12.如图,E点为△ABC的边AC中点CN∥AB,过E点作直线交AB于M点,交CN于N点,若MB=6cm,CN=4cm,则AB=cm.13.如图,在Rt△ABC中∠BAC=90∘,AB=AC分别过点B,C作经过点A的直线的垂线段BD,CE 若BD=2,CE=4,则DE的长为.三、解答题14.如图,在中,D是BC边上一点,DE//AC,CB=DE,∠ABC=∠E,求证:AC=BD.15.如图,已知AB=AD,AC=AE,∠1=∠2求证∠C=∠E .16.如图,在三角形ABC中,∠C=90°,DE⊥AB于点D,DB=BC,求证:AC=AE+DE.17.如图,△ABC中,点D是BC延长线上一点,满足CD=AC,过点D作DE∥AC,连接CE,使∠DCE=∠A.(1)求证:△ABC≌△CED.(2)如果BD=10,AC=3,求DE的长.参考答案1.A2.B3.B4.D5.B6.B7.D8.A9. AC=DF10. 2<AC<1411. 7012. 1013. 614.证明:.在和中15.证明:∵∠1=∠2∴∠1+∠EAC=∠2+∠EAC 即∠BAC=∠DAE在△BAC和△DAE中{AB=AD∠BAC=∠DAE AC=AE∴△BAC≅△DAE(SAS)∴∠C=∠E .16.证明:∵∠C=90°,DE⊥AB∴∠EDB=∠C=90°在Rt △BED 和Rt △BEC 中 {BD =BC BE =BE∴Rt △BED ≌Rt △BEC (HL ) ∴DE=CE∴AC=AE+EC=AE+DE .17.(1)解:∵DE ∥AC∴∠ACB =∠CDE在△ABC 与△CED 中{∠ACB =∠CDE AC =CD ∠A =∠DCE∴△ABC ≌△CED (ASA )(2)∵△ABC ≌△CED∴CB =DE又∵CD =AC =3,BD =10∴DE =CB =BD −CD =10−3=7。
12.2 三角形全等的判定(解析版)
12.2 三角形全等的判定1.理解和掌握边边边、边角边的方法判断三角形全等;2.理解和掌握角边角和角角边的方法判断三角形全等;3.理解和掌握直角三角形的判定方法。
一、判定方法一:边边边(SSS )1.边边边:三边对应相等的两个三角形全等(可以简写成“边边边“或“SSS “)。
2.书写格式①先写出所要判定的两个三角形。
②列出条件:用大括号将两个三角形中相等的边分别写出。
③得出结论:两个三角形全等。
如下图,在△ABC 和 △A ′B ′C ′中,∵AB =A ′B ′,BC =B ′C ′,AC =A ′C ′,∴△ABC≅△A ′B ′C ′(SSS ).书写判定两个三角形全等的条件:在书写全等的过程中,等号左边表示同一个三角形的量,等号右边表示另一个三角形的量。
如上图,等号左边表示△ABC 的量,等号右边表示 △A ′B ′C ′的量。
3.作一个角等于已知角已知:∠AOB 。
求作: ∠A ′O ′B ′,使 ∠A ′O ′B ′=∠AOB .作法:如上图所示,①以点O 为圆心、任意长为半径画弧,分别交 OA ,OB 于点 C ,D 。
②画一条射线( O ′A ′,以点 O ′为圆心、OC 长为半径画弧,交( O ′A ′于点 C ′.③以点C ′为圆心、CD 长为半径画弧,与上一步中所画的弧交于点 D ′.④过点。
D ′画射线 O ′B ′,则 ∠A ′O ′B ′=∠AOB .题型一 利用SSS 直接证明三角形全等如图,已知AC DB =,要用“SSS ”判定ABC DCB @V V ,则只需添加一个适当的条件是_____.【答案】AB DC=【分析】根据全等三角形的判定:三边对应相等的两个三角形全等,即可.【详解】∵全等三角形的判定“SSS ”:三边对应相等的两个三角形全等,∴当ABC V 和DCB △中,AC DB BC BC AB DC =ìï=íï=î,∴()SSS ABC DCB @V V ,故答案为:AB DC =.【点睛】本题考查全等三角形的判定,解题的关键是掌握全等三角形的判定()SSS :三边对应相等的两个三角形全等.1.如图,已知AC DB =,要使得ABC DCB @V V ,根据“SSS ”的判定方法,需要再添加的一个条件是_______.【答案】AB DC=【分析】要使ABC DCB @V V ,由于BC 是公共边,若补充一组边相等,则可用SSS 判定其全等.【详解】解:添加AB DC =.在ABC V 和DCB △中AB DC BC CB AC BD =ìï=íï=î,∴()ABC DCB SSS @△△,故答案为:AB DC =.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择添加的条件是正确解答本题的关键.2.如图,AB DC =,若要用“SSS ”证明ABC DCB △△≌,需要补充一个条件,这个条件是__________.【答案】AC BD=【分析】由图形可知BC 为公共边,则可再加一组边相等,可求得答案.【详解】解:∵AB DC =,BC CB =,∴可补充AC DB =,在ABC V 和DCB V 中,AB DC BC CB AC DB =ìï=íï=î,∴ABC V ≌()SSS DCB V ;故答案为:AC DB =.【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.题型二 全等三角形的性质与SSS 综合如图,点E 、点F 在BD 上,且AB CD =,BF DE =,AE CF =,求证:AB CD ∥.【分析】根据全等三角形的判定得出ABE CDF △≌△,推出B D Ð=Ð,利用平行线的判定解答即可.【详解】证明:∵BF DE =,∴BE DF =,在ABE V 和CDF V 中,AB DC AE CF BE DF =ìï=íï=î,∴()SSS ABE CDF V V ≌,∴B D Ð=Ð,∴AB CD ∥.【点睛】本题考查全等三角形的判定和性质,解题的关键是学会利用全等三角形解决问题,属于中考常考题型.1.已知:如图,RPQ D 中,RP RQ =,M 为PQ 的中点.求证:RM 平分PRQ Ð.【分析】先根据M 为PQ 的中点得出PM QM =,再由SSS 定理得出PRM QRM V V ≌,由全等三角形的性质即可得出结论.【详解】证明:M Q 为PQ 的中点(已知),PM QM \=,在RPM △和RQM V 中,RP RQ PM QM RM RM =ìï=íï=î,(SSS)RPM RQM \V V ≌,PRM QRM \Ð=Ð(两三角形全等,对应角相等)即RM 平分PRQ Ð.【点睛】本题考查的是全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解答此题的关键.2.已知如图,四边形ABCD 中,AB BC =,AD CD =,求证:A C Ð=Ð.【分析】连接BD ,已知两边对应相等,加之一个公共边BD ,则可利用SSS 判定ABD CBD ≌△△,根据全等三角形的对应角相等即可证得.【详解】证明:连接BD ,AB CB =Q ,BD BD =,AD CD =,SSS ABD CBD \≌()V V .A C \Ð=Ð.【点睛】此题主要考查学生对全等三角形的判定方法的理解及运用,常用的判定方法有SSS ,SAS ,ASA ,HL 等.题型三 作一个角等于已知角如图:(1)在A Ð的内部利用尺规作CED A Ð=Ð(不写作法,保留作图痕迹)(2)判断直线DE AB 与的位置关系【分析】(1)根据作一个角等于已知角的方法在;A Ð的内部作CED A Ð=Ð,即可求解.(2)根据图形及平行线的判定定理可直接得到答案.【详解】(1)解:如图所示,在A Ð的内部作CED A Ð=Ð, 则CED Ð即为所求;(2)∵CED A ÐÐ=,∴DE AB ∥.故答案为:DE AB ∥.【点睛】本题主要考查角的尺规作图及平行线的判定,熟练掌握基本作图以及平行线的判定定理是解题的关键.1.如图,已知Ðb 和线段a ,求作ABC V ,使B b Ð=Ð,2,AB a BC a==【分析】先画射线BP ,以B 为圆心,a 为半径画弧,与射线BP 交于点D ,再画DA a =,再以b 的顶点为圆心,a 为半径画弧,交b 的两边分别为E ,F ,再以D 为圆心,EF 为半径画弧,交前弧于C ,再连接AC ,从而可得答案.【详解】解:如图,ABC V 即为所求;【点睛】本题考查的是作三角形,作一个角等于已知角,作一条线段等于已知线段,熟练掌握基本作图是解本题的关键.2.已知a Ð.求作CAB a Ð=Ð.(尺规作图,保留作图痕迹,不写作法)【分析】按照作与已知角相等的角的尺规作图方法作图即可.【详解】解:如图,CAB Ð为所作.【点睛】本题主要考查了作与已知角相等的角的尺规作图,熟知相关作图方法是解题的关键.二、判定方法二:边角边(SAS )1.边角边:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边“或“SAS “)。
2020-2021学年度人教版八年级数学上册12.2三角形全等的判定课时练习(含答案解析)
2020-2021学年度人教版八年级数学上册12.2三角形全等的判定课时练习一、选择题1.如图,ΔA'B'C≌ΔABC,点B'在AB边上,线段A'B',AC交于点D.若∠A=40°,∠B=60°,则∠A'CB的度数为( )A.100°B.120°C.135°D.140°2.如图所示,AB=CD,∠ABD=∠CDB,则图中全等三角形共有( )A.5对B.4对C.3对D.2对3.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去4.如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°5.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的到刻度分别与点M、N重合,过角尺顶点C作射线OC由此作法便可得△NOC≌△MOC,其依据是()A .SSSB .SASC .ASAD .AAS6.下列命题:(1)无限小数是无理数(2)绝对值等于它本身的数是非负数(3)垂直于同一直线的两条直线互相平行(4)有两边和其中一边的对角对应相等的两个三角形全等,(5)面积相等的两个三角形全等,是真命题的有( )A .1个B .2个C .3个D .4个 7.如图,有一塘,要测池塘两端A ,B 间的距离,可先在平地上取一个不经过池塘就可以直接到达点A ,B 的点C ,连接AC 并延长至D ,使CD CA =,连接BC 并延长至E ,使CE CB =,连接ED .若量出58ED =米,则A ,B 间的距离为( )A .58米B .29米C .60米D .116米 8.如图,,CD AB BE AC ⊥⊥,垂足分别为D 、,E BE 、CD 相交于点,O OB OC =,则图中全等三角形共有( )A .3对B .4对C .5对D .6对9.用直尺和圆规作一个角等于已知角的作图痕迹如图所示,则作图的依据是( ).A .SSSB .SASC .ASAD .AAS 10.如图所示,ABC 中,BD 平分角ABC ,AD 垂直于BD ,BCD 的面积为45,ADC 的面积为20,则ABD △的面积等于( )A .15B .20C .25D .30二、填空题 11.如图,在Rt △ABC ,∠C=90°,AC=12,BC=6,一条线段PQ=AB ,P 、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,要使△ABC 和△QPA 全等,则AP= ______ .12.如图点C ,D 在AB 同侧,AD=BC ,添加一个条件____________就能使△ABD ≌△BAC .13.如图,在△ABC 中,AD 是∠A 的外角平分线,P 是 AD 上异于点 A 的任意一点,设 PB =m ,PC =n ,AB =c ,AC =b ,则 m +n _____b +c (填“>”“<”或“=”).14.如图, BD 是ABC ∆的角平分线,延长BD 至点E ,使DE AD =,若60ADB ∠=,78BAC ∠=, 则BEC ∠=__________.。
人教版八年级上册12.2全等三角形判定同步练习(包含答案)
12.2全等三角形判定知识要点:三角形全等的判定(1)边边边(SSS):三边分别相等的两个三角形全等。
(2)边角边(SAS):两边和它们的夹角分别相等的两个三角形全等。
(3)角边角(ASA):两角和它们的夹边分别相等的两个三角形全等。
(4)角角边(AAS):两角和其中一个角的对边分别相等的两个三角形全等。
(5)斜边、直角边(HL):斜边和一条直角边分别相等的两个直角三角形全等。
一、单选题1.如图,12∠=∠,下列条件中不能使...ABD ACD ∆≅∆的是( )A .AB AC = B .B C ∠=∠ C .ADB ADC ∠=∠D .DB DC = 2.如图所示,则下面图形中与图中△ABC 一定全等的三角形是( )A .B .C .D .3.如图,有两个长度相同的滑梯靠在一面墙上,已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是( )A.90°B.120°C.135°D.150°4.有一个小口瓶(如图所示),想知道它的内径是多少,但是尺子不能伸到里边直接测,于是拿两根长度相同的细木条,把两根细木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB的长,就可以知道玻璃瓶的内径是多少,那么△OAB≌△OCD理由是()A.边角边B.角边角C.边边边D.角角边5.如图,用尺规作出∠OBF=∠AOB,作图痕迹MN是A.以点B为圆心,OD为半径的弧B.以点B为圆心,DC为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DC为半径的弧6.如图,已知,,,则图中全等三角形的总对数是A.3 B.4 C.5 D.67.如图,FE=BC,DE=AB,∠B=∠E=40°,∠F=70°,则∠A=( )A.40°B.50°C.60°D.70°8.如图,已知AB∥CF,E为DF的中点,若AB=9cm,CF=5cm,则BD等于()A.2cm B.3cm C.4cm D.5cm9.如图,已知AC=DB,AO=DO,CD=100 m,则A,B两点间的距离( )A.大于100 m B.等于100 mC.小于100 m D.无法确定10.如图,AB⊥BC且AB=BC,DE⊥CD且DE=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.36 B.48 C.72 D.108二、填空题11.如图,若AB=AD,加上一个条件_____,则有△ABC≌△ADC.12.如图,已知BD⊥AE于点B,DC⊥AF于点C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF=__________.13.如图,已知∠1=∠2=90°,AD=AE,那么图中有____对全等三角形.14.如图,Rt∆ABC 中,∠BAC = 90°,AB =AC ,分别过点B、C 作过点A 的直线的垂线BD、CE ,垂足分别为D、E ,若BD = 4,CE=2,则DE= (_________)15.如图,∠ACB =90°,AC =BC ,BE ⊥CE ,AD ⊥CE ,垂足分别为E ,D ,AD =25,DE =17,则BE =______.三、解答题16.如图,点E ,F 在CD 上,AD CB ,DE CF =,A B ∠=∠,试判断AF 与BE 有怎样的数量和位置关系,并说明理由.17.已知:如图,AB=AC ,PB=PC ,PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E .证明:(1)PD=PE .(2)AD=AE .18.已知:如图,AE ∥CF ,AB=CD ,点B 、E 、F 、D 在同一直线上,∠A=∠C .求证:(1)AB∥CD;(2)BF=DE.19.如图,点M.N在线段AC上,AM=CN,AB∥CD,AB=CD.请说明△ABN≌△CDM的理由;答案1.D 2.B3.A4.A5.D6.D7.D8.C9.B10.C11.BC =DC12.150°13.314.615.816.解:AF 与BE 平行且相等,因为AD CB ,所以C D ∠=∠.因为DE CF =,所以CE DF =.又因为A B ∠=∠,所以AFD BEC ∆≅∆.所以AF BE =,AFD BEC ∠=∠.所以AF BE .17.解:证明:(1)连接AP .在△ABP 和△ACP 中,AB=AC PB=PC AP=AP ⎧⎪⎨⎪⎩,∴△ABP ≌△ACP (SSS ).∴∠BAP=∠CAP ,又∵PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ,∴PD=PE (角平分线上点到角的两边距离相等).(2)在△APD 和△APE 中,∵90PAD PAE ADP AEP AP AP ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△APD ≌△APE (AAS ),∴AD=AE ;18.解:(1)∵AB ∥CD ,∴∠B=∠D .在△ABE 和△CDF 中,A CAB CD B D∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE ≌△CDF (ASA ),∴∠B=∠D ,∴AB ∥CD ;(2)∵△ABE ≌△CDF ,∴BE=DF .∴BE+EF=DF+EF ,∴BF=DE .19.∵AM=CN∴AM+MN=CN+MN即AN=CM∵AB ∥CD∴∠A=∠C在△ABN 和△CDM 中=AN CMA C AB CD=⎧⎪∠∠⎨⎪=⎩∴△ABN ≌△CDM (SAS )人教版八年级上册12.2全等三角形判定同步练习(包含答案)11 / 11。
人教版八年级数学上册 12.2 三角形全等的判定 同步练习题(Word版附答案)
12.2三角形全等的判定同步练习题附答案第1课时用“SSS”判定三角形全等基础题知识点1用“SSS”判定三角形全等1.如图,如果AB=A′B′,BC=B′C′,AC=A′C′,那么下列结论正确的是()A.△ABC≌△A′B′C′B.△ABC≌△C′A′B′C.△ABC≌△B′C′A′D.这两个三角形不全等2.如图,下列三角形中,与△ABC全等的是③.第2题第4题3.如图所示,AD=BC,AC=BD,用三角形全等的判定“SSS”可证明△ADC≌或△ABD≌.4.如图,OA=OB,AC=BC.求证:△AOC≌△BOC.5.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,求证:△ABD≌△ACD.知识点2三角形全等的判定与性质的综合6.如图,AB=A1B1,BC=B1C1,AC=A1C1,且∠A=110°,∠B=40°,则∠C1=()A.110°B.40°C.30°D.20°第6题第7题7.如图所示,在△ABC和△DBC中,已知AB=DB,AC=DC,则下列结论中错误的是()A.△ABC≌△DBC B.∠A=∠DC.BC是∠ACD的平分线D.∠A=∠BCD8.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.知识点3尺规作一个角等于已知角9.已知∠AOB,点C是OB边上的一点.用尺规作图画出经过点C与OA平行的直线.中档题10.如图,AB=AC,AD=AE,BE=CD,∠2=110°,∠BAE=60°,下列结论错误的是()A.△ABE≌△ACD B.△ABD≌△ACEC.∠C=30°D.∠1=70°第10题第11题11.(长春中考)如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连接AD,CD.若∠B=65°,则∠ADC的大小为.12.如图,AB=AC,DB=DC,EB=EC.(1)图中有几对全等三角形?请一一写出来;(2)选择(1)中的一对全等三角形加以证明.13.(河北中考)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得A B=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.14.如图,已知AB=AC,AD=AE,BD=CE,求证:∠3=∠1+∠2.综合题15.(佛山中考)如图,已知AB=DC,DB=AC.(1)求证:∠B=∠C;(注:证明过程要求给出每一步结论成立的依据)(2)在(1)的证明过程中,需要作辅助线,它的意图是什么?第2课时用“SAS”判定三角形全等基础题知识点1利用“SAS”判定三角形全等1.下图中全等的三角形有()图1图2图3图4A.图1和图2 B.图2和图3C.图2和图4 D.图1和图32.如图,在△ABD和△ACE中,AB=AC,AD=AE,要证△ABD≌△ACE,需补充的条件是()A.∠B=∠C B.∠D=∠EC.∠DAE=∠BAC D.∠CAD=∠DAC3.已知:如图,OA=OB,OC平分∠AOB,求证:△AOC≌△BOC.知识点2全等三角形的判定与性质的综合4.(泸州中考)如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.5.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.知识点3利用“SAS”判定三角形全等解决实际问题6.如图,将两根钢条AA′,BB′的中点O连在一起,使AA′,BB′可以绕着点O自由转动,就做成了一个测量工件,则AB的长等于内槽宽A′B′,那么判定△AOB≌△A′OB′的理由是()A.边角边B.角边角C.边边边D.角角边第6题第7题7.如图所示,有一块三角形镜子,小明不小心将它打破成1、2两块,现需配成同样大小的一面镜子.为了方便起见,需带上1块,其理由是.易错点 误用“SSA”判定三角形全等8.如图,AD 平分∠BAC ,BD =CD ,则∠B 与∠C 相等吗?为什么?解:相等.理由:∵AD 平分∠BAC ,∴∠BAD =∠CAD. 在△ABD 和△ACD 中,⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAD ,BD =CD ,∴△ABD ≌△ACD(SAS). ∴∠B =∠C.以上解答是否正确?若不正确,请说明理由.中档题9.如图,已知AB =AC ,AD =AE ,若要得到“△ABD ≌△ACE”,必须添加一个条件,则下列所添条件不成立的是( )A .BD =CEB .∠ABD =∠ACEC .∠BAD =∠CAE D .∠BAC =∠DAE第9题 第10题 第11题 第12题10.(陕西中考)如图,在四边形ABCD 中,AB =AD ,CB =CD.若连接AC ,BD 相交于点O ,则图中全等三角形共有( )A .1对B .2对C .3对D .4对 11.如图,点A 在BE 上,AD =AE ,AB =AC ,∠1=∠2=30°,则∠3的度数为 .12.如图,A ,B ,C ,D 是四个村庄,B ,D ,C 在一条东西走向公路的沿线上,BD =1km ,DC =1km ,村庄AC ,AD 间也有公路相连,且公路AD 是南北走向,AC =3km ,只有AB 之间由于间隔了一个小湖,所以无直接相连的公路.现决定在湖面上造一座斜拉桥,测得AE =1.2km ,BF =0.7km , 则建造的斜拉桥长至少有 km.13.如图,点B ,C ,E ,F 在同一直线上,BC =EF ,AC ⊥BC 于点C ,DF ⊥EF 于点F ,AC =DF.求证:(1)△ABC ≌△DEF ; (2)AB ∥DE.14.如图所示,A,F,C,D四点同在一直线上,AF=CD,AB∥DE,且AB=DE.求证:(1)△ABC≌△DEF;(2)∠CBF=∠FEC.综合题15.如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到点E,使DE=AB.求证:(1)∠ABC=∠EDC;(2)△ABC≌△EDC.第3课时用“ASA”或“AAS”判定三角形全等基础题知识点1利用“ASA”判定三角形全等1.如图,已知△ABC三条边、三个角,则甲、乙两个三角形中和△ABC全等的图形是()A.甲B.乙C.甲和乙都是D.都不是2.(宜宾中考)如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD.3.(孝感中考)如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.知识点2利用“AAS”判定三角形全等4.如图所示,在△ABC中,∠B=∠C,D为BC的中点,过点D分别向AB,AC作垂线段,则能够说明△BDE≌△CDF的理由是()A.SSS B.SAS C.ASA D.AAS5.(玉林中考)如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.6.(广西中考)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C.求证:AB=DC.知识点3三角形全等判定方法的选用7.(南州中考)如图,点B,F,C,E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC第7题第8题第9题第10题8.(济宁中考)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.中档题9.如图所示,∠CAB=∠DBA,∠C=∠D,AC,BD相交于点E,下列结论不正确的是()A.∠DAE=∠CBE B.△DEA与△CEB不全等C.CE=DE D.EA=EB10.如图所示,已知D是△ABC的边AB上一点,DF交AC于点E,DE=EF,FC∥AB.若BD=2,CF =5,则AB的长为()A.1 B.3 C.5 D.711.(宜昌中考)杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息如下:如图,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于O,OD⊥CD,垂足为D,已知AB=20 m,请根据上述信息求标语CD的长度.12.(邵阳中考)如图,已知点A,F,E,C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.综合题13.如图1所示,在△ABC中,∠ACB=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于点M,BN⊥MN于点N.(1)求证:MN=AM+BN;(2)如图2,若过点C作直线MN与线段AB相交,AM⊥MN于点M,BN⊥MN于点N(AM>BN),则(1)中的结论是否仍然成立?说明理由.第4课时用“HL”判定直角三角形全等基础题知识点1利用“HL”判定三角形全等1.如图,∠BAD=∠BCD=90°,AB=CB,可以证明△BAD≌△BCD的理由是()A.HL B.ASA C.SAS D.AAS2.下列判定两个直角三角形全等的方法中,不正确的是()A.两条直角边分别对应相等B.斜边和一锐角分别对应相等C.斜边和一条直角边分别对应相等D.两个三角形的面积相等3.在Rt△ABC和Rt△DEF中,AB=DE,∠A=∠D=90°,再补充一个条件,便可得Rt△ABC≌Rt△DEF.4.如图,小明和小芳以相同的速度分别同时从A,B出发,小明沿AC行走,小芳沿BD行走,并同时到达C,D.若CB⊥AB,DA⊥AB,则CB与DA相等吗?为什么?5.如图,AD⊥BE,垂足C是BE的中点,AB=DE,求证:AB∥DE.6.如图,∠ACB =∠CFE =90°,AB =DE ,BC =EF ,求证:AD =CF.知识点2 直角三角形全等判定方法的选用7.如图,在Rt △ABC 和Rt △A′B′C′中,∠C =∠C′=90°,那么下列各条件中,不能使Rt △ABC ≌Rt △A′B′C′的是( )A .AB =A′B′=5,BC =B′C′=3 B .AB =B′C′=5,∠A =∠B′=40° C .AC =A′C′=5,BC =B′C′=3D .AC =A′C′=5,∠A =∠A′=40°第7题 第8题8.如图所示,BE ⊥AC ,CF ⊥AB ,垂足分别是E ,F.若BE =CF ,则图中全等三角形有( )A .1对B .2对C .3对D .4对 易错点 错用了“HL”判定三角形全等9.如图,AB ⊥CF 于点B ,AD ⊥CE 于点D ,且AB =AD ,DE =BF.求证:AF =AE.证明:在Rt △ABF 和Rt △ADE 中,⎩⎪⎨⎪⎧AB =AD ,BF =DE , ∴Rt △ABF ≌Rt △ADE(HL). ∴AF =AE.上面的推理过程正确吗?如果不正确,说明错在哪里,并写出正确的推理过程.中档题10.如图,在Rt△ABC中,∠BAC=90°,DE⊥BC,AC=6,EC=6,∠ACB=60°,则∠ACD的度数为()A.45°B.30°C.20°D.15°第10题第11题11.如图,MN∥PQ,AB⊥PQ,点A,D在直线MN上,点B,C在直线PQ上,点E在AB上,AD+BC=7,AD=EB,DE=EC,则AB=.12.(镇江中考)如图,AD,BC相交于点O,AD=BC,∠C=∠D=90°.(1)求证:△ACB≌△BDA;(2)若∠ABC=35°,则∠CAO=.13.如图,已知AD,AF分别是两个钝角△ABC和△ABE的高,如果AD=AF,AC=AE.求证:BC =BE.综合题14.如图,已知AB=AE,∠B=∠E,BC=ED,AF⊥CD.求证:F是CD的中点.12.2 三角形全等的判定 同步练习题参考答案第1课时 用“SSS”判定三角形全等基础题知识点1 用“SSS”判定三角形全等1.如图,如果AB =A′B′,BC =B′C′,AC =A′C′,那么下列结论正确的是(A)A .△ABC ≌△A′B′C′B .△ABC ≌△C′A′B′ C .△ABC ≌△B′C′A′D .这两个三角形不全等 2.如图,下列三角形中,与△ABC 全等的是③.第2题 第4题3.如图所示,AD =BC ,AC =BD ,用三角形全等的判定“SSS”可证明△ADC ≌△BCD 或△ABD ≌△BAC .4.如图,OA =OB ,AC =BC.求证:△AOC ≌△BOC.证明:在△AOC 和△BOC 中, ⎩⎪⎨⎪⎧OA =OB ,AC =BC ,OC =OC ,∴△AOC ≌△BOC(SSS).5.已知:如图,在△ABC 中,AB =AC ,AD 是BC 边上的中线,求证:△ABD ≌△ACD.证明:∵AD 是BC 边上的中线, ∴BD =CD.在△ABD 和△ACD 中,⎩⎪⎨⎪⎧AB =AC ,AD =AD ,BD =CD ,∴△ABD ≌△ACD(SSS).知识点2 三角形全等的判定与性质的综合6.如图,AB =A 1B 1,BC =B 1C 1,AC =A 1C 1,且∠A =110°,∠B =40°,则∠C 1=(C)A .110°B .40°C .30°D .20°第6题 第7题7.如图所示,在△ABC 和△DBC 中,已知AB =DB ,AC =DC ,则下列结论中错误的是(D)A .△ABC ≌△DBCB .∠A =∠DC .BC 是∠ACD 的平分线 D .∠A =∠BCD8.(福建中考)如图,点B ,E ,C ,F 在一条直线上,AB =DE ,AC =DF ,BE =CF.求证:∠A =∠D .证明:∵BE =CF ,∴BE +CE =CF +CE ,即BC =EF. 在△ABC 和△DEF 中, ⎩⎪⎨⎪⎧AB =DE ,AC =DF ,BC =EF ,∴△ABC ≌△DEF(SSS). ∴∠A =∠D.知识点3 尺规作一个角等于已知角9.已知∠AOB ,点C 是OB 边上的一点.用尺规作图画出经过点C 与OA 平行的直线.解:①以点O 为圆心,任意长为半径,弧交OA 于点E ,交OB 于点D ; ②以点C 为圆心,OD 的长为半径画弧交OB 于点G ;③以点G 为圆心,DE 的长为半径,交前弧于点H ,连接CH ,则CH ∥OA.中档题10.如图,AB =AC ,AD =AE ,BE =CD ,∠2=110°,∠BAE =60°,下列结论错误的是(C)A .△ABE ≌△ACDB .△ABD ≌△ACEC .∠C =30°D .∠1=70°第10题 第11题11.(长春中考)如图,以△ABC 的顶点A 为圆心,以BC 长为半径作弧;再以顶点C 为圆心,以AB 长为半径作弧,两弧交于点D ;连接AD ,CD.若∠B =65°,则∠ADC 的大小为65°. 12.如图,AB =AC ,DB =DC ,EB =EC.(1)图中有几对全等三角形?请一一写出来; (2)选择(1)中的一对全等三角形加以证明.解:(1)有3对全等三角形:△ABD ≌△ACD ,△ABE ≌△ACE ,△DBE ≌△DCE. (2)以△ABD ≌△ACD 为例. 证明:在△ABD 和△ACD 中, ⎩⎪⎨⎪⎧AB =AC ,DB =DC ,AD =AD ,∴△ABD ≌△ACD(SSS).13.(河北中考)如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得A B =DE ,AC =DF ,BF =EC.(1)求证:△ABC ≌△DEF ;(2)指出图中所有平行的线段,并说明理由.解:(1)证明:∵BF =EC , ∴BF +FC =EC +CF , 即BC =EF.又∵AB =DE ,AC =DF ,∴△ABC ≌△DEF(SSS). (2)AB ∥DE ,AC ∥DF.理由:∵△ABC ≌△DEF ,∴∠ABC =∠DEF ,∠ACB =∠DFE. ∴AB ∥DE ,AC ∥DF.14.如图,已知AB =AC ,AD =AE ,BD =CE ,求证:∠3=∠1+∠2.证明:在△ABD 和△ACE 中, ⎩⎪⎨⎪⎧AB =AC ,AD =AE ,BD =CE ,∴△ABD ≌△ACE(SSS). ∴∠BAD =∠1,∠ABD =∠2. ∵∠3=∠BAD +∠ABD , ∴∠3=∠1+∠2.综合题15.(佛山中考)如图,已知AB =DC ,DB =AC.(1)求证:∠B =∠C ;(注:证明过程要求给出每一步结论成立的依据) (2)在(1)的证明过程中,需要作辅助线,它的意图是什么?解:(1)证明:连接AD , 在△BAD 和△CDA 中, ⎩⎪⎨⎪⎧AB =DC (已知),DB =AC (已知),AD =DA (公共边),∴△BAD ≌△CDA(SSS).∴∠B =∠C(全等三角形的对应角相等). (2)作辅助线的意图是构造全等的三角形.第2课时 用“SAS”判定三角形全等基础题知识点1 利用“SAS”判定三角形全等 1.下图中全等的三角形有(D)图1 图2 图3 图4 A .图1和图2 B .图2和图3 C .图2和图4 D .图1和图32.如图,在△ABD 和△ACE 中,AB =AC ,AD =AE ,要证△ABD ≌△ACE ,需补充的条件是(C)A .∠B =∠C B .∠D =∠EC .∠DAE =∠BACD .∠CAD =∠DAC 3.已知:如图,OA =OB ,OC 平分∠AOB ,求证:△AOC ≌△BOC.证明:∵OC 平分∠AOB , ∴∠AOC =∠BOC. 在△AOC 和△BOC 中, ⎩⎪⎨⎪⎧OA =OB ,∠AOC =∠BOC ,OC =OC ,∴△AOC ≌△BOC(SAS).知识点2 全等三角形的判定与性质的综合4.(泸州中考)如图,C 是线段AB 的中点,CD =BE ,CD ∥BE.求证:∠D =∠E.证明:∵C 是线段AB 的中点, ∴AC =CB.∵CD ∥BE ,∴∠ACD =∠CBE. 在△ACD 和△CBE 中, ⎩⎪⎨⎪⎧AC =CB ,∠ACD =∠CBE ,CD =BE ,∴△ACD ≌△CBE(SAS). ∴∠D =∠E.5.如图,已知△ABC 和△DAE ,D 是AC 上一点,AD =AB ,DE ∥AB ,DE =AC.求证:AE =BC.证明:∵DE ∥AB , ∴∠ADE =∠BAC.在△ADE 和△BAC 中,⎩⎪⎨⎪⎧AD =BA ,∠ADE =∠BAC ,DE =AC ,∴△ADE ≌△BAC(SAS).∴AE =BC.知识点3 利用“SAS”判定三角形全等解决实际问题6.如图,将两根钢条AA′,BB′的中点O 连在一起,使AA′,BB′可以绕着点O 自由转动,就做成了一个测量工件,则AB 的长等于内槽宽A′B′,那么判定△AOB ≌△A′OB′的理由是(A)A .边角边B .角边角C .边边边D .角角边第6题 第7题7.如图所示,有一块三角形镜子,小明不小心将它打破成1、2两块,现需配成同样大小的一面镜子.为了方便起见,需带上1块,其理由是两边及其夹角分别相等的两个三角形全等. 易错点 误用“SSA”判定三角形全等8.如图,AD 平分∠BAC ,BD =CD ,则∠B 与∠C 相等吗?为什么?解:相等.理由:∵AD 平分∠BAC , ∴∠BAD =∠CAD. 在△ABD 和△ACD 中, ⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAD ,BD =CD ,∴△ABD ≌△ACD(SAS).∴∠B=∠C.以上解答是否正确?若不正确,请说明理由.解:不正确.使用“SAS”的前提条件:已知的对应元素(边或角)必须都是两个三角形中元素(边或角),且其中一个三角形的两边及其夹角必须对应相等.本题错误的原因是列的条件和使用方法不对应,错用“SSA”来证明两个三角形全等.中档题9.如图,已知AB=AC,AD=AE,若要得到“△ABD≌△ACE”,必须添加一个条件,则下列所添条件不成立的是(B)A.BD=CE B.∠ABD=∠ACEC.∠BAD=∠CAE D.∠BAC=∠DAE第9题第10题第11题10.(陕西中考)如图,在四边形ABCD中,AB=AD,CB=CD.若连接AC,BD相交于点O,则图中全等三角形共有(C)A.1对B.2对C.3对D.4对11.如图,点A在BE上,AD=AE,AB=AC,∠1=∠2=30°,则∠3的度数为30°.12.如图,A,B,C,D是四个村庄,B,D,C在一条东西走向公路的沿线上,BD=1km,DC=1 km,村庄AC,AD间也有公路相连,且公路AD是南北走向,AC=3km,只有AB之间由于间隔了一个小湖,所以无直接相连的公路.现决定在湖面上造一座斜拉桥,测得AE=1.2km,BF=0.7km,则建造的斜拉桥长至少有1.1km.13.如图,点B,C,E,F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.证明:(1)∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°.在△ABC 和△DEF 中,⎩⎪⎨⎪⎧BC =EF ,∠ACB =∠DFE ,AC =DF ,∴△ABC ≌△DEF(SAS).(2)∵△ABC ≌△DEF , ∴∠B =∠DEF. ∴AB ∥DE.14.如图所示,A ,F ,C ,D 四点同在一直线上,AF =CD ,AB ∥DE ,且AB =DE.求证:(1)△ABC ≌△DEF ; (2)∠CBF =∠FEC.证明:(1)∵AB ∥DE , ∴∠A =∠D. 又∵AF =CD ,∴AF +FC =CD +FC. ∴AC =DF. ∵AB =DE ,∴△ABC ≌△DEF(SAS). (2)∵△ABC ≌△DEF ,∴BC =EF ,∠ACB =∠DFE. ∵FC =CF ,∴△FBC ≌△CEF(SAS). ∴∠CBF =∠FEC.综合题15.如图,在四边形ABCD 中,∠A =∠BCD =90°,BC =DC.延长AD 到点E ,使DE =AB.求证:(1)∠ABC =∠EDC ; (2)△ABC ≌△EDC.证明:(1)在四边形ABCD 中, ∵∠BAD =∠BCD =90°, ∴∠B +∠ADC =180°.又∵∠CDE +∠ADC =180°. ∴∠ABC =∠EDC. (2)连接AC.在△ABC 和△EDC 中,⎩⎪⎨⎪⎧AB =ED ,∠ABC =∠EDC ,CB =CD ,∴△ABC ≌△EDC(SAS).第3课时 用“ASA”或“AAS”判定三角形全等基础题知识点1 利用“ASA”判定三角形全等1.如图,已知△ABC 三条边、三个角,则甲、乙两个三角形中和△ABC 全等的图形是(B)A .甲B .乙C .甲和乙都是D .都不是2.(宜宾中考)如图,已知∠CAB =∠DBA ,∠CBD =∠DAC.求证:BC =AD.证明:∵∠CAB =∠DBA ,∠CBD =∠DAC , ∴∠DAB =∠CBA.在△ADB 与△BCA 中,⎩⎪⎨⎪⎧∠CAB =∠DBA ,AB =BA ,∠DAB =∠CBA ,∴△ADB ≌△BCA(ASA).∴BC =AD.3.(孝感中考)如图,BD ⊥AC 于点D ,CE ⊥AB 于点E ,AD =AE.求证:BE =CD.证明:∵BD ⊥AC ,CE ⊥AB , ∴∠ADB =∠AEC =90°. 在△ABD 和△ACE 中, ⎩⎪⎨⎪⎧∠ADB =∠AEC ,AD =AE ,∠A =∠A ,∴△ABD ≌△ACE(ASA). ∴AB =AC.又∵AD =AE ,∴AB -AE =AC -AD ,即BE =CD. 知识点2 利用“AAS”判定三角形全等4.如图所示,在△ABC 中,∠B =∠C ,D 为BC 的中点,过点D 分别向AB ,AC 作垂线段,则能够说明△BDE ≌△CDF 的理由是(D)A .SSSB .SASC .ASAD .AAS 5.(玉林中考)如图,AB =AE ,∠1=∠2,∠C =∠D.求证:△ABC ≌△AED.证明:∵∠1=∠2,∴∠1+∠EAC =∠2+∠EAC , 即∠BAC =∠EAD.又∵∠C =∠D ,AB =AE , ∴△ABC ≌△AED(AAS).6.(广西中考)如图,点E ,F 在BC 上,BE =CF ,∠A =∠D ,∠B =∠C.求证:AB =DC.证明:∵BE =CF , ∴BF =CE.在△ABF 和△DCE 中, ⎩⎪⎨⎪⎧∠A =∠D ,∠B =∠C ,BF =CE ,∴△ABF ≌△DCE(AAS). ∴AB =DC.知识点3 三角形全等判定方法的选用7.(南州中考)如图,点B ,F ,C ,E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是(C)A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC第7题 第8题 第9题 第10题8.(济宁中考)如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D ,E ,AD ,CE 交于点H ,请你添加一个适当的条件:答案不唯一,如AH =CB ,使△AEH ≌△CEB.中档题9.如图所示,∠CAB =∠DBA ,∠C =∠D ,AC ,BD 相交于点E ,下列结论不正确的是(B)A .∠DAE =∠CBEB .△DEA 与△CEB 不全等C .CE =DED .EA =EB10.如图所示,已知D 是△ABC 的边AB 上一点,DF 交AC 于点E ,DE =EF ,FC ∥AB.若BD =2,CF =5,则AB 的长为(D)A .1B .3C .5D .711.(宜昌中考)杨阳同学沿一段笔直的人行道行走,在由A 步行到达B 处的过程中,通过隔离带的空隙O ,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息如下:如图,AB ∥OH ∥CD ,相邻两平行线间的距离相等,AC ,BD 相交于O ,OD ⊥CD ,垂足为D ,已知AB =20 m ,请根据上述信息求标语CD 的长度.解:∵AB ∥CD ,∴∠ABO =∠CDO. ∵OD ⊥CD ,∴∠CDO =90°. ∴∠ABO =90°,即OB ⊥AB. ∵相邻两平行线间的距离相等, ∴OD =OB.在△ABO 和△CDO 中,⎩⎪⎨⎪⎧∠ABO =∠CDO ,OB =OD ,∠AOB =∠COD ,∴△ABO ≌△CDO(ASA). ∴CD =AB =20 m.12.(邵阳中考)如图,已知点A ,F ,E ,C 在同一直线上,AB ∥CD ,∠ABE =∠CDF ,AF =CE.(1)从图中任找两组全等三角形; (2)从(1)中任选一组进行证明.解:(1)△ABE ≌△CDF ,△AFD ≌△CEB(答案不唯一).(2)选△ABE ≌△CDF , 证明:∵AB ∥CD , ∴∠BAE =∠DCF. ∵AF =CE ,∴AF +EF =CE +EF ,即AE =CF. 在△ABE 和△CDF 中, ⎩⎪⎨⎪⎧∠BAE =∠DCF ,∠ABE =∠CDF ,AE =CF ,∴△ABE ≌△CDF(AAS).综合题13.如图1所示,在△ABC 中, ∠ACB =90°,AC =BC ,过点C 在△ABC 外作直线MN ,AM ⊥MN 于点M ,BN ⊥MN 于点N.(1)求证:MN =AM +BN ;(2)如图2,若过点C 作直线MN 与线段AB 相交,AM ⊥MN 于点M ,BN ⊥MN 于点N(AM >BN),(1)中的结论是否仍然成立?说明理由.解:(1)证明:∵∠ACB =90°, ∴∠ACM +∠BCN =90°. 又∵AM ⊥MN ,BN ⊥MN , ∴∠AMC =∠CNB =90°. ∴∠BCN +∠CBN =90°. ∴∠ACM =∠CBN. 在△ACM 和△CBN 中, ⎩⎪⎨⎪⎧∠ACM =∠CBN ,∠AMC =∠CNB ,AC =CB ,∴△ACM ≌△CBN(AAS). ∴MC =NB ,MA =NC. ∵MN =MC +CN , ∴MN =AM +BN.(2)(1)中的结论不成立,结论为MN =AM -BN. 理由:同(1)中证明可得△ACM ≌△CBN , ∴CM =BN ,AM =CN. ∵MN =CN -CM , ∴MN =AM -BN.第4课时 用“HL”判定直角三角形全等基础题知识点1 利用“HL”判定三角形全等 1.如图,∠BAD =∠BCD =90°,AB =CB ,可以证明△BAD ≌△BCD 的理由是(A)A .HLB .ASAC .SASD .AAS 2.下列判定两个直角三角形全等的方法中,不正确的是(D)A .两条直角边分别对应相等B .斜边和一锐角分别对应相等C .斜边和一条直角边分别对应相等D .两个三角形的面积相等 3.在Rt △ABC 和Rt △DEF 中,AB =DE ,∠A =∠D =90°,再补充一个条件答案不唯一,如BC =EF ,便可得Rt △ABC ≌Rt △DEF.4.如图,小明和小芳以相同的速度分别同时从A ,B 出发,小明沿AC 行走,小芳沿BD 行走,并同时到达C ,D.若CB ⊥AB ,DA ⊥AB ,则CB 与DA 相等吗?为什么?解:CB =DA.理由:由题意易知AC =BD. ∵CB ⊥AB ,DA ⊥AB , ∴∠DAB =∠CBA =90°. 在Rt △DAB 和Rt △CBA 中,⎩⎪⎨⎪⎧BD =AC ,AB =BA , ∴Rt △DAB ≌Rt △CBA(HL). ∴DA =CB.5.如图,AD ⊥BE ,垂足C 是BE 的中点,AB =DE ,求证:AB ∥DE.证明:∵C 是BE 的中点, ∴BC =CE. ∵AD ⊥BE ,∴∠ACB =∠DCE =90°. 在Rt △ACB 和Rt △DCE 中,⎩⎪⎨⎪⎧AB =DE ,BC =EC ,∴∠B =∠E. ∴AB ∥DE.6.如图,∠ACB =∠CFE =90°,AB =DE ,BC =EF ,求证:AD =CF.证明:∵∠ACB =∠CFE =90°,∴∠ACB =∠DFE =90°. 在Rt △ACB 和Rt △DFE 中,⎩⎪⎨⎪⎧AB =DE ,BC =EF , ∴Rt △ACB ≌Rt △DFE(HL). ∴AC =DF.∴AC -AF =DF -AF ,即AD =CF. 知识点2 直角三角形全等判定方法的选用7.如图,在Rt △ABC 和Rt △A′B′C′中,∠C =∠C′=90°,那么下列各条件中,不能使Rt △ABC ≌Rt △A′B′C′的是(B)A .AB =A′B′=5,BC =B′C′=3 B .AB =B′C′=5,∠A =∠B′=40° C .AC =A′C′=5,BC =B′C′=3D .AC =A′C′=5,∠A =∠A′=40°第7题 第8题8.如图所示,BE ⊥AC ,CF ⊥AB ,垂足分别是E ,F.若BE =CF ,则图中全等三角形有(C)A .1对B .2对C .3对D .4对 易错点 错用了“HL”判定三角形全等9.如图,AB ⊥CF 于点B ,AD ⊥CE 于点D ,且AB =AD ,DE =BF.求证:AF =AE.证明:在Rt △ABF 和Rt △ADE 中,⎩⎪⎨⎪⎧AB =AD ,BF =DE ,∴AF =AE.上面的推理过程正确吗?如果不正确,说明错在哪里,并写出正确的推理过程. 解:不正确,错用了“HL”. 证明:∵AB ⊥CF ,AD ⊥CE , ∴∠ABF =∠ADE =90°. 在△ABF 和△ADE 中,⎩⎪⎨⎪⎧AB =AD ,∠ABF =∠ADE ,BF =DE ,∴△ABF ≌△ADE(SAS).∴AF =AE.中档题10.如图,在Rt △ABC 中,∠BAC =90°,DE ⊥BC ,AC =6,EC =6,∠ACB =60°,则∠ACD 的度数为(B)A .45°B .30°C .20°D .15°第10题 第11题11.如图,MN ∥PQ ,AB ⊥PQ ,点A ,D 在直线MN 上,点B ,C 在直线PQ 上,点E 在AB 上,AD +BC =7,AD =EB ,DE =EC ,则AB =7.12.(镇江中考)如图,AD ,BC 相交于点O ,AD =BC ,∠C =∠D =90°.(1)求证:△ACB ≌△BDA ; (2)若∠ABC =35°,则∠CAO =20°.证明:∵∠C =∠D =90°,∴△ACB 和△BDA 是直角三角形. 在Rt △ACB 和Rt △BDA 中,⎩⎪⎨⎪⎧BC =AD ,AB =BA , ∴Rt △ACB ≌Rt △BDA(HL).13.如图,已知AD ,AF 分别是两个钝角△ABC 和△ABE 的高,如果AD =AF ,AC =AE.求证:BC =BE.证明:∵AD ,AF 分别是两个钝角△ABC 和△ABE 的高, ∴∠ADB =∠AFB =90°. 在Rt △ABD 和Rt △ABF 中,⎩⎪⎨⎪⎧AB =AB ,AD =AF ,∴Rt △ABD ≌Rt △ABF(HL). ∴DB =FB.在Rt △ADC 和Rt △AFE 中,⎩⎪⎨⎪⎧AC =AE ,AD =AF , ∴Rt △ADC ≌Rt △AFE(HL). ∴DC =FE.∴DB -DC =FB -FE ,即BC =BE.综合题14.如图,已知AB =AE ,∠B =∠E ,BC =ED ,AF ⊥CD.求证:F 是CD 的中点.证明:连接AC ,AD. 在△ABC 和△AED 中, ⎩⎪⎨⎪⎧AB =AE ,∠B =∠E ,BC =ED ,∴△ABC ≌△AED(SAS). ∴AC =AD.在Rt △ACF 和Rt △ADF 中,⎩⎪⎨⎪⎧AC =AD ,AF =AF , ∴Rt △ACF ≌Rt △ADF(HL). ∴CF =DF ,即F 为CD 的中点.。
12.2第3课时“角边角”、“角角边”精选练习(1)含答案
A.①②③ B.②③④ C.①③⑤ D.①③④
第 7 题图
第 8 题图
二、填空题
9. 如图,已知△ABC 的六个元素,则下列甲、乙、丙三个三角形中和△ABC 全 等的图形是
第 9 题图
10.如图,△ABC 中,BD=EC,∠ADB=∠AEC,∠B=∠C,则∠CAE=
.
11. 如图,点 B、E、F、C 在同一直线上,已知∠A =∠D,∠B △ABF≌△DCE,以“AAS”需要补充的一个条件是 (写出一个即可).
D. △ADB≌△CEA
8. 如图,在△ABC中,AB=AC,∠ABC.∠ACB的平分线 BD,CE相交于 O 点,且
BD 交 AC于点 D,CE交 AB于点 E.某同学分析图形后得出以下结论:
①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;
⑤△ACE≌△BCE;上述结论一定正确的是( )
D.∠BDA=∠CDA
第 1 题图
第 2 题图
第 3 题图
3. 如图,给出下列四பைடு நூலகம்条件:
① AB DE,,BC EF AC DF ;② AB DE,,B E BC EF ;
③ B E,,BC EF C F ;④ AB DE,,AC DF B E .
度.
其中,能使△≌AB△C DEF 的条件共有( )
A.1 组
B.2 组
C.3 组
D.4 组
4.如图,E F 90o, B C , AE AF ,结论:① EM FN ;
② CD DN ; ③ FAN EAM ; ④△≌AC△N ABM .
其中正确的有( )
A.1 个
人教版八年级数学上册12.2 三角形全等的判定边边边复习练习题(Word版含答案)
第12章全等三角形三角形全等的判定边边边1.如图所示,已知点A、C、D、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )A.∠BCA=∠F B.AD=FC C.BC∥EF D.∠A=∠EDF2.如图所示,已知AB=AC,BD=CD,则可推出( )A.△ABD≌△BCD B.△ABD≌△ACDC.△ACD≌△BCD D.△ACE≌△BDE3. 如图,已知AB=AC,D为BC中点,下列结论:①△ABD≌△ACD;②∠B=∠C;③AD平分∠BAC;④AD⊥BC.其中正确的有( )A.1个B.2个 C.3个 D.4个4. 如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是( )A.∠DAE=∠B B.∠EAC=∠CC.AE∥BC D.∠DAE=∠EAC5. 如图,AB=DE=6,AC=DF=4,若可用“边边边”判定△ABC≌△DEF,则( )A.EF=4 B.EF=5 C.EF=6 D.2<EF<106.如图,在△ACE和△BDF中,AE=BF,CE=DF,要利用“SSS”证△ACE≌△BDF,需增加一个条件是( )A.AB=BC B.DC=BC C.AB=CD D.以上都不对7. 如图,AB=AC,BD=CD,根据,可得到△ABD≌.8. 如图所示,AB=CD,AD=CB,则下列结论:①∠A=∠C;②AD∥BC;③AB∥CD;④BD平分∠ABC.其中正确的序号是.9.如图,AB=DC,AC=DB,∠ABD=25°,∠AOB=82°,则∠DCB=.10.在△ABC中,AB=AC,E、D、F是BC边的四等分点,AE=AF,则图中全等三角形共有对.11. 在△ABC和△DEF中,AB=4,BC=6,CA=8,DE=8,EF=6,要使△ABC与△DEF全等,则DF等于.12. 已知∠AOB,点C是OB边上的一点.用尺规作图画出经过点C与OA平行的直线.13. 如图所示,在△ABC 和△BAD 中,BC =AD ,AC =BD ,求证:△ABC ≌△BAD.14. 如图,已知AB =AC ,AD =AE ,BD =CE ,求证:∠3=∠1+∠2.15. 如图所示是雨伞的中截面,伞骨AB =AC ,支撑杆OE =OF ,AE =13AB ,AF =13AC ,当O 沿AD 滑动时雨伞开闭.问雨伞开闭过程中,∠BAD 与∠CAD 有何关系?说明理由.16. 如图,点E、C在线段BF上,BE=CF,AB=DE,AC=DF.求证:∠ABC=∠DEF.答案:1---6 BBDDB C 7. SSS △ACD 8. ① ② ③ 9. 66° 10. 4 11. 412. 解:作图略.提示:以点C 为顶点,作一个角等于∠AOB. 13. 证明:在△ABC 和△BAD 中,⎩⎪⎨⎪⎧BC =AD AC =BDAB =BA 公共边,∴△ABC ≌△BAD(SSS).14. 证明:在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC AD =AEBD =CE,∴△ABD ≌△ACE(SSS),∴∠1=∠BAD ,∠2=∠ABD ,∵∠3=∠BAD +∠ABD ,∴∠3=∠1+∠2. 15. 解:∠BAD =∠CAD.理由:∵AE =13AB ,AF =13AC ,且AB =AC ,∴AE =AF ,在△AOE 和△AOF 中,⎩⎪⎨⎪⎧AE =AF OE =OFOA =OA ,∴△AOE ≌△AOF ,∴∠OAE =∠OAF ,即∠BAD =∠CAD.16. 证明:∵BE =CF ,∴BE +EC =CF +EC ,∴BC =EF ,在△ABC 与△DEF 中,⎩⎪⎨⎪⎧AB =DE BC =EF AC =DF,∴△ABC ≌△DEF(SSS),∴∠ABC =∠DEF.。
人教版八年级上册12.2全等三角形判定同步练习【含答案】
12.2全等三角形判定知识要点:三角形全等的判定(1)边边边(SSS):三边分别相等的两个三角形全等。
(2)边角边(SAS):两边和它们的夹角分别相等的两个三角形全等。
(3)角边角(ASA):两角和它们的夹边分别相等的两个三角形全等。
(4)角角边(AAS):两角和其中一个角的对边分别相等的两个三角形全等。
(5)斜边、直角边(HL):斜边和一条直角边分别相等的两个直角三角形全等。
一、单选题1.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AD∥BE且∠D=∠B;其中,能推出AB∥DC的条件有()个.A.0 B.1 C.2 D.3【答案】C2.如图2,、、分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是A.B.C.D.【答案】B3.如图所示,AO=BO,CO=DO连接AD,BC,设AD,BC交于点P,结论:①△AOD≌△BOC;②△APC≌△BPD;③点P在∠AOB的平分线上。
以上结论中()A .只有①正确B .只有②正确C .只有①②正确D .①②③都正确【答案】D 4.如图,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A .带①去B .带②去C .带③去D .①②③都带去【答案】C 5.如图,AB DB ABD CBE =∠=∠,,①BE BC = ,②D A ∠=∠ ,③C E ∠=∠ ,④AC DE = ,能使ABC DBE ∆≅∆的条件有( )个.A .1B .2C .3D .4【答案】C 6.下列条件能组成全等三角形的是 ( )A .有一个顶角相等的两个等腰三角形B .有一边相等的两个等边三角形C .有两腰对应相等的两个等腰三角形D .底边相等的两个等腰三角形【答案】B7.如图,点E ,点F 在直线AC 上,DF =BE ,∠AFD =∠CEB ,下列条件中不能判断△ADF ≌△CBE 的是( )A .∠B =∠DB .AD =CBC .AE =CFD .∠A =∠C【答案】B 8.如图,已知MB =ND ,∠MBA =∠NDC ,下列条件不能判定△ABM ≌△CDN 的是 ()A .∠M =∠NB .AB =CDC .AM =CND .AM ∥CN【答案】C 9.△ABC 和△'''A B C 中,若AB =''A B ,BC =''B C ,AC =''A C .则( ) A .△ABC ≌△'''A C BB .△ABC ≌△'''A B C C .△ABC ≌△'''C A BD .△ABC ≌△'''C B A【答案】B10.如图,要测量河两岸相对的两点A 、B 的距离,先过点B 作BF ⊥AB ,在BF 上找点D ,过D 作DE ⊥BF ,再取BD 的中点C ,连接AC 并延长,与DE 交点为E ,此时测得DE 的长度就是AB 的长度.这里判定△ABC 和△EDC 全等的依据是()A .ASAB .SASC .SSSD .AAS【答案】A 11.如图,红红书上的三角形被墨迹污染了一部分,她根据所学的知识很快就画了一个与书上完全一样的三角形,那么红红画图的依据是( )A.SSS B.SAS C.ASA D.AAS【答案】C12.如图,AD∥BC,AB∥CD,AC,BD交于O点,过O点的直线EF交AD于E点,交BC于F点,且BF=DE,则图中的全等三角形共有()A.6对B.5对C.3对D.2对【答案】A二、填空题13.如图,在△ABC和△BAD中,BC=AD,请你再补充一个条件,使△ABC≌△BAD.你补充的条件是______________(只填一个).【答案】AC=BD(或∠CBA=∠DAB)14.如图,△ABC中,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,E、F为垂足,在以下结论中:①△ADE≌△ADF;②△BDE≌△CDF;③△ABD≌△ACD;④AE=AF;⑤BE=CF;⑥BD=CD.其中正确结论的个数是_______.【答案】215.如图,已知AB⊥BD, AB∥ED,AB=ED,要说明ΔABC≌ΔEDC,若以“SAS”为依据,还要添加的条件为______________.【答案】BC=DC16.如图所示,点D,E在△ABC的BC边上,且BD=CE,∠BAD=∠CAE,要推理得出△ABE≌△ACD,可以补充的一个条件是____(不添加辅助线,写出一个即可).【答案】∠B=∠C(解析:答案不唯一.)17.如图,,于,于,且,点从向运动,每分钟走,点从向运动,每分钟走,、两点同时出发,运动___分钟后与全等.【答案】4三、解答题18.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.证明:由BE=CF可得BC=EF,又AB=DE,AC=DF,故△ABC≌△DEF(SSS),则∠B=∠DEF,∴AB∥DE.19.如图,AC=DF ,AD=BE ,BC=EF .求证:(1)△ABC ≌△DEF ;(2)AC ∥DF .()1 ,AD BE =.AD DB DB BE ∴+=+即: .AB DE =在ABC 和DEF 中{ ,AB DEBC DF AC DF ===()SSS .ABC DEF ∴≌()2 .ABC DEF ≌,CAB FDE ∴∠=∠.AC DF ∴20.已知:如图,D 是△ABC 的BC 边的中点,DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,且DE =DF .求证:△ABC 是等腰三角形.∵点D 是△ABC 的BC 边上的中点,∴BD=DC ,∵DE ⊥AC 于E ,DF ⊥AB 于F ,∴△BFD和△DEC为直角三角形,在Rt△BFD和Rt△CED中,,∴Rt△BFD≌Rt△CED(HL),∴∠B=∠C,∴△ABC是等腰三角形.21.已知:如图1,AB=AC,点A是线段DE上一点,∠BAC=90°,BD⊥DE,CE⊥DE,(1)求证:DE=BD+CE.(2)如果是如图2这个图形,你能得到什么结论?并证明你的结论.证明:(1)∵BD⊥DE,CE⊥DE,∴∠D=∠E=90°,∴∠DBA+∠DAB=90°,∵∠BAC=90°,∴∠DAB+∠CAE=90°,∴∠DBA=∠CAE,∵AB=AC,∴△ADB≌△CEA,∴BD=AE,CE=AD,∴DE=AD+AE=CE+BD;(2)BD=DE+CE,理由是:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,∴∠ABD+∠BAD=90°,∵∠BAC=90°,∴∠ABD+∠EAC=90°,∴∠BAD=∠EAC,∵AB=AC,∴△ADB≌△CEA,∴BD=AE,CE=AD,∵AE=AD+DE,∴BD=CE+DE.。
【精编】人教版八年级数学上册第12章 12.2《三角形全等判定》同步练习及(含答案)(1).doc
12.2 三角形全等的判定12.2 第1课时 边边边(SSS )一、选择题1.如图,ABC △中,AB AC =,EB EC =,则由“SSS ”可以判定( ) A .ABD ACD △≌△ B .ABE ACE △≌△ C .BDE CDE △≌△ D .以上答案都不对2.如图,在ABC △和DCB △中,AB DC =,AC 与BD 相交于点E ,若不再添加任何字母与辅助线,要使ABC DCB △≌△,则还需增加的一个条件是( ) A.AC=BD B.AC=BC C.BE=CE D.AE=DE3.如图,已知AB=AC ,BD=DC ,那么下列结论中不正确的是( ) A .△ABD ≌△ACD B .∠ADB=90° C .∠BAD 是∠B 的一半D .AD 平分∠BAC4. 如图,AB=AD ,CB=CD ,∠B=30°,∠BAD=46°,则∠ACD 的度数是( )A.120°B.125°C.127°D.104°5. 如图,线段AD 与BC 交于点O ,且AC=BD ,AD=BC , 则下面的结论中不正确的是( ) A.△ABC ≌△BAD B.∠CAB=∠DBA C.OB=OC D.∠C=∠D6. 如图,AB=CD,BC=DA,E 、F 是AC 上的两点,且AE=CF,DE=BF,,那么图中全等三角形共有( )对A .4对B .3对C .2对D .1对CB AEDC第1题图第2题图 第3题图第4题图第5题图7. 如图 ,AB=CD ,BC=AD ,则下列结论不一定正确的是( ).A.AB ∥DCB. ∠B =∠DC. ∠A =∠CD. AB=BC8. 如果△ABC 的三边长分别为3,5,7,△DEF 的三边长分别为3,3x -2,2x -1,若这两个三角形全等,则x 等于( ) A .73B .3C .4D .5二、填空题9.工人师傅常用角尺平分一个任意角。
人教版数学八年级上册学案12.2《三角形全等的判定》(含答案)
12.2三角形全等的判定第1课时用“SSS”判定三角形全等学习目标:1.理解和掌握全等三角形判定方法1-“SSS”.2.体会尺规作图.3.掌握简单的证明格式.预习阅读教材,完成预习内容.知识探究三边分别相等的两个三角形________(可以简写成“边边边”或“________”).自学反馈1.在△ABC、△DEF中,若AB=DE,BC=EF,AC=DF,则____________.2.已知AB=3,BC=4,CA=6,EF=3,FG=4,要使△ABC≌△EFG,则EG=________.3.如图,通常凳子腿活动后,木工师傅会在凳腿上斜钉一根木条,这是利用了三角形的________.点拨:两个三角形三角、三边六个元素中,满足一个或两个元素相等是无法判定全等的,我们这节课探讨的是三个元素相等中三边对应相等的情况.4.如图,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是________.活动1小组讨论例1.如图,AB=AD,CB=CD,求证:△ABC≌△ADC.证明:在△ABC与△ADC中,∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC(SSS).例2.如图,C是AB的中点,AD=CE,CD=BE.求证:△ACD≌△CBE.证明:∵C是AB的中点,∴AC=CB.在△ACD与△CBE中,∵AD=CE,CD=BE,AC=CB,∴△ACD≌△CBE(SSS).点拨:注意运用SSS证三角形全等时的证明格式;在证明过程中善于挖掘“公共边”这个隐含条件.例3.如图,AB=AD,DC=BC,∠B与∠D相等吗?为什么?解:结论:∠B=∠D.理由:连接AC,在△ADC与△ABC中,∵AD=AB,AC=AC,DC=BC,∴△ADC≌△ABC(SSS).∴∠B=∠D.点拨:要证∠B与∠D相等,可证这两个角所在的三角形全等,现有的条件并不满足,可以考虑添加辅助线证明.课堂小结1.本节课我们探索得到了三角形全等的条件,发现了证明三角形全等的一个规律SSS.并利用它可以证明简单的三角形全等问题.2.添加辅助线构造公共边,可以为证明两个三角形全等提供条件,证明两个三角形全等是证明线段相等或角相等的重要方法.第2课时用“SAS”判定三角形全等学习目标:1.理解和掌握全等三角形判定方法2——“SAS”.理解满足“SSA”的两个三角形不一定全等.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.预习阅读教材,完成预习内容.知识探究1.两边和它们的夹角分别相等的两个三角形________(可以简写成“边角边”或“________”).2.有两边和一个角对应相等的两个三角形________全等.点拨:如果给定两个三角形的类型(如两个钝角三角形),两边和其中一边的对角对应相等的两个三角形不一定全等.自学反馈1.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则需要增加的条件是( )A.∠A=∠D B.∠E=∠CC.∠A=∠C D.∠ABD=∠EBC2.如图,AO=BO ,CO=DO ,AD 与BC 交于E ,∠O=40°,∠B=25°,则∠BED 的度数是( )A .60°B .90°C .75°D .85° 3.已知:如图,AB 、CD 相交于O 点,AO=CO ,OD=OB. 求证:∠D=∠B.分析:要证∠D=∠B ,只要证△AOD ≌△COB. 证明:在△AOD 与△COB 中,⎩⎪⎨⎪⎧AO =CO (已知),∠ =∠ (对顶角相等),OD = (已知),∴△AOD ≌△________(SAS). ∴∠D=∠B(__________).4.已知:如图,AB=AC ,∠BAD=∠CAD.求证:∠B=∠C.点拨:1.利用SAS 证明全等时,要注意“角”只能是两组相等边的夹角;在书写证明过程时相等的角应写在中间;2.证明过程中注意隐含条件的挖掘,如“对顶角相等”、“公共角、公共边”等. 活动1 小组讨论例1.已知:如图,AB ∥CD ,AB=CD.求证:AD ∥BC.证明:∵AB ∥CD , ∴∠2=∠1.在△CDB 与△ABD 中,∵CD=AB ,∠2=∠1,BD=DB , ∴△CDB ≌△ABD.∴∠3=∠4. ∴AD ∥BC.点拨:可从问题出发,要证线段平行只需证角相等即可(∠3=∠4),而证角相等可证角所在的三角形全等.例2.如图,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的关系,并证明你的结论.解:结论:AE=CD,AE⊥CD.理由(提示):延长AE交CD于点F,先证△ABE≌△CBD,得AE=CD,∠BAE=∠BCD.又∠AEB=∠CEF,可得∠CFE=90°,即AE⊥CD.点拨:1.注意挖掘等腰直角三角形中的隐藏条件;2.线段的关系分数量与位置两种关系.课堂小结1.利用对顶角、公共角、直角用SAS证明三角形全等.2.用“分析法”寻找命题结论也是一种推理论证的方法,即从结论出发逐步递推到题中条件,常以此作为分析寻求推理论证的途径.第3课时用“ASA”或“AAS”判定三角形全等学习目标:1.理解和掌握全等三角形判定方法3——“ASA”,判定方法4——“AAS”;能运用它们判定两个三角形全等.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.预习:阅读教材,完成预习内容.知识探究1.两角和它们的夹边分别相等的两个三角形________(可以简写成“角边角”或“________”).2.两角和其中一个角的对边分别相等的两个三角形________(可以简写成“角角边”或“________”).3.试总结全等三角形的判定方法,师生共同总结.点拨:三角形全等的条件至少需要三对相等的元素(其中至少需要一条边相等).自学反馈1.能确定△ABC≌△DEF的条件是( )A.AB=DE,BC=EF,∠A=∠EB.AB=DE,BC=EF,∠C=∠EC.∠A=∠E,AB=EF,∠B=∠DD.∠A=∠D,AB=DE,∠B=∠E2.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是( )A.甲和乙B.乙和丙C.只有乙D.只有丙3.AD 是△ABC 的角平分线,作DE ⊥AB 于E ,DF ⊥AC 于F ,下列结论错误的是( ) A .DE=DF B .AE=AF C .BD=CD D .∠ADE=∠ADF4.阅读下题及一位同学的解答过程:如图,AB 和CD 相交于点O ,且OA=OB ,∠A=∠C.那么△AOD 与△COB 全等吗?若全等,试写出证明过程;若不全等,请说明理由.解:△AOD ≌△COB.证明:在△AOD 和△COB 中, ⎩⎪⎨⎪⎧∠A =∠C (已知),OA =OB (已知),∠AOD =∠COB (对顶角相等),∴△AOD ≌△COB(ASA).问:这位同学的回答及证明过程正确吗?为什么?活动1 小组讨论例1 已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ=NQ.求证:HN=PM.证明:∵MQ ⊥PN , ∴∠MQP=∠MQN=90°. ∵NR ⊥MP ,∴∠MRN=90°.∴∠RMH +∠RHM=∠QHN +∠QNH=90°. 又∵∠RHM=∠QHN ,∴∠PMQ=∠QNH. 在△PMQ 与△HNQ 中,∵∠MQP=∠NQH=90°,MQ=NQ ,∠PMQ=∠QNH , ∴△PMQ ≌△HNQ. ∴HN=PM.例2 已知:如图,AB ⊥AE ,AD ⊥AC ,∠E=∠B ,DE=CB. 求证:AD=AC.证明:∵AB⊥AE,AD⊥AC,∴∠CAD=∠BAE=90°.∴∠CAD+∠BAD=∠BAE+∠BAD.∴∠CAB=∠DAE.在△ABC与△AED中,∵∠CAB=∠DAE,∠B=∠E,CB=DE,∴△ABC≌△AED.∴AD=AC.课堂小结1.本节内容是已知两个角和一条边对应相等得全等,三个角对应相等不能确定全等.2.三角形全等的判定和全等三角形的性质常在一起进行综合应用,有时还得反复用两次或两次以上,从而达到解决问题的目的.第4课时用“HL”判定直角三角形全等学习目标:1.掌握判定直角三角形全等的一种特殊方法——“斜边、直角边”(即“HL”).2.能熟练地用判定一般三角形全等的方法及判定直角三角形全等的特殊方法判定两个直角三角形全等.预习:阅读教材,完成预习内容.知识探究1.判定两直角三角形全等的“HL”这种特殊方法指的是____________.2.直角三角形全等的判定方法有________(用简写).自学反馈1.如图,E、B、F、C在同一条直线上,若∠D=∠A=90°,EB=FC,AB=DF.则△ABC≌________,全等的根据是________.2.判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由.①一个锐角和这个角的对边对应相等;( )②一个锐角和这个角的邻边对应相等;( )③一个锐角和斜边对应相等;( )④两直角边对应相等;( )⑤一条直角边和斜边对应相等.( )3.下列说法正确的是( )A.一直角边对应相等的两个直角三角形全等B.斜边相等的两个直角三角形全等C.斜边相等的两个等腰直角三角形全等D.一边长相等的两等腰直角三角形全等点拨:直角三角形除了一般证全等的方法,“HL”可使证明过程简化,但前提是已知两个直角三角形,即在证明格式上表明“Rt△”.活动1小组讨论例1.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC;(2)AD∥BC.证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°.在Rt△ABD与Rt△CDB中,∵AD=CB,BD=DB,∴Rt△ABD≌Rt△CDB(HL).∴AB=DC.(2)∵Rt△ABD≌Rt△CDB(已证),∴∠ADB=∠CBD.∴AD∥BC.例2.已知:如图,AC=BD,AD⊥AC,BC⊥BD.求证:AD=BC.证明:连接CD.∵AD⊥AC,BC⊥BD,∴∠A=∠B=90°.在Rt△ADC与Rt△BCD中,∵AC=BD,DC=CD,∴Rt△ADC≌Rt△BCD.∴AD=BC.课堂小结1.“HL”判别法是证明两个直角三角形全等的特殊方法,它只对两个直角三角形有效,不适合一般三角形,但两个直角三角形全等的判定,也可以用前面的各种方法.2.证明两个三角形全等的方法有:SSS、SAS、ASA、AAS,以及用HL,注意SSA和AAA条件不能判定两个三角形全等.课堂小练一、选择题1.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D2.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF3.在△ABC和△A/B/C/中,已知∠A=∠A/,AB=A/B/,在下面判断中错误的是( )A.若添加条件AC=A/C/,则△ABC≌△△A/B/C/B.若添加条件BC=B/C/,则△ABC≌△△A/B/C/C.若添加条件∠B=∠B/,则△ABC≌△△A/B/C/D.若添加条件∠C=∠C/,则△ABC≌△△A/B/C/4.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对5.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC6.如图,在△ABC和△DEF中,已知AB=DE,BC=EF,根据(SAS)判定△ABC≌△DEF,还需的条件是()A.∠A=∠D B.∠B=∠E C.∠C=∠F D.以上三个均可以7.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC8.如图,已知△ABC的三个元素,则甲、乙、丙三个三角形中,和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙9.如图,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是()A.BC=B′C′B.∠A=∠A′C.AC=A′C′D.∠C=∠C′10.如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A.AB=AC B.DB=DC C.∠ADB=∠ADC D.∠B=∠C二、填空题11.如图,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是.(将你认为正确的结论的序号都填上)12.如图,已知AB∥CD,AE=CF,则下列条件:①AB=CD;②BE∥DF;③∠B=∠D;④BE=DF.其中不一定能使△ABE≌△CDF的是(填序号)13.在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E,在BC上,BE=BF,连结AE,EF和CF,此时,若∠CAE=30°,那么∠EFC= .14.如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件时,就可得到△ABC≌△FED.(只需填写一个即可)15.图示,点B在AE上,∠CBE=∠DBE,要使△ABC≌△ABD,还需添加一个条件是(填上适当的一个条件即可)参考答案1.C2.C3.B4.C.5.C.6.B7.B8.B9.C10.B11.答案为:①②③.12.答案为:④.13.答案为:30°.14.答案为:BC=ED或∠A=∠F或AB∥EF.15.答案为:BC=BD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3课时 “角边角”、“角角边”
一、选择题
1. 如图,玻璃三角板摔成三块,现在到玻璃店在配一块同样大小的三角板,最省事的方法( )
A. 带①去
B. 带②去
C. 带③去
D.带①②③去 2. 如图,已知∠1=∠2,则不一定能使△A BD ≌△ACD 的条件是( )
A. AB=AC
B. BD=CD
C. ∠B=∠C
D.∠BDA=∠CDA
3. 如图,给出下列四组条件:
①AB DE BC EF AC DF ===,,;②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,. 其中,能使ABC DEF △≌△的条件共有( )
A .1组
B .2组
C .3组
D .4组 4.如图,90
E
F ∠=∠= ,B C ∠=∠,AE AF =,结论:①EM FN =; ②CD DN =; ③FAN EAM ∠=∠; ④ACN ABM △≌△. 其中正确的有( )
A .1个
B .2个
C .3个
D .4个
第1题图
第2题图
第3题图
5. 如图,在下列条件中,不能证明△ABD ≌△ACD 的是( )
A.BD =DC ,A B =AC
B.∠ADB =∠ADC ,BD =DC
C.∠B =∠C ,∠BAD =∠CAD
D.∠B =∠C ,BD =DC
6.如图,已知ABC △中,45ABC ∠= , F 是高AD 和BE 的 交点,4CD =,则线段DF 的长度为( ).
A
.
B . 4 C
.
D
.
7. 如图,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边 三角形,则下列结论不一定成立的是( ) A. △ACE ≌△BCD B. △BGC ≌△AFC
C. △DCG ≌△ECF
D. △ADB ≌△CEA
8. 如图,在△ABC 中,AB =AC ,∠ABC .∠ACB 的平分线BD ,CE 相交于O 点,且 BD 交AC 于点D ,CE 交AB 于点E .某同学分析图形后得出以下结论:
①△BCD ≌△CBE ;②△BAD ≌△BCD ;③△BDA ≌△CEA ;④△BOE ≌△COD ; ⑤△ACE ≌△BCE ;上述结论一定正确的是( )
A .①②③
B .②③④
C .①③⑤
D .①③④
第6题图
第5题图
第7题图
第8题图
二、填空题
9. 如图,已知△ABC 的六个元素,则下列甲、乙、丙三个三角形中和△ABC 全等的图形是
10.如图,△ABC 中,BD=EC
,∠ADB=∠AEC
,∠B=∠C ,则∠CAE= .
11. 如图,点B 、E 、F 、C 在同一直线上,已知∠A =∠D ,∠B =∠C ,要使△
ABF ≌△DCE ,
(写出一个即可).
12.如图,AD=BC ,AC=BD ,则图中全等三角形有 对.
13. 如图,已知
AB ∥CF, E 为D F 的中点.若AB=9 cm,CF=5 cm,则BD 的长度
为 cm.
14. 如图,∠A =∠D,OA=OD, ∠DOC=50°,则∠DBC= 度.
15.如图,BAC ABD ∠=∠,请你添加一个条件: ,使O C O D =(只
添一个即可).
D
O
C
B
A
第15题图
第9题图
第11题图
第12题图
16. 如图,R t △ABC 中,∠BAC=90°,AB=AC ,分别过点B ,C 作过点A 的直线的
垂线BD ,C E ,垂足分别为点D,E.若BD=2,CE=3,则AE= ,AD= .
17. 如图,有一块边长为4的正方形塑料摸板ABCD ,将一块足够大的直角三
角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 .
18.如图,两块完全相同的含30°角的直角三角板叠放在一起,且∠DAB =30°.有
以下四个结论:①AF 丄BC ;②△ADG ≌△ACF ;③O 为BC 的中点;④AG :DE =错误!未找到引用源。
:4,其中正确结论的序号是 .
三、解答题
19. 已知:如图,∠ABC =∠DCB ,BD 、C A 分别是∠ABC 、∠DCB 的平分线.求证:
AB =DC
第18题图
第17题图
20.如图,已知AD 是△A BC 的角平分线,在不添加任何辅助线的前提下,要使△AED ≌△AFD ,需添加一个条件是:_______________,并给予证明.
21. 如图,已知点E C ,在线段BF 上,CF BE ,请在下列四个等式中,
①AB =DE ,②∠ACB =∠F ,③∠A =∠D ,④AC =DF .选出两个..作为条件,推出ABC DEF △≌△.并予以证明.(写出一种即可) 已知: , . 求证:ABC DEF △≌△. 证明:
22. 如图,在△AEC 和△DFB 中,∠E=∠F,点A ,B ,C ,D 在同一直线上,有如
下三个关系式:①AE∥DF,②AB=CD,③CE=BF 。
(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所
B D C
A
E
F
D
A
有命题(用序号写出命题书写形式:“如果,,那么”);
(2)选择(1)中你写出的一个命题,说明它正确的理由。
23. 如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E.AD⊥CE于点D.求证:△DEC≌△CDA.
第3课时 角边角(ASA) 与 角角边(AAS)
一、选择题
1. C
2. B
3.C
4.C
5.D
6.B
7.D
8.D 二、填空题
9.乙和丙 10. ∠BAD 11. AF=DE 或BF=CE 或BE=CF 12. 3 13. 4 14. 25
15. C D ∠=∠或ABC BAD ∠=∠或AC BD =或OAD OBC ∠=∠ 16. 2, 3 17.16 18. ①②③④. 三、解答题
19. 证明:在△ABC 与△DCB 中
(ABC DCB ACB DBC BC BC ∠=∠⎧⎪
∠=∠⎨⎪=⎩
已知)(公共边)
∴△ABC ≌△DCB ∴AB =DC
20. 解法一:添加条件:AE =AF ,
证明:在△AED 与△AFD 中,
∵AE =AF ,∠EAD =∠FAD ,AD =AD , ∴△AED ≌△AFD (SAS ).
解法二:添加条件:∠EDA =∠FDA ,
证明:在△AED 与△AFD 中,
∵∠EAD =∠FAD ,AD =AD ,∠EDA =∠FDA ∴△AED ≌△AFD (A SA ). 21. 解:已知:①④(或②③、或②④) 证明:若选①④ ∵CF BE =
∴EF BC EC CF EC BE =+=+即,. 在△ABC 和△DEF 中
AB =DE ,BC =EF ,AC =DF . ∴ABC DEF △≌△.
C
E
B
C
D
A
22.解:(1)命题1:如果①,②,那么③;
命题2:如果①,③,那么②。
(2)命题1的证明:
∵①AE∥DF,∴∠A=∠D。
∵②AB=CD,∴AB+BC=CD+BC,即AC=DB。
在△AEC和△DFB中,
∵∠E=∠F,∠A=∠D,AC=DB,∴△AEC≌△DFB(AAS)。
∴CE=BF③
23. 证明:∵BE⊥CE于E,AD⊥CE于D,
∴∠BEC=∠CDE=90°,
在Rt△BEC中,∠BCE+∠CBE=90°,
在Rt△BCA中,∠BCE+∠ACD=90°,
∴∠CBE+∠ACD=90°,
∴∠CBE=∠ACD,
在△BEC和△CDA中,
∠BEC=∠CDA,∠CBE=∠ACD,BC=AC,
∴△BEC≌△CDA.。