高中数学 第一章 解三角形 1.3 正弦定理、余弦定理的应用学业分层测评 苏教版

合集下载

高中数学必修五 目录

高中数学必修五 目录

第一章解三角形
1.1 正弦定理和余弦定理
1.1.1 正弦定理
1课时
1.1.2 余弦定理
第1课时
1.2 应用举例
第1课时高度、距离
第2课时角度及其他问题
第3课时正余弦定理在几何中的应用章末检测卷第二章数列
2.1 数列的概念与简单表示法
1课时
2.2 等差数列
第1课时等差数列的概念
第2课时等差数列的性质
2.3 等差数列的前n项和
第1课时等差数列前n项和公式
第2课时等差数列习题课
2.4 等比数列
第1课时等比数列的概念
第2课时等比数列的性质
2.5 等比数列的前n项和
第1课时等比数列的前n项和公式
第2课时等差、等比数列综合应用
第3课时数列求和
章末检测卷
第三章不等式
3.1不等关系与不等式
1课时
3.2一元二次不等式及其解法
第1课时一元二次不等式及其解法
第2课时一元二次不等式的应用
3.3二元一次不等式(组与简单的线性规划问题3.3.1 二元一次不等式(组与平面区域
1课时
3.3.2 简单的线性规划问题
第1课时简单的线性规划问题
第2课时简单的线性规划问题的应用3.4基本不等式第1课时基本不等式
第2课时基本不等式的应用
章末检测卷。

高中数学苏教版必修5分层测评:1.3正弦定理、余弦定理的应用(含答案)

高中数学苏教版必修5分层测评:1.3正弦定理、余弦定理的应用(含答案)

学业分层测评(五)(建议用时:45分钟)[学业达标]一、填空题1.在△ABC 中,a =7,b =3,c =8,则其面积等于 . 【解析】 由余弦定理得cos A =b 2+c 2-a 22bc =12,∴sin A =32, ∴S △ABC =12bc sin A =12×3×8×32=6 3.【答案】 6 32.有一长为10 m 的斜坡,它的倾斜角是75°,在不改变坡高和坡顶的前提下,通过加长坡面的方法将它的倾斜角改为30°,则坡底要延伸 m.【解析】 如图,在△ABC 中,由正弦定理可知:x sin 45° =10sin 30°,∴x =102(m).【答案】 10 23.江岸边有一炮台高30 m ,江中有两条船,由炮台顶部测得这两条船的俯角分别为45°和60°,而且这两条船与炮台底部连线成30°角,则这两条船相距 m.【导学号:92862021】【解析】 设炮台顶为A ,底为D (图略),两船分别为B ,C ,由题意知∠BAD =45°,∠CAD =30°,∠BDC =30°,AD =30 m ,∴DB =30 m ,DC =10 3 m ,在△BCD 中,由正弦定理知,BC 2=DB 2+DC 2-2DB ·DC ·cos 30°=300,∴BC =10 3 m , 即这两条船相距10 3 m. 【答案】 10 34.为了测量A ,C 两点间的距离,选取同一平面上B ,D 两点,测出四边形ABCD 各边的长度(单位:km),如图1-3-11所示,且B +D =180°,则AC 的长为 km.图1-3-11【解析】 在△ABC 中,由余弦定理得AC 2=82+52-2×8×5cos B ,在△ACD 中,由余弦定理得AC 2=32+52-2×3×5cos D ,由cos D =-cos B ,并消去AC 2得cos B =12,所以AC=7.【答案】 75.如图1-3-12所示,甲船在A 处观察乙船,乙船在它的北偏东60°的方向,两船相距a 海里,乙船正向北行驶,若甲船是乙船速度的3倍,甲船为了尽快追上乙船,则应取北偏东 (填角度)的方向前进.图1-3-12【解析】 由题意知,AC =3BC ,∠ABC =120°, 由正弦定理知, BC sin ∠CAB =AC sin 120°,∴sin ∠CAB =12,∴∠CAB =30°,∴∠CAD =60°-30°=30°. 【答案】 30°6.若两人用大小相等的力F 提起重为G 的货物,且保持平衡,则两力的夹角θ的余弦为 .【解析】 如图,由平行四边形法则可知,|OA →|=G ,在△AOB 中,由余弦定理可得 |OA →|2=F 2+F 2-2F ·F cos(π-θ). ∵|OA →|=G ,∴2F 2(1+cos θ)=G 2, ∴cos θ=G 2-2F 22F 2.【答案】 G 2-2F 22F 27.如图1-3-13所示,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别是75°,30°,此时气球的高是60 m ,则河流的宽度BC 等于 m.【导学号:92862022】图1-3-13【解析】 由题意可知,AC =60sin 30°=120. ∠BAC =75°-30°=45°,∠ABC =180°-45°-30°=105°,所以sin ∠ABC =sin 105°=sin(60°+45°)=sin 60°cos 45°+cos 60°sin 45°=6+24. 在△ABC 中,由正弦定理得AC sin ∠ABC =BC∠BAC,于是BC =120×222+64=24022+6=120(3-1)(m).【答案】 120(3-1)8.如图1-3-14,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =223,AB =32,AD =3,则BD 的长为 .图1-3-14【解析】 ∵sin ∠BAC =sin(90°+∠BAD ) =cos ∠BAD =223,∴在△ABD 中,有BD 2=AB 2+AD 2-2AB ·AD cos ∠BAD , ∴BD 2=18+9-2×32×3×223=3,∴BD = 3. 【答案】 3二、解答题9.如图1-3-15所示,有两条直线AB 和CD 相交成80°角,交点是O ,甲、乙两人同时从点O 分别沿OA ,OC 方向出发,速度分别是4 km/h ,4.5 km/h,3小时后两人相距多远(精确到0.1 km)?图1-3-15【解】 经过3小时后,甲到达点P ,OP =4×3=12(km),乙到达点Q ,OQ =4.5×3=13.5(km),依余弦定理,知PQ =122+13.52-2×12×13.5cos 80° ≈16.4(km).10.如图1-3-16,在△ABC 中,已知BC =15,AB ∶AC =7∶8,sin B =437,求BC 边上的高AD .图1-3-16【解】 在△ABC 中,由已知设AB =7x ,AC =8x ,由正弦定理,得7x sin C =8xsin B ,∴sin C =78×437=32,∴C =60°(C =120°舍去,否则由8x >7x ,知B 也为钝角,不符合要求).由余弦定理,得(7x )2=(8x )2+152-2×8x ×15cos 60°, ∴x 2-8x +15=0.∴x =3或x =5,∴AB =21或AB =35. 在△ABC 中,AD =AB sin B =437AB ,∴AD =123或AD =20 3.[能力提升]1.如图1-3-17,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,且小区里有一条平行于AO 的小路CD .已知某人从O 沿OD 走到D 用了2 min ,从D 沿着DC 走到C 用了3 min.若此人步行的速度为每分钟50 m ,则该扇形的半径为 m.图1-3-17【解析】 连结OC ,在△OCD 中,OD =100,CD =150,∠CDO =60°,由余弦定理可得OC 2=1002+1502-2×100×150×12=17 500,∴OC =507. 【答案】 5072.如图1-3-18所示,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10 m 到位置D ,测得∠BDC =45°,则塔AB 的高是m.图1-3-18【解析】 在△BCD 中,CD =10,∠BDC =45°,∠BCD =15°+90°=105°,∠DBC =30°,由正弦定理,得BC sin 45°=CD sin 30°,BC =CD sin 45°sin 30°=10 2.在Rt △ABC 中,tan 60°=AB BC ,AB =BC tan 60°=106(m).【答案】 10 63.甲船在岛B 的正南A 处,AB =10千米,甲船以每小时4千米的速度向正北航行,同时,乙船自B 出发以每小时6千米的速度向北偏东60°的方向驶去.当甲、乙两船相距最近时,它们所航行的时间是 小时.【导学号:92862023】【解析】 设行驶x h 后甲到点C ,乙到点D ,两船相距y km(图略),则∠DBC =180°-60°=120°.∴y 2=(10-4x )2+(6x )2-2(10-4x )·6x cos 120°=28x 2-20x +100=28⎝⎛⎭⎫x -5142-257+100, ∴当x =514时,y 2有最小值,即两船相距最近.【答案】5144.如图1-3-19,在△ABC 中,BC 边上的中线AD 长为3,且cos B =108,cos ∠ADC =-14.图1-3-19(1)求sin ∠BAD 的值; (2)求AC 边的长. 【解】 (1)因为cos B =108,所以sin B =368. 又cos ∠ADC =-14,所以sin ∠ADC =154.所以sin ∠BAD =sin(∠ADC -B )=sin ∠ADC cos B -cos ∠ADC sin B =154×108-⎝⎛⎭⎫-14×368=64. (2)在△ABD 中,由正弦定理,得AD sin B =BD sin ∠BAD ,即3368=BD 64,解得BD =2.故DC =2,从而在△ADC 中,由余弦定理,得 AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC=32+22-2×3×2×⎝⎛⎭⎫-14=16,所以AC =4.。

江苏省泰兴市高中数学 第1章 解三角形 1.3 正弦定理、余弦定理的应用(2)教案 苏教版必修5

江苏省泰兴市高中数学 第1章 解三角形 1.3 正弦定理、余弦定理的应用(2)教案 苏教版必修5

1.3 正弦定理、余弦定理的应用(2)教学目标:1. 能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算、最值探求有关的实际问题.2. 能把一些简单的实际问题转化为数学问题,并能应用正弦、余弦定理及相关的三角公式解决这些问题.教学重点:正弦定理、余弦定理等知识和方法在计算、最值探求等方面的应用. 教学难点:正弦定理、余弦定理等知识和方法在计算、最值探求等方面的应用.教学方法:讲练结合.教学过程:一、复习引入 (一) 主要知识: 1. 正弦定理:2sin sin sin a b cR A B C===. 2. 余弦定理:222222222222222222cos ,22cos ,2cos ,cos ,22cos .cos .2b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab ⎧+-=⎪⎧⎪=+-+-⎪⎪=+-⇒=⎨⎨=+-⎪⎪⎩+-⎪=⎪⎩3. 推论:正余弦定理的边角互换功能. ① 2sin a R A =,2sin b R B =,2sin c R C = ②sin 2a A R =,sin 2b B R =,sin 2cC R= ③sin sin sin a b c A B C ===sin sin sin a b cA B C++++=2R④::sin :sin :sin a b c A B C = 4. 三角形中的基本关系式:sin()sin ,cos()cos ,B C A B C A +=+=-sincos ,cos sin 2222B C A B C A++== (二)总结解斜三角形的要求和常用方法:1. 利用正弦定理和三角形内角和定理,可以解决以下两类解斜三角形问题: ①已知两角和任一边,求其他两边和一角;②已知两边和其中一边的对角,求另一边的对角,从而进一步求其他的边和角. 2. 应用余弦定理解以下两类三角形问题: ①已知三边求三内角;②已知两边和它们的夹角,求第三边和其他两个内角. 二、问题情境利用正弦定理、余弦定理解三角形在测量、航海、几何、物理学等方面都有非常广泛的应用,今天我们继续来研究正弦定理、余弦定理等知识和方法在计算、最值探求等方面的应用.如果我们抽去每个应用题中与生产生活实际所联系的外壳,就暴露出解三角形问题的本质,这就要提高分析问题和解决问题的能力及化实际问题为抽象的数学问题的能力.下面,我们将举例来说明解斜三角形在实际中的一些应用.三、数学运用 1.例题.例1. 如图1-3-4,半圆O 的直径为2,A 为直径延长线上的一点,2OA =,B 为半圆上任意一点,以AB 为一边作等边三角形ABC .问:点B 在什么位置时,四边形OACB 面积最大?学生活动:问题1:四边形怎么产生的呢? 生:OA 是定的,B 动面积变.师:是的,四边形的面积由点B 的位置惟一确定,而点B 由AOB ∠惟一确定. 问题2:如何求该四边形的面积?生: AOB ABC S S S ∆∆=+ 师:选什么作为自变量呢?生:四边形OACB 的面积随着()AOB α∠的变化而变化,可设AOB α∠=,再用α的三角函数来表示四边形OACB 的面积.解 设AOB α∠=.在AOB ∆中,由余弦定理,得22212212cos 54cos AB αα=+-⨯⨯=-.于是,四边形OACB 的面积为AOB ABC S S S ∆∆=+21sin 2OA OB AB α=⋅+)121sin 54cos 2αα=⨯⨯⨯-sin αα=2sin 3πα⎛⎫=- ⎪⎝⎭.因为0απ<<,所以当32ππα-=时,56απ=,即56AOB π∠=时, 四边形OACB 的面积最大.小结:将四边形OACB 的面积表示成α的函数,利用三角函数的有界性求出四边形OACB 面积的最大值.另外,在求三角函数最值时,涉及到两角和正弦公式:sin()sin cos cos sin αβαβαβ+=+的构造及逆用,应要求学生予以重视.例2 如图,有两条相交成60角的直线XX '、YY ',交点是O ,甲、乙分别在OX 、OY 上,起初甲离O 点3千米,乙离O 点1千米,后来两人同时用每小时4千米的速度,甲沿XX ' 方向,乙沿Y Y '方向步行,(1)起初两人的距离是多少?(2)用包含t 的式子表示t 小时后两人的距离; (3)什么时候两人的距离最短?解 (1)设甲、乙两人起初的位置是A ,B ,则2222cos60AB OA OB OA OB =+-⋅XX 'YY '∙B QP OA ∙ ∙∙2213123172=+-⨯⨯⨯=,∴AB km .∴ km . 师:如何表示t 小时后两人的距离呢?生:还是用余弦定理,但是要分类讨论,因为夹角发生了改变.(2)设甲、乙两人t 小时后的位置分别是P Q ,,则4AP t =,4BQ t =,当304t ≤≤时,2222(34)(14)2(34)(14)cos 6048247PQ t t t t t t =-++--+=-+;当34t >时,2222(43)(14)2(43)(14)cos12048247PQ t t t t t t =-++--+=-+,所以,PQ =.(3)22214824748()44PQ t t t =-+=-+,∴当14t =时,即在第15分钟末,PQ 最短.答 在第15分钟末,两人的距离最短. 2. 练习:如图,已知A ∠为定角,,P Q 分别在A ∠的两边上,PQ 为定长.当,P Q 位于什么位置时,APQ ∆的面积最大?师:三角形的面积怎么表示?解 设,,,A PQ a AP x AQ y α∠====, 其中,a α为定值, ∴ 1sin 2APQSxy α=师:α为定值,要求面积的最值,就是求xy 的最值,那么x 和y 有什么关系呢?2222cos a x y xy α=+-师:怎样得到xy 的最值呢?2222cos 22cos 2(1cos )a x y xy xy xy xy ααα=+-≥-=-1cos 0,α->∴2,2(1cos )a xy α≤- ∴21sin sin ,24(1cos )APQa Sxy ααα=≤-当且仅当x y =时取等号. ∴ AP AQ =时,APQ ∆的面积最大.小结:本题中用正弦定理表示APQ ∆的面积,然后用余弦定理找到x 和y 的关系式,可见正、余弦定理不仅是解三角形的依据,一般地也是分析几何量之间关系的重要公式,要认识到这两个定理的重要性.另外,本题还要利用基本不等式0,0)a b a b +≥>>.四、回顾小结通过本节学习,要求大家在了解正余弦定理在实际中的应用的同时,掌握由实际问题向数学问题的转化,并提高解三角形问题及实际应用题的能力.。

高中数学 第一章 解三角形课时训练 苏教版必修5

高中数学 第一章 解三角形课时训练 苏教版必修5

第一章 解三角形§1.1 正弦定理和余弦定理1.1.1 正弦定理(一)课时目标1.熟记正弦定理的内容;2.能够初步运用正弦定理解斜三角形.1.在△ABC 中,A +B +C =π,A 2+B 2+C 2=π2.2.在Rt △ABC 中,C =π2,则a c =sin_A ,bc=sin_B .3.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =bsin B =csin C,这个比值是三角形外接圆的直径2R .一、选择题1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ∶B ∶C =1∶2∶3,则 a ∶b ∶c 等于( )A .1∶2∶3B .2∶3∶4C .3∶4∶5D .1∶3∶2 答案 D2.若△ABC 中,a =4,A =45°,B =60°,则边b 的值为( ) A.3+1 B .23+1 C .2 6 D .2+2 3 答案 C 解析 由正弦定理a sin A =bsin B, 得4sin 45°=bsin 60°,∴b =2 6.3.在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( ) A .直角三角形 B .等腰直角三角形 C .等边三角形D .等腰三角形 答案 A解析 sin 2A =sin 2B +sin 2C ⇔(2R )2sin 2A =(2R )2sin 2B +(2R )2sin 2C ,即a 2=b 2+c 2,由勾股定理的逆定理得△ABC 为直角三角形.4.在△ABC 中,若sin A >sin B ,则角A 与角B 的大小关系为( ) A .A >B B .A <BC .A ≥BD .A ,B 的大小关系不能确定 答案 A解析 由sin A >sin B ⇔2R sin A >2R sin B ⇔a >b ⇔A >B .5.在△ABC 中,A =60°,a =3,b =2,则B 等于( ) A .45°或135° B .60° C .45° D .135°答案 C 解析 由a sin A =bsin B得sin B =b sin Aa=2sin 60°3=22. ∵a >b ,∴A >B ,B <60° ∴B =45°.6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,那么角C 等于( )A .120°B .105°C .90°D .75° 答案 A解析 ∵c =3a ,∴sin C =3sin A =3sin(180°-30°-C )=3sin(30°+C )=3⎝ ⎛⎭⎪⎫32sin C +12cos C ,即sin C =-3cos C .∴tan C =- 3.又C ∈(0°,180°),∴C =120°. 二、填空题7.在△ABC 中,AC =6,BC =2,B =60°,则C =_________. 答案 75°解析 由正弦定理得2sin A =6sin 60°,∴sin A =22.∵BC =2<AC =6,∴A 为锐角.∴A =45°.∴C =75°.8.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________.答案102解析 ∵tan A =13,A ∈(0°,180°),∴sin A =1010.由正弦定理知BC sin A =ABsin C , ∴AB =BC sin C sin A =1³sin 150°1010=102. 9.在△ABC 中,b =1,c =3,C =2π3,则a =________.答案 1解析 由正弦定理,得3sin2π3=1sin B , ∴sin B =12.∵C 为钝角,∴B 必为锐角,∴B =π6,∴A =π6.∴a =b =1.10.在△ABC 中,已知a ,b ,c 分别为内角A ,B ,C 的对边,若b =2a ,B =A +60°,则A =______.答案 30°解析 ∵b =2a ∴sin B =2sin A ,又∵B =A +60°, ∴sin(A +60°)=2sin A即sin A cos 60°+cos A sin 60°=2sin A ,化简得:sin A =33cos A ,∴tan A =33,∴A =30°.三、解答题11.在△ABC 中,已知a =22,A =30°,B =45°,解三角形.解 ∵a sin A =b sin B =csin C, ∴b =a sin B sin A =22sin 45°sin 30°=22³2212=4.∵C =180°-(A +B )=180°-(30°+45°)=105°,∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=2+2 3.12.在△ABC 中,已知a =23,b =6,A =30°,解三角形. 解 a =23,b =6,a <b ,A =30°<90°. 又因为b sin A =6sin 30°=3,a >b sin A , 所以本题有两解,由正弦定理得:sin B =b sin A a =6sin 30°23=32,故B =60°或120°.当B =60°时,C =90°,c =a 2+b 2=43;当B =120°时,C =30°,c =a =2 3.所以B =60°,C =90°,c =43或B =120°,C =30°,c =2 3. 能力提升13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 若a =2,b =2,sin B +cos B =2,则角A 的大小为________.答案 π6解析 ∵sin B +cos B =2sin(π4+B )= 2.∴sin(π4+B )=1.又0<B <π,∴B =π4.由正弦定理,得sin A =a sin Bb=2³222=12.又a <b ,∴A <B ,∴A =π6.14.在锐角三角形ABC 中,A =2B ,a ,b ,c 所对的角分别为A ,B ,C ,求ab的取值范围. 解 在锐角三角形ABC 中,A ,B ,C <90°,即⎩⎪⎨⎪⎧B <90°,2B <90°,180°-3B <90°,∴30°<B <45°.由正弦定理知:a b =sin A sin B =sin 2B sin B=2cos B ∈(2,3),故a b的取值范围是(2,3).1.利用正弦定理可以解决两类有关三角形的问题:1.1.1 正弦定理(二)课时目标1.熟记正弦定理的有关变形公式;2.能够运用正弦定理进行简单的推理与证明.1.正弦定理:a sin A =b sin B =csin C=2R 的常见变形:(1)sin A ∶sin B ∶sin C =a ∶b ∶c ;(2)a sin A =b sin B =c sin C =a +b +c sin A +sin B +sin C =2R ; (3)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(4)sin A =a 2R ,sin B =b 2R ,sin C =c2R.2.三角形面积公式:S =12ab sin C =12bc sin A =12ca sin B .一、选择题1.在△ABC 中,sin A =sin B ,则△ABC 是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形 答案 D2.在△ABC 中,若a cos A =b cos B =ccos C,则△ABC 是( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形 答案 B解析 由正弦定理知:sin A cos A =sin B cos B =sin Ccos C,∴tan A =tan B =tan C ,∴A =B =C .3.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝ ⎛⎭⎪⎫152,+∞ B .(10,+∞) C .(0,10) D.⎝⎛⎦⎥⎤0,403答案 D解析 ∵c sin C =a sin A =403,∴c =403sin C .∴0<c ≤403.4.在△ABC 中,a =2b cos C ,则这个三角形一定是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等腰或直角三角形 答案 A解析 由a =2b cos C 得,sin A =2sin B cos C , ∴sin(B +C )=2sin B cos C ,∴sin B cos C +cos B sin C =2sin B cos C , ∴sin(B -C )=0,∴B =C .5.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .6∶5∶4B .7∶5∶3C .3∶5∶7D .4∶5∶6 答案 B解析 ∵(b +c )∶(c +a )∶(a +b )=4∶5∶6, ∴b +c 4=c +a 5=a +b 6.令b +c 4=c +a 5=a +b 6=k (k >0),则⎩⎪⎨⎪⎧b +c =4kc +a =5k a +b =6k,解得⎩⎪⎨⎪⎧a =72kb =52kc =32k.∴sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.6.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为( )A .1B .2 C.12D .4 答案 A解析 设三角形外接圆半径为R ,则由πR 2=π,得R =1,由S △=12ab sin C =abc 4R =abc 4=14,∴abc =1.二、填空题7.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.答案 2 3解析 ∵cos C =13,∴sin C =223,∴12ab sin C =43,∴b =2 3. 8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知A =60°,a =3,b =1,则c =________.答案 2解析 由正弦定理a sin A =b sin B ,得3sin 60°=1sin B,∴sin B =12,故B =30°或150°.由a >b ,得A >B ,∴B =30°,故C =90°, 由勾股定理得c =2.9.在单位圆上有三点A ,B ,C ,设△ABC 三边长分别为a ,b ,c ,则a sin A +b 2sin B +2csin C=________.答案 7解析 ∵△ABC 的外接圆直径为2R =2,∴a sin A =b sin B =csin C =2R =2, ∴a sin A +b 2sin B +2c sin C =2+1+4=7. 10.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________.答案 12 6解析 a +b +c sin A +sin B +sin C =a sin A =6332=12.∵S △ABC =12ab sin C =12³63³12sin C =183,∴sin C =12,∴c sin C =asin A=12,∴c =6.三、解答题11.在△ABC 中,求证:a -c cos B b -c cos A =sin Bsin A.证明 因为在△ABC 中,a sin A =b sin B =csin C=2R ,所以左边=2R sin A -2R sin C cos B2R sin B -2R sin C cos A=sin B +C -sin C cos B sin A +C -sin C cos A =sin B cos C sin A cos C =sin B sin A=右边. 所以等式成立,即a -c cos B b -c cos A =sin Bsin A.12.在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状.解 设三角形外接圆半径为R ,则a 2tan B =b 2tan A ⇔a 2sin B cos B =b 2sin A cos A ⇔4R 2sin 2 A sin B cos B =4R 2sin 2B sin A cos A⇔sin A cos A =sin B cos B ⇔sin 2A =sin 2B⇔2A =2B 或2A +2B =π⇔A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形. 能力提升13.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为( ) A .45° B .60° C .75° D .90° 答案 C解析 设C 为最大角,则A 为最小角,则A +C =120°, ∴sin C sin A =sin ()120°-A sin A=sin 120° cos A -cos 120°sin A sin A=32tan A +12=3+12=32+12, ∴tan A =1,A =45°,C =75°. 14.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S .解 cos B =2cos 2 B 2-1=35, 故B 为锐角,sin B =45.所以sin A =sin(π-B -C )=sin ⎝ ⎛⎭⎪⎫3π4-B =7210.由正弦定理得c =a sin C sin A =107, 所以S △ABC =12ac sin B =12³2³107³45=87.1.在△ABC 中,有以下结论:(1)A +B +C =π;1.1.2 余弦定理(一)课时目标1.熟记余弦定理及其推论;2.能够初步运用余弦定理解斜三角形.1.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=b 2+c 2-2bc cos_A ,b 2=c 2+a 2-2ca cos_B ,c 2=a 2+b 2-2ab cos_C .2.余弦定理的推论cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ca ;cos C =a 2+b 2-c 22ab.3.在△ABC 中:(1)若a 2+b 2-c 2=0,则C =90°;(2)若c 2=a 2+b 2-ab ,则C =60°;(3)若c 2=a 2+b 2+2ab ,则C =135°.一、选择题1.在△ABC 中,已知a =1,b =2,C =60°,则c 等于( ) A. 3 B .3 C. 5 D .5 答案 A2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6 C.π4 D.π12 答案 B解析 ∵a >b >c ,∴C 为最小角,由余弦定理cos C =a 2+b 2-c 22ab=72+432-1322³7³43=32.∴C =π6. 3.在△ABC 中,已知a =2,则b cos C +c cos B 等于( )A .1 B. 2 C .2 D .4 答案 C解析 b cos C +c cos B =b ²a 2+b 2-c 22ab +c ²c 2+a 2-b 22ac =2a 22a=a =2.4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24 D.23 答案 B解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2,b =2a ,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ²2a =34.5.在△ABC 中,sin 2A 2=c -b 2c(a ,b ,c 分别为角A ,B ,C 的对应边),则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰直角三角形D .等腰三角形 答案 B解析 ∵sin 2A 2=1-cos A 2=c -b 2c , ∴cos A =b c =b 2+c 2-a 22bc⇒a 2+b 2=c 2,符合勾股定理.故△ABC 为直角三角形.6.在△ABC 中,已知面积S =14(a 2+b 2-c 2),则角C 的度数为( )A .135°B .45°C .60°D .120° 答案 B解析 ∵S =14(a 2+b 2-c 2)=12ab sin C ,∴a 2+b 2-c 2=2ab sin C ,∴c 2=a 2+b 2-2ab sin C .由余弦定理得:c 2=a 2+b 2-2ab cos C , ∴sin C =cos C , ∴C =45° . 二、填空题7.在△ABC 中,若a 2-b 2-c 2=bc ,则A =________. 答案 120°8.△ABC 中,已知a =2,b =4,C =60°,则A =________. 答案 30°解析 c 2=a 2+b 2-2ab cos C =22+42-2³2³4³cos 60° =12∴c =2 3.由正弦定理:a sin A =c sin C 得sin A =12.∵a <c ,∴A <60°,A =30°.9.三角形三边长为a ,b ,a 2+ab +b 2(a >0,b >0),则最大角为________. 答案 120°解析 易知:a 2+ab +b 2>a ,a 2+ab +b 2>b ,设最大角为θ,则cos θ=a 2+b 2-a 2+ab +b 222ab =-12,∴θ=120°.10.在△ABC 中,BC =1,B =π3,当△ABC 的面积等于3时,tan C =________.答案 -2 3解析 S △ABC =12ac sin B =3,∴c =4.由余弦定理得,b 2=a 2+c 2-2ac cos B =13,∴cos C =a 2+b 2-c 22ab =-113,sin C =1213,∴tan C =-12=-2 3.三、解答题11.在△ABC 中,已知CB =7,AC =8,AB =9,试求AC 边上的中线长.解 由条件知:cos A =AB 2+AC 2-BC 22²AB ²AC =92+82-722³9³8=23,设中线长为x ,由余弦定理知:x 2=⎝ ⎛⎭⎪⎫AC 22+AB 2-2²AC 2²AB cos A =42+92-2³4³9³23=49 ⇒x =7.所以,所求中线长为7.12.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1.(1)求角C 的度数; (2)求AB 的长;(3)求△ABC 的面积.解 (1)cos C =cos[π-(A +B )]=-cos(A +B )=-12,又∵C ∈(0°,180°),∴C =120°.(2)∵a ,b 是方程x 2-23x +2=0的两根,∴⎩⎨⎧a +b =23,ab =2.∴AB 2=b 2+a 2-2ab cos 120°=(a +b )2-ab =10, ∴AB =10.(3)S △ABC =12ab sin C =32.能力提升13.(2010²潍坊一模)在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.答案 3解析 ∵cos C =BC 2+AC 2-AB 22³BC ³AC =22,∴sin C =22. ∴AD =AC ²sin C = 3.14.在△ABC 中,a cos A +b cos B =c cos C ,试判断三角形的形状. 解 由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac,cos C =a 2+b 2-c 22ab,代入已知条件得 a ²b 2+c 2-a 22bc +b ²a 2+c 2-b 22ac +c ²c 2-a 2-b 22ab =0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0,展开整理得(a 2-b 2)2=c 4. ∴a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.1.利用余弦定理可以解决两类有关三角形的问题: (1)已知两边和夹角,解三角形. (2)已知三边求三角形的任意一角. 2.余弦定理与勾股定理余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.1.1.2 余弦定理(二)课时目标1.熟练掌握正弦定理、余弦定理;2.会用正、余弦定理解三角形的有关问题.1.正弦定理及其变形(1)a sin A =b sin B =csin C=2R . (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C .(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R.(4)sin A ∶sin B ∶sin C =a ∶b ∶c . 2.余弦定理及其推论(1)a 2=b 2+c 2-2bc cos_A .(2)cos A =b 2+c 2-a 22bc .(3)在△ABC 中,c 2=a 2+b 2⇔C 为直角;c 2>a 2+b 2⇔C 为钝角;c 2<a 2+b 2⇔C 为锐角. 3.在△ABC 中,边a 、b 、c 所对的角分别为A 、B 、C ,则有:(1)A +B +C =π,A +B 2=π2-C2.(2)sin(A +B )=sin_C ,cos(A +B )=-cos_C ,tan(A +B )=-tan_C .(3)sin A +B 2=cos C 2,cos A +B 2=sin C2.一、选择题1.已知a 、b 、c 为△ABC 的三边长,若满足(a +b -c )(a +b +c )=ab ,则∠C 的大小为( )A .60°B .90°C .120°D .150° 答案 C解析 ∵(a +b -c )(a +b +c )=ab , ∴a 2+b 2-c 2=-ab , 即a 2+b 2-c 22ab =-12,∴cos C =-12,∴∠C =120°.2.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 ( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等边三角形 答案 C解析 ∵2cos B sin A =sin C =sin(A +B ), ∴sin A cos B -cos A sin B =0, 即sin(A -B )=0,∴A =B .3.在△ABC 中,已知sin A ∶sin B ∶sin C =3∶5∶7,则这个三角形的最小外角为 ( )A .30°B .60°C .90°D .120° 答案 B解析 ∵a ∶b ∶c =sin A ∶sin B ∶sin C =3∶5∶7, 不妨设a =3,b =5,c =7,C 为最大内角,则cos C =32+52-722³3³5=-12.∴C =120°.∴最小外角为60°.4.△ABC 的三边分别为a ,b ,c 且满足b 2=ac,2b =a +c ,则此三角形是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等边三角形 答案 D解析 ∵2b =a +c ,∴4b 2=(a +c )2,即(a -c )2=0. ∴a =c .∴2b =a +c =2a .∴b =a ,即a =b =c .5.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若C =120°, c =2a ,则( )A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定 答案 A解析 在△ABC 中,由余弦定理得, c 2=a 2+b 2-2ab cos 120° =a 2+b 2+ab .∵c =2a ,∴2a 2=a 2+b 2+ab . ∴a 2-b 2=ab >0,∴a 2>b 2,∴a >b .6.如果将直角三角形的三边增加同样的长度,则新三角形的形状是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .由增加的长度确定 答案 A解析 设直角三角形三边长为a ,b ,c ,且a 2+b 2=c 2,则(a +x )2+(b +x )2-(c +x )2=a 2+b 2+2x 2+2(a +b )x -c 2-2cx -x 2=2(a +b -c )x +x 2>0,∴c +x 所对的最大角变为锐角. 二、填空题 7.在△ABC 中,边a ,b 的长是方程x 2-5x +2=0的两个根,C =60°,则边c =________. 答案 19解析 由题意:a +b =5,ab =2.由余弦定理得:c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab =52-3³2=19, ∴c =19.8.设2a +1,a,2a -1为钝角三角形的三边,那么a 的取值范围是________. 答案 2<a <8解析 ∵2a -1>0,∴a >12,最大边为2a +1.∵三角形为钝角三角形,∴a 2+(2a -1)2<(2a +1)2, 化简得:0<a <8.又∵a +2a -1>2a +1, ∴a >2,∴2<a <8.9.已知△ABC 的面积为23,BC =5,A =60°,则△ABC 的周长是________. 答案 12解析 S △ABC =12AB ²AC ²sin A=12AB ²AC ²sin 60°=23, ∴AB ²AC =8,BC 2=AB 2+AC 2-2AB ²AC ²cos A=AB 2+AC 2-AB ²AC =(AB +AC )2-3AB ²AC ,∴(AB +AC )2=BC 2+3AB ²AC =49, ∴AB +AC =7,∴△ABC 的周长为12.10.在△ABC 中,A =60°,b =1,S △ABC =3,则△ABC 外接圆的面积是________.答案 13π3解析 S △ABC =12bc sin A =34c =3,∴c =4,由余弦定理:a 2=b 2+c 2-2bc cos A =12+42-2³1³4cos 60°=13, ∴a =13.∴2R =a sin A =1332=2393,∴R =393.∴S 外接圆=πR 2=13π3. 三、解答题11.在△ABC 中,求证:a 2-b 2c 2=sin A -B sin C.证明 右边=sin A cos B -cos A sin B sin C =sin A sin C ²cos B -sin Bsin C²cos A=a c ²a 2+c 2-b 22ac -b c ²b 2+c 2-a 22bc =a 2+c 2-b 22c 2-b 2+c 2-a 22c 2=a 2-b 2c 2=左边. 所以a 2-b 2c 2=sin A -B sin C .12.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边的长,cosB =53, 且²=-21. (1)求△ABC 的面积; (2)若a =7,求角C .解 (1)∵ ²=-21,∴ ²=21. ∴² = ||²||²cosB = accosB = 21.∴ac=35,∵cosB =53,∴ sinB = 54. ∴S △ABC = 21acsinB = 21³35³54= 14.(2)ac =35,a =7,∴c =5.由余弦定理得,b 2=a 2+c 2-2ac cos B =32, ∴b =4 2.由正弦定理:c sin C =bsin B.∴sin C =c b sin B =542³45=22.∵c <b 且B 为锐角,∴C 一定是锐角. ∴C =45°. 能力提升13.已知△ABC 中,AB =1,BC =2,则角C 的取值范围是( )A .0<C ≤π6B .0<C <π2C.π6<C <π2D.π6<C ≤π3 答案 A解析 方法一 (应用正弦定理)∵AB sin C =BC sin A ,∴1sin C =2sin A∴sin C =12sin A ,∵0<sin A ≤1,∴0<sin C ≤12.∵AB <BC ,∴C <A ,∴C 为锐角,∴0<C ≤π6.方法二 (应用数形结合)如图所示,以B 为圆心,以1为半径画圆, 则圆上除了直线BC 上的点外,都可作为A 点.从点C 向圆B 作切线,设切点为A 1和A 2,当A 与A 1、A 2重合时,角C 最大,易知此时:BC =2,AB =1,AC ⊥AB ,∴C =π6,∴0<C ≤π6.14.△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知b 2=ac 且cos B =34.(1)求1tan A +1tan C 的值;(2)设² =23,求a+c 的值. 解 (1)由cos B =34,得sin B =1-⎝ ⎛⎭⎪⎫342=74.由b 2=ac 及正弦定理得sin 2B =sin A sinC .于是1tan A +1tan C =cos A sin A +cos C sin C=sin C cos A +cos C sin A sin A sin C =sin A +C sin 2B =sin B sin 2B =1sin B =477. (2)由BA ² =23得ca ²cosB = 23由cos B =34,可得ca =2,即b 2=2.由余弦定理:b 2=a 2+c 2-2ac ²cos B ,得a 2+c 2=b 2+2ac ²cos B =5,∴(a +c )2=a 2+c 2+2ac=5+4=9,∴a +c =3.§1.2 应用举例(一)课时目标1.了解数学建模的思想;2.利用正、余弦定理解决生产实践中的有关距离的问题.1.基线的定义:在测量上,我们根据测量需要适当确定的线段叫做基线.一般来说,基线越长,测量的精确度越高.2.方位角:指从正北方向线按顺时针方向旋转到目标方向线所成的水平角.如图中的A 点的方位角为α.3.计算不可直接测量的两点间的距离是正弦定理和余弦定理的重要应用之一.一、选择题1.若点P 在点Q 的北偏西45°10′方向上,则点Q 在点P 的( ) A .南偏西45°10′ B .南偏西44°50′ C .南偏东45°10′ D .南偏东44°50′ 答案 C2.已知两灯塔A 和B 与海洋观测站C 的距离都等于a km ,灯塔A 在观测站C 的北偏东20°方向上,灯塔B 在观测站C 的南偏东40°方向上,则灯塔A 与灯塔B 的距离为( )A .a km B.3a km C.2a km D .2a km 答案 B解析 ∠ACB =120°,AC =BC =a , ∴由余弦定理得AB =3a .3.海上有A 、B 两个小岛相距10 n mile ,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是( )A .10 3 n mile B.1063n mileC .5 2 n mileD .5 6 n mile 答案 D解析 在△ABC 中,∠C =180°-60°-75°=45°. 由正弦定理得:BC sin A =ABsin B∴BC sin 60°=10sin 45°解得BC =5 6.4.如图所示,设A 、B 两点在河的两岸,一测量者在A 的同侧,在A 所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算A 、B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 m D.2522m答案 A解析 由题意知∠ABC =30°,由正弦定理AC sin ∠ABC =ABsin ∠ACB,∴AB =AC ²sin∠ACBsin ∠ABC =50³2212=50 2 (m).5.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°,与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟后到达N 处,又测得灯塔在货轮的东北方向,则货轮的速度为( )A .20(6+2) 海里/小时B .20(6-2) 海里/小时C .20(6+3) 海里/小时D .20(6-3) 海里/小时 答案 B解析 由题意,∠SMN =45°,∠SNM =105°,∠NSM =30°. 由正弦定理得MN sin 30°=MSsin 105°.∴MN =MS sin 30°sin 105°=106+24=10(6-2).则v 货=20(6-2) 海里/小时.6.甲船在岛B 的正南A 处,AB =10千米,甲船以每小时4千米的速度向正北航行,同时,乙船自B 出发以每小时6千米的速度向北偏东60°的方向驶去.当甲、乙两船相距最近时,它们所航行的时间是( )A.1507 分钟B.157小时 C .21.5 分钟 D .2.15 分钟 答案 A解析 设行驶x 小时后甲到点C ,乙到点D ,两船相距y km , 则∠DBC =180°-60°=120°. ∴y 2=(10-4x )2+(6x )2-2(10-4x )²6x cos 120°=28x 2-20x +100=28(x 2-57x )+100=28⎝ ⎛⎭⎪⎫x -5142-257+100∴当x =514(小时)=1507(分钟)时,y 2有最小值.∴y 最小. 二、填空题7.如图,A 、B 两点间的距离为________.答案 32- 28.如图,A 、N 两点之间的距离为________.答案 40 39.如图所示,为了测定河的宽度,在一岸边选定两点A 、B ,望对岸标记物C ,测得 ∠CAB =30°,∠CBA =75°,AB =120 m ,则河的宽度为______.答案 60 m解析 在△ABC 中,∠CAB =30°,∠CBA =75°, ∴∠ACB =75°.∠ACB =∠ABC .∴AC =AB =120 m. 作CD ⊥AB ,垂足为D ,则CD 即为河的宽度.由正弦定理得AC sin ∠ADC =CDsin ∠CAD,∴120sin 90°=CD sin 30°, ∴CD =60(m)∴河的宽度为60 m.10.太湖中有一小岛,沿太湖有一条正南方向的公路,一辆汽车测得小岛在公路的南偏西15°的方向上,汽车行驶1 km 后,又测得小岛在南偏西75°的方向上,则小岛到公路的距离是________ km.答案 36解析如图,∠CAB =15°,∠CBA =180°-75°=105°, ∠ACB =180°-105°-15°=60°,AB =1 km. 由正弦定理得BCsin ∠CAB=ABsin ∠ACB∴BC =1sin 60°²sin 15°=6-223 (km).设C 到直线AB 的距离为d ,则d =BC ²sin 75°=6-223²6+24=36 (km).三、解答题11.如图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为12 6 n mile,在A 处看灯塔C 在货轮的北偏西30°,距离为8 3 n mile ,货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120°方向上,求:(1)A 处与D 处的距离; (2)灯塔C 与D 处的距离.解 (1)在△ABD 中,∠ADB =60°,∠B =45°,由正弦定理得AD =AB sin Bsin ∠ADB=126³2232=24(n mile). (2)在△ADC 中,由余弦定理得CD 2=AD 2+AC 2-2AD ²AC ²cos 30°, 解得CD =83≈14(n mile).即A 处与D 处的距离为24 n mile , 灯塔C 与D 处的距离约为14 n mile.12.如图,为测量河对岸A 、B 两点的距离,在河的这边测出CD的长为32km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,求A 、B 两点间的距离.解 在△BDC 中,∠CBD =180°-30°-105°=45°, 由正弦定理得BC sin 30°=CDsin 45°,则BC =CD sin 30°sin 45°=64(km).在△ACD 中,∠CAD =180°-60°-60°=60°,∴△ACD 为正三角形.∴AC =CD =32(km).在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ²BC ²cos 45°=34+616-2³32³64³22=38, ∴AB =64(km). 答 河对岸A 、B 两点间距离为64km. 能力提升 13.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的持续时间为( )A .0.5小时B .1小时C .1.5小时D .2小时 答案 B解析 设t 小时时,B 市恰好处于危险区,则由余弦定理得:(20t )2+402-2³20t ³40²cos 45°=302.化简得:4t 2-82t +7=0,∴t 1+t 2=22,t 1²t 2=74.从而|t 1-t 2|=t 1+t 22-4t 1t 2=1.14.如图所示,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里.问乙船每小时航行多少海里?解 如图所示,连结A 1B 2, 由已知A 2B 2=102,A 1A 2=302³2060=102,∴A 1A 2=A 2B 2,又∠A 1A 2B 2=180°-120°=60°, ∴△A 1A 2B 2是等边三角形, ∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20,∠B 1A 1B 2=105°-60°=45°,在△A 1B 2B 1中,由余弦定理,B 1B 22=A 1B 21+A 1B 22-2A 1B 1²A 1B 2²cos 45°=202+(102)2-2³20³102³22=200.∴B 1B 2=10 2.因此,乙船速度的大小为 10220³60=302(海里/小时). 答 乙船每小时航行302海里.1.解三角形应用问题的基本思路是:实际问题――→画图数学问题――→解三角形数学问题的解――→检验实际问题的解. 2.测量距离问题:这类问题的情境一般属于“测量有障碍物相隔的两点间的距离”.在测量过程中,要根据实际需要选取合适的基线长度,测量工具要有较高的精确度.§1.2 应用举例(二)课时目标1.利用正、余弦定理解决生产实践中的有关高度的问题.2.利用正、余弦定理及三角形面积公式解决三角形中的几何度量问题.1.仰角和俯角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平线上方时叫仰角,目标视线在水平线下方时叫俯角.(如图所示)2.已知△ABC 的两边a 、b 及其夹角C ,则△ABC 的面积为12ab sin C .一、选择题1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α与β的关系为( ) A .α>β B .α=βC .α<βD .α+β=90° 答案 B2.设甲、乙两楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是( )A .20 3 m ,4033 mB .10 3 m,20 3 mC .10(3-2) m,20 3 m D.152 3 m ,2033 m解析 h 甲=20tan 60°=203(m).h 乙=20tan 60°-20tan 30°=4033(m).3.如图,为测一树的高度,在地面上选取A 、B 两点,从A 、B 两点分别测得望树尖的仰角为30°,45°,且A 、B 两点之间的距离为60 m ,则树的高度为( )A .30+30 3 mB .30+153mC .15+303mD .15+33m 答案 A解析 在△PAB 中,由正弦定理可得60sin 45°-30°=PBsin 30°,PB =60³12sin 15°=30sin 15°,h =PB sin 45°=(30+303)m.4.从高出海平面h 米的小岛看正东方向有一只船俯角为30°,看正南方向一只船俯角为45°,则此时两船间的距离为( )A .2h 米 B.2h 米 C.3h 米 D .22h 米答案 A解析 如图所示, BC =3h ,AC =h ,∴AB =3h 2+h 2=2h .5.在某个位置测得某山峰仰角为θ,对着山峰在平行地面上前进600 m 后测仰角为原来的2倍,继续在平行地面上前进200 3 m 后,测得山峰的仰角为原来的4倍,则该山峰的高度是( )A .200 mB .300 mC .400 mD .100 3 m 答案 B解析 如图所示,600²sin 2θ=2003²sin 4θ,∴cos 2θ=32,∴θ=15°, ∴h =2003²sin 4θ=300 (m).6.平行四边形中,AC =65,BD =17,周长为18,则平行四边形面积是( ) A .16 B .17.5 C .18 D .18.53解析 设两邻边AD =b ,AB =a ,∠BAD =α,则a +b =9,a 2+b 2-2ab cos α=17, a 2+b 2-2ab cos(180°-α)=65.解得:a =5,b =4,cos α=35或a =4,b =5,cos α=35,∴S ▱ABCD =ab sin α=16. 二、填空题7.甲船在A 处观察乙船,乙船在它的北偏东60°的方向,两船相距a 海里,乙船正向北行驶,若甲船是乙船速度的3倍,则甲船应取方向__________才能追上乙船;追上时甲船行驶了________海里.答案 北偏东30° 3a 解析如图所示,设到C 点甲船追上乙船, 乙到C 地用的时间为t ,乙船速度为v , 则BC =tv ,AC =3tv ,B =120°, 由正弦定理知BC sin ∠CAB =ACsin B,∴1sin ∠CAB =3sin 120°,∴sin ∠CAB =12,∴∠CAB =30°,∴∠ACB =30°,∴BC =AB =a ,∴AC 2=AB 2+BC 2-2AB ²BC cos 120°=a 2+a 2-2a 2²⎝ ⎛⎭⎪⎫-12=3a 2,∴AC =3a .8.△ABC 中,已知A =60°,AB ∶AC =8∶5,面积为103,则其周长为________. 答案 20解析 设AB =8k ,AC =5k ,k >0,则 S =12AB ²AC ²sin A =103k 2=10 3. ∴k =1,AB =8,AC =5,由余弦定理: BC 2=AB 2+AC 2-2AB ²AC ²cos A=82+52-2³8³5³12=49.∴BC =7,∴周长为:AB +BC +CA =20.9.已知等腰三角形的底边长为6,一腰长为12,则它的内切圆面积为________.答案 27π5解析 不妨设三角形三边为a ,b ,c 且a =6,b =c =12, 由余弦定理得:cos A =b 2+c 2-a 22bc =122+122-622³12³12=78,∴sin A =1-⎝ ⎛⎭⎪⎫782=158.由12(a +b +c )²r =12bc sin A 得r =3155. ∴S 内切圆=πr 2=27π5.10.某舰艇在A 处测得遇险渔船在北偏东45°,距离为10 n mile 的C 处,此时得知,该渔船沿北偏东105°方向,以每小时9 n mile 的速度向一小岛靠近,舰艇时速21 n mile ,则舰艇到达渔船的最短时间是______小时.答案 23解析 设舰艇和渔船在B 处相遇,则在△ABC 中,由已知可得:∠ACB =120°,设舰艇到达渔船的最短时间为t ,则AB =21t ,BC =9t ,AC =10,则(21t )2=(9t )2+100-2³10³9t cos 120°,解得t =23或t =-512(舍).三、解答题11.如图所示,在山顶铁塔上B 处测得地面上一点A 的俯角为α,在塔底C 处测得A 处的俯角为β.已知铁塔BC 部分的高为h ,求山高CD .解 在△ABC 中,∠BCA =90°+β, ∠ABC =90°-α,∠BAC =α-β,∠CAD =β.根据正弦定理得:AC sin ∠ABC =BCsin ∠BAC,即AC sin 90°-α=BCsin α-β,∴AC =BC cos αsin α-β=h cos αsin α-β. 在Rt △ACD 中,CD =AC sin ∠CAD =AC sin β =h cos αsin βsin α-β. 即山高CD 为h cos αsin βsin α-β.12.已知圆内接四边形ABCD 的边长AB =2,BC =6,CD =DA =4,求圆内接四边形ABCD 的面积.解连接BD ,则四边形面积S =S △ABD +S △CBD =12AB ²AD ²sin A +12BC ²CD ²sin C .∵A +C =180°,∴sin A =sin C .∴S =12(AB ²AD +BC ²CD )²sin A =16sin A .由余弦定理:在△ABD 中,BD 2=22+42-2³2³4cos A =20-16cos A ,在△CDB 中,BD 2=42+62-2³4³6cos C =52-48cos C , ∴20-16cos A =52-48cos C .又cos C =-cos A ,∴cos A =-12.∴A =120°.∴四边形ABCD 的面积S =16sin A =8 3. 能力提升13.如图所示,为了解某海域海底构造,在海平面内一条直线上的A 、B 、C 三点进行测量.已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.解 作DM ∥AC 交BE 于N ,交CF 于M .DF =MF 2+DM 2=302+1702=10298(m), DE =DN 2+EN 2=502+1202=130(m),EF =BE -FC 2+BC 2=902+1202=150(m). 在△DEF 中,由余弦定理的变形公式,得cos ∠DEF =DE 2+EF 2-DF 22DE ²EF=1302+1502-102³2982³130³150=1665.即∠DEF 的余弦值为1665.14.江岸边有一炮台高30 m ,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连成30°角,求两条船之间的距离.解 如图所示:∠CBD =30°,∠ADB =30°,∠ACB =45° ∵AB =30, ∴BC =30,BD =30tan 30°=30 3. 在△BCD 中,CD 2=BC 2+BD 2-2BC ²BD ²cos 30°=900, ∴CD =30,即两船相距30 m.1.测量底部不可到达的建筑物的高度问题.由于底部不可到达,这类问题不能直接用解直角三角形的方法解决,但常用正弦定理和余弦定理,计算出建筑物顶部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.2.测量角度就是在三角形内利用正弦定理和余弦定理求角的正弦值或余弦值,再根据需要求出所求的角.第一章 解三角形 复习课课时目标1.掌握正弦定理、余弦定理的内容,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.一、选择题1.在△ABC 中,A =60°,a =43,b =42,则B 等于( ) A .45°或135° B .135°C .45°D .以上答案都不对 答案 C解析 sin B =b ²sin A a =22,且b <a ,∴B =45°.2.在△ABC 中,已知cos A cos B >sin A sin B ,则△ABC 是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 答案 C解析 cos A cos B >sin A sin B ⇔cos(A +B )>0, ∴A +B <90°,∴C >90°,C 为钝角.3.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k ,则k 的取值范围是( ) A .(2,+∞) B .(-∞,0) C.⎝ ⎛⎭⎪⎫-12,0 D.⎝ ⎛⎭⎪⎫12,+∞ 答案 D解析 由正弦定理得:a =mk ,b =m (k +1), c =2mk (m >0), ∵⎩⎪⎨⎪⎧ a +b >c a +c >b 即⎩⎪⎨⎪⎧m 2k +1>2mk 3mk >m k +1,∴k >12.4.如图所示,D 、C 、B 三点在地面同一直线上,DC =a ,从C 、D 两点测得A 点的仰角分别是β、α(β<α).则A 点离地面的高AB 等于( )A.a sin αsin βsin α-β B.a sin αsin βcos α-β C.a sin αcos βsin α-β D.a cos αcos βcos α-β 答案 A解析 设AB =h ,则AD =hsin α,在△ACD 中,∵∠CAD =α-β,∴CD sin α-β=ADsin β.∴a sin α-β=h sin αsin β,∴h =a sin αsin βsin α-β. 5.在△ABC 中,A =60°,AC =16,面积为2203,那么BC 的长度为( ) A .25 B .51 C .49 3 D .49 答案 D解析 S △ABC =12AC ²AB ²sin 60°=12³16³AB ³32=2203,∴AB =55.∴BC 2=AB 2+AC 2-2AB ²AC cos 60°=552+162-2³16³55³12=2 401.∴BC =49.6.(2010²天津)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .若a 2-b 2=3bc ,sin C =23sin B ,则A 等于( )A .30°B .60°C .120°D .150° 答案 A解析 由sin C =23sin B ,根据正弦定理,得 c =23b ,把它代入a 2-b 2=3bc 得 a 2-b =6b 2,即a 2=7b 2.由余弦定理,得cos A =b 2+c 2-a 22bc =b 2+12b 2-7b 22b ²23b=6b243b2=32. 又∵0°<A <180°,∴A =30°. 二、填空题7.三角形两条边长分别为3 cm,5 cm ,其夹角的余弦值是方程5x 2-7x -6=0的根,则此三角形的面积是________cm 2.答案 6解析 由5x 2-7x -6=0,解得x 1=-35,x 2=2.∵x 2=2>1,不合题意.∴设夹角为θ,则cos θ=-35,得sin θ=45,∴S =12³3³5³45=6 (cm 2).8.在△ABC 中,A =60°,b =1,S △ABC =3,则asin A =____________.答案2393 解析 由S =12bc sin A =12³1³c ³32=3,∴c =4.∴a =b 2+c 2-2bc cos A =12+42-2³1³4cos 60°=13.∴a sin A =13sin 60°=2393. 9.在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是 ______________. 答案 2<x <2 2解析 因为三角形有两解,所以a sin B <b <a ,即22x <2<x ,∴2<x <2 2. 10.一艘船以20 km/h 的速度向正北航行,船在A 处看见灯塔B 在船的东北方向,1 h 后船在C 处看见灯塔B 在船的北偏东75°的方向上,这时船与灯塔的距离BC 等于________km.答案 20 2。

高中数学第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理人教A版必修5

高中数学第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理人教A版必修5

∴A=60°,C=180°-(A+B)=75°.
探究 2 已知三边(三边关系)解三角形 例 2 (1)在△ABC 中,若 a=7,b=4 3,c= 13,则 △ABC 的最小角为( )
πππ π A.3 B.6 C.4 D.12 (2)在△ABC 中,角 A,B,C 的对边分别为 a,b,c, 已知 a-b=4,a+c=2b,且最大角为 120°,求此三角形的 最大边长. 答案 (2)见解析
2.做一做
(1)在△ABC 中,角 A,B,C 所对的边分别为 a,b,c, 5π
若 a=1,b= 7,c= 3,则 B=____6____. (2) 已知 △ABC 的 三边 分 别为 2,3,4 , 则此 三 角形是
___钝__角___三角形.
π (3)在△ABC 中,若 a2+b2-c2=ab,则角 C 的大小为 ___3_____.
解析 (1)因为 c<b<a,所以最小角为角 C. 所以 cosC=a2+2ba2b-c2=429×+74×8-4 133= 23, 所以 C=π6,故选 B.
(2)已知 a-b=4,且 a>b,且 a=b+4,又 a+c=2b, 则 b+4+c=2b,所以 b=c+4,则 b>c,从而 a>b>c,所以 a 为最大边,A=120°,b=a-4,c=a-8.
解 利用边的关系判断, 由正弦定理,得sinC=c,
sinB b 由 2cosAsinB=sinC,得 cosA=2ssininCB=2cb, 又 cosA=b2+2cb2c-a2,∴2cb=b2+2cb2c-a2,即 a=b.
又(a+b+c)(a+b-c)=3ab,∴(a+b)2-c2=3ab, ∴b=c, 综上 a=b=c,∴△ABC 为等边三角形.

(新课标)高中数学第1章解三角形1.1正弦定理和余弦定理第1课时正弦定理课时作业新人教B版必修5

(新课标)高中数学第1章解三角形1.1正弦定理和余弦定理第1课时正弦定理课时作业新人教B版必修5

2017春高中数学 第1章 解三角形 1。

1 正弦定理和余弦定理 第1课时 正弦定理 课时作业 新人教B 版必修5基 础 巩 固一、选择题 1.在△ABC 中,AB =3,∠A =45°,∠C =75°,则BC 等于错误!( A )A .3- 3B . 2C .2D .3+错误![解析] 由正弦定理,得错误!=错误!,即错误!=错误!,∴BC =错误!=错误!=3-错误!.2.已知△ABC 的三个内角之比为A ︰B ︰C =3︰2︰1,那么对应的三边之比a ︰b ︰c 等于错误!( D )A .3︰2︰1B .错误!︰2︰1C .错误!︰错误!︰1D .2︰错误!︰1 [解析] ∵⎩⎨⎧ A ︰B ︰C =3︰2︰1A +B +C =180°,∴A =90°,B =60°,C =30°.∴a ︰b ︰c =sin A ︰sin B ︰sin C =1︰错误!︰错误!=2︰错误!︰1。

3.在△ABC 中,a =3,b =5,sin A =错误!,则sin B =错误!( B )A .错误!B .错误!C .错误!D .1 [解析] 由正弦定理,得a sin A =错误!,∴错误!=错误!,即sin B =错误!,选B .4.在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,若错误!=错误!,则角B 的大小为错误!( B )A .错误!B .错误!C.错误!D.错误![解析]由错误!=错误!及错误!=错误!,可得sin B=cos B,又0<B<π,∴B=错误!。

5.在△ABC中,角A、B、C的对边分别为a、b、c,向量m=(3,-1),n=(cos A,sin A),若m⊥n,且a cos B+b cos A=c sin C,则角A、B的大小分别为错误!( C )A.错误!,错误!B.错误!,错误!C.π3,错误!D.错误!,错误![解析]∵m⊥n,∴错误!cos A-sin A=0,∴tan A=错误!,则A=错误!。

高中数学 第一章 解三角形 1.3 正、余弦定理的应用教案2 苏教版必修5(2021年整理)

高中数学 第一章 解三角形 1.3 正、余弦定理的应用教案2 苏教版必修5(2021年整理)

江苏省徐州市高中数学第一章解三角形1.3 正、余弦定理的应用教案2 苏教版必修5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省徐州市高中数学第一章解三角形1.3 正、余弦定理的应用教案2 苏教版必修5)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省徐州市高中数学第一章解三角形1.3 正、余弦定理的应用教案2 苏教版必修5的全部内容。

正、余弦定理的应用教学目标1. 能熟练应用正弦、余弦定理及相关公式解决三角形中的有关问题;2.牢固掌握两个定理,应用自如.教学重难点熟练应用正弦、余弦定理及相关公式解决三角形的有关问题教学参考各省高考题教学与测试授课方法自学引导类比教学辅助手段多媒体专用教室教教学二次备课学过程设计一、自学评价1.(1)正弦定理(2)余弦定理:______________________可变形三、运用正弦定理、余弦定理解决实际问题的基本步骤是:①分析:理解题意,弄清已知与未知,画出示意图(一个或几个三角形);②建模:根据已知条件与求解目标,把已知量与待求量尽可能地集中在有关三角形中,建立一个解斜三角形的数学模型;③求解:利用正弦定理、余弦定理解这些三角形,求得数学模型的解;④检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解。

教教学二次备课学过程设计例题剖析例1。

作用在同一点的三个力123,,F F F平衡。

已知130F N=,250F N=,1F与2F之间的夹角是60,求3F的大小与方向(精确到0.1)。

例2半圆O的直径为2,A为直径延长线上的一点,2OA=,B为半圆上任意一点,以AB为一边作等边三角形ABC。

高中数学苏教版教材目录(必修 选修)

高中数学苏教版教材目录(必修 选修)

苏教版-----------------------------------必修1----------------------------------- 第1章集合1.1集合的含义及其表示1.2子集、全集、补集1.3交集、并集第2章函数2.1函数的概念2.1.1函数的概念和图象2.1.2函数的表示方法2.2函数的简单性质2.2.1函数的单调性2.2.2函数的奇偶性2.3映射的概念第3章指数函数、对数函数和幂函数3.1指数函数3.1.1分数指数幂3.1.2指数函数3.2对数函数3.2.1对数3.2.2对数函数3.3幂函数3.4函数的应用3.4.1函数与方程3.4.2函数模型及其应用-----------------------------------必修2----------------------------------- 第1章立体几何初步1.1空间几何体1.1.1棱柱、棱锥和棱台1.1.2圆柱、圆锥、圆台和球1.1.3中心投影和平行投影1.1.4直观图画法1.2点、线、面之间的位置关系1.2.1平面的基本性质1.2.2空间两条直线的位置关系1.平行直线2.异面直线1.2.3直线与平面的位置关系1.直线与平面平行2.直线与平面垂直1.2.4平面与平面的位置关系1.两平面平行2.平面垂直1.3空间几何体的表面积和体积1.3.1空间几何体的表面积1.3.2空间几何体的体积第2章平面解析几何初步2.1直线与方程2.1.1直线的斜率2.1.2直线的方程1.点斜式2.两点式3.一般式2.1.3两条直线的平行与垂直2.1.4两条直线的交点2.1.5平面上两点间的距离2.1.6点到直线的距离2.2圆与方程2.2.1圆的方程2.2.2直线与圆的位置关系2.2.3圆与圆的位置关系2.3空间直角坐标系2.3.1空间直角坐标系2.3.2空间两点间的距离-----------------------------------必修3----------------------------------- 第1章算法初步1.1算法的意义1.2流程图1.2.1顺序结构1.2.2选择结构1.2.3循环结构1.3基本算法语句1.3.1赋值语句1.3.2输入、输出语句1.3.3条件语句1.3.4循环语句1.4算法案例第2章统计2.1抽样方法2.1.1简单随机抽样1.抽签法2.随机数表法2.1.2系统抽样2.1.3分层抽样2.2总体分布的估计2.2.1频率分布表2.2.2频率分布直方图与折线图2.2.3茎叶图2.3总体特征数的估计2.3.1平均数及其估计2.3.2方差与标准差2.4线性回归方程第3章概率3.1随机事件及其概率3.1.1随机现象3.1.2随机事件的概率3.2古典概型3.3几何概型3.4互斥事件-----------------------------------必修4----------------------------------- 第1章三角函数1.1任意角、弧度1.1.1任意角1.1.2弧度制1.2任意角的三角函数1.2.1任意角的三角函数1.2.2同角三角函数关系1.2.3三角函数的诱导公式1.3三角函数的图象和性质1.3.1三角函数的周期性1.3.2三角函数的图象与性质1.3.3函数y=Asin(ωx+ψ)的图象1.3.4三角函数的应用第2章平面向量2.1向量的概念及表示2.2向量的线性运算2.2.1向量的加法2.2.2向量的减法2.2.3向量的数乘2.3向量的坐标表示2.3.1平面向量基本定理2.3.2平面向量的坐标运算2.4向量的数量积2.5向量的应用第3章三角恒等变换3.1两角和与差的三角函数3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切3.2二倍角的三角函数3.3几个三角恒等式-----------------------------------必修5----------------------------------- 第1章解三角形1.1正弦定理1.2余弦定理1.3正弦定理、余弦定理的应用第2章数列2.1数列2.2等差数列2.2.1等差数列的概念2.2.2等差数列的通项公式2.2.3等差数列的前n项和2.3等比数列2.3.1等比数列的概念2.3.2等比数列的通项公式2.3.3等比数列的前n项和第3章不等式3.1不等关系3.2一元二次不等式3.3二元一次不等式组与简单的线性规划问题3.3.1二元一次不等式表示的平面区域3.3.2二元一次不等式组表示的平面区域 3.3.3简单的线性规划问题3.4基本不等式2b a ab +≤)0,0(≥≥b a 3.4.1基本不等式的证明3.4.2基本不等式的应用-----------------------------------选修1-1-----------------------------------第1章 常用逻辑用语1.1命题及其关系1.1.1四种命题1.1.2充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词1.3.1量词1.3.2含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质 2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质 2.5圆锥曲线的共同性质 第3章 导数及其应用3.1导数的概念3.1.1平均变化率3.1.2瞬时变化率——导数3.2导数的运算3.2.1常见函数的导数3.2.2函数的和、差、积、商的导数 3.3导数在研究函数中的应用3.3.1单调性3.3.2极大值和极小值3.3.3最大值和最小值3.4导数在实际生活中的应用-----------------------------------选修1-2-----------------------------------第1章 统计案例 1.1独立性检验 1.2回归分析第2章 推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.1.3推理案例欣赏 2.2直接证明与间接证明2.2.1直接证明2.2.2间接证明 第3章 数系的扩充与复数的引入 3.1数系的扩充 3.2复数的四则运算 3.3复数的几何意义 第4章 框图 4.1流程图 4.2结构图-----------------------------------选修2-1-----------------------------------第1章 常用逻辑用语1.1命题及其关系1.1.1四种命题1.1.2充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词1.3.1量词1.3.2含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质 2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质 2.5圆锥曲线的统一定义2.6曲线与方程2.6.1曲线与方程2.6.2求曲线的方程2.6.3曲线的交点 第3章 空间向量与立体几何3.1空间向量及其运算3.1.1空间向量及其线性运算3.1.2共面向量定理3.1.3空间向量基本定理3.1.4空间向量的坐标表示3.1.5空间向量的数量积 3.2空间向量的应用3.2.1直线的方向向量与平面的法向量3.2.2空间线面关系的判定3.2.3空间的角的计算-----------------------------------选修2-2-----------------------------------第一章 导数及其应用1.1导数的概念1.1.1平均变化率1.1.2瞬时变化率——导数1.2导数的运算1.2.1常见函数的导数1.2.2函数的和、差、积、商的导数1.2.3简单复合函数的导数1.3导数在研究函数中的应用1.3.1单调性1.3.2极大值和极小值1.3.3最大值和最小值 1.4导数在实际生活中的应用1.5定积分1.5.1曲边梯形的面积1.5.2定积分1.5.3微积分基本定理 第二章 推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.1.3推理案例欣赏 2.2直接证明与间接证明2.2.1直接证明2.2.2间接证明 2.3数学归纳法第三章 数系的扩充与复数的引入 3.1数系的扩充 3.2复数的四则运算 3.3复数的几何意义-----------------------------------选修2-3-----------------------------------第一章 计数原理 1.1两个基本原理 1.2排列 1.3组合1.4计数应用题1.5二项式定理1.5.1二项式定理1.5.2二项式系数的性质及用第二章概率2.1随机变量及其概率分布2.2超几何分布2.3独立性2.3.1条件概率2.3.2事件的独立性2.4二项分布2.5随机变量的均值与方差2.5.1离散型随机变量的均值2.5.2离散型随机变量的方差与标准差2.6正态分布第三章统计案例3.1独立性检验3.2回归分析-----------------------------------选修4-1----------------------------------- 1.1 相似三角形的进一步认识1.1.1平行线分线段成比例定理1.1.2相似三角形1.2 圆的进一步认识1.2.1圆周角定理1.2.2圆的切线1.2.3圆中比例线段1.2.4圆内接四边形1.3 圆锥截线1.3.1球的性质1.3.2圆柱的截线1.3.3圆锥的截线学习总结报告-----------------------------------选修4-2----------------------------------- 2.1 二阶矩阵与平面向量2.1.1矩阵的概念2.1.2二阶矩阵与平面列向量的乘法2.2 几种常见的平面变换2.2.1恒等变换2.2.2伸压变换2.2.3反射变换2.2.4旋转变换2.2.5投影变换2.2.6切变变换2.3 变换的复合与矩阵的乘法2.3.1矩阵乘法的概念2.3.2矩阵乘法的简单性质2.4 逆变换与逆矩阵2.4.1逆矩阵的概念2.4.2二阶矩阵与二元一次方程组2.5 特征值与特征向量2.6 矩阵的简单应用学习总结报告-----------------------------------选修4-4----------------------------------- 4.1 直角坐标系4.1.1直角坐标系4.1.2极坐标系4.1.3球坐标系与柱坐标系4.2 曲线的极坐标方程4.2.1曲线的极坐标方程的意义4.2.2常见曲线的极坐标方程4.3 平面坐标系中几种常见变换4.3.1平面直角坐标系中的平移变换4.3.2平面直角坐标系中的伸缩变换4.4 参数方程4.4.1参数方程的意义4.4.2参数方程与普通方程的互化4.4.3参数方程的应用4.4.4平摆线与圆的渐开线学习总结报告-----------------------------------选修4-5----------------------------------- 5.1 不等式的基本性质5.2 含有绝对值的不等式5.2.1含有绝对值的不等式的解法5.2.2含有绝对值的不等式的证明5.3 不等式的证明5.3.1比较法5.3.2综合法和分析法5.3.3反证法5.3.4放缩法5.4 几个著名的不等式5.4.1柯西不等式5.4.2排序不等式5.4.3算术-几何平均值不等式5.5 运用不等式求最大(小)值5.5.1运用算术-几何平均值不等式求最大(小)值5.5.2运用柯西不等式求最大(小)值5.6 运用数学归纳法证明不等式学习总结报告。

高中数学第一章1.3第一课时正弦定理余弦定理的应用精品课件苏教必修5.ppt

高中数学第一章1.3第一课时正弦定理余弦定理的应用精品课件苏教必修5.ppt

【解】 如图所示,山高为 CD,AB=300 米, ∠ABD=180°-(45°+65°)=70°, 在△ABD 中,AD=AsBinsi4n57°0°, 在△ACD 中,CD=AD·tan30°≈230(米). 即山高约为 230 米.
【点评】 解决上述问题首先要正确画出符合题意的 示意图,然后将问题转化为解三角形的问题,即将实 际问题转化为“数学模型”,这是我们解决这类问题 的关键之所在.
求 B、D 的距离(计算结果精确到 0.01 km, 2≈1.414, 6≈2.449.)
【分析】 根据图中的已知条件求出一些点与点之间 的距离,结合图形和计算出的距离作出判断,然后把B 、D间距离的计算转化为找到的与B、D间距离相等的 另外两点之间的距离. 【解】 在△ACD中,∠DAC=30°,∠ADC=60° -∠DAC=30°, 所 以 CD = AC = 0.1. 又 ∠ BCD = 180° - 60° - 60° = 60°, 故CB是△CAD底边AD的中垂线,所以BD=BA.
所以缉私船沿北偏东 60°方向,需 14.7 分钟才能最快追上
走私船.
规律方法总结
1.解三角形的实质是研究三角形的边角关系,涉及的 知识有三角形边、角、内切圆与外接圆半径、面积, 还经常联系一元二次方程、方程组及最值等. 2.将某些实际问题转化为解三角形问题,是常遇到的 应用问题,解这类问题,关键是如何将实际问题转化 为数学问题,画出示意图,有助于将抽象问题具体化、 形象化.
在△ABC 中,sin∠ABBCA=sin∠ACABC,
即 AB=AsCisni1n56°0°=3
2+ 20
6,
因此,BD=3
2+ 20
6≈0.33 km.
故 B、D 的距离约为 0.33 km.

5.新课程高中数学测试题组(必修5)(教师)

5.新课程高中数学测试题组(必修5)(教师)

必修5第一章 解三角形1.1 正弦定理和余弦定理探究与发现 解三角形的进一步讨论 1.2 应用举例阅读与思考 海伦和秦九韶 1.3 实习作业 第二章 数列2.1 数列的概念与简单表示法 阅读与思考 斐波那契数列阅读与思考 估计根号下2的值 2.2 等差数列2.3 等差数列的前n 项和 2.4 等比数列2.5 等比数列前n 项和 第三章 不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题 3.4 基本不等式第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-sincos ,cos sin ,tan cot 222222A B C A B C A B C+++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B . 5、正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =;②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C++===A +B +A B .6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解)) 7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac+-B =,222cos 2a b c C ab +-=.10、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。

高中数学 第一章 解三角形 1.1 正弦定理和余弦定理 第2课时 余弦定理达标检测(含解析)新人教A

高中数学 第一章 解三角形 1.1 正弦定理和余弦定理 第2课时 余弦定理达标检测(含解析)新人教A

余弦定理A 级 基础巩固一、选择题1.(多选)在△ABC 中,以下结论正确的是() A .若a 2>b 2+c 2,则△ABC 为钝角三角形 B .若a 2=b 2+c 2+bc ,则A 为120° C .若a 2+b 2>c 2,则△ABC 为锐角三角形 D .若A ∶B ∶C =1∶2∶3,则a ∶b ∶c =1∶2∶3解析:对于A 项,由cos A =b 2+c 2-a 22bc<0,可知角A 为钝角,则△ABC 为钝角三角形,故正确.对于B 项,由a 2=b 2+c 2+bc ,结合余弦定理可知cos A =-12,所以A =120°,故正确.对于C 项,由a 2+b 2>c 2,结合余弦定理可知cos C =a 2+b 2-c 22ab>0,只能判断角C 为锐角,不能判断角A ,B 的情况,所以△ABC 不一定为锐角三角形,故错误.对于D 项,由A ∶B ∶C =1∶2∶3可得A =30°,B =60°,C =90°,则a ∶b ∶c =sin 30°∶sin 60°∶sin 90°=12∶32∶1≠1∶2∶3,故错误.答案:AB2.已知锐角三角形的边长分别为1,3,a ,则a 的X 围是() A .(8,10) B .(22,10) C .(22,10) D .(10,8)解析:只需让边长为3和a 的边所对的角均为锐角即可.故⎩⎪⎨⎪⎧1+a 2-322×1×a>0,12+32-a22×1×3>0,1+3>a ,1+a >3,解得22<a <10.答案:B3.若三角形三边长分别为5,7,8,则其最大角和最小角的和为() A .90°B.120°C.135°D.150°解析:中间的角设为θ,则cos θ=52+82-722×5×8=12,因为0°<θ<180°,所以θ=60°, 所以最大角和最小角之和为120°. 答案:B4.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a ,b ,c 满足b 2=ac ,且c =2a ,则cos B 等于()A.14B.34C.24D.23解析:cos B =a 2+c 2-b 22ac =a 2+(2a )2-ac 2a ·2a =5a 2-2a 24a 2=34. 答案:B5.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是() A .等腰直角三角形B .直角三角形 C .等腰三角形D .等边三角形 解析:因为2cos B sin A =sin C ,所以2·a 2+c 2-b 22ac·a =c ,所以a =b ,所以△ABC 为等腰三角形. 答案:C 二、填空题6.在△ABC 中,若a 2+b 2-c 2=ab ,则角C 的大小为________.解析:cos C =a 2+b 2-c 22ab =ab 2ab =12,又C ∈(0,π),所以C =π3.答案:π37.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知b -c =14a ,2sin B =3sin C ,则cos A 的值为________.解析:由正弦定理得到边b ,c 的关系,代入余弦定理的变化求解即可. 由2sin B =3sin C 及正弦定理得2b =3c ,即b =32c .又b -c =14a ,所以12c =14a ,即a =2c .由余弦定理得cos A =b 2+c 2-a 22bc =94c 2+c 2-4c 22×32c 2=-34c23c 2=-14.答案:-148.如图所示,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =223,AB =32,AD =3,则BD 的长为________.解析:因为sin ∠BAC =sin(90°+∠BAD )=cos ∠BAD =223,所以在△ABD 中,有BD 2=AB 2+AD 2-2AB ·AD cos ∠BAD , 所以BD 2=18+9-2×32×3×223=3, 所以BD = 3. 答案: 3 三、解答题9.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin Cc.(1)证明:sin A sin B =sin C ; (2)若b 2+c 2-a 2=65bc ,求tan B .(1)证明:根据正弦定理,可设a sin A =b sin B =csin C =k (k >0).则a =k sin A ,b =k sin B ,c =k sin C . 代入cos Aa+cos B b =sin C c 中,有cos A k sin A +cos B k sin B =sin Ck sin C,变形可得:sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π, 有sin(A +B )=sin(π-C )=sin C , 所以sin A sin B =sin C .(2)解:由已知,b 2+c 2-a 2=65bc ,根据余弦定理,有cos A =b 2+c 2-a 22bc =35.所以sin A =1-cos 2A =45.由(1)可知,sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35sin B ,故tan B =sin B cos B=4.10.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知和正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理,得cos A =b 2+c 2-a 22bc =-bc 2bc =-12.因为0°<A <180°,所以A =120°. (2)由a 2=b 2+c 2+bc ,得sin 2A =sin 2B +sin 2C +sin B sin C .① 由sin B +sin C =1,得sin 2B +sin 2C +2sin B sin C =1.② 由①②及sin A =32,得sin B sin C =14, 所以sin B =sin C =12.因为0°<B <60°,0°<C <60°, 所以B =C ,所以△ABC 是等腰三角形.B 级 能力提升1.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若B =60°,b 2=ac ,则△ABC 的形状是()A .直角三角形B .钝角三角形C .等腰非等边三角形D .等边三角形解析:由余弦定理可得b 2=a 2+c 2-2ac cos 60°=a 2+c 2-ac =ac ,所以(a -c )2=0,所以a =c ,因为B =π3,所以△ABC 的形状是等边三角形.答案:D2.在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.解析:因为cos C =BC 2+AC 2-AB 22×BC ×AC =22,所以sin C =22, 所以AD =AC ·sin C = 3. 答案: 33.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,b =c cos A +a sin C . (1)求角C ;(2)若AC 边上的高为13b ,求cos B .解析:(1)因为b =c cos A +a sin C ,所以由正弦定理得sin B =sin C cos A +sin A sinC ,所以sin(A +C )=sin C cos A +sin A sin C ,即sin A cos C +cos A sin C =sin C cos A +sin A sin C , 即sin A cos C =sin A sin C ,因为sin A ≠0,且cos C ≠0,所以tan C =1,因为C ∈(0,π),所以C =π4.(2)由题意可得13b =a sin π4=22a ,则b =322a .在△ABC 中,由余弦定理可得c 2=a 2+b 2-2ab =a 2+92a 2-3a 2=52a 2,则c =102a .易得cos B =a 2+c 2-b 22ac=a 2+52a 2-92a 22×102a ×a =-1010.。

2024年新高考版数学专题1_5.4 解三角形(分层集训)

2024年新高考版数学专题1_5.4 解三角形(分层集训)

+1=5,c=a+2=6,∴cos A= b2 c2 a2 = 52 62 42 = 3 ,∴sin A= 1 cos2 A= 7 ,
2bc
256 4
4
∴S△ABC= 1 bcsin A= 1 ×5×6× 7 =15 7 .
2
2
44
(2)由已知得c>b>a,若△ABC为钝角三角形,则角C为钝角,∴cos C=
3
1
1
1
2
A. 9 B. 3 C. 2 D. 3
答案 A
3.(2021全国甲文,8,5分)在△ABC中,已知B=120°, AC= 19, AB=2,则BC= () A.1 B. 2 C. 5 D.3 答案 D
4.(2023届湖湘名校教育联合体大联考,14)△ABC的内角A,B,C的对边分别
为a,b,c,已知b-c= 1 a,2sin B=3sin C,则cos A的值为
5.(2020课标Ⅱ文,17,12分)△ABC的内角A,B,C的对边分别为a,b,c,已知
cos2
2
A +cos
A=
5.
4
(1)求A;
(2)若b-c= 3 a,证明:△ABC是直角三角形.
3
解析
(1)由已知得sin2A+cos
A=
5 4
,即cos2A-cos
A+
1=0.所以
4
cos
A
1 2
2=0,
问题:是否存在△ABC,它的内角A,B,C的对边分别为a,b,c,且sin A= 3sinB,
C= ,
?
6
注:如果选择多个条件分别解答,按第一个解答计分.
解析 方案一:选条件①.

高中数学 第一章 解三角形 1.2.1 余弦定理(1)学业分层测评 苏教版必修5

高中数学 第一章 解三角形 1.2.1 余弦定理(1)学业分层测评 苏教版必修5

【课堂新坐标】2016-2017学年高中数学 第一章 解三角形 1.2.1余弦定理(1)学业分层测评 苏教版必修5(建议用时:45分钟)学业达标]一、填空题1.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为________. 【解析】 ∵c <b <a ,∴角C 最小,∵cos C =a 2+b 2-c 22ab=72+32-1322×7×43=32, 又C ∈(0°,180°). ∴C =30°. 【答案】 30°2.在△ABC 中,已知b 2=ac 且c =2a ,则cos B =________.【解析】 ∵b 2=ac ,c =2a ,∴b 2=2a 2,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ·2a =34.【答案】 343.三角形的两边长分别为3 cm,5 cm ,其夹角的余弦是方程5x 2-7x -6=0的根,则此三角形的面积是________cm 2.【解析】 ∵5x 2-7x -6=0的两根为-35,2,设已知两边夹角为C ,则cos C =-35(∵cos C =2>1,舍去).∴sin C =1-cos 2 C =45,∴S △ABC =12×3×5×45=6 cm 2.【答案】 64.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为________. 【解析】 设顶角为C ,∵l =5c ,∴a =b =2c ,由余弦定理,得cos C =a 2+b 2-c 22ab=4c 2+4c 2-c 22×2c ×2c =78. 【答案】 785.边长为5,7,8的三角形的最大角与最小角的和是________. 【解析】 由题可知,边长为7的边所对角为中间角,设为θ,则 cos θ=52+82-722×5×8=12,∴θ=60°,∴最大角+最小角=120°. 【答案】 120°6.在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________.【解析】 由余弦定理知b 2=a 2+c 2-2ac cos B ,∴b 2=22+c 2-2ac ×⎝ ⎛⎭⎪⎫-14,∴b 2=4+(7-b )2+(7-b ),∴b =4. 【答案】 47.在△ABC 中,a =1,b =2,cos C =14,则c =______,sin A =________.【解析】 在△ABC 中,由余弦定理得cos C =a 2+b 2-c 22ab ,把a =1,b =2,cos C =14代入可得c =2.因为cos C =14,所以sin C =1-cos 2C =154.再由正弦定理得a sin A =c sin C ,解得sin A =158.【答案】 21588.(2016·南京高二检测)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sin B ,则角C =________.【导学号:91730011】【解析】 ∵3sin A =5sin B , ∴3a =5b ,又b +c =2a ,∴3c =7b , ∴a ∶b ∶c =5∶3∶7. 设a =5x ,b =3x ,c =7x ,则 cos C =25x 2+9x 2-49x2x x=-12.又C ∈(0,π),∴C =2π3.【答案】2π3二、解答题9.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1.(1)求角C 的大小; (2)求AB 的长.【解】 (1)cos C =cos π-(A +B )] =-cos(A +B )=-12,又∵C ∈(0,π),∴C =2π3.(2)∵a ,b 是方程x 2-23x +2=0的两根, ∴⎩⎨⎧a +b =23,ab =2,∴AB 2=a 2+b 2-2ab cos 120° =(a +b )2-ab =10, ∴AB =10.10.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知c =2,a cos B -b cos A =72.(1)求b cos A 的值;(2)若a =4,求△ABC 的面积.【解】 (1)∵a cos B -b cos A =72,根据余弦定理得,a ·a 2+c 2-b 22ac -b ·b 2+c 2-a 22bc =72,∴2a 2-2b 2=7c ,又∵c =2,∴a 2-b 2=7,∴b cos A =b 2+c 2-a 22c =-34.(2)由a cos B -b cos A =72及b cos A =-34,得a cos B =114.又∵a =4,∴cos B =1116,∴sin B =1-cos 2B =31516,∴S △ABC =12ac sin B =3154.能力提升]1.(2016·无锡高二检测)在△ABC 中,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为________.【解析】 由(a 2+c 2-b 2)tan B =3ac 得a 2+c 2-b 22ac =32×cos B sin B ,即cos B =32×cos Bsin B, ∴sin B =32,又∵B 为△ABC 的内角, ∴B 为π3或2π3.【答案】π3或2π32.在△ABC 中,AB =2,BC =1,cos C =34,则BC →·CA →=________.【解析】 在 △ABC 中,由余弦定理得 |A B →|2=|CA →|2+|CB →|2-2|CA →|·|CB →|cos C ,即2=|CA →|2+1-2|CA →|×34,∴|CA →|2-32|CA →|-1=0,∴|CA →|=2,∴BC →·CA →=|BC →||CA →|cos(180°-C ) =-|BC →||CA →|cos C =-1×2×34=-32.【答案】 -323.若△ABC 是钝角三角形,a =3,b =4,c =x ,则x 的取值范围是________. 【解析】 ∵b >a ,∴A 不可能为钝角. 当B 为钝角时,⎩⎪⎨⎪⎧a +c >b ,b 2>a 2+c 2,即⎩⎪⎨⎪⎧3+x >4,x 2<7,解得1<x <7; 当C 为钝角时,⎩⎪⎨⎪⎧a +b >c ,c 2>a 2+b 2,即⎩⎪⎨⎪⎧3+4>x ,x 2>25,解得5<x <7.综上,x 的取值范围是(1,7)∪(5,7). 【答案】 (1,7)∪(5,7)4.已知四边形ABCD 中,AB =2,BC =CD =4,AD =6,且D =60°,试求四边形ABCD 的面积.【解】 连结AC ,在△ACD 中,由AD =6,CD =4,D =60°,可得AC 2=AD 2+CD 2-2AD ·CD cosD =62+42-2×6×4cos 60°=28,在△ABC 中,由AB =2,BC =4,AC 2=28,可得cos B =AB 2+BC 2-AC 22AB ·BC =22+42-282×2×4=-12.又0°<B <180°,故B =120°.所以四边形ABCD 的面积S =S △ACD +S △ABC=12AD ·CD sin D +12AB ·BC sin B =12×6×4sin 60°+12×2×4sin 120° =8 3.。

高中数学第一章解三角形1.2.2余弦定理(2)学业分层测评苏教版

高中数学第一章解三角形1.2.2余弦定理(2)学业分层测评苏教版

【课堂新坐标】2016-2017学年高中数学第一章解三角形余弦定理(2)学业分层测评苏教版必修5(建议历时:45分钟)学业达标]一、填空题1.在△ABC中,若B=60°,且AB=1,BC=4,则边BC上的中线AD的长为________.【解析】在△ABD中,∠ABD=60°,AB=1,BD=2,由余弦定理得AD2=3,故AD= 3.【答案】 32.如图1­2­3所示,已知两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A 在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为________ km.图1­2­3【解析】∵CA=CB=a,∠ACB=180°-20°-40°=120°,∴AB2=AC2+CB2-2×AC×CB cos ∠ACB,即AB2=a2+a2+a2=3a2,∴AB=3a.【答案】3a3.如图1­2­4所示,某人向正东方向走了x千米,然后向右转120°,再朝新方向走了3千米,结果他离起点恰好13千米,那么x的值是________.图1­2­4【解析】由余弦定理:x2+9-3x=13,整理得x2-3x-4=0,解得x=4或x=-1(舍去).【答案】 44.在钝角△ABC 中,a =1,b =2,则最大边c 的取值范围为________.【解析】 在钝角△ABC 中,由于最大边为c ,所以角C 为钝角.所以c 2>a 2+b 2=1+4=5,即c >5,又因c <a +b =1+2=3,所以5<c <3.【答案】 (5,3)5.若是将直角三角形的三边增加一样的长度,则新三角形的形状是________. 【解析】 设直角三角形三边为a ,b ,c ,且a 2+b 2=c 2,则(a +x )2+(b +x )2-(c +x )2=a 2+b 2+2x 2+2(a +b )x -c 2-2cx -x 2=2(a +b -c )x +x 2>0,∴c +x 所对的最大角变成锐角. 【答案】 锐角三角形6.(2016·南通高二检测)在△ABC 中,角A ,B ,C 所对的边别离为a ,b ,c .若S △ABC =b 2+a 2-c 24,则角C 的大小为________.【导学号:】【解析】 ∵S △ABC =b 2+a 2-c 24,∴12ab sin C =14×2ab cos C , ∴tan C =1,又C ∈(0,π), ∴C =π4.【答案】π47.(2016·扬州高二检测)在△ABC 中,AB =7,BC =5,AC =6,则A B →·B C →等于________.【解析】 由余弦定理得cos B =AB 2+BC 2-AC 22·AB ·BC =72+52-622×7×5=1935.∴AB →·BC →=-BA →·B C →=-|BA →|·|BC →|·cos B =-7×5×1935=-19.【答案】 -198.在△ABC 中,若sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是________. 【解析】 由正弦定理,得a 2≤b 2+c 2-bc , 即b 2+c 2-a 2≥bc , ∴2bc cos A ≥bc , ∴cos A ≥12.又A ∈(0,π)且y =cos x 在(0,π)上是减函数,故A ∈⎝ ⎛⎦⎥⎤0,π3.【答案】 ⎝⎛⎦⎥⎤0,π3二、解答题9.△ABC 的面积是30,内角A ,B ,C 所对边长别离为a ,b ,c ,cos A =1213.(1)求AB →·AC →;(2)若c -b =1,求a 的值. 【解】 由cos A =1213,得sin A =1-⎝ ⎛⎭⎪⎫12132=513. 又12bc sin A =30, ∴bc =156.(1)AB →·AC →=bc cos A =156×1213=144.(2)a 2=b 2+c 2-2bc cos A =(c -b )2+2bc (1-cos A )=1+2×156×⎝ ⎛⎭⎪⎫1-1213=25,∴a=5.10.(2016·苏州高二检测)在△ABC 中,角A ,B ,C 的对边别离为a ,b ,c ,而且a 2=b (b +c ).(1)求证:A =2B .(2)若a =3b ,判断△ABC 的形状. 【解】 (1)证明:由a 2=b (b +c )得a 2=b 2+bc ,又cos B =a 2+c 2-b 22ac =b +c 2a =sin B +sin C2sin A,∴2sin A cos B =sin B +sin C =sin B +sin(A +B ) 即sin B =sin(A -B ), ∴B =A -B 或A -B =π-B , ∴A =2B 或A =π不成立, 故A =2B .(2)∵a =3b ,∴ab= 3. 又由a 2=b (b +c )可得c =2b ,∴cos B =a 2+c 2-b 22ac =3b 2+4b 2-b 243b2=32, 所以B =30°,A =2B =60°,C =90°, ∴△ABC 为直角三角形.能力提升]1.(2015·天津高考)在△ABC 中,内角A ,B ,C 所对的边别离为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为________.【解析】 在△ABC 中,由cos A =-14可得sin A =154,所以有⎩⎪⎨⎪⎧12bc ×154=315,b -c =2,a 2=b 2+c 2-2bc ×⎝ ⎛⎭⎪⎫-14,解得⎩⎪⎨⎪⎧a =8,b =6,c =4.【答案】 82.如图1­2­5,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C =________.图1­2­5【解析】 设AB =a ,则AD =a ,BD =2a 3,BC =2BD =4a 3,cos A =AB 2+AD 2-BD22AB ·AD =2a 2-43a22a 2=13,∴sin A =1-cos 2A =223.由正弦定理知sin C =AB BC ·sin A =34×223=66. 【答案】663.在△ABC 中,若lg a -lg c =lg sin A =-lg 2,而且A 为锐角,则△ABC 为________三角形.【解析】 ∵lg a -lg c =lg sin A =-lg 2, ∴a c =sin A =22. ∵A 为锐角,∴A =45°,∵sin C =c asin A =2×sin 45°=1,∴C =90°.【答案】 直角4.如图1­2­6所示,甲船以30 2 n mile/h 的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于A 1处时,乙船位于甲船的南偏西75°方向的B 1处,此时两船相距20 n mile ,当甲船航行20 min 抵达A 2处时,乙船航行到甲船的南偏西60°方向的B 2处,此时两船相距10 2 n mile.求乙船的航行速度.图1­2­6【解】 如图所示,连结A 1B 2,由已知A 2B 2=102,A 1A 2=302×2060=102,∴A 1A 2=A 2B 2,又∠A 1A 2B 2=180°-120°=60°, ∴△A 1A 2B 2是等边三角形, ∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20,∠B 1A 1B 2=105°-60°=45°,在△A 1B 2B 1中,由余弦定理得,B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45°=202+(102)2-2×20×102×22=200. ∴B 1B 2=10 2.因此,乙船速度的大小为10220×60=302(海里/时).答:乙船每小时航行302海里.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【课堂新坐标】2016-2017学年高中数学 第一章 解三角形 1.3 正弦定理、余弦定理的应用学业分层测评 苏教版必修5(建议用时:45分钟)学业达标]一、填空题1.(2016·镇江高二检测)在△ABC 中,a =7,b =3,c =8,则其面积等于________.【解析】 由余弦定理得cos A =b 2+c 2-a 22bc =12,∴sin A =32, ∴S △ABC =12bc sin A =12×3×8×32=6 3.【答案】 6 32.有一长为10 m 的斜坡,它的倾斜角是75°,在不改变坡高和坡顶的前提下,通过加长坡面的方法将它的倾斜角改为30°,则坡底要延伸________ m.【解析】 如图,在△ABC 中,由正弦定理可知:x sin 45°=10sin 30°,∴x =102(m). 【答案】 10 23.江岸边有一炮台高30 m ,江中有两条船,由炮台顶部测得这两条船的俯角分别为45°和60°,而且这两条船与炮台底部连线成30°角,则这两条船相距________ m.【导学号:91730016】【解析】 设炮台顶为A ,底为D ,两船分别为B ,C ,由题意知∠BAD =45°,∠CAD =30°,∠BDC =30°,AD =30 m , ∴DB =30 m ,DC =10 3 m ,在△BCD 中,由正弦定理知,BC 2=DB 2+DC 2-2DB ·DC ·cos 30°=300, ∴BC =10 3 m , 即这两条船相距10 3 m. 【答案】 10 34.(2016·南京高二检测)为了测量A ,C 两点间的距离,选取同一平面上B ,D 两点,测出四边形ABCD 各边的长度(单位:km),如图1­3­11所示,且B +D =180°,则AC 的长为________ km.图1­3­11【解析】 在△ABC 中,由余弦定理得AC 2=82+52-2×8×5cos B ,在△ACD 中,由余弦定理得AC 2=32+52-2×3×5cos D ,由cos D =-cos B ,并消去AC 2得cos B =12,所以AC =7.【答案】 75.如图1­3­12所示,甲船在A 处观察乙船,乙船在它的北偏东60°的方向,两船相距a 海里,乙船正向北行驶,若甲船是乙船速度的3倍,甲船为了尽快追上乙船,则应取北偏东________(填角度)的方向前进.图1­3­12【解析】 由题意知,AC =3BC ,∠ABC =120°, 由正弦定理知, BCsin ∠CAB =ACsin 120°,∴sin ∠CAB =12,∴∠CAB =30°,∴∠CAD =60°-30°=30°. 【答案】 30°6.若两人用大小相等的力F 提起重为G 的货物,且保持平衡,则两力的夹角θ的余弦为________.【解析】如图,由平行四边形法则可知, |OA →|=G ,在△AOB 中,由余弦定理可得 |OA →|2=F 2+F 2-2F ·F cos(π-θ). ∵|OA →|=G ,∴2F 2(1+cos θ)=G 2,∴cos θ=G 2-2F 22F 2. 【答案】 G 2-2F 22F27.如图1­3­13所示,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别是75°,30°,此时气球的高是60 m ,则河流的宽度BC 等于________ m.图1­3­13【解析】 由题意可知,AC =60sin 30°=120.∠BAC =75°-30°=45°,∠ABC =180°-45°-30°=105°,所以sin ∠ABC =sin 105°=sin(60°+45°)=sin 60°cos 45°+cos 60°sin 45°=6+24. 在△ABC 中,由正弦定理得AC sin ∠ABC =BC∠BAC,于是BC =120×222+64=24022+6=120(3-1)(m).【答案】 120(3-1)8.如图1­3­14,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =223,AB =32,AD =3,则BD 的长为________.图1­3­14【解析】 ∵sin ∠BAC =sin(90°+∠BAD ) =cos ∠BAD =223,∴在△ABD 中,有BD 2=AB 2+AD 2-2AB ·AD cos ∠BAD , ∴BD 2=18+9-2×32×3×223=3,∴BD = 3. 【答案】 3二、解答题9.如图1­3­15所示,有两条直线AB 和CD 相交成80°角,交点是O ,甲、乙两人同时从点O 分别沿OA ,OC 方向出发,速度分别是4 km/h ,4.5 km/h,3小时后两人相距多远(精确到0.1 km)?图1­3­15【解】 经过3小时后,甲到达点P ,OP =4×3=12(km),乙到达点Q ,OQ =4.5×3=13.5(km),依余弦定理,知PQ =122+13.52-2×12×13.5cos 80°≈16.4(km).10.如图1­3­16,在△ABC 中,已知BC =15,AB ∶AC =7∶8,sin B =437,求BC 边上的高AD .图1­3­16【解】 在△ABC 中,由已知设AB =7x ,AC =8x ,由正弦定理,得7x sin C =8xsin B ,∴sin C =78×437=32,∴C =60°(C =120°舍去,否则由8x >7x ,知B 也为钝角,不符合要求).由余弦定理,得(7x )2=(8x )2+152-2×8x ×15cos 60°, ∴x 2-8x +15=0.∴x =3或x =5,∴AB =21或AB =35. 在△ABC 中,AD =AB sin B =437AB , ∴AD =123或AD =20 3.能力提升]1.如图1­3­17,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,且小区里有一条平行于AO 的小路CD .已知某人从O 沿OD 走到D 用了2 min ,从D 沿着DC 走到C 用了3 min.若此人步行的速度为每分钟50 m ,则该扇形的半径为________m.图1­3­17【解析】 连结OC ,在三角形OCD 中,OD =100,CD =150,∠CDO =60°,由余弦定理可得OC 2=1002+1502-2×100×150×12=17 500,∴OC =507. 【答案】 5072.如图1­3­18所示,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10 m 到位置D ,测得∠BDC =45°,则塔AB 的高是________ m.图1­3­18【解析】 在△BCD 中,CD =10,∠BDC =45°,∠BCD =15°+90°=105°,∠DBC =30°,由正弦定理,得BC sin 45°=CD sin 30°,BC =CD sin 45°sin 30°=10 2.在Rt △ABC 中,tan 60°=AB BC,AB =BC tan 60°=106(m).【答案】 10 63.甲船在岛B 的正南A 处,AB =10千米,甲船以每小时4千米的速度向正北航行,同时,乙船自B 出发以每小时6千米的速度向北偏东60°的方向驶去.当甲、乙两船相距最近时,它们所航行的时间是________小时.【导学号:91730017】【解析】 设行驶x h 后甲到点C ,乙到点D ,两船相距y km ,则∠DBC =180°-60°=120°.∴y 2=(10-4x )2+(6x )2-2(10-4x )·6x cos 120°=28x 2-20x +100 =28⎝ ⎛⎭⎪⎫x -5142-257+100,∴当x =514时,y 2有最小值,即两船相距最近.【答案】5144.如图1­3­19,在△ABC 中,BC 边上的中线AD 长为3,且cos B =108,cos ∠ADC =-14.图1­3­19(1)求sin ∠BAD 的值; (2)求AC 边的长. 【解】 (1)因为cos B =108,所以sin B =368. 又cos ∠ADC =-14,所以sin ∠ADC =154.所以sin ∠BAD =sin(∠ADC -B )=sin ∠ADC cos B -cos ∠ADC sin B =154×108-⎝ ⎛⎭⎪⎫-14×368=64. (2)在△ABD 中,由正弦定理,得AD sin B =BD sin ∠BAD ,即3368=BD64,解得BD =2.故DC =2,从而在△ADC 中,由余弦定理,得AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC=32+22-2×3×2×⎝ ⎛⎭⎪⎫-14=16,所以AC =4.。

相关文档
最新文档