初高中数学衔接知识(二次函数)

合集下载

初高中知识衔接(二次函数、方程、不等式)

初高中知识衔接(二次函数、方程、不等式)

初高中衔接二次函数方程不等式一、明确复习目标1.掌握二次函数的图象和性质;2.掌握一元二次函数、方程、不等式的关系;3.会讨论二次方程实根分布和二次不等式的解;4.会运用数形结合、分类讨论、函数与方程以及等价转化等重要的数学思想分析解决有关二次的问题。

二.建构知识网络1.二次函数的三种表达式:一般式:;顶点式:;零点式:2.二次函数图象抛物线的开口方向,对称轴:,顶点:,最值:,单调区间:,3.二次函数在闭区间上,必有最大值和最小值,当含有参数时,要按对称轴相对于区间的位置进行讨论。

4.一元二次函数、方程、不等式之间的关系5.一元二次方程实根分布的讨论(1) 利用函数的图象、性质;(2) 利用韦达定理、判别式。

三、双基题目练练手1.已知函数f(x)=4x2-mx+5在区间[-2,+∞)上是增函数,则f(1)的范围是A.f(1)≥25B.f(1)=25 ( )C.f(1)≤25D.f(1)>252.二次函数y=x2-2(a+b)x+c2+2ab的图象的顶点在x轴上,且a、b、c 为△ABC的三边长,则△ABC为 ( )A.锐角三角形B.直角三角形C.钝角三D.等腰三角形3.如果函数f(x)=x+bx+c对于任意实数t,都有f(2+t)=f(2-t),那么( )A. f(2)<f(1)<f(4)B. f(1)<f(2)<f(4)C. f(2)<f(4)<f(1)D. f(4)<f(2)<f(1)二、填空题4.函数f(x)=2x2-6x+1在区间[-1,1]上的最小值是______,最大值是________.5.已知函数,则的单调递增区间为简答1-4、ABA; 4、-3 9; 5、;1.对称轴 ≤-2m≤-16,∴f(1)=9-m≥25.2.顶点为(a+b,c2-a2-b2),由已知c2-a2-b2=0.∴Rt△3.对称轴为x=2;四、经典例题做一做【例1】已知方程(1)都小于零; (2)都小于1;(3); (4)(5)恰有一根在(1,2)区间内。

初高中衔接二次函数专题

初高中衔接二次函数专题

3 二次函数 基础知识1.二次函数的三种表示方式: (1)一般式:y=ax 2 +bx+c ;(2)顶点式:y=a(x-m)2 +n (常用,便于求最值、画图); (3)交点式: y=a(x-x 1 )(x-x 2 ) (△≥0时) .2.若函数y=f(x)的对称轴是x=h,则对f(x)定义域内的任意x,都有f(h+x)=f(h-x);反之也成立。

3.二次方程根的分布问题,限制条件较多时可用相应抛物线位置,限制条件较少时可用韦达定理解决。

4.二次函数的最值问题(1)二次函数2(0)y ax bx c a =++≠的最值.二次函数在自变量x 取任意实数时的最值情况:当0a >时,函数在2bx a=-处取得最小值244ac b a -,没有最大值;当0a <时,函数在2b x a=-处取得最大值244ac b a -,没有最小值.求二次函数最大值或最小值的步骤:第一步确定a 的符号,a >0有最小值,a <0有最大值; 第二步配方求顶点,顶点的纵坐标即为对应的最大值或最小值. (2)求二次函数在某一范围内的最值.二次函数在某区间上的最值须用配方法,含字母的函数最值可借助图象分析。

如:求2y ax bx c =++在m x n ≤≤(其中m n <)的最值的步骤: 第一步:先通过配方,求出函数图象的对称轴:0x x =;第二步:讨论:(请同学们画出图像理解)(1)若0a >时求最小值或0a <时求最大值,需分三种情况讨论: ①0x m <,即对称轴在m x n ≤≤的左侧; ②0m x n ≤≤,即对称轴在m x n ≤≤的内部; ③0x n >,即对称轴在m x n ≤≤的右侧。

(2) 若0a >时求最大值或0a <时求最小值,需分两种情况讨论: ①02m nx +≤,即对称轴在m x n ≤≤的中点的左侧;②02m nx +>,即对称轴在m x n ≤≤的中点的右侧。

初中数学知识归纳二次函数的基本关系与计算

初中数学知识归纳二次函数的基本关系与计算

初中数学知识归纳二次函数的基本关系与计算二次函数是初中数学中的重要知识点之一。

它是指形式为f(x) =ax^2 + bx + c的函数,其中a、b、c是常数且a不等于0。

本文将对二次函数的基本关系和计算进行归纳总结。

一、基本关系1. 零点:对于二次函数f(x) = ax^2 + bx + c,其零点是使得f(x) = 0的x值。

二次函数的零点可以通过因式分解、配方法、求根公式等方法求得。

2. 顶点:二次函数的图像是一个抛物线,抛物线的顶点是其最高(或最低)点。

顶点的x坐标可以通过公式x = -b / (2a)求得,y坐标则是将x坐标代入函数中得到。

3. 对称轴:二次函数的图像是关于其对称轴对称的。

对称轴的方程为x = -b / (2a)。

4. 开口方向:二次函数的a的值决定了其开口方向。

当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。

二、计算方法1. 函数值计算:给定二次函数的表达式和x的值,可以通过将x的值代入函数中计算得到对应的y值。

例如,计算f(x) = 2x^2 + 3x + 1在x = 2处的函数值,只需将x = 2代入函数中,得到f(2) = 2(2)^2 + 3(2) +1 = 15。

2. 相反数计算:对于二次函数f(x),若已知f(a) = b,则可以通过解方程ax^2 + bx + c = 0求得x的值。

若已知一个二次函数的两个零点x1和x2,可以求得该二次函数的因式分解形式为a(x - x1)(x - x2)。

3. 过点求二次函数:已知二次函数过某个点(x1,y1),可以通过代入点坐标求解得到函数的表达式。

例如,过点(1,4)且开口向上的二次函数,可以设为f(x) = ax^2 + bx + c,代入点坐标得到4 = a(1)^2 + b(1) + c。

4. 函数图像绘制:对于给定的二次函数,可以通过绘制其函数图像来更直观地理解其性质和特点。

首先可以计算出函数的零点、顶点、对称轴等重要信息,然后绘制出相应的图像。

初中数学二次函数知识点总结

初中数学二次函数知识点总结

初中数学二次函数知识点总结二次函数是高中数学中重要的内容之一,也是中考和高考常见的考点。

它是一个关于x的二次方程,其一般形式可以表示为y=ax²+bx+c,其中a、b、c为实数,且a≠0。

下面对初中数学中涉及到的二次函数知识点进行总结。

一、二次函数的图像和性质:1. 二次函数的图像是一个抛物线,可以是开口向上的,也可以是开口向下的。

2. 抛物线的顶点是图像的最低点或最高点,记作顶点(x0,y0),其中x0=-b/2a。

3. 当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

4. 当a>0时,函数的最小值为y0;当a<0时,函数的最大值为y0。

5. 如果a>0,抛物线在x轴上方,开口向上,函数的值随着x的增大而增大。

二、求二次函数的零点:1. 二次函数的零点为使得函数值为0的x的值,记作x1和x2。

2. 二次函数的零点可以通过求解二次方程ax²+bx+c=0来得到。

3. 当b²-4ac>0时,有两个不相等的实根;当b²-4ac=0时,有两个相等的实根;当b²-4ac<0时,没有实根,但有两个共轭复数根。

4. 零点与顶点的关系:零点的平均值等于顶点的横坐标,即(x1+x2)/2=-b/2a。

1. 对称轴是抛物线的对称轴,是通过顶点的水平直线。

2. 对称轴的方程为x=-b/2a。

3. 对称性质:当x在对称轴两侧,二次函数的值对称,即f(x)=f(2x0-x)。

1. 二次函数的图像沿x轴左右平移会改变对称轴的位置,平移后的对称轴的方程为x=-b/2a+h,其中h为平移的水平距离。

2. 平移后的二次函数的顶点的横坐标为(-b/2a+h)。

五、二次函数与一次函数的关系:1. 一次函数y=kx+b是二次函数y=ax²+bx+c的特例,即a=0时的情况。

2. 当a=0时,二次函数退化为一次函数。

3. 一次函数的图像是一条直线,不具有抛物线的特点。

二次函数及反比例函数知识点

二次函数及反比例函数知识点

二次函数及反比例函数知识点二次函数和反比例函数是初中和高中数学中经常涉及的函数。

它们在数学上有着重要的应用,同时也具有一定的难度。

下面我们来详细介绍二次函数和反比例函数的知识点。

一、二次函数1. 定义:二次函数是指形如y = ax^2 + bx + c的函数,其中a、b、c为实数,且a≠0。

2.二次函数的图像:二次函数的图像是一个开口朝上或开口朝下的抛物线。

当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。

3.二次函数的性质:(1) 顶点坐标:二次函数的顶点坐标为(-b/2a, f(-b/2a)),其中f(x)=ax^2 + bx + c。

(2)对称轴:顶点坐标为(-b/2a,f(-b/2a))的直线称为二次函数的对称轴,方程为x=-b/2a。

(3)开口方向:二次函数的开口方向取决于系数a的正负。

(4) 判别式:二次函数ax^2 + bx + c的判别式为Δ = b^2 - 4ac,当Δ > 0时,二次函数有两个不相等的实根;当Δ = 0时,有两个相等的实根;当Δ < 0时,无实根。

4.二次函数的平移:二次函数的横向平移和纵向平移可以通过对函数的自变量和因变量进行平移操作实现。

5.二次函数的解析式:通过给定的定点和顶点坐标,可以确定一条与x轴相交的二次函数。

6.二次函数的应用:二次函数在数学和物理等领域有着广泛的应用,如碰撞问题、抛物线运动等。

二、反比例函数1.定义:反比例函数是指形如y=k/x的函数,其中k为非零实数。

2.变化规律:反比例函数的特点是随着x的增大,y的值会逐渐减小;反之,随着x的减小,y的值会逐渐增大。

3.反比例函数的性质:(1)零点:当x≠0时,y=0称为反比例函数的零点。

(2)渐近线:反比例函数y=k/x的图像有两个渐进线x=0和y=0。

(3)对称性:反比例函数的图象关于坐标轴对称。

(4)奇函数:反比例函数是一个奇函数,满足f(-x)=-f(x)。

初高中衔接二次函数

初高中衔接二次函数

初高中衔接衔接重点内容1.1一元二次方程根的判别式一元二次方程的基本形式:判别式与跟的关系:例1 判定下列关于x的方程的根的情况(其中a为常数),如果方程有实数根,写出方程的实数根.(1)x2-3x+3=0;(2)x2-ax-1=0;(3)x2-ax+(a-1)=0;(4)x2-2x+a=0.1.2 根与系数的关系(韦达定理)如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2= , x 1·x 2= .这一关系也被称为韦达定理.例2 已知方程2560x kx +-=的一个根是2,求它的另一个根及k 的值.例3 已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m 的值.例4 已知两个数的和为4,积为-12,求这两个数.例5 若x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根. (1)求| x 1-x 2|的值;(2)求221211x x +的值; (3)x 13+x 23.例6 若关于x 的一元二次方程x 2-x +a -4=0的一根大于零、另一根小于零,求实数a 的取值范围.练 习1.选择题:(1)方程2230x k -+=的根的情况是 ( ) (A )有一个实数根 (B )有两个不相等的实数根 (C )有两个相等的实数根 (D )没有实数根(2)若关于x 的方程mx 2+ (2m +1)x +m =0有两个不相等的实数根,则实数m 的取值范围是 ( ) (A )m <14 (B )m >-14 (C )m <14,且m ≠0 (D )m >-14,且m ≠02.填空:(1)若方程x 2-3x -1=0的两根分别是x 1和x 2,则1211x x += . (2)方程mx 2+x -2m =0(m ≠0)的根的情况是 .(3)以-3和1为根的一元二次方程是 .3|1|0b -=,当k 取何值时,方程kx 2+ax +b =0有两个不相等的实数根?4.已知方程x 2-3x -1=0的两根为x 1和x 2,求(x 1-3)( x 2-3)的值.习题A 组1.选择题:(1)已知关于x 的方程x 2+kx -2=0的一个根是1,则它的另一个根是( ) (A )-3 (B )3 (C )-2 (D )2 (2)下列四个说法:①方程x 2+2x -7=0的两根之和为-2,两根之积为-7; ②方程x 2-2x +7=0的两根之和为-2,两根之积为7;③方程3 x 2-7=0的两根之和为0,两根之积为73-; ④方程3 x 2+2x =0的两根之和为-2,两根之积为0.其中正确说法的个数是 ( ) (A )1个 (B )2个 (C )3个 (D )4个(3)关于x 的一元二次方程ax 2-5x +a 2+a =0的一个根是0,则a 的值是( )(A )0 (B )1 (C )-1 (D )0,或-12.填空:(1)方程kx 2+4x -1=0的两根之和为-2,则k = . (2)方程2x 2-x -4=0的两根为α,β,则α2+β2= .(3)已知关于x 的方程x 2-ax -3a =0的一个根是-2,则它的另一个根是 .(4)方程2x 2+2x -1=0的两根为x 1和x 2,则| x 1-x 2|= .3.试判定当m 取何值时,关于x 的一元二次方程m 2x 2-(2m +1) x +1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?4.求一个一元二次方程,使它的两根分别是方程x 2-7x -1=0各根的相反数.B 组1.选择题:若关于x 的方程x 2+(k 2-1) x +k +1=0的两根互为相反数,则k 的值为( )(A )1,或-1 (B )1 (C )-1 (D )0 2.填空:(1)若m ,n 是方程x 2+2005x -1=0的两个实数根,则m 2n +mn 2-mn 的值等于 . (2)如果a ,b 是方程x 2+x -1=0的两个实数根,那么代数式a 3+a 2b +ab 2+b 3的值是 .3.已知关于x 的方程x 2-kx -2=0.(1)求证:方程有两个不相等的实数根;(2)设方程的两根为x 1和x 2,如果2(x 1+x 2)>x 1x 2,求实数k 的取值范围. 4.一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1和x 2.求: (1)| x 1-x 2|和122x x +; (2)x 13+x 23.5.关于x 的方程x 2+4x +m =0的两根为x 1,x 2满足| x 1-x 2|=2,求实数m 的值.C 组1.选择题:(1)已知一个直角三角形的两条直角边长恰好是方程2x 2-8x +7=0的两根,则这个直角三角形的斜边长等于 ( )(A(B )3 (C )6 (D )9 (2)若x 1,x 2是方程2x 2-4x +1=0的两个根,则1221x x x x +的值为 ( ) (A )6 (B )4 (C )3 (D )32(3)如果关于x 的方程x 2-2(1-m )x +m 2=0有两实数根α,β,则α+β的取值范围为( ) (A )α+β≥12 (B )α+β≤12(C )α+β≥1 (D )α+β≤1 (4)已知a ,b ,c 是ΔABC 的三边长,那么方程cx 2+(a +b )x +4c=0的根的情况是( )(A )没有实数根 (B )有两个不相等的实数根 (C )有两个相等的实数根 (D )有两个异号实数根 2.填空:若方程x 2-8x +m =0的两根为x 1,x 2,且3x 1+2x 2=18,则m = . 3. 已知x 1,x 2是关于x 的一元二次方程4kx 2-4kx +k +1=0的两个实数根.(1)是否存在实数k ,使(2x 1-x 2)( x 1-2 x 2)=-32成立?若存在,求出k 的值;若不存在,说明理由;(2)求使1221x x x x +-2的值为整数的实数k 的整数值; (3)若k =-2,12xx λ=,试求λ的值.4.已知关于x 的方程22(2)04m x m x ---=. (1)求证:无论m 取什么实数时,这个方程总有两个相异实数根;(2)若这个方程的两个实数根x 1,x 2满足|x 2|=|x 1|+2,求m 的值及相应的x 1,x 2. 5.若关于x 的方程x 2+x +a =0的一个大于1、零一根小于1,求实数a 的取值范围.1.3二次函数y =ax 2+bx +c 的图像和性质函数y =ax 2与y =x 2的图象之间存在怎样的关系? 为了研究这一问题,我们可以先画出y =2x 2,y =12x 2,y =-2x 2的图象,通过这些函数图象与函数y =x 2的图象之间的关系,推导出函数y =ax 2与y =x 2的图象之间所存在的关系.先画出函数y =x 2,y =2x 2的图象.再描点、连线,就分别得到了函数y =x 2,y =2x 2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y =2x 2的图象可以由函数y=x 2的图象各点的纵坐标变为原来的两倍得到.通过上面的研究,我们可以得到以下结论:二次函数y =ax 2(a ≠0)的图象可以由y =x 2的图象各点的纵坐标变为原来的a 倍得到.在二次函数y =ax 2(a ≠0)中,二次项系数a 决定了图象的开口方向和在同一个坐标系中的开口的大小.问题2 函数y =a (x +h )2+k 与y =ax 2的图象之间存在怎样的关系?同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y =2(x +1)2+1与y =2x 2的图象(如图2-2所示),从函数的图像我们不难发现,只要把函数y =2x 2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点. 通过上面的研究,我们可以得到以下结论:二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”.图2-2 图2-1由上面的结论,我们可以得到研究二次函数y =ax 2+bx +c (a ≠0)的图象的方法:由于y =ax 2+bx +c =a (x 2+b x a )+c =a (x 2+b x a +224b a)+c -24b a224()24b b ac a x a a-=++, 所以,y =ax 2+bx +c (a ≠0)的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的,于是,二次函数y =ax 2+bx +c (a ≠0)具有下列性质:(1)当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a ;当x <2ba -时,y 随着x 的增大而减小;当x >2b a -时,y 随着x 的增大而增大;当x =2ba -时,函数取最小值y =244acb a-.(2)当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a ;当x <2ba -时,y 随着x 的增大而增大;当x >2b a -时,y 随着x 的增大而减小;当x =2ba -时,函数取最大值y =244acb a-.1.4二次函数y =ax 2+bx +c 与判别式的关系当抛物线y =ax 2+bx +c (a ≠0)与x 轴相交时,其函数值为零,于是有ax 2+bx +c =0. ①并且方程①的解就是抛物线y =ax 2+bx +c (a ≠0)与x 轴交点的横坐标(纵坐标为零),于是,不难发现,抛物线y =ax 2+bx +c (a ≠0)与x 轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式Δ=b 2-4ac 有关,由此可知,抛物线y =ax 2+bx +c (a ≠0)与x 轴交点个数与根的判别式Δ=b 2-4ac 存在下列关系:(1)当Δ>0时,抛物线y =ax 2+bx +c (a ≠0)与x 轴有两个交点;反过来,若抛物线y =ax 2+bx +c (a ≠0)与x 轴有两个交点,则Δ>0也成立.(2)当Δ=0时,抛物线y =ax 2+bx +c (a ≠0)与x 轴有一个交点(抛物线的顶点);反过来,若抛物线y =ax 2+bx +c (a ≠0)与x 轴有一个交点,则Δ=0也成立.(3)当Δ<0时,抛物线y =ax 2+bx +c (a ≠0)与x 轴没有交点;反过来,若抛物线y =ax 2+bx +c (a ≠0)与x 轴没有交点,则Δ<0也成立.1.5一元二次不等式解法一元二次不等式20(0)ax bx c a ++>>与相应的函数2(0)y ax bx c a =++>、相应的方程20(0)ax bx c a ++=>之间的关系:解下列一元二次不等式:1、0652>++x x2、0652≤--x x3、01272<++x x4、0672≥+-x x5、0122<--x x6、0122>-+x x7、2230x x --+≥ 8、0262≤+--x x 9、0532>+-x x10、0142562≤++x x 11、0941202≤+-x x 12、(2)(3)6x x +-<13. x 2-4x+1 3x 2-7x+2 ≤1二、填空题1、不等式220mx mx +-<的解集为R ,则实数m 的取值范围为 ;2、若不等式2(2)2(2)40a x a x -+--<对一切x R ∈恒成立,则a 的取值范围是______________.三解答题1、已知对于任意实数x ,22kx x k -+恒为正数,求实数k 的取值范围.2.1 一元二次方程练习1.(1)C (2)D2.(1)-3 (2)有两个不相等的实数根(3)x2+2x-3=03.k<4,且k≠04.-1 提示:(x1-3)( x2-3)=x1 x2-3(x1+x2)+9习题2.1A 组1.(1)C (2)B 提示:②和④是错的,对于②,由于方程的根的判别式Δ<0,所以方程没有实数根;对于④,其两根之和应为-23.(3)C 提示:当a=0时,方程不是一元二次方程,不合题意.2.(1)2 (2)174(3)6 (33.当m>-14,且m≠0时,方程有两个不相等的实数根;当m=-14时,方程有两个相等的实数根;当m<-14时,方程没有实数根.4.设已知方程的两根分别是x1和x2,则所求的方程的两根分别是-x1和-x2,∵x1+x2=7,x1x2=-1,∴(-x1)+(-x2)=-7,(-x1)×(-x2)=x1x2=-1,∴所求的方程为y2+7y-1=0.B组1.C 提示:由于k=1时,方程为x2+2=0,没有实数根,所以k=-1.2.(1)2006 提示:∵m +n =-2005,mn =-1,∴m 2n +mn 2-mn =mn (m +n-1)=-1×(-2005-1)=2006.(2)-3 提示;∵a +b =-1,ab =-1,∴a 3+a 2b +ab 2+b 3=a 2(a +b )+b 2(a +b )=(a +b )( a 2+b 2)=(a +b )[( a +b ) 2-2ab ]=(-1)×[(-1)2-2×(-1)]=-3.3.(1)∵Δ=(-k )2-4×1×(-2)=k 2+8>0,∴方程一定有两个不相等的实数根.(2)∵x 1+x 2=k ,x 1x 2=-2,∴2k >-2,即k >-1.4.(1)| x 1-x 2|,122x x +=2b a -;(2)x 13+x 23=333abc b a -.5.∵| x 1-x 2|=2==,∴m =3.把m =3代入方程,Δ>0,满足题意,∴m =3.C 组1.(1)B (2)A(3)C 提示:由Δ≥0,得m ≤12,∴α+β=2(1-m )≥1.(4)B 提示:∵a ,b ,c 是ΔABC 的三边长,∴a +b >c ,∴Δ=(a +b )2-c 2>0. 2.(1)12 提示:∵x 1+x 2=8,∴3x 1+2x 2=2(x 1+x 2)+x 1=2×8+x 1=18,∴x 1=2,∴x 2=6,∴m =x 1x 2=12.3.(1)假设存在实数k ,使(2x 1-x 2)( x 1-2 x 2)=-32成立. ∵一元二次方程4kx 2-4kx +k +1=0有两个实数根, ∴k ≠0,且Δ=16k 2-16k (k +1)=-16k ≥0,∴k <0. ∵x 1+x 2=1,x 1x 2=14k k+, ∴ (2x 1-x 2)( x 1-2 x 2)=2 x 12-51x 2+2 x 22 =2(x 1+x 2)2-9 x 1x 2=2-9(1)4k k+=-32,即9(1)4k k+=72,解得k =95,与k <0相矛盾,所以,不存在实数k ,使(2x 1-x 2)( x 1-2 x 2)=-32成立.(2)∵1221x x x x +-2=222212121212121212()2()224x x x x x x x x x x x x x x ++-+-=-=- =444(1)44111k k k k k k -+-==-+++, ∴要使1221x x x x +-2的值为整数,只须k +1能整除4.而k 为整数, ∴k +1只能取±1,±2,±4.又∵k <0,∴k +1<1, ∴k +1只能取-1,-2,-4,∴k =-2,-3,-5. ∴能使1221x x x x +-2的值为整数的实数k 的整数值为-2,-3和-5. (3)当k =-2时,x 1+x 2=1,① x 1x 2=18, ② ①2÷②,得1221x x x x ++2=8,即16λλ+=,∴2610λλ-+=,∴3λ=±4.(1)Δ=22(1)20m -+>;(2)∵x 1x 2=-24m ≤0,∴x 1≤0,x 2≥0,或x 1≥0,x 2≤0. ①若x 1≤0,x 2≥0,则x 2=-x 1+2,∴x 1+x 2=2,∴m -2=2,∴m =4.此时,方程为x 2-2x -4=0,∴11x =21x =②若x 1≥0,x 2≤0,则-x 2=x 1+2,∴x 1+x 2=-2,∴m -2=-2,∴m =0.此时,方程为x 2+2=0,∴x 1=0,x 2=-2.5.设方程的两根为x 1,x 2,则x 1+x 2=-1,x 1x 2=a ,由一根大于1、另一根小于1,得(x 1-1)( x 2-1)<0, 即 x 1x 2-(x 1+x 2)+1<0,∴ a -(-1)+1<0,∴a <-2.此时,Δ=12-4×(-2) >0,∴实数a 的取值范围是a <-2.。

初中数学二次函数的知识点

初中数学二次函数的知识点

初中数学二次函数的知识点在初中数学学习中,二次函数是一个非常重要的知识点,它衔接了代数和几何两部分内容,对于初中生来说,掌握好二次函数可以为高中数学学习打下坚实的基础。

本文将详细介绍初中数学二次函数的知识点,帮助同学们更好地理解和应用。

一、二次函数的定义二次函数是指形如y=ax^2+bx+c(a≠0)的函数,其中a、b、c为常数。

特别地,当b=0时,二次函数变成了一个二次项系数为a的二次方程,其一般形式为y=ax^2+c。

二、二次函数的图像1. 开口方向:二次函数的图像是一条抛物线,根据a的符号不同,抛物线开口方向也不同。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

2. 顶点:对于一般形式的二次函数y=ax^2+bx+c(a≠0),其图像的顶点坐标为(-b/2a,(4ac-b^2)/4a)。

当b=0时,抛物线顶点为(0,c)。

3. 拐点:在二次函数的图像中,拐点通常是指曲线的凸凹性质发生改变的点,也就是二阶导数为0的点。

对于二次函数y=ax^2+bx+c(a ≠0),其拐点为(b/2a,c-b^2/4a)。

三、二次函数的应用二次函数在日常生活中有着广泛的应用,以下列举几个例子:1. 利润问题:在商业活动中,经常涉及到利润问题。

例如,某种商品的成本为每件100元,售出价格为每件150元,若售出件数为100件,求该商品的利润。

这个问题可以用二次函数来解决,将成本、售价和售出件数作为变量,利润作为因变量,列出二次函数表达式,再通过求解表达式得到利润。

2. 人口问题:在生物学和人口统计学中,通常会研究人口数量随时间的变化情况。

我们可以将人口数量作为因变量,时间作为自变量,列出二次函数表达式,通过观察表达式的变化趋势来分析人口增长情况。

3. 物理问题:在物理学中,很多问题也可以用二次函数来描述。

例如,一个物体从高处自由落体,其下落距离与时间的关系就可以用二次函数来表达。

通过对表达式的计算和分析,我们可以求出物体下落的距离和时间的关系。

初中数学二次函数大汇总

初中数学二次函数大汇总

初中数学二次函数大汇总二次函数是一个非常重要的数学概念,在初中数学中占有重要的地位。

它是一种形式为y=ax^2+bx+c的函数,其中a、b和c都是实数,而且a不等于0。

在数学中,我们会学习许多与二次函数相关的概念、性质和应用,本篇文章将对初中数学中的二次函数知识进行大汇总。

一、基本概念1.二次函数的定义:二次函数是一个以x的二次方为最高次幂的函数。

2. 二次函数的一般形式:y=ax^2+bx+c,其中a、b和c为实数,且a不等于0。

3.二次函数的图像:二次函数的图像通常是一个称为抛物线的曲线。

二、二次函数的图像和性质1.二次函数的对称轴:二次函数的图像关于一条垂直于x轴的直线对称,称为对称轴。

2.二次函数的顶点和最值:二次函数的顶点是抛物线的最高点或最低点,而最值就是顶点的纵坐标。

3.二次函数的开口方向:当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。

4. 二次函数的平移:在一般式y=ax^2+bx+c中,若b平移b个单位,则f(x) = a(x-b)^2+c。

三、一元二次方程1. 一元二次方程的定义:一元二次方程是形如ax^2+bx+c=0(其中a、b和c为实数,且a不等于0)的方程。

2. 一元二次方程的求根公式:对于一元二次方程ax^2+bx+c=0,其根的公式为x=(-b±√(b^2-4ac))/2a。

3. 一元二次方程的判别式:一元二次方程的判别式为D=b^2-4ac,可以判断方程的根的情况。

四、二次函数的应用1.面积问题:二次函数常常用于求解最大/最小面积问题,如给定周长的矩形的最大面积、最小切线段等。

2.轨迹问题:二次函数的图像可以用来表示物体的轨迹,如抛物线轨迹、卫星轨道等。

3.弹射问题:二次函数可以用来描述弹射物体在竖直方向上的运动,如空中抛物运动等。

4.正比例问题:在一些实际问题中,两个变量之间可能存在二次函数的正比例关系,如重力加速度与高度的关系等。

以上内容仅仅是初中数学中关于二次函数的一些基本知识和常见应用,二次函数在高中和大学阶段还有更深入的研究和应用。

初中数学二次函数知识点归纳

初中数学二次函数知识点归纳

初中数学二次函数知识点归纳二次函数是数学中的一个重要概念,是高中数学中的一部分,也是初中数学的基础。

掌握了二次函数的知识,可以帮助我们解决现实生活中的许多问题。

在这篇文章中,我将对初中数学二次函数的知识点进行全面的归纳与总结。

一、二次函数的定义与图像特征二次函数是形如f(x) = ax^2 + bx + c的函数,其中a、b和c都是实数且a≠0。

下面是二次函数的图像特征:1. 函数的顶点:二次函数的图像是一个抛物线,这个抛物线的顶点的横坐标可以通过求导或者用公式x = -b/2a来求得。

顶点的纵坐标即为函数的最小值或最大值,具体取决于二次函数的开口方向。

2. 函数的对称轴:二次函数的对称轴是通过顶点并与y轴垂直的一条直线,可以通过找到顶点坐标的横坐标来得到对称轴的方程。

3. 函数的开口方向:当a大于0时,二次函数的图像开口向上;当a小于0时,二次函数的图像开口向下。

4. 函数的零点:二次函数的零点是使得函数值等于零的横坐标,可以通过解方程ax^2 + bx + c = 0来求得。

根据判别式Δ=b^2-4ac的正负可以得到二次函数的零点个数和类型。

二、二次函数的性质1. 判别式:对于二次函数f(x)=ax^2+bx+c,判别式Δ=b^2-4ac可以判断二次函数的零点的类型。

当Δ>0时,函数有两个不相等的实数根;当Δ=0时,函数有两个相等的实数根;当Δ<0时,函数无实数根。

2. 零点与因式分解:对于给定的二次函数f(x)=ax^2+bx+c,若其零点为x1和x2,则可以将二次函数因式分解为f(x)=a(x-x1)(x-x2)的形式。

3. 轴对称性:二次函数的图像关于对称轴对称。

也就是说,对于任意横坐标为x的点,当点的纵坐标为y时,存在一个对称于横坐标轴上的点(-x,y)也在图像上。

4. 幂函数与二次函数关系:二次函数是幂函数x^2的逐项系数不为0的特例。

通过将二次函数进行平移、压缩、拉伸等变换,可以将二次函数变换为幂函数的形式。

初高中衔接教育在中考中的应用——二次函数、一元二次方程、一元二次不等式的关系

初高中衔接教育在中考中的应用——二次函数、一元二次方程、一元二次不等式的关系

初高中衔接教育在中考中的应用——二次函数、一元二次方程、一元二次不等式的关系中文要求:一、初高中衔接教育在中考中的应用1、二次函数在中考中的应用(1)二次函数的定义:二次函数是一种可以准确表示具有某种特征曲线的函数,它是单调函数的一种,关于横轴对称,可以用于求解各种坐标运动等场合。

(2)二次函数在中考中的应用:在中考中,可以应用二次函数来解答坐标运动的题目,需要运用抛物线的两个焦点、横坐标或纵坐标的变化,以及声明方程的解析式可让抛物线变得更加清晰明了。

2、一元二次方程在中考中的应用(1)一元二次方程的定义:一元二次方程是多项式不超过2次的方程,比如ax2+bx+c=0,它可以使用因式分解法、公式法及图解法解答。

(2)一元二次方程在中考中的应用:一元二次方程可以用来描述各种问题,比如方程的根,物体的运动轨迹等。

在中考中能够应用到解答椭圆的相关题目,可以使用一元二次方程的形式推导一元二次椭圆的方程,从而可以更加清晰的描述运动轨迹及寻求极值点。

3、一元二次不等式在中考中的应用(1)一元二次不等式的定义:一元二次不等式是一种不等式方程,它包括两部分,一部分为一元二次多项式,另一部分为不等式号。

比如ax2+bx+c>0,可以求得解集。

(2)一元二次不等式在中考中的应用:一元二次不等式可以用来表达物体的运动轨迹、计算几何图形的面积,以及求解椭圆的相关题目等。

在中考中,用一元二次不等式可以更加精准的描述物体的运动轨迹和表现出形状,可以使用这种形式提高中考成绩。

二、结论通过上述分析,可以知道,初高中衔接教育在中考中应用二次函数、一元二次方程以及一元二次不等式等知识点,在解决坐标运动的题目、计算几何图形的面积以及描述物体的运动轨迹等等方面更加精准,可以大大提高考试成绩。

二次函数所有知识点

二次函数所有知识点

二次函数所有知识点二次函数是一种二次方程的形式,可以表示为y = ax^2 + bx + c,其中a、b、c为常数,且a不等于0。

它是初中数学的一个重要内容,也是高中数学的一个基础概念。

下面将介绍二次函数的所有知识点,包括定义、图像、性质、解析式、求解、应用等方面。

一、定义和图像:1. 二次函数的定义:二次函数是形如y = ax^2 + bx + c的函数,其中a、b、c是常数,且a不等于0。

2.二次函数的图像:二次函数的图像是一条抛物线,开口的方向由a 的正负决定,开口向上对应a大于0,开口向下对应a小于0。

抛物线的顶点坐标为(-b/2a,f(-b/2a)),其中f(x)为二次函数的解析式。

二、性质和变换:1. 零点和根:对于二次函数y = ax^2 + bx + c,其零点即为使得函数值等于0的x值,可以用求根公式x = (-b ± √(b^2 - 4ac)) / (2a)来求出。

2.对称轴:二次函数的对称轴为过顶点的直线,其方程为x=-b/2a。

3.对称性:二次函数关于对称轴有轴对称性,即函数值的符号关系和x关于对称轴的关系相同。

4.极值和最值:对于开口向上的二次函数,其顶点是最小值点,对于开口向下的二次函数,其顶点是最大值点。

5.平移和伸缩:二次函数可以通过平移和伸缩变换得到,平移可以改变顶点的位置,伸缩可以改变开口的大小。

6.切线和法线:二次函数的切线是与抛物线仅有一个交点的直线,法线是与切线垂直的直线,通过切点可求出切线和法线的斜率。

三、解析式和方程:1. 一般式和顶点式:二次函数的解析式可以有多种表示方法,常见的有一般式和顶点式。

一般式为y = ax^2 + bx + c,顶点式为y = a(x - h)^2 + k,其中(h, k)为顶点的坐标。

2.平方完成和配方法:求解二次方程可以使用平方完成、配方法和求根公式等方法。

平方完成是将一般式转化成顶点式的过程,配方法是将一般式变形成可用求根公式求解的形式。

初高中数学衔接:第五讲 二次函数

初高中数学衔接:第五讲  二次函数

第五讲 二次函数二次函数虽属于初中内容,在考试大纲中也没有明确要求,但二次函数、一元二次方程和一元二次不等式又是高考的热点内容之一,因此,二次函数的重要性在于它的工具性和基础性,从题型上看,选择、填空、大题都有.掌握好二次函数的关键是掌握其图象,记住它的图象,其性质就很容易掌握.1.二次函数解析式的三种形式(1)一般式:f (x )= (a ≠0); (2)顶点式:f (x )= (a ≠0); (3)零点式:f (x )= (a ≠0). 2.二次函数的图象与性质(1)二次函数f (x )=ax 2+bx +c (a ≠0)的图象是一条抛物线,它的对称轴、顶点坐标、开口方向、值域、单调性分别是: ①对称轴:x = ; ②顶点坐标: ;③开口方向:a >0时,开口 ,a <0时,开口 ; ④值域:a >0时,y ∈ ,a <0时,y ∈ ; ⑤单调性:a >0时,f (x )在 上是减函数,在 上是增函数;a <0时,f (x )在⎝ ⎛⎭⎪⎫-∞,-b 2a 上是 ,在⎝ ⎛⎭⎪⎫-b 2a ,+∞上是____________.(2)二次函数、二次方程、二次不等式三者之间的关系二次函数f (x )=ax 2+bx +c (a ≠0)的零点(图象与x 轴交点的横坐标)是相应一元二次方程ax 2+bx +c =0的 ,也是一元二次不等式ax 2+bx +c ≥0(或ax 2+bx +c ≤0)解集的 . 3.二次函数在闭区间上的最值二次函数在闭区间上必有最大值和最小值.它只能在区间的 或二次函数的 处取得,可分别求值再比较大小,最后确定最值.4.一元二次方程根的讨论(即二次函数零点的分布)设x 1,x 2是实系数一元二次方程ax 2+bx +c =0(a >0)的两实根,则x 1,x 2的分布范围与系数之间的关系如表所示.【自查自纠】1.(1)ax 2+bx +c (2)a (x -h )2+k (3)a (x -x 1)(x -x 2)2.(1)①-b 2a ②⎝ ⎛⎭⎪⎫-b 2a,4ac -b 24a ③向上 向下④⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞⎝ ⎛⎦⎥⎤-∞,4ac -b 24a ⑤⎝ ⎛⎭⎪⎫-∞,-b 2a ⎝ ⎛⎭⎪⎫-b 2a ,+∞ 增函数 减函数 (2)根 端点值 3.端点 顶点函数f (x )=x 2+mx +1的图象关于直线x =1对称的充要条件是( ) A .m =-2 B .m =2 C .m =-1D .m =1()3-a ()a +6()-6≤a ≤3的最大值为()A .9B.92C .3D.322解:(3-a )(a +6)=-⎝ ⎛⎭⎪⎫a +322+814≤92,当a =-32时,取等号.故选B. (也可用基本不等式求解)设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )解:A 选项中,由于二次函数图象开口向下,所以a <0,且函数与y 轴交点在y 轴负半轴,所以c <0,又abc >0,所以b >0,函数的对称轴x =-b2a >0,显然A 不正确;B 选项中,a <0,c >0,所以b <0,所以对称轴x =-b 2a <0,所以B 不正确;C 选项中,a >0,c <0,所以b <0,所以对称轴x =-b 2a >0,所以C 错. 故选D.若函数y =mx 2+x +5在-2,+∞)上是增函数,则m 的取值范围是 .解:m =0时,函数在给定区间上是增函数;m ≠0时函数是二次函数,由题知m >0,对称轴为x =-12m ≤-2,∴0<m ≤14,综上0≤m ≤14.故填⎣⎢⎡⎦⎥⎤0,14.已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为0,+∞),若关于x 的不等式f (x )-c <0的解集为(m ,m +6),则实数c 的值为________.类型一 求二次函数的解析式已知二次函数f (x )满足f (2)=-1, f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式. 解法一:(利用一般式) 设f (x )=ax 2+bx +c (a ≠0), 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解之得⎩⎨⎧a =-4,b =4,c =7.∴所求二次函数为y =-4x 2+4x +7. 解法二:(利用顶点式)设f (x )=a (x -m )2+n ,∵f (2)=f (-1), ∴抛物线对称轴为x =2+(-1)2=12,∴m =12,又根据题意,函数有最大值为8, ∴n =8, ∴f (x )=a ⎝ ⎛⎭⎪⎫x -122+8.∵f (2)=-1,即a ⎝ ⎛⎭⎪⎫2-122+8=-1.解之得a =-4.∴f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.【评析】解法二由条件f (2)=f (-1)及f (x )的最大值是8,根据对称性知其对称轴为x =12,故此题利用顶点式较为简捷.如果把2,-1看作函数g (x )=f (x )+1的两个零点,利用零点式求g (x )的解析式,再求f (x )的解析式也很方便.与对称轴有关的二次函数一般设为顶点式.如果与零点有关,则要注意函数的对称性及韦达定理的应用.已知y =f (x )是二次函数,且f ⎝ ⎛⎭⎪⎫-32+x =f ⎝ ⎛⎭⎪⎫-32-x 对x ∈R 恒成立,f ⎝ ⎛⎭⎪⎫-32=49,方程f (x )=0的两实根之差的绝对值等于7.求此二次函数的解析式.解:由x ∈R ,f ⎝ ⎛⎭⎪⎫-32+x =f ⎝ ⎛⎭⎪⎫-32-x 知,f (x )的对称轴为x =-32.又f ⎝ ⎛⎭⎪⎫-32=49,则二次函数f (x )的顶点坐标为⎝ ⎛⎭⎪⎫-32,49,故设f (x )=a ⎝ ⎛⎭⎪⎫x +322+49(a ≠0).解法二:设f (x )=0的两根为x 1,x 2,且x 1<x 2,由两实根之差的绝对值为7得x 1=-32-72=-5,x 2=-32+72=2,将x 1或x 2代入f (x )=0得a =-4.从而得到f (x )=-4x 2-12x +40.类型二 二次函数的图象已知二次函数y =ax 2+bx +c 满足a >b >c ,且a +b +c =0,那么它的图象是下图中的( )解:∵a >b >c 且a +b +c =0, ∴a >0,c <0,b 2-4ac >0,∴图象开口向上,在y 轴上截距为负,且过(1,0)点.故选A.【评析】a 决定抛物线开口的方向,c 确定抛物线在y 轴上的截距,b 与a 确定顶点的横坐标(或对称轴的位置),再结合题设条件就不难解答此题了.在同一坐标系中,函数y =ax 2+bx 与y =ax +b (ab ≠0)的图象只可能是( )解:抛物线y =ax 2+bx 过原点排除A ,又直线y =ax +b 与抛物线y =ax 2+bx 都过点⎝ ⎛⎭⎪⎫-b a ,0,排除B ,C.故选D.类型三 二次函数的最值已知f (x )=ax 2-2x (0≤x ≤1),求f (x )的最小值g (a ).(3)当a <0时,f (x )=ax 2-2x 的图象的开口方向向下,且对称轴x =1a <0,在y 轴的左侧,∴f (x )=ax 2-2x 在0,1]上单调递减,∴g (a )=f (x )min =f (1)=a -2. 综上所述,g (a )=⎩⎪⎨⎪⎧a -2,a <1,-1a,a ≥1.【评析】解答二次函数在区间上的最值问题的基本方法有两种:一是图象法,即利用二次函数的图象来确定二次函数在区间上的单调性,从而确定其最值在何处取得,当二次函数的解析式含有参数或区间含有参数而不确定时,则应抓住图象开口方向及图象的对称轴,依据对称轴是位于区间上,还是位于左边、右边进行分类讨论,从而确定函数在区间上的单调性;二是导数法,二次函数的导函数为一次函数,利用它很容易确定其在区间上的符号,进而确定其单调性.设函数f (x )=x 2-2x -1在区间t ,t +1]上有最小值g (t ),求g (t )的解析式.类型四 二次方程根的分布已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的取值范围;(2)若方程两根均在区间(0,1)内,求m 的取值范围.解:(1)条件说明抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得⎩⎨⎧f (0)=2m +1<0,f (-1)=2>0,f (1)=4m +2<0,f (2)=6m +5>0 ⇒ ⎩⎪⎨⎪⎧m <-12,m ∈R ,m <-12,m >-56.∴-56<m <-12.故m 的取值范围为⎩⎨⎧⎭⎬⎫m|-56<m <-12.(2)由抛物线与x 轴交点落在区间(0,1)内,列不等式组⎩⎨⎧f (0)=2m +1>0,f (1)=4m +2>0,Δ=(2m )2-4(2m +1)≥0,0<-m <1.⇒ ⎩⎪⎨⎪⎧m >-12,m >-12,m ≥1+2或m ≤1-2,-1<m <0.∴-12<m ≤1- 2. 故m 的取值范围为⎩⎨⎧⎭⎬⎫m|-12<m ≤1-2.【评析】一元二次方程根的分布,即二次函数零点的分布,关键在于作出二次函数的草图,由此列出不等式组,要注意二次函数的对称轴及Δ与方程根的关系.已知二次函数f(x)=x2+2bx+c(b,c∈R)满足f(1)=0,且关于x的方程f(x)+x+b =0的两个实数根分别在区间(-3,-2),(0,1)内,求实数b的取值范围.总结1.求二次函数的解析式利用已知条件求二次函数的解析式常用的方法是待定系数法,但须根据不同条件选取适当形式的f(x),一般规律是:①已知三个点的坐标时,宜用一般式;②已知抛物线的顶点坐标、对称轴、最大(小)值时,常用顶点式;③若已知抛物线与x轴有两个交点,且横坐标已知时,选用零点式更方便.2.含有参数的二次函数在闭区间上的最值或值域二次函数在区间m,n]上的最值或值域问题,通常有两种类型:其一是定函数(解析式确定),动区间(区间的端点含有参数);其二是动函数(解析式中含有参数),定区间(区间是确定的).无论哪种情况,解题的关键都是抓住“三点一轴”,“三点”即区间两端点与区间中点,“一轴”即为抛物线的对称轴.对于动函数、动区间的类型同样是抓住“三点一轴”,只不过讨论要复杂一些而已.3.二次函数的综合应用解二次函数的综合应用问题时,要充分应用二次函数、二次方程、二次不等式三者之间的密切关系,对所求问题进行等价转化,要注意f(x)=ax2+bx+c(a≠0)的结构特点和a,b,c的几何意义(可结合解析几何中的抛物线方程x2=±2py理解a的几何意义),注意一些特殊点的函数值,如f (0)=c ,f (1)=a +b +c ,f (-1)=a -b +c 等.【课时作业】1.若函数f (x )=(m -1)x 2+(m 2-1)x +1是偶函数,则在区间(-∞,0]上f (x )是( )A .增函数B .减函数C .常数D .可能是增函数,也可能是常数2.如果函数f (x )=x 2+bx +c 对任意的实数x ,都有f ⎝ ⎛⎭⎪⎫12+x =f ⎝ ⎛⎭⎪⎫12-x ,那么( ) A .f (-2)<f (0)<f (2)B .f (0)<f (-2)<f (2)C .f (2)<f (0)<f (-2)D .f (0)<f (2)<f (-2)解:由条件知抛物线的对称轴为x =12,又开口向上,∴f (0)<f (-1)<f (-2),而f (-1)=f (2),则f (0)<f (2)<f (-2).故选D.3.已知函数f (x )=x 2-2x +3在区间0,m ]上有最大值3,最小值2,则m 的取值范围是( )A .1,+∞)B .0,2]C .(-∞,2]D .1,2]解:注意f (0)=3,f (1)=2,f (2)=3,结合图象可知1≤m ≤2.故选D.4.函数f (x )=2x 2-mx +3,当x ∈-2,+∞)时是增函数,当x ∈(-∞,-2]时是减函数,则f (1)等于( )A .-3B .13C .7D .5解:由题意知f (x )的对称轴x =m 4,要使f (x )在-2,+∞)上是增函数,在(-∞,-2]上是减函数,则m 4=-2,∴m =-8,∴f (1)=2+8+3=13.故选B.5.已知函数f (x )=⎩⎨⎧-2+x ,x >0,-x 2+bx +c ,x ≤0,若f (0)= -2f (-1)=1,则函数g (x )=f (x )+x 的零点个数为( )A .1B .2C .3D .46.在二次函数f (x )=ax 2+bx +c 中,a ,b ,c 成等比数列,且f (0)=-1,则( )A .f (x )有最大值-34B .f (x )有最小值34C .f (x )有最小值-34D .f (x )有最大值34解:因为a ,b ,c 成等比数列,∴b 2=ac ,又f (0)=c =-1,∴b 2=-a >0,则a <0.f (x )max =4ac -b 24a =-34.故选A.7.若函数f (x )=x 2-|x +a |为偶函数,则实数a =________.解:∵f (x )是偶函数,∴f (-x )=f (x ),即|x -a |=|x +a |,两边平方得4ax =0,∴a =0.故填0.8.设a 为常数,函数f (x )=x 2-4x +3.若f (x +a )在0,+∞)上是增函数,则a 的取值范围是______________.解:∵f (x )=x 2-4x +3=(x -2)2-1,∴f (x +a )=(x +a -2)2-1,且当x ∈2-a ,+∞)时,函数f (x )单调递增,因此2-a ≤0,即a ≥2.故填2,+∞).9.已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数.解:∵f (2)=f (-1),∴对称轴x =12,故设f (x )=a ⎝ ⎛⎭⎪⎫x -122+8(a <0), 由f (2)=-1得,a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得 a =-4.故二次函数f (x )=-4⎝ ⎛⎭⎪⎫x -122+8. 10.f (x )=-x 2+ax +12-a 4在区间0,1]上的最大值为2,求a 的值.11.已知13 ≤a ≤1,若f (x )=ax 2-2x +1在区间1,3]上的最大值为M (a ),最小值为N (a ),令g (a )=M (a )-N (a ).求g (a )的函数表达式.解:函数f (x )=ax 2-2x +1的对称轴为直线x =1a ,∵13≤a ≤1,∴1≤1a ≤3,∴f (x )在1,3]上,N (a )=f ⎝ ⎛⎭⎪⎫1a =1-1a . ①当1≤1a ≤2,即12≤a ≤1时,M (a )=f (3)=9a -5; ②当2<1a ≤3,即13≤a <12时,M (a )=f (1)=a -1.∴g (a )=M (a )-N (a )=⎩⎪⎨⎪⎧9a +1a -6,12≤a ≤1,a +1a -2,13≤a <12.。

初高中数学衔接知识(二次函数)

初高中数学衔接知识(二次函数)

2a
4a
今后解决二次函数 问题时,要善于借助
函数图像,利用数形
结合的思想方法解决
问题.
(2)当 a 0时,函数 y ax2 bx c 图象开口向下,顶点坐标为( b , 4ac b2 ) ,对称轴为 2a 4a
直线 x b .在对称轴的左侧, y 随着 x 的增大而增大;在对称轴的右侧, y 随着 x 的增大而减小; 2a
2020年5月25日星期一
三、二次函数的最值问题
【例 5】当 2 x 2 时,求函数 y x2 2x 3 的最大值和最小值.
解:作出函数的图象.当 x 1时, ymin 4 ,当 x 2 时, ymax 5 .
【例 6】当1 x 2 时,求函数 y x2 x 1 的最大值和最小值. 解:作出函数的图象.当 x 1时, ymax 1,当 x 2 时, ymin 5 .
1.一般式: y ax2 bx c (a 0) . 2.顶点式: y a(x h)2 k(a 0) ,顶点坐标是 (h, k) . 3.交点式: y a(x x1)(x x2 ) (a 0) ,其中 x1, x2 是二次函数图象与 x 轴交点的横坐标.
【例 2】已知二次函数的图象过点(-1,-22),(0,-8),(2,8),求此二次函数的表达式.
解:∵ y 3x2 6x 1 3(x 1)2 4 .
∴函数图象的开口向下,
对称轴方程 x 1,顶点坐标为(-1,4), 当 x 1时, ymax 4 . 在对称轴的左侧,y 随着 x 的增大而增大;在对称轴的右侧,y 随着 x 的增大而减小 (如图) .
2020年5月25日星期一
二、二次函数的三种表示方式
【例 3】 已知二次函数的最大值为 2,图像的顶点在直线 y x 1上,并且图象经过点(3,-1),

初高中衔接课内容(二次函数不等式方程)

初高中衔接课内容(二次函数不等式方程)

初高中衔接重点专题一:二次函数的最值问题二次函数2 (0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2b x a =-处取得最小值244ac b a-,无最大值;当0a <时,函数在2b x a =-处取得最大值244ac b a-,无最小值.本节我们将在这个基础上继续学习当自变量x 在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用. 【例1】当22x -≤≤时,求函数223y x x =--的最大值和最小值.【例2】当12x ≤≤时,求函数21y x x =--+的最大值和最小值.【例3】当0x ≥时,求函数(2)y x x =--的取值范围.【例4】当1t x t ≤≤+时,求函数21522y x x =--的最小值(其中t 为常数).【例5】某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m (件)与每件的销售价x (元)满足一次函数1623,3054m x x =-≤≤.(1) 写出商场卖这种商品每天的销售利润y 与每件销售价x 之间的函数关系式;(2) 若商场要想每天获得最大销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?A 组1.抛物线2(4)23y x m x m =--+-,当m = _____ 时,图象的顶点在y 轴上;当m = _____ 时,图象的顶点在x 轴上;当m = _____ 时,图象过原点.2.用一长度为l 米的铁丝围成一个长方形或正方形,则其所围成的最大面积为 _____.3.求下列二次函数的最值: (1) 2245y x x =-+;(2) (1)(2)y x x =-+.4.求二次函数2235y x x =-+在22x -≤≤上的最大值和最小值,并求对应的x 的值.5.对于函数2243y x x =+-,当0x ≤时,求y 的取值范围.6.求函数3y =-7.已知关于x 的函数22(21)1y x t x t =+++-,当t 取何值时,y 的最小值为0?B 组1.已知关于x 的函数222y x ax =++在55x -≤≤上. (1) 当1a =-时,求函数的最大值和最小值; (2) 当a 为实数时,求函数的最大值.练 习2.函数223y x x =++在0m x ≤≤上的最大值为3,最小值为2,求m 的取值范围.3.设0a >,当11x -≤≤时,函数21y x ax b =--++的最小值是4-,最大值是0,求,a b 的值.4.已知函数221y x ax =++在12x -≤≤上的最大值为4,求a 的值.5.求关于x 的二次函数221y x tx =-+在11x -≤≤上的最大值(t 为常数).初高中衔接重点专题二: 一元二次方程根与系数的关系现行初中数学教材主要要求学生掌握一元二次方程的概念、解法及应用,而一元二次方程的根的判断式及根与系数的关系,在高中教材中的二次函数、不等式及解析几何等章节有着许多应用.本节将对一元二次方程根的判别式、根与系数的关系进行阐述. 一、一元二次方程的根的判断式一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b acx a a-+= (1) 当240b ac ->时,右端是正数.因此,方程有两个不相等的实数根:2b x a-±=(2) 当240b ac -=时,右端是零.因此,方程有两个相等的实数根:1,22b x a=-(3) 当240b ac -<时,右端是负数.因此,方程没有实数根.由于可以用24b ac -的取值情况来判定一元二次方程的根的情况.因此,把24b ac -叫做一元二次方程20 (0)ax bx c a ++=≠的根的判别式,表示为:24b ac ∆=- 【例1】不解方程,判断下列方程的实数根的个数:(1) 22310x x -+= (2) 24912y y +=(3) 25(3)60x x +-=【例2】已知关于x 的一元二次方程2320x x k -+=,根据下列条件,分别求出k 的范围: (1) 方程有两个不相等的实数根; (2) 方程有两个相等的实数根 (3)方程有实数根;(4) 方程无实数根.【例3】已知实数x 、y 满足22210x y xy x y +-+-+=,试求x 、y 的值.二、一元二次方程的根与系数的关系 一元二次方程20 (0)ax b x c a ++=≠的两个根为:22b b x x a a-+-==所以:12bx x a+=+=-,12244ac cx x a a⋅==== 定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么:1212,b cx x x x a a+=-=说明:一元二次方程根与系数的关系由十六世纪的法国数学家韦达发现,所以通常把此定理称为”韦达定理”.上述定理成立的前提是0∆≥.【例4】若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:(1) 2212x x +; (2)1211x x +; (3) 12(5)(5)x x --; (4) 12||x x -.【例5】已知关于x 的方程221(1)104x k x k -+++=,根据下列条件,分别求出k 的值. (1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =.【例6】已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根. (1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由. (2) 求使12212x x x x +-的值为整数的实数k 的整数值.【例7】若关于x 的一元二次方程240x x a -+-=的一个根大于0,另一根小于0,求实数a 的取值范围。

初中二次函数最全知识点总结

初中二次函数最全知识点总结

初中二次函数最全知识点总结二次函数是初中数学中的重要知识点,也是高中数学的基础。

下面是对二次函数的最全知识点总结:一、二次函数的定义和表示:1. 定义:二次函数是形如 y = ax^2 + bx + c(a ≠ 0)的函数,其中 a、b、c 是常数,且 a 不等于 0。

2. 一般式:二次函数的一般形式为 y = ax^2 + bx + c。

3.顶点式:二次函数的顶点式为y=a(x-h)^2+k,其中(h,k)是顶点坐标。

4.描述:二次函数的图像为抛物线,开口向上或向下,对称轴为x=-b/(2a),顶点坐标为(-b/(2a),f(-b/(2a)))。

二、二次函数的图像:1.开口方向:当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。

2.对称轴:对称轴是垂直于x轴的抛物线的轴线,其方程为x=-b/(2a)。

3. 零点:即二次函数与 x 轴的交点,由二次方程 ax^2 + bx + c =0 求得。

a) 判别式:Δ = b^2 - 4ac,当Δ 大于 0 时,有两个不同实根;当Δ等于 0 时,有一个重根;当Δ 小于 0 时,无实数根。

b)零点公式:x=(-b±√Δ)/(2a)。

4.最值:当a大于0时,抛物线开口向上,最小值为顶点的纵坐标;当a小于0时,抛物线开口向下,最大值为顶点的纵坐标。

5.对称性:二次函数关于顶点对称,即f(x)=f(2h-x)。

6.平移:通过改变顶点坐标可以实现二次函数的平移,顶点坐标为(h,k),则平移后的顶点坐标为(h+p,k+q)。

三、常用二次函数的性质和应用:1.单调性:当a大于0时,抛物线开口向上,函数单调递增;当a小于0时,抛物线开口向下,函数单调递减。

2.单调区间:根据二次函数的开口方向和最值确定函数的单调区间。

3.奇偶性:二次函数一般是奇函数,即f(-x)=-f(x),因为二次项的系数是奇数。

4.零点个数和位置:根据二次函数的开口方向和零点的位置确定零点的个数和位置。

初中二次函数知识点

初中二次函数知识点

初中二次函数知识点二次函数是高中数学中的一个重要内容,也是初中数学的基础。

掌握了二次函数的知识,对于学习高中数学和解决实际问题都有很大的帮助。

下面我将详细介绍一下初中阶段二次函数的知识点。

一、二次函数的定义及特点二次函数是形如y=ax^2+bx+c(a≠0)的函数,其中a、b、c为常数,a决定了抛物线的开口方向,b决定了抛物线的位置和宽度,c决定了抛物线与y轴的交点。

1.函数图像的对称性:二次函数的图像关于x轴对称,即对于函数y=ax^2+bx+c的图像,若(x, y)在图像上,则点(x, -y)也在图像上。

2.零点:二次函数的零点就是函数的根,即方程ax^2+bx+c=0的解。

3.顶点:二次函数的图像的最高点或最低点称为顶点,顶点坐标可以通过顶点公式求得:x=-\frac{b}{2a}, y= -\frac{b^2}{4a}+c。

二、二次函数的图像1.抛物线开口方向:二次函数的图像的开口方向由二次项的系数a的正负决定。

若a>0,则抛物线开口向上,若a<0,则抛物线开口向下。

2.抛物线的位置和宽度:二次函数的图像的位置和宽度主要由一次项的系数b决定。

若b>0,则抛物线向左移动,若b<0,则抛物线向右移动。

抛物线的宽度与1除以a的绝对值有关,即抛物线的宽度取决于平方项的系数a。

3.抛物线与坐标轴的交点:若二次函数的图像与x轴有交点,则称该二次函数有实根;若图像与x轴没有交点,则称该二次函数无实根。

实根的个数由判别式D=b^2-4ac的值决定。

4.抛物线的对称轴:二次函数的图像的对称轴和顶点有关。

对称轴即为经过顶点的直线,它的方程为x=-\frac{b}{2a}。

三、二次函数的性质1.单调性:当a>0时,二次函数是开口向上的抛物线,函数的值随着自变量的增大而增大;当a<0时,二次函数是开口向下的抛物线,函数的值随着自变量的增大而减小。

2.最值:二次函数的最大值或最小值就是顶点的纵坐标,其中a>0时为最小值,a<0时为最大值。

高一数学 初高中衔接教材 二次函数课件

高一数学 初高中衔接教材 二次函数课件

(三) 二次函数的表达式
一般式 y ax2 bx c, (a 0)
二次函数的表达式 顶点式 y a(x b )2 4ac b2 , (a 0)
2a
4a
零点式 y a(x x1)( x x2 ), (a 0)
典型例题
1.已知二次函数的图象经过点A(0,1), B(1,5),C(4,5) ,
求其表达式.
解(方法2) 由条件可知:该二次函数的对称轴为
因此,可设二次函数表达式为 y a(
x
x
1 4
3
)2
2
b,
(a
3 2
0)
将A(0,1),B(1,5)坐标带入方程可得 2
9
ab 1 4 1 ab 5
即 a 1,b 5 4
4 所以,所求二次函数的表达式为
y
(x
3)2
5
x2
3x 1
2a
图2
(二)
二次函数的性质
y
y
顶点的函数值最小,
顶点的函数值最大,
自变量离对称轴越
自变量离对称轴越
远函数值越大
远函数值越小
O
x
O
x b
x
x b
2a
2a
图1
图2
x b 2a
y 随 x 增大而减小 x b
2a
y 随x增大而增大
x b 2a
x y 随 增大而增大 x b y随x增大而减小 2a
∴当 x 3时, y最小值 (3)2 2a(3) 3 6a 6
3
0
3
x
②当 a 0即:a 0 时 ∴当 x 3时, y最小值 32 2a 3 3 6a 6
6a 6 a 0

初中二次函数知识点

初中二次函数知识点

初中二次函数知识点初中阶段,学生开始接触二次函数的概念和性质。

二次函数是解析几何中的重要内容,它是数学中的一个分支,学好二次函数对于学习高中的数学内容也是非常重要的。

本篇文章将从二次函数的定义、图像、性质等多个方面来介绍二次函数的相关知识点。

一、二次函数的定义与表示二次函数是一种形如y=ax²+bx+c(其中a≠0)的函数,其中x是自变量,y是函数的值。

其中a、b、c是常数,a称为二次函数的“二次系数”,b称为“一次系数”,c称为“常数项”。

二次函数的定义域是一切实数。

二次函数的图像是一条平滑的曲线,也叫做抛物线。

二次函数的图像的形状与二次系数a有关,当a>0时,图像开口朝上,称为正抛物线;当a<0时,图像开口朝下,称为负抛物线。

二、二次函数的图像1. 平移:对于二次函数y=ax²+bx+c,如果将x平移h个单位,就可以得到函数y=a(x-h)²+b(x-h)+c。

这个公式表示了二次函数的平移。

平移能够影响图像的位置,但不会改变图像的形状。

2. 纵向伸缩:对于二次函数y=ax²+bx+c,如果令y=k(ax²+bx+c),其中k是一个正常数,就可以得到函数y=kax²+kbx+kc。

这个公式表示了二次函数的纵向伸缩。

当k>1时,函数的图像会被纵向拉伸;当03. 横向伸缩:对于二次函数y=ax²+bx+c,如果令y=(1/a)(ax²+bx+c),其中a≠0,就可以得到函数y=((1/a)x²+(b/a)x+(c/a))。

这个公式表示了二次函数的横向伸缩。

当,a,>1时,函数的图像会被横向压缩;当04. 指标形式:二次函数y=ax²+bx+c还可以写成指标形式y=a(x-h)²+k,其中(h,k)是抛物线的顶点坐标。

指标形式能够更方便地表示二次函数的平移和伸缩。

三、二次函数的性质1.对称性:任意一个二次函数关于抛物线的顶点对称。

初中数学二次函数公式大全

初中数学二次函数公式大全

初中数学二次函数公式大全二次函数是高中数学的重要内容之一,它的公式包括顶点坐标、对称轴、判别式、根的性质等。

下面是初中数学二次函数公式的详细介绍:1.顶点坐标公式:对于二次函数 y = ax^2 + bx + c,它的顶点坐标可以通过如下公式计算:x=-b/(2a)y=c-b^2/(4a)其中,x是顶点的横坐标,y是顶点的纵坐标。

2.对称轴公式:对于二次函数 y = ax^2 + bx + c,它的对称轴方程为 x = -b /(2a)。

对称轴是二次函数图像的中心线,对称轴方程可以用来快速求得二次函数图像的对称性。

3.判别式公式:对于二次方程 ax^2 + bx + c = 0,判别式可以通过下面的公式计算:Δ = b^2 - 4ac判别式Δ可以用来判断二次方程的根的性质:-当Δ>0时,方程有两个不相等的实根。

-当Δ=0时,方程有两个相等的实根。

-当Δ<0时,方程没有实根,但有两个共轭复根。

4.根的性质公式:对于二次方程 ax^2 + bx + c = 0,它的根有如下性质:-根与系数的关系:设x1和x2是方程的两个根,那么有x1+x2=-b/a,x1*x2=c/a。

-根的和与积关系是一个常见的二次函数知识点,可以用来求解二次方程的根的和与积。

5.求解二次函数图像的其他公式:-零点:二次函数图像与x轴交点的坐标。

-顶点坐标:二次函数图像的最低或最高点的坐标。

-平移:将二次函数的图像整体上下左右平移。

-拉伸与压缩:二次函数图像的形状可以通过改变a的值来实现拉伸与压缩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
2 ax 3 a .
∴可设二次函数为y1 2 aa ( 4 a1) 22 a , a ( x 1) 2 2 . 或y x 4 顶点的纵坐标为
2 2
1 1 ∵函数图象过点(1,0), ∴ a . ∵二次函数图象的顶点到 x 轴的距离为 2,∴ | 4 a | 2 a . 2
2012年9月28日星期五
b 2a
b 2a
. 在对称轴的左侧, y 随着 x 的增大而增大;在对称轴的右侧, y 随着 x 的增大而减小;
4ac b 4a
2
当x
时,函数取最大值 y

2012年9月28日星期五
一、二次函数
y ax bx c (a 0)
2
的图像和性质
【例 1】 请您求出二次函数 y 3 x 2 6 x 1 的图象的开口方向、对称轴方程、顶点坐标、最大值 (或最小值) ,并指出当 x 取何值时, y 随 x 的增大而增大(或减小) ,并画出该函数的图象.
解:作出函数的图象.当 x 1 时, y m ax 1 ,当 x 2 时, y m in 5 .
2012年9月28日星期五
三、二次函数的最值问题
由上述两例可以看到,二次函数在自变量 x 的给定范围内,对应的图象是抛物线上的一段.那么最高 点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值. 根据二次函数对称轴的位置,函数在所给自变量 x 的范围的图象形状各异.下面给出一些常见情况:
一、二次函数
b 2a
y ax bx c (a 0)
2
2
的图像和性质
b 2a , 4ac b 4a
2
(1)当 a 0 时,函数 y ax bx c 图象开口向上,顶点坐标为 ( 直线 x 当x
b 2a
) ,对称轴为
.在对称轴的左侧, y 随着 x 的增大而减小;在对称轴的右侧, y 随着 x 的增大而增大;
解:∵ y 3 x 2 6 x 1 3 ( x 1) 2 4 . ∴函数图象的开口向下, 对称轴方程 x 1 ,顶点坐标为(-1,4), 当 x 1 时, y m ax 4 .
在对称轴的左侧,y 随着 x 的增大而增大; 在对称轴的右侧,y 随着 x 的增大而减小 (如图) .
2012年9月28日星期五
三、二次函数的最值问题
【例 5】当 2 x 2 时,求函数 y x 2 2 x 3 的最大值和最小值.
解:作出函数的图象.当 x 1 时, y m in 4 ,当 x 2 时, y m ax 5 .
2 【例 6】当 1 x 2 时,求函数 y x x 1 的最大值和最小值.
2
4aΒιβλιοθήκη 3 3 ∴二次函数的表达式为 y x x 或 y x x . ∴二次函数的表达式为 y x x 或 y x x . 2 2 2 2 2 2 2 2
2
2
1 1
3 3
1 1
2
2
说明:在今后的解题过程中,要善于利用条件,选择恰当的方法来解决问题. 通过上面的几道例题,同学们能否归纳出:在什么情况下,分别利用函数的一般式、顶点式、交点 式来求二次函数的表达式?
.
所求的二次函数为 y 2 x 2 1 2 x 8 .
【例 3】 已知二次函数的最大值为 2,图像的顶点在直线 y x 1 上,并且图象经过点(3,-1) , 求此二次函数的解析式.
解:由条件易知顶点坐标是(1,2) , 设该二次函数的解析式为 y a ( x 2) 2 1( a 0) , ∵图像经过点(3,-1) ∴ 1 a (3 2) 2 1 a 2 . , ∴二次函数的解析式为 y 2( x 2) 2 1 ,即 y 2 x 2 8 x 7 .
4ac b 4a
2
时,函数取最小值 y

今后解决二次函数 问题时,要善于借助 函数图像,利用数形 结合的思想方法解决 问题.
b 2a , 4ac b 4a
2
(2)当 a 0 时,函数 y a x b x c 图象开口向下,顶点坐标为 (
2
) ,对称轴为
直线 x
2012年9月28日星期五
二次函数 y a x b x c ( a 0 )是初中函数的主要内 容.也是高中学习的重要基础.在初中,大家已经知道 二次函数在自变量取任意实数时的最值情况. 本讲我们将在这个基础上继续学习当自变量 x 在某 个范围内取值时,函数的最值问题.
2
2012年9月28日星期五
,其中 x 1 , x 2 是二次函数图象与 x 轴交点的横坐标.
【例 2】已知二次函数的图象过点(-1,-22),(0,-8),(2,8),求此二次函数的表达式.
解:设该二次函数为 y a x 2 b x c ( a 0 ) .
a b c 22 a 2 b 12 由条件得 c 8 4 a 2b c 8 c 8
2012年9月28日星期五
二、二次函数的三种表示方式
1.一般式: y a x 2 b x c ( a 0 ) . 2.顶点式: y a ( x h ) 2 k ( a 0 ) ,顶点坐标是 ( h , k ) .
3.交点式: y
a ( x x1 )( x x 2 ) ( a 0 )
2012年9月28日星期五
二、二次函数的三种表示方式
【例 4】已知二次函数的图象过点(-3,0),(1,0),且顶点到 x 轴的距离等于 2,求此二次函数的 表达式.
解:法一 ∵二次函数的图象过点(-3,0),(1,0), 解:法二 ∵二次函数的图象过点(-3,0),(1,0), ∴对称轴为直线 x 1 . ∴可设二次函数为 y 2, 3)( x 1) ( a 0) ,即 y ax 又顶点到 x 轴的距离为 a ( x ∴顶点的纵坐标为 2 或-2.
相关文档
最新文档