2015物理《高考专题》(二轮)专题检测卷专题九碰撞与动量守恒 近代物理初步.
高三二轮复习物理专题通关课时巩固过关练(十七)碰撞与动量守恒近代物理初步9含答案
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时巩固过关练(十七)碰撞与动量守恒近代物理初步(45分钟100分)1.(12分)(1)恒星向外辐射的能量来自其内部发生的各种热核反应,当温度达到108K时,可以发生“氦燃烧”。
①完成“氦燃烧”的核反应方程He+ Be+γ。
Be是一种不稳定的粒子,其半衰期为2.6×10-16s。
一定质量的Be,经7.8×10-16s后所剩Be占开始时的。
(2)如图所示,AB为倾角θ=37°的粗糙斜面轨道,通过一小段光滑圆弧与光滑水平轨道BC相连接,质量为m2的小球乙静止在水平轨道上,质量为m1的小球甲以速度v0与乙球发生弹性正碰。
若m1∶m2=1∶2,且轨道足够长,要使两球能发生第二次碰撞,求乙球与斜面之间的动摩擦因数μ的取值范围。
(sin37°=0.6,cos37°=0.8)【解析】(1)①根据电荷数守恒、质量数守恒可得应为He(或α)②因为==3所以:m=m 0(=m 0(2)设碰后甲的速度为v 1,乙的速度为v 2,由动量守恒和能量关系知:m 1v 0=m 1v 1+m 2v 2m 1=m 1+m 2联立解得:v 1=v 0=-v 0v 2=v 0=v 0设上滑的最大位移大小为s,滑到斜面底端的速度大小为v,由动能定理知:(m 2gsin37°+μm 2gcos37°)s=m 2(m 2gsin37°-μm 2gcos37°)s=m 2v 2联立解得()2= 乙要能追上甲,则v>解得μ<0.45答案:(1)He(或α) ② (2)μ<0.452.(12分)(2015·保山三模)(1)(多选)以下是有关近代物理内容的若干叙述,其中正确的是( )A.太阳内部发生的核反应是热核反应B.一束光照射到某种金属上不能发生光电效应,可能是因为这束光的光强太小C.按照玻尔理论,氢原子核外电子从半径较小的轨道跃迁到半径较大的轨道时,电子的动能减小,但原子的能量增大D.原子核发生一次β衰变,该原子外层就失去一个电子E.天然放射现象中发出的三种射线是从原子核内放出的射线(2)光滑水平面上A、B两小球向同一方向运动,B在前,A在后,已知A 的动量为p A=6kg·m/s,B的质量为m B=4kg,速度为v B=3m/s,两球发生对心碰撞后,速度同为4m/s。
专题检测卷(17) 专题九碰撞与动量守恒 近代物理初步
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
专题检测卷(十七)碰撞与动量守恒近代物理初步(45分钟100分)1.(16分)(1)如图所示,小车M由光滑的弧形段AB和粗糙的水平段BC组成,静止在光滑水平面上。
当小车固定时,从A点由静止滑下的物块m到C点恰好停止。
如果小车不固定,物块m仍从A点静止滑下( )A.还是滑到C点停住B.滑到BC间某处停住C.会冲出C点落到车外D.上述三种情况都有可能=0.4 kg,开始时都静止于光滑水平面上,(2)两木板M小物块m=0.1 kg以初速度v=10 m/s滑上M1的表面,最后停在M2上时速度为v2=1.8 m/s,求:①最后M1的速度v1;②在整个过程中克服摩擦力所做的功。
2.(17分)(2012·天津高考)(1)下列说法正确的是( )A.采用物理或化学方法可以有效地改变放射性元素的半衰期B.由玻尔理论知道氢原子从激发态跃迁到基态时会放出光子C.从高空对地面进行遥感摄影是利用紫外线良好的穿透能力D.原子核所含核子单独存在时的总质量小于该原子核的质量(2)如图所示,水平地面上固定有高为h的平台,台面上有固定的光滑坡道,坡道顶端距台面高也为h,坡道底端与台面相切。
小球A从坡道顶端由静止开始滑下,到达水平光滑的台面后与静止在台面上的小球B发生碰撞,并粘连在一起,共同沿台面滑行并从台面边缘飞出,落地点与飞出点的水平距离恰好为台高的一半。
两球均可视为质点,忽略空气阻力,重力加速度为g。
求:①小球A刚滑至水平台面的速度v A;②A、B两球的质量之比m A∶m B。
3.(17分)(2013·宿迁一模)(1)下列说法中正确的是( )A.光电效应现象说明光具有粒子性B.普朗克在研究黑体辐射问题时提出了能量子假说C.玻尔建立了量子理论,成功解释了各种原子发光现象D.运动的宏观物体也具有波动性,其速度越大物质波的波长越大(2)如图所示,一水平面上P点左侧光滑,右侧粗糙,质量为m的劈A在水平面上静止,上表面光滑,A轨道右端与水平面平滑连接,质量为M的物块B恰好放在水平面上P点,物块B与水平面的动摩擦因数为μ=0.2。
高考物理二轮专训【17】碰撞与动量守恒、近代物理初步
提能专训(十七)碰撞与动量守恒、近代物理初步时间:90分钟满分:100分一、选择题(本题共8小题,每小题4分,共32分.多选全部选对的得4分,选对但不全的得2分,有选错的得0分)1.(2018·福建理综)如图,放射性元素镭衰变过程中释放出α、β、γ三种射线,分别进入匀强电场和匀强磁场中,下列说法正确的是( )A.①表示γ射线,③表示α射线B.②表示β射线,③表示α射线C.④表示α射线,⑤表示γ射线D.⑤表示β射线,⑥表示α射线答案:C解析:γ射线为电磁波,在电场、磁场中均不偏转,故②和⑤表示γ射线,A、B、D项错;α射线中的α粒子为氦的原子核,带正电,在匀强电场中,沿电场方向偏转,故③表示α射线,由左手定则可知在匀强磁场中α射线向左偏转,故④表示α射线,C项对.2.下表给出了一些金属材料的逸出功.现用波长为h=6.63×10-34 J·s,光速c=3×108 m/s)( )A.2种B.3种C.4种D.5种答案:A解析:要发生光电效应,则入射光的能量大于金属的逸出功,由题可算出波长为400 nm的光的能量为E=hν0=hcλ0=6.63×10-34×3.0×108400×10J=4.97×10-19 J,大于铯和钙的逸出功,所以A选项正确.3.(2018·山东潍坊一模)(多选)下列关于近代物理知识的说法正确的是( ) A.发生α衰变时,生成核与原来的原子核相比,中子数减少了2个B.β射线是原子核外的电子电离形成的电子流,它具有较强的穿透能力C.含有10个原子核的放射性元素,经过一个半衰期,一定有5个原子核发生衰变D.氢原子的核外电子由较高能级跃迁到较低能级时,要释放一定频率的光子,同时氢原子的电势能减少,电子的动能增加答案:AD解析:发生α衰变时,质量数少4,电荷数少2,生成核与原来的原子核相比,中子数减少了2个,A正确;β射线是原子核内的中子转化为质子同时释放一个电子,B错误;半衰期是对大量粒子的统计规律,对少数原子核不适用,C错误;氢原子的核外电子由较高能级跃迁到较低能级时,要释放一定频率的光子,同时氢原子的电势能减少,电子的动能增加,D正确.(2018·广东肇庆一模)如图所示为氢原子的能级结构示意图,一群氢原子处于n=3的激发态,在向较低能级跃迁的过程中向外辐射出光子,用这些光子照射逸出功为2.49 eV的金属钠.下列说法正确的是( ) A.这群氢原子能辐射出三种不同频率的光,其中从n=3能级跃迁到n=2能级所发出的光波长最短B.这群氢原子在辐射光子的过程中电子绕核运动的动能减少,电势能增加C.能发生光电效应的光有三种D.金属钠表面所发出的光电子的最大初动能是9.60 eV答案:D解析:根据C23=3知,这群氢原子能辐射出三种不同频率的光子,从n=3向n=2跃迁的光子频率最小,波长最长,A错误.氢原子辐射光子的过程中,能量减少,轨道半径减小,根据k e2r2=mv2r知,电子动能增加,则电势能减少,B错误.只有从n=3跃迁到n=1,以及从n=2跃迁到n=1辐射的光子能量大于逸出功,所以能发生光电效应的光有两种,C错误.从n=3跃迁到n=1辐射的光子能量最大,发生光电效应时,产生的光电子最大初动能最大,光子能量最大值为13.6 eV-1.51 eV=12.09 eV,根据光电效应方程得,E km=hν-W0=12.09 eV-2.49 eV=9.60 eV,D正确.5.(2018·广东深圳市二模)(多选)238 92U的衰变方程为238 92U→234 90Th+42He,其衰变曲线如图,T为半衰期,则( )A.238 92U发生的是α衰变B.238 92U发生的是β衰变C .k =3D .k =4答案:AC解析:由衰变方程可知23892U 发生的是α衰变,A 对,B 错;m =⎝ ⎛⎭⎪⎫12k m 0,当k =3时,m =18m 0,故k =3,C 对,D 错.6.(2018·江苏南京一模)(多选)钚的一种同位素23994Pu 衰变时释放巨大能量,如图所示,其衰变方程为23994Pu→23592U +42He +γ,则( ) A .核燃料总是利用比结合能小的核 B .核反应中γ的能量就是23994Pu 的结合能 C.23592U 核比23994Pu 核更稳定,说明23592U 的结合能大D .由于衰变时释放巨大能量,所以23994Pu 比23592U 的比结合能小 答案:AD解析:在核反应中,比结合能越大的核越恒定,所以核燃料总是利用比结合能较小的核,A 正确;衰变后,铀核比钚核更加稳定,所以铀核的比结合能大,D 正确.7.(多选)用a 、b 两种不同频率的光分别照射同一金属板,发现当a 光照射时验电器的指针偏转,b 光照射时指针未偏转,以下说法正确的是( )A .增大a 光的强度,验电器的指针偏角一定减小B .a 光照射金属板时验电器的金属小球带负电C .a 光在真空中的波长小于b 光在真空中的波长D .若a 光是氢原子从n =4的能级向n =1的能级跃迁时产生的,则b 光可能是氢原子从n =5的能级向n =2的能级跃迁时产生的答案:CD解析:根据题意,a 光能使该金属发生光电效应,而b 光不能,a 光的频率必定大于b 光的频率,a 光在真空中的波长一定小于b光在真空中的波长,选项C正确;a光照射金属板时,能使该金属发生光电效应,即放出电子,金属板会因放出电子而带正电荷,当增大a光的强度时,金属板逸出的电子增多,金属板的带电荷量增多,验电器指针偏角一定增大,所以选项A错误;a光照射金属板时,金属板带正电,与其连接的验电器的金属小球也带正电,所以选项B错误;根据玻尔理论,氢原子从n=4的能级向n=1的能级跃迁时产生的光子能量大于氢原子从n=5的能级向n=2的能级跃迁时产生的光子能量,又a光的频率较大,光子能量也较大,所以若a光是氢原子从n=4的能级向n=1的能级跃迁时产生的,则b光可能是氢原子从n=5的能级向n=2的能级跃迁时产生的,选项D正确.8.(2018·天津六校联考)A、B为原来都静止在同一匀强磁场中的两个放射性元素原子核的变化示意图,其中一个放出一α粒子,另一个放出一β粒子,运动方向都与磁场方向垂直.如图中a、b与c、d分别表示各粒子的运动轨迹,下列说法中不正确的是( )A.磁场方向一定为垂直纸面向里B.尚缺乏判断磁场方向的条件C.A放出的是α粒子,B放出的是β粒子D.b为α粒子的运动轨迹,c为β粒子的运动轨迹答案:A解析:粒子在磁场中做匀速圆周运动,磁场方向不同,粒子旋转的方向相反,由于α粒子和β粒子的速度方向未知,不能判断磁场的方向,故A错误,B正确;放射性元素放出α粒子时,α粒子与反冲核的速度相反,而电性相同,则两个粒子受到的洛伦兹力方向相反,两个粒子的轨迹应为外切圆,而放射性元素放出β粒子时,β粒子与反冲核的速度相反,且电性相反,则两个粒子受到的洛伦兹力方向相同,两个粒子的轨迹应为内切圆,故B放出的是β粒子,A放出的是α粒子,故C正确;放射性元素放出粒子时,两带电粒子的动量守恒,由半径公式可得轨迹半径与动量成正比,与电量成反比,而α粒子和β粒子的电量比反冲核的电量小,则α粒子和β粒子的半径比反冲核的半径都大,故b为α粒子的运动轨迹,c为β粒子的运动轨迹,故D正确.二、填空题(本题包括2小题,共12分.请将正确的答案填写在横线上.)9.(6分)(1)现有三个核反应方程:①2411Na→2412Mg+ 0-1e;②235 92U+10n→141 56Ba+9236Kr+310n;③21H+31H→42He+10n.下列说法正确的是________.A.①是裂变,②是β衰变,③是聚变B.①是聚变,②是裂变,③是β衰变C.①是β衰变,②是裂变,③是聚变D.①是β衰变,②是聚变,③是裂变(2)现有四个核反应: A.21H +31H→42He +10n B.23592U +10n→X+8936Kr +310n C.2411Na→2412Mg + 0-1e D.42He +94Be→126C +10n①________是发现中子的核反应方程,________是研究原子弹的基本核反应方程,________是研究氢弹的基本核反应方程.②B 中X 的质量数和中子数分别为________、________. 答案:(1)C (2)①D B A ②144 88解析:(1)2411Na→2412Mg +0-1e 中Na 核释放出β粒子,为β衰变;23592U +10n→14156Ba +9236Kr +310n 为铀核在被中子轰击后,分裂成两个中等质量的核,为裂变;而21H +31H→42He +10n 为聚变,故C 正确.(2)①人工转变核反应方程的特点:箭头的左边是氦核与常见元素的原子核,箭头的右边也是常见元素的原子核,故D 是查德威克发现中子的核反应方程;B 是裂变反应,是研究原子弹的基本核反应方程;A 是聚变反应,是研究氢弹的基本核反应方程.②由电荷数守恒和质量数守恒可以判定,X 的质量数为144,电荷数为56,所以中子数为144-56=88. 10.(2018·山东泰安质检)(6分)氘核21H 与氚核31H 结合成氦核42He 的核反应方程如下:21H +31H ―→42He +10n +17.6 MeV(1)这个核反应称为________.(2)要发生这样的核反应,需要将反应物质的温度加热到几百万开尔文.式中17.6 MeV 是核反应中________(填“放出”或“吸收”)的能量,核反应后生成物的总质量比核反应前物质的总质量________(填“增加”或“减少”)了________kg.答案:(1)聚变 (2)放出 减少 3.1×10-29解析:21H +31H→42He +10n +17.6 MeV 为轻核聚变反应,17.6 MeV 是反应中放出的能量,再由ΔE =Δmc 2可知,质量减少Δm =ΔE c2=3.1×10-29kg.三、计算题(本题包括5小题,共56分.解答应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案不能得分)11.(2018·湖北八校二联)(10分)如图,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数为μ.现让甲物块以速度v 0向着静止的乙运动并发生正碰,试求:(1)甲与乙第一次碰撞过程中系统的最小动能;(2)若甲在乙刚停下来时恰好与乙发生第二次碰撞,则在第一次碰撞中系统损失了多少机械能? 答案:(1)23mv 20 (2)14mv 2解析:(1)碰撞过程中系统动能最小时,为两物体速度相等时,设此时两物体速度为v 由系统动量守恒有2mv 0=3mv得v =23v 0此时系统的动能E k =12×3mv 2=23mv 20(2)设第一次碰撞刚结束时甲、乙的速度分别为v 1、v 2,之后甲做匀速直线运动,乙以初速度v 2做匀减速直线运动,在乙刚停下时甲追上乙并发生碰撞,因此两物体在这段时间内平均速度相等,有v 1=v 22而第一次碰撞中系统动量守恒,有 2mv 0=2mv 1+mv 2 由以上两式可得 v 1=v 02v 2=v 0所以第一次碰撞中的机械能损失量为 E =12×2mv 20-12×2mv 21-12mv 22=14mv 2012.(2018·宁夏银川一中一模)(10分)如图所示,在光滑水平面上有一块长为L 的木板B ,其上表面粗糙,在其左端有一个光滑的圆弧槽C 与长木板接触但不连接,圆弧槽的下端与木板的上表面相平,B 、C 静止在水平面上.现有很小的滑块A 以初速度v 0从右端滑上B 并以v 02的速度滑离B ,恰好能到达C 的最高点.A 、B 、C 的质量均为m ,试求:(1)木板B 上表面的动摩擦因数μ; (2)14圆弧槽C 的半径R. 答案:(1)5v 2016gL (2)v 264g解析:(1)由于水平面光滑,A 与B 、C 组成的系统动量守恒,有:mv 0=m ⎝ ⎛⎭⎪⎫12v 0+2mv 1 又μmgL =12mv 20-12m ⎝ ⎛⎭⎪⎫12v 02-12×2mv 21解得:μ=5v 216gL(2)当A 滑上C ,B 与C 分离,A 、C 间发生相互作用.A 到达最高点时两者的速度相等,A 、C 组成的系统水平方向动量守恒,有:m ⎝ ⎛⎭⎪⎫12v 0+mv 1=(m +m)v 2又12m ⎝ ⎛⎭⎪⎫12v 02+12mv 21=12(2m)v 22+mgR 解得:R =v 2064g13.(12分)(1)下列说法中正确的是________. A .光电效应实验揭示了光的粒子性B .原子核发生一次β衰变,该原子核外就失去一个电子C .原子核放出β粒子后,转变成的新核所对应的元素是原来的同位素D .玻尔在研究原子结构中引进了量子化的观念E .氢原子从低能级跃迁到高能级要吸收能量(2)如图所示,两质量分别为M 1=M 2=1.0 kg 的木板和足够高的光滑凹槽静止放置在光滑水平面上,木板和光滑凹槽接触但不粘连,凹槽左端与木板等高.现有一质量m =2.0 kg 的物块以初速度v 0=5.0 m/s 从木板左端滑上,物块离开木板时木板的速度大小为1.0 m/s ,物块以某一速度滑上凹槽,已知物块和木板间的动摩擦因数μ=0.5,重力加速度g 取10 m/s 2.求:①木板的长度;②物块滑上凹槽的最大高度.答案:(1) ADE (2)①0.8 m ②0.15 m解析:(2)①物块在木板上滑行的过程中,对系统由动量守恒和能量守恒可得: mv 0=mv 1+(M 1+M 2)v 212mv 20=12mv 21+12(M 1+M 2)v 22+μmgL 联立求解可得:v 2=4 m/s ,L =0.8 m ②物体在凹槽上滑行的过程中,同理可得: mv 1+M 2v 2=(m +M 2)v12mv 21+12M 2v 22=12(m +M 2)v 2+mgh 解得:h =0.15 m.14.(2018·河北省唐山市高三二模)(12分)(1)最近在河南安阳发现了曹操墓地.放射性同位素14C 在考古中有重要应用,只要测得该化石中14C 残存量,就可推算出化石的年代.为研究14C 的衰变规律,将一个原来静止的14C 原子核放在匀强磁场中,观察到它所放射的粒子与反冲核的径迹是两个相内切的圆,圆的半径之比R ∶r =7∶1,那么14C 的衰变方程式应是( )A .146C→104Be +42He B .14 6C→14 5B +01e C .146C→147N + 0-1eD .146C→135B +11H(2)如图所示,三个大小相同的小球A、B、C置于光滑水平面上,三球的质量分别为m A=2 kg、m B=4 kg、m C=2 kg,取水平向右方向为动量的正方向,某时刻A球的动量p A=20 kg·m/s,B球此刻的动量大小和方向未知,C球的动量为零.A球与B球先碰,随后B球与C球碰,碰撞均在同一直线上,且A球与B球以及B球与C 球之间分别只相互碰撞一次,最终所有小球都以各自碰后的速度一直匀速运动.所有的相互作用结束后,Δp C =10 kg·m/s、Δp B=4 kg·m/s,最终B球以5 m/s的速度水平向右运动.求:①A球对B球的冲量大小与C球对B球的冲量大小之比;②整个过程系统由于碰撞产生多少热量?答案:(1)C (2)①7∶5 ②48 J解析:(1)由动量守恒定律可知,放射的粒子与反冲核动量大小相等、方向相反.又因径迹是两个内切圆,即衰变时粒子与反冲核受力方向相同,故它们带电性质相反.又由带电粒子在匀强磁场中回旋半径r之比为7∶1,故C正确.(2)①由A、B、C组成的系统动量守恒Δp A+Δp B+Δp C=0解得:Δp A=-14 kg·m/s由A、B相碰时对A用动量定理可得:I BA=Δp A,I AB=-I BA=14 kg·m/s由B、C相碰时对C用动量定理可得:I BC=Δp C,I CB=-I BC=-10 kg·m/s则I AB∶I CB=7∶5.②设A、B碰前A的动量为p A,B的动量为p B,C的动量为p C,所有的作用结束后A的动量为p A′,B的动量为p B′,C的动量为p C′,由A、B、C组成的系统动量守恒得:p A+p B+p C=p A′+p B′+p C′p A′=p A+Δp Ap C′=p C+Δp Cp B′=m B v B′=20 kg·m/sQ=p2A2m A+p2B2m B-p A′22m A-p B′22m B-p C′22m C联立解得:Q=48 J.15.(12分)(1)如图为氢原子的能级示意图,锌的逸出功是3.34 eV,那么对氢原子在能级跃迁过程中发射或吸收光子的特征认识正确的是________.A.用氢原子从高能级向基态跃迁时发射的光照射锌板一定不能产生光电效应现象B.一群处于n=3能级的氢原子向基态跃迁时,能放出3种不同频率的光C.一群处于n=3能级的氢原子向基态跃迁时,发出的光照射锌板,锌板表面所发出的光电子的最大初动能为8.75 eVD.用能量为10.3 eV的光子照射,可使处于基态的氢原子跃迁到激发态E.用能量为14.0 eV的光子照射,可使处于基态的氢原子电离(2)如图所示,在光滑水平地面上,有一质量m1=4.0 kg 的平板小车,小车的右端有一固定的竖直挡板,挡板上固定一轻质细弹簧,位于小车A点处的质量为m2=1.0 kg的木块(视为质点)与弹簧的左端相接触但不连接,此时弹簧与木块间无相互作用力.木块与A点左侧的车面之间有摩擦,与A点右侧的车面之间的摩擦可忽略不计.现小车与木块一起以v0=2.0 m/s的初速度向右运动,小车将与其右侧的竖直墙壁发生碰撞,已知碰撞时间极短,碰撞后小车以v1=1.0 m/s的速度水平向左运动,取g=10 m/s2.①求小车与竖直墙壁发生碰撞的过程中小车动量变化量的大小;②若弹簧始终处于弹性限度内,求小车撞墙后与木块相对静止时的速度大小和弹簧的最大弹性势能.答案:(1)BCE (2)①12 kg·m/s②3.6 J解析:当氢原子从高能级向低能级跃迁时,辐射出光子的能量有可能大于3.34 eV,锌板有可能产生光电效应,选项A错误;由跃迁关系可知,选项B正确;从n=3能级向基态跃迁时发出的光子最大能量为12.09 eV,由光电效应方程可知,发出光电子的最大初动能为8.75 eV,选项C正确;氢原子在吸收光子能量时需满足两能级间的能量差,因此D选项错误;14.0 eV>13.6 eV,因此可以使处于基态的氢原子电离,选项E正确.(2)①小车与竖直墙壁发生碰撞的过程中,小车动量变化量的大小为Δp=m1v1-m1(-v0)=12 kg·m/s①②小车与墙壁碰撞后向左运动,木块与小车间发生相对运动将弹簧压缩至最短时,二者速度大小相等,此后木块和小车在弹簧弹力和摩擦力的作用下,做变速运动,直到二者再次具有相同速度,此后,二者相对静止.整个过程中,小车和木块组成的系统动量守恒,设小车和木块相对静止时的速度大小为v,根据动量守恒定律有m1v1-m2v0=(m1+m2)v②解得v=0.40 m/s③当小车与木块首次达到共同速度v时,弹簧压缩至最短,此时弹簧的弹性势能最大,设最大弹性势能为E p,根据机械能守恒定律可得E p=12m1v21+12m2v20-12(m1+m2)v2④E p=3.6 J⑤。
2015年高考物理二轮复习专题提分大训练14个专题
目录专题一直线运动的规律 (1)专题二力与物体的平衡 (6)专题三牛顿运动定律 (10)专题四曲线运动 (14)专题五万有引力与天体运动 (18)专题六功和能 (22)专题七静电场 (27)专题八直流电路 (31)专题九带电粒子在电磁场中的运动 (36)专题十电磁感应与能量变化 (42)专题十一交流电路和变压器 (47)专题十二振动和波光学 (52)专题十三热学(自选模块) (55)专题十四动量守恒定律原子和原子核 (57)专题一直线运动的规律一、单项选择题1.(仿2013四川,6T)甲、乙两物体在同一直线上做匀变速直线运动,它们的速度图象如图5所示,则下列描述正确的是().A.甲、乙两物体运动方向一定相反B.甲物体的加速度比乙物体的加速度大C.前4 s内甲、乙两物体的位移相同图5D .t =4 s 时,甲、乙两物体的速度相同解析 由v -t 图象可知甲、乙两物体均沿正方向运动,A 错误;图线斜率的大小表示加速度的大小,甲图线的斜率小于乙图线的斜率,故甲物体的加速度比乙物体的加速度小,B 错误;图线与时间轴围成的面积表示位移的大小,由图象可知,前4 s 内甲物体的位移小于乙物体的位移,C 错误;两图线的交点表示两物体的速度相同,故t =4 s 时,甲、乙两物体的速度相同,D 正确. 答案 D2.(仿2012江苏高考,4T)某人将小球以初速度v 0竖直向下抛出,经过一段时间小球与地面碰撞,然后向上弹回.以抛出点为原点,竖直向下为正方向,小球与地面碰撞时间极短,不计空气阻力和碰撞过程中动能损失,则下列图象中能正确描述小球从抛出到弹回的整个过程中速度v 随时间t 的变化规律的是 ( ).解析 从抛出到落地,小球竖直向下做初速度为v 0的匀加速直线运动(方向为正,图线在时间轴上方);之后,小球落地原速率反弹,然后竖直向上做匀减速直线运动(方向为负,图线在时间轴下方).整个运动过程中,加速度为g ,方向竖直向下(正方向),所以斜率始终为正,选项C 图正确.答案 C二、不定项选择题3.(仿2012山东高考,16T)“星跳水立方”节目中,某明星从跳板处由静止往下跳的过程中(运动过程中某明星可视为质点),其速度—时间图象如图6所示,则下列说法正确的是( ). A .跳板距离水面的高度为10 m B .该明星入水前处于失重状态,入水后处于超重状态C .1 s 末该明星的速度方向发生改变D .该明星在整个下跳过程中的平均速度是5 m/s图6解析 由图象面积的意义得跳板距离水面的高度为h =12×10×1 m =5 m ,A错.入水前具有竖直向下的加速度,处于失重状态,入水后具有竖直向上的加速度,处于超重状态,B 项正确.1 s 末速度方向不变,C 项错.由平均速度的定义式得v -=12×10×1.51.5m/s =5 m/s ,D 项正确. 答案 BD4.(仿2013广东高考,20T)一质量为m 的滑块在粗糙水平面上滑行,通过频闪照片分析得知,滑块在最开始2 s 内的位移是最后2 s 内位移的两倍,且已知滑块最开始1 s 内的位移为2.5 m ,由此可求得( ). A .滑块的加速度为5 m/s 2B .滑块的初速度为5 m/sC .滑块运动的总时间为3 sD .滑块运动的总位移为4.5 m解析 根据题意可知,滑块做末速度为零的匀减速直线运动,其逆运动是初速度为零的匀加速直线运动,设其运动的总时间为t ,加速度为a ,设逆运动最初2 s 内位移为x 1,最后2 s 内位移为x 2,由运动学公式有x 1=12a ×22,x 2=12at 2-12a (t -2)2,且x 2=2x 1;2.5=12at 2-12a (t -1)2,联立以上各式并代入数据可解得a =1 m/s 2,t =3 s ,A 错误,C 正确;v 0=at =1×3 m/s =3 m/s ,B错误;x =12at 2=12×1×32 m =4.5 m ,D 正确.答案 CD三、实验题5.(仿2012山东高考,21(1)T)物理小组在一次探究活动中测量滑块与木板之间的动摩擦因数.实验装置如图7所示,一表面粗糙的木板固定在水平桌面上,一端装有定滑轮;木板上有一滑块,其一端与电磁打点计时器的纸带相连,另一端通过跨过定滑轮的细线与托盘连接.打点计时器使用的交流电源的频率为50 Hz.开始实验时,在托盘中放入适量砝码,滑块开始做匀加速运 图7动,在纸带上打出一系列小点.图8(1)上图给出的是实验中获取的一条纸带的一部分,0、1、2、3、4、5、6、7是计数点,每相邻两计数点间还有4个点(图中未标出),计数点间的距离如图8所示.根据图中数据计算得加速度a=________(保留三位有效数字).(2)回答下列两个问题:①为测量动摩擦因数,下列物理量中还应测量的有________.(填入所选物理量前的字母)A.木板的长度l B.木板的质量m1C.滑块的质量m2D.托盘和砝码的总质量m3E.滑块运动的时间t②测量①中所选定的物理量时需要的实验器材是___________________ _____________________________________________________.(3)滑块与木板间的动摩擦因数μ=________(用被测物理量的字母表示,重力加速度为g).与真实值相比,测量的动摩擦因数________(填“偏大”或“偏小”).写出支持你的看法的一个论据:________________________________ ________________________________________.解析(1)用逐差法进行数据处理,取后六个数据,分成两组,根据Δx=aT2,整理得a=[(3.39+3.88+4.37)-(1.89+2.40+2.88)]×10-2(3×5×0.02)2m/s2=0.497m/s2.(2)①根据牛顿第二定律得:m3g-μm2g=(m2+m3)a,所以还需要测量的物理量是滑块质量m2、托盘和砝码的总质量m3.②测量质量的实验器材是天平.(3)由(2)中的表达式得出动摩擦因数为μ=m3g-(m2+m3)am2g.由于纸带与限位孔之间有摩擦或托盘下落时受空气阻力,加速度a的真实值偏小,所以实验测得的动摩擦因数与真实值相比偏大.答案 (1)0.497 m/s 2(0.495 m/s 2~0.497 m/s 2均可)(2)①CD ②天平(3)m 3g -(m 2+m 3)a m 2g偏大 纸带与限位孔间有摩擦 四、计算题6.(仿2011新课标全国高考,24T)一传送带装置如图9所示,其中AB 段是水平的,长度L AB =4 m ,BC段是倾斜的,长度L BC =5 m ,倾角为θ=37°,AB和BC 由B 点通过一段短的圆弧连接(图中未画出圆弧),传送带以v =4 m/s 的恒定速率顺时针运转,已知工件与传送带间的动摩擦因数μ=0.5,重力加速度g 取10 m/s 2.现将一个工件(可看做质点)无初速度地放在A 点,求:(1)工件第一次到达B 点所用的时间;(2)工件沿传送带上升的最大高度;(3)工件运动了23 s 后所在的位置.解析 (1)工件刚放在水平传送带上的加速度为a 1.由牛顿第二定律得μmg =ma 1,解得a 1=μg =5 m/s 2.经t 1时间工件与传送带的速度相同,解得t 1=v a 1=0.8 s. 前进的位移为x 1=12a 1t 12=1.6 m.此后工件将与传送带一起匀速运动至B 点,用时t 2=L AB -x 1v =0.6 s.所以工件第一次到达B 点所用的时间t =t 1+t 2=1.4 s.(2)在倾斜传送带上工件的加速度为a 2,由牛顿第二定律得μmg cos θ-mg sin θ=ma 2.解得a 2=-2 m/s 2由速度位移公式得0-v 2=2a 2h m sin θ,解得h m =2.4 m. (3)工件沿传送带向上运动的时间为t 3=2h m v sin θ=2 s. 此后由于工件在传送带的倾斜段运动时的加速度相同,在传送带的水平段运动时的加速度也相同,故工件将在传送带上做往复运动,其周期为T ,则T 图9=2t 1+2t 3=5.6 s.工件从开始运动到第一次返回传送带的水平部分,且速度变为零所需时间t 0=2t 1+t 2+2t 3=6.2 s ,而23 s =t 0+3T .这说明经过23 s 后工件恰好运动到传送带的水平部分,且速度为零.故工件在A 点右侧,到A 点的距离x =L AB -x 1=2.4 m.答案 (1)1.4 s (2)2.4 m (3)在A 点右侧2.4 m专题二 力与物体的平衡一、单项选择题1.(仿2012新课标全国高考,16T)如图6所示,不计质量的光滑小滑轮用细绳悬挂于墙上O 点,跨过滑轮的细绳连接物块a 、b ,a 、b 都处于静止状态,现将物块b 移至c 点后,a 、b 仍保持静止,下列说法中正确的是 ( ). A .b 与水平面间的摩擦力减小B .拉b 的绳子的拉力增大C .悬于墙上的绳所受拉力增大D .a 、b 静止时,图中α、β、θ三角始终相等解析 对滑轮,由于两侧绳的拉力大小相等,等于物块a 的重力,由对称性可知α=β,又因为α=θ,所以D 正确.由于两侧绳拉力的夹角增大,故悬于墙上的绳所受拉力减小,C 错误.对b ,由F T sin(α+β)=F f 可知,随α、β的增大,b 与水平面间的摩擦力增大,A 错误.答案 D2.(仿2013新课标全国高考Ⅱ,15T)如图7所示,质图6量为m 的木块A 放在质量为M 的三角形斜劈上,现用大小均为F ,方向相反的水平力分别推A 和B ,它们均静止不动,则( ).A .A 与B 之间一定存在摩擦力B .B 与地面之间一定存在摩擦力C .B 对A 的支持力一定小于mgD .地面对B 的支持力的大小一定等于(M +m )g解析 A 受F 、重力、B 对A 的支持力作用,可以三力平衡,A 错;A 与B 构成的整体受大小相等方向相反的两个力F 作用,合力为零,故B 与地面间无摩擦力,B 错;若A 与B 间无摩擦力,B 对A 的支持力为A 的重力与F 的合力,大于mg ,C 错;竖直方向上A 与B 构成的整体受重力与地面支持力,所以地面对B 的支持力的大小一定等于(M +m )g ,D 正确.答案 D二、不定项选择题3.(仿2012浙江高考,14T)如图8所示物块a 、b 、c 叠放在一起,重均为100 N ,小球P 重20 N ,作用在物块b 上的水平力为10 N ,整个系统处于静止状态,以下说法正确的是 ( ).A .a 和b 之间的摩擦力是10 NB .b 和c 之间的摩擦力是10 NC .c 和桌面间的摩擦力是10 ND .c 对桌面的摩擦力方向向左解析 选a 为研究对象知,a 和b 之间的摩擦力为零,A 项错;选三段绳的结点为研究对象知水平绳的拉力F T =G P =20 N ,选b 为研究对象,由平衡条件得bc 之间的摩擦力为10 N ,B 项正确;选abc 整体为研究对象分析由平衡条件得c 和桌面之间的摩擦力为10 N ,c 对桌面的摩擦力方向向右,C 对,D 错.答案 BC4.(仿2012安徽高考,17T)如图9所示,固定半 图8图9球面由两种材料做成,球右侧是光滑的,左侧是粗糙的,O 点为其球心,A 、B 为两个完全相同的小物块(可视为质点),小物块A 静止在球面的左侧,受到的摩擦力大小为F 1,对球面的压力大小为N 1;小物块B 在水平力F 2作用下静止在球的右侧,对球面的压力大小为N 2.已知两小物块与球心连线和水平方向的夹角均为θ,则 ( ).A .F 1∶F 2=sin θ∶1B .F 1∶F 2=cos 2θ∶1C .N 1∶N 2=cos θ∶1D .N 1∶N 2=sin 2θ∶1解析 A 、B 受力如图所示对A :F 1=mg cos θ,N 1=mg sin θ对B :F 2=mg tan θ,N 2=mg sin θ则F 1∶F 2=sin θ∶1,N 1∶N 2=sin 2θ∶1.答案 AD三、实验题5.(仿2012浙江高考,22T)将橡皮筋的一端固定在A 点,另一端拴上两根细绳,每根细绳分别连着一个量程为5 N 、最小刻度为0.1 N 的弹簧测力计,沿着两个不同的方向拉弹簧测力计,当橡皮筋的活动端拉到O 点时,两根细绳相互垂直,如图10所示.这时弹簧测力计的读数可从图中读出.图10 图11(1)由图可读得两个相互垂直的拉力的大小分别为________ N 和______ N.(2)在如图11所示的方格纸上按作图法的要求画出这两个力及它们的合力. 解析 (1)弹簧测力计的最小刻度为0.1 N ,读数时应估读一位,所以读数分别为2.50 N 和4.00 N.(2)取一个小方格的边长表示0.50 N ,作出两个力及它们的合力如图所示.答案 (1)2.50 4.00 (2)见解析四、计算题6.(仿2013山东高考,22T)明理同学很注重锻炼身体,能提起50 kg 的重物.现有一个倾角为15°的粗糙斜面,斜面上放有重物,重物与斜面间的动摩擦因数μ=33≈0.58,求他能沿斜面向上拉动重物质量的最大值.解析 该同学能产生的最大拉力为F ,由题意得F =mg ① 设该同学在斜面上拉动重物M 的力F 与斜面成φ角,重物受力如图所示.由平衡条件知垂直斜面方向F N +F sin φ-Mg cos φ=0② 平行斜面方向F cos φ-μF N -Mg sin θ=0③ 联立②③式得M =F g ·sin φ+μsin φμcos θ+sin θ④ 令μ=tan α⑤联立④⑤式得,M=Fg·cos(α-φ)sin(θ+α)⑥要使质量最大,分子须取最大值,即cos(α-φ)=1,即α=φ⑦此时拉动的重物的质量的最大值为M max=Fg·1sin(θ+α). ⑧由题给数据tan α=33,即α=30°. ⑨联立⑦⑧⑨式代入数值解得,M max=2m=70.7 kg. ⑩答案70.7 kg专题三牛顿运动定律一、单项选择题1.(仿2012新课标全国高考,14T)牛顿的三大运动定律构成了物理学和工程学的基础.它的推出、地球引力的发现和微积分的创立使得牛顿成为过去一千多年中最杰出的科学巨人之一.下列说法中正确的是().A.牛顿第一定律是牛顿第二定律的一种特例B.牛顿第二定律在非惯性系中不成立C.两物体之间的作用力和反作用力是一对平衡力D.为纪念牛顿,人们把“力”定义为基本物理量,其基本单位是“牛顿”解析牛顿第一定律是独立的物理学定律,并不是牛顿第二定律的一种特例,A错误;牛顿第二定律成立的条件是宏观、低速、惯性系,在非惯性系中不成立,B正确;两物体之间的作用力与反作用力是分别作用在两个物体上,并不是一对平衡力,C错误;为纪念牛顿,人们把“力”的单位规定为“牛顿”,力不是基本物理量,D错误.答案 B2.(仿2013安徽高考,14T)质量为M 的光滑圆槽放在光滑水平面上,一水平恒力F 作用在其上促使质量为m的小球静止在圆槽上,如图3所示,则( ). A .小球对圆槽的压力为MF M +mB .小球对圆槽的压力为mF M +mC .水平恒力F 变大后,如果小球仍静止在圆槽上,小球对圆槽的压力增大D .水平恒力F 变大后,如果小球仍静止在圆槽上,小球对圆槽的压力减小 解析 由整体法可求得系统的加速度a =F M +m ,小球对圆槽的压力F N =m g 2+a 2=mg 2+F 2(M +m )2,当F 增大后,F N 增大,只有选项C 正确. 答案 C3.(仿2013新课标全国高考Ⅱ,14T)如图4所示,一根轻弹簧竖直直立在水平地面上,下端固定,在弹簧的正上方有一个物块,物块从高处自由下落到弹簧上端点O ,将弹簧压缩,弹簧被压缩了x 0时,物块的速度变为零.从物块与弹簧接触开始,物块加速度的大小随下降的位移x 变化的图象可能是下图中的 ( ).解析 物块从接触弹簧到弹簧被压缩到最短,物块受到弹力和重力两个力的作用,物块到达平衡位臵之前,合外力向下,由牛顿第二定律得:mg -kx =ma 1,得:a 1=g -k m x图3 图4物块到达平衡位臵之后,合外力向上,由牛顿第二定律得:kx-mg=ma2,得:a2=km x-g可见,物块到达平衡位臵前后,a-x图象均为直线,且斜率的绝对值相等,物块刚接触弹簧时加速度为重力加速度.由于物块从弹簧上端落下来,故到其速度减为零时,加速度大于重力加速度.设物块到达平衡位臵时弹簧压缩了x1,物块速度减为零时弹簧压缩了x0,这时有:x1=mgk,a2=km x0-g>g,x0>2mgk,所以x1<12x0,图象D正确.答案 D二、不定项选择题4.(仿2013新课标全国高考Ⅰ,21T)如图5所示,物块的质量m=1 kg,初速度v0=10 m/s,在一水平向左的恒力F作用下从O点沿粗糙的水平面向右运动,某时刻后恒力F突然反向,整个过程中物块速度的平方随位置坐标变化的关系图象如图6所示,g=10 m/s2.下列选项中正确的是().图5图6A.2 s~3 s内物块做匀减速运动B.在t=1 s时刻,恒力F反向C.恒力F大小为10 ND.物块与水平面间的动摩擦因数为0.3解析由运动学公式v2-v02=2ax可知,v2-x图象中前5 m图线的斜率为2a,所以在前5 m内,物块以10 m/s2的加速度做减速运动,减速时间为1 s.5 m~13 m的运动过程中,物块以4 m/s2的加速度做加速运动,加速时间为2 s,即物块在1 s~3 s内做加速运动,A错误,B正确.根据牛顿第二定律可知,在减速的过程中,F+μmg=ma1,加速过程中F-μmg=ma2,代入数据可解得F=7 N ,μ=0.3,所以C 错误,D 正确.答案 BD三、实验题5.(仿2013天津高考,9T)在探究加速度与力、质量的关系实验中,采用如图7所示的实验装置,小车及车中砝码的质量用M 表示,盘及盘中砝码的质量用m 表示,小车的加速度可由小车拖动的纸带打出的点计算出. (1)当M 与m 的大小关系满足________时,才可以认为绳对小车的拉力大小等于盘及盘中砝码的重力.(2)一组同学在做加速度与质量的关系实验时,保持盘及盘中砝码的质量一定,改变小车及车中砝码的质量,测出相应的加速度,采用图象法处理数据.为了比较容易地观测加速度a 与质量M 的关系,应该做a 与________的图象.(3)乙、丙同学用同一装置做实验,画出了各自得到的a-1M 图线如图8所示.两个同学做实验时的哪一个物理量取值不同?解析 (1)只有M 与m 满足M ≫m 才能使绳对小车的拉力近似等于盘及盘中砝码的重力.(2)由于a ∝1M ,所以a -1M 图象应是一条过原点的直线,所以数据处理时,常作出a 与1M 的图象.(3)两小车及车上的砝码的总质量相等时,由图象知乙的加速度大,故乙的拉力F 大(或乙的盘及盘中砝码的质量大).答案 (1)M ≫m (2)1M (3)拉力F四、计算题6.(仿2013安徽高考,22T)放在水平地面上的一物块,受到方向不变的水平推力F 的作用,力F 的大小与时间t 的关系和物块速度v 与时间t 的关系如图9所示.重力加速度g =10 m/s 2.求:图7图8图9(1)物块在运动过程中受到的滑动摩擦力大小;(2)物块在3~6 s 中的加速度大小;(3)物块与地面间的动摩擦因数.解析 (1)由v -t 图象可知,物块在6~9 s 内做匀速运动,则F f =F 3由F -t 图象知,6~9 s 的推力F 3=4 N ,故F f =4 N.(2)由v -t 图象可知,3~6 s 内做匀加速运动,由a =v t -v 0t 得a =2 m/s 2.(3)在3~6 s 内,由牛顿第二定律有F 2-F f =ma 得m =1 kg ,且F f =μF N =μmg .则μ=F f mg =0.4.答案 (1)4 N (2)2 m/s 2 (3)0.4专题四 曲线运动一、单项选择题1.(仿2011江苏高考,3T)如图7所示,一条小船位于200 m 宽的河中央A 点处,从这里向下游100 3 m 处有一危险的急流区,当时水流速度为4 m/s ,为使小船避开危险区沿直线到达对岸,小船在静水中的速度至少为 ( ).图7 A.433 m/s B.833 m/sC.2 m/s D.4 m/s解析小船刚好避开危险区域时,小船合运动方向与水流方向的夹角为30°,当船头垂直合运动方向渡河时,小船在静水中的速度最小,可以求出小船在静水中最小速度为2 m/s,C正确.答案 C2.(仿2012新课标全国高考,15T)如图8所示,在距水平地面H和4H高度处,同时将质量相同的a、b两小球以相同的初速度v0水平抛出,则以下判断正确的是().图8A.a、b两小球同时落地B.两小球落地速度方向相同C.a、b两小球水平位移之比为1∶2D.a、b两小球水平位移之比为1∶4解析a、b两小球均做平抛运动,由于下落时间t=2hg,水平位移x=v02hg,将h a=H,h b=4H代入上述关系式可得A、D错误,C正确;两小球落地时速度方向均与落地点沿轨迹的切线方向一致,所以B错误.答案 C3.(仿2012浙江高考,18T)一水平放置的圆盘,可以绕中心O点旋转,盘上放一个质量为m的铁块(可视为质点),轻质弹簧一端连接铁块,另一端系于O 点,铁块与圆盘间的动摩擦因数为μ,如图9所示.铁块随圆盘一起匀速转动,铁块距中心O点的距离为r,这时弹簧的拉力大小为F,g取10 m/s2,已知铁块受到的最大静摩擦力等于滑动摩擦力,则圆盘的角速度可能是().图9A .ω≥F +μmg mr B .ω≤F -μmg mr C.F -μmg mr <ω<F +μmg mr D.F -μmgmr ≤ω≤F +μmgmr 解析 当铁块匀速转动时,水平方向上铁块受弹簧拉力和静摩擦力的作用,转速较小时,静摩擦力背向圆心,则F -F f =mω2r ,因最大静摩擦力F f m =μmg ,得ω≥F -μmg mr ,选项B 错误;转速较大时,静摩擦力指向圆心,则F +F f =mω2r ,因最大静摩擦力F f m =μmg ,解得ω≤F +μmgmr .综合以上情况可知,角速度ω的取值范围为F -μmg mr ≤ω≤F +μmgmr . 答案 D 4.(仿2013江苏高考,7T)如图10所示,在竖直放置的半圆形容器的中心O 点分别以水平初速度v 1、v 2抛出两个小球(可视为质点),最终它们分别落在圆弧上的A 点和B 点,已知OA 与OB 互相垂直,且OA 与竖直方向成α角,则两个小球初速度之比v 1v 2为( ). A .tan αB .cos αC .tan αtan αD .cos αcos α解析 两小球被抛出后都做平抛运动,设容器半径为R ,两小球运动时间分 图10别为t 1、t 2,对A 球:R sin α=v 1t 1,R cos α=12gt 12;对B 球:R cos α=v 2t 2,R sin α=12gt 22,联立解得:v 1v 2=tan αtan α,C 项正确. 答案 C二、计算题5.(仿2013福建高考,20T)山地滑雪是人们喜爱的一项运动,一滑雪道ABC 的底部是一半径为R 的圆,圆与雪道相切于C 点,C 点的切线水平,C 点与水平雪地间距离为H ,如图11所示,D 是圆的最高点,一运动员从A 点由静止下滑,刚好能经过圆轨道最高点D 旋转一周,再经C 后被水平抛出,当抛出时间为t 时,迎面水平刮来一股强风,最终运动员以速度v 落到了雪地上,已知运动员连同滑雪装备的总质量为m ,重力加速度为g ,不计遭遇强风前的空气阻力和雪道及圆轨道的摩擦阻力,求:(1)A 、C 的高度差为多少时,运动员刚好能过D 点?(2)运动员刚遭遇强风时的速度大小及距地面的高度;(3)强风对运动员所做的功.解析 (1)运动员恰好做完整的圆周运动,则在D 点有:mg =m v D 2R ,从A 运动到D 的过程由动能定理得mg (h -2R )=12m v D 2,联立解得h =5R 2.(2)运动员做平抛运动,运动时间t 时在竖直方向的速度为v y =gt ,从A 到C由动能定理得52mgR =12m v C 2所以运动员刚遭遇强风时的速度大小为v 1=v C 2+v y 2=5gR +g 2t 2,此时运动员下落高度为h 1=12gt 2所以此时运动员距地面高度为h 2=H -h 1=H -12gt 2(3)设强风对运动员所做的功为W ,在运动员的整个运动过程中,由动能定理知W =12m v 2-mg ⎝ ⎛⎭⎪⎫H +52R .图11答案 (1)5R 2 (2)5gR +g 2t 2 H -12gt 2(3)12m v 2-mg ⎝ ⎛⎭⎪⎫H +52R 6.(仿2013重庆高考,8T)如图12所示,一个竖直放置的圆锥筒可绕其中心轴OO ′转动,筒内壁粗糙,筒口半径和筒高分别为R 和H ,筒内壁A 点的高度为筒高的一半,内壁上有一质量为m 的小物块,求: (1)当筒不转动时,物块静止在筒壁A 点受到的摩擦力和支持力的大小;(2)当物块在A 点随筒做匀速转动,且其所受到的摩擦力为零时,筒转动的角速度.解析 (1)设圆锥筒与水平面夹角为θ,当筒不转动时,物块静止在筒壁A 点时受到重力、摩擦力和支持力三力作用而平衡,由平衡条件得摩擦力的大小为:F f =mg sin θ=H H 2+R 2mg 支持力的大小为:F N =mg cos θ=RH 2+R 2 mg . (2)当物块在A 点随筒做匀速转动,且其所受到的摩擦力为零时,物块在筒壁A 点只受到重力和支持力的作用,它们的合力提供向心力.设筒转动的角速度为ω,则mg tan θ=m ω2·R 2,由几何关系得:tan θ=H R联立以上各式解得:ω=2gH R .答案 (1)H H 2+R 2mg R H 2+R 2mg (2)2gHR 专题五 万有引力与天体运动图12一、单项选择题1.(仿2012新课标全国高考,21T)设地球是一质量分布均匀的球体,O 为地心.已知质量分布均匀的球壳对壳内物体的引力为零.在下列四个图中,能正确描述x 轴上各点的重力加速度g 的分布情况的是 ( ).解析 在地球内部距圆心为r 处,G M ′m r 2=mg ′,内部质量M ′=ρ·43πr 3,得g ′=4πGr 3,g ′与r 成正比;在地球外部,重力加速度g ′=G M r 2,与1r 2成正比,选项A 正确.答案 A2.(仿2011新课标全国高考,19T)2012年6月18日,“神舟九号”飞船与“天宫一号”目标飞行器成功实现自动交会对接.设地球半径为R ,地球表面重力加速度为g .对接成功后,“神舟九号”和“天宫一号”一起绕地球运行的轨道可视为圆周轨道,轨道离地球表面的高度约为119R ,运行周期为T ,则( ).A .地球质量为⎝ ⎛⎭⎪⎫201924π2GT 2R 2B .对接成功后,“神舟九号”飞船的线速度为40πR 19TC .对接成功后,“神舟九号”飞船里的宇航员受到的重力为零D .对接成功后,“神舟九号”飞船的加速度为g解析 对接成功后,“神舟九号”飞船的绕行轨道半径为2019R ,由GMm ⎝ ⎛⎭⎪⎫20R 192=m ⎝ ⎛⎭⎪⎫2πT 2·2019R ,解得地球质量为M =⎝ ⎛⎭⎪⎫201934π2GT 2R 3,选项A 错误;对接成功后,“神舟九号”飞船的线速度为v =2π·20R 19T =40πR 19T ,选项B 正确;对接成功后,“神舟九号”飞船的加速度小于g ,飞船里的宇航员受到的重力不为零,选项C 、D 错误.答案 B3.(仿2012四川高考,15T)某同学设想驾驶一辆由火箭作动力的陆地太空两用汽车,沿赤道行驶并且汽车相对于地球速度可以任意增加,不计空气阻力,当汽车速度增加到某一值时,汽车将离开地球成为绕地球做圆周运动的“航天汽车”,对此下列说法正确的是(R =6 400 km ,取g =10 m/s 2) ( ).A .汽车在地面上速度增加时,它对地面的压力增大B .当汽车离开地球的瞬间速度达到28 440 km/hC .此“航天汽车”环绕地球做圆周运动的最小周期为1 hD .在此“航天汽车”上弹簧测力计无法测量力的大小解析 汽车受到的重力与地面的支持力的合力提供向心力,在速度增加时,向心力增大,重力不变,支持力减小,即汽车对地面的压力减小,选项A 错误.若要使汽车离开地球,必须使汽车的速度达到第一宇宙速度7.9 km/s =28 440 km/h ,选项B 正确.此时汽车的最小周期为T =2πr 3GM =2πR 3gR 2=2πRg =5 024 s =83.7 min ,选项C 错误.在此“航天汽车”上弹簧产生形变仍然产生弹力,选项D 错误.答案 B二、不定项选择题4.(仿2013山东高考,20T)宇宙间存在一些离其他恒星较远的三星系统,其中有一种三星系统如图2所示,三颗质量相等的星球位于等边三角形的三个顶点上,任意两颗星球的距离均为R ,并绕其中心O 做匀速圆周运动.忽略其他星球对它们的引力作用,引力常量为G ,以下对该三星系统的说法正确的是 ( ).A .每颗星球做圆周运动的半径都等于RB .每颗星球做圆周运动的加速度与三颗星球的质量有关C .每颗星球做圆周运动的周期为T =2πRR 3Gm D .每颗星球做圆周运动的线速度v =2GmR图2。
专题9碰撞与动量守恒 近代物理初步
1.动量守恒定律:
(1)动量守恒的条件。
之和为零 。 ①系统不受外力或系统所受外力_________ 系统所受的外力之和 远远小于_____ 内力 。 ②___________________
不受外力或所受外力的矢量和为零 ,或外力 ③系统某一方向_______________________________ 内力 ,则系统在_______ 该方向 动量守恒。 远小于_____
(2)光电效应方程。 Ek+W0 或E =______ hν -W0。 ①表达式:hν =_____ k ②物理意义:金属中的电子吸收一个光子获得的能量是hν ,这 逸出功W0 剩下的表现为逸出 些能量的一部分用来克服金属的________,
后电子的 最大初动能 E k 1 m e v 2 。
2
1.(2013·新课标全国卷Ⅱ)关于原子核的结合能,下列说法正 确的是( )
A.原子核的结合能等于使其完全分解成自由核子所需的最小能 量
B.一重原子核衰变成α 粒子和另一原子核,衰变产物的结合能
之和一定大于原来重核的结合能
208 C.铯原子核( 133 ) 的结合能小于铅原子核 ( )的结合能 Cs 55 82 Pb
【解析】根据质量数和电荷数守恒可得x是 1 0 n(中子)。核反 应中的质量亏损为 Δm=2.014 1 u+3.016 1 u -4.002 6 u-1.008 7 u=0.018 9 u 所以该反应释放出的能量为
ΔE=Δm·c2=17.6 MeV
答案: 1 (或中子) 0n 17.6
5.(2013·海南高考)如图,光滑水平地面上有三个物块A、 B
撞后的瞬间,A和B的速度分别为v1和v2。在碰撞过程中,由能 量和动量守恒定律,得
高考物理计算题专项突破专题21之09 碰撞问题(原卷版)
专题09 碰撞问题1.弹性碰撞:'p p =且E E =';(同时满足动量守恒和机械能守恒)2.非弹性碰撞:'p p =且E E <';(满足动量守恒,机械能不守恒)3.完全非弹性碰撞:')(212211v m m v m v m +=+;(碰撞后的两物体速度相同,机械能损失最大)在解有关物体碰撞类问题时,第一步要明确研究对象,一般情况下研究对象为两个或多个物体组成的系统。
第二对系统进行受力分析,弄清系统的内力和外力,判断动量是否守恒。
然后通过分析碰撞的过程,确定初、末状态的动量、能量。
根据动量守恒定律或能量守恒定律列出方程进行求解,并对结果进行讨论。
1.碰撞的种类及特点2.解决碰撞问题的三个依据(1)动量守恒,即1212P P P P''+=+ (2)动能不增加,即 1212k k k k E E E E ''+≥+ 或 2222121212122222P P P P m m m m ''+≥+ (3)速度要符合情景:如果碰前两物体同向运动,则后面的物体速度必大于前面物体的速度,即v v >后前,否则无法实现碰撞。
碰撞后,原来在前的物体的速度一定增大,且原来在前的物体速度大于或等于原来在后的物体的速度,即v v ''≥后前,否则碰撞没有结束。
如果碰前两物体是相向运动,则碰后,两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零。
3.碰撞的分类(1)弹性碰撞:系统动量守恒、机械能守恒.m 1v 1+m 2v 2=m 1v 1′+m 2v 2′12m 1v 12+12m 2v 22=12m 1v 1′2+12m 2v 2′2 若v 2=0,则有v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1m 1+m 2v 1(2)非弹性碰撞:系统动量守恒,机械能减少,损失的机械能转化为内能,ΔE =E k 初总-E k 末总=Q .(3)完全非弹性碰撞:系统动量守恒,碰撞后合为一体或具有相同的速度,机械能损失最大.设两者碰后的共同速度为v 共,则有m 1v 1+m 2v 2=(m 1+m 2)v 共机械能损失为ΔE =12m 1v 12+12m 2v 22-12(m 1+m 2)v 共2. 4.碰撞问题遵循的三个原则:(1)系统动量守恒,即p 1+p 2=p 1′+p 2′.(2)系统动能不增加,即E k1+E k2≥E k1′+E k2′或p 122m 1+p 222m 2≥p 1′22m 1+p 2′22m 2. (3)速度要合理:①碰前两物体同向,则v 后>v 前,碰后,原来在前面的物体速度一定增大,且v 前′≥v 后′.①两物体相向运动,碰后两物体的运动方向不可能都不改变.典例1:(2022·广东·高考真题)某同学受自动雨伞开伞过程的启发,设计了如图所示的物理模型。
【名师伴你行】2015届高考物理二轮复习 碰撞与动量守恒、近代物理初步提能专训
提能专训(十七)碰撞与动量守恒、近代物理初步时间:90分钟满分:100分一、选择题(本题共8小题,每小题4分,共32分.多选全部选对的得4分,选对但不全的得2分,有选错的得0分)1.(2014·福建理综)如图,放射性元素镭衰变过程中释放出α、β、γ三种射线,分别进入匀强电场和匀强磁场中,下列说法正确的是( )A.①表示γ射线,③表示α射线B.②表示β射线,③表示α射线C.④表示α射线,⑤表示γ射线D.⑤表示β射线,⑥表示α射线答案:C解析:γ射线为电磁波,在电场、磁场中均不偏转,故②和⑤表示γ射线,A、B、D 项错;α射线中的α粒子为氦的原子核,带正电,在匀强电场中,沿电场方向偏转,故③表示α射线,由左手定则可知在匀强磁场中α射线向左偏转,故④表示α射线,C项对.2.下表给出了一些金属材料的逸出功.h=6.63×10-34J·s,光速c=3×108 m/s)( )A.2种B.3种C.4种D.5种答案:A解析:要发生光电效应,则入射光的能量大于金属的逸出功,由题可算出波长为400 nm的光的能量为E =h ν0=hcλ=6.63×10-34×3.0×108400×10-9 J =4.97×10-19 J ,大于铯和钙的逸出功,所以A 选项正确.3.(2014·山东潍坊一模)(多选)下列关于近代物理知识的说法正确的是( ) A .发生α衰变时,生成核与原来的原子核相比,中子数减少了2个 B .β射线是原子核外的电子电离形成的电子流,它具有较强的穿透能力C .含有10个原子核的放射性元素,经过一个半衰期,一定有5个原子核发生衰变D .氢原子的核外电子由较高能级跃迁到较低能级时,要释放一定频率的光子,同时氢原子的电势能减少,电子的动能增加答案:AD解析:发生α衰变时,质量数少4,电荷数少2,生成核与原来的原子核相比,中子数减少了2个,A 正确;β射线是原子核内的中子转化为质子同时释放一个电子,B 错误;半衰期是对大量粒子的统计规律,对少数原子核不适用,C 错误;氢原子的核外电子由较高能级跃迁到较低能级时,要释放一定频率的光子,同时氢原子的电势能减少,电子的动能增加,D 正确.(2014·广东肇庆一模)如图所示为氢原子的能级结构示意图,一群氢原子处于n =3的激发态,在向较低能级跃迁的过程中向外辐射出光子,用这些光子照射逸出功为 2.49 eV 的金属钠.下列说法正确的是( )A .这群氢原子能辐射出三种不同频率的光,其中从n =3能级跃迁到n =2能级所发出的光波长最短B .这群氢原子在辐射光子的过程中电子绕核运动的动能减少,电势能增加C .能发生光电效应的光有三种D .金属钠表面所发出的光电子的最大初动能是9.60 eV 答案:D解析:根据C 23=3知,这群氢原子能辐射出三种不同频率的光子,从n =3向n =2跃迁的光子频率最小,波长最长,A 错误.氢原子辐射光子的过程中,能量减少,轨道半径减小,根据k e 2r =m v 2r知,电子动能增加,则电势能减少,B 错误.只有从n =3跃迁到n =1,以及从n =2跃迁到n =1辐射的光子能量大于逸出功,所以能发生光电效应的光有两种,C 错误.从n =3跃迁到n =1辐射的光子能量最大,发生光电效应时,产生的光电子最大初动能最大,光子能量最大值为13.6 eV -1.51 eV =12.09 eV ,根据光电效应方程得,E km =h ν-W 0=12.09 eV -2.49 eV =9.60 eV ,D 正确.5.(2014·广东深圳市二模)(多选)23892U 的衰变方程为23892U→23490Th +42He ,其衰变曲线如图,T 为半衰期,则( )A.23892U 发生的是α衰变 B.23892U 发生的是β衰变 C .k =3 D .k =4答案:AC解析:由衰变方程可知23892U 发生的是α衰变,A 对,B 错;m =⎝ ⎛⎭⎪⎫12k m 0,当k =3时,m =18m 0,故k =3,C 对,D 错.6.(2014·江苏南京一模)(多选)钚的一种同位素23994Pu 衰变时释放巨大能量,如图所示,其衰变方程为23994Pu→23592U +42He +γ,则( )A .核燃料总是利用比结合能小的核B .核反应中γ的能量就是23994Pu 的结合能 C.23592U 核比23994Pu 核更稳定,说明235 92U 的结合能大D .由于衰变时释放巨大能量,所以23994Pu 比23592U 的比结合能小 答案:AD解析:在核反应中,比结合能越大的核越恒定,所以核燃料总是利用比结合能较小的核,A正确;衰变后,铀核比钚核更加稳定,所以铀核的比结合能大,D正确.7.(多选)用a、b两种不同频率的光分别照射同一金属板,发现当a光照射时验电器的指针偏转,b光照射时指针未偏转,以下说法正确的是( )A.增大a光的强度,验电器的指针偏角一定减小B.a光照射金属板时验电器的金属小球带负电C.a光在真空中的波长小于b光在真空中的波长D.若a光是氢原子从n=4的能级向n=1的能级跃迁时产生的,则b光可能是氢原子从n=5的能级向n=2的能级跃迁时产生的答案:CD解析:根据题意,a光能使该金属发生光电效应,而b光不能,a光的频率必定大于b 光的频率,a光在真空中的波长一定小于b光在真空中的波长,选项C正确;a光照射金属板时,能使该金属发生光电效应,即放出电子,金属板会因放出电子而带正电荷,当增大a 光的强度时,金属板逸出的电子增多,金属板的带电荷量增多,验电器指针偏角一定增大,所以选项A错误;a光照射金属板时,金属板带正电,与其连接的验电器的金属小球也带正电,所以选项B错误;根据玻尔理论,氢原子从n=4的能级向n=1的能级跃迁时产生的光子能量大于氢原子从n=5的能级向n=2的能级跃迁时产生的光子能量,又a光的频率较大,光子能量也较大,所以若a光是氢原子从n=4的能级向n=1的能级跃迁时产生的,则b 光可能是氢原子从n=5的能级向n=2的能级跃迁时产生的,选项D正确.8.(2014·天津六校联考)A、B为原来都静止在同一匀强磁场中的两个放射性元素原子核的变化示意图,其中一个放出一α粒子,另一个放出一β粒子,运动方向都与磁场方向垂直.如图中a、b与c、d分别表示各粒子的运动轨迹,下列说法中不正确的是( )A.磁场方向一定为垂直纸面向里B.尚缺乏判断磁场方向的条件C.A放出的是α粒子,B放出的是β粒子D.b为α粒子的运动轨迹,c为β粒子的运动轨迹答案:A解析:粒子在磁场中做匀速圆周运动,磁场方向不同,粒子旋转的方向相反,由于α粒子和β粒子的速度方向未知,不能判断磁场的方向,故A错误,B正确;放射性元素放出α粒子时,α粒子与反冲核的速度相反,而电性相同,则两个粒子受到的洛伦兹力方向相反,两个粒子的轨迹应为外切圆,而放射性元素放出β粒子时,β粒子与反冲核的速度相反,且电性相反,则两个粒子受到的洛伦兹力方向相同,两个粒子的轨迹应为内切圆,故B放出的是β粒子,A放出的是α粒子,故C正确;放射性元素放出粒子时,两带电粒子的动量守恒,由半径公式可得轨迹半径与动量成正比,与电量成反比,而α粒子和β粒子的电量比反冲核的电量小,则α粒子和β粒子的半径比反冲核的半径都大,故b为α粒子的运动轨迹,c为β粒子的运动轨迹,故D正确.二、填空题(本题包括2小题,共12分.请将正确的答案填写在横线上.)9.(6分)(1)现有三个核反应方程:①2411Na→2412Mg+ 0-1e;②235 92U+10n→141 56Ba+9236Kr+310n;③21H+31H→42He+10n.下列说法正确的是________.A.①是裂变,②是β衰变,③是聚变B.①是聚变,②是裂变,③是β衰变C.①是β衰变,②是裂变,③是聚变D.①是β衰变,②是聚变,③是裂变(2)现有四个核反应:A.21H+31H→42He+10nB.235 92U+10n→X+8936Kr+310nC.2411Na→2412Mg+ 0-1eD.42He+94Be→12 6C+10n①________是发现中子的核反应方程,________是研究原子弹的基本核反应方程,________是研究氢弹的基本核反应方程.②B中X的质量数和中子数分别为________、________.答案:(1)C (2)①D B A ②14488解析:(1)2411Na→2412Mg+0-1e中Na核释放出β粒子,为β衰变;23592U+10n→14156Ba+9236Kr+310n 为铀核在被中子轰击后,分裂成两个中等质量的核,为裂变;而21H +31H→42He +10n 为聚变,故C 正确.(2)①人工转变核反应方程的特点:箭头的左边是氦核与常见元素的原子核,箭头的右边也是常见元素的原子核,故D 是查德威克发现中子的核反应方程;B 是裂变反应,是研究原子弹的基本核反应方程;A 是聚变反应,是研究氢弹的基本核反应方程.②由电荷数守恒和质量数守恒可以判定,X 的质量数为144,电荷数为56,所以中子数为144-56=88.10.(2014·山东泰安质检)(6分)氘核21H 与氚核31H 结合成氦核42He 的核反应方程如下:21H +31H ―→42He +10n +17.6 MeV(1)这个核反应称为________.(2)要发生这样的核反应,需要将反应物质的温度加热到几百万开尔文.式中17.6 MeV 是核反应中________(填“放出”或“吸收”)的能量,核反应后生成物的总质量比核反应前物质的总质量________(填“增加”或“减少”)了________kg.答案:(1)聚变 (2)放出 减少 3.1×10-29解析:21H +31H→42He +10n +17.6 MeV 为轻核聚变反应,17.6 MeV 是反应中放出的能量,再由ΔE =Δmc 2可知,质量减少Δm =ΔE c2=3.1×10-29kg.三、计算题(本题包括5小题,共56分.解答应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案不能得分)11.(2014·湖北八校二联)(10分)如图,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数为μ.现让甲物块以速度v 0向着静止的乙运动并发生正碰,试求:(1)甲与乙第一次碰撞过程中系统的最小动能;(2)若甲在乙刚停下来时恰好与乙发生第二次碰撞,则在第一次碰撞中系统损失了多少机械能?答案:(1)23mv 20 (2)14mv 2解析:(1)碰撞过程中系统动能最小时,为两物体速度相等时,设此时两物体速度为v 由系统动量守恒有2mv 0=3mv 得v =23v 0此时系统的动能E k =12×3mv 2=23mv 20(2)设第一次碰撞刚结束时甲、乙的速度分别为v 1、v 2,之后甲做匀速直线运动,乙以初速度v 2做匀减速直线运动,在乙刚停下时甲追上乙并发生碰撞,因此两物体在这段时间内平均速度相等,有v 1=v 22而第一次碰撞中系统动量守恒,有 2mv 0=2mv 1+mv 2 由以上两式可得v 1=v 02v 2=v 0所以第一次碰撞中的机械能损失量为E =12×2mv 20-12×2mv 21-12mv 22=14mv 212.(2014·宁夏银川一中一模)(10分)如图所示,在光滑水平面上有一块长为L 的木板B ,其上表面粗糙,在其左端有一个光滑的圆弧槽C 与长木板接触但不连接,圆弧槽的下端与木板的上表面相平,B 、C 静止在水平面上.现有很小的滑块A 以初速度v 0从右端滑上B 并以v 02的速度滑离B ,恰好能到达C 的最高点.A 、B 、C 的质量均为m ,试求:(1)木板B 上表面的动摩擦因数μ; (2)14圆弧槽C 的半径R . 答案:(1)5v 2016gL (2)v 264g解析:(1)由于水平面光滑,A 与B 、C 组成的系统动量守恒,有:mv 0=m ⎝ ⎛⎭⎪⎫12v 0+2mv 1又μmgL =12mv 20-12m ⎝ ⎛⎭⎪⎫12v 02-12×2mv 21解得:μ=5v 216gL(2)当A 滑上C ,B 与C 分离,A 、C 间发生相互作用.A 到达最高点时两者的速度相等,A 、C 组成的系统水平方向动量守恒,有:m ⎝ ⎛⎭⎪⎫12v 0+mv 1=(m +m )v 2又12m ⎝ ⎛⎭⎪⎫12v 02+12mv 21=12(2m )v 22+mgR 解得:R =v 2064g13.(12分)(1)下列说法中正确的是________. A .光电效应实验揭示了光的粒子性B .原子核发生一次β衰变,该原子核外就失去一个电子C .原子核放出β粒子后,转变成的新核所对应的元素是原来的同位素D .玻尔在研究原子结构中引进了量子化的观念E .氢原子从低能级跃迁到高能级要吸收能量(2)如图所示,两质量分别为M 1=M 2=1.0 kg 的木板和足够高的光滑凹槽静止放置在光滑水平面上,木板和光滑凹槽接触但不粘连,凹槽左端与木板等高.现有一质量m =2.0 kg 的物块以初速度v 0=5.0 m/s 从木板左端滑上,物块离开木板时木板的速度大小为1.0 m/s ,物块以某一速度滑上凹槽,已知物块和木板间的动摩擦因数μ=0.5,重力加速度g 取10 m/s 2.求:①木板的长度;②物块滑上凹槽的最大高度.答案:(1) ADE (2)①0.8 m ②0.15 m解析:(2)①物块在木板上滑行的过程中,对系统由动量守恒和能量守恒可得:mv 0=mv 1+(M 1+M 2)v 212mv 20=12mv 21+12(M 1+M 2)v 22+μmgL 联立求解可得:v 2=4 m/s ,L =0.8 m ②物体在凹槽上滑行的过程中,同理可得:mv 1+M 2v 2=(m +M 2)v12mv 21+12M 2v 22=12(m +M 2)v 2+mgh解得:h=0.15 m.14.(2014·河北省唐山市高三二模)(12分)(1)最近在河南安阳发现了曹操墓地.放射性同位素14C在考古中有重要应用,只要测得该化石中14C残存量,就可推算出化石的年代.为研究14C的衰变规律,将一个原来静止的14C原子核放在匀强磁场中,观察到它所放射的粒子与反冲核的径迹是两个相内切的圆,圆的半径之比R∶r=7∶1,那么14C的衰变方程式应是( )A.146C→10 4Be+42He B.146C→14 5B+01eC.14 6C→14 7N+0-1e D.146C→13 5B+11H(2)如图所示,三个大小相同的小球A、B、C置于光滑水平面上,三球的质量分别为m A =2 kg、m B=4 kg、m C=2 kg,取水平向右方向为动量的正方向,某时刻A球的动量p A=20 kg·m/s,B球此刻的动量大小和方向未知,C球的动量为零.A球与B球先碰,随后B球与C球碰,碰撞均在同一直线上,且A球与B球以及B球与C球之间分别只相互碰撞一次,最终所有小球都以各自碰后的速度一直匀速运动.所有的相互作用结束后,Δp C=10 kg·m/s、Δp B=4 kg·m/s,最终B球以5 m/s的速度水平向右运动.求:①A球对B球的冲量大小与C球对B球的冲量大小之比;②整个过程系统由于碰撞产生多少热量?答案:(1)C (2)①7∶5 ②48 J解析:(1)由动量守恒定律可知,放射的粒子与反冲核动量大小相等、方向相反.又因径迹是两个内切圆,即衰变时粒子与反冲核受力方向相同,故它们带电性质相反.又由带电粒子在匀强磁场中回旋半径r之比为7∶1,故C正确.(2)①由A、B、C组成的系统动量守恒Δp A+Δp B+Δp C=0解得:Δp A=-14 kg·m/s由A、B相碰时对A用动量定理可得:I BA=Δp A,I AB=-I BA=14 kg·m/s由B、C相碰时对C用动量定理可得:I BC=Δp C,I CB=-I BC=-10 kg·m/s则I AB∶I CB=7∶5.②设A、B碰前A的动量为p A,B的动量为p B,C的动量为p C,所有的作用结束后A的动量为p A′,B的动量为p B′,C的动量为p C′,由A、B、C组成的系统动量守恒得:p A+p B+p C=p A′+p B′+p C′p A′=p A+Δp Ap C′=p C+Δp Cp B′=m B v B′=20 kg·m/sQ =p 2A 2m A +p 2B2m B -p A ′22m A -p B ′22m B -p C ′22m C联立解得:Q =48 J.15.(12分)(1)如图为氢原子的能级示意图,锌的逸出功是3.34 eV ,那么对氢原子在能级跃迁过程中发射或吸收光子的特征认识正确的是________.A .用氢原子从高能级向基态跃迁时发射的光照射锌板一定不能产生光电效应现象B .一群处于n =3能级的氢原子向基态跃迁时,能放出3种不同频率的光C .一群处于n =3能级的氢原子向基态跃迁时,发出的光照射锌板,锌板表面所发出的光电子的最大初动能为8.75 eVD .用能量为10.3 eV 的光子照射,可使处于基态的氢原子跃迁到激发态E .用能量为14.0 eV 的光子照射,可使处于基态的氢原子电离(2)如图所示,在光滑水平地面上,有一质量m 1=4.0 kg 的平板小车,小车的右端有一固定的竖直挡板,挡板上固定一轻质细弹簧,位于小车A 点处的质量为m 2=1.0 kg 的木块(视为质点)与弹簧的左端相接触但不连接,此时弹簧与木块间无相互作用力.木块与A 点左侧的车面之间有摩擦,与A 点右侧的车面之间的摩擦可忽略不计.现小车与木块一起以v 0=2.0 m/s 的初速度向右运动,小车将与其右侧的竖直墙壁发生碰撞,已知碰撞时间极短,碰撞后小车以v 1=1.0 m/s 的速度水平向左运动,取g =10 m/s 2.①求小车与竖直墙壁发生碰撞的过程中小车动量变化量的大小;②若弹簧始终处于弹性限度内,求小车撞墙后与木块相对静止时的速度大小和弹簧的最大弹性势能.答案:(1)BCE (2)①12 kg·m/s ②3.6 J11 解析:当氢原子从高能级向低能级跃迁时,辐射出光子的能量有可能大于3.34 eV ,锌板有可能产生光电效应,选项A 错误;由跃迁关系可知,选项B 正确;从n =3能级向基态跃迁时发出的光子最大能量为12.09 eV ,由光电效应方程可知,发出光电子的最大初动能为8.75 eV ,选项C 正确;氢原子在吸收光子能量时需满足两能级间的能量差,因此D 选项错误;14.0 eV>13.6 eV ,因此可以使处于基态的氢原子电离,选项E 正确.(2)①小车与竖直墙壁发生碰撞的过程中,小车动量变化量的大小为Δp =m 1v 1-m 1(-v 0)=12 kg·m/s①②小车与墙壁碰撞后向左运动,木块与小车间发生相对运动将弹簧压缩至最短时,二者速度大小相等,此后木块和小车在弹簧弹力和摩擦力的作用下,做变速运动,直到二者再次具有相同速度,此后,二者相对静止.整个过程中,小车和木块组成的系统动量守恒,设小车和木块相对静止时的速度大小为v ,根据动量守恒定律有m 1v 1-m 2v 0=(m 1+m 2)v ②解得v =0.40 m/s ③当小车与木块首次达到共同速度v 时,弹簧压缩至最短,此时弹簧的弹性势能最大,设最大弹性势能为E p ,根据机械能守恒定律可得E p =12m 1v 21+12m 2v 20-12(m 1+m 2)v 2④ E p =3.6 J ⑤。
2015届高考物理二轮复习专题测试:碰撞与动量守恒Word版含解析
2015届高考物理二轮复习专题测试:碰撞与动量守恒一、选择题1.(2014·浙江高考)如图所示,甲木块的质量为m1,以v的速度沿光滑水平地面向前运动,正前方有一静止的、质量为m2的乙木块,乙上连有一轻质弹簧。
甲木块与弹簧接触后( )A.甲木块的动量守恒B.乙木块的动量守恒C.甲、乙两木块所组成系统的动量守恒D.甲、乙两木块所组成系统的动能守恒【解析】选C。
根据动量守恒定律的条件,以甲、乙为一系统,系统的动量守恒,A、B错误,C正确;甲、乙的一部分动能转化为弹簧的弹性势能,甲、乙系统的动能不守恒,D错误。
2.(2014·重庆高考)一弹丸在飞行到距离地面5m高时仅有水平速度v=2m/s,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1,不计质量损失,取重力加速度g=10m/s2,则下列图中两块弹片飞行的轨迹可能正确的是( )【解题指南】解答本题时可按以下思路进行:(1)利用平抛运动的规律221gt h =求爆炸后两弹片的落地时间。
(2)利用平抛运动的规律x=vt 分别求出各选项中的两弹片的水平速度。
(3)逐一计算各选项中爆炸后两弹片的总动量。
(4)利用动量守恒定律判断各选项中弹丸爆炸前后是否满足动量守恒。
【解析】选B 。
弹丸水平飞行爆炸时,在水平方向只有内力作用,外力为零,系统水平方向动量守恒,设m 乙=m,m 甲=3m,则爆炸前p 总=(3m+m)v=8m,而爆炸后两弹片都做平抛运动,由平抛规律可得:竖直方向为自由落体运动, 221gt h =,解得t=1s;水平方向为匀速直线运动,x=vt,选项A:v 甲=2.5m/s,v 乙=0.5m/s(向左),p ′合=3m ×2.5+m ×(-0.5)=7m,不满足动量守恒,选项A 错误;选项B:p ′合=3m ×2.5+m ×0.5=8m,满足动量守恒,选项B 正确;同理,选项C:p ′合=3m ×2+m ×1=7m,选项D:p ′合=3m ×2+m ×(-1)=5m,C 、D 均错误。
9碰撞与动量守恒 近代物理初步
【解题悟道】
应用动量守恒定律解题的步骤
(1)选取研究系统和研究过程。
(2)分析系统的受力情况,判断系统动量是否守恒。
①系统不受外力或所受合外力的矢量和为零时 ,系统动量守恒; ②系统所受内力远大于外力时,可认为系统动量守恒; ③系统在某一方向上不受外力或所受合外力的矢量和为零 ,在 该方向上系统动量守恒。
1 2
A、B再次达到共同速度时
E2= 1 (mA+mB+mC)v2=22.5J
2
机械能损失:ΔE=E1-E2=15J
答案:15J
(2)若【典题1】中,A与C发生碰撞后粘在一起,则三个物体最终 的速度是多少? 【解析】整个作用过程中,A、B、C三个物体组成的系统动量守 恒,最终三者具有相同的速度,根据动量守恒 (mA+mB)v0=(mA+mB+mC)v 代入数据可得:v=3m/s 答案:3m/s
【典题4·自主探究】(2013·江苏高考)根 据玻尔原子结构理论,氦离子(He+)的能级图 如图所示。电子处在n=3轨道上比处在n=5轨 道上离氦核的距离 (选填“近”或
“远”)。当大量He+处在n=4的激发态时,由 于跃迁所发射的谱线有 条。
【审题流程】 第一步:审题干→提取信息 ①能级图——各能级的位置及能量,E3=-6.04eV、 E5=-2.18eV。 ②大量He+处在n=4的激发态。
m1
B.v0+v2
D.v0+ m2 (v0-v2)
m1
【解析】选D。根据动量守恒定律有(m1+m2)v0=m1v1+m2v2,
2015届高考物理二轮分项测试:碰撞与动量守恒(内含答案)
专题16 碰撞与动量守恒(选修3-5)(解析版)一、选择题1.【2013·新洲一中等三校高三联考】(6分)如下图所示,在光滑的水平面上有一物体M,物体上有一光滑的半圆弧轨道,轨道半径为R,最低点为C,两端A、B一样高,现让小滑块m从A点静止下滑,则()A.m恰能达到小车上的B点B.m从A到C的过程中M向左运动,m从C到B的过程中M向右运动C.m从A到B的过程中小车一直向左运动,m到达B的瞬间,M速度为零D.M和m组成的系统机械能守恒,动量守恒E.m从A到C的过程中,M运动的位移为mR M m考点:本题考查了系统的动量守恒和机械能守恒定律。
二、非选择题:2.【2014·湖北重点中学高三联考】(9分)相隔一定距离的A、B两球,质量相等,假定它们之间存在着恒定的斥力作用.原来两球被按住,处在静止状态.现突然松开,同时给A 球以初速度v0,使之沿两球连线射向B球,B球初速度为零.若两球间的距离从最小值(两球未接触)到刚恢复到原始值所经历的时间为t0,求B球在斥力作用下的加速度.3.【2014·开封高三第一次模拟】如图所示.质量M=2kg 的足够长的小平板车静止在光滑水平面上,车的一端静止着质量为2A M kg =的物体A (可视为质点)。
一个质量为20m g =的子弹以500m/s 的水平速度迅即射穿A 后,速度变为100m/s ,最后物体A 静止在车上。
若物体A 与小车间的动摩擦因数0.5μ= (g 取210/m s 。
)①平板车最后的速度是多大?②全过程损失的机械能为多少?③A在平板车上滑行的距离为多少?4.【2013·保定高三上学期调研】 (9分)如图甲所示,光滑水平面上有A、B两物块,巳知A物块的质量m A = 1kg.初始时刻B静止,A以一定的初速度向右运动,之后与B发生碰撞并一起运动,它们的位移一时间图象如图乙所示(规定向右为位移的正方向),则物体B的质量为多少?‘【答案】3kg【解析】试题分析:据公式s v t∆=∆,由图可知, 撞前:4/A v m s = 0B v =撞后:1/v m s =则由动量守恒定律有:()A A A B m v m m v =+3B m kg =考点:本题考查动量守恒定律5.【2013·黄冈高三6月适应考试】如图所示,在光滑水平面上有一辆质量M=8 kg 的平板小车,车上有一个质量m=1.9 kg 的木块,木块距小车左端6 m (木块可视为质点),车与木块一起以v=1 m/s 的速度水平向右匀速行驶. 一颗质量m 0=0.1 kg 的子弹以v 0=179 m/s 的初速度水平向左飞,瞬间击中木块并留在其中. 如果木块刚好不从车上掉下,求木块与平板之间的动摩擦因数.μ(g=10 m/s 2)6.【2013·武汉武昌区高三期末调研】(9分)如图所示,质量M=2 kg的小车静一止在光滑的水平面上,车面上AB段是长L=1 m的光滑水平平面,与AB相切的BC部分是半径为R=0.3m的光滑14圆弧轨道,今有一质量m=1kg的小金属块以水平初速度v0从A端冲上AB面,恰能上升到14圆弧轨道的最高点C,求初速度v0的大小。
高考物理二轮专题复习 素能提升 18 碰撞与动量守恒
【优化探究】2015高考物理二轮专题复习 素能提升 1-8 碰撞与动量守恒 近代物理初步(含解析)新人教版1.(2014年高考福建卷)(1)如图,放射性元素镭衰变过程中释放出α、β、γ三种射线,分别进入匀强电场和匀强磁场中,下列说法正确的是________.A .①表示γ射线,③表示α射线B .②表示β射线,③表示α射线C .④表示α射线,⑤表示γ射线D .⑤表示β射线,⑥表示α射线(2)一枚火箭搭载着卫星以速度v0进入太空预定位置,由控制系统使箭体与卫星分离.已知前部分的卫星质量为m1,后部分的箭体质量为m2,分离后箭体以速率v2沿火箭原方向飞行,若忽略空气阻力及分离前后系统质量的变化,则分离后卫星的速率v1为______.A .v0-v2B .v0+v2C .v0-m2m1v2D .v0+m2m1(v0-v2)解析:(1)α射线是高速氦核流,带正电,垂直进入匀强电场后,受电场力作用向右(负极板一侧)偏转,β射线是高速电子流,带负电,应向左(正极板一侧)偏转,γ射线是高频电磁波,不带电,不偏转,A 、B 错误;射线垂直进入匀强磁场,根据左手定则判定C 正确,D 错误.(2)箭体与卫星分离过程动量守恒,由动量守恒定律有(m1+m2)v0=m1v1+m2v2,解得v1=v0+m2m1(v0-v2),D 正确.答案:(1)C (2)D2.(2014年高考山东卷)(1)(多选)氢原子能级如图,当氢原子从n =3跃迁到n =2的能级时,辐射光的波长为656 nm.以下判断正确的是________.a .氢原子从n =2跃迁到n =1的能级时,辐射光的波长大于656 nmb .用波长为325 nm 的光照射,可使氢原子从n =1跃迁到n =2的能级c .一群处于n =3能级上的氢原子向低能级跃迁时最多产生3种谱线d .用波长为633 nm 的光照射,不能使氢原子从n =2跃迁到n =3的能级(2)如图,光滑水平直轨道上两滑块A 、B 用橡皮筋连接,A 的质量为m.开始时橡皮筋松弛,B 静止,给A 向左的初速度v0.一段时间后,B 与A 同向运动发生碰撞并粘在一起.碰撞后的共同速度是碰撞前瞬间A 的速度的两倍,也是碰撞前瞬间B 的速度的一半.求:①B 的质量;②碰撞过程中A 、B 系统机械能的损失.解析:(1)由E 初-E 终=hν=h c λ可知,氢原子跃迁时始末能级差值越大,辐射的光子能量越高、波长越短,由能级图知E3-E2<E2-E1,故a 错误.由-1.51--3.4-3.4--13.6=λ656得λ=121.6 nm<325 nm ,故b 错误.由C23=3可知c 正确.因跃迁中所吸收光子的能量必须等于始末能级的差值,即从n =2跃迁到n =3的能级时必须吸收λ=656 nm 的光子,故d 正确.(2)①以初速度v0的方向为正方向,设B 的质量为mB ,A 、B 碰撞后的共同速度为v ,由题意知:碰撞前瞬间A 的速度为v 2,碰撞前瞬间B 的速度为2v ,由动量守恒定律得m v 2+2mBv =(m +mB)v ①由①式得mB =m 2②②从开始到碰后的全过程,由动量守恒定律得mv0=(m +mB)v ③设碰撞过程A 、B 系统机械能的损失为ΔE ,则ΔE =12m(v 2)2+12mB(2v)2-12(m +mB)v2④联立②③④式得ΔE =16mv20.答案:(1)cd (2)①m 2 ②16mv203.(2014年高考新课标Ⅰ全国卷)(1)关于天然放射性,下列说法正确的是________.A .所有元素都可能发生衰变B .放射性元素的半衰期与外界的温度无关C .放射性元素与别的元素形成化合物时仍具有放射性D .α、β和γ三种射线中,γ射线的穿透能力最强E .一个原子核在一次衰变中可同时放出α、β和γ三种射线(2)如图,质量分别为mA 、mB 的两个弹性小球A 、B 静止在地面上方,B 球距地面的高度h =0.8 m ,A 球在B 球的正上方.先将B 球释放,经过一段时间后再将A 球释放.当A 球下落t =0.3 s 时,刚好与B 球在地面上方的P 点处相碰,碰撞时间极短,碰后瞬间A 球的速度恰为零.已知mB =3mA ,重力加速度大小g =10 m/s2,忽略空气阻力及碰撞中的动能损失.求:①B 球第一次到达地面时的速度;②P 点距离地面的高度.解析:(1)原子序数大于或等于83的元素,都能发生衰变,而原子序数小于83的部分元素能发生衰变,故A 错.放射性元素的衰变是原子核内部结构的变化,与核外电子的得失及环境温度无关,故B 、C 项正确.在α、β、γ三种射线中,α、β为带电粒子,穿透本领较弱,γ射线不带电,具有较强的穿透本领,故D 项正确.一个原子核不能同时发生α和β衰变,故E 项错误.(2)①设B 球第一次到达地面时的速度大小为vB ,由运动学公式有vB =2gh ① 将h =0.8 m 代入上式,得vB =4 m/s.②②设两球相碰前后,A 球的速度大小分别为v1和v1′(v1′=0),B 球的速度分别为v2和v2′.由运动学规律可得v1=gt ③由于碰撞时间极短,重力的作用可以忽略,两球相碰前后的动量守恒,总动能保持不变.规定向下的方向为正,有mAv1+mBv2=mBv2′④12mAv21+12mBv22=12mBv2′2⑤设B 球与地面相碰后的速度大小为vB′,由运动学及碰撞的规律可得vB′=vB ⑥设P 点距地面的高度为h′,由运动学规律可得h′=v ′2B -v222g ⑦联立②③④⑤⑥⑦式,并代入已知条件可得h′=0.75 m.答案:(1)BCD (2)①4 m/s ②0.75 m4.(1)锌是微量元素的一种,在人体内的含量以及每天所需的摄入量都很少,但对机体发育及大脑发育有关.因此儿童生长发育时期测量体内含锌量已成为体格检查的重要内容之一,其中比较简单的一种检测方法是取儿童的头发约50 g ,放在核反应堆中经中子轰击后,头发中的锌元素与中子反应生成具有放射性的同位素锌,其核反应方程式为6430Zn +10n→6530Zn.6530Zn 衰变放射出能量为1 115 eV 的γ射线,通过测定γ射线的强度可以计算出头发中锌的含量.关于以上叙述,下列说法正确的是( )A .产生6530Zn 的反应是聚变反应B.6430Zn 和6530Zn 具有相同的质子数C.6530Zn 衰变放射出γ射线时,发生质量亏损,质量亏损并不意味着质量被消灭D .γ射线在真空中传播的速度是3.0×108 m/sE .γ射线是由于锌原子的内层电子激发产生的(2)氢原子的能级如图所示.若有一群处于n=4能级的氢原子,这群氢原子最多能发出________种谱线,用发出的光子照射某金属能产生光电效应,则该金属的逸出功不应超过________eV.电子从较高能级跃迁到n=2能级发出的谱线属于巴耳末线系.这群氢原子自发跃迁时发出的谱线中只有________条属于巴耳末线系.解析:(1)产生6530Zn的反应是人工转变,只有轻核才发生聚变反应,A错误;同位素6430Zn和6530Zn 的质子数相同,中子数不同,B正确;核反应中质量亏损不是质量消灭,是静止质量转变为运动质量,C正确;γ射线是波长很短的电磁波,在真空中传播的速度是3.0×108 m/s,γ射线是由于原子核受到激发产生的,D正确,E错误.(2)根据玻尔理论,电子从高轨道跃迁到低轨道,释放光子,能量减少,电子的运动速度加快,动能增加;一群处于n=4能级的氢原子最多能发出C24=6种谱线,其中从n=4能级跃迁到n =1能级释放的光子能量最大,为E4-E1=-0.85 eV-(-13.6) eV=12.75 eV,若金属的逸出功超过12.75 eV,用发射出的光子照射金属就不能发生光电效应;发出的谱线中属于巴耳末线系的有4→2或3→2两条.答案:(1)BCD(2)612.75 25.(1)(多选)下列说法中正确的是________.A.卢瑟福通过实验发现了质子的核反应方程为42He+14 7N→17 8O+1HB.铀核裂变的核反应是23592U→14156Ba+9236Kr+210nC.质子、中子、α粒子的质量分别为m1、m2、m3,质子和中子结合成一个α粒子,释放的能量是(m1+m2-m3)c2D.如右图所示,原子从a能级状态跃迁到b能级状态时发射波长为λ1的光子;原子从b能级状态跃迁到c能级状态时吸收波长为λ2的光子,已知λ1>λ2,那么原子从a能级状态跃迁到c能级状态时将要吸收波长为λ1λ2λ1-λ2的光子(2)在光滑的冰面上放置一个截面圆弧为四分之一圆的半径足够大的光滑自由曲面,一个坐在冰车上的小孩手扶一小球静止在冰面上.已知小孩和冰车的总质量为m1,小球的质量为m2,曲面质量为m3,某时刻小孩将小球以v0的速度向曲面推出(如图所示).①求小球在圆弧面上能上升的最大高度.②若m1=40 kg,m2=2 kg,小孩将小球推出后还能再接到小球,试求曲面质量m3应满足的条件.解析:(1)卢瑟福发现质子的实验是用α粒子轰击氮核,核反应方程为42He+147N→178O+1H,A 项正确;铀核裂变需要有中子轰击,其核反应是23592U+10n→14156Ba+9236Kr+310n,则B项不正确;质子和中子结合成一个α粒子,其核反应方程式为210n+211H→42He,故释放的能量是(2m1+2m2-m3)c2,则C项不正确;根据能级跃迁,原子从a能级状态跃迁到b能级状态时发射的光子能量是h c λ1;原子从b 能级状态跃迁到c 能级状态时吸收的光子能量是h c λ2,则原子从a 能级状态跃迁到c 能级状态时将要吸收的光子能量是h c λ2-h c λ1,其波长为λ1λ2λ1-λ2,D 项正确. (2)①小球在曲面上运动到最大高度时两者共速,速度为v ,小球与曲面的系统动量守恒,机械能也守恒,有m2v0=(m2+m3)v ,12m2v20=12(m2+m3)v2+m2gh ,解得h =m3v202m2+m3g .②小孩推球的过程中动量守恒,即0=m2v0-m1v1.对于球和曲面,根据动量守恒定律和机械能守恒定律有m2v0=-m2v2+m3v3,12m2v20=12m2v22+12m3v23,解得v2=m3-m2m3+m2v0.若小孩将球推出后还能再接到球,则有v2>v1,得m3>4219 kg.答案:(1)AD (2)①m3v202m2+m3g ②m3>4219 kg课时跟踪训练1.(1)(多选)下列四幅图的有关说法中正确的是________.①球m1以v 碰静止球m2 ②放射线在磁场中偏转③光电流与电压的关系A .图①中,若两球质量相等,碰后m2的速度一定不大于vB .图②中,射线甲由α粒子组成,每个粒子带两个单位正电荷C .图③中,在光颜色保持不变的情况下,入射光越强,遏止电压Uc 越大D .图④中,链式反应属于重核的裂变(2)质量分别为m1和m2的两个小球叠放在一起,从高度为h 处自由落下,如图所示.已知h 远大于两球半径,所有的碰撞都是完全弹性碰撞,且都发生在竖直方向上.若碰撞后m2恰处于平衡状态,求①两个小球的质量之比m1∶m2;②小球m1上升的最大高度.解析:(1)图①中,若两球质量相等,只有在完全弹性碰撞时碰后m2的速度才等于v ,一般碰撞,机械能损失,所以碰后m2的速度一定不大于v ,选项A 正确.图②中,射线丙由α粒子组成,每个粒子带两个单位正电荷,选项B 错误.图③中,在光颜色保持不变的情况下,入射光越强,饱和电流越大,遏止电压Uc 不变,选项C 错误.图④中,链式反应属于重核的裂变,选项D 正确.(2)下降过程为自由落体运动,触地时两球速度相同,v =2gh ,m2碰撞地之后,速度瞬间反向,大小相等,选m1与m2碰撞过程为研究过程,碰撞前后动量守恒,设碰后m1速度大小为v1,碰后m2处于平衡状态,速度为0.选向上方向为正方向,则(m2-m1)v =m1v1由能量守恒定律得12(m2+m1)v2=12m1v21,联立解得m1∶m2=1∶3,v1=22gh.反弹后高度H =v21/(2g)=4h.答案:(1)AD (2)①1∶3 ②4h2.(2014年洛阳联考)(1)下列说法正确的是________.A .电子的衍射现象说明实物粒子具有波动性B .235U 的半衰期约为7亿年,随地球环境的变化,半衰期可能变短C .原子核内部某个质子转变为中子时,放出β射线D .在α、β、γ这三种射线中,γ射线的穿透能力最强,α射线的电离能力最强E .氢原子的核外电子由较高能级跃迁到较低能级时,要释放一定频率的光子,同时电子的动能增加,电势能减小(2)如图所示,质量均为m 的小车与木箱紧挨着静止在光滑的水平冰面上,质量为2m 的小孩站在小车上用力向右迅速推出木箱,木箱相对于冰面运动的速度为v ,木箱运动到右侧墙壁时与竖直的墙壁发生弹性碰撞,反弹后被小孩接住,求整个过程中小孩对木箱做的功.解析:(1)电子通过狭缝或小孔后,其分布类似光的衍射图样,说明实物粒子具有波动性,选项A 正确;原子核的半衰期不随温度、压强等物理环境或化学条件而改变,选项B 错误;由核反应中电荷数守恒和质量数守恒知,原子核内的某质子转变成中子时,将释放出正电子,选项C 错误;在α、β、γ三种射线中,穿透能力最强的是γ射线,电离能力最强的是α射线,选项D 正确;由跃迁方程可知,氢原子的核外电子由较高能级向较低能级跃迁时,将释放光子,这种跃迁相当于核外电子由距原子核较远轨道迁移到较近轨道,原子核和电子之间的静电力对电子做正功,电子的动能增加而电势能减小,选项E 正确.(2)取向左为正方向,根据动量守恒定律,有推出木箱的过程:0=(m +2m)v1-mv ,接住木箱的过程:mv +(m +2m)v1=(m +m +2m)v2.设人对木箱做的功为W ,对木箱由动能定理得W =12mv22,解得W =18mv2.答案:(1)ADE (2)18mv23.(2014年高考江苏卷)(1)已知钙和钾的截止频率分别为7.73×1014 Hz 和5.44×1014 Hz ,在某种单色光的照射下两种金属均发生光电效应,比较它们表面逸出的具有最大初动能的光电子,钙逸出的光电子具有较大的________.A .波长B .频率C .能量D .动量(2)氡222是一种天然放射性气体,被吸入后,会对人的呼吸系统造成辐射损伤.它是世界卫生组织公布的主要环境致癌物质之一.其衰变方程是222 86Rn→218 84Po +________.已知222 86Rn 的半衰期约为3.8天,则约经过________天,16 g 的222 86Rn 衰变后还剩1 g.(3)牛顿的《自然哲学的数学原理》中记载,A 、B 两个玻璃球相碰,碰撞后的分离速度和它们碰撞前的接近速度之比总是约为15∶16.分离速度是指碰撞后B 对A 的速度,接近速度是指碰撞前A 对B 的速度.若上述过程是质量为2m 的玻璃球A 以速度v0碰撞质量为m 的静止玻璃球B ,且为对心碰撞,求碰撞后A 、B 的速度大小.解析:(1)由光电效应方程Ekm =hν-W =hν-hν0钙的截止频率大,因此钙中逸出的光电子的最大初动能小,其动量p =2mEkm ,故动量小,由λ=h p ,可知波长较长,则频率较小,选项A 正确.(2)由质量数、电荷数守恒有222 86Rn→218 84Po +42He.由m =m02n 得n =4,t =nT =4×3.8=15.2 天.(3)设A 、B 球碰撞后速度分别为v1和v2,由动量守恒定律知2mv0=2mv1+mv2,且由题意知v2-v1v0=1516,解得v1=1748v0,v2=3124v0答案:(1)A (2)42He(或α) 15.2 (3)1748v0 3124v04.(1)(多选)如图为氢原子能级的示意图,现有大量的氢原子处于n =4的激发态,当向低能级跃迁时辐射出若干不同颜色的光.关于这些光下列说法正确的是________.A.由n=4能级跃迁到n=1能级产生的光子能量最大B.由n=2能级跃迁到n=1能级产生的光子频率最小C.这些氢原子总共可辐射出3种不同频率的光D.用n=2能级跃迁到n=1能级辐射出的光照射逸出功为6.34 eV的金属铂能发生光电效应(2)若23554Xe两种新核,且三种原子核的质量分别为235.043 9 92U俘获一个中子裂变成9038Sr及136u、89.907 7 u和135.907 2 u,中子质量为1.008 7 u(1 u=1.660 6×10-27 kg,1 u对应931.5 MeV)①写出铀核裂变的核反应方程;②求9.2 kg纯铀235完全裂变所释放的能量是多少?(取两位有效数字)解析:(1)由n=4能级跃迁到n=1能级产生的光子能量E1=[-0.85-(-13.6)]eV=12.75 eV 为跃迁时产生光子能量的最大值,A正确.由n=4向n=3能级跃迁时,产生的光子能量最小,频率也最小,B错.这些氢原子跃迁时共可辐射出6种不同频率的光,C错.从n=2能级跃迁到n=1能级辐射出的光子能量为10.2 eV,大于金属铂的逸出功(6.34 eV),故能发生光电效应,D正确.54Xe+1010n.(2)①23592U+10n→9038Sr+136②因为一个铀核裂变的质量亏损Δm=(235.043 9 u+1.008 7 u)-(89.907 7 u+135.907 2 u+10×1.008 7 u)=0.150 7 u,故9.2 kg的铀裂变后总的质量亏损为ΔM=6.02×1023×0.150 7×9.2×103/235 u=3.55×1024 u,所以ΔE=ΔMc2=3.55×1024×931.5 MeV=3.3×1027 MeV.54Xe+1010n38Sr+136答案:(1)AD(2)①23592U+10n→90②3.3×1027 MeV5.(1)某放射性元素原子核X有N个核子,发生一次α衰变和一次β衰变后,变为Y核,衰变后Y核的核子数为________,若该放射性元素经过时间T,还剩下1/8没有衰变,则它的半衰期为________,如果衰变前X核的质量为mX,衰变后产生Y核的质量为mY,α粒子的质量为mα,β粒子的质量为mβ,光在真空中传播的速度为c,则衰变过程中释放的核能为________.(2)如图所示,质量分别为mA=1 kg、mB=4 kg的木块A、木板B置于光滑水平面上,质量为mC=2 kg的木块C置于足够长的木板B上,B、C之间用一轻弹簧拴接且接触面光滑.开始时B、C静止,A以v0=10 m/s的初速度向右运动,与B碰撞后B的速度为3.5 m/s,碰撞时间极短.求:①A、B碰撞后瞬间A的速度;②弹簧第一次恢复原长时C的速度大小.解析:(1)α衰变后核子数少4个(其中2个质子、2个中子),β衰变后核子数不变(中子少1个、质子多1个),Y核的核子数为N-4;根据半衰期的公式,得到该放射性元素的半衰期为T/3;根据爱因斯坦质能方程得到ΔE=Δmc2=(mX-mY-mα-mβ)c2.(2)①因碰撞时间极短,A、B碰撞过程中,C的速度为零,A、B系统动量守恒,则有mAv0=mAvA +mBvB ,碰后瞬间A 的速度为vA =mAv0-mBvB mA =-4 m/s ,方向与A 初速度方向相反. ②弹簧第一次恢复原长时,弹性势能为零.设此时B 的速度大小为vB′,C 的速度大小为vC.B 、C 相互作用过程中动量守恒、能量守恒,有mBvB =mBvB′+mCvC ,12mBv2B =12mBvB′2+12mCv2C , 联立解得vC =2mB mB +mCvB =4.7 m/s. 答案:(1)N -4 T 3 (mX -mY -mα-mβ)c2(2)①4 m/s ,方向与A 初速度方向相反 ②4.7 m/s6.(1)如图为氢原子的能级图,大量处于n =4激发态的氢原子跃迁时,发出多个能量不同的光子,其中频率最大的光子能量为______ eV ,若用此光照射到逸出功为2.75 eV 的光电管上,则加在该光电管上的遏止电压为______V.(2)如图所示,在光滑的水平面上有两个物块A 、B ,质量分别为mA =3 kg ,mB =6 kg ,它们之间由一根不可伸长的轻绳相连,开始时绳子完全松弛,两物块紧靠在一起.现用3 N 的水平恒力F 拉B ,使B 先运动,当轻绳瞬间绷直后再拉A 、B 共同前进,在B 总共前进0.75 m 时,两物块共同向前运动的速度为23m/s ,求连接两物块的绳长L.解析:(1)当氢原子从n =4激发态的能级直接跃迁到第一能级时发出的光子能量最大,频率最大.则由hν=E4-E1,可求得hν=12.75 eV ;根据(hν-2.75 eV)-eU =0,可得U =10 V.(2)当B 前进距离L 时,由动能定理FL =12mBv2B ,得vB =2FLmB ,此后A 、B 以共同速度运动,由动量守恒mBvB =(mA +mB)vAB ,然后A 、B 一起匀加速运动,由牛顿第二定律和运动学公式,可得vAB′2-v2A B =2F mA +mBx ,x =0.75-L ,解得L =0.25 m. 答案:(1)12.75 10 (2)0.25 m7.(2014年山东泰安高三质检)(1)下列说法正确的是( )A .具有相同的质子数而中子数不同的原子互称同位素B .某原子核经过一次α衰变后,核内质子数减少4个C.239 94Pu 与239 92U 的核内具有相同的中子数和不同的核子数D .进行光谱分析时既可以用连续光谱,也可以用线状光谱(2)如图所示,质量为m2=10 kg 的滑块静止于光滑水平面上,一小球m1=5 kg ,以v1=10 m/s 的速度与滑块相碰后以2 m/s 的速率被弹回.碰撞前两物体的总动能为________J ,碰撞后两物体的总动能为________J ,说明这次碰撞是________(选填“弹性碰撞”或“非弹性碰撞”).(3)氢原子的能级如图所示,求:①当氢原子从n =4向n =2的能级跃迁时,辐射的光子照射在某金属上,刚好能发生光电效应,则该金属的逸出功为多少?②现有一群处于n =4的能级的氢原子向低能级跃迁,在辐射出的各种频率的光子中,能使该金属发生光电效应的频率共有多少种?解析:(1)同位素的质子数相同,中子数不同,A 正确;某原子核经过一次α衰变后,核内质子数减少2个,B 错误;239 94Pu 和239 92U 的核内具有相同的核子数和不同的中子数和质子数,C 错误;进行光谱分析时只能用线状光谱,不能用连续光谱,D 错误.(2)碰撞前总动能为12m1v21=250 J ,碰撞过程动量守恒有m1v1=m2v2-m1v1′,得v2=6 m/s ,故碰撞后系统总动能为12m1v1′2+12m2v22=190 J<250 J ,故这次碰撞为非弹性碰撞. (3)①W =E4-E2=-0.85 eV -(-3.40 eV)=2.55 eV.②一群处于n =4能级的氢原子向低能级跃迁时能放出6种不同频率的光,但4→3和3→2两种光子不能使该金属发生光电效应,故共有4种频率的光子能使该金属发生光电效应. 答案:(1)A (2)250 190 非弹性碰撞(3)①2.55 eV ②4种8.(1)以往我们认识的光电效应是单光子光电效应,即一个电子在极短时间内只能吸收到一个光子而从金属表面逸出.强激光的出现丰富了人们对于光电效应的认识,用强激光照射金属,由于其光子密度极大,一个电子在极短时间内吸收多个光子成为可能,从而形成多光子光电效应,这已被实验证实.光电效应实验装置示意图如图所示.用频率为ν的普通光源照射阴极K ,没有发生光电效应,换用同样频率ν的强激光照射阴极K ,则发生了光电效应;此时,若加上反向电压U ,即将阴极K 接电源正极,阳极A 接电源负极,在KA 之间就形成了使光电子减速的电场.逐渐增大U ,光电流会逐渐减小;当光电流恰好减小到零时,所加反向电压U 可能是下列的(其中W 为逸出功, h 为普朗克常量,e 为电子电量)( )- 11 -A .U =hνe -W eB .U =2hνe -W eC .U =2hν-WD .U =5hν2e -W e(2)用α粒子轰击静止氮原子核(14 7N)的实验中,假设某次碰撞恰好发生在同一条直线上.已知α粒子的质量为4m0,轰击前的速度为v0,轰击后,产生质量为17m0的氧核速度大小为v1,方向与v0相同,且v1<v05,同时产生质量为m0的质子.求:①写出该实验的反应方程式;②质子的速度大小和方向.解析:(1)本题中,“当增大反向电压U ,使光电流恰好减小到零时”,即为从阴极K 逸出的具有最大初动能的光电子,恰好不能到达阳极A.以从阴极K 逸出的且具有最大初动能的光电子为研究对象,由动能定理得-Ue =0-12mv2m ①由光电效应方程得nhν=12mv2m +W(n =2,3,4…)②由①②式解得U =nhνe -W e (n =2,3,4…),故选项B 正确.(2)①42He +14 7N→17 8O +1H.②设产生的质子速度为v2,由动量守恒定律,得4m0v0=17m0v1+m0v2,得v2=4v0-17v1.由于v1<v05,有v2>0,即质子飞出的方向与v0同向.答案:(1)B (2)①42He +14 7N→17 8O +1H ②4v0-17v1 与v0同向。
高考物理专题强化测评精练精析 专题9碰撞与动量守恒
专题强化测评(九)碰撞与动量守恒近代物理初步(45分钟 100分)1.(2012·漳州模拟)(10分)(1)人眼对绿光最敏感,正常人的眼睛接收到波长为530 nm的绿光时,只要每秒有6个绿光的光子射入瞳孔,眼睛就能察觉.普朗克常量为6.63×10-34 J·s,光速为3.0×108 m/s,则①人眼能察觉到绿光时所接收到的最小功率是___________.②用这种波长的绿色光照射下列五种材料,能产生光电效应的材料有______种.(2)如图为中国队员投掷冰壶的镜头.在某次投掷中,冰壶运动一段时间后以0.4 m/s的速度与对方的静止冰壶发生正碰,碰后对方的冰壶以0.3 m/s的速度向前滑行.若两冰壶质量相等,规定向前运动方向为正方向,则碰后中国队冰壶的速度为( )A.0.1 m/sB.-0.1 m/sC.0.7 m/sD.-0.7 m/s2.(2012·朝阳区模拟)(10分)(1)现有a、b、c三种单色光,其波长关系为λa>λb>λc.用b光照射某种金属时,恰好能发生光电效应.若分别用a光和c光照射该金属,则( )A.a光照射时,不能发生光电效应B.c光照射时,不能发生光电效应C.a光照射时,释放出的光电子的最大初动能最大D.c光照射时,释放出的光电子的最大初动能最小(2)质量为M的小物块A静止在离地面高h的水平桌面的边缘,质量为m的小物块B沿桌面向A运动并以速度v0与之发生正碰(碰撞时间极短).碰后A离开桌面,其落地点离出发点的水平距离为L.碰后B反向运动.求B后退的距离.(已知B与桌面间的动摩擦因数为μ,重力加速度为g)3.(10分)(1)在光滑的水平面上有两个在同一直线上相向运动的小球,其中甲球的质量m1=2 kg,乙球的质量m2=1 kg,规定向右为正方向,碰撞前后乙球的速度随时间变化情况如图所示.已知两球发生正碰后,甲球静止不动,碰撞时间极短,则碰前甲球速度的大小和方向分别为( )A.0.5 m/s,向右B.0.5 m/s,向左C.1.5 m/s,向右D.1.5 m/s,向左X,发生α衰变后放出一个动能为E0的α粒子,求:(2)原来静止的原子核ba①生成的新核动能是多少?②如果衰变释放的能量全部转化为α粒子及新核的动能,释放的核能ΔE是多少?③亏损的质量Δm是多少?4.(12分)(1)如图1所示为氢原子的能级图.用光子能量为13.06 eV 的光照射一群处于基态的氢原子,可能观测到氢原子发射的不同波长的光有________种.(2)质量为M=2 kg的小平板车C静止在光滑水平面上,车的一端静止着质量为m A=2 kg的物体A(可视为质点),如图2所示,一颗质量为m B=20 g的子弹以600 m/s的水平速度射穿A后,速度变为100 m/s,最后物体A相对车静止,求平板车最后的速度是多大?5.(12分)氢原子的能级示意图如图所示,现有每个电子的动能都为E e=12.89 eV的电子束与处在基态的氢原子束射入同一区域,使电子与氢原子发生迎头正碰.已知碰撞前一个电子与一个氢原子的总动量为零.碰撞后,氢原子受激发而跃迁到n=4的能级.求碰撞后1个电子与1个受激氢原子的总动能.(已知电子的质量m e与氢原子的质量m H之比为1∶1 840)6.(14分)(1)下列说法正确的是__________.A.根据E=mc2可知物体所具有的能量和它的质量之间存在着简单的正比关系B.在单缝衍射实验中,假设只让一个光子通过单缝,则该光子不可能落在暗条纹处C.一群氢原子从n=3的激发态向较低能级跃迁,最多可放出两种频率的光子D.已知能使某金属发生光电效应的极限频率为ν0,则当频率为2ν0的单色光照射该金属时,光电子的最大初动能为2hν0(2)如图,车厢的质量为M,长度为L,静止在光滑水平面上,质量为m的木块(可看成质点)以速度v0无摩擦地在车厢底板上向右运动,木块与前车壁碰撞后以速度v0/2向左运动,则再经过多长时间,木块将与后车壁相碰?7. (2012·盐城模拟)(16分)(1)核能作为一种新能源在现代社会中已不可缺少,但安全是核电站面临的非常严峻的问题.核泄漏中的钚(Pu)是一种具有放射性的超铀元素,钚的危险性在于它对人体的毒性,与其他放射性元素相比钚在这方面更强,一旦侵入人体,就会潜伏在人体肺部、骨骼等组织细胞中,破坏细胞基因,提高罹患癌症的风险.已知钚的一种同位素23994Pu的半衰期为24 100年,其衰变方程为23994Pu→X+42He+γ,下列有关说法正确的是()A.X原子核中含有143个中子B.100个23994Pu经过24 100年后一定还剩余50个C.由于衰变时释放巨大能量,根据E=mc2,衰变过程中总质量增加D.衰变发出的γ放射线是波长很短的光子,具有很强的穿透能力(2)氢原子核的光谱在可见光范围内有四条谱线,其中在靛紫色区内的一条是处于量子数n=4的能级氢原子跃迁到n=2的能级发出的,氢原子的能级如图所示,已知普朗克常量h=6.63×10-34 J·s,则该条谱线光子的能量为________eV,该条谱线光子的频率为__________Hz.(结果保留3位有效数字)(3)已知金属铷的极限频率为5.15×1014Hz,现用波长为5.0×10-7m的一束光照射金属铷,能否使金属铷产生光电效应?若能,请算出逸出光电子的最大初动能.(结果保留两位有效数字)8.(2012·武汉模拟)(16分)(1)23892U放射性衰变有多种途径,其中一种途径是先衰变成21083Bi,而21083Bi可以经一次衰变变成210a X(X代表某种元素),也可以经一次衰变变成b21081aTi X,和b81Ti最后都衰变变成20682Pb,衰变路径如图所示,则可知图中( )A.过程①是β衰变,过程③是α衰变;过程②是α衰变,过程④是β衰变B.过程①是β衰变,过程③是α衰变;过程②是β衰变,过程④是α衰变C.过程①是α衰变,过程③是β衰变;过程②是α衰变,过程④是β衰变D.过程①是α衰变,过程③是β衰变;过程②是β衰变,过程④是α衰变(2)如图所示,质量M=0.040 kg的靶盒A静止在光滑水平导轨上的O点,水平轻质弹簧一端拴在固定挡板P上,另一端与靶盒A连接.Q处有一固定的发射器B,它可以瞄准靶盒发射一颗水平速度为v0=50 m/s,质量m=0.010 kg的弹丸,当弹丸打入靶盒A后,便留在盒内,碰撞时间极短,不计空气阻力.求弹丸进入靶盒A后,弹簧的最大弹性势能为多少?答案解析1.【解析】(1)①每个绿光光子的能量34809c 6.6310 3.010E h h J 53010⨯⨯⨯νλ⨯--===≈ 3.8×10-19J人眼最少需每秒射入6个绿光光子才能察觉,故P =06E t=6×3.8×10-19W ≈2.3×10-18W②发生光电效应的条件是光子的能量要大于金属的逸出功,E 0仅大于铯的逸出功,故只有一种. (2)选A.根据动量守恒定律,0.4 m =0.3 m +mv ,得中国队冰壶的速度v = 0.1 m/s ,只有A 选项正确. 答案:(1)①2.3×10-18W ②1 (2)A2.【解析】(1)选A.由cνλ=可判断a 、b 、c 三种单色光的频率关系为νa <νb < νc ,用b 光照射某种金属恰好能发生光电效应,由于光的频率大于或等于极限频率时才会产生光电效应,所以a 光照射时不能发生光电效应,c 光照射时能发生光电效应,A 选项正确,B 、C 选项均错误;光电子的初动能与频率有关,频率越大,初动能越大,c 光照射时,逸出的光电子的最大初动能最大,D 选项错误.(2)设t 为A 从离开桌面到落地经历的时间,v 表示刚碰后A 的速度,有:21h gt 2=L vt =设V 为刚碰后B 的速度大小,由动量守恒定律有: mv 0=Mv -mV设B 后退的距离为x ,由动能定理有: -μmgx =0-12mV 2由以上各式求得:201ML g x (v ).2g m 2hμ=- 答案:(1)A (2)201ML g (v )2g m 2hμ- 3.【解析】(1)选D.设碰前甲球的速度为v 1.由图象知碰前乙球的速度v 2=2 m/s ,碰后速度v 2′=-1 m/s ,根据动量守恒定律m 1v 1+m 2v 2=m 2v 2′,得碰前甲球速度v 1=-1.5 m/s,负号表示方向向左,故D 正确.(2)①衰变方程为:b 4b 4a 2a 2X He Y →--+,在衰变过程中动量守恒m αv α=m Y v Y又因为2k p E 2m=, 所以Y Y 00Y m E 44E E E m b 4b 4α==,=-- ②由能量守恒知,释放的核能 ΔE =E 0+E Y =000bE 4E E b 4b 4+=-- ③由质能关系ΔE =Δmc 2,解得02bE m .(b 4)c ∆=-答案:(1)D (2)①04E b 4- ②0bE b 4- ③02bE (b 4)c - 4.【解析】(1)由E =E n -E 1可知E n =E +E 1=13.06 eV -13.6 eV =-0.54 eV.吸收13.06 eV 能量后氢原子处于量子数n =5的激发态,由N =n(n 1)2-=10得知可产生10种不同波长的光. (2)子弹射穿A 时,以子弹与A 组成的系统为研究对象.由动量守恒定律得m B v B =m A v A ′+m B v B ′ A 在小车上相对滑动,设最后速度为v ″.以A 与小车组成的系统为研究对象,由动量守恒定律得 m A v A ′=(m A +M)v ″ 可得v ″=2.5 m/s. 答案:(1)10 (2)2.5 m/s5.【解析】以v e 和v H 表示碰撞前电子的速率和氢原子的速率,根据题意有: m e v e -m H v H =0碰撞前,氢原子与电子的总动能为:22k H H e e 11E m v m v 22=+联立以上两式并代入数据解得: E k ≈12.90 eV氢原子从基态跃迁到n =4的能级所需能量由能级图可得:ΔE =-0.85 eV -(-13.6 eV)=12.75 eV 碰撞后,受激氢原子与电子的总动能为: E k ′=E k -ΔE =12.90 eV -12.75 eV =0.15 eV. 答案:0.15 eV6.【解析】(1)选A.根据E=mc 2可知物体所具有的能量和它的质量之间存在着正比关系,A 对;在单缝衍射实验中,假设只让一个光子通过单缝,则该光子落在的位置是不确定的,B 错;一群氢原子从n=3的激发态向较低能级跃迁,最多可放出3种频率的光子,C 错;能使某金属发生光电效应的极限频率为ν0,则当频率为 2ν0的单色光照射该金属时,光电子的最大初动能为E km =2h ν0-h ν0=h ν0,D 错. (2)木块和车厢组成的系统动量守恒,设向右为正方向,碰后车厢的速度为v ′0v mv Mv m2='- 得03mv v ,2M'=方向向右 设t 时间内木块将与后车壁相碰,则 v ′t+v t 2 =L 000L 2MLt v 3mv (M 3m)v 22M==++ 答案:(1)A (2)2ML(M 3m)v +7. 【解析】(1)由衰变过程中核电荷数守恒得23592X ,其中中子数为235-92=143,A 项对.半衰期对大量原子核的衰变才有意义,B 项错.衰变过程中核子总质量减小,质量必亏损,C 项错.衰变后产生的巨大的能量以γ光子的形式释放,D 项对.(2)光子的能量E=E 4-E 2=(-0.85)-(-3.4) eV=2.55 eV.由E=h ν得191434E 2.551.610 J 6.1510h 6.6310 J s--⨯⨯ν===⨯⨯g Hz. (3)因入射光子的频率ν=c λ得ν=6.0×1014Hz ,大于金属铷的极限频率,故能使金属铷产生光电效应. 由爱因斯坦光电效应方程 E km =h ν-W W=h ν0代入数值得E km =5.6×10-20J答案:(1)A 、D (2)2.55 6.15×1014(3)能 5.6×10-20J8.【解析】(1)选A.在21083Bi 衰变变成210a X 的过程中质量数不变,过程①是β衰变;210a X 衰变变成20682Pb 过程中质量数减少4, 过程③是α衰变;21083Bi 衰变变成b 81Ti ,核电荷数减少2,过程②是α衰变;b81Ti 衰变变成20682Pb ,核电荷数增加1,过程④是β衰变,所以选项A 正确.(2)弹丸进入靶盒A 后,弹丸与靶盒A 的共同速度设为v ,由系统动量守恒得 mv 0=(m+M)v靶盒A 的速度减为零时,弹簧的弹性势能最大,由系统机械能守恒得 E p =12(m+M)v 2解得()22p 0m E v 2m M =+ 代入数值得E p =2.5 J 答案:(1)A (2)2.5 J。
高考物理二轮复习测试:十五、碰撞与动量守恒 近代物理初步
十五、碰撞与动量守恒 近代物理初步姓名:________ 班级:________1.(多选)下列说法正确的是( )A .卢瑟福通过α粒子散射实验建立了原子核式结构模型B .宏观物体的物质波波长非常大,极易观察到它的波动性C .爱因斯坦在对光电效应的研究中,提出了光子说D .对于任何一种金属都存在一个“最大波长”,入射光的波长必须小于这个波长,才能产生光电效应解析:卢瑟福通过α粒子散射实验提出了原子的核式结构模型,故A 正确.根据λ=h p,知宏观物体的物质波波长非常小,不易观察到它的波动性,故B 错误.受普朗克量子论的启发,爱因斯坦在对光电效应的研究中,提出了光子说,故C 正确.对于任何一种金属都存在一个“最大波长”,入射光的波长必须小于这个波长,才能产生光电效应,故D 正确.答案:ACD2.(多选)关于光电效应,下列说法正确的是( )A .某种频率的光照射某金属发生光电效应,若增大入射光的强度,则单位时间内发射的光电子数增加B .光电子的最大初动能只与入射光的频率有关,与入射光的强弱无关C .当入射光的频率低于截止频率时不发生光电效应D .一般需要用光照射金属几分钟到几十分钟才能发生光电效应E .入射光的频率不同,同一金属的逸出功也会不同解析:某种频率的光照射某金属能发生光电效应,若增大入射光的强度,就增加了单位时间内射到金属上的光子数,则单位时间内发射的光电子数将增加,A 正确;根据光电效应方程E km =hν-W 0,得知光电子的最大初动能与入射光的频率有关,随入射光频率的增大而增大,与入射光的强度无关,B 正确;由发生光电效应的条件易知C 正确;光电效应具有瞬时性,D 错误;金属的逸出功由金属材料决定,与入射光无关,E 错误.故选ABC.答案:ABC3.核电站核泄漏的污染物中含有碘131和铯137.碘131的半衰期约为8天,会释放β射线;铯137是铯133的同位素,半衰期约为30年,发生衰变时会辐射γ射线.下列说法正确的是( )A .碘131释放的β射线由氦核组成B .铯137衰变时辐射出的γ光子能量小于可见光光子能量C .与铯137相比,碘131衰变更慢D .铯133和铯137含有相同的质子数解析:β射线实际是电子流,A 错误;γ射线是高频电磁波,其光子能量大于可见光光子的能量,B 错误;半衰期是放射性元素的原子核有半数发生衰变所需的时间,碘131的半衰期为8天,铯137半衰期为30年,碘131衰变更快,C 错误;同位素是具有相同的质子数和不同的中子数的元素,故铯133和铯137含有相同的质子数,D 正确.答案:D4.(多选)在下列叙述中,正确的是( )A. 一切物体都在辐射电磁波B .太阳辐射的能量主要来自太阳内部的热核反应C .在单缝衍射实验中,光子不可能落在暗条纹处D .各种气体原子的能级不同,跃迁时发射光子的能量(频率)不同,因此利用不同的气体可以制成五颜六色的霓虹灯E .根据玻尔理论,氢原子的核外电子由较高能级跃迁到较低能级时,要释放一定频率的光子,同时电子的动能减小,电势能增大解析:我们周围的一切物体都在向外辐射电磁波,这种辐射与物体的温度有关,A 正确;太阳辐射的能量主要来自太阳内部的轻核聚变,又称热核反应,B 正确;根据光的概率波的概念,对于一个光子通过单缝后落在何处,是不可确定的,但概率最大的是落在中央亮纹处,当然也可能落在其他亮纹处,还可能落在暗条纹处,只不过落在暗条纹处的概率很小而已,C 错误;各种气体原子的能级不同,跃迁时发射光子的能量(频率)不同,因此利用不同的气体可以制成五颜六色的霓虹灯,D 正确;根据玻尔理论,氢原子的核外电子由较高能级跃迁到较低能级时,要释放一定频率的光子,同时电子的动能增大,电势能减小,E 错误.故选ABD.答案:ABD5.(多选)关于动量定理和动量守恒的条件,下列说法中正确的是( )A .动量是矢量,它的方向与速度的方向相同B .合力冲量的方向一定和动量变化的方向相同C .只要系统内存在着摩擦力,系统的动量就不守恒D .只要系统所受的合外力为零,系统的动量就守恒E .当系统所受外力的冲量的矢量和不为零时,系统的动量可能守恒解析:动量是矢量,它的方向与速度的方问相同,A 正确;合力冲量的方向一定和动量变化的方向相同,与动量方向不一定相同,B 正确;若系统内存在着摩擦力,而系统所受的合外力为零,系统的动量仍守恒,C 错误;只要系统所受的合外力为零,系统的动量就不会改变,即系统的动量守恒,D 正确;只要系统所受外力的冲量的矢量和保持为零,系统的动量就守恒,E 错误.故选ABD.答案:ABD6.在能源中,核能具有能量密度大、地区适应性强的优势.在核电站中,核反应堆释放的核能被转化为电能,核反应堆的工作原理是利用中子轰击重核发生裂变反应,释放出大量核能.(1)核反应方程式235 92U +n →141 56Ba +9236Kr +a X 是反应堆中发生的许多核反应中的一种,n 为中子,X 为待求粒子,a 为X 的个数,则X 为________,a =________.以m U 、m Ba 、m Kr 分别表示235 92U 、141 56Ba 、9236Kr 的质量,m n 、m p 分别表示中子、质子的质量,c 为光在真空中传播的速度,则在上述反应过程中放出的核能ΔE =________.(2)有一座发电能力为P =1.00×106 kW 的核电站,核能转化为电能的效率η=40%.假定反应堆中发生的裂变反应全是本题(1)中的核反应,已知每次核反应过程放出的核能ΔE =2.78×10-11 J ,235 92U 的质量m U =390×10-27 kg ,则每年(1年=3.15×107 s)该核电站消耗的235 92 U 的质量为________.解析:(1)由电荷数守恒可判定X 的核电荷数为0,这说明X 即为中子.据质量数守恒有235+1=141+92+a ,则a =3.反应中的质量亏损Δm =m U -(m Ba +m kr +2m n ),据质能方程得ΔE =Δmc 2=[m U -(m Ba +m kr +2m n )]c 2.(2)该核电站在1年内输出的电能W =Pt ,W 总=W η=Pt η,因ΔE =2.78×10-11 J ,则核反应数n =W 总ΔE ,故消耗的235 92U 的质量为m =n ·m U =Pt ηΔE m U=1104.77 kg. 答案:(1)中子 3 [m U -(m Ba +m kr +2m n )]c 2 (2)1104.77 kg7.(多选)在光电效应实验中,两个实验小组分别在各自的实验室,约定用相同频率的单色光,分别照射锌和银的表面,结果都能发生光电效应,如甲图,并记录相关数据.对于这两组实验,下列判断正确的是( )A .因为材料不同,逸出功不同,所以遏止电压U C 不同B .饱和光电流一定不同C .光电子的最大初动能不同D .因为光强不确定,所以单位时间逸出的光电子数可能相同E .分别用不同频率的光照射之后绘制U C —ν图象(ν为照射光频率,如乙图为其中一小组绘制的图象),图象的斜率可能不同解析:根据光电效应方程,12m v 2=hν-W 逸,可知因为材料不同则逸出功不同,所以最大初动能不同,由12m v 2=U ce ,可知遏止电压U C 不同,选项A 、C 正确;饱和光电流与入射光的强度有关,因为光强不确定,所以单位时间逸出的光电子数可能相同,饱和光电流不一定不同,选项B 错误,选项D 正确;根据光电效应方程,12m v 2=hν-W 逸以及12m v 2=U ce ,可得U ce =hν-W 逸,即U C =h e ν-W 逸e ,因为h e为定值,所以U C -ν图象的斜率一定相同,选项E 错误.答案:ACD8.如图所示,AB 为倾角θ=37°的粗糙斜面轨道,通过一小段光滑圆弧与光滑水平轨道BC 相连接,质量为m 2的小球乙静止在水平轨道上,质量为m 1的小球甲以速度v 0与乙球发生弹性正碰.若m 1∶m 2=1∶2,且轨道足够长,要使两球能发生第二次碰撞,求乙球与斜面之间的动摩擦因数μ的取值范围.(sin37°=0.6,cos37°=0.8)解析:设碰后甲的速度为v 1,乙的速度为v 2,由动量守恒和能量关系:m 1v 0=m 1v 1+m 2v 212m 1v 20=12m 1v 21+12m 2v 22 联立解得:v 1=m 1-m 2m 1+m 2v 0=-13v 0,v 2=2m 1m 1+m 2v 0=23v 0 设上滑的最大位移大小为s ,滑到斜面底端的速度大小为v ,由动能定理:(m 2g sin37°+μm 2g cos37°)s =12m 2v 22 (m 2g sin37°-μm 2g cos37°)s =12m 2v 2 联立解得:(v v 2)2=3-4μ3+4μ乙要能追上甲,则:v >v 03解得:μ<0.45答案:μ的取值范围为μ<0.459.如图所示,质量M =2 kg 的足够长的小平板车静止在光滑水平面上,车的一端静止着质量为M A =2 kg 的物体A (可视为质点).一个质量为m =20 g 的子弹以500 m/s 的水平速度射穿A 后,速度变为100 m/s ,最后物体A 静止在车上.若物体A 与小车间的动摩擦因数μ=0.5(g 取10 m/s 2).(1)平板车最后的速度是多大?(2)全过程损失的机械能为多少?(3)A 在平板车上滑行的时间为多少?解析:(1)对子弹和物块,由动量守恒得m v 0=m v ′+M A v ,得v =4 m/s ,同理对M 和M A 有M A v =(M +M A )v 车, 得v 车=2 m/s(2)由能量守恒得:ΔE =12m v 20-12m v ′2-12(M +M A )v 2车=2 392 J. (3)由动量定理得: -μM A gt =M A v 车-M A v , 得t =0.4 s答案:(1)2 m/s (2)2 392 J(3)0.4 s。
2015届高考物理二轮复习训练1-7-3《碰撞与动量守恒、近代物理初步》
c
贯穿本领
对空气的
电离作用
答案: 1.
(1)动量守恒 弹性碰撞
(2)碰撞前后总动能相等 (1)动量守恒 非弹性碰撞 (2)动能有损失
(1)碰后两物体合为一体 完全
(2)动量守恒 非弹性碰撞
(3)动能损失最大
2.(1)p=p′(系统相互作用前总动量 p 等于相互作用后总动 量 p′);
(2)Δp=0(系统总动量的增量等于零); (3)Δp1=-Δp2(两个物体组成的系统中,各自动量增量大小 相等、方向相反). 3.(1)α 粒子散射实验现象:绝大多数 α 粒子穿过金箔后不 偏转,少数发生较大偏转,极少数偏转角度超过 90°,有的甚至 接近 180°.
[分层探究] 1.在光电效应现象中,入射光频率、金属的逸 出功、光电子最大初动能以及截止电压之间有怎样的关系?
提示:金属的逸出功由金属本身决定,其大小为 W=hν0(ν0 为入射光的截止频率);当入射光频率大于截止频率时,能发生 光电效应,光电子的最大初动能 Ek=hν-W,频率越高,则最 大初动能越大;当在 A、K 间加反向电压时,eUAK=Ek,所以 截止电压与最大初动能成正比.
(2)由 E 初-E 终=hν=hcλ可知,氢原子跃迁时始末能级差值 越大,辐射的光子能量越高、波长越短,由能级图知 E3-E2<E2 -E1,故 a 错误.由- -13..541----133..46=65λ6得 λ=121.6 nm<325 nm, 故 b 错误.由 C23=3 可知 c 正确.因跃迁中所吸收光子的能量必 须等于始末能级的差值,即从 n=2 跃迁到 n=3 的能级时必须吸 收 λ=656 nm 的光子,故 d 正确.
(1)B 球第一次到达地面时的速度; (2)P 点距离地面的高度.
2015年高考物理真题分类题库考点17 碰撞与动量守恒
温馨提示:此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word 文档返回原板块。
考点17 碰撞与动量守恒一、选择题1.(2015·重庆高考)高空作业须系安全带。
如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h(可视为自由落体运动)。
此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上。
则该段时间安全带对人的平均作用力大小为( )mg + B mg -mg mg 【解题指南】解答本题时应从以下三点进行分析: (1)安全带对人起作用前瞬间人的速度多大。
(2)从安全带开始对人起作用到安全带伸长量最大,人的动量的改变量是多少。
(3)从安全带开始对人起作用到安全带伸长量最大,人受到哪些力的作用。
【解析】选A 。
安全带对人起作用之前,人做自由落体运动;由v 2=2gh 可得,安全带对人起作用前瞬间,人的速度v=gh2;安全带达到最大伸长量时,人的速度为零;从安全带开始对人起作用到安全带伸长量最大,由动量定理可得0-mv=mgt-F t,故F =tmv +mg=tgh m2+mg,故选项A 正确。
2.(2015·北京高考)“蹦极”运动中,长弹性绳的一端固定,另一端绑在人身上,人从几十米高处跳下。
将蹦极过程简化为人沿竖直方向的运动。
从绳恰好伸直,到人第一次下降至最低点的过程中,下列分析正确的是( )A.绳对人的冲量始终向上,人的动量先增大后减小B.绳对人的拉力始终做负功,人的动能一直减小C.绳恰好伸直时,绳的弹性势能为零,人的动能最大D.人在最低点时,绳对人的拉力等于人所受的重力【解析】选A。
绳刚好伸直时,绳的拉力为零,人还要向下加速,此时人的动能不是最大,选项C错误;当重力等于绳子拉力时,人的速度最大,之后人做减速运动,绳对人的拉力始终向上,所以绳对人的冲量始终向上,人的动量与速度一样,先增大后减小,人的动能也是先增大后减小,选项A正确,选项B错误;人在最低点时,绳对人的拉力大于人所受的重力,选项D错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题检测卷(十六)碰撞与动量守恒近代物理初步(45分钟100分)1.(12分)(2013·无锡模拟)(1)已知处于某一能级n上的一群氢原子向低能级跃迁时,能够发出10种不同频率的光,下列能表示辐射光波长最长的那种跃迁的示意图是( )(2)在实验室内较精准地测量到的双β衰变事例是在1987年公布的,在进行了7960小时的实验后,以68%的置信度认出Se发生的36个双β衰变事例,已知静止的Se发生双β衰变时,将释放出两个电子和两个中微子(中微子的质量数和电荷数都为零),同时转变成一个新核X,则X核中子数为;若衰变过程释放的核能是E,真空中的光速为c,则衰变过程的质量亏损是。
(3)质量为m的小球A在光滑水平面上以速度v0与质量为2m的静止小球B发生正碰后,以v0的速率反弹,试通过计算判断发生的是不是弹性碰撞。
2.(12分)(2013·扬州模拟)(1)某些放射性元素如237Np的半衰期很短,93在自然界很难被发现,可以在实验室使用人工的方法发现。
已知237Np93经过一系列α衰变和β衰变后变成209Bi,下列说法中正确的83是A.209Bi的原子核比23793Np的原子核少28个中子83B.衰变过程中共发生了4次α衰变和7次β衰变C.衰变过程中共有4个中子转变为质子D.若209Bi继续衰变成新核21083Bi,需放出一个α粒子83(2)爱因斯坦提出了光量子概念,并成功地解释光电效应的规律而获得1921年的诺贝尔物理学奖。
已知用频率为ν的某种光照射某种金属,逸出光电子的最大速度为v m,设光电子的质量为m,则该金属的逸出功为,若将入射光的频率提高到2ν,则逸出光电子的最大初动能(选填“大于”“等于”或“小于”)原来初动能的2倍。
(3)如图所示,在光滑水平面上使滑块A以2m/s的速度向右运动,滑块B以3m/s的速度向左运动并与滑块A发生碰撞,已知滑块A、B的质量分别为1kg、2 kg,滑块B的左侧连有轻弹簧,求:①当滑块A的速度减为0时,滑块B的速度大小;②两滑块相距最近时滑块B的速度大小。
3.(12分)(2013·徐州模拟)(1)下列说法正确的是( )A.温度越高,放射性元素的半衰期越长B.天然放射现象说明原子核内部是有结构的C.汤姆孙通过α粒子散射实验提出了原子的核式结构D.重核的裂变和轻核的聚变过程都有质量亏损,都向外界放出核能(2)光滑水平面上两物体A、B用不可伸长的松弛细绳相连,A质量为2kg,B质量为1kg;现使两物体同时沿直线背向而行(v A=4m/s,v B=2m/s),直至绳被拉紧,然后两物体一起运动,它们的总动量大小为kg·m/s,两物体共同运动的速度大小为m/s。
(3)某光源能发出波长为0.6μm的可见光,用它照射某金属能发生光电效应,产生光电子的最大初动能为0.25 eV。
已知普朗克常量h=6.63×10-34J·s,光速c=3×108m/s。
求:①上述可见光中每个光子的能量;②该金属的逸出功。
4.(12分)(2013·连云港模拟)在自然界,“氦-4”的原子核有两个质子和两个中子,称为玻色子;而“氦-3”只有一个中子,称为费米子。
“氦-3”是一种目前已被世界公认的高效、清洁、安全、廉价的核聚变发电燃料。
(1)质子数与中子数互换的核互为“镜像核”,如He是H的“镜像核”,同样H也是He的“镜像核”,则下列说法正确的是( )A.15N和168O互为“镜像核”7B.13N和136C互为“镜像核”7C.β衰变的本质是一个中子转变为一个质子,同时放出一个电子D.核反应H H He n的生成物中有α粒子,该反应是α衰变(2)围绕一不稳定原子核轨道的电子可被原子核俘获,使原子序数发生变化(例如从离原子核最近的K层电子中俘获电子,叫“K俘获”),发生这一过程后,新原子核与原来的原子(选填“是”或“不是”)同位素,比原来的原子核多中子。
(3)宇宙射线每时每刻都在地球上引起核反应。
自然界的14C大部分是宇宙射线中的中子轰击“氮-14”产生的,核反应方程式为14N n→714C H。
若中子的速度为v1=8×106m/s,反应前“氮-14”的速度可认6为等于零。
反应后生成的14C粒子的速度为v2=2.0×105m/s,其方向与反应前中子的运动方向相同。
①求反应中生成的另一粒子的速度;②假设此反应中放出的能量为0.9MeV,求质量亏损。
5.(12分)(2013·苏北三市二调)(1)下列说法中正确的是( )A.光电效应现象说明光具有粒子性B.普朗克在研究黑体辐射问题时提出了量子假说C.玻尔建立了量子理论,成功解释了各种原子发光现象D.运动的宏观物体也具有波动性,其速度越大物质波的波长越大(2)氢原子的能级图如图所示,一群处于n=4能级的氢原子向较低能级跃迁,能产生种不同频率的光子,其中频率最大的光子是从n=4的能级向n= 的能级跃迁所产生的。
(3)如图所示,质量均为m的小车与木箱紧挨着静止在光滑的水平冰面上,质量为2m的小明站在小车上用力向右迅速推出木箱,木箱相对于冰面的速度为v,接着木箱与右侧竖直墙壁发生弹性碰撞,反弹后被小明接住,求小明接住木箱后三者共同运动速度的大小。
6.(13分)(2013·常州模拟)(1)下列叙述中符合物理学史的是( )A.爱因斯坦为解释光的干涉现象提出了光子说B.麦克斯韦提出了光的电磁说C.汤姆孙发现了电子,并首先提出原子的核式结构模型D.贝可勒尔通过对天然放射性的研究,发现了放射性元素钋(Po)和镭(Ra)(2)在某些恒星内部,3个α粒子可以结合成一个12C核,已知126C核的6质量为1.993 02×10-26kg,α粒子的质量为6.646 72×10-27kg,真空中光速c=3×108m/s,这个核反应方程是,这个反应中释放的核能为(结果保留一位有效数字)。
(3)两磁铁各固定放在一辆小车上,小车能在水平面上无摩擦地沿同一直线运动。
已知甲车和磁铁的总质量为0.5kg,乙车和磁铁的总质量为1.0 kg。
两磁铁的N极相对。
推动一下,使两车相向运动。
某时刻甲的速率为2 m/s,乙的速率为3 m/s,方向与甲相反。
两车运动过程中始终未相碰,则两车最近时,乙的速度为多大?7.(13分)(2013·淮安四调)(1)下列说法中正确的是( )A.利用α射线可发现金属制品中的裂纹B.235U原子核中,质子间的库仑力能使它自发裂变92C.在温度达到107K时H能与H发生聚变,这个反应需要吸收能量D.一束C60分子通过双缝装置后会出现干涉图样,证明分子也会像光波一样表现出波动性(2)一光电管的阴极K用截止频率为ν0的金属钠制成,光电管阳极A 和阴极K之间的正向电压为U,普朗克常量为h,电子的电荷量为e。
用频率为ν的紫外线照射阴极,有光电子逸出,光电子到达阳极的最大动能是;若在光电管阳极A和阴极K之间加反向电压,要使光电子都不能到达阳极,反向电压至少为。
(3)1928年,德国物理学家玻特用α粒子轰击轻金属铍时,发现有一种贯穿能力很强的中性射线。
查德威克测出了它的速度不到光速的十分之一,否定了是γ射线的看法,他用这种射线与氢核和氮核分别发生碰撞,求出了这种中性粒子的质量,从而发现了中子。
①请写出α粒子轰击铍核Be)得到中子的方程式。
②若中子以速度v0与一质量为m N的静止氮核发生碰撞,测得中子反向弹回的速率为v1,氮核碰后的速率为v2,则中子的质量m等于多少?8.(14分)(2013·泰安二模)(1)下列说法正确的是( )A.具有相同的质子数而中子数不同的原子互称同位素B.某原子核经过一次α衰变后,核内质子数减少4个C.239Pu与23992Pu的核内具有相同的中子数和不同的核子数94D.进行光谱分析时既可以用连续光谱,也可以用线状光谱的滑块静止于光滑水平面(2)如图所示,质量为m上,一小球m1=5kg,以v1=10m/s的速度与滑块相碰后以2 m/s的速率被弹回。
碰撞前两物体的总动能为J,碰撞后两物体的总动能为J,说明这次碰撞是(选填“弹性碰撞”或“非弹性碰撞”)。
(3)氢原子的能级如图所示,求:①当氢原子从n=4向n=2的能级跃迁时,辐射的光子照射在某金属上,刚好能发生光电效应,则该金属的逸出功为多少?②现有一群处于n=4的能级的氢原子向低能级跃迁,在辐射出的各种频率的光子中,能使该金属发生光电效应的频率共有多少种?答案解析1.【解析】(1)一群氢原子处于量子数为n的激发态时,可能辐射出的光谱线条数:N==,解得n=5,A项正确。
(2)根据质量数和电荷数守恒写出新核为X,所以中子数等于质量数减去质子数为46。
根据质能方程E=Δmc2,解得Δm=。
(3)由动量守恒定律,mv0=m(-v0)+2mv B,得v B=v0,碰后总动能E=m(v 0)2+·2m(v0)2=m,故为弹性碰撞。
答案:(1)A (2)46 (3)见解析2.【解析】(1)209Bi的原子核中子数为126,23793Np的中子数为144,两者83相差18,A项错误;已知237Np经过一系列α衰变和β衰变后变成20983Bi,质93量数减少28,所以发生了7次α衰变和4次β衰变,B项错误;因为有4次β衰变,所以衰变过程中共有4个中子转变为质子,C项正确;210Bi比83209Bi的质量数大1,不可能发生α衰变,D项错误。
83(2)根据爱因斯坦的光电方程hν=m+W,解得逸出功为hν-m。
若将入射光的频率提高到2ν,则逸出光电子的最大初动能mv=2h ν-W=2(hν-W)+ W,所以逸出光电子的最大初动能大于原来初动能的2倍。
(3)①以向左为正方向,m2v2-m1v1=m2v B代入数据得v B=2m/s②当两滑块相距最近时,A、B速度相同,则m2v2-m1v1=(m A+m B)v解得:v=m/s答案:(1)C (2)hν-m大于(3)①2m/s ②m/s3.【解析】(1)放射性元素的半衰期不随温度变化,选项A错误;天然放射现象说明原子核内部是有结构的,选项B正确;卢瑟福通过α粒子散射实验提出了原子的核式结构,选项C错误;重核的裂变和轻核的聚变过程都有质量亏损,都向外界放出核能,选项D正确。
(2)它们的总动量大小为m A v A- m B v B=6kg·m/s。
由动量守恒定律,m A v A-m B v B=(m A+m B)v,解得两物体共同运动的速度大小为v=2m/s。
(3)①上述可见光中每个光子的能量E==6.63×10-34J·s×3×108m/s÷0.6μm=3.315×10-19J=2.07 eV;②由爱因斯坦光电效应方程,E k=+W,解得该金属的逸出功W=1.82eV。