高中数学解析几何测试题答案版(供参考)
高中数学解析几何大题(附有答案及详解)

47. 已知椭圆E :()222210x y a b a b +=>>,其短轴为2.(1)求椭圆E 的方程;(2)设椭圆E 的右焦点为F ,过点()2,0G 作斜率不为0的直线交椭圆E 于M ,N 两点,设直线FM 和FN 的斜率为1k ,2k ,试判断12k k +是否为定值,若是定值,求出该定值;若不是定值,请说明理由.48. 如图,椭圆()2222:10x y C a b a b +=>>⎛ ⎝⎭,P 为椭圆上的一动点.(1)求椭圆C 的方程;(2)设圆224:5O x y +=,过点P 作圆O 的两条切线1l ,2l ,两切线的斜率分别为1k ,2k . ①求12k k 的值;①若1l 与椭圆C 交于P ,Q 两点,与圆O 切于点A ,与x 轴正半轴交于点B ,且满足OPA OQB S S =△△,求1l 的方程.49. 已知椭圆E :22221x y a b +=(a >b >0)的左、右焦点分別为12,F F ,离心率为e =左焦点1F 作直线1l 交椭圆E 于A ,B 两点,2ABF 的周长为8. (1)求椭圆E 的方程;(2)若直线2l :y =kx +m (km <0)与圆O :221x y +=相切,且与椭圆E 交于M ,N 两点,22MF NF +是否存在最小值?若存在,求出22MF NF +的最小值和此时直线2l 的方程.50. 已知动点M 与两个定点()0,0O ,()3,0A 的距离的比为12,动点M 的轨迹为曲线C .(1)求C 的轨迹方程,并说明其形状;(2)过直线3x =上的动点()()3,0P p p ≠分别作C 的两条切线PQ 、PR (Q 、R 为切点),N 为弦QR 的中点,直线l :346x y +=分别与x 轴、y 轴交于点E 、F ,求NEF 的面积S的取值范围.51. 在平面直角坐标系xOy 中,已知直线l :20x y ++=和圆O :221x y +=,P 是直线l 上一点,过点P 作圆C 的两条切线,切点分别为A ,B . (1)若PA PB ⊥,求点P 的坐标; (2)求线段PA 长的最小值;(3)设线段AB 的中点为Q ,是否存在点T ,使得线段TQ 长为定值?若存在,求出点T ;若不存在,请说明理由.52. 已知以1C 为圆心的圆221:1C x y +=.(1)若圆222:(1)(1)4C x y -+-=与圆1C 交于,M N 两点,求||MN 的值;(2)若直线:l y x m =+和圆1C 交于,P Q 两点,若132PC PQ ⋅=,求m 的值. 53. 已知圆()22:21M x y +-=,点P 是直线:20l x y +=上的一动点,过点P 作圆M 的切线P A ,PB ,切点为A ,B .(1)当切线P A P 的坐标;(2)若PAM △的外接圆为圆N ,试问:当P 运动时,圆N 是否过定点?若存在,求出所有的定点的坐标;若不存在,请说明理由; (3)求线段AB 长度的最小值.54. 已知圆22:2O x y +=,直线:2l y kx =-.(1)若直线l 与圆O 交于不同的两点,A B ,当90AOB ∠=︒时,求实数k 的值;(2)若1,k P =是直线l 上的动点,过P 作圆O 的两条切线PC 、PD ,切点为C 、D ,试探究:直CD 是否过定点.若存在,请求出定点的坐标;否则,说明理由.55. 在平面直角坐标系xOy中,(A,B ,C 是满足π3ACB ∠=的一个动点. (1)求ABC 垂心H 的轨迹方程;(2)记ABC 垂心H 的轨迹为Γ,若直线l :y kx m =+(0km ≠)与Γ交于D ,E 两点,与椭圆T :2221x y +=交于P ,Q 两点,且||2||DE PQ =,求证:||k > 56. 平面上一动点C的坐标为),sin θθ.(1)求点C 轨迹E 的方程;(2)过点()11,0F -的直线l 与曲线E 相交于不同的两点,M N ,线段MN 的中垂线与直线l 相交于点P ,与直线2x =-相交于点Q .当MN PQ =时,求直线l 的方程.答案及解析47.(1)2212x y +=;(2)是定值,该定值为0.【分析】(1)依题意求得,a b ,进而可得椭圆E 的方程;(2)设直线MN 的方程为()()20y k x k =-≠,与椭圆E 方程联立,利用韦达定理和斜率公式即可求得12k k +的值. 【详解】(1)由题意可知:22b =,1b =,椭圆的离心率c e a ==a =①椭圆E 的标准方程:2212x y +=;(2)设直线MN 的方程为()()20y k x k =-≠.22(2)12y k x x y =-⎧⎪⎨+=⎪⎩,消去y 整理得:()2222128820k x k x k +-+-=.设()11,M x y ,()22,N x y , 则2122812k x x k +=+,21228212k x x k -=+,()()()1212121212121212222211111k x k x y y x x k k k x x x x x x x x ⎡⎤--+-+=+=+=-⎢⎥-----++⎢⎥⎣⎦222222228242122208282111212k k k k k k k k k k ⎡⎤-⎢⎥⎛⎫-+=-=-=⎢⎥ ⎪--⎝⎭⎢⎥-+⎢⎥++⎣⎦. ①120k k +=为定值.【点睛】关键点点睛:第(2)问的关键点是:得出()12121212221x x k k k x x x x ⎡⎤+-+=-⎢⎥-++⎢⎥⎣⎦.48.(1)2214x y +=;(2)①14- ;①yy =+【分析】(1)根据已知条件结合222c a b =-列关于,a b 的方程,解方程即可求解;(2)①设()00,P x y ,切线:l 00()y y k x x -=-,利用圆心到切线的距离列方程,整理为关于k 的二次方程,计算两根之积结合点P 在椭圆上即可求12k k ;①由OPA OQB S S =△△可得PA BQ =,可转化为A B P Q x x x x +=+,设1l :y kx m =+,与椭圆联立可得P Q x x +,再求出A x 、B x ,即可求出k 的值,进而可得出m 的值,以及1l 的方程. 【详解】(1)因为22222234c a b e a a -===,所以2a b =,因为点⎛ ⎝⎭在椭圆上,所以221314a b +=即2213144b b +=, 解得:1b =,2a =,所以椭圆方程为:2214x y +=;(2)①设()00,P x y ,切线:l 00()y y k x x -=-即000kx y y kx -+-= 圆心()0,0O到切线的距离d r ==整理可得:2220000442055x k x y k y ⎛⎫--+-= ⎪⎝⎭,所以2020122200441451544455x y k k x x ⎛⎫-- ⎪-⎝⎭===---,①因为OPA OQB S S =△△所以PA BQ =,所以A P Q B x x x x -=-,所以A B P Q x x x x +=+, 设切线为1:l y kx m =+,由2244y kx m x y =+⎧⎨+=⎩可得:()222418440k x kmx m +++-= 所以2841P Q kmx x k -+=+, 令0y =可得B mx k=-,设(),A A A x kx m +, 则1A OA A kx m k x k +==-,所以21A km x k -=+, 所以228411P Q km m kmx x k k k --+==-+++, 整理可得:()()()2222814121k k k k +=++,所以221k =,解得:k =, 因为圆心()0,0O 到1:l y kx m =+距离d ,所以mm =,因为0B mx k=->,所以当k =m =k =时,m =;所以所求1l的方程为y =或y = 【点睛】思路点睛:圆锥曲线中解决定值、定点的方法(1)从特殊入手,求出定值、定点、定线,再证明定值、定点、定线与变量无关; (2)直接计算、推理,并在计算、推理的过程中消去变量是此类问题的特点,设而不求的方法、整体思想和消元思想的运用可以有效的简化运算.49.(1)2214x y +=;(2)最小值为2,0x =或0x +-=.【分析】(1)由椭圆定义结合已知求出a ,半焦距c 即可得解;(2)由直线2l 与圆O 相切得221m k =+,联立直线2l 与椭圆E 的方程消去y ,借助韦达定理表示出22MF NF +,利用函数思想方法即可作答. 【详解】(1)依题意,结合椭圆定义知2ABF 的周长为4a ,则有4a =8,即a =2,又椭圆的离心率为c e a =c =2221b a c =-=, 所以椭圆E 的方程为2214x y +=;(2)因直线2l :y =kx +m (km <0)与圆O :221x y +=1=,即221m k =+,设()()()112212,,,,2,2M x y N x y x x ≤≤,而点M 在椭圆E 上,则221114x y +=,即221114x y =-,又2F ,21|2|MF x =-=12x -,同理222NF x =,于是得)22124MF NF x x +=+, 由2214y kx mx y =+⎧⎪⎨+=⎪⎩消去y 得:()222148440k x kmx m +++-=,显然Δ0>,则122814km x x k +=-+, 又km <0,且221m k =+,因此得1228||14km x x k +=+令2411t k =+≥,则12x x +=113t =,即t =3时等号成立,于是得22MF NF +存在最小值,且)221242MF NF x x +=+≥,22MF NF +的最小值为2,由2221413m k k ⎧=+⎨+=⎩,且km <0,解得k m ⎧=⎪⎪⎨⎪=⎪⎩或k m ⎧=⎪⎪⎨⎪=⎪⎩. 所以所求直线2l的方程为y x =y x =0x =或0x +=.【点睛】关键点睛:解决直线与椭圆的综合问题时,要注意:(1)观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题. 50.(1)()2214x y ++=,曲线C 是以1,0为圆心,半径为2的圆;(2)5542⎡⎤⎢⎥⎣⎦,.【分析】(1)设出动点M 坐标,代入距离比关系式,化简方程可得;(2)先求切点弦方程,再根据切点弦过定点及弦中点性质得出N 点轨迹,然后求出动点N 到定直线EF 的距离最值,最后求出面积最值.切点弦方程的求法可用以下两种方法.法一:由两切点即为两圆公共点,利用两圆相交弦方程(两圆方程作差)求出切点弦方程;法二:先分别求过Q 、R 两点的切线方程,再代入点P 坐标,得到Q 、R 两点都适合的同一直线方程,即切点弦方程. 【详解】解:(1)设(),M x y ,由12MO MA =12=. 化简得22230x y x ++-=,即()2214x y ++=. 故曲线C 是以1,0为圆心,半径为2的圆.(2)法一(由两圆相交弦方程求切点弦方程):由题意知,PQ 、PR 与圆相切,Q 、R 为切点,则DQ PQ ⊥,DR PR ⊥,则D 、R 、P 、Q 四点共圆,Q 、R 在以DP 为直径的圆上(如图).设()1,0D -,又()()3,0P p p ≠,则DP 的中点为1,2p ⎛⎫⎪⎝⎭,DP .以线段DP 为直径的圆的方程为()22212p x y ⎛⎫-+-= ⎪⎝⎭⎝⎭, 整理得22230x y x py +---=①(也可用圆的直径式方程()()()()1300x x y y p +-+--=化简得. ) 又Q 、R 在C :22230x y x ++-=①上, 由两圆方程作差即①-①得:40x py +=. 所以,切点弦QR 所在直线的方程为40x py +=. 法二(求Q 、R 均满足的同一直线方程即切点弦方程): 设()1,0D -,()11,Q x y ,()22,R x y .由DQ PQ ⊥,可得Q 处的切线上任一点(,)T x y 满足0QT DQ ⋅=(如图), 即切线PQ 方程为()()()()1111100x x x y y y -++--=.整理得()221111110x x y y x y x ++---=.又22111230x y x ++-=,整理得()111130x x y y x +++-=.同理,可得R 处的切线PR 方程为()222130x x y y x +++-=. 又()3,P p 既在切线PQ 上,又在切线PR 上,所以()()11122231303130x py x x py x ⎧+++-=⎪⎨+++-=⎪⎩,整理得11224040x py x py +=⎧⎨+=⎩. 显然,()11,Q x y ,()22,R x y 的坐标都满足直线40x py +=的方程. 而两点确定一条直线,所以切点弦QR 所在直线的方程为40x py +=. 则QR 恒过坐标原点()0,0O .由()2240,14x py x y +=⎧⎪⎨++=⎪⎩消去x 并整理得()22168480p y py +--=. 设()11,Q x y ,()22,R x y ,则122816py y p +=+.点N 纵坐标1224216N y y py p +==+. 因为0p ≠,显然0N y ≠,所以点N 与点()1,0D -,()0,0O 均不重合.(或者由对称性可知,QR 的中点N 点在x 轴上当且仅当点P 在x 轴上,因为0p ≠,点P 不在x 轴上,则点N 也不在x 轴上,所以点N 与D 、O 均不重合.) 因为N 为弦QR 的中点,且()1,0D -为圆心,由圆的性质,可得DN QR ⊥,即DN ON ⊥(如图).所以点N 在以OD 为直径的圆上,圆心为1,02G ⎛⎫- ⎪⎝⎭,半径12r =.因为直线346x y +=分别与x 轴、y 轴交于点E 、F ,所以()2,0E ,30,2F ⎛⎫⎪⎝⎭,52EF =.又圆心1,02G ⎛⎫- ⎪⎝⎭到直线3460x y +-=的距离32d ==. 设NEF 的边EF 上的高为h ,则点N 到直线346x y +=的距离h 的最小值为31122d r -=-=; 点N 到直线346x y +=的距离h 的最大值为31222d r +=+=(如图).则S 的最小值min 1551224S =⨯⨯=,最大值max 1552222S =⨯⨯=.因此,NEF 的面积S 的取值范围是5542⎡⎤⎢⎥⎣⎦,.【点睛】设00(,)P x y 是圆锥曲线外一点,过点P 作曲线的两条切线,切点为A 、B 两点,则 A 、B 两点所在的直线方程为切点弦方程.常见圆锥曲线的切点弦方程有以下结论: 圆222()()x a y b r -+-=的切点弦方程:200()()()()x a x a y b y b r --+--=, 圆220x y Dx Ey F ++++=的切点弦方程: 0000022x x y yx x y y D E F ++++++= 椭圆22221x y a b+=的切点弦方程:00221x x y y a b +=;双曲线22221x y a b-=的切点弦方程:00221x x y y a b -=;抛物线22y px =的切点弦方程为:00()y y p x x =+.特别地,当00(,)P x y 为圆锥曲线上一点时,可看作两切线重合,两切点A 、B 重合,以上切点弦方程即曲线在P 处的切线方程.51.(1)()1,1P --;(2)1;(3)存在点11,44T ⎛⎫-- ⎪⎝⎭,使得线段TQ 长为定值.理由见解析.【分析】(1)依题意可得四边形PAOB 为正方形,设(),2P x x --,利用平面直角坐标系上两点的距离公式得到方程,计算可得;(2)由221PA PO =-可知当线段PO 长最小时,线段PA 长最小,利用点到线的距离公式求出PO 的最小值,即可得解;(3)设()00,2P x x --,求出以OP 为直径的圆的方程,即可求出公共弦AB 所在直线方程,从而求出动点Q 的轨迹方程,即可得解; 【详解】解:(1)若PA PB ⊥,则四边形PAOB 为正方形, 则P①P 在直线20x y ++=上,设(),2P x x --,则OP =,解得1x =-,故()1,1P --.(2)由221PA PO =-可知当线段PO 长最小时,线段PA 长最小. 线段PO 长最小值即点O 到直线l的距离,故min PO ==所以min 1PA =.(3)设()00,2P x x --,则以OP 为直径的圆的方程为()2222000022224x x x x x y +----⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭, 化简得()220020x x x x y y -+++=,与221x y +=联立,可得AB 所在直线方程为()0021x x x y -+=,联立()002221,1,x x x y x y ⎧-+=⎨+=⎩得()222000002443024x x x x x x x ++----=, ①Q 的坐标为002200002,244244x x x x x x --++++⎛⎫⎪⎝⎭,可得Q 点轨迹为22111448x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,圆心11,44⎛⎫-- ⎪⎝⎭,半径R =.其中原点()0,0为极限点(也可以去掉).故存在点11,44T ⎛⎫-- ⎪⎝⎭,使得线段TQ 长为定值.【点睛】本题考查了直线与圆的位置关系、方程思想、数形结合方法、转化方法,考查运算求解能力和应用意识.52.(1;(2)m = 【分析】(1)由两个圆相交,可将两个圆的方程相减求得直线MN 的方程.利用圆心到直线的距离,结合垂径定理即可求得||MN 的值.(2)设()()1122,,,P x y Q x y ,利用向量的坐标运算表示出1,PC PQ .将直线方程与圆的方程联立,化简后由>0∆求得m 的取值范围,并表示出12x x +,12x x ,进而由直线方程表示出12y y .根据平面向量数量积的坐标运算,代入化简计算即可求得m 的值. 【详解】(1)直线MN 的方程为2222(1)(1)410x y x y -+----+=, 即2 2 10x y ++=;故圆1C 的圆心到2210x y ++=的距离d =故||MN == (2)设()()1122,,,P x y Q x y ,则()()1112121,,,PC x y PQ x x y y =--=--,由22,1,y x m x y =+⎧⎨+=⎩化简可得222210x mx m ++-=, 故()222481840,m m m ∆=--=->解得m < 12x x m +=-,2121,2m x x -=所以()()()212121212y y x m x m x x m x x m =++=+++,又()()2211121211212113,,2PC PQ x y x x y y x x y y x y ⋅=--⋅--=--++=, 又22111x y +=故121212x x y y +=-,故()21212122x x m x x m +++=-, 将12x x m +=-,2121,2m x x -=代入可得222112m m m --+=-,解得m =又因为m <所以2m =± 【点睛】本题考查了圆与圆的位置关系及公共弦长度的求法,直线与圆位置关系的综合应用,由韦达定理求参数的值,平面向量数量积的运算,综合性强,计算量大,属于难题.53.(1)()0,0P 或84,55P ⎛⎫- ⎪⎝⎭;(2)圆过定点()0,2,42,55⎛⎫- ⎪⎝⎭;(3)当25b =时,AB 有最小【分析】(1)设()2,P b b -,由MP b ,得出结果;(2)因为A 、P 、M 三点的圆N 以MP 为直径,所以圆N 的方程为()()222242224b b b x b y +-+⎛⎫++-=⎪⎝⎭,化简为()()222220x y b x y y -+++-=,由方程恒成立可知2222020x y x y y -+=⎧⎨+-=⎩,即可求得动圆所过的定点; (3)由圆M 和圆N 方程作差可得直线AB 方程,设点()0,2M 到直线AB 的距离d ,则AB =.【详解】(1)由题可知,圆M 的半径1r =,设()2,P b b -, 因为P A 是圆M 的一条切线,所以90MAP ∠=︒,所以2MP ==,解得0b =或45b =, 所以点P 的坐标为()0,0P 或84,55P ⎛⎫- ⎪⎝⎭.(2)设()2,P b b -,因为90MAP ∠=︒, 所以经过A 、P 、M 三点的圆N 以MP 为直径, 其方程为()()222242224b b b x b y +-+⎛⎫++-=⎪⎝⎭, 即()()222220x y b x y y -+++-=,由2222020x y x y y -+=⎧⎨+-=⎩, 解得02x y =⎧⎨=⎩或4525x y ⎧=-⎪⎪⎨⎪=⎪⎩,所以圆过定点()0,2,42,55⎛⎫- ⎪⎝⎭.(3)因为圆N 方程为()()222242224b b b x b y +-+⎛⎫++-=⎪⎝⎭, 即()222220x y bx b y b ++-++=①又圆22:430M x y y +-+=①①-①得圆M 方程与圆N 相交弦AB 所在直线方程为 ()22230bx b y b --+-=.点()0,2M 到直线AB的距离d =所以相交弦长AB == 所以当25b =时,AB【点睛】本题考查直线和圆的位置关系,考查定点问题和距离的最值问题,难度较难. 54.(1)k =(2)直线CD 过定点(1,1)- 【分析】(1)由已知结合垂径定理求得圆心到直线的距离,再由点到直线的距离公式列式求得k ; (2)解法1:设切点11(,)C x y ,22(,)D x y ,动点00(,)P x y ,求出两条切线方程,计算出直线CD 的方程,从而得到定点坐标;解法2:由题意可知,O 、P 、C 、D 四点共圆且在以OP为直径的圆上,求出公共弦所在直线方程,再由直线系方程求得定点坐标. 【详解】(1)2AOB π∠=,∴点O 到l 的距离2d r =,k = (2)解法1:设切点11(,)C x y ,22(,)D x y ,动点00(,)P x y ,则圆在点C 处的切线方程为 1111()()0y y y x x x -+-=,所以221111x x y y x y +=+,即112x x y y +=同理,圆在点D 处的切线方程为222x x y y += 又点00(,)P x y 是两条切线的交点, 10102x x y y ∴+=,20202x x y y +=,所以点()11,C x y ,()22,D x y 的坐标都适合方程002x x y y +=, 上述方程表示一条直线,而过C 、D 两点的直线是唯一的, 所以直线CD 的方程为:002x x y y +=. 设(,2)P t t -,则直线CD 的方程为(2)2tx t y +-=, 即()(22)0x y t y +-+=, ∴0220x y y +=⎧⎨+=⎩,解得11x y =⎧⎨=-⎩,故直线CD 过定点(1,1)-.解法2:由题意可知:O 、P 、C 、D 四点共圆且在以OP 为直径的圆上, 设(,2)P t t -,则此圆的方程为:()(2)0x x t y y t -+-+=, 即:22(2)0x tx y t y -+--=, 又C 、D 在圆22:2O x y +=上,两圆方程相减得():220CD l tx t y +--=, 即()(22)0x y t y +-+=, ∴0220x y y +=⎧⎨+=⎩,解得11x y =⎧⎨=-⎩,故直线CD 过定点(1,1)-. 【点睛】本题考查了直线与圆的相交问题,由弦长求直线斜率,只需结合弦长公式计算圆心到直线的距离,然后求得结果,在求直线恒过定点坐标时,一定要先表示出直线方程,然后在求解. 55.(1)22(1)4x y ++=(2y ≠-);(2)证明见解析. 【分析】(1)由题可求出顶点C 的轨迹方程,再利用相关点法可求垂心H 的轨迹方程;(2)利用弦长公式可求||DE ,再利用韦达定理法求||PQ ,由||2||DE PQ =得出2221m k ≥+,然后结合判别式大于零即可证. 【详解】设ABC 的外心为1O ,半径为R ,则有22sin ABR ACB==∠,所以1πcos 13OO R ==即1(0,1)O ,设(,)C x y ,()00,H x y ,有1O C R =,即有22(1)4x y +-=(0y ≠), 由CH AB ⊥,则有0x x =,由AH BC ⊥,则有(00(0AH BC x x y y ⋅=+=,所以有(220(3(1)12x x x y y y yy y---=-===-,则有()220014x y ++=(02y ≠-),所以ABC 垂心H 的轨迹方程为22(1)4x y ++=(2y ≠-); (2)记点(0,1)-到直线l 的距离为d ,则有d =所以||DE==,设()11,P x y,()22,Q x y,联立2221y kx mx y=+⎧⎨+=⎩,有()2222210k x kmx m+++-=,所以()224220k m∆=+->,||PQ==由||2||DE PQ=,可得()()()()()2222222222222418141(1)8412222k m k km mk k kk k++++-=-≤-+++++,所以()22222248(1)212m mk kk++≤+++,即有()()()22222224181(1)22k k mmk k+++≤+++,所以()()()22222222418122(1)22k k mm mk k+++--≥-++,即22222222222221(1)101222k k m k mm mk k k k⎛⎫-=-⇒-≥⇒≥+⎪+++⎝⎭又0∆>,可得2212km<+,所以222112kk+<+,解得22k>,故||k>56.(1)2212xy+=;(2)10x y±-=.【分析】(1)利用22sin cos1θθ+=求得点C的轨迹E的方程.(2)设直线l的方程为1x my=-,联立直线l的方程和曲线E的方程,化简写出根与系数关系,求得MN、PQ,由1PQMN=求得m的值,从而求得直线l的方程.【详解】 (1)设(),C x y ,则,sin x y θθ⎧=⎪⎨=⎪⎩,即cos sin yθθ⎧=⎪⎨⎪=⎩, 所以2212x y +=,所以E 的方程为2212x y +=.(2)由题意知,直线l 的斜率不为0,设直线:1l x my =-,()()()1122,,,,,p p M x y N x y P x y .联立2221,1x y x my ⎧+=⎨=-⎩,消去x ,得()22+2210m y my --=,此时()281m ∆=+0>,且12222m y y m +=+,12212y y m =-+又由弦长公式得MN =整理得2212m MN m ++. 又122+=22p y y m y m =+,所以2212p p x my m -=-=+,所以222222p m PQ x m ++=+,所以1PQMN =, 所以21m =,即1m =±.综上,当1m =±,即直线l 的斜率为±1时,MN PQ =, 此时直线l 为10x y ±-=. 【点睛】求解直线和圆锥曲线相交所得弦长,往往采用设而不求,整体代入的方法来求解.。
高考数学-解析几何-专题练习及答案解析版

高考数学解析几何专题练习解析版82页1.已知双曲线的方程为22221(0,0)x y a b a b-=>>, 过左焦点F 1的直线交双曲线的右支于点P , 且y 轴平分线段F 1P , 则双曲线的离心率是( ) A . 3B .32+C . 31+D . 322. 一个顶点的坐标()2,0, 焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 141322=+y x3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A , B 两点, 且△OAB (O 为坐标原点)的面积为, 则m 6+ m 4的值为( ) A .1B . 2C .3D .44.若直线经过(0,1),(3,4)A B 两点, 则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0, π/2), Q (-2, π), 则有 ( )(A)P 在曲线C 上, Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上, Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65,2(π B .)6,2(π C .)611,2(π D .)67,2(π7.曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数), 则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A .54 B .45C .254 D .4259. 圆06422=+-+y x y x 的圆心坐标和半径分别为( )A.)3,2(-、13B.)3,2(-、13C.)3,2(--、13D.)3,2(-、1310.椭圆12222=+by x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N , 若212F F MN ≤, 则该椭圆离心率取得最小值时的椭圆方程为 ( )A.1222=+y x B. 13222=+y x C.12222=+y x D.13222=+y x 11.过双曲线的右焦点F 作实轴所在直线的垂线, 交双曲线于A , B 两点, 设双曲线的左顶点M , 若MAB ∆是直角三角形, 则此双曲线的离心率e 的值为 ( )A .32B .2C .2D .312.已知)0(12222>>=+b a b y a x , N M ,是椭圆上关于原点对称的两点, P 是椭圆上任意一点且直线PN PM ,的斜率分别为21,k k , 021≠k k , 则21k k +的最小值为1,则椭圆的离心率为( ). (A)22 (B) 42 (C) 23 (D)43 13.设P 为双曲线11222=-y x 上的一点, F 1、F 2是该双曲线的两个焦点, 若2:3:21=PF PF , 则△PF 1F 2的面积为( )A .36B .12C .123D .2414.如果过点()m P ,2-和()4,m Q 的直线的斜率等于1,那么m 的值为( ) A .4B .1C .1或3D .1或415.已知动点(,)P x y 在椭圆2212516x y +=上,若A 点坐标为(3,0),||1AM =u u u u r ,且0PM AM ⋅=u u u u r u u u u r则||PM u u u u r 的最小值是( )A .2B .3C .2D .3 16.直线l 与抛物线交于A,B 两点;线段AB 中点为, 则直线l 的方程为A 、B 、、C 、D 、17.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为32, 过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =u u u r u u u r, 则k =( )(A )1 (B (C (D )2 18.圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( )A.内切B.相交C.外切D.相离 19.已知点P 在定圆O 的圆内或圆周上,动圆C 过点P 与定圆O 相切,则动圆C 的圆心轨迹可能是( )(A)圆或椭圆或双曲线 (B)两条射线或圆或抛物线 (C)两条射线或圆或椭圆 (D)椭圆或双曲线或抛物线20.若直线l :y =kx 与直线2x +3y -6=0的交点位于第一象限, 则直线l 的倾斜角的取值范围是( ) A .[6π, 3π) B .(6π, 2π) C .(3π, 2π) D .[6π, 2π] 21.直线l 与两直线1y =和70x y --=分别交于,A B 两点, 若线段AB 的中点为(1,1)M -, 则直线l 的斜率为( )A .23B .32 C .32- D . 23- 22.已知点()()0,0,1,1O A -, 若F 为双曲线221x y -=的右焦点, P 是该双曲线上且在第一象限的动点, 则OA FP uu r uu r⋅的取值范围为( )A .)1,1 B .C .(D .)+∞23.若b a ,满足12=+b a , 则直线03=++b y ax 过定点( ).A ⎪⎭⎫ ⎝⎛-21,61 B .⎪⎭⎫ ⎝⎛-61,21 C .⎪⎭⎫ ⎝⎛61,21 .D ⎪⎭⎫ ⎝⎛-21,6124.双曲线1922=-y x 的实轴长为 ( ) A. 4 B. 3 C. 2 D. 125.已知F 1 、F 2分别是双曲线1by a x 2222=-(a>0,b>0)的左、右焦点, P 为双曲线上的一点, 若︒=∠9021PF F ,且21PF F ∆的三边长成等差数列, 则双曲线的离心率是( )A .2B . 3C . 4D . 526.过A(1, 1)、B(0, -1)两点的直线方程是( )A.B.C.D.y=x27.抛物线x y 122=上与焦点的距离等于6的点横坐标是( )A .1B .2 C.3 D.428.已知圆22:260C x y x y +-+=, 则圆心P 及半径r 分别为 ( ) A 、圆心()1,3P , 半径10r =; B 、圆心()1,3P , 半径10r =;C 、圆心()1,3P -, 半径10r =;D 、圆心()1,3P -, 半径10r =29.F 1、F 2是双曲线C :x 2- 22y b=1的两个焦点, P 是C 上一点, 且△F 1PF 2是等腰直角三角形, 则双曲线C 的离心率为 A .12 B .22C .32 D .3230.圆01222=--+x y x 关于直线032=+-y x 对称的圆的方程是( ) A.21)2()3(22=-++y x B.21)2()3(22=++-y x C.2)2()3(22=-++y xD.2)2()3(22=++-y x31.如图, 轴截面为边长为34等边三角形的圆锥, 过底面圆周上任一点作一平面α, 且α与底面所成二面角为6π, 已知α与圆锥侧面交线的曲线为椭圆, 则此椭圆的离心率为( )(A )43 (B )23 (C )33 (D ) 22 32.已知直线(2)(0)y k x k =+>与抛物线C :28y x =相交于A.B 两点, F 为C 的焦点,若2FA FB=, 则k =( )A. 13B. 2C. 23D. 2233.已知椭圆23)0(1:2222的离心率为>>=+b a by a x C , 过右焦点F 且斜率为)0(>k k 的直线与B A C ,相交于两点, 若3=, 则=k ( ) A. 1 B .2 C . 3 D .234.已知抛物线2:2(0)C y px p =>的准线为l , 过(1,0)M 且斜率为3的直线与l 相交于点A , 与C 的一个交点为B .若AM MB =u u u u r u u u r, 则P 的值为( )(A )1 (B )2 (C )3 (D )435.若动圆与圆(x -2)2+y 2=1外切, 又与直线x +1=0相切, 则动圆圆心的轨迹方程是 ( ) A.y 2=8x B.y 2=-8x C.y 2=4x D.y 2=-4x36.若R k ∈, 则方程12322=+++k y k x 表示焦点在x 轴上的双曲线的充要条件是( )A .23-<<-kB .3-<kC .3-<k 或2->kD .2->k 37.点(-1, 2)关于直线y =x -1的对称点的坐标是 (A )(3, 2) (B )(-3, -2) (C )(-3, 2) (D )(3, -2) 38.设圆422=+y x 的一条切线与x 轴、y 轴分别交于点B A 、, 则AB 的最小值为( )A 、4B 、24C 、6D 、839.圆220x y ax by +++=与直线220(0)ax by a b +=+≠的位置关系是 ( ) A .直线与圆相交但不过圆心. B . 相切. C .直线与圆相交且过圆心. D . 相离40.椭圆的长轴为A1A2, B 为短轴的一个端点, 若∠A1BA2=120°, 则椭圆的离心率为A .36B .21C .33D .2341.已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称, 则圆C 的方程为( ) A .(x +1)2+y 2=1 B .x 2+y 2=1 C .x 2+(y +1)2=1 D .x 2+(y -1)2=142.已知直线l 经过坐标原点, 且与圆22430x y x +-+=相切, 切点在第四象限, 则直线l 的方程为( )A.3y x = B .3y x =- C .3y x =D .3y x =- 43.当曲线214y x =+-与直线240kx y k --+=有两个相异的交点时, 实数k 的取值范围是 ( ) A .5(0,)12 B .13(,]34 C .53(,]124 D .5(,)12+∞ 44.已知F 1、F 2分别是双曲线22221x y a b-=的左、右焦点,P 为双曲线右支上的任意一点且212||8||PF a PF =, 则双曲线离心率的取值范围是( ) A. (1,2]B. [2 +∞)C. (1,3]D. [3,+∞)45.已知P 是圆22(3)(3)1x y -+-=上或圆内的任意一点, O 为坐标原点,1(,0)2OA =u u u r , 则OA OP ⋅u u u r u u u r 的最小值为( )A .12B .32C .1D .246.已知0AB >且0BC <, 则直线0Ax By C ++=一定不经过( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限47.[2012·课标全国卷]等轴双曲线C 的中心在原点, 焦点在x 轴上, C 与抛物线y 2=16x 的准线交于A , B 两点, |AB|=43, 则C 的实轴长为( )A.2B.22C.4D.8 48.双曲线具有光学性质:“从双曲线的一个焦点发出的光线经过双曲线反射后, 反射光线的反向延长线都汇聚到双曲线的另一个焦点。
高中数学解析几何深度练习题及答案

高中数学解析几何深度练习题及答案1. 平面几何题目一:已知平面上三点A(1, -2),B(3, 4),C(7, 1),求证:三角形ABC为等腰三角形。
解答:首先计算AB、AC、BC的长度,分别利用两点之间的距离公式:AB = √[(3-1)^2 + (4-(-2))^2] = √[4 + 36] = √40AC = √[(7-1)^2 + (1-(-2))^2] = √[36 + 9] = √45BC = √[(7-3)^2 + (1-4)^2] = √[16 + 9] = √25由于AB的平方等于BC的平方,即AB^2 = BC^2,可以得出AB = BC。
因此,三角形ABC为等腰三角形。
题目二:已知平面上直线L1过点A(2, -1),斜率为k,与直线L2:3x + ky + 5 = 0 互相垂直,求k的值。
解答:首先计算直线L2的斜率:L2: 3x + ky + 5 = 0化简得:ky = -3x - 5因此,L2的斜率k2为 -3/k。
由于L1与L2互相垂直,根据垂直直线的特性可知斜率k1与k2之积为 -1。
即 k * (-3/k) = -1。
解上述方程可以得出:k^2 = 3,因此k的两个解为k = √3 和 k = -√3。
题目三:已知直线L1:4x + 3y - 2 = 0 与直线L2垂直,并且直线L2通过点A(5,-1),求直线L2的方程式。
解答:由于L1与L2垂直,它们的斜率之积为 -1。
L1的斜率为 -4/3,所以L2的斜率为 3/4。
通过点斜式可以得到L2的方程式:y - (-1) = (3/4)(x - 5)化简得到:y = (3/4)x + 2因此,直线L2的方程式为:y = (3/4)x + 2。
2. 空间几何题目一:已知直线L1:x = 3 - 2t,y = 5 + 3t,z = -1 + 4t,求直线L1的参数方程。
解答:直线的参数方程为x = x0 + at,y = y0 + bt,z = z0 + ct,其中(a, b, c)为直线的方向向量。
解析几何大题及答案

解析几何大题及答案解析几何是数学中的一个重要分支,研究的是空间图形的性质和变换。
在高中数学中,解析几何是一个关键的考点,也是学生容易遇到的难点之一。
本文将解析几何中的几个大题进行解析,并给出详细的答案。
一、平面直角坐标系与向量1. 设平面上一直线的方程为3x-y+4=0,求该直线的斜率及与坐标轴的交点坐标。
答案:首先将直线的方程转化为斜截式的形式,即y=3x+4。
由此可得该直线的斜率为3。
与x轴的交点坐标可通过令y=0,解得x=-4/3;与y轴的交点坐标可通过令x=0,解得y=4。
因此,该直线与x轴的交点坐标为(-4/3,0),与y轴的交点坐标为(0,4)。
2. 已知平面内的向量a=(4,3),求向量2a的模和方向角。
答案:向量2a=(2*4,2*3)=(8,6)。
模可以通过向量的标准模公式计算:|2a|=√((8)^2+(6)^2)=√100=10。
方向角可以通过向量的方向角公式计算:tanθ=y/x=6/8=3/4,所以θ=arctan(3/4)。
因此,向量2a的模为10,方向角为arctan(3/4)。
二、直线的方程与位置关系1. 设直线L1过点A(1,3)且与直线L2:2x+3y-7=0相交于点B,求线段AB的中点坐标。
答案:首先求直线L1的方程,由过点A(1,3),设斜率为k,则直线L1的方程为y-3=k(x-1)。
将直线L2的方程与直线L1的方程联立,可求出点B的坐标。
解方程组得到B的坐标为(-1,3)。
线段AB的中点坐标可以通过两点坐标的平均值计算:((1+(-1))/2,(3+3)/2)=(0,3)。
因此,线段AB的中点坐标为(0,3)。
2. 设直线L1:x+2y-3=0与直线L2:2x-y-1=0相交于点A,直线L1与直线L3:2x+3y-4=0平行,求直线L3的方程。
答案:由直线L1与直线L2的方程可解得直线L1与直线L2的交点A的坐标为(1,1)。
由直线L1与直线L3平行可得其斜率相等,即2=3k,解得k=2/3。
高中数学解析几何测试题(答案版)

解析几何练习题一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( )A 、12B 、12- C 、13D 、13-3.若直线32:1+=x y l ,直线2l 与1l 关于直线x y -=对称,则直线2l 的斜率为 ( )A .21B .21- C .2 D .2- 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( )A .y -1=3(x -3)B .y -1=-3(x -3)C .y -3=3(x -1)D .y -3=-3(x -1)5.直线02032=+-=+-y x y x 关于直线对称的直线方程是 ( ) A .032=+-y xB .032=--y xC .210x y ++=D .210x y +-=6.若直线()1:4l y k x =-与直线2l 关于点)1,2(对称,则直线2l 恒过定点( )A .0,4B .0,2C .2,4D .4,27.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为31,则m ,n 的值分别为A.4和3B.-4和3C.- 4和-3D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( )A.(x -2)2+(y+3)2=12B.(x -2)2+(y+3)2=2C.(x +2)2+(y -3)2=12D.(x +2)2+(y -3)2=210.已知点(,)P x y 在直线23x y +=上移动,当24x y +取得最小值时,过点(,)P x y 引圆22111()()242x y -++=的切线,则此切线段的长度为( )A .2B .32C .12D .211.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则弦AB 所在直线方程为( ) A .50x y --=B .50x y -+=C .50x y ++=D .50x y +-=12.直线3y kx =+与圆()()22324x y -+-=相交于M,N 两点,若MN ≥则k 的取值范围是( )A. 304⎡⎤-⎢⎥⎣⎦,B.[]304⎡⎤-∞-+∞⎢⎥⎣⎦,,C. ⎡⎢⎣⎦ D. 203⎡⎤-⎢⎥⎣⎦, 二填空题:(本大题共4小题,每小题4分,共16分.)13.已知点()1,1A -,点()3,5B ,点P 是直线y x =上动点,当||||PA PB +的值最小时,点P 的坐标是 。
高二解析几何的练习题及答案

高二解析几何的练习题及答案解析几何是数学中的一个重要分支,也是高中数学课程中必不可少的一部分。
高二阶段是学习解析几何的关键时期,为了帮助同学们更好地掌握解析几何的知识,以下是一些高二解析几何的练习题及其答案。
题目一:已知直线l1的方程为2x + y = 5,直线l2经过点A(2, 3)且与l1垂直,求直线l2的方程。
解析:由已知条件可知,直线l2过点A(2, 3)且垂直于直线l1。
由于两条直线垂直,则它们的斜率之积为-1。
而直线l1的斜率为-2,所以直线l2的斜率为1/2(-1/(-2))。
直线l2过点A(2, 3),可以使用点斜式来求解。
点斜式的一般形式为y - y1 = k(x - x1),其中(x1, y1)为已知点,k为该直线的斜率。
代入已知数据,可得直线l2的方程为y - 3 = 1/2(x - 2)。
题目二:已知锐角三角形ABC,其中∠B = 60°,AC = 2√3,AD ⊥ BC,D为BC的中点,求BD的长度。
解析:由于锐角三角形ABC中∠B = 60°,所以∠A = 180° - 90° - 60° = 30°。
根据正弦定理,可得:AC/sin∠A = BC/sin∠B2√3/sin30° = BC/sin60°化简可得BC = 4,因此BD = BC/2 = 2。
题目三:圆O的半径为r,点A、B分别在圆上,AB的长度为l,点C在圆内,且AC与BC的长度分别为h1和h2。
已知h1 + h2 = k,求l的最大值。
解析:根据题意,可以发现线段AC和BC分别是圆内的两条弦。
而在一个圆内,两条弦长度之和是一定的。
所以,若想使l的值最大,就需要使h1和h2的差值最小,即h1 ≈ h2。
由于AC和BC分别是圆内的两条弦,根据圆内接角的性质,可知AC和BC需要相交于圆的直径上。
因此,当h1 ≈ h2时,等腰三角形ABC的底边l的长度最大。
高中数学解析几何试题及答案

解析几何一.命题趋向与解题方法、技巧 1.圆锥曲线基础题 主要是考查以下问题:①圆锥曲线的两种定义、标准方程、焦点、常见距离及其p e c b a ,,,,五个参数的求解;②讨论圆锥曲线的几何性质;③曲线的交点问题,即直线与二次曲线和两圆的交点问题;④圆锥曲线的对称性,一是曲线自身的对称性,二是曲线间的对称性。
2.轨迹问题主要有三种类型:①曲线形状已知,求其方程;②曲线形状未定,求其方程;③由曲线方程讨论其形状(一般含参数)。
此类问题解题步骤通常是通过建立坐标系,设动点的坐标,依题意设条件,列出等式、代入化简整理即得曲线的轨迹方程。
基本方法有:直译法、定义法、代入法、交轨法、几何法、参数法。
3.参数取值范围问题通常依据题设条件,建立含有参变量的函数关系式或不等式,然后确定参数的取值范围。
基本方法有定义法、函数法、方程法、不等式法及几何法。
4.位置关系常涉及直线与圆锥曲线交点的判定、弦长、弦中点、垂直、对称、共线等问题。
应注意充分利用圆锥曲线的基本性质及韦达定理、方程思想。
根据新教材的特点,常结合平面向量的基本知识进行考查。
5.最值问题通常是依题设条件,建立目标函数,然后用求最值的方法来处理;有时也可用数形结合思想,利用几何法分析。
6.韦达定理在解决解析几何问题中的主要应用韦达定理在解决解析几何问题中起着重要作用,特别是在解决有关弦长、两条直线互相垂直、弦中点、对称、轨迹、定点问题时能化难为易,化繁为简。
【专题训练】一 、选择题1.从一块短轴长为2b 的椭圆形玻璃镜中划出一块面积最大的矩形,其面积的取值范围是223,4b b ⎡⎤⎣⎦,则这一椭圆离心率e 的取值范围是( )A .]23,35[B .]22,33[C .]22,35[D .]23,33[ 2.已知A 、B 是抛物线px y 22=(0p >)上异于原点O 的两点,则“OA ·0OB =”是“直线AB 恒过定点(0,2p )”的( ) A .充分非必要条件 B .充要条件 C .必要非充分条件 D .非充分非必要条件3.设椭圆的两个焦点分别为12F F ,,过2F 作椭圆长轴的垂线交椭圆于点P ,若12F PF △为等腰直角三角形,则椭圆的离心率是 ( )A BC .2D 14.已知椭圆22221(0)x ya b a b+=>>与x 轴的正半轴交于点A O ,是原点,若椭圆上存在一点M ,使MA MO ⊥,则椭圆的离心率的取值范围是 ( )A .1,12⎛⎫⎪⎝⎭ B .⎤⎥⎣⎦ C .⎫⎪⎪⎣⎭D .⎫⎪⎪⎝⎭ 5.已知3AB =, A 、B 分别在y 轴和x 轴上运动,O 为原点,1233OP OA OB =+,则动点P 的轨迹方程是( )A . 1422=+y xB . 1422=+y xC .1922=+y xD .1922=+y x 6.已知直线:2430l x y ++=,P 为l 上的动点,O 为坐标原点,点Q 分线段OP 为1:2两部分,则点Q 的轨迹方程为( )A .2410x y ++=B .2430x y ++=C .2420x y ++=D .210x y ++=二、填空题 7.过抛物线214y x =准线上任一点作抛物线的两条切线,若切点分别为,M N ,则直线MN 过定点 .8.过抛物线22(0)y px p =>的焦点F 的直线l 交抛物线于,A B 两点,交准线于点C .若2CB BF =,则直线AB 的斜率为 .9.河上有抛物线型拱桥,当水面距拱顶5m 时,水面宽为8m ,一小船宽4m ,高2m ,载货后船露出水面上的部分高34m ,当小船开始不能通航时,水面上涨到距抛物线拱顶相距 m .三、解答题10.椭圆C 的一个焦点F 恰好是抛物线24y x =-的焦点,离心率是双曲线224x y -=离心率的倒数.(1)求椭圆C 的标准方程; (2)设过点F 且不与坐标轴垂直的直线l 交椭圆于,A B 两点,线段AB 的垂直平分线与x 轴交于点G ,当点G 的横坐标为14-时,求直线l 的方程.11.椭圆的对称中心在坐标原点,一个顶点为)2,0(A ,右焦点F 与点,B 的距离为2.(1)求椭圆的方程;(2)是否存在斜率0≠k 的直线l :2-=kx y ,使直线l 与椭圆相交于不同的两点N M ,满足||||AN AM =,若存在,求直线l 的倾斜角α;若不存在,说明理由.12.在ABC ∆中AC =B 是椭圆22154x y +=在x 轴上方的顶点,l 的方程是1y =-,当AC 在直线l 上运动时.(1)求ABC ∆外接圆的圆心P 的轨迹E 的方程;(2)过定点3(0,)2F 作互相垂直的直线12,l l ,分别交轨迹E 于,M N 和,R Q ,求四边形MRNQ 面积的最小值.【专题训练参考答案】1.解析:A 设椭圆方程为()222210x y a b a b+=>>,设矩形在第一象限的顶点坐标为(),x y ,根据对称性该矩形的面积为224422x y x y S xy ab ab ab a b a b ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫==≤+=⎢⎥ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,即划出的矩形的最大面积是2ab ,根据已知22324b ab b ≤≤,即322b a b ≤≤,即1223b a ≤≤,故32c e a ===⎣⎦.2.解析:B3.解析:D 由题意,得1212PF F ===,又由椭圆的定义,得122PF PF a +=.即22c a +=,则1)a c =,得1ce a=,故选D.4.解析:D 设()M x y ,,则MA MO ⊥,得1y yx x a=-·.将其与椭圆方程联立,消去y 得222()()0x a b x a x b a --+=.由x a ≠,得22222ab ab x a b c==-.()M x y ,∵在椭圆上,[]x a a ∈-,∴, 又MA MO ⊥,则(0)x a ∈,,即220ab a c<<,2201b c <<∴,2222212a b c c +<=<,则2212c a >,e ∴.又01e <<∵,1e <<.5.解析:A 设()0,A a ,(),0B b ,则由3AB =得229a b +=.设(),P x y ,由1233OP OA OB =+得()()()12,0,,033x y a b =+,由此得32b x =,3a y =,代入229a b +=得2222999144x y x y +=⇒+=.6.解析:A 设点Q 的坐标为(),x y ,点P 的坐标为()11,x y .∵Q 分线段OP 为1:2,∴⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=+=211212112111y y x x ,即⎩⎨⎧==y y x x 3311 ∵点P 在直线l 上,∴112430x y ++=,把113,3x x y y ==代入上式并化简,得2410x y ++=,为所求轨迹方程.7.解析:()0,1.8.解析:3± 涉及抛物线的焦点弦的时候,常用应用抛物线的定义.注意本题有两解.9.解析:2 如图 建立适当的坐标系,设拱桥抛物线方程为)0(22>-=p py x ,由题意,将()4,5B -代入方程得58=p ,∴抛物线方程为y x 5162-=.∵ 当船的两侧和拱桥接触时船不能通航. 设此时船面宽为/AA , 则()2,A A y ,由A y 51622-=,得45-=A y ,又知船面露出水面上部分为34m ,324A h y m =+=.即水面上涨到距抛物线拱顶2m 时小船不能通航.10.解析:(1)根据已知该椭圆的一个焦点坐标是()1,0F -,即1c =,双曲线224x y -=2,2,即2c e a ==,故2a =从而1b =, 所以所求椭圆的标准方程是2212x y +=.(2)设直线l 的方程为(1)(0),y k x k =+≠代入221,2x y += 整理得2222(12)4220.k x k x k +++-=(6分)直线AB 过椭圆的左焦点F ,∴方程有两个不等实根. 记1122(,),(,),A x y B x y AB 中点00(,),N x y则21224,21k x x k +=-+故20122221k x x x k =+=-+,()002121ky k x k =+=+. (9分)又AB 的垂直平分线NG 的方程为001().y y x x k-=-- (10分) 令0,y =得22200222221112121212424G k k k x x ky k k k k =+=-+=-=-+=-++++,解得2k =±,故直线l的方程为()12y x =±+.11.解析:(1)依题意,设椭圆方程为)0(12222>>=+b a by a x ,则其右焦点坐标为22,)0,(b a c c F -=,由=||FB 2,得2=,即2(24c +=,解得22=c .又 ∵2=b ,∴ 12222=+=b c a ,即椭圆方程为141222=+y x . (2)由||||AN AM =知点A 在线段MN 的垂直平分线上, 由⎪⎩⎪⎨⎧=+-=1412222y x kx y 消去y 得12)2(322=-+kx x 即012)31(22=-+kx x k (*)由0≠k ,得方程(*)的0144)12(22>=-=∆k k ,即方程(*)有两个不相等的实数根.设),(11y x M 、),(22y x N ,线段MN 的中点),(00y x P ,则2213112k kx x +=+,∴22103162k k x x x +=+=, ∴ 22220031231)31(262k k k k kx y +-=++-=-=,即)312,316(22kk k P +-+ ,0≠k ,∴直线AP 的斜率为k k k k k k 6)31(2231623122221+--=+-+-=, 由AP MN ⊥,得16)31(222-=⨯+--k kk , ∴ 66222=++k ,解得:33±=k ,即33tan ±=α,又πα<≤0,故 6πα=,或65πα=,∴ 存在直线l 满足题意,其倾斜角6πα=,或65πα=.12.解析:(1)由椭圆方程22154x y +=得点(0,2),B 直线l 方程是1y =-AC ∴=且AC 在直线l 上运动.可设(1),(1),A m C m --则AC 的垂直平分线方程为x m = ①AB的垂直平分线方程为12y x -= ② P 是ABC ∆的外接圆圆心,∴点P 的坐标(,)x y 满足方程①和②由①和②联立消去m 得26x y =故圆心P 的轨迹E 的方程为26x y =(2)由图可知,直线1l 和2l 的斜率存在且不为零,设1l 的方程为32y kx =+, 12l l ⊥,2l ∴的方程为132y x k =-+.由23216y kx y x ⎧=+⎪⎪⎨⎪=⎪⎩得 2690x kx --= △=226360,k ∆=+>∴直线1l 与轨迹E 交于两点. 设1122(,),(,)M x y N x y ,则12126,9x x k x x +==.2||6(1).MN k ∴===+同理可得:21||6(1).RQ k=+∴四边形MRNQ 的面积2211||||18(2)18(272.2S MN RQ k k =•=++≥+= 当且仅当221k k=,即1k =±时,等号成立.故四边形MRNQ 的面积的最小值为72.。
解析几何小题真题及答案

解析几何小题真题及答案是高中数学中的一个重要知识点,它涉及到平面几何与代数的融合,能够培养学生的逻辑思维能力和解决实际问题的能力。
在这篇文章中,我们将的一些真题及其解答,帮助大家更好地理解和掌握该知识点。
第一题:已知直线L1过点A(3,4)和点B(6,8),直线L2过点C(2,-1)且与L1垂直,求L2的方程。
解答:首先,我们知道如果两条直线垂直,那么它们的斜率的乘积为-1。
所以,我们先求出直线L1的斜率。
斜率k = (y2 - y1) / (x2 - x1)= (8 - 4) / (6 - 3)= 4/3因为L2与L1垂直,所以L2的斜率与L1的斜率之积为-1。
由此可得L2的斜率为-3/4。
接下来,我们需要求出直线L2的方程。
已知直线L2过点C(2,-1),用点斜式可以得到:y - y1 = k(x - x1)y + 1 = (-3/4)(x - 2)y + 1 = (-3/4)x + 3/2y = (-3/4)x + 1/2所以,直线L2的方程为y = (-3/4)x + 1/2。
第二题:点A(x, y)在椭圆x^2/9 + y^2/4 = 1上,求A到x轴的距离。
解答:首先,我们知道椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1。
所以,这个椭圆的长轴为6,短轴为4。
由题目可知点A(x, y)在椭圆上,代入椭圆的标准方程我们有:x^2/9 + y^2/4 = 1解得y = 2√(1 - x^2/9)点A到x轴的距离即为点A到x轴的垂直距离,即|y|。
所以,A 到x轴的距离为2√(1 - x^2/9)。
第三题:已知直线y = 2x + 3和圆x^2 + y^2 = 25相交于点A 和点B,求直线AB的斜率。
解答:首先,我们可以通过解方程组的方法求出直线y = 2x + 3和圆x^2 + y^2 = 25的交点。
将直线y = 2x + 3代入圆的方程,我们有:x^2 + (2x + 3)^2 = 25x^2 + 4x^2 + 12x + 9 = 255x^2 + 12x - 16 = 0解这个二次方程,我们得到x = 1和x = -3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何练习题
一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,
只有一项是符合题目要求的.)
1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( )
A 、12
B 、12
- C 、13
D 、13
-
3.若直线,直线与关于直线对称,则直线的斜率为 ( )
A .
B .
C .
D . 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( )
A .y -1=3(x -3)
B .y -1=-3(x -3)
C .y -3=3(x -1)
D .y -3=-3(x -1)
5.直线对称的直线方程是 ( ) A .
B .
C .
D .
6.若直线与直线关于点对称,则直线恒过定点( )
32:1+=x y l 2l 1l x y -=2l 2
1
2
1-22-02032=+-=+-y x y x 关于直线032=+-y x 032=--y x 210x y ++=210x y +-=()1:4l y k x =-2l )1,2(2l
A .
B .
C .
D .
7.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为3
1,则m ,n 的值分别为
A.4和3
B.-4和3
C.- 4和-3
D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( )
A.(x -2)2
+(y+3)2
=1
2
B.(x -2)2+(y+3)2=2
C.(x +2)2
+(y -3)2
=1
2
D.(x +2)2+(y -3)2=2
10.已知点在直线上移动,当取得最小值时,过点引圆的切线,则此切线段的长度为( )
A .
B .
C .
D .
11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则
弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++=
D .50x y +-=
0,40,22,44,2(,)P x y 23x y +=24x y +(,)P x y 22111()()242
x y -++
=2
321
22
12.直线与圆相交于M,N 两点,若
则k 的取值范围是( )
A. B. C. D. 二填空题:(本大题共4小题,每小题4分,共16分.)
13.已知点()1,1A -,点()3,5B
,点P 是直线y x =
上动点,当||||PA PB +的值最小时,点P 的坐标是 。
14.已知A 、B 是圆O :x 2+y 2=16上的两点,且|AB|=6,若以AB 为直径的圆M 恰好经过点C(1,-1),则圆心M 的轨迹方程是 。
15.在平面直角坐标系xOy 中,已知圆422=+y x 上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c 的取值范围是________。
16.与直线x-y-4=0和圆x 2+y 2+2x-2y=0都相切的半径最小的圆的方程是_______。
三、解答题:(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.)
17.求适合下列条件的直线方程:
(1)经过点P (3,2),且在两坐标轴上的截距相等;
(2)经过点A (-1,-3),倾斜角等于直线y=x 的倾斜角的2倍。
(12分)
18.已知直线l 1:ax+2y+6=0和直线l 2:x+(a-1)y+a 2-1=0,
3y kx =+()()22
324x y -+-=MN ≥304⎡⎤-⎢⎥⎣⎦,[]304⎡
⎤-∞-+∞⎢⎥⎣
⎦,,⎡⎢⎣
⎦203⎡⎤-⎢⎥⎣⎦,
(1)试判断l 1与l 2是否平行; (2)l 1⊥l 2时,求a 的值. (12分)
参考答案
一选择题
ACADA BCBBA AA 二填空题
13【答案】()2,2 14【答案】(x -1)2
+(y +1)2
=9 15【答案】(-13,13)16
三解答题
17.解 (1) 设直线l 在x,y 轴上的截距均为a, 若a=0,即l 过点(0,0)和(3,2), ∴l 的方程为y=3
2
x ,即2x-3y=0.
若a ≠0,则设l 的方程为1=+
b
y
a x , ∵l 过点(3,2),∴12
3
=+
a
a , ∴a=5,∴l 的方程为x+y-5=0,
综上可知,直线l 的方程为2x-3y=0或x+y-5=0. (2)所求直线方程为y=-1,
18.解 (1) 当a=1时,l 1:x+2y+6=0, l 2:x=0,l 1不平行于l 2; 当a=0时,l 1:y=-3,
l 2:x-y-1=0,l 1不平行于l 2;
22
(1)(1)2x y -++=
当a ≠1且a ≠0时,两直线可化为 l 1:y=-x a 2
-3,l 2:y=
x a
-11
-(a+1), l 1∥l 2⇔⎪⎩
⎪⎨⎧+-≠--=
-)1(3112a a a
,解得a=-1,
综上可知,a=-1时,l 1∥l 2,否则l 1与l 2不平行.
(2) 当a=1时,l 1:x+2y+6=0,l 2:x=0, l 1与l 2不垂直,故a=1不成立.
当a ≠1时,l 1:y=-2
a
x-3, l 2:y=x a
-11
-(a+1),
由⎪⎭
⎫
⎝⎛-2a ·
a
-11=-1⇒a=3
2.。