高中数学椭圆常考题目解题方法及练习2018高三专题复习-解析几何专题

合集下载

高中数学椭圆解题技巧

高中数学椭圆解题技巧

高中数学椭圆解题技巧椭圆是高中数学中一个重要的几何概念,也是解析几何中的一个重要内容。

在考试中,椭圆相关的题目经常出现,因此掌握椭圆的解题技巧对于高中学生来说非常重要。

本文将从椭圆的基本性质、方程的推导和解题技巧等方面进行论述,帮助读者更好地理解和应用椭圆。

一、椭圆的基本性质椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点的轨迹。

其中,F1和F2称为椭圆的焦点,2a称为椭圆的长轴,a称为椭圆的半长轴。

椭圆的性质有很多,但在解题过程中,最常用的性质是椭圆的离心率和焦半径之间的关系。

根据定义,椭圆的离心率e满足0<e<1,离心率e与焦半径c之间的关系为e=c/a。

这个关系式在解题过程中经常用到,特别是在求解椭圆的方程时。

二、椭圆方程的推导在解析几何中,椭圆的方程可以通过几何定义和代数定义两种方式推导得到。

这里我们主要介绍代数定义的推导方法。

1. 椭圆的代数定义设椭圆的焦点为F1(-c,0)和F2(c,0),离心率为e,点P(x,y)为椭圆上的任意一点。

根据椭圆的定义,有PF1+PF2=2a。

利用距离公式可以得到:√[(x+c)²+y²] + √[(x-c)²+y²] = 2a2. 椭圆的方程根据代数定义的推导结果,可以得到椭圆的方程为:[(x+c)²+y²] + [(x-c)²+y²] - 4a² = 0三、椭圆解题技巧在解椭圆相关的题目时,有几个常见的考点和解题技巧需要注意。

1. 椭圆的标准方程标准方程是指椭圆方程中的常数项为0的形式。

将椭圆方程整理为标准方程的形式,可以更方便地求解椭圆的性质和参数。

例如,将椭圆方程[(x+c)²+y²] + [(x-c)²+y²] - 4a² = 0整理为标准方程的形式,可以得到x²/a² + y²/b² = 1,其中b²=a²-c²。

椭圆27种常考经典题型及方法

椭圆27种常考经典题型及方法

椭圆27种常考经典题型及方法
很多学生都说,青颜整理的63套高中数学解题方法很实用,特别针对了解答题类。

很多学生很期待,青颜能出一套关于高中数学选择填空破题方面的方法。

今天开始,我们就开始更新一系列高中数学选择填空破题微方法大全,而椭圆是常见常考的一个考点!下面是
椭圆27种常考经典题型及方法!
今天我们研究椭圆的定义(第一定义),“平面内与两个定点的距离之和等于定长的动点轨迹” (定长大于两定点之间的距离)是椭圆。

这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。

高中数学椭圆常考题目解题方法及练习2018高三专题复习-解析几何专题

高中数学椭圆常考题目解题方法及练习2018高三专题复习-解析几何专题

(2)求斜率为 2 的平行弦的中点轨迹方程;
(3)过 A2,1引椭圆的割线,求截得的弦的中点的轨迹方程;
(4)椭圆上有两点
P
、Q
,O
为原点,且有直线 OP
、 OQ
斜率满足
kOP
kOQ
1 2

求线段 PQ 中点 M 的轨迹方程.
分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法.
解:设弦两端点分别为 M x1,y1, N x2,y2 ,线段 MN 的中点 Rx,y,则
示椭圆.
例 2、已知 x2 sin y2 cos 1 (0 ) 表示焦点在 y 轴上的椭圆,求 的取值
范围.
解:方程可化为 x2 y2 1.
1
1
sin cos
因为焦点在 y 轴上,所以 1 1 0 . cos sin
因此 sin
0 且 tan
1
从而
(
,
3).
24
说明:(1)由椭圆的标准方程知 1 0 , 1 0 ,这是容易忽视的地方.
由题意可知椭圆方程为 x2 y2 1, 36 9
设 AF1 m , BF1 n ,则 AF2 12 m , BF2 12 n .
在 AF1F2 中,
AF2
2
AF1 2
F1F2
2 2 AF1
F1F2
cos
3

即 (12 m)2 m2 36 3 2 m 6 3 1 ; 2
∵ P(4 , 2) 为 AB 中点,
∴ 4 x1 x2 4k(4k 2) , k 1 .
2
4k 2 1
2
∴所求直线方程为 x 2 y 8 0 .
方法二:(点差法)设直线与椭圆交点 A(x1 , y1) , B(x2 , y2 ) . ∵ P(4 , 2) 为 AB 中点,∴ x1 x2 8 , y1 y2 4 . 又∵ A , B 在椭圆上,∴ x12 4 y12 36 , x22 4 y22 36 两式相减得 (x12 x22 ) 4( y12 y22 ) 0 , 即 (x1 x2 )(x1 x2 ) 4( y1 y2 )( y1 y2 ) 0 . ∴ y1 y2 (x1 x2 ) 1 .

江苏2018届高考数学总复习专题10.1椭圆试题含解析

江苏2018届高考数学总复习专题10.1椭圆试题含解析

专题10。

1 椭圆【三年高考】1.【2017江苏】如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x yE a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线1l ,2l 的交点Q 在椭圆E 上,求点P 的坐标.【答案】(1)22143x y +=;(2)4737(,)77.试题解析:(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=,解得2,1a c ==,于是223b a c =-=,因此椭圆E 的标准方程是22143x y+=.因为11l PF ⊥,22l PF ⊥,所以直线1l 的斜率为001x y +-,直线2l 的斜率为001x y --, 从而直线1l 的方程:001(1)x y x y +=-+, ① 直线2l 的方程:001(1)x y x y -=--. ② 由①②,解得20001,x x x y y -=-=,所以20001(,)x Q x y --. 因为点Q 在椭圆上,由对称性,得20001x y y -=±,即22001x y -=或22001x y +=. 又P 在椭圆E 上,故2200143x y +=.由220022001143x y x y ⎧-=⎪⎨+=⎪⎩,解得004737x y ==220022001143x y x y ⎧+=⎪⎨+=⎪⎩,无解. 因此点P 的坐标为4737(. 【考点】椭圆方程、直线与椭圆的位置关系【名师点睛】直线与圆锥曲线的位置关系,一般转化为直线方程与圆锥曲线方程组成的方程组,利用根与系数关系或求根公式进行转化,要充分利用椭圆和双曲线的几何性质、点在曲线上(点的坐标满足曲线方程)等.2。

2018年高考数学(理科)专题突破——解析几何 椭圆、双曲线、抛物线的基本问题 Word版 含答案

2018年高考数学(理科)专题突破——解析几何 椭圆、双曲线、抛物线的基本问题 Word版 含答案

椭圆、双曲线、抛物线的基本问题【考点梳理】1.圆锥曲线的定义(1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|);(2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|);(3)抛物线:|MF |=d (d 为M 点到准线的距离).2.圆锥曲线的标准方程(1)椭圆:x 2a 2+y 2b 2=1(a >b >0)(焦点在x 轴上)或y 2a 2+x 2b 2=1(a >b >0)(焦点在y 轴上);(2)双曲线:x 2a 2-y 2b 2=1(a >0,b >0)(焦点在x 轴上)或y 2a 2-x 2b 2=1(a >0,b >0)(焦点在y 轴上);(3)抛物线:y 2=2px ,y 2=-2px ,x 2=2py ,x 2=-2py (p >0).3.圆锥曲线的重要性质(1)椭圆、双曲线中a ,b ,c 之间的关系①在椭圆中:a 2=b 2+c 2;离心率为e =c a =1-b 2a 2.②在双曲线中:c 2=a 2+b 2;离心率为e =c a =1+b 2a 2. (2)双曲线的渐近线方程与焦点坐标①双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±b a x ;焦点坐标F 1(-c ,0),F 2(c ,0).②双曲线y 2a 2-x 2b 2=1(a >0,b >0)的渐近线方程为y =±a b x ,焦点坐标F 1(0,-c ),F 2(0,c ).(3)抛物线的焦点坐标与准线方程①抛物线y 2=2px (p >0)的焦点F ⎝ ⎛⎭⎪⎫p 2,0,准线方程x =-p 2. ②抛物线x 2=2py (p >0)的焦点F ⎝ ⎛⎭⎪⎫0,p 2,准线方程y =-p 2. 4.弦长问题(1)直线与圆锥曲线相交的弦长设而不求,利用根与系数的关系,进行整体代入.即当斜率为k ,直线与圆锥曲线交于A (x 1,y 1),B (x 2,y 2)时,|AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2.(2)过抛物线焦点的弦长抛物线y 2=2px (p >0)过焦点F 的弦AB ,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=p 24,y 1y 2=-p 2,弦长|AB |=x 1+x 2+p .【题型突破】题型一、圆锥曲线的定义及标准方程【例1】(1)已知P 是抛物线y 2=4x 上的一个动点,Q 是圆(x -3)2+(y -1)2=1上的一个动点,N (1,0)是一个定点,则|PQ |+|PN |的最小值为( )A.3B.4C.5D.2+1 (2)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F ,离心率为 2.若经过F 和P (0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( ) A.x 24-y 24=1B.x 28-y 28=1C.x 24-y 28=1D.x 28-y 24=1【答案】(1)A (2)B【解析】(1)由抛物线方程y 2=4x ,可得抛物线的焦点F (1,0),又N (1,0),所以N 与F 重合.过圆(x -3)2+(y -1)2=1的圆心M 作抛物线准线的垂线MH ,交圆于Q ,交抛物线于P ,则|PQ |+|PN |的最小值等于|MH |-1=3.(2)由e =2知a =b ,且c =2a .∴双曲线渐近线方程为y =±x .又k PF =4-00+c =4c=1,∴c =4,则a 2=b 2=c 22=8. 故双曲线方程为x 28-y 28=1.【类题通法】1.凡涉及抛物线上的点到焦点距离,一般运用定义转化为到准线的距离处理.如本例充分运用抛物线定义实施转化,使解答简捷、明快.2.求解圆锥曲线的标准方程的方法是“先定型,后计算”.所谓“定型”,就是指确定类型,所谓“计算”,就是指利用待定系数法求出方程中的a 2,b 2,p 的值,最后代入写出椭圆、双曲线、抛物线的标准方程.【对点训练】(1)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦距为25,且双曲线的一条渐近线与直线2x +y =0垂直,则双曲线的方程为( )A.x 24-y 2=1B.x 2-y 24=1C.3x 220-3y 25=1D.3x 25-3y 220=1(2)已知椭圆x 24+y 22=1的两个焦点是F 1,F 2,点P 在该椭圆上,若|PF 1|-|PF 2|=2,则△PF 1F 2的面积是________.【答案】(1)A (2) 2【解析】(1)依题意得b a =12,①又a 2+b 2=c 2=5,②联立①②得a =2,b =1.∴所求双曲线的方程为x 24-y 2=1.(2)由椭圆的方程可知a =2,c =2,且|PF 1|+|PF 2|=2a =4,又|PF 1|-|PF 2|=2,所以|PF 1|=3,|PF 2|=1.又|F 1F 2|=2c =22,所以有|PF 1|2=|PF 2|2+|F 1F 2|2,即△PF 1F 2为直角三角形,且∠PF 2F 1为直角,所以S △PF 1F 2=12|F 1F 2||PF 2|=12×22×1= 2.题型二、圆锥曲线的几何性质【例2】(1)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13B.12C.23D.34(2)在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右支与焦点为F 的抛物线x 2=2py (p >0)交于A ,B 两点,若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为________.【答案】(1)B (2)y =±22x【解析】(1)不妨设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点F (c ,0),则直线l 的方程为x c +y b =1,即bx +cy -bc =0. 由题意|-bc |b 2+c2=12b ,且a 2=b 2+c 2, 得b 2c 2=14b 2a 2,所以e =c a =12.(2)设A (x 1,y 1),B (x 2,y 2),联立方程:⎩⎪⎨⎪⎧x 2a 2-y 2b 2=1,x 2=2py ,消去x 得a 2y 2-2pb 2y +a 2b 2=0, 由根与系数的关系得y 1+y 2=2b 2a 2p ,又∵|AF |+|BF |=4|OF |,∴y 1+p 2+y 2+p 2=4×p 2,即y 1+y 2=p ,∴2b 2a 2p =p ,即b 2a 2=12⇒b a =22.∴双曲线渐近线方程为y =±22x .。

椭圆的常见题型及解法(一)

椭圆的常见题型及解法(一)

椭圆的常见题型及其解法(一)椭圆是圆锥曲线的内容之一,也是高考的热点和重点,椭圆学习的好坏还直接影响后面的双曲线与抛物线的学习,笔者在这里就椭圆常见题型作简要的探讨,希望对学习椭圆的同学有所帮助.一、椭圆的焦半径椭圆上的任意一点到焦点F 的长称为此曲线上该点的焦半径,根据椭圆的定义,很容易推导出椭圆的焦半径公式。

在涉及到焦半径或焦点弦的一些问题时,用焦半径公式解题可以简化运算过程。

1.公式的推导设P (,)是椭圆上的任意一点,分别是椭圆的左、右焦点,椭圆,求证,。

证法1:。

因为,所以∴又因为,所以∴,证法2:设P 到左、右准线的距离分别为,由椭圆的第二定义知11PF e d ,又,所以,而。

∴,。

2.公式的应用例1 椭圆上三个不同的点A ()、B ()、C ()到焦点F (4,0)的距离成等差数列,则12x x + .解:在已知椭圆中,右准线方程为254x =,设A 、B 、C 到右准线的距离为,则、、。

∵,,,而|AF|、|BF|、|CF|成等差数列。

∴,即,。

例 2.12,F F是椭圆2214x y +=的两个焦点,P 是椭圆上的动点,求的最大值和最小值。

解:设,则1020332,2.22PF x PF x =+=-212034.4PF PF x ⋅=-P 在椭圆上,022x ∴-≤≤,12PF PF ⋅的最大值为4,最小值为1.变式练习1:. 求过椭圆的左焦点,倾斜角为的弦AB 的长度。

解:由已知可得,所以直线AB 的方程为,代入椭圆方程得设,则,从而变式练习2. 设Q 是椭圆22221(0)x y a b a b+=>>上任意一点,求证:以2QF (或1QF )为直径的圆C 与以长轴为直径的圆相内切。

证明:设,圆C 的半径为r即也就是说:两圆圆心距等于两圆半径之差。

故两圆相内切 同理可证以为直径的圆与以长轴为直径的圆相内切。

3.椭圆焦半径公式的变式P 是椭圆x a y b a b 222210+=>>()上一点,E 、F 是左、右焦点,PE 与x 轴所成的角为α,PF 与x 轴所成的角为β,c 是椭圆半焦距,则(1)||cos PE b a c =-2α;(2)||cos PF b a c =+2β。

江苏专用2018版高考数学专题复习专题9平面解析几何第62练椭圆的几何性质练习理

江苏专用2018版高考数学专题复习专题9平面解析几何第62练椭圆的几何性质练习理

(江苏专用)2018版高考数学专题复习 专题9 平面解析几何 第62练 椭圆的几何性质练习 理训练目标 熟练掌握椭圆的几何性质并会应用. 训练题型(1)求离心率的值或范围;(2)应用几何性质求参数值或范围;(3)椭圆方程与几何性质综合应用.解题策略(1)利用定义PF 1+PF 2=2a 找等量关系;(2)利用a 2=b 2+c 2及离心率e =ca找等量关系;(3)利用焦点三角形的特殊性找等量关系.1.设椭圆C :a 2+b2=1(a >b >0)的左,右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为________.2.(2016·衡水模拟)已知椭圆C 的中心为O ,两焦点为F 1,F 2,M 是椭圆C 上的一点,且满足|MF 1→|=2|MO →|=2|MF 2→|,则椭圆C 的离心率e =________.3.椭圆x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,左,右焦点分别是F 1,F 2,B 是短轴的一个端点,若3BF 1→=BA →+2BF 2→,则椭圆的离心率为________.4.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的短轴的两个端点分别为A ,B ,点C 为椭圆上异于A ,B 的一点,直线AC 与直线BC 的斜率之积为-14,则椭圆的离心率为________.5.(2016·镇江模拟)在平面直角坐标系xOy 中,已知点A 在椭圆x 225+y 29=1上,点P 满足AP→=(λ-1)OA →(λ∈R ),且OA →·OP →=72,则线段OP 在x 轴上的投影长度的最大值为________. 6.(2016·济南3月模拟)在椭圆x 216+y 29=1内,过点M (1,1)且被该点平分的弦所在的直线方程为____________________.7.设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,离心率为12,M 是椭圆上一点且MF 2与x 轴垂直,则直线MF 1的斜率为________.8.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,椭圆C 与过原点的直线相交于A ,B 两点,连结AF ,BF ,若AB =10,AF =6,cos∠ABF =45,则椭圆C 的离心率e =________.9.(2017·上海六校3月联考)已知点F 为椭圆C :x 22+y 2=1的左焦点,点P 为椭圆C 上任意一点,点Q 的坐标为(4,3),则PQ +PF 取最大值时,点P 的坐标为________.10.(2016·镇江模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,过右焦点F 且斜率为k (k >0)的直线与C 相交于A ,B 两点,若AF →=3FB →,则k =________.11.(2016·连云港二模)已知P 是以F 1,F 2为焦点的椭圆x 2a 2+y 2b2=1(a >b >0)上的任意一点,若∠PF 1F 2=α,∠PF 2F 1=β,且cos α=55,sin(α+β)=35,则此椭圆的离心率为________.12.设椭圆中心在坐标原点,A (2,0),B (0,1)是它的两个顶点,直线y =kx (k >0)与AB 相交于点D ,与椭圆相交于E ,F 两点,若ED →=6DF →,则k 的值为________.13.(2017·黑龙江哈六中上学期期末)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1(-c,0),F 2(c,0),若椭圆上存在点P ,使asin∠PF 1F 2=csin∠PF 2F 1,则该椭圆的离心率的取值范围为____________.14.椭圆C :x 24+y 23=1的左、右顶点分别为A 1、A 2,点P 在C 上且直线PA 2的斜率的取值范围是[-2,-1],那么直线PA 1的斜率的取值范围是________.答案精析解析由题意知sin 30°=PF2PF1=12,∴PF1=2PF2.又∵PF1+PF2=2a,∴PF2=2a3.∴tan 30°=PF2F1F2=2a32c=33.∴ca=33.解析不妨设椭圆方程为x2a2+y2b2=1(a>b>0).由椭圆定义,得|MF1→|+|MF2→|=2a,再结合条件可知|MO→|=|MF2→|=2a3.如图,过M作MN⊥OF2于N,则|ON→|=c2,|MN→|2=|MO→|2-c24.设|MF2→|=x,则|MF1→|=2x.在Rt△MF1N中,4x2=94c2+x2-c24,即3x2=2c2,而x2=4a29,所以43a2=2c2,即e2=c2a2=23,所以e=63.解析 不妨设B (0,b ),则BF 1→=(-c ,-b ),BA →=(-a ,-b ),BF 2→=(c ,-b ),由条件可得-3c =-a +2c , ∴a =5c ,故e =15.解析 设C (x 0,y 0),A (0,b ),B (0,-b ),则x 20a 2+y 20b 2=1.故x 20=a 2×(1-y 20b 2)=a 2×b 2-y 20b2,又k AC ·k BC =y 0-b x 0×y 0+b x 0=y 20-b 2x 20=-14,故a 2=4b 2,c 2=a 2-b 2=3b 2,因此e =c 2a 2= 3b 24b2=32. 5.15解析 AP →=OP →-OA →=(λ-1)OA →,即OP →=λOA →,则O ,P ,A 三点共线.又OA →·OP →=72,所以OA →与OP →同向,所以|OA →||OP →|=72.设OP 与x 轴的夹角为θ,点A 的坐标为(x ,y ),点B 为点A 在x 轴上的投影,则OP 在x 轴上的投影长度为|OP →|·cos θ=|OP →|·|OB →||OA →|=72|OB →||OA →|2=72×|x |x 2+y 2=72·|x |1625x 2+9=72·11625|x |+9|x |≤72·12× 16×925=15,当且仅当|x |=154时,等号成立.故线段OP 在x 轴上的投影长度的最大值为15. 6.9x +16y -25=0解析 设弦的两个端点的坐标分别是(x 1,y 1),(x 2,y 2),则有x 2116+y 219=1,x 2216+y 229=1,两式相减得x 1-x 2x 1+x 216+y 1-y 2y 1+y 29=0.又x 1+x 2=y 1+y 2=2,因此x 1-x 216+y 1-y 29=0,即y 1-y 2x 1-x 2=-916,所求直线的斜率是-916,弦所在的直线方程是y -1=-916(x -1),即9x +16y -25=0. 7.±34解析 由离心率为12可得c 2a 2=14,可得a 2-b 2a 2=14,即b =32a ,因为MF 2与x 轴垂直,故点M的横坐标为c ,故c 2a 2+y 2b 2=1,解得y =±b 2a =±34a ,则M (c ,±34a ),直线MF 1的斜率为kMF 1=±3a 8c =±38×2=±34.解析 设椭圆的右焦点为F 1,在△ABF 中,由余弦定理可解得BF =8,所以△ABF 为直角三角形,且∠AFB =90°,又因为斜边AB 的中点为O ,所以OF =c =5,连结AF 1,因为A ,B 关于原点对称,所以BF =AF 1=8,所以2a =14,a =7,所以离心率e =57.9.(0,-1)解析 设椭圆的右焦点为E ,PQ +PF =PQ +2a -PE =PQ -PE +2 2. 当P 为线段QE 的延长线与椭圆的交点时,PQ +PF 取最大值,此时,直线PQ 的方程为y =x -1, QE 的延长线与椭圆交于点(0,-1),即点P 的坐标为(0,-1).解析 由椭圆C 的离心率为32, 得c =32a ,b 2=a 24,∴椭圆C :x 2a 2+4y 2a 2=1,F (32a,0).设A (x A ,y A ),B (x B ,y B ), ∵AF →=3FB →, ∴(32a -x A ,-y A )=3(x B -32a ,y B ). ∴32a -x A =3(x B -32a ),-y A =3y B , 即x A +3x B =23a ,y A +3y B =0. 将A ,B 的坐标代入椭圆C 的方程相减得 9x 2B -x 2A a 2=8,3x B +x A3x B -x Aa2=8,∴3x B -x A =433a ,∴x A =33a ,x B =539a , ∴y A =-66a ,y B =618a , ∴k =y B -y A x B -x A =618a +66a 539a -33a= 2.解析cos α=55⇒sinα=255,所以sin β=sin[(α+β)-α]=sin(α+β)cos α-cos(α+β)sin α=35·55±45·255=11525或-55(舍去).设PF1=r1,PF2=r2,由正弦定理得r111525=r2255=2c35⇒r1+r221525=2c35⇒e=ca=57.或38解析依题设,得椭圆的方程为x24+y2=1,直线AB,EF的方程分别为x+2y=2,y=kx(k>0).如图,设D(x0,kx0),E(x1,kx1),F(x2,kx2),其中x1<x2.则x1,x2满足方程(1+4k2)x2=4,故x2=-x1=21+4k2.由ED→=6DF→,知x0-x1=6(x2-x0),可得x0=17(6x2+x1)=57x2=1071+4k2.由D在AB上,知x0+2kx0=2,得x0=21+2k,所以21+2k=1071+4k2,化简,得24k2-25k+6=0,解得k=23或k=38.13.(2-1,1)解析由asin∠PF1F2=csin∠PF2F1,得ca=sin∠PF2F1sin∠PF1F2.又由正弦定理得sin∠PF 2F 1sin∠PF 1F 2=PF 1PF 2,所以PF 1PF 2=c a , 即PF 1=c aPF 2.又由椭圆定义得PF 1+PF 2=2a , 所以PF 2=2a 2a +c ,PF 1=2aca +c ,因为PF 2是△PF 1F 2的一边,所以有2c -2ac a +c <2a 2a +c <2c +2aca +c ,即c 2+2ac -a 2>0,所以e 2+2e -1>0(0<e <1),解得椭圆离心率的取值范围为(2-1,1). 14.[38,34]解析 由题意可得,A 1(-2,0),A 2(2,0), 当PA 2的斜率为-2时,直线PA 2的方程为y =-2(x -2),代入椭圆方程,消去y 化简得19x 2-64x +52=0, 解得x =2或x =2619.由PA 2的斜率存在可得点P ⎝⎛⎭⎪⎫2619,2419,此时直线PA 1的斜率k =38.同理,当直线PA 2的斜率为-1时, 直线PA 2的方程为y =-(x -2), 代入椭圆方程,消去y 化简得 7x 2-16x +4=0, 解得x =2或x =27.由PA 2的斜率存在可得点P ⎝ ⎛⎭⎪⎫27,127,此时直线PA 1的斜率k =34.数形结合可知,直线PA 1的斜率的取值范围是⎣⎢⎡⎦⎥⎤38,34.。

高考数学 专题09 椭圆解答题解题方法总结(解析版)

高考数学 专题09 椭圆解答题解题方法总结(解析版)

专题09椭圆解答题解题方法总结一.【学习目标】1.掌握椭圆的定义、几何图形、标准方程及简单几何性质.2.熟练掌握常见的几种数学思想方法——函数与方程、数形结合、转化与化归. 3.了解椭圆的实际背景及椭圆的简单应用. 二.【知识要点】 1.椭圆的定义平面内与两个定点F 1,F 2的距离的和等于常数(大于____________)的点的轨迹叫做椭圆,这两个定点F 1,F 2叫做焦点,两焦点间的距离叫做焦距. 2.椭圆的标准方程(1) ______________ (a >b >0),焦点F 1(-c ,0),F 2(c ,0),其中c =_____________. (2)y 2a 2+x 2b 2=1(a >b >0),焦点___________________,其中c =_____________. 3.椭圆的几何性质以x 2a 2+y 2b 2=1(a >b >0)为例 (1)范围:________________.(2)对称性:对称轴:x 轴,y 轴;对称中心:O (0,0).(3)顶点:长轴端点:A 1(-a ,0),A 2(a ,0),短轴端点:B 1(0,-b ),B 2(0,b );长轴长|A 1A 2|=2a ,短轴长|B 1B 2|=2b ,焦距|F 1F 2|=2c .(4)离心率e =_______,0<e <1,e 越大,椭圆越______,e 越_______,椭圆越圆. (5)a ,b ,c 的关系:c 2=a 2-b 2或a 2=c 2+b 2. 三.【题型总结】(一)三角形的面积的解题思路(1)弦长公式和点到直线距离公式,(2)如果三角形被坐标轴分成两部分,用两个三角形面积之和求解(二)定点问题(1)特殊位置找定点;(2)直线中含一个参数找定点 (三)定值问题 (四)角相等的转化 (五)距离问题的在转化 (六)相切问题的解决方法 (七)向量与椭圆的综合 (八)点差法的应用 (九)对称问题 (十)求轨迹的方法 四.【题型方法】;(一)三角形的面积问题例1.已知椭圆()222210x y a b a b +=>>2y x =+上,若直线l 与椭圆交于P ,Q 两点,O 为坐标原点,直线OP 的斜率为1k ,直线OQ 的斜率为2k . (1)求该椭圆的方程. (2)若1214k k ⋅=-,试问OPQ ∆的面积是否为定值?若是,求出这个定值;若不是,请说明理由. 【答案】(1)2214x y +=;(2)OPQ ∆的面积为定值1. 【解析】由2c e a ==,又由于0a b >>,一个长轴顶点在直线2y x =+上, 可得:2a =,c =1b =.(1)故此椭圆的方程为2214x y +=.(2)设()11,P x y ,()22,Q x y ,当直线PQ 的斜率存在时,设其方程为y kx m =+, 联立椭圆的方程得:()222418440k x kmx m +++-=, 由()()222264441440k m k m ∆=-+->,可得2241m k <+,则122841km x x k +=-+,21224441m x x k -⋅=+,12PQ x x =-=, 又点O 到直线y kx m =+的距离d =,122OPQS d PQ m ∆=⋅⋅=由于2121212121214y y x x m k k x x x x ++⋅===-,可得:22421k m =-,故2212OPQS m m∆=⋅=,当直线PQ 的斜率不存在时,可算得:1OPQ S ∆=, 故OPQ ∆的面积为定值1.练习1. 已知椭圆22221(0)x y a b a b +=>>的左、右焦点为别为1F 、2F,且过点(1,2和2.(1)求椭圆的标准方程;(2)如图,点A 为椭圆上一动点(非长轴端点),2AF 的延长线与椭圆交于点B ,AO 的延长线与椭圆交于点C ,求ABC ∆面积的最大值.【答案】(1)2212x y +=;(22【解析】(1)根据题意得,将点2⎛⎝⎭和23,22⎛⎫ ⎪ ⎪⎝⎭代入椭圆方程得:2222111213124a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩, 解得:222,1a b ==,所以椭圆的方程为2212x y +=.(2)由(1)得椭圆的()11,0F -,()21,0F , ①当AB 的斜率不存在时,易知2221,,1,,1,222A B C ⎛⎛⎛--- ⎝⎭⎝⎭⎝⎭, ∴ΔABC 1S 2222=⨯= ②当AB 的斜率存在时,设直线AB 的方程为()1y k x =-,联立方程组()22112y k x x y ⎧=-⎪⎨+=⎪⎩,消去y 得:()2222214220k x k x k +-+-= 设()()1122,,,A x y B x y ,21221222422,2121x x x k k k x k -+==++, ()22222212122242214142121k k k x x k k B x k A x ⎛⎫-=++-=+-⨯ ⎪++⎝⎭221221k k +=+, 点O 到直线AB 的距离21k d k -=+O 是线段AC 的中点,所以点C 到直线AB 的距离为2d=所以2ΔABC2111S22221dkkAB⎛⎫+=⋅=⋅ ⎪+⎝⎭==综上,ABC∆.(二)定点问题例2. 已知椭圆C:22221(0)x ya ba b+=>>的一个焦点与上下顶点构成直角三角形,以椭圆C的长轴长为直径的圆与直线20x y+-=相切.(1)求椭圆C的标准方程;(2)设过椭圆右焦点且不重合于x轴的动直线与椭圆C相交于A、B两点,探究在x轴上是否存在定点E,使得EA EB⋅u u u r u u u r为定值?若存在,试求出定值和点E的坐标;若不存在,请说明理由.【答案】(1)2212xy+=;(2)定点为5,04⎛⎫⎪⎝⎭.【解析】(1)由题意知,222b cab c a=⎧⎪⎪=⎨⎪⎪+=⎩,解得11bac=⎧⎪=⎨⎪=⎩则椭圆C的方程是2212xy+=(2)①当直线的斜率存在时,设直线()()10y k x k=-≠联立()22121xyy k x⎧+=⎪⎨⎪=-⎩,得()22222124220,880k x k x k k+-+-=∆=+>所以2222422,1212A B A B k k x x x x k k-+==++ 假设x 轴上存在定点()0,0E x ,使得EA EB ⋅u u u v u u u v为定值。

高中数学 椭圆专题(经典例题 考题 练习)附答案

高中数学 椭圆专题(经典例题 考题 练习)附答案

高中数学椭圆专题一.相关知识点1.椭圆的概念平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫椭圆。

这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距。

集合P={M||MF1|+|MF2|=2a,|F1F2|=2c,其中a>0,c>0,且a,c为常数}。

(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集。

2.椭圆的标准方程和几何性质3.椭圆中常用的4个结论(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,这时P在短轴端点处;当x=±a时,|OP|有最大值a,这时P在长轴端点处。

(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a是斜边长,a2=b2+c2。

(3)已知过焦点F1的弦AB,则△ABF2的周长为4a。

(4)若P为椭圆上任一点,F为其焦点,则a-c≤|PF|≤a+c。

一、细品教材1.(选修1-1P34例1改编)若F1(3,0),F2(-3,0),点P到F1,F2距离之和为10,则P点的轨迹方程是()A.x225+y216=1 B.x2100+y29=1 C.y225+x216=1 D.x225+y216=1或y225+x216=12.(选修1-1P42A组T6改编)设椭圆的两个焦点分别为F1,F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是()A.22 B.2-12C.2- 2 D.2-1走进教材答案1.A; 2.D 二、双基查验1.设P是椭圆x24+y29=1上的点,若F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于()A.4B.8 C.6 D.182.方程x25-m+y2m+3=1表示椭圆,则m的范围是()A.(-3,5) B.(-5,3) C.(-3,1)∪(1,5) D.(-5,1)∪(1,3)3.椭圆x 29+y 24+k =1的离心率为45,则k 的值为( )A .-21B .21C .-1925或21 D.1925或214.已知椭圆的一个焦点为F (1,0),离心率为12,则椭圆的标准方程为________。

完整版)椭圆大题题型汇总例题+练习

完整版)椭圆大题题型汇总例题+练习

完整版)椭圆大题题型汇总例题+练习解决直线和圆锥曲线的位置关系的步骤如下:1.判断直线的斜率是否存在,如果存在,求出斜率。

2.联立直线和曲线的方程组。

3.讨论一元二次方程的情况。

4.计算一元二次方程的判别式。

5.运用韦达定理、同类坐标变换等技巧。

6.计算弦长、中点、垂直、角度、向量、面积、范围等。

在解题过程中需要掌握中点坐标公式和弦长公式,同时还需要了解两条直线垂直的判定方法和XXX定理的应用。

常见的题型包括数形结合确定直线和圆锥曲线的位置关系以及弦的垂直平分线问题。

对于后者,需要掌握垂直和平分的相关知识。

举例来说,对于题型一,可以给定一个点T和一条直线l,要求找到与曲线N相交的点A、B,并判断是否存在一点E使得三角形ABE是等边三角形。

对于题型二,可以给定一个椭圆和一些已知点,要求求出过这些点且与给定直线相切的圆的方程。

在解题过程中,需要注意排除格式错误和明显有问题的段落,同时对每段话进行小幅度的改写,使其更加通顺和易懂。

练1:Ⅰ)椭圆C的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$。

Ⅱ)设直线 $l:y=kx+m(k\neq0)$ 与椭圆C交于不同的两点M、N,线段MN的垂直平分线过定点G$(x_G,y_G)$。

根据对称性可知,$G$ 在$x$轴上,即$y_G=0$。

由于线段MN的垂直平分线过点$G$,所以$G$ 是线段MN的中点。

又因为MN是直线$l$的斜率为$k$的两点之间的线段,所以MN的中点的横坐标为$-\frac{m}{k}$。

因此,$x_G=-\frac{m}{k}$。

又因为$M$、$N$ 在椭圆上,所以它们满足椭圆的方程,代入直线方程可得关于$k$的二次方程。

由于线段MN不垂直于$x$轴,所以$k\neq0$。

根据二次方程的判别式,当判别式大于等于$0$时,线段MN存在,$k$的取值范围为$\left(-\infty,-\frac{a}{b}\right)\cup\left(\frac{a}{b},+\infty\right)$。

2018届高三理科数学解析几何解答题新题好题专题汇编

2018届高三理科数学解析几何解答题新题好题专题汇编

2018届高三理科数学解析几何解答题新题好题专题汇编【新题好题提升能力】1.已知椭圆2222:1(0)x y E a b a b+=>>的离心率为12,圆222:(0)O x y r r +=>与x 轴交于点M N 、, P 为椭圆E 上的动点, 2PM PN a +=, PMN(1)求圆O 与椭圆E 的方程;(2)圆O 的切线l 交椭圆于点A B 、,求AB 的取值范围.【答案】(1)圆O 的方程为221x y +=,椭圆E 的方程为22143x y +=.(2)3⎡⎢⎣⎦【解析】【试题分析】(1)根据离心率可有11,,222c b a c a a ===,依题意可知,M N 为椭圆的焦点,故22214r c a ==.当P 位于椭圆上顶点时,面积取得最大值,由此列方程可解得,,a b c 的值,并求得圆和椭圆的方程.(2)当直线斜率存在时,设出直线方程为y kx m =+,利用圆和直线相切求得,m k 的等量关系式,利用韦达定理和弦长公式计算出弦长并利用配方法求得弦长的取值范围.当直线斜率不存在时,直线l 的方程为1x =±,可直接得到,A B 的坐标求出弦长.(2)①当直线l 的斜率存在时,设直线l 的方程为y kx m =+,()()1122,,,A x kx m B x kx m ++因为直线l1=,即221m k=+,联立221{43x yy kx m+==+,消去y可得()2224384120k x kmx m+++-=,()()22221212228412 484348320,,4343km m k m k x x x xk k-∆=+-=+>+=-=++,243ABk==+2.如图,椭圆的中心为原点O,长轴在x轴上,离心率2e=,过左焦点F1作x轴的垂线交椭圆于A,A'两点4AA'=.(Ⅰ)求该椭圆的标准方程;(Ⅱ)取垂直于x 轴的直线与椭圆相交于不同的两点P , P ',过P 、P '作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.若PQ P Q ⊥',求圆Q 的标准方程.【答案】(Ⅰ) 221168x y +=;(Ⅱ) 222216163333x y x y ⎛⎛⎫++=-+= ⎪ ⎪⎝⎭⎝⎭,. 【解析】试题分析:(1)先将点坐标代入椭圆方程,再与离心率联立方程组解得a ,b ,(2)根据题意得点P 'P ,是椭圆上到点()00Q x ,的距离最小的点,因此先建立椭圆上任意一点到Q 距离的函数关系式,根据二次函数性质确定最小值取法得02P x x =,再根据PQ P Q ⊥'得P 点纵坐标,最后根据P 点在椭圆上解得0x ,即得圆Q 的标准方程. 试题解析:(Ⅰ)由题意知, ()2A c -,在椭圆上,则()222221c a b-+=,从而22221c b +=由e =22481b e ==-,从而222161b a e ==-. 故该椭圆的标准方程为221168x y +=3.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、2F ,且点1F 到椭圆C 上任意一点的最大距离为3,椭圆C 的离心率为12. (1)求椭圆C 的标准方程;(2)是否存在斜率为1-的直线l 与以线段12F F 为直径的圆相交于A 、B 两点,与椭圆相交于C 、D ,且CD AB=l 的方程;若不存在,说明理由.【答案】(1)22143x y +=;(2):3l y x =-±.联立221{43x y y x m+==-+得22784120x mx m -+-=,设()11,C x y , ()22,D x y , 则()()()2222847412336484870m m m m∆=-⨯-=-=->,得27m <,1287mx x +=,2124127m x x -=,12CD x =-===解得2123m =<,得m =.即存在符合条件的直线:l y x =-±. 4.已知12,F F 分别是椭圆()2222:103x y C b a a b+=<<<的左、右焦点, (P 是椭圆C上一点,且123PF PF =. (1)求椭圆C 的方程;(2)设直线l 与椭圆C 交于,A B 两点,且OA OB AB +=,试求点O 到直线l 的距离.【答案】(1) 22+184x y =;(2) 原点O 到直线l 的距离263d =.②当直线AB 的斜率存在时,设直线AB 的方程为y kx n =+,则22+1{ 84x y y kx n==+,消去y 整理得: ()222124280k x knx n +++-=, 122412kn x x k +=-+, 21222812n x x k-=+, 则()()1212y y kx n kx n =++=222812n k k -+由OA OB AB +=得0OA OB ⋅=, OA OB ⊥所以 12120x x y y +=所以故222812n k-++2228012n k k -=+, 整理得: 223880n k --=, 即22388n k=+ ①原点O 到直线l的距离d = ()222331n d k =+② 将①代入②,则()222888331k d k+==+,∴3d = 综上可知:原点O 到直线l的距离d =5. 已知椭圆系方程n C : 2222x y n a b+= (0a b >>, *n N ∈), 12,F F 是椭圆6C 的焦点,A是椭圆6C 上一点,且2120AF F F ⋅=.(1)求n C 的离心率并求出1C 的方程;(2)P 为椭圆3C 上任意一点,过P 且与椭圆3C 相切的直线l 与椭圆6C 交于M , N 两点,点P 关于原点的对称点为Q ,求证: QMN ∆的面积为定值,并求出这个定值.【答案】(1) 2212x y +=;(2).∴22222122n nen-==,∴2e=∴椭圆1C的方程为:;解法(二):设()00,P x y ,由(1)得3C 为: 2232x y +=, ∴过P 且与椭圆3C 相切的直线l :0032x xy y +=.且220026x y += 点P 关于原点对称点()00,Q x y --,点Q 到直线l 的距离设()11,M x y , ()22,N x y由002226{ 212x x y y x y +=+=得22004824160x x x y -+-= 22002640x x x y ⇒-+-= 1202x x x +=, 212064x x y =-,∴ 22200021424164x MN x y y =+-+∴QMN∆的面积为2200 1224S d MNx y=⋅=+2220021424164xx yy+-+(定值)当y=时,易知,综上:QMN∆的面积为定值6. 已知直线l:y x=与圆225x y+=相交的弦长等于椭圆C:22219x yb+=(03b<<)的焦距长.(1)求椭圆C的方程;(2)已知O为原点,椭圆C与抛物线22y px=(0p>)交于M、N两点,点P为椭圆C上一动点,若直线PM、PN与x轴分别交于G、H两点,求证:OG OH⋅为定值.【答案】(1)22195x y+=(2)见解析∴椭圆C的方程22195x y+=.(2)证明:由条件可知,M,N两点关于x轴对称,设()11,M x y,()00,P x y,则()11,N x y-,由题可知,2211195x y+=,2200195x y+=,所以()2211955x y=-,()2200955x y=-.又直线PM 的方程为()100010y y y y x x x x --=--,令0y =得点G 的横坐标100101c x y x yx y y -=-,同理可得H 点的横坐标100101H x y x y x y y +=+,所以222210011001100122010101x y x y x y x y x y x y OG OH y y y y y y -+-⋅==-+- ()()()22222210010122220101199155955y y y y y y y y y y ⎡⎤=⋅---=⋅-⎢⎥--⎣⎦ 9=, 即OG OH ⋅为定值.7. 已知点()2,1M 在抛物线2:C y ax =上, ,A B 是抛物线上异于M 的两点,以AB 为直径的圆过点M .(1)证明:直线AB 过定点;(2)过点M 作直线AB 的垂线,求垂足N 的轨迹方程.【答案】(1)证明见解析;(2) ()()22381x y y +-=≠.由于MA MB ⊥,所以0MA MB ⋅=,即()()()()121222110x x y y --+--=, 即()()12121212250x x x x y y y y -++-++=.(*)又因为()12122y y k x x m +=++, ()22121212y y k x x km x x m ⋅=+++,代入(*)式得224865k k m m +=-+,即()()22223k m +=-,所以223k m +=-或223k m +=-,即25m k =+或21m k =-+.当25m k =+时,直线AB 方程为()25y k x =++,恒过定点()2,5-, 经验证,此时0∆>,符合题意;当21m k =-+时,直线AB 方程为()21y k x =-+,恒过定点()2,1,不合题意, 所以直线AB 恒过定点()2,5-.(2)由(1),设直线AB 恒过定点()2,5R -,则点N 的轨迹是以MR 为直径的圆且去掉()2,1±,方程为()()22381x y y +-=≠.8. 设()()()2,0,1,0,1,0A B C --,动圆D 与x 轴相切于A 点,如图,过,B C 两点分别作圆D 的非x 轴的两条切线,两条切线交点为P .(1)证明: ||PB PC +为定值,并写出点P 的轨迹方程;(2)设动直线l 与圆221x y +=相切,又l 与点P 的轨迹交于,M N 两点,求OM ON ⋅的取值范围.【答案】(1)()221243x y x +=≠±(2)520205,,313134OM ON ⎡⎫⎛⎤⋅∈--⋃--⎪ ⎢⎥⎣⎭⎝⎦再求范围。

热点10 以椭圆和圆为背景的解析几何大题-2018届高考数学三轮核心热点深度剖析与训练 (江苏版)

热点10 以椭圆和圆为背景的解析几何大题-2018届高考数学三轮核心热点深度剖析与训练 (江苏版)

热点10 以椭圆和圆为背景的解析几何大题【名师精讲指南篇】【热点深度剖析】1. 圆锥曲线的解答题中主要是以椭圆为基本依托,考查椭圆方程的求解、考查直线与曲线的位置关系,考查数形结合思想、函数与方程思想、等价转化思想、分类与整合思想等数学思想方法,这道解答题往往是试卷的压轴题之一.由于圆锥曲线与方程是传统的高中数学主干知识,在高考命题上已经比较成熟,考查的形式和试题的难度、类型已经较为稳定,预计2017年仍然是这种考查方式,不会发生大的变化.2. 解决圆锥曲线综合题,关键是熟练掌握每一种圆锥曲线的定义、标准方程、图形与几何性质,注意挖掘知识的内在联系及其规律,通过对知识的重新组合,以达到巩固知识、提高能力的目的.综合题中常常离不开直线与圆锥曲线的位置,因此,要树立将直线与圆锥曲线方程联立,应用判别式、韦达定理的意识.解析几何应用问题的解题关键是建立适当的坐标系,合理建立曲线模型,然后转化为相应的代数问题作出定量或定性的分析与判断.常用的方法:数形结合法,以形助数,用数定形. 在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等.3. .避免繁复运算的基本方法:回避,选择,寻求.所谓回避,就是根据题设的几何特征,灵活运用曲线的有关定义、性质等,从而避免化简方程、求交点、解方程等繁复的运算.所谓选择,就是选择合适的公式,合适的参变量,合适的方法等,一般以直接性和间接性为基本原则.“设而不求”、“点代法”等方法的运用就是主动的“所谓寻求”.4. 定点、定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点、一个值,就是要求的定点、定值.化解这类问题难点的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.5.预计18年将继续将解几大题作为探究能力考查的“试验田”,考查定点、定值问题的可能性较大. 【最新考纲解读】【重点知识整合】一、1.椭圆的定义:(1)第一定义:平面内到两定点F 1,F 2的距离之和为定值2a(2a >|F 1F 2|)的点的轨迹.(2)第二定义:平面内与定点和直线的距离之比为定值e 的点的轨迹.(0<e <1).2.图形与方程(以一个为例)图形标准方程:12222=+by a x (b a >>0) 3. 几何性质:(1)范围 ,a x a b y b -≤≤-≤≤(2)中心 坐标原点(0,0)O(3)顶点 (,0),(,0),(0,),(0,)a a b b --(4)对称轴 x 轴,y 轴,长轴长2a ,短轴长2b(5)焦点 12(,0),(,0)F c F c - 焦距 2c ,(c = (6)离心率 c e a=,(01e <<) (7)准线 2a x c=± (8)焦半径 00,r a ex r a ex =+=-左右(9)通径 22b a(10)焦参数 2a c二、1. 抛物线的定义:平面内与定点和直线的距离相等的点的轨迹. (e =1)2.图形与方程(以一个为例)图形标准方程:22(0)y px p =>3. 几何性质:(1)范围 0x ≥经,y R ∈(2)中心 无(3)顶点 (0,0)O(4)对称轴 x 轴(5)焦点 (,0)2p F 焦距 无 (6)离心率 1e = (7)准线 2p x =- (8)焦半径 02p r x =+(9)通径 2p(10)焦参数 p【应试技巧点拨】一、(1)要能够灵活应用圆锥曲线的两个定义(及其“括号”内的限制条件)解决有关问题,如果涉及到其两焦点(或两相异定点),那么优先选用圆锥曲线第一定义;如果涉及到焦点三角形的问题,也要重视第一定义和三角形中正余弦定理等几何性质的应用,尤其注意圆锥曲线第一定义与配方法的综合运用。

2018年高考前必做题 椭圆的简单几何性质典型例题

2018年高考前必做题 椭圆的简单几何性质典型例题

椭圆的简单几何性质典型例题例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当()02,A 为长轴端点时,2=a ,1=b ,椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a ,椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:31222⨯⨯=c a c ∴223a c =, ∴3331-=e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可.例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112aa x x x M +=+=,2111a x y M M +=-=,4112===a x y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.例4椭圆192522=+y x 上不同三点()11y x A ,,⎪⎭⎫⎝⎛594,B ,()22y x C ,与焦点()04,F 的距离成等差数列.(1)求证821=+x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k .证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知:ac x ca AF =-12, ∴ 11545x ex a AF -=-=. 同理 2545x CF -=. ∵ BF CF AF 2=+,且59=BF , ∴ 51854554521=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-x x , 即 821=+x x .(2)因为线段AC 的中点为⎪⎭⎫⎝⎛+2421y y ,,所以它的垂直平分线方程为 ()42212121---=+-x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得()212221024x x y y x --=-又∵点()11y x A ,,()22y x B ,都在椭圆上,∴ ()212125259x y -=()222225259x y -= ∴ ()()21212221259x x x x y y -+-=-. 将此式代入①,并利用821=+x x 的结论得 253640-=-x ∴ 4540590=--=x k BT.例5 已知椭圆13422=+yx ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:111212x ex a MF -=-=, 112212x ex a MF +=+=.∵212MF MF MN⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x . 整理得048325121=++x x . 解之得41-=x 或5121-=x . ① 另一方面221≤≤-x . ②则①与②矛盾,所以满足条件的点M 不存在. 说明:(1)利用焦半径公式解常可简化解题过程.(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.(3)本例也可设()θθsin 3cos 2,M 存在,推出矛盾结论(读者自己完成).例6 已知椭圆1222=+y x ,求过点⎪⎭⎫ ⎝⎛2121,P 且被P 平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122kkk x x +-=+. ∵P 是弦中点,∴121=+x x .故得21-=k . 所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --.解法二:设过⎪⎭⎫ ⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-.所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率. (3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.例7 求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点()62-,;(2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.分析:当方程有两种形式时,应分别求解,如(1)题中由12222=+by a x 求出1482=a ,372=b ,在得方程13714822=+y x 后,不能依此写出另一方程13714822=+x y . 解:(1)设椭圆的标准方程为12222=+b y a x 或12222=+bx a y .由已知b a 2=. ① 又过点()62-,,因此有()1622222=-+b a 或()1262222=+-ba . ② 由①、②,得1482=a ,372=b 或522=a ,132=b .故所求的方程为13714822=+y x 或1135222=+x y . (2)设方程为12222=+b y a x .由已知,3=c ,3==c b ,所以182=a .故所求方程为191822=+y x . 说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置是否确定,若不能确定,应设方程12222=+b y a x 或12222=+bx a y .例8 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.例9 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值. 分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d . 说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.例10 设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫ ⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P 的距离等于7的点的坐标.分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求d 的最大值时,要注意讨论b 的取值范围.此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力.解法一:设所求椭圆的直角坐标方程是12222=+b y a x ,其中0>>b a 待定.由222222221ab a b a ac e -=-==可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点P 的距离是d ,则4931232222222+-+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+=y y b y a y x d 34213493342222++⎪⎭⎫ ⎝⎛+-=+--=b y y y b其中b y b ≤≤-. 如果21<b ,则当b y -=时,2d (从而d )有最大值. 由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾.因此必有21≥b 成立,于是当21-=y 时,2d (从而d )有最大值. 由题设得()34722+=b ,可得1=b ,2=a .∴所求椭圆方程是11422=+y x . 由21-=y 及求得的椭圆方程可得,椭圆上的点⎪⎭⎫ ⎝⎛--213,,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距离是7. 解法二:根据题设条件,可取椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫ ⎝⎛-=-==a b a b a a c e 可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点⎪⎭⎫ ⎝⎛230,P 的距离为d ,则22222223sin cos 23⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=θθb a y x d49s i n3s i n 34222+--=θθb b b 3421s i n 3222++⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当1sin -=θ时,2d (从而d )有最大值. 由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾,因此必有121≤b 成立.于是当b21sin -=θ时2d (从而d )有最大值. 由题设知()34722+=b ,∴1=b ,2=a .∴所求椭圆的参数方程是⎩⎨⎧==θθsin cos 2y x .由21sin -=θ,23cos ±=θ,可得椭圆上的是⎪⎭⎫ ⎝⎛--213,,⎪⎭⎫ ⎝⎛-213,.例11 设x ,R ∈y ,x y x 63222=+,求x y x 222++的最大值和最小值. 分析:本题的关键是利用形数结合,观察方程x y x 63222=+与椭圆方程的结构一致.设m x y x =++222,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.解:由x y x 63222=+,得123492322=+⎪⎪⎪⎪⎭⎫ ⎝⎛-y x 可见它表示一个椭圆,其中心在⎪⎭⎫⎝⎛023,点,焦点在x 轴上,且过(0,0)点和(3,0)点.设m x y x =++222,则 ()1122+=++m y x它表示一个圆,其圆心为(-1,0)半径为()11->+m m .在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即11=+m ,此时0=m ;当圆过(3,0)点时,半径最大,即41=+m ,∴15=m .∴x y x 222++的最小值为0,最大值为15.例12 已知椭圆()012222>>=+b a by a x C :,A 、B 是其长轴的两个端点.(1)过一个焦点F 作垂直于长轴的弦P P ',求证:不论a 、b 如何变化,120≠∠APB .(2)如果椭圆上存在一个点Q ,使120=∠AQB ,求C 的离心率e 的取值范围.分析:本题从已知条件出发,两问都应从APB ∠和AQB ∠的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e 满足的不等式,只能是椭圆的固有性质:a x ≤,b y ≤,根据120=∠A Q B 得到32222-=-+a y x ay ,将22222y b a a x -=代入,消去x ,用a 、b 、c 表示y ,以便利用b y ≤列出不等式.这里要求思路清楚,计算准确,一气呵成.解:(1)设()0,c F ,()0,a A -,()0,a B .⎪⎪⎭⎫ ⎝⎛⇒⎩⎨⎧=+=a b c P b a y a x b c x 2222222, 于是()a c a b k AP+=2,()a c ab k BP -=2. ∵APB ∠是AP 到BP 的角.∴()()()2242221tan ca a c ab ac a b a c a b APB -=-++--=∠∵22c a > ∴2tan -<∠APB故3tan -≠∠APB ∴120≠∠APB . (2)设()y x Q ,,则a x y k QA +=,ax y k QB -=. 由于对称性,不妨设0>y ,于是AQB ∠是QA 到QB 的角.∴22222221tan a y x ay a x y a x y a x y AQB -+=-++--=∠ ∵120=∠AQB , ∴32222-=-+a y x ay整理得()023222=+-+ay a y x∵22222y ba a x -=∴0213222=+⎪⎪⎭⎫ ⎝⎛-ay y b a∵0≠y , ∴2232c ab y = ∵b y ≤, ∴b cab ≤2232 232c ab ≤,()222234c c a a ≤-∴04444224≥-+a c a c ,044324≥-+e e ∴232≥e 或22-≤e (舍),∴136<≤e . 例13 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k . 当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.例14 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e .由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=.由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b ePF d 3211==,即P 到左准线的距离为b 32.解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b ePF d 33222==. 又椭圆两准线的距离为b c a 33822=⋅.∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.例15 设椭圆⎩⎨⎧==.sin 32,cos 4ααy x (α为参数)上一点P 与x 轴正向所成角3π=∠POx ,求P 点坐标.分析:利用参数α与POx ∠之间的关系求解.解:设)sin 32,cos 4(ααP ,由P 与x 轴正向所成角为3π, ∴ααπcos 4sin 323tan=,即2tan =α.而0sin >α,0cos >α,由此得到55cos =α,552sin =α, ∴P 点坐标为)5154,554(. 例16 设),(00y x P 是离心率为e 的椭圆12222=+by a x )0(>>b a 上的一点,P 到左焦点1F 和右焦点2F 的距离分别为1r 和2r ,求证:01ex a r +=,02ex a r -=.分析:本题考查椭圆的两个定义,利用椭圆第二定义,可将椭圆上点到焦点的距离转化为点到相应准线距离.解:P 点到椭圆的左准线c a x l 2-=:的距离,ca x PQ 20+=,由椭圆第二定义,e PQPF =1,∴01ex a PQ e r +==,由椭圆第一定义,0122ex a ra r -=-=. 说明:本题求证的是椭圆的焦半径公式,在解决与椭圆的焦半径(或焦点弦)的有关问题时,有着广泛的应用.请写出椭圆焦点在y 轴上的焦半径公式.例17 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标; (2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线. 建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点)2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.例18 (1)写出椭圆149=+的参数方程; (2)求椭圆内接矩形的最大面积.分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y 轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.例19 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F . (1)求椭圆离心率的取值范围;(2)求证21F PF ∆的面积与椭圆短轴长有关. 分析:不失一般性,可以设椭圆方程为12222=+by a x (0>>b a ),),(11y x P (01>y ). 思路一:根据题设容易想到两条直线的夹角公式,即3160tan 1212=+-=︒PF PF PF PF K K K K ,设),(11y x P ,)0,(1c F -,)0,(2c F ,化简可得03233212121=--+c cy y x .又1221221=+by a x ,两方程联立消去21x 得0323412212=-+b cy b y c ,由],0(1b y ∈,可以确定离心率的取值范围;解出1y 可以求出21F PF ∆的面积,但这一过程很繁.思路二:利用焦半径公式11ex a PF +=,12ex a PF -=,在21F PF ∆中运用余弦定理,求1x ,再利用],[1a a x -∈,可以确定离心率e 的取值范围,将1x 代入椭圆方程中求1y ,便可求出21F PF ∆的面积.思路三:利用正弦定理、余弦定理,结合a PF PF 221=+求解.解:(法1)设椭圆方程为122=+b a (0>>b a ),),(11y x P ,)0,(1c F -,)0,(2c F ,0>c ,则11ex a PF +=,12ex a PF -=. 在21F PF ∆中,由余弦定理得))((24)()(2160cos 1122121ex a ex a c ex a ex a -+--++==︒, 解得2222134ea c x -=. (1)∵],0(221a x ∈,∴2222340a ea c <-≤,即0422≥-a c . ∴21≥=a c e . 故椭圆离心率的取范围是)1,21[∈e .(2)将2222134ea c x -=代入12222=+b y a x 得 24213c b y =,即cb y 321=.∴22213332212121b cb c y F F S F PF =⋅⋅=⋅=∆. 即21F PF ∆的面积只与椭圆的短轴长有关.(法2)设m PF =1,n PF =2,α=∠12F PF,β=∠21F PF , 则︒=+120βα.(1)在21F PF ∆中,由正弦定理得︒==60sin 2sin sin c n m βα.∴︒=++60sin 2sin sin cn m βα ∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα, ∴2cos 2sin 260sin sin sin 60sin βαβαβα-+︒=+︒==a c e 212cos21≥-=βα.当且仅当βα=时等号成立.故椭圆离心率的取值范围是)1,21[∈e . (2)在21F PF ∆中,由余弦定理得:︒-+=60cos 2)2(222mn n m cmn n m -+=22 mn n m 3)(2-+=∵a n m 2=+,∴mn a c 34422-=,即22234)(34b c a mn =-=. ∴23360sin 2121b mn S F PF =︒=∆. 即21F PF ∆的面积与椭圆短轴长有关.说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +的结构,这样就可以应用椭圆的定义,从而可得到有关a ,c 的关系式,使问题找到解决思路.例20 椭圆12222=+by a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos ba b -=θ, ∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-b a b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?。

数学-椭圆大题专题及解析

数学-椭圆大题专题及解析

椭圆 大题习题及答案解析1已知椭圆()2222:10x y C a b a b +=>>过点()2,0A,且离心率为2.(I)求椭圆C 的方程;(Ⅱ)设直线y kx =+与椭圆C 交于,M N 两点.若直线3x =上存在点P ,使得四边形PAMN 是平行四边形,求k 的值. (((由题意得 2a =(2c e a ==( 所以c = 因为 222a b c =+( 所以 1b =所以 椭圆C 的方程为 2214x y +=((((若四边形PAMN 是平行四边形,则 //PA MN ,且 PA MN =. 所以 直线PA 的方程为()2y k x =-,所以 ()3,P k,PA =(设()11,M x y ,()22,N x y (由2244,y kx x y ⎧=+⎪⎨+=⎪⎩ 得()224180k x +++=, 由0∆>,得 212k >(且12241x x k +=-+,122841x x k =+( 所以MN ==因为 PA MN =, 所以=整理得 421656330k k -+=, 解得k =±,或 k =±经检验均符合0∆>,但2k =-时不满足PAMN 是平行四边形,舍去(所以 k =k =± 2已知椭圆()2222:10x y C a b a b =>>+的左、右焦点分别为12,F F ,124F F =,过2F的直线l 与椭圆C 交于,P Q 两点,1PQF ∆的周长为(1)求椭圆C 的方程;(2)如图,点A ,1F 分别是椭圆C 的左顶点、左焦点,直线m 与椭圆C 交于不同的两点M 、N (M 、N 都在x 轴上方).且11AF M OF N ∠=∠.证明:直线m 过定点,并求出该定点的坐标.】(1)设椭圆C 的焦距为2c ,由题意,知1224F F c ==,可知2c =,由椭圆的定义知,1PQF ∆的周长为4a =,∴a =24b =∴椭圆C 的方程为22184x y += (2)由题意知,直线的斜率存在且不为0.设直线:l y kx m =+ 设()()1122,,,M x y N x y ,把直线l 代入椭圆方程,整理可得()222124280k x kmx m +++-=,()228840k m ∆=-+>,即22840k m -+>∴122412km x x k +=-+,21222812m x x k -=+,∵111212,22F M F N y y k k x x ==++, ∵M 、N 都x 轴上方.且11AF M OF N ∠=∠,∴11F M F N k k =-,∴121222y y x x =-++,即()()122122y x y x +=-+,代入1122,y kx m y kx m =+=+ 整理可得()()12122240kx x k m x x m ++++=,2121222284,1212m kmx x x x k k -=+=-++ 即222241684840km k k m km k m m ---++=,整理可得4m k =, ∴直线l ()44y kx m kx k k x =+=+=+,∴直线l 过定点()4,0-3已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,点P 、Q 、R分别是椭圆C 的上、右、左顶点,且3PQ PR ⋅=-,点S 是2PF 的中点,且1OS =. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)过点()1,0T -的直线与椭圆C 相交于点M 、N ,若QMN △的面积是125,求直线MN 的方程.解:(Ⅰ)由题意知(),PQ a b =-,(),PR a b =--,∴223PQ PR a b ⋅=-+=-, ∵点S 是2PF 的中点,且1OS =,∴211122OS PF a ===,∴2a =,1b =, 故所求椭圆方程为2214x y +=.(Ⅱ)设()11,M x y ,()22,N x y ,直线MN :1x ty =-,联立方程组22114x ty x y =-⎧⎪⎨+=⎪⎩,得()224230t y ty +--=, ∴12224t y y t +=+,12234y y t=-+,12y y -==24t =+,∴1211123225QMNS TQ y y =⋅⋅-=⨯=△, ∴1t =±.∴直线MN 的方程为1y x =+或1y x =--.(解法2:求出弦长12N M y =-=点Q 到直线MN 的距离d =11225QMNS MN d ===△, ∴1t =±.∴直线MN 的方程为1y x =+或1y x =--.4如图,椭圆E :22221(0)x y a b a b+=>>内切于矩形ABCD ,其中AB ,CD 与x 轴平行,直线AC ,BD 的斜率之积为12-,椭圆的焦距为2.(1)求椭圆E 的标准方程;(2)椭圆上的点P ,Q 满足直线OP ,OQ 的斜率之积为12-,其中O 为坐标原点.若M 为线段PQ 的中点,则22MO MQ +是否为定值?如果是,求出该定值;如果不是,说明理由. 【小问1详解】由题意,1c =,则()()()(),,,,,,,A a b B a b C a b D a b ----,所以22AC b bk a a==,22BDb b k a a ==--,所以B AC D k k ⋅=2212b a -=-,解得:a =1=,(椭圆的标准方程为2212x y +=.【小问2详解】(方法一)设()11,P x y ,()22,Q x y ,则1212,22x x y y M ++⎛⎫⎪⎝⎭. 设直线PQ :y kx t =+,由2212y kx tx y =+⎧⎪⎨+=⎪⎩,得:()222124220k x ktx t +++-=, 12221224122212kt x x k t x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩, 由12OP OQ k k ⋅=-,得()()2212121212212220x x y y k x x kt x x t +=++++=,代入化简得:22212t k =+.(22221212121211222222x x y y x x y y x MO M y Q ++++⎛⎫⎛⎫⎛⎫⎛⎫=++-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭+2222121222x x y y ++=+, 又点P ,Q 在椭圆上,(221112x y +=,222212x y +=,即22221212142x x y y +++=,(()222221212122242222222kt t x x x x x x t t --⎛⎫+=+-=-⋅= ⎪⎝⎭, (2212142x x +=.(2222222212121234242x x y y x x MO MQ ⎛⎫++++=++= ⎪⎝⎭.即2232MO MQ +=为定值. (方法二)由P ,Q 是椭圆C 上的点,可得221122222222x y x y ⎧+=⎨+=⎩, 把12122x x y y =-代入上式,化简22122x y =,得22121y y +=,22122x x +=, ()22221222121322x x y y MO MQ ++==++. 5已知椭圆()2222:10x y C a b a b+=>>的中心是坐标原点O ,左右焦点分别为12,F F ,设P 是椭圆C 上一点,满足2PF x ⊥轴,212PF =,椭圆C的离心率为2(1)求椭圆C 的标准方程;(2)过椭圆C 左焦点1F 且不与x 轴重合的直线l 与椭圆相交于,A B 两点,求2ABF 内切圆半径的最大值.【小问1详解】以2214x y +=.【小问2详解】解:由(1)可知()1F ,222112248ABF CAB AF BF AF BF AF BF a =++=+++==,设直线l为x my =-2214x my x y ⎧=-⎪⎨+=⎪⎩,消去x 得()22410m y +--=,设()11,A x y ,()22,B x y,则1224y y m +=+,12214y y m -=+ 所以1224y y m -===+所以2121212ABF SF F y y =⋅-=,令内切圆的半径为R ,则2182ABF SR =⨯⨯,即24R m =+,令t =,则12t R t==≤=+,当且仅当3t t=,t =,即m =时等号成立,所以当m =R 取得最大值12; 6已知直线220x y 经过椭圆2222:1(0)x y C a b a b+=>>的左顶点A 和上顶点D ,椭圆C 的右顶点为B ,点S 是椭圆C 上位于x 轴上方的动点,直线,AS BS 与直线10:3l x =分别交于,M N 两点.(1)求椭圆C 的方程;(2)求线段MN 的长度的最小值;(3)当线段MN 的长度最小时,在椭圆C 上是否存在这样的点T ,使得TSB △的面积为15,若存在,确定点T 的个数,若不存在,说明理由.【小问1详解】220x y ,令0x =得:1y =,令0y =得:2x =-,所以椭圆C 的左顶点为()2,0A -,上顶点为()0,1D ,所以2,1a b ==,故椭圆方程为2214x y +=.【小问2详解】直线AS 的斜率k 显然存在,且k >0,故可设直线AS 的方程为()2y k x =+,从而1016,33k M ⎛⎫ ⎪⎝⎭,由()22214y k x x y ⎧=+⎪⎨+=⎪⎩,联立得:()222214161640k x k x k +++-=,设()11,S x y ,则212164214k x k --=+,解得:2122814k x k -=+,从而12414k y k =+,即222284,1414k k S k k ⎛⎫- ⎪++⎝⎭,又()2,0B ,由()124103y x k x ⎧=--⎪⎪⎨⎪=⎪⎩,解得:13103y kx ⎧=-⎪⎪⎨⎪=⎪⎩,所以101,33N k ⎛⎫- ⎪⎝⎭,故16133k MN k =+,又0k >,所以1618333k MN k =+≥=,当且仅当16133k k =即14k =时等号成立,故线段MN 的长度的最小值为83.【小问3详解】由第二问得:14k =,此时64,55S ⎛⎫ ⎪⎝⎭,故5SB ==, 要使椭圆C 上存在点T ,使得TSB △的面积等于15,只须T 到直线BS的距离等于24S SB =.其中直线SB :4056225y x -=--,即20x y +-=,设平行于AB 的直线为0x y t ++=4=解得:32t =-或52t =-,当32t =-时,302x y +-=,联立椭圆方程2214x y +=得:275304y y --=,由9350∆=+>得:302x y +-=与椭圆方程有两个交点;当52t =-时,502x y +-=,联立椭圆方程2214x y +=得:295504y y -+=,由25450∆=-<,此时直线与椭圆方程无交点,综上:点T 的个数为2.满足题意. 所以原题得证,即直线2l 过定点10,03⎛⎫- ⎪⎝⎭7己知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为,A B ,点31,2⎛⎫ ⎪⎝⎭该椭圆上,且该椭圆的右焦点F 与抛物线24y x =的焦点重合. (1)求椭圆C 的标准方程;(2)如图,过点F 且斜率为k 的直线l 与椭圆交于,M N 两点,记直线AM 的斜率为k ,直线BN 的斜率为2k ,直线AN 的斜率3k ,求证:_____________.在以下三个结论中选择一个填在横线处进行证明. (直线AM 与BN 的交点在定直线4x =上;(1213k k =; (1314k k =-..解(因为抛物线24y x =的焦点为(1,0).所以椭圆的右焦点用(1,0)又点31,2⎛⎫ ⎪⎝⎭在该椭圆上,所以221914a b += 又22221a b c b =+=+,所以224,3a b ==椭圆C 的标准方程为22143x y +=(2)选(设()()1122,,,M x y N x y 22(1)143y k x x y =-⎧⎪⎨+=⎪⎩ 联立得:()22223484120k x k x k +-+-=法一:直线11(2),(2)y k x y k x =+=+的交点的横坐标为()12212k k x k k +=-()2121212122212112162442233422481234234k x k k x x x x k x k k k x x x k --+-++==⋅=⋅=--+--+所以直线AM 与BN 的交点在定直线4x =上法二:要证直线AM 与BN 的交点在定直线4x =上,即()122124k k k k +=-,即证1213k k =即证12121232y y x x =+-,即证2212121292y y x x ⎛⎫⎛⎫= ⎪ ⎪+-⎝⎭⎝⎭,即证1212221292x x x x -+=+- 即证()12122580x x x x -++=因为()2212122282482585803434k k x x x x k k ⎛⎫--++=-+= ⎪++⎝⎭所以直线AM 与BN 的交点在定直线4x =上.选(设()()1122,,,M x y N x y ,22(1)143y k x x y =-⎧⎪⎨+=⎪⎩联立得:()22223484120k x k x k +-+-=所以221212228412,3434k k x x x x k k -+==++ 法一:()()()()()()1212112122121212122122222122y x x x k x x x x k x y x x x x x x -----+===++--+- 222112212222221122412846223434134121834128322343434k k k x x x k k k k k k x x x k k k ⎛⎫-----+ ⎪-++⎝⎭+===-⎛⎫---+-- ⎪+++⎝⎭法二:()()12121222y x k k x y -=+ 所以()()()()()()()()222121212121222121212122222422242y x x x x x x x k k x x x x x x x y ----++⎛⎫=== ⎪++++++⎝⎭22222222224121644134344121636943434k k k k k k k k k k--+++===-++++因为12,k k 也同号,所以1213k k =法三:要证1213k k =,即证12121232y y x x =+-,即证2212121292y y x x ⎛⎫⎛⎫= ⎪ ⎪+-⎝⎭⎝⎭即证1212221292x x x x -+=+-,即证()12122580x x x x -++= 因为()2212122282482585803434k k x x x x k k ⎛⎫--++=-+= ⎪++⎝⎭ 所以1213k k =法四:由122(2)143y k x x y =+⎧⎪⎨+=⎪⎩得()2222111341616120k x k x k +++-=得21122116812,3434k k M k k ⎛⎫- ⎪++⎝⎭ 同理22222228612,3434k k N k k ⎛⎫-- ⎪++⎝⎭ 因为,,M N F 为三点共线,所以12221222122212121234346886113434k k k k k k k k -++=----++即()()12214330k k k k +-= 因为12,k k 同号,所以1213k k = 选(设()()1122,,,M x y N x y ,22(1)143y k x x y =-⎧⎪⎨+=⎪⎩联立得:()22223484120k x k x k +-+-=所以221212228412,3434k k x x x x k k -+==++.()()21212121312121212224k x x x x y y k k x x x x x x ⎡⎤-++⎣⎦=⋅=+++++ ()2222222222222222412814128343434141241216121641634434k k k k k k k k k k k k k k k k ⎛⎫--+ ⎪--++++⎝⎭===---+++++++.所以1314k k =-8设椭圆()222210x y a b a b +=>>的离心率为A ,B ,AB 4=.过点(0,1)E ,且斜率为k 的直线l 与x 轴相交于点F ,与椭圆相交于C ,D 两点.(1)求椭圆的方程; (2)若FC DE =,求k 的值;(3)是否存在实数k ,使直线AC 平行于直线BD ?证明你的结论. 【小问1详解】由题意22224b c e a a b c =⎧⎪⎪==⎨⎪-=⎪⎩,解得2a b ⎧=⎪⎨=⎪⎩22164x y +=; 【小问2详解】由题意知,0k ≠,直线l 的方程为1y kx =+,则1(,0)F k -,联立221641x y y kx ⎧+=⎪⎨⎪=+⎩,可得()2223690k x kx ++-=,()223636230k k ∆=++>,设1122(,),(,)C x y D x y ,有12122269,2323k x x x x k k --+==++,则CD 中点横坐标为1223223x x kk+-=+, 又,(0,1),1(0)F k E -,则EF 中点横坐标为12k-,又因为FC DE =,且,,,C E F D 四点共线,取EF 中点H ,则FH HE =,所以H F HE C DE F =--,即HC DH =,所以H 是CD 的中点,即,CD EF 的中点重合,即231232k k k -=-+,解得k = 【小问3详解】不存在实数k ,使直线AC 平行于直线BD ,证明如下:由题意,(0,2),(0,2)A B -,则()()1122,2,,2AC x y BD x y =-=+,若AC BD ,则AC BD ∥,所以()()122122x y x y +=-,即()12211220x y x y x x -++=,即()()()1221121120x kx x kx x x +-+++=, 化简得()121220x x x x -++=,213x x =-,由(2)得,12112266,32323k k x x x x k k --+=-=++,解得12323kx k=+, ()12112299,32323x x x x k k --=⋅-=++解得212323x k =+,所以222332323k k k ⎛⎫= ⎪++⎝⎭,整理得22233k k +=,无解,所以不存实数k ,使直线AC 平行于直线BD .9已知12,F F 分别是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,过2F 且不与x 轴垂直的动直线l 与椭圆交于,M N 两点,点P 是椭圆C 右准线上一点,连结,PM PN ,当点P 为右准线与x 轴交点时,有2122PF F F =.(1)求椭圆C 的离心率;(2)当点P 的坐标为(2,1)时,求直线PM 与直线PN 的斜率之和. 【详解】解(1)由已知当P 为右准线与x 轴交点时,有2122PF F F =∴222a c c c ⎛⎫-= ⎪⎝⎭∴222c a =∴212e =又(0,1)e ∈,∴2e =. (2)∵(2,1)P ,∴22a c =又222a c =,∴2221a c ⎧=⎨=⎩,∴21b =∴椭圆22:12x C y +=.设直线l :(1)y k x =-,()()1122,,,M x y N x y联立22(1)22y k x x y =-⎧⎨+=⎩,得()2222124220k x k x k +-+-= 则22121222422,1212k k x x x x k k-+==++, ∴()()121212121111112222PM PN k x k x y y k k x x x x ------++=+----=()()1212212122k x k k x k x x --+--+=+--121211112(1)2222k k k k k k x x x x ⎛⎫--=+++=+-+ ⎪----⎝⎭()()121242(1)22x x k k x x ⎛⎫+-=+- ⎪ ⎪--⎝⎭()12121242(1)24x x k k x x x x ⎛⎫+-=+- ⎪ ⎪-++⎝⎭将22121222422,1212k k x x x x k k-+==++代入得 ()12121242(1)2(1)(2)224PM PN x x k k k k k k x x x x ⎛⎫+-+=+-=+-⨯-= ⎪ ⎪-++⎝⎭.∴直线PM 与直线PN 的斜率之和为2.10已知椭圆22143x y +=,动直线l 与椭圆交于B ,C 两点(B 在第一象限). (1)若点B 的坐标为31,2⎛⎫ ⎪⎝⎭,求△OBC 面积的最大值;(2)设B (x 1,y 1),C (x 2,y 2),且3y 1+y 2=0,求当△OBC 面积最大时,直线l 的方程. 【小问1详解】 直线OB 的方程为32y x =,即3x -2y =0,设过点C 且平行于OB 的直线l '的方程为32y x b =+, 则当l '与椭圆只有一个公共点时,△OBC 的面积最大.联立221,433,2x y y x b ⎧+=⎪⎪⎨⎪=+⎪⎩消去y 并整理,得3x 2+3bx +b 2-3=0,此时Δ=9b 2-12(b 2-3),令Δ=0,解得b =±当b =C ⎛ ⎝⎭;当b =-时,C ⎭,∴ △OBC=. 【小问2详解】显然可知直线l 与y 轴不垂直,设直线l 的方程为x =my +n ,联立221,43,x y x my n ⎧+=⎪⎨⎪=+⎩消去x 并整理,得(3m 2+4)y 2+6mnx +3n 2-12=0, ∴12221226,34312,34nm y y m n y y m ⎧+=-⎪⎪+⎨-⎪=⎪+⎩∵ 3y 1+y 2=0,∴ 1222123,344,34nm y m n y m ⎧=⎪⎪+⎨-⎪=⎪+⎩ 从而()222222943434n m n m m -=++,即2223431m n m +=+, ∴21212216||6||||2||23431OBCm n m Sn y y n y m m =⋅-=⋅==++. ∵ B 在第一象限,∴ 21123034m nx my n n m =+=+>+,∴ n >0.∵ y 1>0,∴ m >0,∴2661313OBCm Sm m m==≤=++当且仅当31m m =,即m =时取等号),此时2n =,∴ 直线l的方程为x y =+,即20y -=.11椭圆2222:1(0)x y C a b a b+=>>的左右焦点为1F ,2F ,过椭圆右焦点2F 的直线l和椭圆C 相交于E 、F 两点,1EFF △的周长为8,若P 是椭圆上一个动点,且12PF PF ⋅的最大值为3. (1)求椭圆C 的方程;(2)四边形MNAB 的四个顶点均在椭圆C 上,且//MB NA ,MB x ⊥轴,若直线MN 和直线AB 交于点()4,0S ,问:四边形MNAB 的对角线交点D 是否是定点?若是,求出定点坐标;若不是,请说明理由. 【详解】(1)解:1EFF △的周长为48a =∴2a =,令222c a b =-设()00,p x y ,1(,0)F c -,2(,0)F c()()20000,,PF PF c x y c x y ⋅=---⋅--2220x c y =-+2222021b x b c a ⎛⎫=-+- ⎪⎝⎭当220x a =时,()22212max3PF PF a c b ⋅=-==∴21c =,∴23b =∴方程为22143x y += (2)解:设 :AM y kx b =+(k 一定存在) 与椭圆联知:()2223484120kxkbx b +++-=设()11,A x y ,()22,M x y ,()11,N x y -,()22,B x y -,122834kb x x k +=-+,212241234b x x k -=+ ,∵M 、N 、S 共线∴2121044y y x x +=-- 得()12122(4)80kx x b k x x b +-+-=,即()222412824803434b kb k b k b k k--⋅+-⋅-=++, 整理可得0k b +=∴:(1)AM y k x =-过点()1,0Q 下证:BN 也过()1,0Q 212111BQ NQ y y k k x x -=---()()()()()()2112211111011k x x k x x x x ----=--=-∴BN 和AM 相交于()1,0()1,0即为定点D .。

2018届高考数学(理)热点题型:解析几何(含答案解析)

2018届高考数学(理)热点题型:解析几何(含答案解析)

解析几何热点一 圆锥曲线的标准方程与几何性质圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、双曲线的渐近线是常考题型.【例1】(1)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点为F(2,0),且双曲线的渐近线与圆(x -2)2+y 2=3相切,则双曲线的方程为( ) A.x 29-y 213=1 B.x 213-y 29=1 C.x 23-y 2=1D.x 2-y 23=1(2)若点M(2,1),点C 是椭圆x 216+y 27=1的右焦点,点A 是椭圆的动点,则|AM|+|AC|的最小值为________.(3)已知椭圆x 2a 2+y 2b 2=1(a >b >0)与抛物线y 2=2px(p >0)有相同的焦点F ,P ,Q 是椭圆与抛物线的交点,若直线PQ 经过焦点F ,则椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为________.答案 (1)D (2)8-26 (3)2-1解析 (1)双曲线x 2a 2-y 2b 2=1的一个焦点为F(2,0),则a 2+b 2=4,①双曲线的渐近线方程为y =±ba x ,由题意得2ba 2+b2=3,② 联立①②解得b =3,a =1, 所求双曲线的方程为x 2-y23=1,选D.(2)设点B 为椭圆的左焦点,点M(2,1)在椭圆内,那么|BM|+|AM|+|AC|≥|AB|+|AC|=2a ,所以|AM|+|AC|≥2a-|BM|,而a =4,|BM|=(2+3)2+1=26,所以(|AM|+|AC|)最小=8-26.(3)因为抛物线y 2=2px(p >0)的焦点F 为⎝ ⎛⎭⎪⎫p 2,0,设椭圆另一焦点为E.如图所示,将x =p 2代入抛物线方程得y =±p,又因为PQ 经过焦点F ,所以P ⎝ ⎛⎭⎪⎫p 2,p 且PF⊥OF.所以|PE|=⎝ ⎛⎭⎪⎫p 2+p 22+p 2=2p , |PF|=p ,|EF|=p. 故2a =2p +p ,2c =p ,e =2c2a=2-1.【类题通法】(1)在椭圆和双曲线中,椭圆和双曲线的定义把曲线上的点到两个焦点的距离联系在一起,可以把曲线上的点到一个焦点的距离转化为到另一个焦点的距离,也可以结合三角形的知识,求出曲线上的点到两个焦点的距离.在抛物线中,利用定义把曲线上的点到焦点的距离转化为其到相应准线的距离,再利用数形结合的思想去解决有关的最值问题. (2)求解与圆锥曲线的几何性质有关的问题关键是建立圆锥曲线方程中各个系数之间的关系,或者求出圆锥曲线方程中的各个系数,再根据圆锥曲线的几何性质通过代数方法进行计算得出结果.【对点训练】已知椭圆x 24+y 22=1的左、右焦点分别为F 1,F 2,过F 1且倾斜角为45°的直线l 交椭圆于A ,B 两点,以下结论:①△ABF 2的周长为8;②原点到l 的距离为1;③|AB|=83.其中正确结论的个数为( ) A.3 B.2C.1D.0答案 A解析 ①由椭圆的定义,得|AF 1|+|AF 2|=4,|BF 1|+|BF 2|=4,又|AF 1|+|BF 1|=|AB|,所以△ABF 2的周长为|AB|+|AF 2|+|BF 2|=8,故①正确;②由条件,得F 1(-2,0),因为过F 1且倾斜角为45°的直线l 的斜率为1,所以直线l 的方程为y =x +2,则原点到l 的距离d =|2|2=1,故②正确;③设A(x 1,y 1),B(x 2,y 2),由⎩⎨⎧y =x +2,x 24+y 22=1,得3x 2+42x =0,解得x 1=0,x 2=-423,所以|AB|=1+1·|x 1-x 2|=83,故③正确.故选A. 热点二 圆锥曲线中的定点、定值问题定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题.【例2】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点(2,2)在C 上.(1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M ,证明:直线OM 的斜率与直线l 的斜率的乘积为定值. (1)解 由题意有a 2-b 2a =22,4a 2+2b 2=1,解得a 2=8,b 2=4. 所以C 的方程为x 28+y 24=1.(2)证明 设直线l :y =kx +b(k≠0,b ≠0), A(x 1,y 1),B(x 2,y 2),M(x M ,y M ). 将y =kx +b 代入x 28+y 24=1得(2k 2+1)x 2+4kbx +2b 2-8=0. 故x M =x 1+x 22=-2kb 2k 2+1,y M =k·x M +b =b2k 2+1. 于是直线OM 的斜率k OM =y M x M =-12k ,即k OM ·k =-12.所以直线OM 的斜率与直线l 的斜率的乘积为定值.【类题通法】解答圆锥曲线中的定点、定值问题的一般步骤第一步:研究特殊情形,从问题的特殊情形出发,得到目标关系所要探求的定点、定值. 第二步:探究一般情况.探究一般情形下的目标结论. 第三步:下结论,综合上面两种情况定结论.【对点训练】已知抛物线C :y 2=2px(p>0)的焦点F(1,0),O 为坐标原点,A ,B 是抛物线C 上异于O 的两点. (1)求抛物线C 的方程;(2)若直线OA ,OB 的斜率之积为-12,求证:直线AB 过x 轴上一定点.(1)解 因为抛物线y 2=2px(p>0)的焦点坐标为(1,0),所以p2=1,所以p =2.所以抛物线C 的方程为y 2=4x.(2)证明 ①当直线AB 的斜率不存在时,设A ⎝ ⎛⎭⎪⎫t 24,t ,B ⎝ ⎛⎭⎪⎫t 24,-t .因为直线OA ,OB 的斜率之积为-12,所以t t 24·-t t 24=-12,化简得t 2=32.所以A(8,t),B(8,-t),此时直线AB 的方程为x =8.②当直线AB 的斜率存在时,设其方程为y =kx +b ,A(x A ,y A ),B(x B ,y B ),联立得⎩⎨⎧y 2=4x ,y =kx +b ,化简得ky 2-4y +4b =0. 根据根与系数的关系得y A y B =4b k ,因为直线OA ,OB 的斜率之积为-12,所以y A x A ·y B x B =-12,即x A x B +2y A y B =0.即y 2A 4·y 2B4+2y A y B =0,解得y A y B =0(舍去)或y A y B =-32.所以y A y B =4bk=-32,即b =-8k ,所以y =kx -8k , 即y =k(x -8).综上所述,直线AB 过定点(8,0). 热点三 圆锥曲线中的最值、范围问题圆锥曲线中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.【例3】平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率是32,抛物线E :x 2=2y 的焦点F 是C 的一个顶点. (1)求椭圆C 的方程;(2)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点A ,B ,线段AB 的中点为D.直线OD 与过P 且垂直于x 轴的直线交于点M. ①求证:点M 在定直线上;②直线l 与y 轴交于点G ,记△PFG 的面积为S 1,△PDM 的面积为S 2,求S 1S 2的最大值及取得最大值时点P 的坐标.(1)解 由题意知a 2-b 2a =32,可得a 2=4b 2,因为抛物线E 的焦点F ⎝ ⎛⎭⎪⎫0,12,所以b =12,a =1,所以椭圆C 的方程为x 2+4y 2=1.(2)①证明 设P ⎝ ⎛⎭⎪⎫m ,m 22(m>0),由x 2=2y ,可得y′=x ,所以直线l 的斜率为m ,因此直线l 的方程为y -m 22=m(x -m).即y =mx -m 22.设A(x 1,y 1),B(x 2,y 2),D(x 0,y 0).联立方程⎩⎨⎧x 2+4y 2=1,y =mx -m 22,得(4m 2+1)x 2-4m 3x +m 4-1=0.由Δ>0,得0<m<2+5(或0<m 2<2+5).(*)且x 1+x 2=4m 34m 2+1,因此x 0=2m 34m 2+1,将其代入y =mx -m 22,得y 0=-m 22(4m 2+1),因为y 0x 0=-14m. 所以直线OD 方程为y =-14mx ,联立方程⎩⎨⎧y =-14m x ,x =m ,得点M 的纵坐标y M=-14,所以点M 在定直线y =-14上.②由①知直线l 的方程为y =mx -m 22,令x =0,得y =-m 22,所以G ⎝⎛⎭⎪⎫0,-m 22,又P ⎝ ⎛⎭⎪⎫m ,m 22,F ⎝ ⎛⎭⎪⎫0,12,D ⎝ ⎛⎭⎪⎫2m 34m 2+1,-m 22(4m 2+1), 所以S 1=12·|GF|·m =(m 2+1)m4,S 2=12·|PM|·|m -x 0|=12×2m 2+14×2m 3+m 4m 2+1=m (2m 2+1)28(4m 2+1).所以S 1S 2=2(4m 2+1)(m 2+1)(2m 2+1)2.设t =2m 2+1,则S 1S 2=(2t -1)(t +1)t 2=2t 2+t -1t 2=-1t 2+1t +2,当1t =12, 即t =2时,S 1S 2取到最大值94,此时m =22,满足(*)式,所以P 点坐标为⎝ ⎛⎭⎪⎫22,14.因此S 1S 2的最大值为94,此时点P 的坐标为⎝ ⎛⎭⎪⎫22,14.【类题通法】圆锥曲线中的最值、范围问题解决方法一般分两种:一是代数法,从代数的角度考虑,通过建立函数、不等式等模型,利用二次函数法和基本不等式法、换元法、导数法、或利用判别式构造不等关系、利用隐含或已知的不等关系建立不等式等方法求最值、范围;二是几何法,从圆锥曲线的几何性质的角度考虑,根据圆锥曲线几何意义求最值. 【对点训练】如图,设抛物线y 2=2px(p >0)的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF|-1. (1)求p 的值;(2)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M ,求M 的横坐标的取值范围.解 (1)由题意可得,抛物线上点A 到焦点F 的距离等于点A 到直线x =-1的距离, 由抛物线的定义得p2=1,即p =2.(2)由(1)得,抛物线方程为y 2=4x ,F(1,0), 可设A(t 2,2t),t ≠0,t ≠±1.因为AF 不垂直于y 轴,可设直线AF :x =sy +1(s≠0),由⎩⎨⎧y 2=4x ,x =sy +1消去x 得y 2-4sy -4=0.故y 1y 2=-4,所以B ⎝ ⎛⎭⎪⎫1t 2,-2t .又直线AB 的斜率为2tt 2-1, 故直线FN 的斜率为-t 2-12t,从而得直线FN :y =-t 2-12t (x -1),直线BN :y =-2t.所以N ⎝ ⎛⎭⎪⎫t 2+3t 2-1,-2t .设M(m ,0),由A ,M ,N 三点共线得2tt 2-m =2t +2t t 2-t 2+3t 2-1, 于是m =2t 2t 2-1,所以m <0或m >2.经检验,m <0或m >2满足题意.综上,点M 的横坐标的取值范围是(-∞,0)∪(2,+∞). 热点四 圆锥曲线中的探索性问题圆锥曲线的探索性问题主要体现在以下几个方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否成立.涉及这类命题的求解主要是研究直线与圆锥曲线的位置关系问题.【例4】已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M.(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点⎝ ⎛⎭⎪⎫m 3,m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由. (1)证明 设直线l :y =kx +b(k≠0,b ≠0), A(x 1,y 1),B(x 2,y 2),M(x M ,y M ).将y =kx +b 代入9x 2+y 2=m 2得(k 2+9)x 2+2kbx +b 2-m 2=0,故x M =x 1+x 22=-kbk 2+9,y M =kx M +b =9bk 2+9. 于是直线OM 的斜率k OM =y M x M =-9k ,即k OM ·k =-9.所以直线OM 的斜率与l 的斜率的乘积为定值. (2)解 四边形OAPB 能为平行四边形.因为直线l 过点⎝ ⎛⎭⎪⎫m 3,m ,所以l 不过原点且与C 有两个交点的充要条件是k >0,k ≠3.由(1)得OM 的方程为y =-9k x.设点P 的横坐标为x P ,由⎩⎨⎧y =-9k x ,9x 2+y 2=m2得x 2P=k 2m 29k 2+81,即x P=±km 3k 2+9.将点⎝ ⎛⎭⎪⎫m 3,m 的坐标代入l 的方程得b =m (3-k )3,因此x M =k (k -3)m 3(k 2+9).四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M .于是±km 3k 2+9=2×k (k -3)m 3(k 2+9), 解得k 1=4-7,k 2=4+7.因为k i >0,k i ≠3,i =1,2,所以当l 的斜率为4-7或4+7时,四边形OAPB 为平行四边形.【类题通法】(1)探索性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法. 【对点训练】在平面直角坐标系xOy 中,过点C(2,0)的直线与抛物线y 2=4x 相交于A ,B 两点,设A(x 1,y 1),B(x 2,y 2). (1)求证:y 1y 2为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线方程和弦长;如果不存在,说明理由. (1)证明 法一 当直线AB 垂直于x 轴时, y 1=22,y 2=-2 2. 因此y 1y 2=-8(定值). 当直线AB 不垂直于x 轴时, 设直线AB 的方程为y =k(x -2), 由⎩⎨⎧y =k (x -2),y 2=4x ,得ky 2-4y -8k =0. ∴y 1y 2=-8.因此有y 1y 2=-8为定值.法二 设直线AB 的方程为my =x -2, 由⎩⎨⎧my =x -2,y 2=4x ,得y 2-4my -8=0. ∴y 1y 2=-8.因此有y 1y 2=-8为定值. (2)解 设存在直线l :x =a 满足条件, 则AC 的中点E ⎝⎛⎭⎪⎫x 1+22,y 12,|AC|=(x 1-2)2+y 21. 因此以AC 为直径的圆的半径r =12|AC|=12(x 1-2)2+y 21=12x 21+4, 又点E 到直线x =a 的距离d =⎪⎪⎪⎪⎪⎪x 1+22-a 故所截弦长为 2r 2-d 2=214(x 21+4)-⎝⎛⎭⎪⎫x 1+22-a 2 =x 21+4-(x 1+2-2a )2=-4(1-a )x 1+8a -4a 2.当1-a =0,即a =1时,弦长为定值2,这时直线方程为x =1.。

椭圆高考大题解析

椭圆高考大题解析

21.(2018全国卷Ⅰ)设椭圆:C 2212+=x y 的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠. 【解析】(1)由已知得(1,0)F ,l 的方程为1=x .由已知可得,点A 的坐标为(1,2或(1,2-.所以AM 的方程为2y x =-2y x =- (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则1<x 2<x MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由11=-y kx k ,22=-y kx k 得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=.所以,2122421+=+k k x x ,21222221-=+x k k x .则3131322244128423()4021k k k k kk k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.24.(2017新课标Ⅰ)已知椭圆C :22221(0)x y a b a b+=>>,四点1(1,1)P ,2(0,1)P ,3(2P =-,4(1,2P =中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.【解析】(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点.又由222211134a b a b+>+知,C 不经过点1P ,所以点2P 在C 上. 因此222111314b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎪⎨=⎪⎩.故C 的方程为2214x y +=.(2)设直线2P A 与直线2P B 的斜率分别为1k ,2k ,如果l 与x 轴垂直,设l :x t =,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t,(t,).则121k k +==-,得2t =,不符合题设. 从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-= 由题设可知22=16(41)0k m ∆-+>.设11(,)A x y ,22(,)B x y ,则122841kmx x k +=-+,21224441m x x k -=+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-)25.(2017新课标Ⅱ)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【解析】(1)设(,)P x y ,00(,)M x y ,则0(,0)N x ,0(,)NP x x y =-,0(0.)NM y =.由2NP NM =得 0x x =,02y y =. 因为00(,)M x y 在C 上,所以22122x y +=. 因此点P 的轨迹方程为222x y +=.(2)由题意知(1,0)F -.设(3,)Q t -,(,)P m n ,则(3,)OQ t =-,(1,)PF m n =---,33OQ PF m tn ⋅=+-, (,)OP m n =,(3,)PQ m t n =---,由1OP PQ ⋅=得2231m m tn n --+-=,又由(1)知222m n +=, 故330m tn +-=.所以0OQ PF ⋅=,即OQ PF ⊥.又过点P 存在唯一直线垂直与OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .30.(2015新课标2)已知椭圆C :2229x y m +=(0m >),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . (Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边行?若能,求此时l 的斜率;若不能,说明理由.【解析】(Ⅰ)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y .将y kx b =+代入2229x y m +=得2222(9)20k x kbx b m +++-=,故12229M x x kb x k +==-+,299M M by kx b k =+=+. 于是直线OM 的斜率9M OM M y k x k==-,即9OM k k ⋅=-. 所以直线OM 的斜率与l 的斜率的乘积为定值. (Ⅰ)四边形OAPB 能为平行四边形. 因为直线l 过点(,)3mm , 所以l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠. 由(Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x . 由2229,9,y x k x y m ⎧=-⎪⎨⎪+=⎩得2222981P k m x k =+,即P x =. 将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+. 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x =.=2(3)23(9)mk k k -⨯+.解得14k =24k =.因为0,3i i k k >≠,1i =,2,所以当l的斜率为4或4四边形OAPB 为平行四边形.34. (2014新课标1) 已知点A (0,2)-,椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆E 的右焦点,直线AF 的斜率为3,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.【解析】2(c,0)=3F c c (I )设,由条件知,222=2, 1.c a b a c a ==-=又所以 22 1.4x E y +=故的方程为 (Ⅱ)1122:=2,(,),(,).l x l y kx P x y Q x y ⊥-当轴时不合题意,故设22214x y kx y =-+=将代入得22(14)16120.k x kx +-+=221,2238=16(43)0,441k k k x k ±∆->>=+当即时,12PQ x =-=从而O PQ d OPQ =∆又点到直线的距离所以的面积21=241OPQ S d PQ k ∆⋅=+244,0,.44OPQ t t t S t t t∆=>==++则44,20.t t k t +≥==∆>因为当且仅当,即 OPQ ι∆所以,当的面积最大时,的方程为22y x y x =-=-或.36.(2014新课标2)设1F ,2F 分别是椭圆C :()222210y x a b a b+=>>的左,右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求,a b .【解析】(Ⅰ)根据c =22(,),23b M c b ac a=将222b a c =-代入223b ac =,解得1,22c ca a==-(舍去) 故C 的离心率为12. (Ⅱ)由题意,原点O 为12F F 的中点,2MF ∥y 轴,所以直线1MF 与y 轴的交点(0,2)D是线段1MF 的中点,故24b a=,即24b a = ① 由15MN F N =得112DF F N =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学椭圆常考题目解题方法及练习2018高三专题复习-解析几何专题(2)第一部分:复习运用的知识(一)椭圆几何性质椭圆第一定义:平面内与两定点21F F 、距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆. 两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距()c 2.椭圆的几何性质:以()012222>>=+b a by a x 为例1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,12222≤≤by a x ,即b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题.2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。

3. 顶点(椭圆和它的对称轴的交点) 有四个:()()()().,0B ,0B 0,0,2121b b a A a A 、、、--4. 长轴、短轴:21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长.5. 离心率(1)椭圆焦距与长轴的比ace =,()10,0<<∴>>e c a (2)22F OB Rt ∆,2222222OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率.(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越接近于0,从而22c a b -=越大,椭圆越接近圆。

6.通径(过椭圆的焦点且垂直于长轴的弦),ab 22.7.设21F F 、为椭圆的两个焦点,P 为椭圆上一点,当21F F P 、、三点不在同一直线上时,21F F P 、、构成了一个三角形——焦点三角形. 依椭圆的定义知:c F F a PF PF 2,22121==+. (二)运用的知识点及公式1、两条直线111222:,:l y k x b l y k x b =+=+垂直:则121k k =-;两条直线垂直,则直线所在的向量120v v =2、韦达定理:若一元二次方程20(0)ax bx c a ++=≠有两个不同的根12,x x ,则1212,b c x x x x a a+=-=。

3、中点坐标公式:1212,y 22x x y y x ++==,其中,x y 是点1122(,)(,)A x y B x y ,的中点坐标。

4、弦长公式:若点1122(,)(,)A x y B x y ,在直线(0)y kx b k =+≠上,则1122y kx b y kx b =+=+,,这是同点纵横坐标变换,是两大坐标变换技巧之一,2222221212121212()()()()(1)()AB x x y y x x kx kx k x x =-+-=-+-=+-221212(1)[()4]k x x x x =++-或者2222212121212122111()()()()(1)()AB x x y y x x y y y y k k k =-+-=-+-=+-2121221(1)[()4]y y y y k =++-。

第二部分:椭圆常考题型解题方法典例一、椭圆定义相关题目例1、已知方程13522-=-+-ky k x 表示椭圆,求k 的取值范围. 解:由⎪⎩⎪⎨⎧-≠-<-<-,35,03,05k k k k 得53<<k ,且4≠k .∴满足条件的k 的取值范围是53<<k ,且4≠k .说明:本题易出现如下错解:由⎩⎨⎧<-<-,03,05k k 得53<<k ,故k 的取值范围是53<<k .出错的原因是没有注意椭圆的标准方程中0>>b a 这个条件,当b a =时,并不表示椭圆.例2、已知1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围.解:方程可化为1cos 1sin 122=+ααy x .因为焦点在y 轴上,所以0sin 1cos 1>>-αα. 因此0sin >α且1tan -<α从而)43,2(ππα∈.说明:(1)由椭圆的标准方程知0sin 1>α,0cos 1>-α,这是容易忽视的地方. (2)由焦点在y 轴上,知αcos 12-=a ,αsin 12=b .(3)求α的取值范围时,应注意题目中的条件πα<≤0.例3、 以椭圆131222=+y x 的焦点为焦点,过直线09=+-y x l :上一点M 作椭圆,要使所作椭圆的长轴最短,点M 应在何处?并求出此时的椭圆方程.分析:椭圆的焦点容易求出,按照椭圆的定义,本题实际上就是要在已知直线上找一点,使该点到直线同侧的两已知点(即两焦点)的距离之和最小,只须用点直线对称就可解决.解:如图所示,焦点为()031,-F ,()032,F .F 的坐标为(-9,6),直线2FF 的方程为032=-+y x .解方程组⎩⎨⎧=+-=-+09032y x y x 得交点M 的坐标为(-5,4).所求椭圆的长轴:562221==+=FF MF MF a , ∴53=a ,又3=c ,∴()3635322222=-=-=c a b .因此,所求椭圆的方程为1364522=+y x . 二、椭圆与直线的位置关系及弦长相关题目 例4、 已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点? (2)若直线被椭圆截得的弦长为5102,求直线的方程. 解:(1)把直线方程m x y +=代入椭圆方程1422=+y x 得()1422=++m x x ,即012522=-++m mx x .()()020*********≥+-=-⨯⨯-=∆m m m ,解得2525≤≤-m . (2)设直线与椭圆的两个交点的横坐标为1x ,2x ,由(1)得5221m x x -=+,51221-=m x x .根据弦长公式得 :51025145211222=-⨯-⎪⎭⎫ ⎝⎛-⋅+m m . 解得0=m .方程为x y =.说明:对比直线与椭圆和直线与圆的位置关系问题及有关弦长问题的解题方法?.这里解决直线与椭圆的交点问题,一般考虑判别式∆;解决弦长问题,一般应用弦长公式.例5、 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长. 解:(法1)利用直线与椭圆相交的弦长公式求解.1348]4))[(1(1212212212=-++=-+=x x x x k x x k AB . (法2)利用椭圆的定义及余弦定理求解.由题意可知椭圆方程为193622=+y x , 设m AF =1,n BF =1,则m AF -=122,n BF -=122. 在21F AF ∆中,3cos22112212122πF F AF F F AF AF -+=,即21362336)12(22⋅⋅⋅-⋅+=-m m m ;所以346-=m . 同理在21F BF ∆中,用余弦定理得346+=n , 所以1348=+=n m AB . (法3)利用焦半径求解.先根据直线与椭圆联立的方程0836372132=⨯++x x 求出方程的两根1x ,2x ,它们分别是A ,B 的横坐标.再根据焦半径11ex a AF +=,21ex a BF +=, 从而求出11BF AF AB +=. 三、轨迹方程相关题目例6、 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程.分析:关键是根据题意,列出点P 满足的关系式.解:如图所示,设动圆P 和定圆B 内切于点M .动点P 到两定点,即定点()03,-A 和定圆圆心()03,B 距离之和恰好等于定圆半径, 即8==+=+BM PB PM PB PA .∴点P 的轨迹是以A ,B 为两焦点,半长轴为4,半短轴长为73422=-=b 的椭圆的方程:171622=+y x . 例7、 已知椭圆1222=+y x ,(1)求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹方程;(3)过()12,A 引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=⋅OQ OP k k , 求线段PQ 中点M 的轨迹方程.分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法. 解:设弦两端点分别为()11y x M ,,()22y x N ,,线段MN 的中点()y x R ,,则(1)将21=x ,21=y 代入⑤,得212121-=--x x y y ,(2)故所求直线方程为: 0342=-+y x . ⑥ 将⑥代入椭圆方程2222=+y x 得041662=--y y , 0416436>⨯⨯-=∆符合题意,0342=-+y x 为所求. (2)将22121=--x x y y 代入⑤得所求轨迹方程为:04=+y x .(椭圆内部分) (3)将212121--=--x y x x y y 代入⑤ 得所求轨迹方程为: 022222=--+y x y x .(椭圆内部分)(4)由①+②得:()2222212221=+++y y x x , ⑦, 将③④平方并整理得212222124x x x x x -=+, ⑧, 212222124y y y y y -=+, ⑨将⑧⑨代入⑦得:()224424212212=-+-y y y x x x , ⑩ 再将212121x x y y -=代入⑩式得:221242212212=⎪⎭⎫⎝⎛--+-x x y x x x ,即 12122=+y x .例8、 知圆122=+y x ,从这个圆上任意一点P 向y 轴作垂线段,求线段中点M 的轨迹.解:1422=+y x .说明:此题是利用相关点法求轨迹方程的方法,具体做法:首先设动点的坐标为),(y x ,设已知轨迹上的点的坐标为),(00y x ,然后根据题目要求,使x ,y 与0x ,0y 建立等式关系,从而由这些等式关系求出0x 和0y 代入已知的轨迹方程,就可以求出关于x ,y 的方程,化简后即我们所求的方程.这种方法是求轨迹方程的最基本的方法,必须掌握.例9、 已知)2,4(P 是直线l 被椭圆193622=+y x 所截得的线段的中点,求直线l 的方程. 分析:“设而不求”法解:方法一:设所求直线方程为)4(2-=-x k y .代入椭圆方程, 整理 036)24(4)24(8)14(222=--+--+k x k k x k ①设直线与椭圆的交点为),(11y x A ,),(22y x B ,则1x 、2x 是①的两根, ∴14)24(8221+-=+k k k x x∵)2,4(P 为AB 中点, ∴14)24(424221+-=+=k k k x x ,21-=k . ∴所求直线方程为082=-+y x .方法二:(点差法)设直线与椭圆交点),(11y x A ,),(22y x B . ∵)2,4(P 为AB 中点,∴821=+x x ,421=+y y .又∵A ,B 在椭圆上,∴3642121=+y x ,3642222=+y x 两式相减得0)(4)(22212221=-+-y y x x ,即0))((4))((21212121=-++-+y y y y x x x x . ∴21)(4)(21212121-=++-=--y y x x x x y y . ∴直线方程为082=-+y x .方法三:(数形结合)设所求直线与椭圆的一个交点为),(y x A ,另一个交点)4,8(y x B --.∵A 、B 在椭圆上,∴36422=+y x ①。

相关文档
最新文档