地下工程的抗浮优化设计
地下室底板抗浮措施(一)2024
地下室底板抗浮措施(一)引言概述:地下室底板抗浮措施是在地下室施工中非常重要的一环。
地下室底板的抗浮设计是为了防止地下室土体和水压力的作用下底板浮起或变形,导致工程质量问题。
本文将从地下室底板的材料选择、底板结构设计、降低水压力等角度,阐述地下室底板抗浮措施的具体内容。
正文:一、材料选择1. 底板基础材料的选择:应选择具有较高强度和稳定性的混凝土材料。
2. 底板防水材料的选择:应选择具有良好防水性能的材料,如高强度防水卷材等。
3. 底板保温材料的选择:应选用具有良好保温性能和抗压强度的材料,如聚苯板等。
二、底板结构设计1. 底板厚度的设计:应根据地下室的使用功能、土体条件和地下水位等因素进行合理的厚度设计。
2. 底板钢筋布置:应按照规范要求进行钢筋的布置,以提高底板的抗拉强度。
3. 底板施工缝的设计:应合理设置底板的施工缝,以减少底板的收缩和温度变形。
三、降低水压力1. 底板防渗漏措施:应进行严密的防渗漏处理,如铺设防水层、加固承载层等。
2. 底板排水系统设计:应设计合理的排水系统,保证水从地下室底板迅速排出。
3. 地下室附加水压的考虑:在设计中要考虑地下室附近可能存在的附加水压,采取相应的措施进行处理。
四、环境因素考虑1. 土体密实度的检测:要对地下室周围土体的密实度进行检测,确保土体具有足够的稳定性。
2. 地下水位的监测:应进行地下水位的监测,及时采取措施保持地下水位稳定。
3. 地下室通风系统设计:应设计合理的通风系统,保持地下室的适宜环境。
五、其他相关措施1. 底板预应力设计:根据地下室结构和负荷情况,考虑进行底板的预应力设计。
2. 底板防辐射处理:根据需要,对地下室底板进行防辐射处理,确保使用安全。
3. 底板施工质量控制:在施工过程中,要严格控制底板施工质量,避免施工缺陷导致底板抗浮性能下降。
总结:地下室底板抗浮措施的设计与施工过程中,应根据具体的工程条件和需要,选择合适的材料,进行合理的结构设计,降低水压力,考虑环境因素,并采取相关措施进行补充。
地下室抗浮方案(二)2024
地下室抗浮方案(二)引言概述:地下室抗浮方案是指在建筑设计和施工中考虑地下室浮动问题的解决方案。
在本文中,我们将继续讨论地下室抗浮方案的相关内容,探讨如何有效解决地下室浮动问题,并为设计制定合理可行的抗浮方案提供参考。
正文内容:一、优化地下室结构设计1. 通过增加地下室底板厚度,提高底板的刚度。
2. 应选择适当的材料,如高强度混凝土或钢筋混凝土,以增加地下室结构的承载能力。
3. 尽量减少地下室底板和墙体的开口,以增加结构稳定性。
二、采取有效的防水措施1. 普遍采用地下室防渗透层的技术,如塑料薄膜包覆、防水涂层等。
2. 地下室外墙和底板之间的渗漏问题应得到重视,采用隔水膜等防水材料进行处理。
3. 在地下室防水时,应避免开挖过程中施工布置不当引起的渗水问题。
三、考虑地下室排水系统1. 地下室排水系统的设计应满足地下室排水的需求,避免积水和湿度过高。
2. 可考虑设置排水管道、排水沟、排水泵等设施,确保地下室排水顺畅。
3. 进行合理的坡度设计,以确保排水系统的有效性。
四、加强地下室固结处理1. 采取适当的加固措施,如增加地下室的抗浮重量,通过加重地下室的前墙、底板等。
2. 合理使用地下室周边的地基土层,增加地下室的固结效果。
3. 进行有效的地基处理,如灌浆、加固地基等,以提高地下室的固结性能。
五、进行地下室监测与维护1. 地下室建成后,应进行地下室浮动监测,及时掌握地下室固结状况。
2. 建立健全的维护体系,定期检查地下室结构的稳定性和防水性能。
3. 针对地下室存在的问题,采取及时有效的维修和加固措施。
总结:地下室抗浮方案的有效实施对于确保地下室的结构稳定性和使用安全至关重要。
通过优化地下室结构设计、采取有效的防水措施、考虑地下室排水系统、加强地下室固结处理以及进行地下室监测与维护,可以有效地解决地下室浮动问题。
在地下室设计和施工中,我们应该充分考虑这些因素,制定合理可行的抗浮方案,以确保地下室的安全与稳定性。
地下室抗浮方案
地下室抗浮方案地下室抗浮方案是在建筑中常见的安全设计措施,旨在防止地下室在水压力的作用下浮起。
本文将介绍地下室抗浮方案的原理、常见方法以及相关案例,以深入探讨地下室抗浮方案的重要性和有效性。
一、地下室抗浮原理地下室抗浮是基于阿基米德原理,即物体在液体中受到的浮力等于排斥掉的液体的重力。
当地下室周围的水位上升时,土壤中的孔隙水压力也随之增加,导致地下室受到往上推的力,从而引起地下室浮起的风险。
因此,地下室抗浮方案的关键在于通过一系列措施,使地下室充分抵抗浮力,保持稳定。
二、常见地下室抗浮方法1. 地下室重物压盖法该方法通过在地下室顶部设置重物,如混凝土或钢材,来增加地下室的自重,抵抗浮力。
重物的选取需要考虑到地下室的结构承载能力和抗浮需求,以确保地下室不会因此而受到过大的压力。
2. 地下室排水系统合理设计和维护地下室的排水系统,是防止孔隙水积聚和增加水压力的重要措施。
这包括将地下室周围的排水管道与雨水排水系统相连,以及设置有效的排水装置,如泵站和通风设备,确保地下室能够及时排除积水。
3. 桩基承载抗浮法该方法通过增加地基的稳定性和承载能力,减小地下室受到的浮力。
利用桩基的承载力来抵抗浮力,可以采用不同类型的桩基,如钢筋混凝土桩、钢管桩等,根据地下室的深度和地质条件来选择合适的桩基方案。
三、地下室抗浮方案的实际应用1. 某商业综合体地下车库项目该项目采用地下室重物压盖法和地下室排水系统相结合的抗浮方案。
在地下室顶部设置了大型的混凝土覆盖物,以增加地下室的自重,并确保地下室与上部建筑物的结构相连。
同时,地下室排水系统通过合理布置排水管道和安装泵站,及时将积聚的水排除出去,保持地下室的稳定。
2. 某住宅小区地下室项目该项目选择桩基承载抗浮法作为地下室抗浮方案。
根据地质勘测结果,采用了带有增强灌注桩的基础设计,以增加地基的稳定性和承载能力。
通过将桩基与地下室结构相连,形成一个整体,有效地抵抗了地下室的浮力。
地下工程的抗浮设计和加固措施的探讨
02
地下工程的抗浮设计
抗浮设计的原理
地下工程抗浮设计的基本概念
地下工程的抗浮设计主要是针对地下水位较高的地区,在结构设计过程中考 虑地下水的浮力作用,采取相应的措施以抵抗水的浮力,确保结构的安全性 和稳定性。
地下水浮力计算
地下水的浮力是地下工程中一个重要的荷载,对于抵抗水的浮力,需要精确 计算水的浮力大小,并根据计算结果进行结构设计。
抗浮设计的方法
01
02
03
配重法
通过在结构底部增加一定 厚度的混凝土或者配重材 料,增加结构的重量,以 抵抗地下水的浮力。
排水降水法
通过降低地下水位,减小 地下水的浮力,在结构设 计中考虑排水降水的措施 ,确保结构的安全。
设置抗浮锚杆
通过设置抗浮锚杆,将地 下水的浮力传递到周围的 土壤中,以抵抗地下水的 浮力。
参考文献二
该文献重点研究了地下工程中常见的抗浮问题,对抗浮加固措施 的应用和技术要点进行了详细阐述。
参考文献三
该文献对抗浮设计和加固措施在地下工程中的重要性和现实意义 进行了分析,为相关研究和应用提供了有益的借鉴。
感谢您的观看
THANKS
03
地下工程的加固措施
加固措施的种类
锚杆加固
利用锚杆将地下工程与周围土体锚固在一 起,以提高工程稳定性。
混凝土加固
通过浇注混凝土,对地下工程进行补强和 加固。
钢板加固
在地下工程表面加设钢板,提高工程强度 和稳定性。
注浆加固
利用注浆技术,将浆液注入地下工程周围 土体,改善土体性质,提高工程稳定性。
加固施工管理
加强施工现场管理,确保加固 施工质量和安全。
04
抗浮设计和加固措施的案 例分析
地下室抗浮方案(一)
地下室抗浮方案(一)引言概述:地下室抗浮方案(一)是针对地下室建设过程中可能出现的浮动问题而提出的解决方案。
本文将分为五个大点来详细阐述地下室抗浮方案的具体内容。
正文:一、地基处理1. 地下室建设前应进行地质勘探,以了解地下基岩情况。
2. 根据地质情况,采取适当的地基处理方法,如加固地基、注浆等。
3. 在地基处理过程中,需考虑地下水位及周边土质的影响。
二、地下室结构设计1. 结构设计应符合地质勘探结果,合理分析地下室的荷载和力学特性。
2. 合理选择地下室的结构材料和构造形式,以提高地下室的抗浮能力。
3. 设计中应考虑地下水涨落时对地下室结构的影响,合理控制结构的变形和裂缝。
三、防水措施1. 地下室施工过程中应采取适当的防水措施,以防止地下水渗入地下室。
2. 选择合适的防水材料,进行地下室墙体和地板的防水处理。
3. 定期检查和维护地下室防水系统,确保其正常运行。
四、地下室降浮控制1. 在地下室建设过程中,地下水位的变化可能导致地下室浮动。
2. 可采取降浮控制方式,如增大地下室重力、改变地下水压等。
3. 利用降浮控制手段,有效防止地下室浮动,保证地下室的稳定性。
五、监测与维护1. 地下室建成后,应进行系统的监测和维护工作。
2. 定期检查地下室结构和防水系统,及时发现问题并予以解决。
3. 加强地下室使用者的安全意识,教育其正确使用地下室设施,避免因不当行为引发地下室浮动。
总结:地下室抗浮方案(一)通过地基处理、结构设计、防水措施、地下室降浮控制和监测与维护等五个方面的措施,有效地解决了地下室浮动问题。
这些措施的实施将保证地下室的稳定性和安全性,为地下室的使用者提供安全的居住、办公及其他功能的场所。
地下室抗浮方案
地下室抗浮方案在建筑工程中,地下室的抗浮问题是一个至关重要的环节。
如果抗浮措施不当,可能会导致地下室上浮、结构破坏等严重后果,给工程带来巨大的损失和安全隐患。
因此,制定科学合理的地下室抗浮方案显得尤为重要。
一、地下室抗浮的基本原理地下室抗浮的原理是通过各种措施,使地下室所受到的上浮力小于或等于地下室自身的重量以及抗浮结构所提供的抗浮力之和,从而保证地下室在地下水位上升时不会发生上浮现象。
上浮力的大小取决于地下水位的高度、地下室的面积以及水的重度。
地下室自身的重量包括结构自重、覆土重量等。
抗浮力的来源则主要有抗拔桩、抗浮锚杆、增加配重等。
二、地下室抗浮方案的设计要点1、准确的地质勘察在设计地下室抗浮方案之前,必须进行详细的地质勘察,了解地下水位的变化规律、土层的物理力学性质等。
这是制定合理抗浮方案的基础。
2、合理确定抗浮设防水位抗浮设防水位是指地下室在设计使用年限内可能遇到的最高地下水位。
确定抗浮设防水位时,需要综合考虑历史最高水位、当地的水文气象资料、地下水的补给和排泄条件等因素。
3、计算上浮力和抗浮力根据确定的抗浮设防水位和地下室的尺寸,准确计算上浮力的大小。
同时,根据选用的抗浮措施,计算抗浮力的大小,确保抗浮力大于或等于上浮力。
4、选择合适的抗浮措施常见的地下室抗浮措施有以下几种:(1)抗拔桩抗拔桩是通过桩身与土层之间的摩擦力和桩端的阻力来提供抗拔力。
抗拔桩的优点是承载能力高、稳定性好,适用于上浮力较大的情况。
(2)抗浮锚杆抗浮锚杆是将锚杆锚固在土层中,通过锚杆与土层之间的粘结力来提供抗拔力。
抗浮锚杆施工方便、造价较低,但承载能力相对较小,适用于上浮力较小的情况。
(3)增加配重通过在地下室顶板或底板增加混凝土配重、增加覆土厚度等方式来增加地下室的重量,从而抵抗上浮力。
这种方法简单易行,但会增加地下室的造价和施工难度。
(4)排水减压通过设置排水系统,降低地下水位,减小上浮力。
这种方法适用于地下水位变化较大、有可靠排水出路的情况。
【结构设计】地下室抗浮设计优化学习
地下室抗浮设计优化学习随着经济的发展,高层建筑的增多,大部分高层建筑都下设单层或多层地下室,当抗浮设计水位较高时会承受较大的水浮力.在优化项目中,经常发现有些工程抗浮设计浪费严重.一、整体抗浮1、确定是否需要整体抗浮依据《地基规范》5.4.3条建筑物基础存在浮力作用时应进行抗浮稳定性验算,并应符合下列规定:1对于简单的浮力作用情况,基础抗浮稳定性应符合下式要求:——建筑物自重及压重之和(kN);式中:GkN——浮力作用值(kN);w,kkw——抗浮稳定安全系数,一般情况下可取1.05.2、整体抗浮的解决方案(1)配重法适用于结构自重与地下水浮力相差不大的情况.可采取如增加覆土厚度、采用配重混凝土等具体手段.(2)设置抗拔桩适用于水浮力较大的情况.(3)设置抗浮锚杆同样适用于水浮力较大的情况,但要特别注意抗浮锚杆对施工工艺要求较高.分为岩石锚杆和土层锚杆两种,岩石锚杆适用于基础直接坐落在基岩的情况,锚杆直接插入基岩灌浆,岩石锚杆抗拔力较大.若在一般图层中,则为土层锚杆,但淤泥质土等土质条件不好情况下不可采用.(4)浮力消除法采取疏、排水措施,使地下水位保持在预定的标高之下.二、局部抗浮结构构件的强度验算、变形验算和裂缝验算.三、抗浮优化案例分析(1)一桩两用海南文昌某项目,上部30层酒店及25层住宅若干,下设一层全埋式地下室,地上建筑面积95334㎡,地下建筑面积13350㎡.地库结构形式为框架结构.基础原设计采用桩基础(小于6米大于3米采用墩基础)+抗浮锚杆,如下图所示.优化建议:取消抗浮锚杆,采用抗压桩兼做抗拔桩进行抗浮,且只需增加少量桩配筋,当墩基础较短时,可在墩底设置锚杆抗拔.仅此一项举措可节约结构造价约300万元.【设计要点】抗拔桩的配筋需满足裂缝要求,且全长配筋.(2)抗拔桩改为抗浮锚杆安徽省合肥市某大型商业综合体,总建筑面积约26.5万平方米,地上一栋超高层约162米,两栋高层,1栋附属裙房,3层地下室,抗浮设计水位为室外地坪下1m,地下室建筑面积约7.8万平方米.原设计地下室抗浮采用抗拔桩,如下图所示.优化建议:将抗拔桩改为抗浮锚杆,锚杆价格便宜,只要严格把控施工质量,是一个很经济的选择.四、结语抗浮设计的方案要结合施工,经济,安全,地下水位变化情况等综合考虑.除了上述的抗浮设计方法外,在优化过程中也会根据实际工程情况推荐采用诸如CMC静水压力释放(基底减压)、囊式抗浮锚杆等新技术手段,实现既可以缩短工期,又可以节约成本,一举多得.。
浅谈地下室抗浮设计(二)2024
浅谈地下室抗浮设计(二)引言概述:地下室抗浮设计是建筑工程中的重要内容之一。
在前一篇文章中,我们已经了解了地下室抗浮设计的基本概念和要素。
在本文中,我们将继续深入探讨地下室抗浮设计,并从五个大点展开讨论。
这五个大点包括抗浮措施的分类、地下室承载力的计算、地下室结构的设计、地下水位的监测和风险评估。
通过对这些要点的详细讨论,我们可以更好地理解地下室抗浮设计的重要性以及实施的技术细节。
正文:一、抗浮措施的分类1. 重力抗浮:利用地下室自身的重力,通过增加地下室的自重或者增加地下室下方的重力,来抵抗浮力的作用。
2. 锚固抗浮:采用钢筋和锚杆等固定装置,将地下室与周围土体或钢筋混凝土桩进行连接,增加地下室的抗浮能力。
3. 地下连续墙抗浮:通过设置地下连续墙,将地下室与地基形成一体化结构,以增加整体的抗浮性能。
二、地下室承载力的计算1. 地基的承载力计算:考虑地基材料的强度和地下水位的影响,通过计算地基的承载力来确定地下室的承载能力。
2. 地下室结构的承载力计算:根据地下室的结构形式和材料特性,采用相关的力学理论和计算方法,计算地下室的承载能力。
三、地下室结构的设计1. 结构形式的选择:根据地下室所处的地质条件和工程要求,选择合适的结构形式,如框架结构、拱形结构等。
2. 结构材料的选择:根据地下室的使用功能和要求,选择合适的结构材料,如钢筋混凝土、钢结构等。
3. 结构参数的确定:根据结构的受力特点和设计要求,确定地下室结构的各项参数,如截面尺寸、墙板厚度等。
四、地下水位的监测1. 地下水位的测量方法:常用的地下水位监测方法包括水位计、孔压计等,可以实时监测地下水位的变化。
2. 地下水位的监测频率:根据地下室所处的地质条件和工程要求,确定地下水位的监测频率,及时发现异常情况。
3. 监测数据的分析和应用:对监测到的地下水位数据进行分析,判断地下室抗浮性能,并根据需要采取相应的调整措施。
五、风险评估1. 抗浮设计的合理性评估:通过对地下室抗浮设计方案的评估,判断其合理性和可行性,以确保地下室的安全性和稳定性。
地下室抗浮措施
地下室抗浮措施引言地下室是许多建筑物的重要组成部分,可用于储存、停车、设备安装等多种用途。
然而,由于地下室位于地下水位之下,当地下水位上升时,地下室会面临浮力的挑战。
本文将介绍一些常见的地下室抗浮措施,以帮助人们提高地下室的抗浮性能。
地下室抗浮措施1. 加强地下室结构的稳定性地下室的结构稳定性是抗浮的基础。
在设计和施工阶段,应综合考虑地下室结构的承载能力、抗浮能力和地下水位的变化情况。
建议采用以下措施来加强地下室结构的稳定性:•增加地下室底板和墙体的厚度,以增加其承载能力和抗浮能力;•使用高强度混凝土或钢材等材料来提高结构的抗浮能力;•在地下室的结构中设置抗浮措施,如地下室墙体与地基的连接设计、地下室底板的加固等。
2. 地下室防水处理地下室的防水处理对于抗浮具有重要意义。
下面是一些常见的地下室防水措施:•选择适当的防水材料,如防水涂料、防水板等,确保地下室的防水性能;•做好地下室外墙的防渗处理,防止地下水通过墙体渗入地下室;•在地下室内设置排水系统,及时排除地下室内的积水,减少地下室受水浸的可能性;•防水层的施工应注意细节,如管道穿越处、接缝处等,确保防水层的完整性。
3. 排水系统的设计与维护合理的排水系统是地下室抗浮的重要组成部分,它能够及时排除地下水,减少地下室受水浸的风险。
以下是排水系统的设计与维护方面的建议:•针对地下室周围的地形、地质和地下水位等情况,设计合理的排水系统,包括排水沟、雨水管道等;•定期检查排水系统的运行情况,确保排水系统畅通无阻,及时清理堵塞的排水沟、雨水管道等;•在地下室周围设置排水井或泵站等设施,以保证地下室周围的地下水位维持在合理范围内。
4. 监测地下水位的变化地下水位的变化是地下室浮力增加的直接原因,监测地下水位的变化有助于及时采取相应的抗浮措施。
以下是地下水位监测方面的建议:•在地下室中设置地下水位监测装置,实时监测地下水位的变化;•建立地下水位监测系统,监测地下水位的长期趋势,为抗浮措施的调整提供依据。
地下室抗浮设计原则
地下室抗浮设计原则地下室的抗浮设计原则是指在地下室施工中,为防止地下室因为地下水压力的作用而产生浮起现象,需要采取的有效措施和方法。
抗浮设计对于地下室的稳定性和安全性至关重要,下面将介绍地下室抗浮设计的原则。
1. 合理布置支撑系统地下室的抗浮设计首先要考虑合理布置支撑系统。
支撑系统的设计应符合地下室的结构形式和周围环境的实际情况,确保地下室在施工和使用过程中具有足够的稳定性和承载能力。
在地下室的设计过程中,必须考虑支撑系统的类型、位置、材料等因素,以确保地下室的整体结构稳定可靠。
2. 合理设计抗浮锚杆抗浮锚杆是地下室抗浮设计中的重要组成部分,有效的抗浮锚杆设计可以有效减少地下水对地下室的浮起影响。
抗浮锚杆的设计应考虑地下室的深度、地下水位、土质等因素,采取合适的长度、直径和间距,确保抗浮锚杆能够有效地固定地下室结构,防止地下室受到浮动力的作用而产生位移或破坏。
3. 合理设置降压井和渗水措施地下室抗浮设计还需要合理设置降压井和采取适当的渗水措施。
降压井的设置可以有效减少地下水位的影响,降低地下水对地下室的浮起压力,保证地下室结构的稳定性。
同时,必须采取科学有效的渗水措施,防止地下水对地下室结构的侵蚀和破坏,确保地下室的使用寿命和安全性。
4. 结构合理设置排水系统除了抗浮锚杆和降压井外,地下室抗浮设计还需要合理设置排水系统。
排水系统的设计应充分考虑地下室周围地下水的流动情况,采取适当的排水方式和措施,确保地下室周围地基土体的排水畅通,防止地下水积聚造成地下室浮起现象,保证地下室的结构安全和稳定性。
5. 质量保证和定期检测最后,地下室抗浮设计需要保证工程质量和定期进行检测。
施工过程中必须严格按照设计方案和规范要求进行施工,保证各项工程质量符合标准,确保地下室结构安全可靠。
同时,在地下室使用过程中,需要定期进行检测和维护,查看支撑系统、抗浮锚杆、降压井、排水系统等设施的情况,及时发现问题并进行修复处理,保证地下室的抗浮设计效果持久稳定。
最新浅谈地下室抗浮设计
最新浅谈地下室抗浮设计在建筑工程领域,地下室抗浮设计是一个至关重要的环节。
随着城市建设的不断发展,地下室的规模和深度日益增大,抗浮问题愈发凸显。
如果抗浮设计不合理,可能会导致地下室上浮、结构破坏等严重后果,给工程带来巨大的安全隐患和经济损失。
地下室上浮的原因主要是地下水浮力超过了地下室结构的自重和抗拔力。
地下水的水位变化是影响浮力大小的关键因素。
在雨季或地下水位上升时,浮力会显著增加。
此外,建筑场地的地质条件、地下室的形状和尺寸、上部结构的荷载分布等也会对抗浮设计产生影响。
在进行地下室抗浮设计时,首先要准确确定地下水的水位。
这需要进行详细的地质勘察和水文地质分析。
勘察报告应提供历史最高水位、常年水位以及可能的极端水位等数据。
设计人员要根据这些数据,并结合工程的重要性、使用年限等因素,合理确定抗浮设防水位。
地下室结构的自重是抵抗浮力的重要因素之一。
在设计时,应充分考虑地下室的顶板、底板、墙板以及内部结构的重量。
对于自重不足的情况,可以通过增加结构厚度、采用较重的建筑材料或设置配重等方式来增加自重。
抗拔桩和抗拔锚杆是常见的抗浮措施。
抗拔桩通常具有较大的抗拔力,适用于浮力较大的情况。
抗拔桩的设计需要考虑桩的类型、直径、长度、桩间距等参数。
抗拔锚杆则施工较为方便,但其抗拔力相对较小,适用于浮力较小的地下室。
在选择抗浮措施时,要综合考虑工程地质条件、施工难度、经济性等因素。
在计算抗浮稳定性时,需要根据规范要求进行严格的验算。
通常采用的方法有“抗浮力与浮力比值法”和“整体稳定性分析法”。
前者较为简单直观,直接比较抗浮力和浮力的大小;后者则考虑了土体的抗剪强度和滑动面的形状,计算结果更为准确。
除了结构设计,施工过程中的降水措施也不容忽视。
在地下室施工期间,应采取有效的降水措施,降低地下水位,确保施工的安全和顺利进行。
但在降水过程中,要注意避免过度降水引起周边地面沉降等问题。
此外,还应考虑地下室在使用期间的维护和监测。
地下工程抗浮措施方案
地下工程抗浮措施方案一、前言地下工程抗浮措施是指为了防止地下结构浮升而采取的一系列措施。
地下结构浮升是指地下结构在大地下水压力作用下,受到浮力的影响而产生向上浮动的现象。
在地下工程中,浮升现象不仅会给工程带来严重的安全隐患,而且会给工程的施工和使用带来严重的影响。
因此,针对地下工程地下结构抗浮的措施显得尤为重要。
二、地下结构抗浮机理地下结构呈现浮升的主要原因是由于地下水的作用。
地下水与土体间的关系非常复杂,地下水常常存在于不饱和带、饱和带和水文圈的过渡带等地下蒯或者是因附近有河流或湖泊存在而产生。
因此地下水的作用也会对地下工程结构产生重要的影响。
在地下结构中,当地下水的作用超过了结构的自重而产生向上浮动的趋势时,就会导致地下结构的浮升。
地下结构的浮升主要存在以下几种形式:一是全浮升,即整个地下结构完全脱离地面;二是局部浮升,即结构的局部部位出现向上浮动;三是阶段浮升,即结构在不同的时间段内出现向上浮动。
综合地下结构抗浮的机理以及地下水的作用,我们需要有科学严密的理论探讨地下结构抗浮的措施。
接下来,我们就地下结构在设计、施工和使用阶段的抗浮措施进行详细的阐述。
三、地下结构抗浮的设计阶段1. 对地下结构的防浮要求进行明确。
在地下结构的设计之初,就需要明确地下结构对防浮的要求。
对于不同的地下结构,防浮的要求也有所不同。
例如,对于深基坑来讲,需要考虑基坑支护结构的防浮;对于地下管廊来讲,需要考虑管廊的防浮等等。
2. 对地下水文地质条件进行深入分析。
在地下结构的设计阶段,需要对地下水文地质条件进行全面的认识。
例如了解地下水的水位、水质、水流动和水压力等信息,以便在设计中考虑地下水对结构浮升的影响。
3. 采用合理的结构设计。
在地下结构的设计中,需要采用合理的结构设计来降低地下结构的浮升趋势。
例如,可以采用重力式结构、耐浮式结构、地下水井工厂和井室式结构等。
4. 采用防浮措施。
在设计阶段,地下结构可以采用各种防浮措施,如地下水压减小措施、控制结构重量等,来降低地下结构的浮升趋势。
地下室抗浮方案
地下室抗浮方案
地下室建筑是一种常见的建筑形式,但在某些地区,地下水位较高,会导致地下室出现浮升的情况。
为了解决这一问题,需要制定有效的
抗浮方案。
一、地下室结构设计
地下室结构设计是抗浮的第一道防线。
首先,应确保地下室的基础
足够扎实,可以承受地下水位上升的压力。
其次,地下室的墙体和地
板应采用防水材料进行处理,以防止地下水渗透进入地下室内部。
二、地下室设备设置
为了增强地下室的抗浮能力,可以在地下室内部设置重物,如水泥
块或钢筋混凝土墩等,以增加地下室的自重。
此外,还可以在地下室
墙体上设置锚杆或加固筋,以提高地下室的整体稳定性。
三、排水系统设置
在地下室周围设置足够的排水系统也是抗浮的有效方法。
可以通过
设置排水沟、地下水泵等设备,及时将周围地下水排放出去,减少地
下室的浮升风险。
四、监测和维护
定期对地下室的抗浮措施进行监测和维护是非常重要的。
可以通过
安装水位监测仪器,定期检查地下室结构的稳定性,及时进行修补和
加固,以确保地下室的安全运行。
总的来说,地下室抗浮方案需要综合考虑结构设计、设备设置、排水系统和监测维护等多个方面。
只有全面有效地实施这些方案,才能有效地保障地下室的安全稳定运行。
希望以上方案能为地下室抗浮提供一定的参考价值。
地下室抗浮设计(二)
地下室抗浮设计(二)引言概述:地下室抗浮设计是地下室工程中的重要部分,它旨在通过合理的设计和施工措施,确保地下室的稳定性和安全性。
本文将从五个方面,即地基处理、地下水控制、基础设计、墙体结构和底板设计,对地下室抗浮设计进行详细阐述。
地基处理:1. 了解地基承载力:通过地质勘探等手段,获取地下室周围土壤的物理和力学性质,准确评估地基承载力。
2. 地基加固技术:采用适当的地基增强措施,如浆体注射、振动加固等,提高地基的承载能力。
3. 考虑地下水对地基的影响:地下水会导致地基土壤饱和和液化,需根据地下水位确定地下室的抗浮设计方案。
地下水控制:1. 地下水位监测:安装可靠的地下水位监测设备,观察并记录地下水位的变化,及时调整抗浮设计方案。
2. 地下水排水:采用合适的排水系统,如地下水泵、防水材料等,有效控制地下室的渗水和涌水问题。
基础设计:1. 基础形式选择:根据地下室的结构和周边环境,选择合适的基础形式,如扩大基、桩基等,提高地下室的稳定性。
2. 基础尺寸设计:根据地下室的荷载特性和地基条件,确定合理的基础尺寸,确保地下室的承载能力和稳定性。
3. 基础材料选择:选择适当的基础材料,如高强度混凝土、增强土、钢筋等,提高基础的抗压和抗浮能力。
墙体结构:1. 墙体选择:选择适当的墙体结构,如钢筋混凝土墙、钢筋砌筑墙等,根据地下室的用途和设计要求,提高墙体的抗浮能力。
2. 墙体厚度设计:根据地下室的荷载和地基条件,确定合理的墙体厚度,保证墙体的承载能力和稳定性。
3. 墙体连接设计:设计合理的墙体连接方式,如榫卯连接、焊接等,增加墙体的整体稳定性。
底板设计:1. 底板厚度设计:根据地下室的用途和荷载特性,确定合理的底板厚度,提高底板的抗压能力。
2. 底板材料选择:选择适当的底板材料,如钢筋混凝土、玻璃钢等,提高底板的承载能力和抗浮能力。
3. 底板防水设计:采用适当的防水材料和防水层,保证底板的防水性能,减少地下水对底板的影响。
地下室抗浮设计
地下室抗浮设计在建筑工程中,地下室的抗浮设计是一个至关重要的环节。
随着城市建设的不断发展,地下空间的开发利用越来越广泛,地下室的深度和面积也在不断增加,这使得地下室抗浮问题变得日益突出。
如果地下室的抗浮设计不合理,可能会导致地下室上浮、结构开裂、渗漏等严重问题,影响建筑物的正常使用和安全。
因此,做好地下室抗浮设计是确保地下室工程质量和安全的关键。
一、地下室抗浮设计的基本原理地下室抗浮设计的基本原理是通过平衡地下室所受到的浮力和抗浮力,使地下室在地下水位上升时保持稳定。
浮力是由地下水对地下室结构产生的向上的压力,其大小等于地下室排开地下水的体积乘以水的重度。
抗浮力则主要包括地下室结构的自重、地下室顶板上的覆土重量以及抗拔桩或抗浮锚杆提供的抗拔力等。
在进行地下室抗浮设计时,需要根据工程所在地的地质条件、地下水位变化情况以及建筑物的使用要求等因素,合理确定抗浮设防水位,并计算地下室所受到的浮力和抗浮力。
当抗浮力大于浮力时,地下室能够保持稳定;当抗浮力小于浮力时,需要采取相应的抗浮措施,如增加地下室结构的自重、增加覆土厚度、设置抗拔桩或抗浮锚杆等,以提高抗浮力,确保地下室的抗浮安全。
二、地下室抗浮设计的影响因素1、地质条件地质条件是影响地下室抗浮设计的重要因素之一。
不同的地质条件下,地下水的分布和赋存情况会有所不同,从而影响地下室所受到的浮力。
例如,在渗透性较好的砂土层中,地下水的流动较为顺畅,浮力较大;而在渗透性较差的黏土层中,地下水的流动受到限制,浮力相对较小。
2、地下水位变化地下水位的变化是地下室抗浮设计中需要重点考虑的因素。
地下水位的变化可能受到季节、气候、周边排水系统、地下工程施工等多种因素的影响。
在进行抗浮设计时,需要根据当地的水文地质资料,合理确定抗浮设防水位,并考虑地下水位的可能变化幅度,以确保地下室在极端情况下仍能保持稳定。
3、建筑物的使用要求建筑物的使用要求也会对地下室抗浮设计产生影响。
浅谈地下室抗浮设计(一)2024
浅谈地下室抗浮设计(一)引言概述:地下室抗浮设计是建筑结构中至关重要的一环。
在建筑地下室设计中,抗浮是指通过合理的设计措施,防止地下室在地下水位上升时发生浮力过大而导致的结构失稳、倒塌甚至水灾事故的发生。
本文将从地下室抗浮设计的原理、设计要点、设计方法、施工技术以及质量控制等方面,对地下室抗浮设计进行浅谈。
正文内容:一、地下室抗浮设计的原理1. 地下室抗浮设计的基本原理2. 地下室抗浮设计的受力分析3. 地下室抗浮设计的浮力计算方法4. 地下室抗浮设计的承载力计算方法5. 地下室抗浮设计的结构稳定性分析二、地下室抗浮设计的要点1. 地下室抗浮设计的地基处理2. 地下室抗浮设计的排水系统3. 地下室抗浮设计的重力结构设计4. 地下室抗浮设计的钢筋混凝土结构设计5. 地下室抗浮设计的地下连续墙设计三、地下室抗浮设计的方法1. 地下室抗浮设计的传统方法2. 地下室抗浮设计的现代化方法3. 地下室抗浮设计的监测与调整方法4. 地下室抗浮设计的经验法则5. 地下室抗浮设计的模型试验方法四、地下室抗浮设计的施工技术1. 地下室抗浮设计的基坑施工技术2. 地下室抗浮设计的土方开挖技术3. 地下室抗浮设计的基础施工技术4. 地下室抗浮设计的结构施工技术5. 地下室抗浮设计的地下管道施工技术五、地下室抗浮设计的质量控制1. 地下室抗浮设计的质量控制目标2. 地下室抗浮设计的质量控制要点3. 地下室抗浮设计的质量控制措施4. 地下室抗浮设计的质量控制评估5. 地下室抗浮设计的质量控制案例分析总结:通过对地下室抗浮设计的浅谈,我们可以看到地下室抗浮设计对于建筑结构的稳定和安全具有至关重要的作用。
在地下室抗浮设计中,需要充分考虑原理、要点、方法、施工技术和质量控制等方面的因素,以确保地下室的安全可靠性。
因此,在进行地下室抗浮设计时,应严格按照相关规范和要求进行设计和施工,以保证地下室结构的稳定,为人们创造一个安全舒适的居住和工作环境。
地下室抗浮设计(2024)
引言概述:地下室抗浮设计是在地下室建设过程中至关重要的一环。
在地下室施工中,由于地下水位的压力,地下室会产生浮升的风险,在设计中必须采取相应的措施来保证地下室的稳定性和安全性。
本文将对地下室抗浮设计进行详细探讨,包括设计原则、抗浮措施以及施工中的注意事项。
正文内容:一、设计原则1.1地下水位分析:在进行地下室抗浮设计之前,需要对地下水位进行详细的分析。
通过对地下水位的调查和监测,确定地下室地基所承受的水压力大小和变化趋势,从而提供设计依据。
1.2沉降分析:地下室建设过程中,地基沉降是不可避免的。
设计师需要通过地基工程勘察和分析,确定地基承载能力和沉降量的合理范围,并采取相应的措施降低地基沉降对地下室的影响。
1.3抗浮设计计算:抗浮设计计算是地下室抗浮设计的核心内容。
设计师需要根据地下室的结构和地下水的压力,进行浮力计算和承载力计算,确保地下室能够有效地抵抗浮升力。
还需要考虑地下室的重力结构和承载能力,以保证其稳定性。
1.4抗浮控制策略:设计师需要制定详细的抗浮控制策略,包括采取何种措施来减小浮升力、增加地下室的自重和刚度、提高地下室的排水能力等。
这些措施应当符合相应的抗浮设计标准和规范。
1.5施工监测和评估:地下室抗浮设计不仅仅是在施工前的计算和设计,还需要在施工过程中进行监测和评估。
通过实时监测地下室的变形和地下水位的变化,及时调整设计措施,确保地下室的抗浮性能。
二、抗浮措施2.1地下室顶板加强:地下室顶板是主要受力面之一,需要采取相应的加固措施来增加其抗浮能力。
可以采用增设钢筋或混凝土加厚的方式来增加顶板的刚度和承载能力。
2.2基础加固:地下室的基础是抗浮的重要组成部分,需要采取适当的加固措施来增强其抗浮能力。
可以采用加宽基础底座、增加基础深度或使用专用的加固材料等方式来提高基础的承载能力。
2.3排水系统设计:地下室的排水系统在抗浮设计中起着重要的作用。
设计师需要合理设计排水系统,确保地下室内的水能够及时排出,减小地下水位的压力。
地下室抗浮方案
地下室抗浮方案地下室抗浮方案1. 引言在设计和建造地下室时,抗浮是一项至关重要的工程问题。
地下室的抗浮方案需要考虑地下水位、土壤条件、建造结构等多个因素。
本文档旨在提供一份最新最全的地下室抗浮方案,以供参考。
2. 地下室抗浮原理地下室抗浮原理是通过增加地下室的自重,降低浮力,从而保证建造的稳定性。
常见的地下室抗浮方式包括增加地下室的分量、降低地下室的浮力以及减小地下室与周围土壤的水压差。
2.1 增加地下室分量通过增加地下室的分量可以有效地提高地下室的抗浮能力。
增加地下室分量的方法包括增加地下室结构的混凝土厚度、增加建造物的荷载和增加地下室内的地下水储存量等。
2.2 降低地下室浮力地下室的浮力主要来自于地下水对地下室底板的浮力作用。
降低地下室浮力的方法包括设置防浮板、提高地下室底板的抗浮能力和降低地下水位等。
2.3 减小水压差减小地下室与周围土壤的水压差可以有效地提高地下室的抗浮能力。
减小水压差的方法包括设置防水层、增加排水设施和提高地下室结构的密封性等。
3. 地下室抗浮方案设计3.1 地下室结构设计地下室结构的设计应考虑抗浮要求,并根据土壤条件和地下水位确定地下室底板的厚度和强度。
地下室结构设计应符合当地的建筑设计规范和抗震要求。
3.2 地下室防浮方案设计根据地下室结构和浮力大小,设计相应的防浮措施。
常见的防浮措施包括设置防浮板、增加地下室底板的抗浮能力和降低地下水位等。
设计防浮方案时应考虑与地下室结构的协调性和施工难度。
3.3 地下室排水方案设计地下室的排水方案设计应考虑地下水位和地下室周围的排水情况。
合理设置排水设施,保证地下室内外的水压差,提高地下室的抗浮能力。
4. 本文档所涉及附件如下:附件一:地下室结构设计图纸附件二:地下室抗浮方案设计图纸附件三:地下室排水方案设计图纸附件四:其他相关文档5. 本文档所涉及的法律名词及注释:5.1 抗浮:指地下室在地下水位变化和土壤水分含量变化的情况下,仍能保持建造物稳定的能力。
浅析地下室抗浮设计
浅析地下室抗浮设计摘要:近些年来,有不少地下室因抗浮问题而造成工程事故,现在用一个工程实例举例讲解下地下室抗浮设计。
关键词:抗浮水位;整体抗浮;局部抗浮;抗浮锚杆一、项目概况本工程位于成都市。
本工程为全埋式地下室,地下室层数为二层,本项目结构形式为框架结构,属于抗震一般地段。
本工程人防区域及非人防区域均为梁板结构。
该场地属稳定建筑场地,适宜建筑。
本工程结构嵌固部位位于基顶。
根据《建筑抗震设计规范》GB50011-2010,场地抗震设防烈度为7度,设计基本地震加速度值为0.10g,设计地震分组为第三组,场地类别为Ⅱ类,特征周期为0.45s。
结构设计使用年限为50年,多遇地震水平地震影响系数为0.08。
二、抗浮设计水位地勘资料:本工程回填土孔隙大,渗透性强,且厚度较大,分布较广,周边水域补给源较多,对上层滞水采用疏排等措施很难满足抗浮要求,故建议应采取专项的抗浮措施,根据“《成都市建筑工程抗浮锚杆质量管理规程》第十六条抗浮设防水位宜满足一级阶段不能低于室外地坪标高以下1.0m要求”,本工程抗浮设计水位可按室外地坪标高以下1.0m考虑,可采取设置抗浮锚杆或抗浮桩等抗浮措施,同时应对抗水底板增加配筋量。
地下室防水设防高度应高出室外地坪0.5m以上。
抗浮结构施工前,宜选择具有代表性的地段进行现场抗浮结构的抗拔试验,以确定抗拔承载力的相关参数,为抗浮结构的设计和施工提供依据。
三、整体抗浮根据建筑工程抗浮技术标准3.0.1条3.0.3条规定:1、建筑工程抗浮稳定性应符合下式规定:G/Nw,k≥Kw (3.0.3)式中:G——建筑结构自重、附加物自重、抗浮结构及构件抗力设计值总(kN);Nw,k——浮力设计值(kN);Kw——抗浮稳定安全系数(本工程抗浮工程设计等级为乙级,使用期抗浮稳定安全系数为1.05)。
2、若整体不满足抗浮设计要求时,通常有以下种处理方式:压重法;排水限压法、隔水控压法与泄水降压法;锚杆法;锚桩法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随着我国经济的发展,大规模的高层建筑地下室、地下商场的建设,大规模的市政建设如地下停车库、地铁、地下变电站、污水处理工程等地下工程的建设日益繁多,地下工程的设计最常见的抗浮问题随着基础形式的不同,也越来越引起设计人员的注意。
本文结合多年设计经验,对地下室抗浮设计中应该注意的问题做一归纳总结,供设计人员参考。
1 抗浮公式及参数的选择目前规范对抗浮设计没有明确的表达式,不同的规范又分别给出一些不同的系数,使得抗浮出现不同的做法,有的很不安全,有的则相当保守,使抗浮设计造价昂贵。
常见的抗浮设计规定有:1.0G+Ra≥1.2Fw(荷载规范)0.9G+Ra≥1.2Fw(江苏2005讨论稿)G≥1.0Fw(北京建筑设计细则)G≥1.05Fw(广东省地基基础规范)G/1.2Fw≥1.0(上海地基基础规范1999)从不同地区对抗浮的要求来看,其基本表达是一致的,只是不同地区结合本地区的工程经验,提出了不同的经验系数。
需要指出的是,不管在哪个地区,在抗浮水位的选取上,设计人员要认真对待,一般地质勘探部门会给出建议抗浮水位,设计人员应该根据具体建筑的埋深选取合理的抗浮水位,重要工程还应该结合城市抗洪水位标高选取。
对超大超深的地下工程,一般施工施工周期较长,设计时还必须考虑雨季施工期最不利水位。
2 结构抗浮优化设计地下工程建筑的平面剖面已经确定的情况,为了能取得较好的经济效益,需要对工程的结构做合理的调整优化,以取得最佳的结构方案。
结构设计上没有“唯一解”,在地下工程抗浮设计上更是如此。
以下结合几个工程实例说明结构设计的方案优化。
实例一:一层的地下人防工程,层高3.9m,上部覆土0.9m,平时为汽车库,要求内部除框架柱外没有其他承重构件,地下抗浮水位取在室外地坪下1.0m处,结构采取普通的钢筋混凝土梁板结构,地下室顶板厚300mm,底板厚300mm,按荷载规范计算,抗浮是不能满足的,原设计拟设置一定数量的抗浮桩。
在方案优化阶段来看,底板自重对于抗浮计算和底板配筋计算来说都是有利荷载,如果增加底板厚度到一定数值,可以满足抗浮要求,但增加底板厚度同时会造成工程造价的增加。
通过两种设计方案的经济比较,在考虑人防荷载和浮力的情况下,笔者在实际工程中仅采用400厚底板,底板上增加砂石及素混凝土填充,并适当增加了覆土的重量,利于地下室顶板上方市政管线的布置,也省却了抗浮桩的设置,从而取得良好的经济效果。
实例二:抗浮桩布置方式的优化。
很多工程在自重无法满足抗浮的时候,最常使用的方式就是设置抗浮桩。
下图是几种抗浮桩的布置方式,对于不同的工程情况,应该选择不同的布桩方案,绝不能一概而论。
图2(1)适合柱下桩主要由竖向荷载控制,单桩承载力值较大,仅考虑施工过程中局部抗浮不满足的时候设置的抗浮桩(桩的总数量一般比单纯考虑竖向荷载下要多),其特点是受力明确,施工方便;而图2(2)则适用于地下室埋深较大,地下水位较高,柱下桩由抗浮计算控制,这种情况下往往地梁的受力非常大,采用图2(2)的布桩方式相对图2(1)而言,有效地减小了地梁的跨度,对大面积的地下室而言能取得较好的经济效益。
当然,在某些工程(如大面积单建式地下停车场、地下商场)等出现更大埋深,更大跨度(10m×10m以上)的情况下,此时底板一般较厚,必须设置抗浮桩来解决地下水位较高的问题,可以选择柱下带形布桩方式或满堂布桩的方式抗浮,一般这种布桩方式要选用小直径、短桩,密布的方式,以有效解决局部抗浮问题和有效降低底板内力峰值,如图2(3)。
以下是采取上两种不同布桩方式的工程实例。
某世贸国际大厦是两栋33层高层,裙房3层组成的建筑,两层人防地下室,因建筑功能的需要,地下室平面较建筑的底层平面四周均扩出6m~18m不等,地下室底标高-8.4m,高层下采取桩筏基础,裙房柱下多桩承台基础。
高层下采用预应力高强管桩,由于地下室埋深较大,平面面积也较大,属超大超深地下工程,结构设计时必须考虑在建成后地面建筑投影以外部分地下室的抗浮问题,也要考虑在地下室施工过程中,基坑回填时(施工到0.00时的工况)裙房部分柱下局部抗浮问题。
裙房下柱底桩的布置采取了图2(1)的布置方式,施工阶段需要的抗浮桩主要利用了工程建造完成后的工程桩,适当增加桩的数量以满足抗浮。
某高层居住小区组团,主体为八栋18层高层,裙楼为2层框架结构,地下一层人防地下室,高层间为地下人防工程,平时为汽车库,裙楼及地面建筑投影以外部分柱下,主要考虑抗浮桩的使用,采用单桩承载力较小的桩型,按图2(2)的布桩方案,有效节省了地下室大跨度地梁的工程造价。
某地下停车场,单建式,柱网8.4×8.4m,六级人防工程,基础底部在淤泥层上,竖向荷载及抗浮均由桩来承担,在控制位地下工程的抗浮优化设计郑刚要 张书江(连云港市规划市政设计研究院有限责任公司 江苏连云港 222000)摘 要:根据多年来对地下工程抗浮设计的经验,结合规范及工程实例,提出针对地下工程抗浮设计的优化方法及应验算的部位。
对不同基础形式的地下工程抗浮设计提出较为统一的设计模式,对地下工程的设计具有指导意义。
关键词:地下工程 抗浮设计 优化设计 水位 抗浮桩 有利荷载中图分类号:TU7 文献标识码:A 文章编号:1672-3791(2009)02(a)-0036-02(下转38页)图1 实例一剖面图(1) (2) (3)图2雾、雪和雨滴时,应用镜头布及时清除干净,注意不要划伤或磨损玻璃;玻璃罩不能进水,罩内也不应有水汽凝结物;检查干燥器内硅胶是否变潮(如变为红色或白色就要及时更换);遇到强雷暴、强降水、强沙尘暴等恶劣天气时,要加盖巡视。
2.2净全辐射仪器的维护每日上、下午、夜间至少检查一次仪器状态,检查和维护内容:感应面是否水平;薄膜罩是否清洁和呈半球凸起(发现薄膜罩下塌,用橡皮球打气,使其凸起);薄膜罩通常每月更换一次,风沙多、大气污染严重或紫外光强易使聚乙烯老化的地区,要增加更换次数,换罩时一定按操作规程执行;如有雨、雪、冰雹天气时,应将上下金属盖盖上,以免损坏仪器,稍大的金属盖在上,以防雨水流入盖内,降水过后要及时开启,降大雨时应另加防雨装置,防止薄膜罩漏水感应面受潮,使记录失真;要注意观测结果的正负值;干燥剂失效要及时更换;注意保持下垫面的自然和完好状态,以免影响数据。
2.3散射辐射仪器的维护每天上、下午各巡视一次,检查遮光环阴影是否完全遮住仪器的感应面与玻璃罩,否则应及时调整;平时要经常保持遮光环部件的清洁和丝杆的转动灵活,发现丝杆有灰尘或转动不灵活时(尤其是风沙过后),要用汽油或酒精将丝杆擦净;长时间不使用遮光环,当圈环颜色(外白内黑)退色或脱落时,应重新上漆。
2.4直接辐射仪器的维护每天开始工作时,应检查进光筒石英玻璃窗是否清洁,如有灰尘、水汽凝结物应及时用软布擦净,切忌划伤。
每天上、下午至少各检查一次仪器跟踪状况并及时调整仰角和时间(对光点),遇到特殊天气要经常检查;如有较大的降水、雷暴等恶劣天气不能观测时,要及时加罩,并关上电源。
为保持光筒中空气干燥,应定期(六个月左右)更换一次干燥剂,更换时旋开光筒尾部的干燥剂筒即可。
辐射仪器的维护是从正确的安装开始的,例如直射表的跟踪精度与仪器的安装是否正确关系极为密切,因此直表安装必须调好纬度角、对正南北向、调水平、对太阳倾角和时间。
此外,为保证仪器精度,每两年校准一次仪器是必要的。
3 结语本文只列出了部分较常见的故障现象及解决办法,但从上述内容可以看出,当辐射仪器出现故障时,只要掌握故障分析的基本原则,按照一定的步骤去排查,凭借台站人员具备的电子基础知识和经验,即能找到并排除故障。
总之,在辐射观测工作中,只要不断总结经验,认真维护和维修,就能减少故障,保证仪器正常运行。
参考文献[1]中国气象局.地面气象观测规范[M].北京:气象出版社,2003.[2]中国气象局.气象辐射观测方法[M].北京:气象出版社,1996.移的基础上考虑380的沉管灌注桩(桩长12m,钢筋笼长8m)的布桩方案,考虑桩对底板的冲切作用,底板取400mm厚,如图2(3)。
3 地下工程抗浮优化设计中应重视的问题地下工程在设计过程中,有些设计人员往往容易忽视一些看起来不显眼的问题,造成工程设计的不安全或者抗浮造价费用昂贵。
地质资料提供的抗浮设计水位和实际建筑的布置有无偏差,和城市洪峰水位是否有对比。
抗浮设计水位是地下工程抗浮设计的基础,一般地质勘探在建筑设计之前完成,而建筑设计会在方案深化过程做一些调整,特别对建筑场地标高的调整,会影响到地下水头相对值的选取,对重要的工程设计,还要考虑自然排水条件是否通畅,是否会出现超越抗浮水位的工况发生。
注意地下工程抗浮设计的一些有利荷载的利用。
和平常建筑结构设计不同,抗浮设计时一般恒荷载为有利荷载,设计过程中应该充分利用这些“有利”荷载,如常见的高层建筑下的地下室,做底板设计时,往往是浮力大于自重,如果适当增加底板的恒载值,使的恒载和浮力的合力与考虑枯水期时(即不考虑浮力)合力比较接近,这样底板的受力峰值就大为降低。
增加底板恒载最常用的方式是结合建筑上排水沟及排水坡度的要求,采用素混凝土或者砂石回填,增加结构底板的自重。
对伸出建筑上部投影范围以外较少的建筑,适当增加外挑,利用土的自重增加抗浮效应。
地下室顶板的覆土荷载选取要注意。
地下建筑的上部,根据地下工程的使用功能不同,往往有不同的构筑物、绿化、道路等,这些物体的自重对抗浮计算是有利荷载,设计人员在抗浮计算过程中一般都按有利荷载考虑了;而一旦这些部分发生变化,原本有安全保障的抗浮设计就变的不安全起来,因此在设计过程,应该充分注意这些“可能变化”的恒载实际加载情况。
比如覆土层内是否会增加市政管沟(往往截面比较大的),覆土及绿化加载的时间、覆土深度变化的可能性等等。
抗浮设计的工况考虑的是否完备。
地下工程一般常和人防工程结合设计,对有无桩来说,地下室底板的人防荷载取值是不同的。
对于超深超大的地下室来说,结构设计不仅要满足建筑完成的情况,还应该考虑在施工过程中停止基坑降水、基坑回填以后等工况,这时上部荷载还为加载,地下工程抗浮能否满足。
如果在优化设计中采取一些必要的方法,如超深地下室采取“逆作法”施工等,降低底板单独承受较大浮力的“机会”,采取预先增加恒载的方案等等,可以有效降低结构构件内力峰值的大小,从而是设计更加经济合理。
抗浮桩的选用。
当结构自重不足以满足抗浮要求时,最有效的方法是设置抗浮桩。
抗浮桩一般采用灌注桩,但随着建筑业的发展,预应力管桩因其施工速度快,质量稳定,越来越多的在工程上取代灌注桩。
当采用预应力管桩作为抗浮桩使用,应注意验算桩接头及桩的端板与桩身连接处强度验算,这是设计人员最容易忽视的问题。