第9讲 一元一次不等式(组)
人教版数学七年级下册9.3《一元一次不等式组》课件(共27张PPT)
问题
设一个苹果的质量为x克,每个桔子和梨 的质量分别为50克和100克.
.
.
如图,苹果的质量x的范围是什么?
X >100+50
X <100+100
二、学习目标
1
1、了解一元一次不等式组及其解 集的含义。
2 2、会利用数轴求一元一次不等 式组的解集。
7、变式训练
-11≤3x-2<7 解:-11+2≤3x<7+2
-9≤3x<9 -3≤x<3
-11≤-3x-2<7 解:-11+2≤-3x<7+2
-9≤-3x<9 3≥x>-3 -3<x≤3
四、归纳小结
1、几个不等式的解集的 公共部分,叫做 由它们所组成的不等式组的解集。
2、用数轴来表示一元一次不等式组的解 集,可分为四种情况. (1) 同__大_取__大____(2) 同__小__取_小______ (3)大_小__小_大__中_间__找(4)大_大__小__小_取__无_解_
2a 7 3a 3
1 0
(是)
3 x 4 2x
(5) 5x 3 4x 1 (是)
7 2x 6 3x
x>100+50 你能求出不等式组 x<100+100 的解集吗?
在数轴上表示这两个不等式的解集
0
150 200
不等式组的解集为: 150<x<200
一般地,不等式组中的各个不等式的解集的 公共部分,叫做这个不等式组的解集.
求不等式组的解集的过程叫做解不等式组.
人教版七年级数学下册《一元一次不等式》PPT优质教学课件
(4)解:解出所列的不等式的解集; (5)验:检验所得结果是否正确,考虑所得的解是否符合问题的 实际意义; (6)答:写出答案.
对点训练
1.“一方有难,八方支援”.某学校计划购买84消毒液和75%酒精 消毒水共4 000瓶,用于支援武汉抗击“新冠肺炎疫情”,已知84 消毒液的单价为3元/瓶,75%酒精消毒水的单价为13元/瓶,若 购买这批物资的总费用不超过28 000元,至少可以购买84消毒 液多少瓶?
解:(1)设购进A种树苗x棵,则购进B种树苗(17-x)棵, 根据题意得80x+60(17-x)=1 220, 解得x=10,∴17-x=7. 答:购进A种树苗10棵,B种树苗7棵.
(2)设购进 A 种树苗 y 棵,则购进 B 种树苗(17-y)棵,
根据题意得 17-y<y,解得 y>81.
2
购进两种树苗所需费用为80y+60(17-y)=20y+1 020, 费用最省需y取最小整数9,此时17-y=8, 这时所需费用为20×9+1 020=1 200(元). 答:费用最省方案为:购进A种树苗9棵,B种树苗8棵.这时所需 费用为1 200元.
解:(1)设每只努比亚黑山羊每天需要草料 x kg,每头西门塔尔牛
每天需要草料 y kg.
根据题意,得 60x+15y=330
,解得
x=3 .
(25+60)x+(15+5)y=455
y=10
答:每只努比亚黑山羊每天需要草料 3 kg,每头西门塔尔牛每天
需要草料 10 kg.
(2)设卖出a头牛,则卖出(10-a)只羊,根据题意,得 10(20-a)+3(85-10+a)≤390,解得a≥5. 答:至少卖出5头牛才能保证每天草料够用.
变式练习
4.某种商品的进价为320元,为了吸引顾客,按标价的八折出售, 这时仍可盈利至少25%,则这种商品的标价最低是多少元? 解:设这种商品的标价是x元,由题意得 x×80%-320≥25%×320,解得x≥500. 答:这种商品的标价最低是500元.
浙教版八年级竞赛培优训练第9讲 一元一次不等式组
第9讲 一元一次不等式组【思维入门】1.把不等式组⎩⎨⎧x +2>1,3-x ≥0的解集表示在数轴上,正确的是( )A BC D2.不等式组⎩⎪⎨⎪⎧x -4≤8-2x ,x >-23的最小整数解是 ( )A .-1B .0C .1D .43.不等式组⎩⎪⎨⎪⎧12x +2≥13x +1,3x <x +2的解是 ( )A .-6<x ≤1B .-6<x <1C .-6≤x <1D .-6≤x ≤14.已知点P (3-m ,m -1)在第二象限,则m 的取值范围在数轴上表示正确的是( )A BC D5.求不等式组⎩⎨⎧7(x -1)<4x -3,6(0.5x +1)≥2x +5的整数解.6.解不等式组⎩⎪⎨⎪⎧23x +5>1-x ,x -1<34x -18,并写出它的非负整数解.【思维拓展】7.若关于x 的不等式组⎩⎨⎧5-2x >-1,x -a >0无实数解,则a 的取值范围是____.8.对非负数x 四舍五入到个位的值记为〈x 〉,即当n 为非负整数时,若n -12≤x <n +12,则〈x 〉=n .如〈0.46〉=0,〈3.67〉=4. 给出下列关于〈x 〉的结论: ①〈1.493〉=1; ②〈2x 〉=2〈x 〉;③若〈12x -1〉=4,则实数x 的取值范围是9≤x <11;④当x ≥0,m 为非负整数时,有〈m +2 013x 〉=m +〈2 013x 〉; ⑤〈x +y 〉=〈x 〉+〈y 〉.其中,正确的结论有____(填写所有正确的序号).9.定义新运算:对于任意实数a ,b 都有a △b =ab -a -b +1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4-2-4+1=8-6+1=3,请根据上述知识解决问题:若3△x 的值大于5而小于9,求x 的取值范围.10.已知实数a 是不等于3的常数,解不等式组⎩⎪⎨⎪⎧-2x +3≥-3,12(x -2a )+12x <0,并依据a 的取值情况写出其解集.11.已知关于x ,y 的方程组⎩⎨⎧5x +2y =11a +18,2x -3y =12a -8的解满足x >0,y >0,求实数a 的取值范围.【思维升华】12.若关于x 的不等式组⎩⎨⎧2-3x ≥0,2x +m >0没有实数解,则实数m 的取值范围是( )A .m <-43B .m ≤-43C .m >-43D .m ≥-4313.已知a 是实数,关于x ,y 的二元一次方程组⎩⎨⎧2x -3y =5a ,x +2y =1-2a 的解不可能出现的情况是( )A .x ,y 都是正数B .x ,y 都是负数C .x 是正数,y 是负数D .x 是负数,y 是正数14.已知方程组⎩⎨⎧x +my =11,x +3=2y 的解都是正整数,则整数m 的值为____.15.已知a +b +c =0,a ≥b ≥c ,a ≠0,则ca 的最大值是 ____,最小值是____. 16.已知关于x 的不等式组⎩⎨⎧x <a +1,2x -2>a 的解集中的整数恰好有2个,求实数a 的取值范围.第9讲 一元一次不等式组【思维入门】1.把不等式组⎩⎨⎧x +2>1,3-x ≥0的解集表示在数轴上,正确的是( D )A BC D2.不等式组⎩⎪⎨⎪⎧x -4≤8-2x ,x >-23的最小整数解是 ( B )A .-1B .0C .1D .43.不等式组⎩⎪⎨⎪⎧12x +2≥13x +1,3x <x +2的解是 ( C )A .-6<x ≤1B .-6<x <1C .-6≤x <1D .-6≤x ≤14.已知点P (3-m ,m -1)在第二象限,则m 的取值范围在数轴上表示正确的是( A )A BC D5.求不等式组⎩⎨⎧7(x -1)<4x -3,6(0.5x +1)≥2x +5的整数解.解:⎩⎪⎨⎪⎧7(x -1)<4x -3,①6(0.5x +1)≥2x +5,②解不等式①,得x <43,解不等式②,得x ≥-1, ∴不等式组的解集为-1≤x <43, ∴不等式组的整数解为-1,0,1.6.解不等式组⎩⎪⎨⎪⎧23x +5>1-x ,x -1<34x -18,并写出它的非负整数解.解:⎩⎪⎨⎪⎧23x +5>1-x ,①x -1<34x -18,②解不等式①,得x >-125, 解不等式②,得x <72, ∴不等式组的解集为-125<x <72. ∴它的非负整数解为0,1,2,3.【思维拓展】7.若关于x 的不等式组⎩⎨⎧5-2x >-1,x -a >0无实数解,则a 的取值范围是__a ≥3__.【解析】 解关于x 的不等式组⎩⎪⎨⎪⎧5-2x >-1,x -a >0,得⎩⎪⎨⎪⎧x <3,x >a , ∵不等式组无解,∴a ≥3.8.对非负数x 四舍五入到个位的值记为〈x 〉,即当n 为非负整数时,若n -12≤x <n +12,则〈x 〉=n .如〈0.46〉=0,〈3.67〉=4. 给出下列关于〈x 〉的结论: ①〈1.493〉=1; ②〈2x 〉=2〈x 〉;③若〈12x -1〉=4,则实数x 的取值范围是9≤x <11;④当x ≥0,m 为非负整数时,有〈m +2 013x 〉=m +〈2 013x 〉; ⑤〈x +y 〉=〈x 〉+〈y 〉.其中,正确的结论有__①③④__(填写所有正确的序号). 【解析】 ①〈1.493〉=1,正确;②〈2x 〉≠2〈x 〉,例如当x =0.3时,〈2x 〉=1,2〈x 〉=0,故②错误; ③若〈12x -1〉=4,则4-12≤12x -1<4+12,解得9≤x <11,故③正确; ④m 为整数,不影响四舍五入,故〈m +2 013x 〉=m +〈2 013x 〉,④正确; ⑤〈x +y 〉≠〈x 〉+〈y 〉,例如x =0.3,y =0.4时,〈x +y 〉=1,〈x 〉+〈y 〉=0,故⑤错误. 综上可得①③④正确.9.定义新运算:对于任意实数a ,b 都有a △b =ab -a -b +1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4-2-4+1=8-6+1=3,请根据上述知识解决问题:若3△x 的值大于5而小于9,求x 的取值范围.解:∵3△x =3x -3-x +1=2x -2,且3△x 的值大于5而小于9, ∴5<2x -2<9,即72<x <112.10.已知实数a 是不等于3的常数,解不等式组⎩⎪⎨⎪⎧-2x +3≥-3,12(x -2a )+12x <0,并依据a 的取值情况写出其解集.解:⎩⎨⎧-2x +3≥-3,①12(x -2a )+12x <0,②解①得x ≤3,解②得x <a , ∵ a 是不等于3的常数,∴ 当a >3时,不等式组的解集为x ≤3; 当a <3时,不等式组的解集为x <a .11.已知关于x ,y 的方程组⎩⎨⎧5x +2y =11a +18,2x -3y =12a -8的解满足x >0,y >0,求实数a 的取值范围.解:解方程组⎩⎪⎨⎪⎧5x +2y =11a +18,①2x -3y =12a -8,②①×3得15x +6y =33a +54③, ②×2得4x -6y =24a -16④,③+④得19x =57a +38,解得x =3a +2, 把x =3a +2代入①,得5(3a +2)+2y =11a +18, 解得y =-2a +4,∴方程组的解是⎩⎪⎨⎪⎧x =3a +2,y =-2a +4,∵x >0,y >0,∴⎩⎪⎨⎪⎧3a +2>0,-2a +4>0,解得⎩⎨⎧a >-23,a <2, ∴a 的取值范围是-23<a <2.【思维升华】12.若关于x 的不等式组⎩⎨⎧2-3x ≥0,2x +m >0没有实数解,则实数m 的取值范围是( B )A .m <-43 B .m ≤-43 C .m >-43D .m ≥-4313.已知a 是实数,关于x ,y 的二元一次方程组⎩⎨⎧2x -3y =5a ,x +2y =1-2a 的解不可能出现的情况是( B )A .x ,y 都是正数B .x ,y 都是负数C .x 是正数,y 是负数D .x 是负数,y 是正数【解析】 ⎩⎪⎨⎪⎧2x -3y =5a ,①x +2y =1-2a ,②②×2-①得7y =2-9a ,y =2-9a7③,③代入②,得x =1-2a -2y =1-2a -2×2-9a 7=4a +37.A.⎩⎨⎧2-9a7>0,4a +37>0,解得-34<a <29;B.⎩⎨⎧2-9a 7<0,4a +37<0,解得a >29,a <-34,无解;C.⎩⎨⎧2-9a7>0,4a +37<0,解得a <-34;D.⎩⎨⎧2-9a7<0,4a +37>0,解得a >29,故选B.14.已知方程组⎩⎨⎧x +my =11,x +3=2y 的解都是正整数,则整数m 的值为__-1,0或5__.【解析】 方程组⎩⎪⎨⎪⎧x +my =11,x +3=2y ,∴x +my -x -3=11-2y , 解得(m +2)y =14,y =14m +2.∵方程组有正整数解,∴m +2>0,m >-2,又x =22-3mm +2,故22-3m >0,解得m <223,故-2<m <223,整数m 只能取-1,0,1,2,3,4,5,6,7. 又x ,y 均为正整数,∴只有m =-1或0或5符合题意.15.已知a +b +c =0,a ≥b ≥c ,a ≠0,则c a 的最大值是 __-12__,最小值是__-2__. 【解析】 已知a +b +c =0,即c =-a -b , 因为a ≥b ≥c ,必有a >0,c <0,c a =-a -b a =-1-b a , 可知当b 与a 同号时,即b >0. 式子-1-ba 才可能取最小值.因为a ≥b ,故ba ≤1,故当b a =1时,式子-1-ba 取最小值为-2. 同理:当b 与a 异号时,即b <0, 式子-1-ba 才可能取最大值, a +b +c =0,a =-(b +c ). 因为0≥b ≥c ,即|b |≤|c |.式子-1-b a =-1+b b +c =-1+|b ||b |+|c |,当|b ||b |+|c |取最大值时,整个式子有最大值,|b ||b |+|c |≤|b ||b |+|b |=12. 故式子-1-b a ≤-1+12=-12,此为最大值.16.已知关于x 的不等式组⎩⎨⎧x <a +1,2x -2>a 的解集中的整数恰好有2个,求实数a 的取值范围.解:原不等式组可化为⎩⎪⎨⎪⎧x <a +1,x >a +22,根据题意,有a +22<x <a +1.满足原不等式组解集中的整数恰好有2个,只需 ⎩⎪⎨⎪⎧k ≤a +22<k +1,k +2<a +1≤k +3,(k 为整数) 即⎩⎪⎨⎪⎧2k -2≤a <2k ,k +1<a ≤k +2.(k 为整数)(*) 关于整数k 的不等式组⎩⎪⎨⎪⎧k +1<2k ,2k -2≤k +2有解.解得1<k ≤4,得k 可以取2,3,4.当k =2时,代入(*)式,有⎩⎪⎨⎪⎧2≤a <4,3<a ≤4,解得3<a <4;当k =3时,代入(*)式,有⎩⎪⎨⎪⎧4≤a <6,4<a ≤5,解得4<a ≤5;当k =4时,代入(*)式,有⎩⎪⎨⎪⎧6≤a <8,5<a ≤6,解得a =6.所以,3<a <4或4<a ≤5或a =6即为所求.。
人教版七年级数学下册教学课件(人教版) 第九章 不等式与不等式组 第1课时 解一元一次不等式
归纳总结
一元一次不等式的解法与一元一次方程的解法 类似,其根据是不等式的基本性质,其步骤是:去 分母、去括号、移项、合并同类项、将未知数的系 数化为 1.
针对训练
1.解下列不等式,并在数轴上表示解集:
(1) 5x+15>4x-1;
(2) 2(x+5)≤3(x-5);
(3) x 1< 2x 5;
知识点三 一元一次不等式的特殊解
例3 求不等式3(x+1)≥5x-9的非负整数解.
解析:求不等式的非负整数解,即在原不等式的解集 中找出它所包含的“非负整数”特殊解;因此 先需求出原不等式的解集.
解:∵解不等式3(x+1)≥5x-9得x≤6. ∴不等式3(x+1)≥5x-9的非负整数解为 0,1,2,3,4,5,6.
等式;(4)是一元一次不等式.
归纳总结
判断一个不等式是否为一元一次不等式的步骤: 先对所给不等式进行化简整理,再看是否满足: (1)不等式的左、右两边都是整式; (2)不等式中只含有一个未知数; (3)未知数的次数是1且系数不为0. 当这三个条件同时满足时,才能判定该不等式是一 元一次不等式.
针对练习
课堂小结
解一元一次不等式的一般步骤和根据如下:
步骤
根据
1
去分母
不等式的基本性质 3
2
去括号
单项式乘以多项式法则
3
移项
不等式的基本性质 1
合并同类项,得 4 ax>b,或ax<b (a≠0)
合并同类项法则
5 系数化为1
不等式的基本性质 3
归方F纳法法 正确理解关键词语的含义是准确解题的关键,
“非负整数解”即0和正整数解.
当堂练习
1.下列不等式中,是一元一次不等式的是( C )
一元一次不等式(组)及其解法
一.一元一次不等式的定义
只含有一个未知数, 只含有一个未知数,并且未知数的次数是一次的 不等式叫一元一次不等式. 不等式叫一元一次不等式.
二.形式: 形如 形式: 形如ax>b(a≠0)
如何解不等式ax>b(a ≠0)? 如何解不等式
b 分类讨论:a>0时,x> 分类讨论 时 a
1 − 3x 练习: (1)解不等式 − 7 ≤ <2 2 (2)解不等式组 : 4 + 2x > 7 x + 3 3x + 6 > 4 x + 5 2 x − 3 < 3x − 5
x+y=3 例8.方程组 8.方程组 的解满足 x-2y=-3+a 2y=-
x>0 ,求a的取值范围. 的取值范围. y>0
x
b a b a
x
b a<0时,x< 时 a
三.一元一次不等式的解法: 一元一次不等式的解法:
4 − 2x x −3 例1.解不等式 < 1− 3 4
去分母 去括号 移项b的形式 或 化成 的形式
练习:求不等式21 − 4 x > 5的非负整数解 1. 1 2 2.k取什么值时, 代数式 (1 − 5k ) − k的值为非负数. 2 3
2 3 x + 25 例2.关于x的方程 − ( x + m) = + 1的解是正数, 3 3 那么m的取值范围是什么?
四.一元一次不等式组
假设a>b 假设
x>a
(1)
x>b x>a
x>a
x<a
一元一次不等式(组)知识总结及经典例题分析
一元一次不等式(组)知识总结及经典例题分析一元一次不等式和不等式组【知识要点】一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。
2.一元一次不等式的解集:使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。
一元一次不等式的所有解组成的集合是一元一次不等式的解集。
注:其标准形式: ax+b <0或ax+b ≤0, ax+b >0或ax+b ≥0(a ≠0).二、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a<(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!x <a x >a x ≤a x ≥a五、不等式组解集的确定方法,可以归纳为以下四种类型(b a <)①⎩⎨⎧>>b x a x 的解集是b x >,如下图: ②⎩⎨⎧<<b x a x 的解集是a x <,如下图:同大取大 同小取小③⎩⎨⎧<>b xa x 的解集是b x a <<,如下图:④⎩⎨⎧><bx a x 无解,如下图:大小交叉取中间 大小分离解为空六、解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.七、一元一次不等式的综合应用1.列不等式解决问题比列方程解决问题的应用更广泛、更实际。
有些问题用方程不能解决,而用不等式却能轻易解决。
人教版初中数学七年级下册第9章一元一次不等式(组)含参专题——有、无解问题(专题课)教案
人教版初中数学七年级下册第九章一元一次不等式(组)含参专题——有、无解问题(专题课)教案核心素养:1.使学生加深对一元一次不等式组和它的解集的理解,会用数轴确定含参数的一元一次不等式组的参数范围;2.培养学生探究、独立思考的学习习惯,感受数形结合的作用,熟悉并掌握数形结合的思想方法,提高分析问题和解决的能力;3.提升学生之间合作与交流以及对问题的探讨能力,从中发现数学的乐趣.【教学重难点】重点:含参一元一次不等式组的分类解法难点:1.一元一次不等式中字母参数的讨论2.一元一次不等式中运用数轴分析参数的范围【教学过程】1.问题引导 合作交流出示问题:请同学们解下列两个不等式(1)x-2m<0,(2)x+m >3并思考m 的取值范围. 同学们不难得出不等式(1)的解为x <2m ;(2)的解为x >3-m.引导分析m 的取值范围. 师引导,生回答:任意实数.[问题1]如果将上述两个不等式联立成不等式组⎩⎨⎧>+<-302m x m x ,你能确定不等式组的解集吗? 师提示学生画数轴 ,问:能画几种情况[问题2]如果这个不等式组无解,你能确定m 的取值范围吗?(学生分组讨论)(借助数轴)师生一起分析:如果不等式组无解,则2m <3-m ,解得m <1。
确定一下“<”要不要添加“=”(这是参数取值问题中的难点)学生借助数轴讨论.师生总结:2m 和3-m 在两个不等式的解中都不包含,所以2m 可以等于3-m ,即m ≤1.2.变式拓展 强化理解变式1:若不等式组⎩⎨⎧⋅⋅⋅⋅⋅>+⋅⋅⋅≤-②①302m x m x 无解,这时m 的取值会有变化吗?解不等式①得x ≤2m 解不等式②得x >3-m(学生分组探究)引导:虽然第一个不等式“<”改成“≤”通过数轴可以看到由于和第二个不等式的解集不包含3-m ,所以2m ≤3-m ,m 的取值范围仍然是m ≤1.变式2:如果不等式组变化为⎩⎨⎧⋅⋅⋅⋅⋅≥+⋅⋅⋅≤-②①302m x m x ,这时m 的取值又会有改变吗?(学生分组探究)由于两个不等式都含有等号,这时2m 和3-m 可能是公共点,而要想使不等式组无解,2m 和3-m 不能重合,只能2m <3-m ,所以m 不能等于1,即m <1.3.问题反转[问题3]如果不等式组⎩⎨⎧⋅⋅⋅⋅⋅≥+⋅⋅⋅≤-②①302m x m x 有解,怎样确定 m 的取值范围?把两个不等式的解集在数轴上表示出,同学们观察数轴 ,不难得出要想使不等式组有解,只要2m ≥3-m ,即m ≥1这样两个不等式的解集有公共部分,不等式组有解,所以m 的取值范围m ≥14.方法小结 归纳步骤解含参一元一次不等式(组)有、无解问题时注意掌握四个步骤:一解 .解不等式组,用参数分别表示出两个不等式的解集;二画.借助数轴进行视觉观察,画出有无解的情况;三验:验证端点取舍判断等号是否可取;四:列出不等式,确定取值范围5,拓展演练 题型再变[问题4]下面这种类型的一元一次不等式组如何确定字母参数取值范围?例:已知不等式组⎩⎨⎧⋅⋅⋅-<⋅⋅⋅⋅⋅⋅⋅⋅≥-②①22-10x x a x 的解集是x >1,求a 的取值范围?学生分组解出每个不等式的解集:解①得:x ≥a 解②得:x >1因为不等式的解集是x >1,(学生分组探讨):a 的位置在数轴上应该在哪个位置? 分析得出:a 在数轴上的位置应该在1的左侧.把不等式组的解集在数轴上表示出来:即a <1,[思考3]a 可不可以等于1?因为a=1时不等式组的解集仍然是x >1.所以a 可以等于1,即a 的取值范围a ≤15.基础过关1.若不等式组⎩⎨⎧≤≥-m x x 062 无解,求m 的取值范围? 2.若不等式组⎩⎨⎧>+<--xx a x x 422)2(3有解,求a 的取值范围?3.若不等式组⎩⎨⎧+>+<+1137m x x x 的解集是x >3,求m 的取值范围?。
人教版七年级数学下册第9章。一元一次不等式组 知识点专题复习讲义
人教版七年级数学下册第9章。
一元一次不等式组知识点专题复习讲义一元一次不等式组知识点专题复讲义一、知识梳理1.知识结构图概念基本性质不等式的解法不等式的定义不等式的解集一元一次不等式的解法实际应用一元一次不等式组的解法二、知识点回顾1.不等式不等式是由不等号连接起来的式子。
常见的不等号有五种:“≠”、“>”、“<”、“≥”、“≤”。
2.不等式的解与解集不等式的解是使不等式成立的未知数的值。
不等式的解集是一个含有未知数的不等式的解的全体。
解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。
解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。
3.不等式的基本性质1) 不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
4.一元一次不等式一元一次不等式只含有一个未知数,且未知数的次数是1.系数不等于的不等式叫做一元一次不等式。
其标准形式为:ax+b<或ax+b≤,ax+b>或ax+b≥0(a≠0)。
5.解一元一次不等式的一般步骤1) 去分母;2) 去括号;3) 移项;4) 合并同类项;5) 化系数为1.删除格式错误的段落。
对于每段话,进行小幅度的改写,使其更加通顺易懂。
解一元一次不等式和解一元一次方程类似。
不同的是,一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变。
这是解不等式时最容易出错的地方。
例如,解不等式:-2/3x-1≤1/3解:去分母,得(3x-1)-2(3x-1)≤2(不要漏乘!每一项都得乘)去括号,得3x-3-6x+2≤2(注意符号,不要漏乘!)移项,得3x-6x≤2+3-1(移项要变号)合并同类项,得-3x≤4(计算要正确)系数化为1,得x≥-4/3(同除负,不等号方向要改变,分子分母别颠倒了)一元一次不等式组是含有相同未知数的几个一元一次不等式所组成的不等式组。
初中数学重点梳理:一元一次不等式(组)
一元一次不等式(组)知识定位不等式是一个比较重要的知识点,难度不是很大,在理解的基础上,使用适当的技巧即可解决。
知识梳理一、不等式与不等式的性质1、不等式:表示不等关系的式子。
(表示不等关系的常用符号:≠,<,>)。
2、不等式的性质:(l )不等式的两边都加上(或减去)同一个数,不等号方向不改变,如a > b , c 为实数⇒a +c >b +c(2)不等式两边都乘以(或除以)同一个正数,不等号方向不变,如a >b , c >0⇒ac >bc 。
(3)不等式两边都乘以(或除以)同一个负数,不等号方向改变,如a >b ,c <0⇒ac <bc.注:在不等式的两边都乘以(或除以)一个实数时,一定要养成好的习惯、就是先确定该数的数性(正数,零,负数)再确定不等号方向是否改变,不能像应用等式的性质那样随便,以防出错。
3、任意两个实数a ,b 的大小关系(三种):(1)a – b >0⇔ a >b(2)a – b=0⇔a=b(3)a–b <0⇔a <b4、(1)a >b >0⇔b a >(2)a >b >0⇔22b a <二、不等式(组)的解、解集、解不等式1、能使一个不等式(组)成立的未知数的一个值叫做这个不等式(组)的一个解。
不等式的所有解的集合,叫做这个不等式的解集。
不等式组中各个不等式的解集的公共部分叫做不等式组的解集。
2.求不等式(组)的解集的过程叫做解不等式(组)三、不等式(组)的类型及解法1、一元一次不等式:(l )概念:含有一个未知数并且含未知数的项的次数是一次的不等式,叫做一元一次不等式。
(2)解法:与解一元一次方程类似,但要特别注意当不等式的两边同乘以(或除以)一个负数时,不等号方向要改变。
2、一元一次不等式组:(l )概念:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。
(2)解法:先求出各不等式的解集,再确定解集的公共部分。
注:求不等式组的解集一般借助数轴求解较方便。
一元一次不等式(组)
知识回顾
4.一元一次不等式组解集的四种情况(a<b):
不等式组
在数轴 上表示
解集
口诀
x≥a, x≥b
x≥b
同大取 ___大___
x≤a, x≤b
x≤a
同小取 ___小___
x≥a, x≤b
a≤x≤b
大小小大 __取__中__间___
x≤a, x≥b
无解
小小大大 __则__无__解___
知识回顾
五、一元一次不等式(组)的应用 1.列不等式解应用题的一般步骤: __审__、__设_、___列__、__解__、__验__、__答______6个步骤. 2.准确理解“至少”“最多”“不低于”“不大 于”和“不小于”等词的含义.
根据题意,得k+4 4>0,且k+4 4≠2, 解得 k>-4,且 k≠4.
【答案】C
课堂精讲
例 5 (2018·德阳)如果关于 x 的不等式组23xx- -ab≥ ≤00, 的整数解仅有 x=2,x=3,那么适合这个不等式组的整数 a, b 组成的有序数对(a,b)共有( )
A.3 个 B.4 个 C.5 个 D.6 个 【分析】求出不等式组的解集,根据已知求出 1<a2≤2, 3≤b3<4,求出 2<a≤4,9≤b<12,即可得出答案.
A.-1 B.0
C.1
D.2
课后精练
4.若满足不等式20<5-2(2+2x)<50的最 大整数解为a,最小整数解为b,则a+b=(C )
A.-15 B.-16 C.-17 D.-18
课后精练
5.对于任意实数a,b,定义一种运算: a※b=ab-a+b-2.例如,2※5=2×5-2+5 -2=11.请根据上述的定义解决问题:若不等 式3※x<2,则不等式的正整数解是x_=_0____.
第9讲 不等式(组)及其应用
3(x+1)>x-1
正解 解:令:-32x+3≥4
,
解不等式①得 x>-2,
解不等式②得-23x≥1,不等式两边同乘以-32得 x≤-23.∴原不等式组的
解集为-2<x≤-32.
∴原不等式组的最小整数解是-1
请完成考点精练
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月3日星期四2022/3/32022/3/32022/3/3 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/32022/3/32022/3/33/3/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/32022/3/3March 3, 2022 4、享受阅读快乐,提高生活质量。2022/3/32022/3/32022/3/32022/3/3
剖析 (1)在解不等式的过程注意不等式性质3的使用,即给不等式两边 同时乘以(或除以)一个负数,不等号要改变方向;(2)求不等式组的整数 解时,“实心”点所表示的实数如果是整数,则该点也是所求整数解, 如果不是整数,要从离该点最近的整数点开始算起;“空心”点所在的 实数如果是整数,则该点不是整数解,如果不是整数,则要从解集中离 该点最近的整数点开始算起.
[对应训练]
1.(2016·西宁)某经销商销售一批电话手表,第一个月以550元/块的价格
售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售
出,销售总额超过了5.5万元.这批电话手表至少有( C )
A.103块
B.104块
人教版数学七年级下册9.3 一元一次不等式组-课件
④ x< -1 x≥ 2
A x ≥ -1
A x< -1
A x ≥ -1
A x< -1
B x≥ 2
B x< 2
B x< 2
B
x≥ 2
C -1≤ x≤ 2
C -1< x< 2
C -1≤ x< 2
C -1< x≥ 2
D 无解
D 无解
D 无解
D 无解
2 x-
1
x,
①
2.
解不等式组:
1
x
< 3.
②
2
解: 解不等式①,得 x > 1 .
因此,原不等式组的解集为 20<x <22.
2x+y=5m+6 ① 7.已知方程组 x-2y=-17 ② 的解x,y的值都是正数,且x<y,求m的取值范围.
解:①×2+②得:5x=10m-5,得:x=2m-1.
①-②×2得:5y=5m+40,得:y=m+8.
又∵x,y的值都是正数,且x<y.
∴ 2m-1>0 m+8>0 2m-1<m+8
a x>b
b
同大取大
a x<a b
同小取小
a a<x<b b
大小小大中间找
a 无解 b
大大小小无处找
练一练
填表:
不等式组
x
≥
-5,
x
>
-
3
x
>
-5,
x
≤
-3
x-
5
<
0,
x
+
3
<
0
不等式组的解集 x﹥-3 -5﹤x≤-3 x<-3
七年级数学人教版下册第九章一元一次不等式组的实际应用分配问题与方案选择问题
讲解答案
解题方法
雄鹰必须比鸟飞得高,因为它的猎物就是鸟。 治天下者必先立其志。 雄鹰必须比鸟飞得高,因为它的猎物就是鸟。 志,气之帅也。 强行者有志。 沧海可填山可移,男儿志气当如斯。
贫困能造就男子1气、概。根据题目中的关键词找出不等关系,列不等式(组).
志不立,如无舵这舟,无衔之马,漂荡奔逸,终亦何所底乎。 人无志向,和迷途的盲人一样。
例题讲解-答案
解题方法
1、根据两种商品之间的等量关系,建立方程求解.
2、根据题目中的关键词找出不等关系,列不等式(组).
3、 有几种方案
回答数字几种
有哪几种方案
回答数字,并写出具体方案.
应用练习1
某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两 种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元 (1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买 了多少件?
应用练习3
某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B 型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元. (1)求每辆A型车和B型车的售价各为多少万元.
应用练习3
某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B 型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元. (2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130 万元,且不超过140万元.则有哪几种购车方案?
应用练习2
某校组织夏令营活动,现有36座和42座两种客车供选择租用,若 只租用36座客车若干辆,则刚好坐满;若只租用42座客车,则能少租 一辆,而且还有一辆没有坐满,但超过30人,问: (1)该校有多少人参加夏令营活动?
一元一次不等式教学设计
一元一次不等式教学设计教学设计课题:一元一次不等式教学内容:七年级下册第九章不等式与不等式组9.2一元一次不等式第一课时一、教材分析本节内容是本章知识的联系中起着承上启下的作用,从学生熟悉的列代数式入手,既复旧知又巧妙地引入了新知。
由代数式到单项式,这是一种下位研究,有利于学生把握概念的内涵和外延的内容。
二、教学目标1.知识与技能:理解一元一次不等式的定义,掌握一元一次不等式的解法,并能够在数轴上表示不等式的解集。
2.过程与方法:通过类比一元一次方程的解法,探究一元一次不等式的解法。
3.情感态度与价值观:培养学生对数学的兴趣,提高解决问题的能力。
4.教学重点、难点:重点是解一元一次不等式的步骤,并能在数轴上表示它的解集;难点是解一元一次不等式,不等式两边同乘(或除以)同一个负数,不等号的方向要改变。
三、学情分析学生已经研究过代数式和单项式的概念,具备一定的代数基础,但对不等式的概念和解法还不熟悉。
四、教法学法与教学用具教学:探究法讲解法学法:自主探究法合作研究教学用具:数轴、黑板、白板、笔。
五、教学过程复引入】复不等式的定义和性质。
探索新知】观察不等式的共同特征,引入一元一次不等式的概念。
练】通过例题,掌握一元一次不等式的解法步骤,并在数轴上表示解集。
归纳总结】总结一元一次不等式的解法和注意事项。
拓展应用】通过实际问题,巩固一元一次不等式的应用。
课堂小结】回顾本节课的重点内容,强化学生对一元一次不等式的理解和掌握。
课后作业】完成课后作业,巩固一元一次不等式的解法和应用。
判断下列各式是否为单项式。
如果不是,请说明理由。
如果是,请指出它的系数和次数。
1) 1000 是单项式,系数为 1000,次数为 0.2) a5 是单项式,系数为 1,次数为 5.3) r2 不是单项式,因为乘法中有两个不同的变量 r 和 2.4) x+1 不是单项式,因为它包含两个不同的项 x 和 1.5) a3b 是单项式,系数为1,次数为 4.6) ba2c 是单项式,系数为1,次数为 4.7) 1122xy2 不是单项式,因为它包含两个不同的项 1122 和 xy2.8) x 不是单项式,因为它包含一个未知数 x 和一个乘法符号。
一元一次不等式组(公开课课件)
形式
一元一次不等式组通常表 示为“{①,②,③...}”, 其中①,②,③...是一元 一次不等式。
特点
一元一次不等式组中至少 包含两个不等式,且每个 不等式只含有一个未知数 。
一元一次不等式组的解集
定义
满足一元一次不等式组中 所有不等式的未知数的取 值范围称为该不等式组的 解集。
性质
解集具有封闭性,即满足 所有不等式的解都在解集 中。
求法
通过解每个不等式,找出 满足所有不等式的解,再 确定解集。
一元一次不等式组的分类
分类标准
简单型
根据一元一次不等式组中不等式的个数和 形式,可以将一元一次不等式组分为简单 型、线性型、多项式型等。
由两个一元一次不等式组成的不等式组, 如“{2x > 3, x < 5}”。
线性型
多项式型
由两个或多个线性一元一次不等式组成的 不等式组,如“{3x + 2 > 0, 4x - 1 < 5}” 。
VS
解集关系
一元一次不等式组的解集与相应的一元一 次方程组的解集存在一定的包含关系,可 以根据方程组的解来推断不等式组的解。
一元一次不等式组在实际问题中的应用
资源分配问题
例如,在有限资源下如何分配任 务以达到最优效果。
最优化问题
例如,在一定条件下如何选择方案 以达到最优目标。
经济问题
例如,在预算限制下如何选择商品 或服务以实现最大效益。
生产问题
总结词
企业生产过程中的资源配置问题
详细描述
生产问题涉及到企业生产过程中的资源配置,如原材料、设备和人力资源的分配。一元 一次不等式组可以用来解决生产中的成本和效率问题,例如优化生产流程以降低成本和
初中数学教学课例《第九章一元一次不等式组的概念及其解法》课程思政核心素养教学设计及总结反思
解不等式组的意义;会解简单的一元一次不等式组,并
会用数轴确定解集。本课内容是一元一次不等式知识的
综合运用和拓展延伸,是进一步刻画现实世界数量关系 教材分析
的数学模型,是下有概念教学又有解题教
学,而概念教学,应该从生活、生产实例或学生熟悉的
已有知识引入,引导学生通过观察比较、分析、综合,
1、在对整节课的时间把握上有所欠缺,学生探究 的时间过多,以致堂堂清无法在课堂上完成。
2、课堂的节奏还可以更紧凑些。 3、如果重新上这节课,我一定再会改正以上不足 之处,使本课的课堂教学效益更高。
力分析 生一定的困惑。而七年级的学生,以感性认识为主,并
向理性认知过渡,所以,我对本节课的设计是通过学生
所熟悉的问题情境,让学生独立思考,动手操作,合作
交流,从而引导其自主学习。
对本节课的设计是通过学生所熟悉的问题情境,让
教学策略选 学生独立思考,动手操作,合作交流,从而引导其自主
择与设计 学习。基于对学情的分析,我确定了本节课的教学难点
思考,合作交流、求解 直观的感受如何利用数轴找各解集的公共部分 自学例题、小组讨论不等式组的解集的意义。 代表发言,全班交流。 归纳总结 请第一组同学任点其余三组的同学板演(板演的同 学如不会做,可请本组同学教。),然后第一组的同学 给予评价。 思考,归纳,发言,测试
1、整体的思路比较清晰:先从实际生活中遇到的 问题出发引出一元一次不等式组的概念,体现了数学是 源于生活的,然后通过练习进行辨析,并让学生自己归 纳注意点,再接下去是应用新知、巩固新知、再探新知、 巩固新知、知识梳理、布置作业。整个流程比较流畅、 自然; 课例研究综
思想方法,感受类比与划归的思想。3、通过解一元一
次不等式组的训练,培养运算能力。情感态度与价值观:
第9讲 不等式及一元一次不等式
(D)
A.5 B.4 C.3 D.2
4.不等式 3x≤2(x-1)的解集为( C )
A.x≤-1
B.x≥-1
C.x≤-2
D.x≥-2
5.(2016·江西)将不等式 3x-2<1 的解集表示在 数轴上,正确的是( )
【解析】解不等式 3x-2<1,得 x<1,定边界点 时要注意,点是实心还是空心,若边界点含于解集为 实心点,不含于解集即为空心.故选 D.
(1)求 b 的值; (2)经预算,该公司购买节能设备的资金不超过 110 万元,共有哪几种购买方案? (3)在(2)的条件下,若每月要求产量不低于 2 040 吨, 为了节约资金,请你为该公司设计一种最省钱的购买 方案.
解:(1)设乙型设备每台 x 万元,根据题意,得 3x-6=12×2,x=10,则 b 的值为 10.
【答案】B
10.东营市出租车的收费标准:起步价 8 元(即行
驶距离不超过 3 千米都需付 8 元车费),超过 3 千米以
后,每增加 1 千米,加收 1.5 元(不足 1 千米按 1 千米
计).某人从甲地到乙地经过的路程是 x 千米,出租车
费为 15.5 元,那么 x 的最大值是( )
【导学号 90280087】
【答案】D
7.若不等式 ax-2>0 的解集为 x<-2,则关于
y 的方程 ay+2=0 的解为( )
【导学号 90280085】
A.y=-1
B.y=1
C.y=-2
D.y=2
【解析】不等式 ax-2>0 变形为-ax<-2, ∵解集是 x<-2,∴-a=1,即 a=-1.把 a=-1 代 入 ay+2=0,可得-y+2=0,解得 y=2.故选 D.
A.11
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9讲 │ 归类示例
解一元一次不等式组就是先求出每个不等式的解集, 再求它们的公共 部分.
第9讲 │ 归类示例
类型之四 与一元一次不等式(组)解集有关的问题
[2010· 泰安] 若关于 x
x-m<0, 的不等式 7-2x≤1
的整数解共有
4 个,则 m 的取值范围是( D ) A.6<m<7 C.6≤m≤7 B.6≤m<7 D.6<m≤7
第9讲 │ 归类示例
第9讲 │ 归类示例
[解析] 设一颗糖果的质量为 x,则 x>5 且 3x<16,所以 16 32 5<x< 3 ,所以 10<2x< 3 , 64 15<3x<16,20<4x< 3 ,故选择 D.
生活中的跷跷板、天平等问题,常借助不等式(组)来求解,注意数 与形的有机结合.
第9讲 │ 归类示例
[解析] A不正确,当c≤0时不正确;C不正确,不等式两边同 时乘一个负数,不等式方向改变;D不正确,不等式的两边同时 减去同一个数,不等式的方向不变.
运用不等式的性质时, 应注意不等式的两边同时乘或者除以一个负 数,不等式的方向要改变.
第9讲 │ 归类示例
[2010·台湾] 有数颗等重的糖果和数个大、小砝码,其 中大砝码都为 5 克、小砝码都为 1 克,且图 9-1 是将糖果与砝码放 在等臂天平上的两种情形.据此判断图 9-2 哪一种情形是正确的 ( D )
集合 一元一次不等式 一元一次不等式解的______叫做不等式的解 的解集 集. 一元一次不等式 构成不等式组的所有不等式的解集的 公共部分 组的解集 __________叫不等式组的解集.
一元一次 不等式(组) 的概念 一元一次 不等式(组) 的解集
第9讲 │ 考点随堂练
1.下列变形不正确的是( D ) A.由b>5得4a+b>4a+5 B.由a>b得b<a 1 C.由-2x>2y得x<-4y a D.由-5x>-a得x>5
[解析] 此不等式组的解为3≤x<m,共有4个整数解,应为 3,4,5,6.故6<m≤7.
第9讲 │ 归类示例
x+a≥2, 如果不等式组2 的解集是 0≤x<1,求 a+b 2x-b<3
的值.
x 解: +a≥2,得 x≥4-2a, 2 3+b 2x-b<3 得 x< . 2 ∵0≤x<1,
第9讲 │ 考点随堂练
5-2x 1+2x 5.解不等式:4- 6 ≤ 2 ,并把解集在数轴上表示出来.
解: 去分母,得24-(5-2x)≤3(1+2x);去括号,得24- 5+2x≤3+6x,移项、合并同类项,得4x≥16;系数化为 1,得x≥4. 解集在数轴表示如图:
第9讲 │ 考点随堂练
考点3 一元一次不等式组的一次不等式
命题角度: 1.一元一次不等式的概念 2.一元一次不等式的解法 解不等式,并把解集在数轴上表示出来. x+1 (1)[2011· 重庆] 2x-3< ; 3 2x-1 5x+1 (2) - ≤1. 3 2
第9讲 │ 归类示例
[解析] (1)解不等式一般步骤:去分母,去括号,移项,合并 同类项,系数化为1.(2)去分母注意右边1也要乘以6.
解: 由5x+6≥4x,得x≥-6;由3(5-3x)<2(5-2x),得x>1, 不等式组的解集在数轴上表示如图所示,所以原不等式组的解集 为x>1.
第9讲 │ 考点随堂练
第9讲 │ 归类示例 归类示例
► 类型之一 不等式的概念及性质
命题角度: 1.不等式、不等式的解和解集等概念 2.不等式的性质 [2011· 凉山州] 下列不等式变形正确的是( B ) A.由 a>b,得 ac>bc C.由 a>b,得-a>-b B.由 a>b,得-2a<-2b D.由 a>b,得 a-2<b-2
第9讲 │ 归类示例
1+3x x- >-3, 2 (2) 5x-12≤24x-3.
1+3x x- >-3,① 2 (2) 5 x-12≤24x-3.②
解不等式①,得 x<5. 解不等式②,得 x≥-2. 因此原不等式组的解集为-2≤x<5. 在数轴上表示如下:
x-3 +3≥x+1, 2 (1)[2011· 荆州] 1-3x-1<8-x;
第9讲 │ 归类示例
x-3 +3≥x+1,① 解:(1) 2 1-3x-1<8-x.②
由①得 x≤1; 由②得 x>-2. 所以此不等式组的解集为-2<x≤1, 在数轴上表示如下:
x+1 解:(1)由 2x-3< 3 得 6x-9<x+1, 5x<10,x<2, 所以解集为 x<2, 解集在数轴上表示如下:
第9讲 │ 归类示例
(2)2(2x-1)-3(5x+1)≤6, 4x-2-15x-3≤6, 4x-15x≤6+2+3, -11x≤11, x≥-1. 这个不等式的解集在数轴上表示如下:
公共部分
第9讲 │ 考点随堂练
6.把不等式组 确的是( A )
x+1≥0, x-1>0
的解集表示在数轴上,如图9-1,正
图9-1
x≥-1, 解不等式组, x>1,
[解析]
不等式组的解集为x>1.
第9讲 │ 考点随堂练
5x+6≥4x, 7.解不等式组: 35-3x<25-2x.
第9讲 │ 归类示例
解一元一次不等式的方法与解一元一次方程类似,一般步骤为: 去分母,去括号,移项,合并同类项,系数化为 1.
第9讲 │ 归类示例
类型之三 一元一次不等式组
命题角度: 1.一元一次不等式组的概念和解集 2.一元一次不等式组解法 3.求不等式组的整数解 解不等式组,并把解集在数轴上表示出来.
第9讲 │ 考点随堂练
3.如果关于x的不等式(a+1)x>a+1的解集为x<1,则a的取 值范围是( B ) A.a<0 B.a<-1 C.a>1 D.a>-1
[解析] 由题意知,a+1<0,则a <-1.
4.关于x的方程mx-1=2x的解为正实数,则m的取值范围是 ( C ) A.m≥2 B.m≤2 C.m>2 D.m<2 1 [解析] 先求方程mx-1=2x的解为x= ,再由正实数 m-2 1 的概念构造出一元一次不等式 >0,解得m>2. m-2
a [解析] 由-5x>-a,不等式两边同时除以-5,x<5.
2.用不等式表示:(1)y的3倍与x的4倍的和是非负数; (2)x的3倍与1的和不大于x的2倍与5的差.
解: (1)根据题意,得3y+4x≥0; (2)根据题意,得3x+l≤2x-5.
第9讲 │ 考点随堂练
考点2 一元一次不等式的解法
改变
4-2a=0, ∴ 3+b 2 =1.
解得 a=2,b=-1,∴a+b=1.
第9讲 │ 归类示例
已知不等式组的解集求字母(或有关字母代数式)的值, 一般先求 出已知不等式(组)的解集, 再结合给定的解集, 得出等量关系或者不 等关系.
第9讲 │ 一元一次不等式(组)
第9讲 一元一次不等式(组)
第9讲 │ 考点随堂练
│考点随堂练│
考点1 不等式的性质及一元一次不等式(组)的相关概念
不等式的 基本性质 ①在不等式的两边同时加上或减去同一个整式,不等号的方向 不变 _______,②在不等式的两边同时乘(或除以)相同的正数,不等 号的方向_______,③在不等式的两边同时乘(或除以)相同的负 不变 改变 数,不等号的方向_______. 含有______个未知数,并且未知数的次数是 一 一元一次不等式 一次 ______的不等式. 一元一次不等式 由几个一元一次不等式组合在一起构成一元 组 一次不等式组.