华中科技大学综合考试(计算机学院各专业、机械学院各专业)2003年考研真题考研试题硕士研究生入学考试试题
2003考研数一真题及解析
2003年全国硕士研究生入学统一考试数学一试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(1)21ln(1)0lim(cos )x x x +→=(2) 曲面22y x z +=与平面042=-+z y x 平行的切平面的方程是.(3) 设)(cos 02ππ≤≤-=∑∞=x nx ax n n,则2a = .(4) 从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为.(5) 设二维随机变量(,)X Y 的概率密度为,y x x y x f 其他,10,0,6),(≤≤≤⎩⎨⎧=则=≤+}1{Y X P.(6) 已知一批零件的长度X (单位:cm cm)服从正态分布)1,(μN ,从中随机地抽取16个 零件,得到长度的平均值为40 (cm ),则μ的置信度为0.95的置信区间是.(注:标准正态分布函数值.)95.0)645.1(,975.0)96.1(=Φ=Φ二、选择题:本题共6小题,每小题4分,共24分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1) 设函数()f x 在),(+∞-∞内连续,其导函数的图形如图所示, 则()f x 有( )(A)一个极小值点和两个极大值点. (B)两个极小值点和一个极大值点. (C)两个极小值点和两个极大值点. (D)三个极小值点和一个极大值点.(2) 设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有( )(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立. (C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在.(3) 已知函数(,)f x y 在点(0,0)的某个邻域内连续,且1)(),(lim2220,0=+-→→y x xyy x f y x ,则( ) (A) 点(0,0)不是(,)f x y 的极值点. (B) 点(0,0)是(,)f x y 的极大值点. (C) 点(0,0)是(,)f x y 的极小值点.(D) 根据所给条件无法判断点(0,0)是否为(,)f x y 的极值点.(4) 设向量组I:r ααα,,,21 可由向量组II:s βββ,,,21 线性表示,则( )(A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关. (C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关.(5) 设有齐次线性方程组0Ax =和0Bx =, 其中,A B 均为n m ⨯矩阵,现有4个命题:① 若0Ax =的解均是0Bx =的解,则秩(A )≥秩(B ); ② 若秩(A )≥秩(B ),则0Ax =的解均是0Bx =的解; ③ 若0Ax =与0Bx =同解,则秩(A )=秩(B ); ④ 若秩(A )=秩(B ), 则0Ax =与0Bx =同解. 以上命题中正确的是( )(A) ① ②. (B) ① ③.(C) ② ④. (D) ③ ④.(6) 设随机变量21),1)((~X Y n n t X =>,则( ) (A) )(~2n Y χ. (B) )1(~2-n Y χ.(C) )1,(~n F Y . (D) ),1(~n F Y .三 、(本题满分10分)过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D . (1) 求D 的面积A ;(2) 求D 绕直线x e =旋转一周所得旋转体的体积V .四 、(本题满分12分)将函数x x x f 2121arctan )(+-=展开成x 的幂级数,并求级数∑∞=+-012)1(n nn 的和.已知平面区域}0,0),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界. 试证: (1) dx ye dy xe dx ye dy xex Ly x L ysin sin sin sin -=-⎰⎰--;(2).22sin sin π≥--⎰dx ye dy xe x Ly六 、(本题满分10分)某建筑工程打地基时,需用汽锤将桩打进土层. 汽锤每次击打,都将克服土层对桩的阻力而作功. 设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为,0k k >).汽锤第一次击打将桩打进地下a m . 根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数(01)r r <<. 问(1) 汽锤击打桩3次后,可将桩打进地下多深?(2) 若击打次数不限,汽锤至多能将桩打进地下多深? (注:m 表示长度单位米.)七 、(本题满分12分)设函数()y y x =)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是()y y x =的反函数.(1) 试将()x x y =所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为()y y x =满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解.八 、(本题满分12分)设函数()f x 连续且恒大于零,⎰⎰⎰⎰⎰+++=Ω)(22)(222)()()(t D t d y xf dvz y x f t F σ,⎰⎰⎰-+=tt D dxx f d y x f t G 12)(22)()()(σ,其中}),,{()(2222t z y x z y x t ≤++=Ω,}.),{()(222t y x y x t D ≤+=(1) 讨论()F t 在区间),0(+∞内的单调性. (2) 证明当0t >时,).(2)(t G t F π>设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=322232223A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100101010P ,P A P B *1-=,求2B E +的特征值与特征向量,其中*A 为A 的伴随矩阵,E 为3阶单位矩阵.十 、(本题满分8分)已知平面上三条不同直线的方程分别为1:230l ax by c ++=,2:230l bx cy a ++=,3:230l cx ay b ++=.试证: 这三条直线交于一点的充分必要条件为.0=++c b a十一 、(本题满分10分)已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品. 从甲箱中任取3件产品放入乙箱后,求:(1) 乙箱中次品件数X 的数学期望; (2) 从乙箱中任取一件产品是次品的概率.十二 、(本题满分8分)设总体X 的概率密度为⎩⎨⎧≤>=--,,,0,2)()(2θθθx x e x f x其中0>θ是未知参数. 从总体X 中抽取简单随机样本n X X X ,,,21 ,记).,,,min(ˆ21nX X X =θ (1) 求总体X 的分布函数()F x ; (2) 求统计量θˆ的分布函数)(ˆx F θ;(3) 如果用θˆ作为θ的估计量,讨论它是否具有无偏性.2003年全国硕士研究生入学统一考试数学一试题解析一、填空题 (1)【详解】方法1:求()lim ()v x u x 型极限,一般先化为指数形式()()ln ()lim ()lim v x v x u x u x e =然后求lim ()ln ()v x u x ,再回到指数上去.)1ln(12)(cos lim x x x +→=220ln cos ln cos limln(1)ln(1)lim x xxx x x e e→++→=,而2200ln cos ln(1cos 1)limlim ln(1)ln(1)x x x x x x →→+-=++20cos 1lim x x x →-=(等价无穷小替换ln(1)x x +) 220112lim 2x x x →-==-(等价无穷小替换211cos 2x x -) 故 原式=.121ee=-方法2:令21ln(1)(cos )x y x +=,有2ln cos ln ln(1)xy x =+,以下同方法1.(2)【答案】542=-+z y x【详解】由题意,只要满足所求切平面的法向量与已知平面的法向量平行即可.平面042=-+z y x 的法向量:1{2,4,1}n =-;曲面22y x z +=在点),,(000z y x 的法向量:20000{(,),(,),1}x y n z x y z x y =-00{2,2,1}x y =- 由于12//n n ,因此有00221241x y -==- 可解得,2,100==y x ,相应地有.520200=+=y x z所求切平面过点(1,2,5),法向量为:2{2,4,1}n =-,故所求的切平面方程为0)5()2(4)1(2=---+-z y x ,即 542=-+z y x(3)【答案】1【详解】将)()(2ππ≤≤-=x x x f 展开为余弦级数2()cos ()n n f x x a nx x ππ∞===-≤≤∑,其中⎰=ππcos )(2nxdx x f a n .所以 x d x xdx x a 2sin 12cos 2222⎰⎰=⋅=ππππ21[sin2sin22]x xx xdx πππ=-⋅⎰1cos2xd x ππ=⎰001[cos2cos2]x x xdx πππ=-⎰1=(4)【答案】⎪⎪⎭⎫ ⎝⎛--2132【详解】n 维向量空间中,从基n ααα,,,21 到基n βββ,,,21 的过渡矩阵P 满足[n βββ,,,21 ]=[n ααα,,,21 ]P ,因此过渡矩阵P 为:P =[121],,,-n ααα [],,,21n βββ .根据定义,从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为P =[121],-αα[⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=-21111011],121ββ=.213221111011⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-(5)【答案】14. 【分析】本题为已知二维随机变量(,)X Y 的概率密度(,)f x y ,求满足一定条件的概率}),({0z Y X g P ≤.连续型二维随机变量(,)X Y 概率的求解方法(,)(,),y xF x y f u v dudv -∞-∞=⎰⎰此题可转化为二重积分}),({0z Y X g P ≤0(,)(,)g x y z f x y dxdy ≤=⎰⎰进行计算.【详解】图中阴影区域为积分区域. 由题设,有=≤+}1{Y X P 1(,)x y f x y dxdy +≤⎰⎰11206xxdx xdy -=⎰⎰1220(612)x x dx =-⎰14=(6)【答案】)49.40,51.39(. 【分析】可以用两种方法求解:(1) 已知方差12=σ,对正态总体的数学期望μ进行估计. 因为(,1)X N μ,设有n 个样本,样本均值11ni i X X n ==∑,则1(,)XN n μ,将其标准化,由公式~(0,1)X N 得:)1,0(~1N nX μ- 由正态分布分为点的定义αμα-=<-1}1{2u nX P 可确定临界值2αu ,进而确定相应的置信区间22(x u x u αα-+.(2)本题是在单个正态总体方差已知条件下,求期望值μ的置信区间问题.由教材上已经求出的置信区间22(x u x u αα-+,其中2{}1,(0,1)P U u UN αα<=-,可以直接得出答案.【详解】方法1:由题设,95.01=-α,可见.05.0=α 查标准正态分布表知分位点.96.12=αu 本题16n =, 40=x .根据 1.96}0.95P <=,有 1.96}0.95P <=,即{39.5140.49}0.95P μ<<=,故μ的置信度为0.95的置信区间是)49.40,51.39(.方法2:由题设,95.01=-α,22222{}{}2()10.95,()0.975P U u P u U u u u ααααα<=-<<=Φ-=Φ=查得.96.12=αu 将1σ=,16n =, 40=x代入22(x u x u αα-+得置信区间)49.40,51.39(二、选择题(1)【答案】()Cy【分析】函数的极值点可能是驻点(一阶导数为零) 或导数不存在的点,极值点是极大值点还是极小值 点可进一步由取极值的第一或第二充分条件判定. 【详解】根据导函数的图形可知,一阶导数为零的 点有3个(导函数与x 轴交点的个数);0x =是导数 不存在的点.对3个一阶导数为零的点左右两侧导数符号均 不一致,故必为极值点,其中第一个交点左右两侧导数符号由正变为负,是极大值点;第二个交点和第三个交点左右两侧导数符号由负变为正,是极小值点,则三个驻点中有两个极小值点,一个极大值点;对导数不存在的点:0x =.左侧一阶导数为正,右侧一阶导数为负,可见0x =为极大值点.故()f x 共有两个极小值点和两个极大值点,应选(C).(2)【答案】()D 【详解】方法1:推理法由题设lim 1n n b →∞=,假设lim n n n b c →∞存在并记为A ,则lim limn nn n n nb c c A b →∞→∞==,这与lim n n c →∞=∞矛盾,故假设不成立,lim n n n b c →∞不存在. 所以选项()D 正确.方法2:排除法取1n a n =,1n n b n-=,满足0lim =∞→n n a ,1lim =∞→n n b , 而11111,0,a b a b ==>,()A 不正确;取1n n b n-=,2n c n =-,满足1lim =∞→n n b ,∞=∞→n n c lim ,而1101b c =>-=,()B 不正确;取1n a n=,2n c n =-,满足0lim =∞→n n a ,∞=∞→n n c lim ,而lim 1n n n a c →∞=,()C 不正确.(3)【答案】()A 【详解】由2220,0(,)lim1()x y f x y xyx y →→-=+222(,)(1)()f x y xy x y α⇒-=++,其中00lim 0x y α→→=. 由(,)f x y 在点(0,0)连续知,(0,0)0f =.取y x =,x 充分小,0x ≠,有222(,)(1)(2)0f x y x x α=++>; 取y x =-,x 充分小,0x ≠,有222(,)(1)(2)0f x y x x α=-++<故点(0,0)不是(,)f x y 的极值点,应选()A . (极值的定义)(4)【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I:r ααα,,,21 可由向量组II:s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I:r ααα,,,21 可由向量组II:s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C).(5)【答案】(B)【分析】本题可找反例用排除法进行分析,但①、②两个命题的反例比较复杂一些,关键是抓住③、④,迅速排除不正确的选项.【详解】若0AX =与0BX =同解,则它们的解空间中的基础解系所含向量个数相同,即n -秩(A )=n -秩(B ), 得秩(A )=秩(B ),命题③成立,可排除(A), (C);但反过来,若秩(A )=秩(B ),则不能推出0AX =与0BX =同解,通过举一反例证明,若⎥⎦⎤⎢⎣⎡=0001A ,⎥⎦⎤⎢⎣⎡=1000B ,则秩(A )=秩(B )=1,但0AX =与0BX =不同解,可见命题④不成立,排除(D). 故正确选项为(B).(6)【答案】(C).【分析】求解这类问题关键在于了解产生2χ变量、t 变量、F 变量的典型模式.(1)2χ分布:设12,,,n X X X 相互独立且均服从标准正态分布,则随机变量21ni i Z X ==∑服从自由度为n 的2χ分布.记做2().Zn χ(2)t 分布:设1(0,1)X N ,22~()X n χ,且12,X X 相互独立,则随机变量Z =从自由度为n 的t 分布.记做()Zt n(3)F 分布:设2212(),(),Xn Y n χχ且,X Y 相互独立,则随机变量12X n Z Y n =服从F 分布,其第一、二自由度分别为12,.n n 记做12(,).ZF n n【详解】其实,由F 分布的性质以及t 分布和F 分布的关系得,(1) 如果统计量 ()T t n ,则有2(1,)T F n ;(2) 如果统计量12(,)FF n n ,则有211(,)F n n F.由以上两条性质可以直接得出本题的答案为(C).先由t分布的定义知()X t n =,其中)(~),1,0(~2n V N U χ,于是 21XY ==122U n V U n V =,分母中只含有一个标准正态分布的平方,所以)1(~22χU . 由F 分布的定义知~(,1).Y F n故应选(C).三【分析】圆锥体体积公式:213V r h π=⋅;旋转体的体积:(1) 连续曲线()y f x =,直线x a =、x b =所围成的图形绕直线0x x =旋转一周而成的立体的体积[]210()ba V f x x dx π=-⎰(2) 连续曲线()x g x =,直线y c =、y d =所围成的图形绕直线0y y =旋转一周而成的立体的体积[]220()dc V g y y dy π=-⎰【详解】为了求D 的面积,首先要求出切点的坐标,设切点的横坐标为0x ,则曲线ln y x =在点)ln ,(00x x 处的切线方程是:).(1ln 000x x x x y -+= 切线的斜率为01x y x '=,由于该切线过原点,将(0,0)点代入切线方程,得01ln 0=-x ,从而.0e x = 所以该切线的方程为.1x ey =(1) 利用平面图形D 的面积公式()()S y y dy βαϕψ=-⎰,得⎰-=-=1.121)(e dy ey e A y (2) 旋转体体积可用一大立体(圆锥)体积减去一小立体体积进行计算,为了帮助理解,可画一草图.切线x ey 1=与x 轴及直线x e =所围成的三角形绕直线x e =旋转所得的圆锥体积为: 122101().3V e ey dy e ππ=-=⎰曲线ln y x =与x 轴及直线x e =所围成的图形绕直线x e =旋转所得的旋转体体积为:dy e e V y 212)(⎰-=π1220(2)y y e e e e dy π=-⋅+⎰12201(2)2yy e y e e e π=-⋅+211(2)22e e π=-+-因此所求旋转体的体积为).3125(6)(312102221+-=--=-=⎰e e dy e e e V V V y πππ四【分析】幂级数展开有直接法与间接法,一般考查间接法展开,即通过适当的恒等变形、求导或积分等,转化为可利用已知幂级数展开的情形.另外,由于函数展开成的幂级数,经两边求导或积分(其中一边是逐项求导或逐项积分)后,其新的展开式收敛区间不变,但在收敛区间端点处,求导(积分)后的展开式成立与否,要另行单独处理,设已有00()()n n n f x a x x ∞==-∑收敛区间为00(,)x R x R -+. 如果在0x x R =+处级数收敛,并且()f x (左)连续,则展开式成立的范围可扩大到0x x R =+处,在0x x R =-处亦有类似的结论,不过此时()f x (左)连续应改称(右)连续.【详解】本题可先求导,()f x '()2222(12)2(12)1212121212111212x x x x x x x x x '-+---⎛⎫ ⎪++⎝⎭==--⎛⎫⎛⎫++ ⎪ ⎪++⎝⎭⎝⎭基本求导公式 22422(14)14x x --==++21214x=-+ 对于函数2114x+,可以利用我们所熟悉的函数x -11的幂级数展开: 2011(11)1nnn x x x x x x ∞==+++++=-<<-∑所以 2222001(4)(1)414114n n n nn n x x x x ∞∞===-=--<-<+∑∑ (把x 换成24x -) 有 22111()22(1)4,(,).1422n n n n f x x x x ∞='=-=--∈-+∑对上式两边求积分,得200()(0)()2(1)4xxn n n n f x f f t dt t dt ∞=⎛⎫'-==-- ⎪⎝⎭∑⎰⎰221000(1)4112(1)42,(,)2122n n x nnnn n n t dt x x n ∞∞+==-=--=-∈-+∑∑⎰,又因为04f π=(),所以()(0)()xf x f f t dt '=+⎰=).21,21(,124)1(24120-∈+--+∞=∑x x n n n nn π即 21012(1)411arctan 2,(,).1242122n n n n x x x x n π∞+=--=-∈-++∑ (*)在21=x 处,右边级数成为0(1)1212n n n ∞=-⋅+∑,收敛(利用莱布尼茨定理),左边函数()f x 连续,所以成立范围可扩大到21=x 处.而在12x =-处,右边级数虽然收敛,但左边函数()f x 不连续,所以成立范围只能是11(,]22x ∈-.为了求∑∞=+-012)1(n nn ,令21=x 代入(*)得∑∑∞=+∞=+--=⋅+--=012012)1(4]21124)1([24)21(n nn n n n n f ππ,再由0)21(=f ,得.4)21(412)1(0ππ=-=+-∑∞=f n n n五【详解】(1) 方法1:用格林公式证明. 由曲线为正向封闭曲线,自然想到用格林公式L D Q P Pdx Qdy dxdy x y ⎛⎫∂∂+=- ⎪∂∂⎝⎭⎰⎰⎰. 所以 ⎰⎰⎰--+=-D x y x L ydxdy e e dx ye dy xe)(sin sin sin sin所以⎰⎰⎰+=---Dx y x Ly dxdy e e dx ye dy xe )(sin sin sin sin 因为积分区域D 关于y x =对称,所以sin sin sin sin ()()x y yxyx DDeedxdyee dxdy --+=+⎰⎰⎰⎰与互换故dx ye dy xe dx ye dy xe x Ly x Ly sin sin sin sin -=-⎰⎰-- 方法2:化为定积分证明左边sin sin y x LLxe dy ye dx -=-⎰⎰=dx edy exy⎰⎰--0sin 0sin ππππ=⎰-+ππ0sin sin )(dx e e x x右边sin sin y x LLxe dy ye dx -=-⎰⎰=⎰⎰--ππππ00sin sin dx e dy e x y =⎰-+ππ0sin sin )(dx e e x x所以dx ye dy xe dx ye dy xe x Ly x Ly sin sin sin sin -=-⎰⎰--. (2) 方法1:用格林公式证明⎰⎰⎰--+=-Dx y x Ly dxdy e e dx ye dy xe )(sin sin sin sin =dxdy e dxdy eDDx y⎰⎰⎰⎰-+sin sin =dxdy e dxdy e DDx x ⎰⎰⎰⎰-+sin sin 利用轮换对称性=sin sin ()2x x DDe e dxdy dxdy -+≥⎰⎰⎰⎰22π=(因为0,0a b a b +≥>>)方法2:由(1)知,sin sin sin sin 0()2y x x x Lxe dy ye dx e e dx dx ππππ---=+≥⎰⎰⎰22π=六【详解】(1) 建立坐标系,地面作为坐标原点,向下为x 轴正向,设第n 次击打后,桩被打进地下n x ,第n 次击打时,汽锤所作的功为),3,2,1( =n W n .由题设,当桩被打进地下的深度为x 时,土层对桩的阻力的大小为kx ,汽锤所作的功等于克服阻力所做的功.121102x k W kxdx x ==⎰,2122221()2x x k W kxdx x x ==-⎰,3222332()2x x k W kxdx x x ==-⎰,1x a =从而 212332k W W W x ++=又 12rW W =,2321W rW r W ==, 从而222231231(1)(1)22k k x W W W r r W r r a =++=++=++于是 3x =(2) 第n 次击打后,桩被打进地下n x ,第n 次击打时,汽锤所作的功为),3,2,1( =n W n . 则汽锤前n 次所功的和等于克服桩被打进地下n x m 所做的功.11210(1)nx n n kxdx W W W r r W -=+++=+++⎰而 2102a kW kxdx a ==⎰ 牛-莱公式所以212(1)22n n k k x r r a -=+++从而 n x == 等比数列求和公式由于01r <<,所以1lim n n x +→∞.七【详解】 (1) 将题中的dy dx 与22d xdy变换成以x 为自变量y 为因变量的导数dx dy 与22d y dx 来表示(即通常所说的反函数变量变换),有dy dx =y dxdy '=11,)(22dy dx dy d dy x d ==dy dx y dx d ⋅')1(=32)(1y y y y y '''-='⋅'''-. 代入原方程,得 .sin x y y =-'' ( * )(2) 方程( * )所对应的齐次方程为0=-''y y ,特征方程为210r -=,根1,21r =±,因此通解为.21xxe C e C Y -+= 由于i λω+不是特征方程得根,所以设方程( * )的特解为x B x A y sin cos *+=则 *sin cos y A x B x '=-+,*cos sin y A x B x ''=--代入方程( * ),得:cos sin cos sin 2cos 2sin sin A x B x A x B x A x B x x ----=--= 解得21,0-==B A ,故x y sin 21*-=. 从而x y y sin =-''的通解为 .sin 2121*x e C e C y Y y x x -+=+=-由23)0(,0)0(='=y y ,得1,121-==C C .故变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解为.sin 21x e e y x x --=-且()y x 的导函数1()cos 02x x y x e e x -'=+->,满足题设0y '≠条件.八【详解】(1) 首先对()F t 进行化简,三重积分转化为在球面坐标系中的计算;二重积分转化为在极坐标系中的计算.222222220()()()sin 2sin ()t tt f x y z dv d d f r r dr d f r r dr πππθϕϕπϕϕΩ++==⎰⎰⎰⎰⎰⎰⎰⎰()2222002()cos 4()t tf r r dr f r r dr ππϕπ=⋅-=⎰⎰ (球面坐标)222220()()()2()t tD t f x y d d f r rdr f r rdr πσθπ+==⎰⎰⎰⎰⎰ (极坐标)所以222220000222()sin 4()()()2()ttttd d f r r drf r r drF t d f r rdrf r rdrπππθϕϕπθπ==⎰⎰⎰⎰⎰⎰⎰22022()()ttf r r drf r rdr=⎰⎰为了讨论()F t 在区间),0(+∞内的单调性,对()F t 求导:222222022()()()()()2[()]t ttt f t f r rdr f r r dr f t tF t f r rdr ⋅-⋅'=⎰⎰⎰22022()()()2[()]tttf t f r r t r drf r rdr ⋅-=⎰⎰由于()0,0,0f t r t r >>->,所以2()()0f r r t r ->. 再利用定积分的性质:若在区间[,]a b 上()0f x >,则()0baf x dx >⎰. 所以()0F t '>,所以()F t 在区间),0(+∞内严格单调增加.(2) 将待证的不等式作适当的恒等变形后,构造辅助函数,再用单调性进行证明即可. 因为 2220()2()2()tt ttf x dx f x dx f r dr -==⎰⎰⎰,所以2222()0022200()2()()()()2()()ttD t ttttf x y d f r rdr f r rdrG t f x dxf r drf r drσππ-+===⎰⎰⎰⎰⎰⎰⎰要证明0t >时)(2)(t G t F π>,只需证明0t >时,0)(2)(>-t G t F π,即22200222()2()2()()()()t tttf r r drf r rdrF tG t f r rdrf r drπ-=-⎰⎰⎰⎰()()()()()222222202()()()()()tt tttf r r dr f r dr f r rdr f r rdr f r dr⎡⎤⋅-⎢⎥⎣⎦=⋅⎰⎰⎰⎰⎰令 ()()()22222()()()()tt tg t f r r dr f r dr f r rdr =⋅-⎰⎰⎰222222220222()()()()()2()()()()()0t t ttg t f t t f r dr f t f r r dr f t t f r rdrf t f r t r dr t '=+-=->>⎰⎰⎰⎰故()g t 在),0(+∞内单调增加,又因为(0)0g =,所以当0t >时,有()0)0g t g>=(, 从而0t >时,).(2)(t G t F π>九【分析】 法1:可先求出*1,A P -,进而确定P A P B *1-=及2B E +,再按通常方法确定其特征值和特征向量;法2:先求出A 的特征值与特征向量,再相应地确定*A 的特征值与特征向量,最终根据2B E +与*2A E +相似求出其特征值与特征向量. 【详解】方法1:经计算可得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=522252225*A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1000011101P ,所以 P A P B *1-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----322452007,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=+5224720092E B . 令 2900(2)274(9)(3)0225E B E λλλλλλ--+=-=--=-,故2B E +的特征值为.3,9321===λλλ当921==λλ时,解0)9(=-x A E ,得线性无关的特征向量为,0111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=η ,1022⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=η所以属于特征值921==λλ的所有特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+102011212211k k k k ηη,其中21,k k 是不全为零的任意常数.当33=λ时,解0)3(=-x A E ,得线性无关的特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1103η,所以属于特征值33=λ的所有特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110333k k η,其中03≠k 为任意常数. 方法2:设A 的特征值为λ,对应的特征向量为η,即ληη=A .由于07≠=A ,所以.0≠λ所以 ***()()A A A E A A A E A A A E ηηηη=⇒=⇒=***()AA A A A A ληηληηηηλ⇒=⇒=⇒=,于是 11*11()()()AB P P A P P P ηηηλ----==,.)2()2(11ηλη--+=+P AP E B因此,2+λA为2B E +的特征值,对应的特征向量为.1η-P由于)7()1(3222322232--=---------=-λλλλλλA E ,故A 的特征值为1231,7λλλ===当121==λλ时,对应的线性无关特征向量可取为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=0111η, .1012⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=η当73=λ时,对应的一个特征向量为.1113⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=η 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1000011101P,得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-01111ηP ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-11121ηP ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-11031ηP .因此,2B E +的三个特征值分别为9,9,3.对应于特征值9的全部特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+--11101121212111k k P k P k ηη,其中21,k k 是不全为零的任意常数;对应于特征值3的全部特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-1103313k P k η,其中3k 是不为零的任意常数.十【分析】三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为2.【详解】方法1:“必要性”. 设三条直线321,,l l l 交于一点,则线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*) 有唯一解,故系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a c c b b a A 222与增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=b a c a c b c b a A 323232的秩均为2,于是.0=A232()3()23232323a b c a b c b c a c a b A bca b c a c a bc ab -++++-++=-=---123111()236()23a b c b ca abc b ca c abc a b-=++-=-++-1006()6()c b a ba b c b c b a b a b c a c b cc a c b c--=-++--=-++----6()[()()()()]a b c c b b c a b a c =-++-----2226()()a b c bc c b bc a ac ab bc =-++--+-++- 2226()()a b c a b c ac ab bc =++++--- 2223()[()()()]a b c a b b c c a =++-+-+-,由于三条直线互不相同,所以0)()()(222≠-+-+-a c c b b a ,故.0=++c b a“充分性”. 由0=++c b a ,则从必要性的证明可知,0=A ,故秩.3)(<A由于])([2)(22222b b a a b ac cb b a ++-=-==0]43)21[(222≠++-b b a ,故秩()2A =.于是,秩(A )=秩)(A =2.因此方程组(*)有唯一解,即三直线321,,l l l 交于一点.方法2:“必要性”设三直线交于一点),(00y x ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100y x 为0BX =的非零解,其中2323.23a b c B b c a c a b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 所以||0B =.而232323232323a b c a b cB bc a bca A c a bca b-==--=-- 2223()[()()()]a b c a b b c c a =-++-+-+-,(解法同方法1)但根据题设 0)()()(222≠-+-+-a c c b b a ,故.0=++c b a“充分性”:考虑线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*)将方程组(*)的三个方程相加,并由.0=++c b a 可知,方程组(*)等价于方程组⎩⎨⎧-=+-=+.32,32a cy bx c by ax (* *) 因为])([2)(22222b b a a b ac cb ba ++-=-==222[()]0ab a b -+++≠,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线321,,l l l 交于一点.十一【详解】乙箱中可能的次品件数为0,1,2,3,分别求出其概率,再按定义求数学期望即可;而求从乙箱中任取一件产品是次品的概率,涉及到两次试验,是典型的用全概率公式的情形,第一次试验的各种可能结果(取到的次品数)就是要找的完备事件组.(1) 方法1:X 的可能取值为0,1,2,3, 取出k 件次品()0,1,2,3k =的取法有333k kC C -种;样本空间即从两个箱子中取出3件产品的总的取法数为36C .所以有,X 的概率分布为36333}{C C C k X P kk -==, k 0,1,2,3.= 即 X 0 1 2 3 P201 209 209 201 因此,由离散型数学期望的定义{}1()nk k k E X x P X x ==⋅=∑易得 19913()0123.202020202E X =⨯+⨯+⨯+⨯= 方法2:本题对数学期望的计算也可用分解法:设0, ,1,i i X i ⎧=⎨⎩从甲箱中取出的第件产品是合格品从甲箱中取出的第件产品是次品. 则i X 的概率分布为i X 0 1P21 21.3,2,1=i 因为321X X X X ++=,所以由数学期望的线性可加性,有200321 ()()()()1233.2E X E X E X E X =++= (2) 设A 表示事件“从乙箱中任取一件产品是次品”,由于}0{=X ,}1{=X ,}2{=X ,}3{=X 构成完备事件组,因此根据全概率公式,有∑====30}{}{)(k k X A P k X P A P =33001{}{}66k k k P X k k P X k ===⋅=⋅=∑∑ ()1131.6624E X ==⋅=十二【分析】本题表面上是一数理统计问题,实际上考查了求分布函数、随机变量的函数求分布和概率密度以及数学期望的计算等多个知识点.将数理统计的概念与随机变量求分布与数字特征结合起来是一种典型的命题形式.求分布函数()F X 是基本题型:求统计量θˆ的分布函数)(ˆx F θ,可作为多维相互独立且同分布的随机变量函数求分布函数,直接用定义即可;是否具有无偏性,只需检验θθ=ˆE 是否成立.【详解】(1) 由连续型随机变量分布函数的定义,有.,,0,1)()()(2θθθ≤>⎩⎨⎧-==⎰∞---x x e dt t f x F xx (2) 由题给).,,,min(ˆ21nX X X =θ,有 }),,,{min(}ˆ{)(21ˆx X X X P x P x F n≤=≤= θθ 121{min(,,,)}n P X X X x =->121{,,,}n P X x X x X x =->>> 1[1()]n F x =--2(),1,.0,n x x e x θθθ-->⎧-=⎨≤⎩(3) 由连续型随机变量概率密度是分布函数在相应区间上的微分得θˆ概率密度为.,,0,2)()()(2ˆˆθθθθθ≤>⎩⎨⎧==--x x ne dxx dF x f x n 因为 2()ˆˆ()()2n x E xf x dx nxe dx θθθθ+∞+∞---∞==⎰⎰12nθθ=+≠, 所以θˆ作为θ的估计量不具有无偏性.。
华中科技大学机械工程考研复试(含三年回忆版真题)
华中科技大学机械工程考研复试(含三年回忆版真题)计算总成绩时,初试成绩(按“初试成绩/初试满分*100”的方式折算为百分制)占60%,复试成绩占40%。
复试成绩(百分制)等于复试各部分的成绩(百分制)加权总分,其中笔试占40%,英语听说能力测试占20%,面试和实践能力占40%。
考试时长:15分钟(听力测试)+ 10-15分钟(英语面试)考试形式:听力测试以选择题形式进行,英语面试有两部分,第一部分是做一段自我介绍,第二部分一般是阅读一篇文章,然后根据所读的内容回答老师的问题。
考察内容:听力测试四六级难度,英语面试没有范围,主要考察口语能力以及临场发挥能力。
备考建议:近五年四级听力多做训练,去年的听力好像就是14年的六级考试听力。
英语面试中自我介绍部分老师可能会根据你的介绍内容询问一些比较简单的问题,比如你喜欢什么,平时一般会做什么,当然也可能什么都不问,直接让你进行第二部分,去年就没有自我介绍后问问题环节,为保险起见还是准备一下要回答的内容。
自己在做自我介绍时要考虑老师会怎么问,不要说一些与自我介绍无关的东西,也最好别介绍太复杂的东西,免得老师听不懂你在介绍什么,或者你不知道怎么回答老师的问题。
第二部分一般是让你抽一张纸条,阅读纸条上一篇英文,长度大约跟一篇阅读理解差不多,事前都无法知道会是什么内容,一般比较简单易懂,之后老师根据你抽的纸条问相关问题,这个无法前期准备,关键还是要锻炼一下自己的口语能力,保持自信,即使说错了也不用太担心,保持自信就好。
笔试一共40分。
剩下40分面试和20分英语。
机械专硕学硕一份卷。
工业工程的不知道,卷应该不同。
主要内容是机械设计,机械原理,机械制造基础,创新设计。
2017真题回忆版1.插齿和滚齿的区别2.细长轴为什么车一刀后会松下顶尖,再车下一刀3.自由度计算4.皮带传动特点,和设计两个张紧机构55.3d打印机构的机构特点和原理,以及优缺点6.设计类似鸟拍打翅膀的机构7.方形轮自行车8.有一天夜里有5个人,要过一座桥,5个人只有一盏灯,只能维持30min这座桥每次只能过两个人,这些人单独过桥的话,第一个人需要1分钟,第二个人需要3分钟,第三个人需要6分钟,第四个人需要8分钟.第五人需要12分钟,请问这些人全部过桥最快过桥需要几分钟?9.设计一个不停车可以上下车的高铁祝大家的努力都有回报真题回忆版三大题,第一道简答5小题,20分。
华中科技大学考研真题—政治经济学(工商管理专业)2003(2003有答案)
华中科技大学二00三年招收硕士研究生入学考试试题考试科目:政治适用专业:工商管理论述题:每题20分1.价值规律的涵义是什么?其发生作用的形式是什么样的?2.为什么说实践是认识的基础?3.到2010年,我国国有企业改革和发展的主要目标与指导方针是什么?4.论述“三个代表”的涵义,贯彻“三个代表”重要思想要坚持哪“四个必须”?5.十六大报告阐述共产党领导人民建设中国特色社会主义必须坚持的基本经验是什么?答案部分华中科技大学二00三年招收硕士研究生入学考试试题论述题:每题20分1.价值规律的涵义是什么?其发生作用的形式是什么样的?答:(1)价值规律的涵义在商品经济中存在着许多起作用的经济规律,但支配这些规律、支配商品生产和交换全过程的是价值规律。
哪里存在着商品生产和商品交换,哪里就会有价值规律在起作用。
价值规律是商品经济的基本规律。
价值规律包括两重不可分割的含义:商品的价值量由生产该商品的社会必要劳动时间决定;商品的交换以商品的价值量为基础,实行等价交换。
(2)价值规律发生作用的形式市场机制和价值规律之间有着密切的关系。
价值规律是市场机制发挥其功能的基础,市场机制是价值规律得以贯彻的形式。
在现实经济生活中,价值规律正是通过市场机制来发挥作用的。
①价值规律通过市场机制,自发地调节着社会劳动在各个生产部门的分配。
在私有制条件下,商品生产者根据自己的判断,独立地进行生产经营,他们只有把生产的商品拿到市场上进行交换,发生社会接触时,通过市场价格这个“晴雨表”才知道社会需要什么,需要多少。
商品的市场价格不仅传递、反馈经济信息,而且直接关系到每个商品生产者的切身物质利益。
因此,商品生产者都十分关注市场价格的变化。
当某种商品供不应求、价格上涨时,生产者会从这种高价格上得到更多的好处,这会促使更多的商品生产者来生产经营这类商品。
相反,当某种商品供过于求,价格跌落时,又会迫使商品生产者压缩原有的生产规模,乃至放弃这种商品的生产和经营。
华中科技大学2003年考研试卷
1 (15分)图1所示电路为某无限长电路中的一部分,求图中电压U 。
2 (15分)试求图2所示电路中各受控源的功率。
3 (20分)在图3(a )所示电路中N R 为线性无源电阻性网络。
若在11'-端口加电压源s U ,11'-端口电流为1I 。
如果22'-端口开路,如图(b )所示,其开路电压为20U
,22'-端口看入的戴维南等效电阻为R 。
在22'-端口开路时,如果要保持电压源s U 中的电流仍为1I ,如图(c ),则s U 上并联电阻x R 为多少。
s
U 2R U
U
4 (20分)在图示工频(50Hz f =)正弦稳态电路中,已知功率表的读数为100W ,电压表V 的读数为100V ,电流表1A 和2A 的读数相等,电压表2V 的读数是1V 的读数的一半。
求参数R 、L 和
C 。
5 (20分)
6 (15分)
7 (15分)
8 (15分)
9 (15分)
1 1V U =-
()2
220s x U R R R U ⎛⎫
=+ ⎪⎝⎭。
华中科技大学机械原理试题(有答案)和模拟试题
2005年机械大类机械原理考试试题专业___班号___姓名______一、(共18分)是非判断题(对的填T,错的填F)每小题一分1.平面运动副按其接触特性,可分成转动副与高副;( F )。
2 平面四杆机构中,是否存在死点,取决于机架是否与连杆共线。
(F)3 一个K大于1的铰链四杆机构与K=1的对心曲柄滑块机构串联组合,该串联组合而成的机构的行程变化系数K大于1。
(T)4.与其他机构相比,凸轮机构最大的优点是可实现各种预期的运动规律。
(T)5.渐开线直齿圆柱齿轮传动的重合度是实际啮合线段与齿距的比值。
(F) 6.渐开线直齿圆柱齿轮与齿条啮合时,其啮合角恒等于齿顶圆上的压力角。
(F)7.斜齿圆柱齿轮的标准模数和标准压力角在法面上。
(T8、曲柄滑块机构中,当曲柄与机架处于两次互相垂直位置之一时,出现最小传动角。
(T)9.平底垂直于导路的直动推杆盘形凸轮机构中,其压力角等于零。
(T) 10.一对渐开线圆柱齿轮传动,其分度圆总是相切并作纯滚动,(F11.一对平行轴外啮合斜齿圆柱齿轮传动的正确啮合条件为摸数、压力角、螺旋角大小相等。
(F)12 机械零件和机构是组成机械系统的基本要素。
(F)13机电一体化系统由动力系统、传感系统、控制系统三个要素组成。
(F)14 机械设计有开发性设计、适应性设计、变型设计三类不同的设计。
(T)15 运动系数 反映了在一个运动循环中,槽轮的运动时间在一个间歇周期中所占的比例。
(T)16在齿轮运转时,其中至少有一个齿轮的几何轴线绕另一齿轮的几何轴线运动的齿轮系称为复合齿轮系。
(F)17采用不同的功能原理,能实现机器的同一使用要求或工艺要求。
(T)18表达机械各执行机构(构件)在一个运动环中各动作的协调配合关系的简单明确图,称为机械运动循环图。
(T)二、(6分)试计算下列运动链的自由度数.(若有复合铰链,局部自由度或虚约束,必须明确指出),打箭头的为原动件,判断该运动链是否成为机构.解: n=6; p5=8, p4=1; F=1,(3分)H 处虚约束;D 处局部自由度。
华中科技大学硕士研究生入学考试试题(含答案)(1)
= e 2t ε (−t ) + e−2t ε (t ) ← → e2t ε (−t ) ← →
注
意是双边拉氏变换
−1 , Re[ s ] < 2 s−2
U R ( s) = X ( s) H (s ) = −1 < Re[ s ] < 2
−4 1 1 1 4 1 1 × =− × + × − ( s − 2)( s + 2) s + 1 3 s − 2 3 s +1 s + 2 1 4 u R (t ) = e 2t ε (−t ) + e −t ε (t ) − e −2t ε (t ) 3 3
−s −2 s 1 2 −t −2 t 1 2 zi1 −t −2 t 1 2 zi 2 −t 1 2 1 2 zs −t 1 2 1 zi1 zi 2 zs −t zs zi1 zi 2
= (2 + e − t )ε (t ) − (e− t + e−2t )ε (t ) − (e − t − e−2t )ε (t ) = (2 − e − t )ε (t )
()
1 ( z ) − z −1Yzs ( z ) = X ( z ) 3 z 1 zs h ( n) = ( ) n ε ( n) 1 3 1 + z −1 z − 3 3 Y ( z) z 1 2 Yzs ( z ) = X ( z ) H ( z ) X ( z ) = zs = x ( n) = ( ) n ε ( n) 1 H ( z) z − 2 2
其中
t e2τ e − (t −τ ) dτ , t < 0 1 1 ∫−∞ e2t ε (−t ) ∗ [e− t ε (t )] = 0 = e 2 t ε ( − t ) + e − t ε (t ) 3 ∫ e 2τ e − (t −τ ) dτ , t > 0 3 −∞
2010-2017华中科技大学各专业考研真题答案解析
2010-2017华中科技大学各专业考研真题答案解析
2018考研已开始准备,且专业课占分值最大,为方便华中科技大学考研学子更好地复习,聚英考研网特意为大家分享华中科技大学各学院的专业考研真题等资料,希望更多考生能够在专业课上赢得高分,升入理想的院校。
2010-2017华中科技大学各专业考研真题解析整理入《华中科技大学考研专业复习全书》等一系列丛书,该全书含该专业的考研知识重难点、考研历年真题,为考生节省大量宝贵的复习时间,是考生从基础到冲刺阶段必备的考研资料。
聚英考研网根据华中科技大学的每一年考试范围进行更新完善,年年相伴考研。
详情复制以下链接查找该专业课的考研资料和真题。
2018华中科技大学各专业考研资料:/ziliao/all-hust-0
2010-17华科真题下载:/down/all/hust-0?down_type=lnzt 部分真题展示如下:
以上内容由聚英考研网整理发布,此外我们会为广大考生持续更新最新的考研报考信息及考研辅导班!我们还提供更多关于华中科技大学考研最新研讯、考研经验、考研真题等一手资讯。
或者可以加入我们的2018考研qq群和众多考研学子一起备战考研!。
华中科技大学历年考研真题
华中科技大学数学系数学分析1997,2000——2007(2004有答案)数值分析1999,2001——2002高等代数1997——2002,2004——2007概率统计2001——2002综合课程(应用数学、计算数学、概率统计专业)2003C语言程序设计(数学系计算数学专业)2002常微分方程2001——2002数理方程与泛函分析2001——2002专业英语翻译(概率论与数理统计、应用数学、计算数学专业)2006物理系数学(含高等数学线性代数)(物理系各专业)2007数学(物理类)2001,2003——2006数学(工科)(单考)2005数学(工科各专业)2003数学(理、工科类)(单)2002数学(单考)(工科各专业)2004数学(理工科)2006数学(理工类)(单考)2007高等数学(物理系)2002量子力学2001,2002,2003,2004,2005,2006(第1种),2006(第2种),2007统计物理2001——2002电动力学2001力学与电磁学2001——2004化学系物理化学2000——2007(2000——2002有答案)化学综合2007化工基础2007生物化工基础2007有机化学(化学各专业、结构工程、环境工程、生物化工专业)2000(2000有答案)有机化学(化学各专业、生物化工、材料加工工程、结构工程等专业)2001(2001有答案)有机化学(化学系各专业、环境科学专业)2002(2002有答案)有机化学(化学各专业)2003(2003有答案)有机化学(化学各专业、材料加工、环境化学专业)2004(2004有答案)有机化学(化学各专业、生物化学与分子生物学、生物信息技术、生物制药工程专业)2005有机化学(B卷)(应用化学等专业)2002有机化学(含高分子化学)(化学各专业及其他相关专业)2006有机化学(环境科学专业)2005无机化学2001——2002,2004——2005无机及分析化学2006无机与分析化学2003分析化学(分析化学、高分子化学与物理专业)2005分析化学(分析化学、高分子化学专业)2004分析化学(化学类各专业)2002分析化学(环境科学专业)2002——2005分析化学(环境科学、能源与环境工程专业)2006分析化学(有机化学、高分子化学与物理、环境工程专业)2001高分子化学2002——2003,2005——2006高分子化学(二)2004——2005高分子化学(一)2004高分子化学及物理2001——2002机械科学与工程学院机械设计1997——2002(1997——2001有答案)机械设计基础2002——2007机械原理1999——2002机械原理及机械零件2001液压传动2000——2002液压流体力学2000——2001画法几何与机械制图2001机械工程控制基础2006信号与线性系统1996——2002,2006——2007(1997有答案)信号与系统2002——2006控制理论(化工过程机械专业)2001控制理论(经典控制理论、现代控制理论)(控制理论与控制工程、检测技术及自动化装置、系统工程、系统信息化技术、系统分析与集成、建筑技术科学、模式识别与智能系统、机械制造及其自动化、机械电子工程、机械设计及理论、精微制造工程、数字化设计及制造、设计艺术学专业)2005控制理论(经典控制理论、现代控制理论)(控制系所有专业、模式识别与智能系统、建筑技术科学专业)2006控制理论(控制理论与控制工程、检测技术及自动化装置、系统工程、机制、机电、车辆、材料加工、轮机工程、模式识别、导航、制导专业)2002(2002有答案)控制理论(控制系、图象所各专业及生物物理学、机械制造及自动化、机械电子工程等专业)2001(2001有答案)控制理论(自控系各专业、机电学院各专业、模式识别与智能控制、内燃机专业)1996(1996有答案)控制理论(自控系各专业、机械学院、交通学院有关专业、制冷及低温工程、模式识别与智能控制专业)1998(1998有答案)控制理论(自控系各专业、机械学院及其他有关专业)1997(1997有答案)控制理论(自控系各专业、机械学院有关专业、制冷及低温工程、生物医学工程、模式识别与智能系统、电力电子与电力传动、轮机工程、动力机械及工程专业)1999(1999有答案)控制理论(自控系各专业、机械制造、机械电子、材料加工、动力机械、模式识别、制冷、轮机工程、车辆工程等专业)2000(2000有答案)控制理论(自控系各专业、模式识别、机电控制等专业)1995(1995有答案)控制理论基础(船舶与海洋工程专业)2007自动控制理论(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001自动控制理论(电机与电器、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术、脉冲功率与等离子体、动力工程及其自动化专业)2005自动控制理论(电机与电器、电力系统及其自动化专业)2000自动控制理论(电力系统及其自动化、水力发电工程专业)1998自动控制理论(电气工程所有专业、动力机械及工程专业)2004自动控制理论(电气工程所有专业、制冷及低温工程专业)2002自动控制理论(电气学院所有专业)2006自动控制理论(电气学院所有专业、能源学院部分专业)2003自动控制理论(水利水电工程、电机与电器、电力系统及其自动化专业)1999 自动控制理论(水利水电工程、系统分析与集成专业)2003自动控制理论(水利水电工程专业)2001,2004——2007自动控制原理(水文学及水资源、水利水电工程、系统分析与集成专业)2002 自动控制原理(系统分析与集成、控制科学与工程、机械工程、仪器科学与技术、建筑技术与科学专业)2007电子技术基础(测试计量技术及仪器专业)2001电子技术基础(电磁场与微波技术、电路与系统、电力电子与电力传动、微电子学与固体电子学、半导体芯片系统与工艺、软件工程、模式识别与智能系统、信息安全、光学工程、光电信息工程、物理电子学、机械工程、仪器科学与技术专业)2007电子技术基础(电机与电器、电力电子与电力传动、微电子学与固体电子学、动力机械及工程、轮机工程、车辆工程专业)2000电子技术基础(电机与电器、电力电子与电力传动专业)1999电子技术基础(电机与电器、电力系统及其自动化、电力电子与电力传动、电工理论与新技术、轮机工程等专业)2001电子技术基础(电机与电器、电力系统及其自动化、电力电子与电力传动、电工理论与新技术、轮机工程等专业)2001电子技术基础(电气学院各专业、模式识别、精密仪器、测试计量、光学工程、物理电子学、微电子学专业)2002电子技术基础(光学工程、物理电子学、固体力学、流体力学、微电子学与固体电子学、模式识别与智能系统专业)1999电子技术基础(光学工程、物理电子学、光电信息工程、机械学院各专业)2005 电子技术基础(光学工程、物理电子学、机械制造及其自动化、机械电子工程、机械设计及理论、精微制造工程专业)2004电子技术基础(光学仪器、物理电子学与光电子学、固体力学、流体力学、电子材料与元器件、模式识别与智能控制、内燃机、汽车设计制造专业)1998电子技术基础(光学仪器、物理电子学与光电子学、固体力学、汽车设计制造、电子材料与元器件、模式识别与智能控制、内燃机专业)1997电子技术基础(化工过程机械专业)2005——2006电子技术基础(精密仪器及机械专业)2003电子技术基础(轮机工程、车辆工程、精密仪器及机械、测试计量技术及仪器专业)2005电子技术基础(生物医学工程、生物物理学、生物材料与组织工程专业)2005——2006电子技术基础(生物医学工程、生物物理学专业)2003——2004电子技术基础(生物医学工程专业)2002电子技术基础(微电子学与固体电子学、半导体芯片系统设计与工艺、电力电子与电力传动、模式识别与智能系统专业)2005电子技术基础(微电子学与固体电子学、半导体芯片系统设计与工艺、电力电子与电力传动、模式识别与智能系统专业)2006电子技术基础(微电子学与固体电子学、电力电子与电力传动、导航、制导与控制专业)2003电子技术基础(微电子学与固体电子学、电力电子与电力传动、导航、制导与控制专业)2004电子技术基础(物理电子学、光信息科学与技术、光学工程专业)2006电子技术基础(物理电子学、光学工程、模式识别与智能系统、流体力学专业)2000电子技术基础(物理电子学、光学工程、模式识别与智能系统专业)2001电子技术基础(物理电子学与光电子学专业)1995数据结构1999——2001,2006——2007数据结构及程序设计技术2004——2006数据结构与算法分析2006——2007数据库系统原理1996——2002,2004计算机组成原理(计算机科学与技术、模式识别与智能系统、机械工程、仪器科学与技术、建筑技术科学专业)1992——2002,2006——2007(另有模拟试题一份)计算机组成原理(生物医学工程、生物信息技术专业)2007C语言程序设计(计算机软件与理论专业)2001——2002操作系统1995——2002程序设计基础1995——2002程序设计语言及编译1999——2002互换性与技术测量2000——2007工业设计史2004——2005工业设计史论2006——2007工业设计综合考试2004——2007微机原理(8086)及应用(控制科学系各专业、模式识别与智能系统、力学各专业、材料加工工程专业)2000(2000有答案)微机原理(8086)及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001(2001有答案)微机原理(8086)及应用(自动控制工程系各专业、模式识别与智能系统、流体力学、工程力学专业)1999(1999有答案)微机原理(电信系各专业、电子材料与元器件专业)1996(1996有答案)微机原理(电信系各专业、电子材料与元器件专业)1998微机原理(电信系各专业、微电子学与固体电子学专业)1999微机原理(二)(光学工程、物理电子学专业)2002微机原理(光学工程、物理电子学专业)1999——2002微机原理(光学仪器、物理电子学与光电子学专业)1997——1998(1997有答案)微机原理(软件工程专业)2007微机原理(三)(电路与系统专业)2002微机原理(通信与电子系统、信号与信息处理、电路与系统、电磁场与微波技术、电子材料与元器件专业)1997微机原理(一)(电机与电气、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术专业)2002微机原理及微机控制技术(自动控制理论及应用、工业自动化、模式识别与智能控制专业)1996——1998(1997——1998有答案)微机原理及应用(材料加工工程、数字化材料成形专业)2005——2006微机原理及应用(材料加工工程专业)2003——2004微机原理及应用(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001微机原理及应用(二)(电力电子与电力传动、微电子学与固体电子学专业)2002 微机原理及应用(机械制造及其自动化、机械电子工程专业)2001微机原理及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001 微机原理及应用(软件工程专业)2006微机原理及应用(三)(控制理论与控制工程、系统工程、固体力学、模式识别、检测技术及自动化装置、工程力学、导航、制导专业)2002(2002有答案)微机原理及应用(水利水电工程、轮机工程、微电子学与固体电子学、供热、供燃气通风及空调工程专业)2001微机原理三(电路与系统专业)2002微机原理与接口技术(生物医学工程专业)2004微机原理与应用(机械制造及其自动化、机械电子工程、车辆工程、精密仪器及机械、测试计算技术及仪器、材料加工工程、轮机工程专业)2002微机原理与应用(机械制造及其自动化、机械电子工程等专业)2001结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001电动力学2001综合考试(含C语言程序设计、数据结构)(计算机应用技术专业)2001综合考试(含计算机系统结构、计算机网络、数据结构)(计算机系统结构专业)2002综合考试(计算机应用技术专业)(数据结构、C语言程序设计)1999——2001 通信原理(电路与系统、通信与信息系统、信号与信息处理专业)2001通信原理(通信与信息系统、信号与信息处理专业)2002通信原理(物理电子学、光学工程专业)2001汽车理论2004——2006汽车理论和设计2001——2002汽轮机原理2001——2002发动机原理2001综合考试(1)(脉冲与数字电路、微机、高频电路)(电信系各专业、模式识别与智能系统专业)2000综合考试(含程序设计技术、数据结构、计算机组成原理、离散数学)(计算机学院各专业、机械学院各专业、模式识别与智能系统专业)2003综合考试(含数字电路、微机原理)(通信与信息系统、信号与信息处理、模式识别与智能系统专业)2002综合考试二(含通信原理、高频电子线路)(电信系各专业、模式识别与智能系统专业)2000综合考试一(传感器原理、数字电子技术)(控制、机械各专业、建筑技术科学、模式识别专业)2005综合考试(含数据结构、计算机组成原理、离散数学)2004——2005光电检测技术2001——2003,2005综合考试(含信号与线性系统、数字信号处理)2005综合考试(一)(含信号与线性系统、数字信号处理)2003——2004(2004有答案)专业英语翻译(计算机体系结构、软件与理论、应用技术、信息安全专业)2006 专业英语翻译(模式识别与智能系统专业)2006英语专业翻译(机械工程、工业工程、仪器科学与技术、管理科学与工程专业)2006材料科学与工程学院量子力学2001,2002,2003,2004,2005,2006(第1种),2006(第2种),2007物理化学2000——2007(2000——2002有答案)计算机图形学2002化学综合2007化工基础2007生物化工基础2007塑性成形原理2002有机化学(化学各专业、结构工程、环境工程、生物化工专业)2000(2000有答案)有机化学(化学各专业、生物化工、材料加工工程、结构工程等专业)2001(2001有答案)有机化学(化学系各专业、环境科学专业)2002(2002有答案)有机化学(化学各专业)2003(2003有答案)有机化学(化学各专业、材料加工、环境化学专业)2004(2004有答案)有机化学(化学各专业、生物化学与分子生物学、生物信息技术、生物制药工程专业)2005有机化学(B卷)(应用化学等专业)2002有机化学(含高分子化学)(化学各专业及其他相关专业)2006有机化学(环境科学专业)2005无机化学2001——2002,2004——2005无机及分析化学2006无机与分析化学2003分析化学(分析化学、高分子化学与物理专业)2005分析化学(分析化学、高分子化学专业)2004分析化学(化学类各专业)2002分析化学(环境科学专业)2002——2005分析化学(环境科学、能源与环境工程专业)2006分析化学(有机化学、高分子化学与物理、环境工程专业)2001高分子化学2002——2003,2005——2006高分子化学(二)2004——2005高分子化学(一)2004高分子化学及物理2001——2002材料成形原理2003——2007材料科学基础2002——2003,2005——2007材料学基础2001微机原理及接口技术(材料加工工程、数字化材料成形、环境科学与工程专业)2007微机及接口技术(生物医学工程、生物物理学专业)2001微机接口与技术(生物医学工程专业)2003微机原理及接口技术(生物医学工程专业)2002微机原理(8086)及应用(控制科学系各专业、模式识别与智能系统、力学各专业、材料加工工程专业)2000(2000有答案)微机原理(8086)及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001(2001有答案)微机原理(8086)及应用(自动控制工程系各专业、模式识别与智能系统、流体力学、工程力学专业)1999(1999有答案)微机原理(电信系各专业、电子材料与元器件专业)1996(1996有答案)微机原理(电信系各专业、电子材料与元器件专业)1998微机原理(电信系各专业、微电子学与固体电子学专业)1999微机原理(二)(光学工程、物理电子学专业)2002微机原理(光学工程、物理电子学专业)1999——2002微机原理(光学仪器、物理电子学与光电子学专业)1997——1998(1997有答案)微机原理(软件工程专业)2007微机原理(三)(电路与系统专业)2002微机原理(通信与电子系统、信号与信息处理、电路与系统、电磁场与微波技术、电子材料与元器件专业)1997微机原理(一)(电机与电气、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术专业)2002微机原理及微机控制技术(自动控制理论及应用、工业自动化、模式识别与智能控制专业)1996——1998(1997——1998有答案)微机原理及应用(材料加工工程、数字化材料成形专业)2005——2006微机原理及应用(材料加工工程专业)2003——2004微机原理及应用(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001微机原理及应用(二)(电力电子与电力传动、微电子学与固体电子学专业)2002 微机原理及应用(机械制造及其自动化、机械电子工程专业)2001微机原理及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001 微机原理及应用(软件工程专业)2006微机原理及应用(三)(控制理论与控制工程、系统工程、固体力学、模式识别、检测技术及自动化装置、工程力学、导航、制导专业)2002(2002有答案)微机原理及应用(水利水电工程、轮机工程、微电子学与固体电子学、供热、供燃气通风及空调工程专业)2001微机原理三(电路与系统专业)2002微机原理与接口技术(生物医学工程专业)2004微机原理与应用(机械制造及其自动化、机械电子工程、车辆工程、精密仪器及机械、测试计算技术及仪器、材料加工工程、轮机工程专业)2002微机原理与应用(机械制造及其自动化、机械电子工程等专业)2001结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001电动力学2001综合考试(材料加工工程专业)2001——2002陶瓷材料2005——2006陶瓷材料学2001——2002,2004金属材料2004金属材料学2001——2002金属塑性成形原理1997,1999,2001金属学及热处理2001——2002铸件形成理论2002铸件形成理论基础1998,2001铸造金属学及热处理1998,2001专业英语(材料学、纳米材料及技术专业)2006能源与动力工程学院传热学1999,2000,2001(第1种),2001(第2种),2003——2007(1999,2000,2001(第1种)有答案)锅炉原理2001——2002,2005流体机械原理2002内燃机原理2001——2002离心压缩机原理2001工程流体力学2002,2007结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001不可压缩流体力学2001——2006低温原理与设备2000——2002(2000有答案)电工电子技术2001,2003电站锅炉原理2004化工原理2001,2005制冷原理与设备2001——2002热工自动化2002工程热力学2001(第1种),2001(第2种),2002——2006专业英语翻译(动力机械及工程专业)2006电气与电子工程学院电路理论(电力系统及其自动化、高电压与绝缘技术、电机与电器、电工理论与新技术、电力电子与电力传动、环境工程专业)2001——2003电路理论(电气工程、环境科学与工程专业)2007电路理论(电气工程学科所有专业、环境工程、机械制造及自动化、精密制造、数字化设计专业)2005电路理论(电气工程学科所有专业、环境工程等专业)2006电路理论(电气工程学科所有专业、机械制造及自动化、环境工程、机械电子工程、机械设计及其理论、精微制造工业等专业)2004电路理论(光学工程、物理电子学、控制理论与控制工程、检测技术与自动化装置、系统工程、模式识别与智能系统专业)2002电路理论(光学工程、物理电子学专业)1999——2001电路理论(物理电子学与光电子学、光学仪器专业)1998电磁场2002,2007电磁场与电磁波2001——2006电磁学与热学2005电机学2001——2002电力电子技术2000——2001电力电子学2001——2002电力系统分析1999——2002发电厂及电力系统1998高电压技术2001——2002高压电器2001电子器件2002力学与电磁学2001——2004英语(电力系统及其自动化、电力电子与电力传动、电工理论与新技术、电气信息检测技术专业)2006交通科学与工程学院交通工程2001——2002,2004交通工程学2003,2005——2007综合考试(轮机工程专业)2004高级语言程序设计(C语言)2001——2002城市道路规划与设计2002,2006——2007城市道路设计2001——2005船舶力学基础2007船舶设计原理2001——2002船舶原理2001——2002控制理论(化工过程机械专业)2001控制理论(经典控制理论、现代控制理论)(控制理论与控制工程、检测技术及自动化装置、系统工程、系统信息化技术、系统分析与集成、建筑技术科学、模式识别与智能系统、机械制造及其自动化、机械电子工程、机械设计及理论、精微制造工程、数字化设计及制造、设计艺术学专业)2005控制理论(经典控制理论、现代控制理论)(控制系所有专业、模式识别与智能系统、建筑技术科学专业)2006控制理论(控制理论与控制工程、检测技术及自动化装置、系统工程、机制、机电、车辆、材料加工、轮机工程、模式识别、导航、制导专业)2002(2002有答案)控制理论(控制系、图象所各专业及生物物理学、机械制造及自动化、机械电子工程等专业)2001(2001有答案)控制理论(自控系各专业、机电学院各专业、模式识别与智能控制、内燃机专业)1996(1996有答案)控制理论(自控系各专业、机械学院、交通学院有关专业、制冷及低温工程、模式识别与智能控制专业)1998(1998有答案)控制理论(自控系各专业、机械学院及其他有关专业)1997(1997有答案)控制理论(自控系各专业、机械学院有关专业、制冷及低温工程、生物医学工程、模式识别与智能系统、电力电子与电力传动、轮机工程、动力机械及工程专业)1999(1999有答案)控制理论(自控系各专业、机械制造、机械电子、材料加工、动力机械、模式识别、制冷、轮机工程、车辆工程等专业)2000(2000有答案)控制理论(自控系各专业、模式识别、机电控制等专业)1995(1995有答案)控制理论基础(船舶与海洋工程专业)2007自动控制理论(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001自动控制理论(电机与电器、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术、脉冲功率与等离子体、动力工程及其自动化专业)2005自动控制理论(电机与电器、电力系统及其自动化专业)2000自动控制理论(电力系统及其自动化、水力发电工程专业)1998自动控制理论(电气工程所有专业、动力机械及工程专业)2004自动控制理论(电气工程所有专业、制冷及低温工程专业)2002自动控制理论(电气学院所有专业)2006自动控制理论(电气学院所有专业、能源学院部分专业)2003自动控制理论(水利水电工程、电机与电器、电力系统及其自动化专业)1999 自动控制理论(水利水电工程、系统分析与集成专业)2003自动控制理论(水利水电工程专业)2001,2004——2007自动控制原理(水文学及水资源、水利水电工程、系统分析与集成专业)2002 自动控制原理(系统分析与集成、控制科学与工程、机械工程、仪器科学与技术、建筑技术与科学专业)2007结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001专业英语翻译(船舶与海洋结构物设计制造、轮机工程、交通工程专业)2006力学系材料力学(船舶与海洋结构物设计制造专业)2003——2004材料力学(船舶与海洋结构物设计制造、化工过程机械专业)2001——2002材料力学(船舶与海洋结构物设计制造、水下工程专业)2005——2006材料力学(固体力学、工程力学、材料加工工程专业)2001——2002材料力学(力学系所有专业)2002,2005——2006材料力学(岩土工程、道路与铁道工程、化工过程机械专业)2005——2006材料力学(岩土工程、道路与铁道工程专业)2003——2004材料力学(岩土工程专业)2001——2002材料力学一(固体力学、工程力学、动力机械及工程专业)2004理论力学1997——2006(1997——2001有答案)(另有《理论力学》考研复习内部资料,含理论力学课程考研基本要求、考研试题内容及题型的分析,10元。
华科专业课考研真题
华科专业课考研真题在考研备考过程中,专业课的复习备考显得尤为重要。
针对华中科技大学考研的专业课真题,下面将为大家进行整理和分析,以帮助大家更好地了解该校的考试内容和难点。
一、真题概述华中科技大学的专业课考研真题一般都具有一定的难度和广度。
涉及的学科门类较多,包括工科、理科、医学、管理学等多个领域。
真题题量适中,趋向于综合能力的考察,注重考察考生对知识的掌握程度和应用能力。
二、真题特点1.跨学科:华科专业课考研真题涉及的学科门类较多,从工科到理科再到医学和管理学,知识广度较大。
考生需要全面准备各个学科的知识点,不仅要了解基础知识,还要掌握综合应用能力。
2.理论与实践相结合:华科专业课考研真题注重理论与实践相结合,强调应用能力。
不仅要掌握理论知识,还需要能够将知识应用到实际问题中,解决实际问题。
3.主观题与客观题并重:华科专业课考研真题中不仅有主观题,如简答题、论述题等,还有客观题,如选择题、判断题等。
考生需要能够熟练掌握各种题型,对于主观题要有清晰的思路和逻辑,对于客观题要有较快准确的判断能力。
三、备考建议1.全面准备:考生需要全面准备各个学科的知识点,尤其是跨学科的综合能力。
可以从过往的真题中找出重点和难点,有针对性地进行复习。
2.理论与实践结合:复习过程中要注重理论与实践结合,学会将知识应用到实际问题中。
可以通过解决一些实际问题或做一些实验来巩固理论知识。
3.题型训练:针对不同的题型进行练习,提高解题能力和应试技巧。
可以通过做题、模拟考等方式来训练自己,增加解题思维的灵活性和适应性。
四、总结华科专业课考研真题在考察学科知识的同时,更注重考察学生的综合能力和应用能力。
考生在备考过程中应该全面准备各个学科的知识点,注重理论与实践的结合,通过题型训练提高解题能力,以应对华科专业课考研的挑战。
通过了解和分析华科专业课考研真题的特点和要求,考生可以更有针对性地进行备考准备,并提高备考效果。
相信只要努力复习,充分准备,就能够在考试中取得好成绩。
华中科技大学2003年固体物理考研题
华中科技大学
二00三年招收硕士研究生入学考试试题
考试科目:固体物理
适用专业:微电子学与固体电子学
(除画图题外,所有答案都必须写在答题纸上,写在试题上及草
稿纸上无效,考完后试题随答题纸交回)
一、(60分)简要回答以下各题:
1.写出NaCl和CsCl晶体的结构类型;
2.分别指出简单立方、体心立方和面心立方晶体倒易点阵的结构类型;
3.计算面心立方结构(设晶格常数为a)的填充率;
4.晶体有哪些基本的结合类型?
5.晶体比热理论中的德拜(Debye)近似在低温下与实验符合很好,其物理原因是什么?
6.在第一布里渊区范围绘出一维单原子点阵的色散关系示意图;
7.对于初基晶胞数为N的二维晶体,基元含有两个原子,声学支振动模式和光学声学支振动模式的数目各有多少?
8.什么是费米能级?写出金属费米能级的典型值;
9.简述Bloch定理,该定理必须采用什么边界条件?
10.简述半导体和绝缘体能带中电子填充的特点。
二、(22分)对于惰性元素晶体,任意两个原子间的相互作用能为:,其中ε、σ为常数,为原子间距离。
(1)指出上式中两项的物理意义及来源,并写出该类晶体内能的表达式;
(2)证明平衡时σ与原子最近邻距离之比是一个与晶体结构有关的常数。
三、(22分)由N个相同原子组成的面积为S的二维正方晶格,在德拜近似下计算比热,并论述在低温极限下比热与成正比。
四、(24分)由N个自由电子组成的三维气体,处于0K时
(1)证明:动能与费米能级的关系为:;
(2)利用结果(1)证明压强与体积的关系为。
五、(22分)用紧束缚近似求出面心立方晶格和体心立方晶格s态原子能级相对应的能带。
2003考研数一真题及解析
2003年全国硕士研究生入学统一考试数学一试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(1)21ln(1)0lim(cos )x x x +→=(2) 曲面22y x z +=与平面042=-+z y x 平行的切平面的方程是.(3) 设)(cos 02ππ≤≤-=∑∞=x nx ax n n,则2a = .(4) 从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为.(5) 设二维随机变量(,)X Y 的概率密度为,y x x y x f 其他,10,0,6),(≤≤≤⎩⎨⎧=则=≤+}1{Y X P.(6) 已知一批零件的长度X (单位:cm cm)服从正态分布)1,(μN ,从中随机地抽取16个 零件,得到长度的平均值为40 (cm ),则μ的置信度为0.95的置信区间是.(注:标准正态分布函数值.)95.0)645.1(,975.0)96.1(=Φ=Φ二、选择题:本题共6小题,每小题4分,共24分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1) 设函数()f x 在),(+∞-∞内连续,其导函数的图形如图所示, 则()f x 有( )(A)一个极小值点和两个极大值点. (B)两个极小值点和一个极大值点. (C)两个极小值点和两个极大值点. (D)三个极小值点和一个极大值点.(2) 设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有( )(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立. (C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在.(3) 已知函数(,)f x y 在点(0,0)的某个邻域内连续,且1)(),(lim2220,0=+-→→y x xyy x f y x ,则( ) (A) 点(0,0)不是(,)f x y 的极值点. (B) 点(0,0)是(,)f x y 的极大值点. (C) 点(0,0)是(,)f x y 的极小值点.(D) 根据所给条件无法判断点(0,0)是否为(,)f x y 的极值点.(4) 设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则( )(A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关. (C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关.(5) 设有齐次线性方程组0Ax =和0Bx =, 其中,A B 均为n m ⨯矩阵,现有4个命题:① 若0Ax =的解均是0Bx =的解,则秩(A )≥秩(B ); ② 若秩(A )≥秩(B ),则0Ax =的解均是0Bx =的解; ③ 若0Ax =与0Bx =同解,则秩(A )=秩(B ); ④ 若秩(A )=秩(B ), 则0Ax =与0Bx =同解. 以上命题中正确的是( )(A) ① ②. (B) ① ③.(C) ② ④. (D) ③ ④.(6) 设随机变量21),1)((~X Y n n t X =>,则( ) (A) )(~2n Y χ. (B) )1(~2-n Y χ.(C) )1,(~n F Y . (D) ),1(~n F Y .三 、(本题满分10分)过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D . (1) 求D 的面积A ;(2) 求D 绕直线x e =旋转一周所得旋转体的体积V .四 、(本题满分12分)将函数x x x f 2121arctan )(+-=展开成x 的幂级数,并求级数∑∞=+-012)1(n nn 的和.已知平面区域}0,0),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界. 试证: (1) dx ye dy xe dx ye dy xex Ly x L ysin sin sin sin -=-⎰⎰--;(2).22sin sin π≥--⎰dx ye dy xe x Ly六 、(本题满分10分)某建筑工程打地基时,需用汽锤将桩打进土层. 汽锤每次击打,都将克服土层对桩的阻力而作功. 设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为,0k k >).汽锤第一次击打将桩打进地下a m . 根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数(01)r r <<. 问(1) 汽锤击打桩3次后,可将桩打进地下多深?(2) 若击打次数不限,汽锤至多能将桩打进地下多深? (注:m 表示长度单位米.)七 、(本题满分12分)设函数()y y x =)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是()y y x =的反函数.(1) 试将()x x y =所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为()y y x =满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解.八 、(本题满分12分)设函数()f x 连续且恒大于零,⎰⎰⎰⎰⎰+++=Ω)(22)(222)()()(t D t d y xf dvz y x f t F σ,⎰⎰⎰-+=tt D dxx f d y x f t G 12)(22)()()(σ,其中}),,{()(2222t z y x z y x t ≤++=Ω,}.),{()(222t y x y x t D ≤+=(1) 讨论()F t 在区间),0(+∞内的单调性. (2) 证明当0t >时,).(2)(t G t F π>设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=322232223A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100101010P ,P A P B *1-=,求2B E +的特征值与特征向量,其中*A 为A 的伴随矩阵,E 为3阶单位矩阵.十 、(本题满分8分)已知平面上三条不同直线的方程分别为1:230l ax by c ++=,2:230l bx cy a ++=,3:230l cx ay b ++=.试证: 这三条直线交于一点的充分必要条件为.0=++c b a十一 、(本题满分10分)已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品. 从甲箱中任取3件产品放入乙箱后,求:(1) 乙箱中次品件数X 的数学期望; (2) 从乙箱中任取一件产品是次品的概率.十二 、(本题满分8分)设总体X 的概率密度为⎩⎨⎧≤>=--,,,0,2)()(2θθθx x e x f x其中0>θ是未知参数. 从总体X 中抽取简单随机样本n X X X ,,,21 ,记).,,,min(ˆ21nX X X =θ (1) 求总体X 的分布函数()F x ; (2) 求统计量θˆ的分布函数)(ˆx F θ;(3) 如果用θˆ作为θ的估计量,讨论它是否具有无偏性.2003年全国硕士研究生入学统一考试数学一试题解析一、填空题 (1)【详解】方法1:求()lim ()v x u x 型极限,一般先化为指数形式()()ln ()lim ()lim v x v x u x u x e =然后求lim ()ln ()v x u x ,再回到指数上去.)1ln(12)(cos lim x x x +→=220ln cos ln cos limln(1)ln(1)lim x xxx x x e e→++→=,而2200ln cos ln(1cos 1)limlim ln(1)ln(1)x x x x x x →→+-=++20cos 1lim x x x →-=(等价无穷小替换ln(1)x x +) 220112lim 2x x x →-==-(等价无穷小替换211cos 2x x -) 故 原式=.121ee=-方法2:令21ln(1)(cos )x y x +=,有2ln cos ln ln(1)xy x =+,以下同方法1.(2)【答案】542=-+z y x【详解】由题意,只要满足所求切平面的法向量与已知平面的法向量平行即可.平面042=-+z y x 的法向量:1{2,4,1}n =-;曲面22y x z +=在点),,(000z y x 的法向量:20000{(,),(,),1}x y n z x y z x y =-00{2,2,1}x y =- 由于12//n n ,因此有00221241x y -==- 可解得,2,100==y x ,相应地有.520200=+=y x z所求切平面过点(1,2,5),法向量为:2{2,4,1}n =-,故所求的切平面方程为0)5()2(4)1(2=---+-z y x ,即 542=-+z y x(3)【答案】1【详解】将)()(2ππ≤≤-=x x x f 展开为余弦级数2()cos ()n n f x x a nx x ππ∞===-≤≤∑,其中⎰=ππcos )(2nxdx x f a n .所以 x d x xdx x a 2sin 12cos 2222⎰⎰=⋅=ππππ21[sin2sin22]x xx xdx πππ=-⋅⎰1cos2xd x ππ=⎰001[cos2cos2]x x xdx πππ=-⎰1=(4)【答案】⎪⎪⎭⎫ ⎝⎛--2132【详解】n 维向量空间中,从基n ααα,,,21 到基n βββ,,,21 的过渡矩阵P 满足[n βββ,,,21 ]=[n ααα,,,21 ]P ,因此过渡矩阵P 为:P =[121],,,-n ααα [],,,21n βββ .根据定义,从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为P =[121],-αα[⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=-21111011],121ββ=.213221111011⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-(5)【答案】14. 【分析】本题为已知二维随机变量(,)X Y 的概率密度(,)f x y ,求满足一定条件的概率}),({0z Y X g P ≤.连续型二维随机变量(,)X Y 概率的求解方法(,)(,),y xF x y f u v dudv -∞-∞=⎰⎰此题可转化为二重积分}),({0z Y X g P ≤0(,)(,)g x y z f x y dxdy ≤=⎰⎰进行计算.【详解】图中阴影区域为积分区域. 由题设,有=≤+}1{Y X P 1(,)x y f x y dxdy +≤⎰⎰11206xxdx xdy -=⎰⎰1220(612)x x dx =-⎰14=(6)【答案】)49.40,51.39(. 【分析】可以用两种方法求解:(1) 已知方差12=σ,对正态总体的数学期望μ进行估计. 因为(,1)X N μ,设有n 个样本,样本均值11ni i X X n ==∑,则1(,)XN n μ,将其标准化,~(0,1)X N 得:)1,0(~1N nX μ- 由正态分布分为点的定义αμα-=<-1}1{2u nX P 可确定临界值2αu ,进而确定相应的置信区间22(x u x u αα-+.(2)本题是在单个正态总体方差已知条件下,求期望值μ的置信区间问题.由教材上已经求出的置信区间22(x u x u αα-+,其中2{}1,(0,1)P U u UN αα<=-,可以直接得出答案.【详解】方法1:由题设,95.01=-α,可见.05.0=α 查标准正态分布表知分位点.96.12=αu 本题16n =, 40=x .根据 1.96}0.95P <=,有 1.96}0.95P <=,即{39.5140.49}0.95P μ<<=,故μ的置信度为0.95的置信区间是)49.40,51.39(.方法2:由题设,95.01=-α,22222{}{}2()10.95,()0.975P U u P u U u u u ααααα<=-<<=Φ-=Φ=查得.96.12=αu 将1σ=,16n =, 40=x代入22(x u x u αα-+得置信区间)49.40,51.39(二、选择题(1)【答案】()Cy【分析】函数的极值点可能是驻点(一阶导数为零) 或导数不存在的点,极值点是极大值点还是极小值 点可进一步由取极值的第一或第二充分条件判定. 【详解】根据导函数的图形可知,一阶导数为零的 点有3个(导函数与x 轴交点的个数);0x =是导数 不存在的点.对3个一阶导数为零的点左右两侧导数符号均 不一致,故必为极值点,其中第一个交点左右两侧导数符号由正变为负,是极大值点;第二个交点和第三个交点左右两侧导数符号由负变为正,是极小值点,则三个驻点中有两个极小值点,一个极大值点;对导数不存在的点:0x =.左侧一阶导数为正,右侧一阶导数为负,可见0x =为极大值点.故()f x 共有两个极小值点和两个极大值点,应选(C).(2)【答案】()D 【详解】方法1:推理法由题设lim 1n n b →∞=,假设lim n n n b c →∞存在并记为A ,则lim limn nn n n nb c c A b →∞→∞==,这与lim n n c →∞=∞矛盾,故假设不成立,lim n n n b c →∞不存在. 所以选项()D 正确.方法2:排除法取1n a n =,1n n b n-=,满足0lim =∞→n n a ,1lim =∞→n n b , 而11111,0,a b a b ==>,()A 不正确;取1n n b n-=,2n c n =-,满足1lim =∞→n n b ,∞=∞→n n c lim ,而1101b c =>-=,()B 不正确;取1n a n=,2n c n =-,满足0lim =∞→n n a ,∞=∞→n n c lim ,而lim 1n n n a c →∞=,()C 不正确.(3)【答案】()A 【详解】由2220,0(,)lim1()x y f x y xyx y →→-=+222(,)(1)()f x y xy x y α⇒-=++,其中00lim 0x y α→→=. 由(,)f x y 在点(0,0)连续知,(0,0)0f =.取y x =,x 充分小,0x ≠,有222(,)(1)(2)0f x y x x α=++>; 取y x =-,x 充分小,0x ≠,有222(,)(1)(2)0f x y x x α=-++<故点(0,0)不是(,)f x y 的极值点,应选()A . (极值的定义)(4)【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C).(5)【答案】(B)【分析】本题可找反例用排除法进行分析,但①、②两个命题的反例比较复杂一些,关键是抓住③、④,迅速排除不正确的选项.【详解】若0AX =与0BX =同解,则它们的解空间中的基础解系所含向量个数相同,即n -秩(A )=n -秩(B ), 得秩(A )=秩(B ),命题③成立,可排除(A), (C);但反过来,若秩(A )=秩(B ),则不能推出0AX =与0BX =同解,通过举一反例证明,若⎥⎦⎤⎢⎣⎡=0001A ,⎥⎦⎤⎢⎣⎡=1000B ,则秩(A )=秩(B )=1,但0AX =与0BX =不同解,可见命题④不成立,排除(D). 故正确选项为(B).(6)【答案】(C).【分析】求解这类问题关键在于了解产生2χ变量、t 变量、F 变量的典型模式.(1)2χ分布:设12,,,n X X X 相互独立且均服从标准正态分布,则随机变量21ni i Z X ==∑服从自由度为n 的2χ分布.记做2().Zn χ(2)t 分布:设1(0,1)X N ,22~()X n χ,且12,X X 相互独立,则随机变量Z =服从自由度为n 的t 分布.记做()Zt n(3)F 分布:设2212(),(),Xn Y n χχ且,X Y 相互独立,则随机变量12X n Z Y n =服从F 分布,其第一、二自由度分别为12,.n n 记做12(,).ZF n n【详解】其实,由F 分布的性质以及t 分布和F 分布的关系得,(1) 如果统计量 ()T t n ,则有2(1,)T F n ;(2) 如果统计量12(,)FF n n ,则有211(,)F n n F.由以上两条性质可以直接得出本题的答案为(C).先由t分布的定义知()X t n =,其中)(~),1,0(~2n V N U χ,于是 21XY ==122U n V U n V =,分母中只含有一个标准正态分布的平方,所以)1(~22χU . 由F 分布的定义知~(,1).Y F n故应选(C).三【分析】圆锥体体积公式:213V r h π=⋅;旋转体的体积:(1) 连续曲线()y f x =,直线x a =、x b =所围成的图形绕直线0x x =旋转一周而成的立体的体积[]210()ba V f x x dx π=-⎰(2) 连续曲线()x g x =,直线y c =、y d =所围成的图形绕直线0y y =旋转一周而成的立体的体积[]220()dc V g y y dy π=-⎰【详解】为了求D 的面积,首先要求出切点的坐标,设切点的横坐标为0x ,则曲线ln y x =在点)ln ,(00x x 处的切线方程是:).(1ln 000x x x x y -+= 切线的斜率为01x y x '=,由于该切线过原点,将(0,0)点代入切线方程,得01ln 0=-x ,从而.0e x = 所以该切线的方程为.1x ey =(1) 利用平面图形D 的面积公式()()S y y dy βαϕψ=-⎰,得⎰-=-=1.121)(e dy ey e A y (2) 旋转体体积可用一大立体(圆锥)体积减去一小立体体积进行计算,为了帮助理解,可画一草图.切线x ey 1=与x 轴及直线x e =所围成的三角形绕直线x e =旋转所得的圆锥体积为: 122101().3V e ey dy e ππ=-=⎰曲线ln y x =与x 轴及直线x e =所围成的图形绕直线x e =旋转所得的旋转体体积为:dy e e V y 212)(⎰-=π1220(2)y y e e e e dy π=-⋅+⎰12201(2)2yy e y e e e π=-⋅+211(2)22e e π=-+-因此所求旋转体的体积为).3125(6)(312102221+-=--=-=⎰e e dy e e e V V V y πππ四【分析】幂级数展开有直接法与间接法,一般考查间接法展开,即通过适当的恒等变形、求导或积分等,转化为可利用已知幂级数展开的情形.另外,由于函数展开成的幂级数,经两边求导或积分(其中一边是逐项求导或逐项积分)后,其新的展开式收敛区间不变,但在收敛区间端点处,求导(积分)后的展开式成立与否,要另行单独处理,设已有00()()n n n f x a x x ∞==-∑收敛区间为00(,)x R x R -+. 如果在0x x R =+处级数收敛,并且()f x (左)连续,则展开式成立的范围可扩大到0x x R =+处,在0x x R =-处亦有类似的结论,不过此时()f x (左)连续应改称(右)连续.【详解】本题可先求导,()f x '()2222(12)2(12)1212121212111212x x x x x x x x x '-+---⎛⎫ ⎪++⎝⎭==--⎛⎫⎛⎫++ ⎪ ⎪++⎝⎭⎝⎭基本求导公式 22422(14)14x x --==++21214x=-+ 对于函数2114x+,可以利用我们所熟悉的函数x -11的幂级数展开: 2011(11)1nnn x x x x x x ∞==+++++=-<<-∑所以 2222001(4)(1)414114n n n nn n x x x x ∞∞===-=--<-<+∑∑ (把x 换成24x -) 有 22111()22(1)4,(,).1422n n n n f x x x x ∞='=-=--∈-+∑对上式两边求积分,得200()(0)()2(1)4xxn n n n f x f f t dt t dt ∞=⎛⎫'-==-- ⎪⎝⎭∑⎰⎰221000(1)4112(1)42,(,)2122n n x nnnn n n t dt x x n ∞∞+==-=--=-∈-+∑∑⎰,又因为04f π=(),所以()(0)()xf x f f t dt '=+⎰=).21,21(,124)1(24120-∈+--+∞=∑x x n n n nn π即 21012(1)411arctan 2,(,).1242122n n n n x x x x n π∞+=--=-∈-++∑ (*)在21=x 处,右边级数成为0(1)1212n n n ∞=-⋅+∑,收敛(利用莱布尼茨定理),左边函数()f x 连续,所以成立范围可扩大到21=x 处.而在12x =-处,右边级数虽然收敛,但左边函数()f x 不连续,所以成立范围只能是11(,]22x ∈-.为了求∑∞=+-012)1(n nn ,令21=x 代入(*)得∑∑∞=+∞=+--=⋅+--=012012)1(4]21124)1([24)21(n nn n n n n f ππ,再由0)21(=f ,得.4)21(412)1(0ππ=-=+-∑∞=f n n n五【详解】(1) 方法1:用格林公式证明. 由曲线为正向封闭曲线,自然想到用格林公式L D Q P Pdx Qdy dxdy x y ⎛⎫∂∂+=- ⎪∂∂⎝⎭⎰⎰⎰. 所以 ⎰⎰⎰--+=-D x y x L ydxdy e e dx ye dy xe)(sin sin sin sin所以⎰⎰⎰+=---Dx y x Ly dxdy e e dx ye dy xe )(sin sin sin sin 因为积分区域D 关于y x =对称,所以sin sin sin sin ()()x y yxyx DDeedxdyee dxdy --+=+⎰⎰⎰⎰与互换故dx ye dy xe dx ye dy xe x Ly x Ly sin sin sin sin -=-⎰⎰-- 方法2:化为定积分证明左边sin sin y x LLxe dy ye dx -=-⎰⎰=dx edy exy⎰⎰--0sin 0sin ππππ=⎰-+ππ0sin sin )(dx e e x x右边sin sin y x LLxe dy ye dx -=-⎰⎰=⎰⎰--ππππ00sin sin dx e dy e x y =⎰-+ππ0sin sin )(dx e e x x所以dx ye dy xe dx ye dy xe x Ly x Ly sin sin sin sin -=-⎰⎰--. (2) 方法1:用格林公式证明⎰⎰⎰--+=-Dx y x Ly dxdy e e dx ye dy xe )(sin sin sin sin =dxdy e dxdy eDDx y⎰⎰⎰⎰-+sin sin =dxdy e dxdy e DDx x ⎰⎰⎰⎰-+sin sin 利用轮换对称性=sin sin ()2x x DDe e dxdy dxdy -+≥⎰⎰⎰⎰22π=(因为0,0a b a b +≥>>)方法2:由(1)知,sin sin sin sin 0()2y x x x Lxe dy ye dx e e dx dx ππππ---=+≥⎰⎰⎰22π=六【详解】(1) 建立坐标系,地面作为坐标原点,向下为x 轴正向,设第n 次击打后,桩被打进地下n x ,第n 次击打时,汽锤所作的功为),3,2,1( =n W n .由题设,当桩被打进地下的深度为x 时,土层对桩的阻力的大小为kx ,汽锤所作的功等于克服阻力所做的功.121102x k W kxdx x ==⎰,2122221()2x x k W kxdx x x ==-⎰,3222332()2x x k W kxdx x x ==-⎰,1x a =从而 212332k W W W x ++=又 12rW W =,2321W rW r W ==, 从而222231231(1)(1)22k k x W W W r r W r r a =++=++=++于是 3x =(2) 第n 次击打后,桩被打进地下n x ,第n 次击打时,汽锤所作的功为),3,2,1( =n W n . 则汽锤前n 次所功的和等于克服桩被打进地下n x m 所做的功.11210(1)nx n n kxdx W W W r r W -=+++=+++⎰而 2102a kW kxdx a ==⎰ 牛-莱公式所以212(1)22n n k k x r r a -=+++从而 1n n x r-=++= 等比数列求和公式由于01r <<,所以1lim n n x +→∞.七【详解】 (1) 将题中的dy dx 与22d xdy变换成以x 为自变量y 为因变量的导数dx dy 与22d y dx 来表示(即通常所说的反函数变量变换),有dy dx =y dxdy '=11,)(22dy dx dy d dy x d ==dy dx y dx d ⋅')1(=32)(1y y y y y '''-='⋅'''-. 代入原方程,得 .sin x y y =-'' ( * )(2) 方程( * )所对应的齐次方程为0=-''y y ,特征方程为210r -=,根1,21r =±,因此通解为.21xxe C e C Y -+= 由于i λω+不是特征方程得根,所以设方程( * )的特解为x B x A y sin cos *+=则 *sin cos y A x B x '=-+,*cos sin y A x B x ''=--代入方程( * ),得:cos sin cos sin 2cos 2sin sin A x B x A x B x A x B x x ----=--= 解得21,0-==B A ,故x y sin 21*-=. 从而x y y sin =-''的通解为 .sin 2121*x e C e C y Y y x x -+=+=-由23)0(,0)0(='=y y ,得1,121-==C C .故变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解为.sin 21x e e y x x --=-且()y x 的导函数1()cos 02x x y x e e x -'=+->,满足题设0y '≠条件.八【详解】(1) 首先对()F t 进行化简,三重积分转化为在球面坐标系中的计算;二重积分转化为在极坐标系中的计算.222222220()()()sin 2sin ()t tt f x y z dv d d f r r dr d f r r dr πππθϕϕπϕϕΩ++==⎰⎰⎰⎰⎰⎰⎰⎰()2222002()cos 4()t tf r r dr f r r dr ππϕπ=⋅-=⎰⎰ (球面坐标)222220()()()2()t tD t f x y d d f r rdr f r rdr πσθπ+==⎰⎰⎰⎰⎰ (极坐标)所以222220000222()sin 4()()()2()ttttd d f r r drf r r drF t d f r rdrf r rdrπππθϕϕπθπ==⎰⎰⎰⎰⎰⎰⎰22022()()ttf r r drf r rdr=⎰⎰为了讨论()F t 在区间),0(+∞内的单调性,对()F t 求导:222222022()()()()()2[()]t ttt f t f r rdr f r r dr f t tF t f r rdr ⋅-⋅'=⎰⎰⎰22022()()()2[()]tttf t f r r t r drf r rdr ⋅-=⎰⎰由于()0,0,0f t r t r >>->,所以2()()0f r r t r ->. 再利用定积分的性质:若在区间[,]a b 上()0f x >,则()0baf x dx >⎰. 所以()0F t '>,所以()F t 在区间),0(+∞内严格单调增加.(2) 将待证的不等式作适当的恒等变形后,构造辅助函数,再用单调性进行证明即可. 因为 2220()2()2()tt ttf x dx f x dx f r dr -==⎰⎰⎰,所以2222()0022200()2()()()()2()()ttD t ttttf x y d f r rdr f r rdrG t f x dxf r drf r drσππ-+===⎰⎰⎰⎰⎰⎰⎰要证明0t >时)(2)(t G t F π>,只需证明0t >时,0)(2)(>-t G t F π,即22200222()2()2()()()()t tttf r r drf r rdrF tG t f r rdrf r drπ-=-⎰⎰⎰⎰()()()()()222222202()()()()()tt tttf r r dr f r dr f r rdr f r rdr f r dr⎡⎤⋅-⎢⎥⎣⎦=⋅⎰⎰⎰⎰⎰令 ()()()22222()()()()tt tg t f r r dr f r dr f r rdr =⋅-⎰⎰⎰222222220222()()()()()2()()()()()0t t ttg t f t t f r dr f t f r r dr f t t f r rdrf t f r t r dr t '=+-=->>⎰⎰⎰⎰故()g t 在),0(+∞内单调增加,又因为(0)0g =,所以当0t >时,有()0)0g t g>=(, 从而0t >时,).(2)(t G t F π>九【分析】 法1:可先求出*1,A P -,进而确定P A P B *1-=及2B E +,再按通常方法确定其特征值和特征向量;法2:先求出A 的特征值与特征向量,再相应地确定*A 的特征值与特征向量,最终根据2B E +与*2A E +相似求出其特征值与特征向量. 【详解】方法1:经计算可得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=522252225*A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1000011101P ,所以 P A P B *1-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----322452007,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=+5224720092E B . 令 2900(2)274(9)(3)0225E B E λλλλλλ--+=-=--=-,故2B E +的特征值为.3,9321===λλλ当921==λλ时,解0)9(=-x A E ,得线性无关的特征向量为,0111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=η ,1022⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=η所以属于特征值921==λλ的所有特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+102011212211k k k k ηη,其中21,k k 是不全为零的任意常数.当33=λ时,解0)3(=-x A E ,得线性无关的特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1103η,所以属于特征值33=λ的所有特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110333k k η,其中03≠k 为任意常数. 方法2:设A 的特征值为λ,对应的特征向量为η,即ληη=A .由于07≠=A ,所以.0≠λ所以 ***()()A A A E A A A E A A A E ηηηη=⇒=⇒=***()AA A A A A ληηληηηηλ⇒=⇒=⇒=,于是 11*11()()()AB P P A P P P ηηηλ----==,.)2()2(11ηλη--+=+P AP E B因此,2+λA为2B E +的特征值,对应的特征向量为.1η-P由于)7()1(3222322232--=---------=-λλλλλλA E ,故A 的特征值为1231,7λλλ===当121==λλ时,对应的线性无关特征向量可取为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=0111η, .1012⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=η当73=λ时,对应的一个特征向量为.1113⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=η 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1000011101P,得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-01111ηP ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-11121ηP ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-11031ηP .因此,2B E +的三个特征值分别为9,9,3.对应于特征值9的全部特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+--11101121212111k k P k P k ηη,其中21,k k 是不全为零的任意常数;对应于特征值3的全部特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-1103313k P k η,其中3k 是不为零的任意常数.十【分析】三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为2.【详解】方法1:“必要性”. 设三条直线321,,l l l 交于一点,则线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*) 有唯一解,故系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a c c b b a A 222与增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=b a c a c b c b a A 323232的秩均为2,于是.0=A232()3()23232323a b c a b c b c a c a b A bca b c a c a bc ab -++++-++=-=---123111()236()23a b c b ca abc b ca c abc a b-=++-=-++-1006()6()c b a ba b c b c b a b a b c a c b cc a c b c--=-++--=-++----6()[()()()()]a b c c b b c a b a c =-++-----2226()()a b c bc c b bc a ac ab bc =-++--+-++- 2226()()a b c a b c ac ab bc =++++--- 2223()[()()()]a b c a b b c c a =++-+-+-,由于三条直线互不相同,所以0)()()(222≠-+-+-a c c b b a ,故.0=++c b a“充分性”. 由0=++c b a ,则从必要性的证明可知,0=A ,故秩.3)(<A由于])([2)(22222b b a a b ac cb b a ++-=-==0]43)21[(222≠++-b b a ,故秩()2A =.于是,秩(A )=秩)(A =2.因此方程组(*)有唯一解,即三直线321,,l l l 交于一点.方法2:“必要性”设三直线交于一点),(00y x ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100y x 为0BX =的非零解,其中2323.23a b c B b c a c a b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 所以||0B =.而232323232323a b c a b cB bc a bca A c a bca b-==--=-- 2223()[()()()]a b c a b b c c a =-++-+-+-,(解法同方法1)但根据题设 0)()()(222≠-+-+-a c c b b a ,故.0=++c b a“充分性”:考虑线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*)将方程组(*)的三个方程相加,并由.0=++c b a 可知,方程组(*)等价于方程组⎩⎨⎧-=+-=+.32,32a cy bx c by ax (* *) 因为])([2)(22222b b a a b ac cb ba ++-=-==222[()]0ab a b -+++≠,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线321,,l l l 交于一点.十一【详解】乙箱中可能的次品件数为0,1,2,3,分别求出其概率,再按定义求数学期望即可;而求从乙箱中任取一件产品是次品的概率,涉及到两次试验,是典型的用全概率公式的情形,第一次试验的各种可能结果(取到的次品数)就是要找的完备事件组.(1) 方法1:X 的可能取值为0,1,2,3, 取出k 件次品()0,1,2,3k =的取法有333k kC C -种;样本空间即从两个箱子中取出3件产品的总的取法数为36C .所以有,X 的概率分布为36333}{C C C k X P kk -==, k 0,1,2,3.= 即 X 0 1 2 3 P201 209 209 201 因此,由离散型数学期望的定义{}1()nk k k E X x P X x ==⋅=∑易得 19913()0123.202020202E X =⨯+⨯+⨯+⨯= 方法2:本题对数学期望的计算也可用分解法:设0, ,1,i i X i ⎧=⎨⎩从甲箱中取出的第件产品是合格品从甲箱中取出的第件产品是次品. 则i X 的概率分布为i X 0 1P21 21.3,2,1=i 因为321X X X X ++=,所以由数学期望的线性可加性,有200321 ()()()()1233.2E X E X E X E X =++= (2) 设A 表示事件“从乙箱中任取一件产品是次品”,由于}0{=X ,}1{=X ,}2{=X ,}3{=X 构成完备事件组,因此根据全概率公式,有∑====30}{}{)(k k X A P k X P A P =33001{}{}66k k k P X k k P X k ===⋅=⋅=∑∑ ()1131.6624E X ==⋅=十二【分析】本题表面上是一数理统计问题,实际上考查了求分布函数、随机变量的函数求分布和概率密度以及数学期望的计算等多个知识点.将数理统计的概念与随机变量求分布与数字特征结合起来是一种典型的命题形式.求分布函数()F X 是基本题型:求统计量θˆ的分布函数)(ˆx F θ,可作为多维相互独立且同分布的随机变量函数求分布函数,直接用定义即可;是否具有无偏性,只需检验θθ=ˆE 是否成立.【详解】(1) 由连续型随机变量分布函数的定义,有.,,0,1)()()(2θθθ≤>⎩⎨⎧-==⎰∞---x x e dt t f x F xx (2) 由题给).,,,min(ˆ21nX X X =θ,有 }),,,{min(}ˆ{)(21ˆx X X X P x P x F n≤=≤= θθ 121{min(,,,)}n P X X X x =->121{,,,}n P X x X x X x =->>> 1[1()]n F x =--2(),1,.0,n x x e x θθθ-->⎧-=⎨≤⎩(3) 由连续型随机变量概率密度是分布函数在相应区间上的微分得θˆ概率密度为.,,0,2)()()(2ˆˆθθθθθ≤>⎩⎨⎧==--x x ne dxx dF x f x n 因为 2()ˆˆ()()2n x E xf x dx nxe dx θθθθ+∞+∞---∞==⎰⎰12nθθ=+≠, 所以θˆ作为θ的估计量不具有无偏性.。
(完整)华中科技大学机械工程复试试题 回忆版
共40分,10个大题
一、自行车后轮飞轮的工作原理,飞轮有什么作用,如果没有飞轮会有什么样的后
果?这个原理可以运用到什么样的离合器上?
二、有大小和质量相同的两个空心球,一个是金,一个是铅,两球表面涂上了油
漆,在不破坏油漆的前提下,用简易的方法将两个小球区分去哪个是金的,哪个是铅的?
三、说明飞机起落架的工作原理(好像和书上的不同,他有个滑块装置),运用了
机构中的那种特性?依据此特性,设计一个铣床夹紧装置的机构简图,并说明夹紧力的三要素.
四、用车刀加工零件,说明下列错误的原因
五、在发动机前置的汽车中用什么联轴器,原因是什么?
六、一个轴系改错题,题目是直齿圆柱齿轮,问变成斜齿圆柱齿轮应该用什么轴
承?
七、突破思维定势,说说图示的自动穿鞋机的用途?
八、图示为一脚踩踏板使拖把甩干的机器(网上有图片,我画不出来),该装置用
了什么典型的机构?设计一种利用拖把柄的相对运动来甩干拖把的装置,并画出机构简图?
九、好像是行星轮系求传动比,变位系数,有好几问,不过是常规题
十、一个齿轮传动系统,有丝杠(类似机床的传动系统+轮系+螺纹传动,以前真
题上面有),问的一些基础计算题,最后一问是数控机床上一搬用什么丝杠?。
华中科技大学历年考研真题
华中科技大学数学系数学分析1997,2000——2007(2004有答案)数值分析1999,2001——2002高等代数1997——2002,2004——2007概率统计2001——2002综合课程(应用数学、计算数学、概率统计专业)2003C语言程序设计(数学系计算数学专业)2002常微分方程2001——2002数理方程与泛函分析2001——2002专业英语翻译(概率论与数理统计、应用数学、计算数学专业)2006物理系数学(含高等数学线性代数)(物理系各专业)2007数学(物理类)2001,2003——2006数学(工科)(单考)2005数学(工科各专业)2003数学(理、工科类)(单)2002数学(单考)(工科各专业)2004数学(理工科)2006数学(理工类)(单考)2007高等数学(物理系)2002量子力学2001,2002,2003,2004,2005,2006(第1种),2006(第2种),2007统计物理2001——2002电动力学2001力学与电磁学2001——2004化学系物理化学2000——2007(2000——2002有答案)化学综合2007化工基础2007生物化工基础2007有机化学(化学各专业、结构工程、环境工程、生物化工专业)2000(2000有答案)有机化学(化学各专业、生物化工、材料加工工程、结构工程等专业)2001(2001有答案)有机化学(化学系各专业、环境科学专业)2002(2002有答案)有机化学(化学各专业)2003(2003有答案)有机化学(化学各专业、材料加工、环境化学专业)2004(2004有答案)有机化学(化学各专业、生物化学与分子生物学、生物信息技术、生物制药工程专业)2005有机化学(B卷)(应用化学等专业)2002有机化学(含高分子化学)(化学各专业及其他相关专业)2006有机化学(环境科学专业)2005无机化学2001——2002,2004——2005无机及分析化学2006无机与分析化学2003分析化学(分析化学、高分子化学与物理专业)2005分析化学(分析化学、高分子化学专业)2004分析化学(化学类各专业)2002分析化学(环境科学专业)2002——2005分析化学(环境科学、能源与环境工程专业)2006分析化学(有机化学、高分子化学与物理、环境工程专业)2001高分子化学2002——2003,2005——2006高分子化学(二)2004——2005高分子化学(一)2004高分子化学及物理2001——2002机械科学与工程学院机械设计1997——2002(1997——2001有答案)机械设计基础2002——2007机械原理1999——2002机械原理及机械零件2001液压传动2000——2002液压流体力学2000——2001画法几何与机械制图2001机械工程控制基础2006信号与线性系统1996——2002,2006——2007(1997有答案)信号与系统2002——2006控制理论(化工过程机械专业)2001控制理论(经典控制理论、现代控制理论)(控制理论与控制工程、检测技术及自动化装置、系统工程、系统信息化技术、系统分析与集成、建筑技术科学、模式识别与智能系统、机械制造及其自动化、机械电子工程、机械设计及理论、精微制造工程、数字化设计及制造、设计艺术学专业)2005控制理论(经典控制理论、现代控制理论)(控制系所有专业、模式识别与智能系统、建筑技术科学专业)2006控制理论(控制理论与控制工程、检测技术及自动化装置、系统工程、机制、机电、车辆、材料加工、轮机工程、模式识别、导航、制导专业)2002(2002有答案)控制理论(控制系、图象所各专业及生物物理学、机械制造及自动化、机械电子工程等专业)2001(2001有答案)控制理论(自控系各专业、机电学院各专业、模式识别与智能控制、内燃机专业)1996(1996有答案)控制理论(自控系各专业、机械学院、交通学院有关专业、制冷及低温工程、模式识别与智能控制专业)1998(1998有答案)控制理论(自控系各专业、机械学院及其他有关专业)1997(1997有答案)控制理论(自控系各专业、机械学院有关专业、制冷及低温工程、生物医学工程、模式识别与智能系统、电力电子与电力传动、轮机工程、动力机械及工程专业)1999(1999有答案)控制理论(自控系各专业、机械制造、机械电子、材料加工、动力机械、模式识别、制冷、轮机工程、车辆工程等专业)2000(2000有答案)控制理论(自控系各专业、模式识别、机电控制等专业)1995(1995有答案)控制理论基础(船舶与海洋工程专业)2007自动控制理论(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001自动控制理论(电机与电器、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术、脉冲功率与等离子体、动力工程及其自动化专业)2005自动控制理论(电机与电器、电力系统及其自动化专业)2000自动控制理论(电力系统及其自动化、水力发电工程专业)1998自动控制理论(电气工程所有专业、动力机械及工程专业)2004自动控制理论(电气工程所有专业、制冷及低温工程专业)2002自动控制理论(电气学院所有专业)2006自动控制理论(电气学院所有专业、能源学院部分专业)2003自动控制理论(水利水电工程、电机与电器、电力系统及其自动化专业)1999 自动控制理论(水利水电工程、系统分析与集成专业)2003自动控制理论(水利水电工程专业)2001,2004——2007自动控制原理(水文学及水资源、水利水电工程、系统分析与集成专业)2002 自动控制原理(系统分析与集成、控制科学与工程、机械工程、仪器科学与技术、建筑技术与科学专业)2007电子技术基础(测试计量技术及仪器专业)2001电子技术基础(电磁场与微波技术、电路与系统、电力电子与电力传动、微电子学与固体电子学、半导体芯片系统与工艺、软件工程、模式识别与智能系统、信息安全、光学工程、光电信息工程、物理电子学、机械工程、仪器科学与技术专业)2007电子技术基础(电机与电器、电力电子与电力传动、微电子学与固体电子学、动力机械及工程、轮机工程、车辆工程专业)2000电子技术基础(电机与电器、电力电子与电力传动专业)1999电子技术基础(电机与电器、电力系统及其自动化、电力电子与电力传动、电工理论与新技术、轮机工程等专业)2001电子技术基础(电机与电器、电力系统及其自动化、电力电子与电力传动、电工理论与新技术、轮机工程等专业)2001电子技术基础(电气学院各专业、模式识别、精密仪器、测试计量、光学工程、物理电子学、微电子学专业)2002电子技术基础(光学工程、物理电子学、固体力学、流体力学、微电子学与固体电子学、模式识别与智能系统专业)1999电子技术基础(光学工程、物理电子学、光电信息工程、机械学院各专业)2005 电子技术基础(光学工程、物理电子学、机械制造及其自动化、机械电子工程、机械设计及理论、精微制造工程专业)2004电子技术基础(光学仪器、物理电子学与光电子学、固体力学、流体力学、电子材料与元器件、模式识别与智能控制、内燃机、汽车设计制造专业)1998电子技术基础(光学仪器、物理电子学与光电子学、固体力学、汽车设计制造、电子材料与元器件、模式识别与智能控制、内燃机专业)1997电子技术基础(化工过程机械专业)2005——2006电子技术基础(精密仪器及机械专业)2003电子技术基础(轮机工程、车辆工程、精密仪器及机械、测试计量技术及仪器专业)2005电子技术基础(生物医学工程、生物物理学、生物材料与组织工程专业)2005——2006电子技术基础(生物医学工程、生物物理学专业)2003——2004电子技术基础(生物医学工程专业)2002电子技术基础(微电子学与固体电子学、半导体芯片系统设计与工艺、电力电子与电力传动、模式识别与智能系统专业)2005电子技术基础(微电子学与固体电子学、半导体芯片系统设计与工艺、电力电子与电力传动、模式识别与智能系统专业)2006电子技术基础(微电子学与固体电子学、电力电子与电力传动、导航、制导与控制专业)2003电子技术基础(微电子学与固体电子学、电力电子与电力传动、导航、制导与控制专业)2004电子技术基础(物理电子学、光信息科学与技术、光学工程专业)2006电子技术基础(物理电子学、光学工程、模式识别与智能系统、流体力学专业)2000电子技术基础(物理电子学、光学工程、模式识别与智能系统专业)2001电子技术基础(物理电子学与光电子学专业)1995数据结构1999——2001,2006——2007数据结构及程序设计技术2004——2006数据结构与算法分析2006——2007数据库系统原理1996——2002,2004计算机组成原理(计算机科学与技术、模式识别与智能系统、机械工程、仪器科学与技术、建筑技术科学专业)1992——2002,2006——2007(另有模拟试题一份)计算机组成原理(生物医学工程、生物信息技术专业)2007C语言程序设计(计算机软件与理论专业)2001——2002操作系统1995——2002程序设计基础1995——2002程序设计语言及编译1999——2002互换性与技术测量2000——2007工业设计史2004——2005工业设计史论2006——2007工业设计综合考试2004——2007微机原理(8086)及应用(控制科学系各专业、模式识别与智能系统、力学各专业、材料加工工程专业)2000(2000有答案)微机原理(8086)及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001(2001有答案)微机原理(8086)及应用(自动控制工程系各专业、模式识别与智能系统、流体力学、工程力学专业)1999(1999有答案)微机原理(电信系各专业、电子材料与元器件专业)1996(1996有答案)微机原理(电信系各专业、电子材料与元器件专业)1998微机原理(电信系各专业、微电子学与固体电子学专业)1999微机原理(二)(光学工程、物理电子学专业)2002微机原理(光学工程、物理电子学专业)1999——2002微机原理(光学仪器、物理电子学与光电子学专业)1997——1998(1997有答案)微机原理(软件工程专业)2007微机原理(三)(电路与系统专业)2002微机原理(通信与电子系统、信号与信息处理、电路与系统、电磁场与微波技术、电子材料与元器件专业)1997微机原理(一)(电机与电气、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术专业)2002微机原理及微机控制技术(自动控制理论及应用、工业自动化、模式识别与智能控制专业)1996——1998(1997——1998有答案)微机原理及应用(材料加工工程、数字化材料成形专业)2005——2006微机原理及应用(材料加工工程专业)2003——2004微机原理及应用(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001微机原理及应用(二)(电力电子与电力传动、微电子学与固体电子学专业)2002 微机原理及应用(机械制造及其自动化、机械电子工程专业)2001微机原理及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001 微机原理及应用(软件工程专业)2006微机原理及应用(三)(控制理论与控制工程、系统工程、固体力学、模式识别、检测技术及自动化装置、工程力学、导航、制导专业)2002(2002有答案)微机原理及应用(水利水电工程、轮机工程、微电子学与固体电子学、供热、供燃气通风及空调工程专业)2001微机原理三(电路与系统专业)2002微机原理与接口技术(生物医学工程专业)2004微机原理与应用(机械制造及其自动化、机械电子工程、车辆工程、精密仪器及机械、测试计算技术及仪器、材料加工工程、轮机工程专业)2002微机原理与应用(机械制造及其自动化、机械电子工程等专业)2001结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001电动力学2001综合考试(含C语言程序设计、数据结构)(计算机应用技术专业)2001综合考试(含计算机系统结构、计算机网络、数据结构)(计算机系统结构专业)2002综合考试(计算机应用技术专业)(数据结构、C语言程序设计)1999——2001 通信原理(电路与系统、通信与信息系统、信号与信息处理专业)2001通信原理(通信与信息系统、信号与信息处理专业)2002通信原理(物理电子学、光学工程专业)2001汽车理论2004——2006汽车理论和设计2001——2002汽轮机原理2001——2002发动机原理2001综合考试(1)(脉冲与数字电路、微机、高频电路)(电信系各专业、模式识别与智能系统专业)2000综合考试(含程序设计技术、数据结构、计算机组成原理、离散数学)(计算机学院各专业、机械学院各专业、模式识别与智能系统专业)2003综合考试(含数字电路、微机原理)(通信与信息系统、信号与信息处理、模式识别与智能系统专业)2002综合考试二(含通信原理、高频电子线路)(电信系各专业、模式识别与智能系统专业)2000综合考试一(传感器原理、数字电子技术)(控制、机械各专业、建筑技术科学、模式识别专业)2005综合考试(含数据结构、计算机组成原理、离散数学)2004——2005光电检测技术2001——2003,2005综合考试(含信号与线性系统、数字信号处理)2005综合考试(一)(含信号与线性系统、数字信号处理)2003——2004(2004有答案)专业英语翻译(计算机体系结构、软件与理论、应用技术、信息安全专业)2006 专业英语翻译(模式识别与智能系统专业)2006英语专业翻译(机械工程、工业工程、仪器科学与技术、管理科学与工程专业)2006材料科学与工程学院量子力学2001,2002,2003,2004,2005,2006(第1种),2006(第2种),2007物理化学2000——2007(2000——2002有答案)计算机图形学2002化学综合2007化工基础2007生物化工基础2007塑性成形原理2002有机化学(化学各专业、结构工程、环境工程、生物化工专业)2000(2000有答案)有机化学(化学各专业、生物化工、材料加工工程、结构工程等专业)2001(2001有答案)有机化学(化学系各专业、环境科学专业)2002(2002有答案)有机化学(化学各专业)2003(2003有答案)有机化学(化学各专业、材料加工、环境化学专业)2004(2004有答案)有机化学(化学各专业、生物化学与分子生物学、生物信息技术、生物制药工程专业)2005有机化学(B卷)(应用化学等专业)2002有机化学(含高分子化学)(化学各专业及其他相关专业)2006有机化学(环境科学专业)2005无机化学2001——2002,2004——2005无机及分析化学2006无机与分析化学2003分析化学(分析化学、高分子化学与物理专业)2005分析化学(分析化学、高分子化学专业)2004分析化学(化学类各专业)2002分析化学(环境科学专业)2002——2005分析化学(环境科学、能源与环境工程专业)2006分析化学(有机化学、高分子化学与物理、环境工程专业)2001高分子化学2002——2003,2005——2006高分子化学(二)2004——2005高分子化学(一)2004高分子化学及物理2001——2002材料成形原理2003——2007材料科学基础2002——2003,2005——2007材料学基础2001微机原理及接口技术(材料加工工程、数字化材料成形、环境科学与工程专业)2007微机及接口技术(生物医学工程、生物物理学专业)2001微机接口与技术(生物医学工程专业)2003微机原理及接口技术(生物医学工程专业)2002微机原理(8086)及应用(控制科学系各专业、模式识别与智能系统、力学各专业、材料加工工程专业)2000(2000有答案)微机原理(8086)及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001(2001有答案)微机原理(8086)及应用(自动控制工程系各专业、模式识别与智能系统、流体力学、工程力学专业)1999(1999有答案)微机原理(电信系各专业、电子材料与元器件专业)1996(1996有答案)微机原理(电信系各专业、电子材料与元器件专业)1998微机原理(电信系各专业、微电子学与固体电子学专业)1999微机原理(二)(光学工程、物理电子学专业)2002微机原理(光学工程、物理电子学专业)1999——2002微机原理(光学仪器、物理电子学与光电子学专业)1997——1998(1997有答案)微机原理(软件工程专业)2007微机原理(三)(电路与系统专业)2002微机原理(通信与电子系统、信号与信息处理、电路与系统、电磁场与微波技术、电子材料与元器件专业)1997微机原理(一)(电机与电气、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术专业)2002微机原理及微机控制技术(自动控制理论及应用、工业自动化、模式识别与智能控制专业)1996——1998(1997——1998有答案)微机原理及应用(材料加工工程、数字化材料成形专业)2005——2006微机原理及应用(材料加工工程专业)2003——2004微机原理及应用(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001微机原理及应用(二)(电力电子与电力传动、微电子学与固体电子学专业)2002 微机原理及应用(机械制造及其自动化、机械电子工程专业)2001微机原理及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001 微机原理及应用(软件工程专业)2006微机原理及应用(三)(控制理论与控制工程、系统工程、固体力学、模式识别、检测技术及自动化装置、工程力学、导航、制导专业)2002(2002有答案)微机原理及应用(水利水电工程、轮机工程、微电子学与固体电子学、供热、供燃气通风及空调工程专业)2001微机原理三(电路与系统专业)2002微机原理与接口技术(生物医学工程专业)2004微机原理与应用(机械制造及其自动化、机械电子工程、车辆工程、精密仪器及机械、测试计算技术及仪器、材料加工工程、轮机工程专业)2002微机原理与应用(机械制造及其自动化、机械电子工程等专业)2001结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001电动力学2001综合考试(材料加工工程专业)2001——2002陶瓷材料2005——2006陶瓷材料学2001——2002,2004金属材料2004金属材料学2001——2002金属塑性成形原理1997,1999,2001金属学及热处理2001——2002铸件形成理论2002铸件形成理论基础1998,2001铸造金属学及热处理1998,2001专业英语(材料学、纳米材料及技术专业)2006能源与动力工程学院传热学1999,2000,2001(第1种),2001(第2种),2003——2007(1999,2000,2001(第1种)有答案)锅炉原理2001——2002,2005流体机械原理2002内燃机原理2001——2002离心压缩机原理2001工程流体力学2002,2007结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001不可压缩流体力学2001——2006低温原理与设备2000——2002(2000有答案)电工电子技术2001,2003电站锅炉原理2004化工原理2001,2005制冷原理与设备2001——2002热工自动化2002工程热力学2001(第1种),2001(第2种),2002——2006专业英语翻译(动力机械及工程专业)2006电气与电子工程学院电路理论(电力系统及其自动化、高电压与绝缘技术、电机与电器、电工理论与新技术、电力电子与电力传动、环境工程专业)2001——2003电路理论(电气工程、环境科学与工程专业)2007电路理论(电气工程学科所有专业、环境工程、机械制造及自动化、精密制造、数字化设计专业)2005电路理论(电气工程学科所有专业、环境工程等专业)2006电路理论(电气工程学科所有专业、机械制造及自动化、环境工程、机械电子工程、机械设计及其理论、精微制造工业等专业)2004电路理论(光学工程、物理电子学、控制理论与控制工程、检测技术与自动化装置、系统工程、模式识别与智能系统专业)2002电路理论(光学工程、物理电子学专业)1999——2001电路理论(物理电子学与光电子学、光学仪器专业)1998电磁场2002,2007电磁场与电磁波2001——2006电磁学与热学2005电机学2001——2002电力电子技术2000——2001电力电子学2001——2002电力系统分析1999——2002发电厂及电力系统1998高电压技术2001——2002高压电器2001电子器件2002力学与电磁学2001——2004英语(电力系统及其自动化、电力电子与电力传动、电工理论与新技术、电气信息检测技术专业)2006交通科学与工程学院交通工程2001——2002,2004交通工程学2003,2005——2007综合考试(轮机工程专业)2004高级语言程序设计(C语言)2001——2002城市道路规划与设计2002,2006——2007城市道路设计2001——2005船舶力学基础2007船舶设计原理2001——2002船舶原理2001——2002控制理论(化工过程机械专业)2001控制理论(经典控制理论、现代控制理论)(控制理论与控制工程、检测技术及自动化装置、系统工程、系统信息化技术、系统分析与集成、建筑技术科学、模式识别与智能系统、机械制造及其自动化、机械电子工程、机械设计及理论、精微制造工程、数字化设计及制造、设计艺术学专业)2005控制理论(经典控制理论、现代控制理论)(控制系所有专业、模式识别与智能系统、建筑技术科学专业)2006控制理论(控制理论与控制工程、检测技术及自动化装置、系统工程、机制、机电、车辆、材料加工、轮机工程、模式识别、导航、制导专业)2002(2002有答案)控制理论(控制系、图象所各专业及生物物理学、机械制造及自动化、机械电子工程等专业)2001(2001有答案)控制理论(自控系各专业、机电学院各专业、模式识别与智能控制、内燃机专业)1996(1996有答案)控制理论(自控系各专业、机械学院、交通学院有关专业、制冷及低温工程、模式识别与智能控制专业)1998(1998有答案)控制理论(自控系各专业、机械学院及其他有关专业)1997(1997有答案)控制理论(自控系各专业、机械学院有关专业、制冷及低温工程、生物医学工程、模式识别与智能系统、电力电子与电力传动、轮机工程、动力机械及工程专业)1999(1999有答案)控制理论(自控系各专业、机械制造、机械电子、材料加工、动力机械、模式识别、制冷、轮机工程、车辆工程等专业)2000(2000有答案)控制理论(自控系各专业、模式识别、机电控制等专业)1995(1995有答案)控制理论基础(船舶与海洋工程专业)2007自动控制理论(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001自动控制理论(电机与电器、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术、脉冲功率与等离子体、动力工程及其自动化专业)2005自动控制理论(电机与电器、电力系统及其自动化专业)2000自动控制理论(电力系统及其自动化、水力发电工程专业)1998自动控制理论(电气工程所有专业、动力机械及工程专业)2004自动控制理论(电气工程所有专业、制冷及低温工程专业)2002自动控制理论(电气学院所有专业)2006自动控制理论(电气学院所有专业、能源学院部分专业)2003自动控制理论(水利水电工程、电机与电器、电力系统及其自动化专业)1999 自动控制理论(水利水电工程、系统分析与集成专业)2003自动控制理论(水利水电工程专业)2001,2004——2007自动控制原理(水文学及水资源、水利水电工程、系统分析与集成专业)2002 自动控制原理(系统分析与集成、控制科学与工程、机械工程、仪器科学与技术、建筑技术与科学专业)2007结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001专业英语翻译(船舶与海洋结构物设计制造、轮机工程、交通工程专业)2006力学系材料力学(船舶与海洋结构物设计制造专业)2003——2004材料力学(船舶与海洋结构物设计制造、化工过程机械专业)2001——2002材料力学(船舶与海洋结构物设计制造、水下工程专业)2005——2006材料力学(固体力学、工程力学、材料加工工程专业)2001——2002材料力学(力学系所有专业)2002,2005——2006材料力学(岩土工程、道路与铁道工程、化工过程机械专业)2005——2006材料力学(岩土工程、道路与铁道工程专业)2003——2004材料力学(岩土工程专业)2001——2002材料力学一(固体力学、工程力学、动力机械及工程专业)2004理论力学1997——2006(1997——2001有答案)(另有《理论力学》考研复习内部资料,含理论力学课程考研基本要求、考研试题内容及题型的分析,10元。
华中科技大学计算机考研复试机试题(含代码)
华科历年复试机试题汇总上机考试。
一般网站上公布上机环境要求是TC2.0,但实际上是可以使用VC的。
这里有一点特别要大家注意:TC2.0只支持纯C代码,不支持C++风格代码。
华科的计算机学生称,不管你是用VC还是TC,老师都要在TC2.0上进行验收程序,以确认你的代码是纯C。
比如:p = new Node ; 的代码写法在TC2.0下是通不过的,只能写p = (Node *)malloc (sizeof (Node)) ; 。
另外TC2.0不支持引用,如:Pop (Stack &s , ElemType &e)中含有“&”的引用,在TC2.0下无法通过。
华科的上机题目每年都差不多,经常考的就是排序、链表和树的操作等。
建议在去复试前一定要进行专门练习上机。
Note:要快,不要总抓着一个不放,时间在不知不觉中过的是很快的。
2010年的机试题:a、输入一个字符串,然后对每个字符进行奇校验,最后输出校验后的二进制数!(如‘3’,输出:10110011);#include <stdio.h>#include <string.h>#define max 1000int pd(char c){int i=0;int num=0;for(i=0;i<7;i++){if(c&(1<<i))num++;}if(num%2==0)return 1;elsereturn 0;}void main(){char a[max];scanf("%s",a);int i,j;int len=strlen(a);for(i=0;i<len;i++){if (pd(a[i])){a[i]=a[i]|(1<<7);}for(j=7;j>=0;j--)if(a[i]&(1<<j))printf("1");elseprintf("0");printf("\n");}}b、设计8个任务函数task0()-task7()只输出一句话:如task0()输出“task0 is called!”;设计一个调度函数schedule ()输入一个字符串如"012345"然后返回一个函数指针数组和字符串的长度作为执行函数execute()的参数进行调度任务函数。
2003考研数四真题及解析
2003年全国硕士研究生入学统一考试数学四试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1)极限xx x 20)]1ln(1[lim ++→=. (2)dx ex x x⎰--+11)(=.(3)设0a >,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则I (4)设,A (A (5)设n A =其中(6)(1)曲线(A)(C)(2)(A)(C)(3)设可微函数(,)f x y 在点),(00y x 取得极小值,则下列结论正确的是()(A)),(0y x f 在0y y =处的导数等于零.(B)),(0y x f 在0y y =处的导数大于零. (C)),(0y x f 在0y y =处的导数小于零.(D)),(0y x f 在0y y =处的导数不存在.(4)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001010100B .已知矩阵A 相似于B ,则秩(2)A E -与秩()A E -之和等于() (A)2.(B)3.(C)4.(D)5.(5)对于任意二事件A 和B ()(A)若φ≠AB ,则,A B 一定独立.(B)若φ≠AB ,则,A B 有可能独立. (C)若φ=AB ,则,A B 一定独立.(D)若φ=AB ,则,A B 一定不独立. (6)设随机变量X 和Y 都服从正态分布,且它们不相关,则()(A)X 与Y 一定独立.(B)(X ,Y )服从二维正态分布. (C)X 与Y 未必独立.(D)X +Y 服从一维正态分布. 三、(本题满分8分)设).1,1[,111)(∈-+=x x f 试补充定义(1)f 使得()f x 在]1,1[上连续.四、(设f 求22x g +∂∂五、(六、(设a 七、(设y C 为M 在x ()f x 的表达式.八、(试求(1) t 时的商品剩余量,并确定k 的值;(2) 在时间段[0,]T 上的平均剩余量. 九、(本题满分13分)设有向量组(I):T )2,0,1(1=α,T )3,1,1(2=α,T a )2,1,1(3+-=α和向量组(II):Ta )3,2,1(1+=β,T a )6,1,2(2+=β,.)4,1,2(3T a +=β试问:当a 为何值时,向量组(I)与(II)等价?当a 为何值时,向量组(I)与(II)不等价?十、(本题满分13分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a A 11121112可逆,向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11b α是矩阵*A 的一个特征向量,λ是α对应的特征值,其中*A 是矩阵A 的伴随矩阵.试求,a b 和λ的值. 十一、(本题满分13分)设随机变量X 的概率密度为()F X 是X 的分布函数.求随机变量()Y F X =的分布函数.十二、(本题满分13分)称作事件(1) (2) (1)【详解】形式:方法2:ln(1)x +(2)【详解】102x xde -=-⎰112[]xx xe e dx --=--⎰=)21(21--e . (3)【答案】2a【详解】本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,则二重积分只需在积分区域与被积函数不为零的区域的公共部分商积分即可,因此实际上只需在满足此不等式的区域内积分即可.⎰⎰-=Ddxdy x y g x f I )()(=20101x y x a dxdy ≤≤≤-≤⎰⎰=1120x x a dx dy +⎰⎰1220[(1)]a x x dx a =+-=⎰(4)【答案】⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100 【详解】应先化简,从2AB A B =+中确定1)(--E A .⇒E E B E A 2)2)((=--⇒E E B E A =-⋅-)2(21)(,所以1)(--E A =)2(21E B -=⎥⎥⎤⎢⎢⎡010100. (5)【详解】由题设,有于是有-(6)【详解】cov(,)212XY X Y ρ==⨯=.所以222()()[()]()()E X Y D X Y E X Y D X Y EX EY +=+++=+++ 方法2:由数学期望的线性可加性()()()E aX bY aE X bE Y +=+得:再利用()()()(,)E XY Cov X Y E X E Y =+⋅,得由方差定义的公式,有22()()[()]D X E X E X =-202,=-=同理()2D Y =, 再由相关系数的定义XY ρ=得,cov(,)XY X Y ρ=二、选择题 (1)【答案】()D【分析】按照铅直、水平、斜渐近线三种情况分别考虑:先考虑是否有水平渐近线:lim (),()x f x c c →±∞=为常数,y c =为曲线的一条水平渐近线;若无水平渐近线应进一步考虑是否存在斜渐近线:()()lim,lim [()]x x x x x x yk b f x kx x →∞→∞→+∞→+∞→-∞→-∞==-,y kx b =+为曲线的一条斜渐近线;【详解】2.x 2201lim u u u u →3.故曲线y =(2)由于故应选()A . (3)【答案】()A【详解】由函数(,)f x y 在点),(00y x 处可微,知函数(,)f x y 在点),(00y x 处的两个偏导数都存在,又由二元函数极值的必要条件即得(,)f x y 在点),(00y x 处的两个偏导数都等于零.从而有 选项()A 正确. (4)【答案】(C)【分析】利用相似矩阵有相同的秩计算,秩(2)A E -与秩()A E -之和等于秩(2)B E -与秩()B E -之和.【详解】因为矩阵A 相似于B ,又1B P AP -=,所以()111222P A E P P AP P EP B E ----=-=-,于是,矩阵(2)A E -与矩阵(2)B E -相似.同理有所以,矩阵A E -与矩阵B E -相似.又因为相似矩阵有相同的秩,而秩(2)B E -=秩3201010102=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---,秩()B E -=秩1101000101=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--, 所以有(5)当P ≠∅.可见,当A AB 若,(D)也不(6)①若X Y 与②若③若(,)X Y 服从二维正态分布,则X Y 与相互独立⇔X Y 与不相关.【详解】只有当(,)X Y 服从二维正态分布时,X Y 与不相关⇔X Y 与独立,本题仅仅已知X Y 与服从正态分布,因此,由它们不相关推不出X Y 与一定独立,排除(A);若X Y 与都服从正态分布且相互独立,则(,)X Y 服从二维正态分布,但题设并不知道,X Y 是否独立,可排除(B);同样要求X Y 与相互独立时,才能推出X Y +服从一维正态分布,可排除(D).故正确选项为(C).三【详解】为使函数()f x 在1[,1]2上连续,只需求出函数()f x 在1x =的左极限)(lim 1x f x -→,然后定义(1)f 为此极限值即可.令1u x =-,则当1x -→时,0u +→,所以定义π1)1(=f ,从而有11lim ()(1)x f x f π-→==,()f x 在1x =处连续.又()f x 在)1,21[上连续,所以()f x 在]1,21[上连续. 四【详解】由复合函数[(,),(,)]z f x y x y ϕψ=的求导法则,得 从而所以22g x ∂∂五记A 0⎰=因此=A 六0,得唯一驻点求(t 当e e 时,l n l n a <e11-=为七【分析】梯形OCMA 的面积可直接用梯形面积公式计算得到,曲边三角形CBM 的面积可用定积分计算,再由题设,梯形OCMA 的面积与曲边三角形CBM 的面积之和为3163+x ,可得一含有变限积分的等式,两边求导数,可转化为一阶线性微分方程,然后用通解公式计算即可. 【详解】由题意得1[1()]2OCMA S x f x =+,1()CBM x S f t dt =⎰ 所以316)()](1[213+=++⎰x x dt t f x f x .两边关于x 求导2111[1()]()()222f x xf x f x x '++-=,即21()()2().f x xf x f x x '++-= 化简,当0≠x 时,得211()()x f x f x x x -'-=,即211.dy x y dx x x--⋅= 利用一阶线性非齐次微分方程()()dyP x y Q x dx+=的通解公式 所以此方程为标准的一阶线性非齐次微分方程,其通解为y曲线过点八再T (2)dt t y )(表示(函数⎰=T dt t y T y 0)(1=2-20011()()()22TT A A A T A t dt At t T T T T T T T -=-=-⎰牛莱公式=.2A 因此在时间段[0,]T 上的平均剩余量为.2A九【分析】两个向量组等价也即两个向量组可以相互线性表示;而两个向量组不等价,只需其中一组有一个向量不能由另一组线性表示即可.而线性表示问题又可转化为对应非齐次线性方程组是否有解的问题,这可通过化增广矩阵为阶梯形来判断.一个向量1β是否可由321,,ααα线性表示,只需用初等行变换化增广矩阵(1321,,βααα)为阶梯形讨论,而一组向量321,,βββ是否可由321,,ααα线性表示,则可结合起来对矩阵(321321,,,,βββααα)同时作初等行变换化阶梯形,然后类似地进行讨论即可.【详解】矩阵(321321,,,,βββααα)作初等行变换,有),,,,(321321βββααα =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++-463232112110221111a a a a(第一行乘以-1加到第三行,第二行乘以-1加到第三行)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+--→111100112110111201a a a a .(1)方程组11+x x α量组(I)(2)1β不能由21,,ααα(1)3等价,即向量组(2)可见2),,(321=αααr ≠1231(,,,)r αααβ=3,因此线性方程组1332211βααα=++x x x 无解,故向量1β不能由321,,ααα线性表示.即向量组(I)与(II)不等价.【评注2】向量组(I)与(II)等价,相当于321,,ααα与321,,βββ均为整个向量组321321,,,,,βββααα的一个极大线性无关组,问题转化为求向量组321321,,,,,βββααα的极大线性无关组,这可通过初等行变换化阶梯形进行讨论.十【分析】题设已知特征向量,应想到利用定义:λαα=*A .又与伴随矩阵*A 相关的问题,应利用EA AA =*进行化简.【详解】矩阵*A 属于特征值λ的特征向量为α,由于矩阵A 可逆,故*A 可逆.于是0≠λ,0≠A ,且λαα=*A .两边同时左乘矩阵A ,得αλαA AA =*⇒αλαAA =,即⎥⎥⎤⎢⎢⎡=⎥⎥⎤⎢⎢⎡⎥⎥⎤⎢⎢⎡11121112b A b λ, 由式(1)因此根据(1)所以,当【评注】见到*A ,十一设G )1,0[∈y ,有十二【分析】A 和B 独立的充要条件是{}{}{}P AB P A P B =⋅,由此可以直接证明问题(1);对于问题(2),应先构造随机变量,不难看出与事件A 和A 联系的应是随机变量 随机变量X 和Y 的相关系数为XY E XY E X E Y ρ-==,需将P AB P A P B ρ-=转化为用随机变量表示.显然,若有(){}E XY P AB =,(){}(){},E X P A E Y P B ====即可,这只需定义【详解】(1)由题给ρ的定义,可见0=ρ当且仅当{}{}{}0P AB P A P B ==,而这恰好是二事件A 和B 独立的定义,即0=ρ是A 和B 独立的充分必要条件.(2)考虑随机变量X 和Y :由条件知,X 和Y 都服从01-分布:01⎛⎫01⎛⎫易见(E 1ρ≤。