最新高中概率高考真题总结

合集下载

高考数学经典试题与解析 专题九 计数原理与概率统计

高考数学经典试题与解析 专题九 计数原理与概率统计

专题九计数原理与概率统计——2025届高考数学考点剖析精创专题卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.[2023年全国高考真题]某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.16B.13C.12D.231.答案:D解析:依题意,用1A ,2A 表示高一的2名学生,1B ,2B 表示高二的2名学生,则从4名学生中随机选2名学生的选法有()12,A A ,()12,B B ,()11,A B ,()12,A B ,()21,A B ,()22,A B ,共6种,其中2名学生来自不同年级的选法有()11,A B ,()12,A B ,()21,A B ,()22,A B ,共4种,所以所求概率4263P ==,故选D.2.将甲、乙等5名同学分别保送到北京大学、上海交通大学、浙江大学三所大学就读,则每所大学至少保送一人的不同保送方法有()A.120种 B.150种 C.180种 D.240种2.答案:B解析:根据题意,分2步进行分析:①先将甲、乙等5名同学分成3组:若分成1,2,2的3组,则有12254222C C C15 A =(种)方法;若分成1,1,3的3组,则有11354322C C C 10 A =(种)方法,故将5人分成3组,每组至少有1人,有151025+=(种)分组方法.②将分好的3组对应三所大学,则每所大学至少保送一人的不同保送方法有3325A 150=(种).3.[2023春·高二·四川内江·期中校考]在12nx ⎫-⎪⎭的展开式中,只有第五项的二项式系数最大,则展开式中6x 的系数是()A.454B.358-C.358D.73.答案:C解析:依题意知第五项的二项式系数最大,所以一共是9项,所以8n =,二项式展开项的通项公式为842218811C C 22rrr rr r r r T x x x -++⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,令462r +=,得4r =,所以6x 的系数为448135C 28⎛⎫-= ⎪⎝⎭.故选C.4.抛掷一枚质地均匀的骰子两次,记A ={两次的点数均为奇数},B ={两次的点数之和为8},则()P B A =∣()A.112B.29C.13D.234.答案:B解析:易知()()()n AB P BA n A =∣,其中AB 表示“两次的点数均为奇数,且两次的点数之和为8”,共有两种情况,即(3,5),(5,3),故()2n AB =.而1133()C C 9n A =⋅=,所以()2()()9n AB P B A n A ==∣.故选B.5.[2023春·高二·江苏盐城·月考联考]已知服从正态分布()2,N μσ的随机变量在区间(],μσμσ-+,(]2,2μσμσ-+和(]3,3μσμσ-+内取值的概率分别为68.26%,95.44%和99.74%.若某校高二年级1000名学生的某次考试成绩X 服从正态分布()290,15N ,则此次考试成绩在区间(]105,120内的学生大约有()A.477人B.136人C.341人D.131人5.答案:B 解析:根据题意,()()()60120751050.95440.68261051200.135922P X P X P X <≤-<≤-<≤===,则10000.1359135.9136⨯=≈,故此次考试成绩在区间(]105,120内的学生大约有136人.故选:B.6.某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x (元)99.29.49.69.810销量y (件)1009493908578预计在今后的销售中,销量与单价仍然服从这种线性相关关系,且该产品的成本是5元/件,为使工厂获得最大利润,该产品的单价应定为()参考公式:对于一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归直线y bx a =+的斜率和截距的最小二乘估计分别为1221ˆniii nii x ynxy bxnx ==-=-∑∑,ˆˆay bx =-.参考数据:615116iii x y==∑,622160.7i i x x =-=∑.A.9.4元B.9.5元C.9.6元D.9.7元6.答案:B解析:由题意,得1(99.29.49.69.810)9.56x =⨯+++++=,1(1009493908578)906y =⨯+++++=,6162216511669.590ˆ200.76i ii ii x y xybxx ==--⨯⨯===--∑∑,ˆ909.520280a=+⨯=,则ˆ20280y x =-+.设工厂获得利润L 元,则2(5)(20280)20(9.5)405L x x x =--+=--+,当9.5x =时,L 取得最大值.所以当单价定为9.5元时,工厂获得最大利润,故选B.7.[2024春·高一·河南三门峡·期末校考]某高中为了积极响应国家“阳光体育运动”的号召,调查该校3000名学生每周平均体育运动时长的情况,从高一、高二、高三三个年级学生中按照4:3:3的比例进行分层随机抽样,收集了300名学生每周平均体育运动时长(单位:小时)的数据,整理后得到如图所示的频率分布直方图.下列说法不正确的是()A.估计该校学生每周平均体育运动时长为5.8小时B.估计该校高一年级学生每周平均体育运动时长不足4小时的人数为300C.估计该校学生每周平均体育运动时长不少于8小时的百分比为10%D.估计该校学生每周平均体育运动时长不少于8小时的人数为6007.答案:C解析:对于A,估计该校学生每周平均体育运动时长为10.0530.250.370.2590.15110.05 5.8⨯+⨯+⨯+⨯+⨯+⨯=(小时),故选项A 正确;对于B,该校高一年级的总人数为430001200433⨯=++,由题中频率分布直方图可知,该校学生每周平均体育运动时长不足4小时的频率为()0.0250.120.25+⨯=,所以估计该校高一年级学生每周平均体育运动时长不足4小时的人数为12000.25300⨯=,故选项B 正确;对于C,估计该校学生每周平均体育运动时长不少于8小时的百分比为()0.0750.0252100%20%+⨯⨯=,故选项C 错误;对于D,估计该校学生每周平均体育运动时长不少于8小时的人数为300020%600⨯=,故选项D 正确.故选:C.8.甲、乙、丙三人参加“社会主义核心价值观”演讲比赛,若甲、乙、丙三人能荣获一等奖的概率分别为12,23,34,且三人是否获得一等奖相互独立,则这三人中至少有两人获得一等奖的概率为()A.14B.724C.1124D.17248.答案:D解析:设甲、乙、丙获得一等奖的概率分别是()12P A =,()23P B =,()34P C =,则不获一等奖的概率分别是()11122P A =-=,()21133P B =-=,()31144P C =-=,则这三人中恰有两人获得一等奖的概率为:()()()()()()()()()()()()P ABC P ABC P ABC P A P B P C P A P B P C P A P B P C ++=++1231131211123423423424=⨯⨯+⨯⨯+⨯⨯=,这三人都获得一等奖的概率为()()()()12312344P ABC P A P B P C ==⨯⨯=,所以这三人中至少有两人获得一等奖的概率1111724424P =+=.故选:D.二、多项选择题9.[2020年全国高考真题]我国新冠肺炎疫情防控进入常态化,各地有序推动复工复产.下面是某地连续11天的复工、复产指数折线图.根据该折线图,()A.这11天复工指数和复产指数均逐日增加B.在这11天期间,复产指数的增量大于复工指数的增量C.第3天至第11天,复工指数和复产指数都超过80%D.第9天至第11天,复产指数的增量大于复工指数的增量9.答案:CD解析:由题图可知第8,9天复工指数和复产指数均减小,故A 错误;第1天时复工指数小于复产指数,第11天时两指数相等,故复产指数的增量小于复工指数的增量,故B 错误;由题图可知第3天至第11天,复工复产指数都超过80%,故C 正确;第9天至第11天,复产指数的增量大于复工指数的增量,故D 正确.10.已知()*nx n ⎛+∈ ⎝N 的展开式中共有7项,则该二项展开式中()A.所有项的二项式系数和为64 B.所有项的系数和为1C.二项式系数最大的项为第4项 D.有理项共有4项10.答案:ACD解析:由题意知6n =,则6x ⎛⎝的展开式的通项为3666216C C (0,1,2,,6)2rr rr r r r T x x r --+===⋅ .对于A ,所有项的二项式系数和为6264=,故A 正确;对于B ,令1x =,得6613122⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,因此所有项的系数和为632⎛⎫⎪⎝⎭,不为1,故B 错误;对于C,由二项式系数的性质,可知6x ⎛⎝的展开式中第4项的二项式系数最大,为36C 20=,故C 正确;对于D ,当362r-∈Z ,即0,2,4,6r =时,对应的项为有理项,共有4项,故D 正确.故选ACD.11.[2023春·高二·江苏·期中联考]红、黄、蓝被称为三原色,选取任意几种颜色调配,可以调配出其他颜色.已知同一种颜色混合颜色不变,等量的红色加黄色调配出橙色,等量的红色加蓝色调配出紫色,等量的黄色加蓝色调配出绿色.现有红、黄、蓝颜料各2瓶,甲同学从6瓶中任取2瓶颜料,乙同学再从余下的4瓶中任取2瓶颜料,两人分别进行等量调配,A 表示事件“甲同学调配出红色”,B 表示事件“甲同学调配出绿色”,C 表示事件“乙同学调配出紫色”,则下列说法正确的是()A.1()15P A =B.1()4P C A =∣C.4()45P BC =D.事件B 与事件C 相互独立11.答案:AC解析:从6瓶中任取2瓶颜料的方法数为26C .对于A ,A 表示事件“甲同学调配出红色”,若调出红色,需要2瓶颜料均为红色,有22C 种方法,则2226C 1()C 15P A ==,故A 正确;对于B ,事件A 发生需要2瓶颜料均为红色,事件C 发生需要1瓶红色颜料和1瓶蓝色颜料,在事件A 发生的条件下,事件C 不可能发生,所以()0P CA =∣,故B 错误;对于C ,若事件B 发生,则甲同学取出1瓶黄色颜料和1瓶蓝色颜料,则112226C C 4()C 15P B ==,此时还剩1瓶黄色颜料和1瓶蓝色颜料,2瓶红色颜料,则1224C 1()C 3P C B ==∣,故414()()()15345P BC P B P C B =⨯=⨯=∣,故C 正确;对于D ,若事件C 发生,则乙取了1瓶红色颜料和1瓶蓝色颜料,甲同学取了至少1瓶黄色颜料或甲同学取了一瓶红色颜料和一瓶蓝色颜料,则21111111222242222264C C C C C C C C 4()C C 15P C ++==,444()()()151545P B P C P BC ⋅=⨯≠=,事件B 与事件C 不相互独立,故D 错误.故选AC.三、填空题12.一个三位自然数百位、十位、个位上的数字依次为a ,b ,c ,当且仅当有两个数字的和等于第三个数字时称为“有缘数”(如213,134等).若,,{1,2,3,4}a b c ∈,且a ,b ,c 互不相同,则这个三位数为“有缘数”的概率是_________.12.答案:12解析:由1,2,3组成的三位自然数为123,132,213,231,312,321,共6个;同理,由1,2,4组成的三位自然数有6个,由1,3,4组成的三位自然数有6个,由2,3,4组成的三位自然数有6个,共有24个三位自然数.由1,2,3或1,3,4组成的三位自然数为“有缘数”,共12个.所以这个三位数为“有缘数”的概率121242P ==.13.已知随机变量X 有三个不同的取值,分别是0,1,x ,其中(0,1)x ∈,又1(0)4P X ==,1(1)4P X ==,则随机变量X 方差的最小值为__________.13.答案:18解析:由1(0)4P X ==,1(1)4P X ==,得1()2P X x ==,所以随机变量X 的数学期望21()4x E X +=,则方差222221123121111()42444442162x x x D X x ⎡⎤+--⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯=⨯-+⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦.当12x =时,()D X 取到最小值18,故答案为18.14.[2023届·西北工业大学附中·模拟考试]将8张连号的门票分给5个家庭,甲家庭需要3张连号的门票,乙家庭需要2张连号的门票,剩余的3张门票随机分给其余的3个家庭,并且甲、乙两个家庭不能连排在一起(甲、乙两个家庭内部成员的顺序不予考虑),则这8张门票不同的分配方法有_________种.14.答案:72解析:设8张门票的编号分别为1,2,3,4,5,6,7,8.若甲选123,则乙可以是56,67,78共3种,此时共有333A 18=种;若甲选234,则乙可以是67,78共2种,此时共有332A 12=种;若甲选345,则乙可以是78共1种,此时共有33A 6=种;若甲选456,则乙可以是12共1种,此时共有33A 6=种;若甲选567,则乙可以是12,23共2种,此时共有332A 12=种;若甲选678,则乙可以是12,23,34共3种,此时共有333A 18=种.综上所述,不同的分配方法有181266121872+++++=种.四、解答题15.[2024春·高一·青海西宁·期末]为了解学生的周末学习时间(单位:小时),高一年级某班班主任对本班40名学生某周末的学习时间进行了调查,将所得数据整理绘制出如图所示的频率分布直方图.根据直方图所提供的信息:(1)用分层抽样的方法在[)20,25和[]25,30中共抽取6人成立学习小组,再从该小组派3人接受检测,求检测的3人来自同一区间的概率;(2)估计这40名同学周末学习时间的25%分位数.15.答案:(1)1 5 ;(2)8.75小时.解析:(1)由图可知,40名学生中周末的学习时间在[)20,25的人数为0.035406⨯⨯=人,周末的学习时间在[]25,30的人数为0.0155403⨯⨯=人,从中用分层抽样抽取6人,则周末的学习时间在[)20,25的有4人,记为A,B,C,D;周末的学习时间在[]25,30的有2人,记为a,b;则再从中选派3人接受检测的基本事件有ABC,ABD,ABa,ABb,ACD,ACa,ACb, ADa,ADb,Aab,BCD,BCa,BCb,BDa,BDb,Bab,CDa,CDb,Cab,Dab共有20个,其中检测的3人来自同一区间的基本事件有ABC,ABD,ACD,BCD共有4个,所以检测的3人来自同一区间的概率41205 P==;(2)学习时间在5小时以下的频率为0.0250.10.25⨯=<,学习时间在10小时以下的频率为0.10.0450.30.25+⨯=>,所以25%分位数在区间[)5,10内,则0.250.1 558.750.30.1-+⨯=-,所以这40名同学周末学习时间的25%分位数为8.75小时.16.[2024春·高二·宁夏石嘴山·月考校考]2020年,是人类首次成功从北坡登顶珠峰60周年,也是中国首次精确测定并公布珠峰高程的45周年.华为帮助中国移动开通珠峰峰顶5G ,有助于测量信号的实时开通,为珠峰高程测量提供通信保障,也验证了超高海拔地区5G 信号覆盖的可能性,在持续高风速下5G 信号的稳定性,在条件恶劣地区通过简易设备传输视频信号的可能性.正如任总在一次采访中所说:“华为公司价值体系的理想是为人类服务.”有人曾问,在珠峰开通5G 的意义在哪里?“我认为它是科学技术的一次珠峰登顶,告诉全世界,华为5G 、中国5G 的底气来自哪里.现在,5G 的到来给人们的生活带来更加颠覆性的变革,某IT 公司基于领先技术的支持,5G 经济收入在短期内逐月攀升,该IT 公司在1月份至6月份的5G 经济收入y (单位:百万元)关于月份x 的数据如下表所示,并根据数据绘制了如图所示的散点图.月份x 123456收入y (百万元)6.68.616.121.633.041.0(1)根据散点图判断,y ax b =+与e dx y c =⋅(a ,b ,c ,d 均为常数)哪一个更适宜作为5G 经济收入y 关于月份x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的结果及表中的数据,求出y 关于x 的回归方程,并预测该公司7月份的5G 经济收入.(结果保留小数点后两位)(3)从前6个月的收入中抽取2个,记收入超过20百万元的个数为X ,求X 的分布列和数学期望.参考数据:x yu 621()i i x x =-∑61()()iii x x y y =--∑61()()iii x x uu =--∑ 1.52e 2.66e 3.5021.15 2.8517.70125.35 6.734.5714.30其中,设ln u y =,ln i i u y =(1,2,3,4,5,6i =).参考公式:对于一组具有线性相关关系的数据(),(21,2,3,,)i i x v n = ,其回归直线ˆˆˆvx βα=+的斜率和截距的最小二乘估计公式分别为()()()121ˆniii Ri i x x v v x x β==--=-∑∑,ˆˆv x αβ=-16.答案:(1)e dx y c =⋅更适宜(2) 1.520.38e ˆx y +=,65.35百万元(3)分布列见解析,1解析:(1)根据散点图判断,e dx y c =更适宜作为5G 经济收入y 关于月份x 的回归方程类型;(2)因为e dx y c =,所以两边同时取常用对数,得ln ln y c dx =+,设ln u y =,所以ln u c dx =+,因为 3.50x =, 2.85u =,所以61621()( 6.73ˆ0.380,17.70(iii ii x x u u dx x ==--==≈-∑∑所以ˆln 2.850.380 3.50 1.52c u dx=-≈-⨯=.所以ˆ 1.520.38u x =+,即ˆln 1.520.38y x =+,所以 1.520.38e ˆx y +=.令7x =,得 1.520.387 1.52 2.66ˆe e e 4.5714.3065.35y +⨯==⨯≈⨯≈,故预测该公司7月份的5G 经济收入大约为65.35百万元.(3)前6个月的收入中,收入超过20百万元的有3个,所以X 的取值为0,1,2,2326C 1(0)C 5P X ===,113326C C 3(1)C 5P X ===,2326C 1(2)C 5P X ===,所以X 的分布列为:X 012P153515所以()1310121555E X =⨯+⨯+⨯=.17.[2024春·高三·内蒙古赤峰·开学考试校考]卫生纸主要供人们生活日常卫生之用,是人民群众生活中不可缺少的纸种之一.某品牌卫生纸生产厂家为保证产品的质量,现从甲、乙两条生产线生产的产品中各随机抽取500件进行品质鉴定,并将统计结果整理如下:合格品优等品甲生产线250250乙生产线300200(1)判断能否有99.9%的把握认为产品的品质与生产线有关;(2)用频率近似为概率,从甲、乙两条生产线生产的产品中各随机抽取2件进行详细检测,记抽取的产品中优等品的件数为X ,求随机变量X 的分布列与数学期望.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d=+++()20P K k ≥0.100.050.0250.0100.0010k 2.7069.8415.0246.63510.82817.答案:(1)没有;(2)分布列见解析,95解析:(1)补充列联表如下:合格品优等品总计甲生产线250250500乙生产线300200500总计5504501000根据列联表中的数据,经计算得到221000(250200250300)10.10110.828550450500500K ⨯⨯-⨯=≈<⨯⨯⨯,所以没有99.9%的把握认为产品的品质与生产线有关.(2)由题意,甲生产线生产的产品中抽取优等品的频率为25015002=,乙生产线生产的产品中抽取优等品的频率为20025005=,所以估计从甲、乙生产线生产的产品中各随机抽取优等品的概率分别为12,25,由题意随机变量X 的所有可能取值是0,1,2,3,4,()22139025100P X ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,()22211221312331C C 2525510P X ⎛⎫⎛⎫⎛⎫==⨯⨯+⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()2222211221313212372C C 2525525100P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯+⨯⨯⨯⨯+⨯= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,()22211221212313C C 252555P X ⎛⎫⎛⎫⎛⎫==⨯⨯+⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()2212142525P X ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,故X 的分布列为:X 01234P91003103710015125所以X 的期望()933711901234100101003255E X =⨯+⨯+⨯+⨯+⨯=.18.[2024春·高二·福建宁德·期末]毒品是人类的公敌,禁毒是社会的责任,当前宁德市正在创建全国禁毒示范城市,我市组织学生参加禁毒知识竞赛,为了解学生对禁毒有关知识的掌握情况,采用随机抽样的方法抽取了500名学生进行调查,成绩全部分布在75145~分之间,根据调查结果绘制的学生成绩的频率分布直方图如图所示.(1)求频率分布直方图中a 的值;(2)由频率分布直方图可认为这次全市学生的竞赛成绩X 近似服从正态分布()2,N μσ,其中μ为样本平均数(同一组数据用该组数据的区间中点值作代表),13.σ=现从全市所有参赛的学生中随机抽取10人进行座谈,设其中竞赛成绩超过135.2分的人数为Y ,求随机变量Y 的期望.(结果精确到0.01);(3)全市组织各校知识竞赛成绩优秀的同学参加总决赛,总决赛采用闯关的形式进行,共有20个关卡,每个关卡的难度由计算机根据选手上一关卡的完成情况进行自动调整,第二关开始,若前一关未通过,则其通过本关的概率为12;若前一关通过,则本关通过的概率为13,已知甲同学第一关通过的概率为13,记甲同学通过第n 关的概率为n P ,请写出n P 的表达式,并求出n P 的最大值.附:若随机变量X 服从正态分布()2,N μσ,则()0.6827P X μσμσ-<≤+≈,()220.9545P X μσμσ-<≤+≈,()330.9973P X μσμσ-<≤+≈.18.答案:(1)0.012;(2)0.23;(3)13217216n n P -⎛⎫=+ ⎪⎝⎭,n P 的最大值为49.解析:(1)由频率分布直方图,得()100.0050.0190.030.020.0021a a ⨯++++++=,解得0.012a =.(2)由题意得:800.05900.121000.191100.3μ=⨯+⨯+⨯+⨯1200.21300.121400.02109.2+⨯+⨯+⨯=,()2109.2,13X N ~,()()()122135.220.022752P X P X P X μσμσμσ--<≤+>=>+=≈,()10,0.02275Y B ~,()0.22750.23E Y np ==≈.(3)记甲同学第()*n n ∈N 关通过为事件n A ,依题意,113P =,当2n ≥时,()113n n P A A -=,()112n n P A A -=,()n n P P A =,所以()()()()()1111n n n n n n n P A P A P A A P A P A A ----=+,所以()111111113262n n n n P P P P ---=+-=-+,所以1313767n n P P +⎛⎫-=- ⎪⎝⎭,又因为113P =,则1320721P -=-≠,所以数列37n P ⎧⎫-⎨⎬⎩⎭是首项为221-,公比为16-的等比数列,所以13217216n n P -⎛⎫=-- ⎪⎝⎭,当n 为奇数时,113213213721672167n n n P --⎛⎫⎛⎫=--=-<⎪⎪⎝⎭⎝⎭,当n 为偶数时,13217216n n P -⎛⎫=+ ⎪⎝⎭,则n P 随着n 的增大而减小,所以,249n P P ≤=,又4397>,所以n P 的最大值为49.19.[2024春·高二·江苏南通·月考校考]篮球运动是在1891年由美国马萨诸塞州斯普林尔德市基督教青年会训练学校体育教师詹姆士·奈史密斯博士,借鉴其他球类运动项目设计发明的.起初,他将两只桃篮钉在健身房内看台的栏杆上,桃篮上沿离地面约3.05米,用足球作为比赛工具,任何一方在获球后,利用传递、运拍,将球向篮内投掷,投球入篮得一分,按得分多少决定比赛胜负.在1891年的12月21日,举行了首次世界篮球比赛,后来篮球界就将此日定为国际篮球日.甲、乙两人进行投篮,比赛规则是:甲、乙每人投3球,进球多的一方获得胜利,胜利1次,则获得一个积分,平局或者输方不得分.已知甲和乙每次进球的概率分别是12和p ,且每人、每次进球与否都互不影响.(1)若23p =,求在进行一轮比赛后甲比乙多投进2球的概率;(2)若1223p ≤≤,且每轮比赛互不影响,乙要想至少获得3个积分且每轮比赛至少要超甲2个球,求:①设事件C 表示乙每轮比赛至少要超甲2个球,求()P C ;(结果用含p 的式子表示)②从数学期望的角度分析,理论上至少要进行多少轮比赛?19.答案:(1)124;(2)①321388p p +;②15解析:(1)设事件i A 表示甲在一轮比赛中投进i 个球,i B 表示乙在一轮比赛中投进i 个球,()0123i =,,,,D 表示进行一轮比赛后甲比乙多投进2球所以2031D A B A B =+()()()2031P D P A B P A B =+2332203133331111211C C C C 22323324⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯+⨯⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⨯⨯⨯⨯⎭⎝⎭⎝⎭(2)①()()()()203031P C P B A P B A P B A =++()3332231323311113C 1C 22288p p p p p ⎛⎫⎛⎫⎛⎫=-⨯++⎡⎤⎢⎥⎢⎥=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎣⎭⎦⎝;②设随机变量X 表示n 轮比赛后,乙在每轮比赛至少要超甲2个球的情况下获得的积分,则有3213,88X B n p p ⎛⎫~+ ⎪⎝⎭,故()321388E X n p p ⎛⎫=+ ⎪⎝⎭,要满足题意,则()3E X ≥,即3213388n p p ⎛⎫+≥ ⎪⎝⎭,又12,23p ⎡⎤∈⎢⎥⎣⎦,故3231388n p p ≥+,令()321388f x x x =+,12,23x ⎡⎤∈⎢⎥⎣⎦,则()()3208f x x x '=+>在12,23⎡⎤⎢⎥⎣⎦恒成立,即()f x 在12,23⎡⎤⎢⎥⎣⎦上单调递增,故()f x 的最大值为211354f ⎛⎫=⎪⎝⎭,即321388p p +的最大值为1154,于是,3231388p p +的最小值为16211,因162141511<<,故理论上至少要进行15轮比赛.。

新高考概率知识点总结

新高考概率知识点总结

新高考概率知识点总结概率,作为数学中重要的分支之一,是新高考数学考试中的一项重要内容。

了解和掌握概率的基本知识,对于解决实际问题和提高数学成绩都有着重要的意义。

本文将对新高考概率知识点进行总结,帮助学生更系统地学习和应用概率知识。

1. 概率基本概念概率是指在一定条件下,某一事件发生的可能性大小。

常用的表示概率的方式有百分数、分数和小数。

概率的取值范围在0到1之间,0表示不可能事件,1表示必然事件。

2. 事件与样本空间样本空间是指一个试验中可能出现的所有结果的集合。

事件是样本空间的子集,表示我们关心的某个结果或结果的集合。

3. 事件的概率计算事件的概率计算方法有两种:古典概率和统计概率。

古典概率指的是根据样本空间的元素个数来确定事件的概率,计算公式为:P(A) = A 的可能结果数 / 样本空间的元素个数。

统计概率指的是通过大量实验的统计结果来确定事件的概率,计算公式为:P(A) = A发生的次数 / 实验总次数。

4. 相互独立事件的概率计算当两个事件A和B满足P(A∩B) = P(A) * P(B)时,我们称事件A和事件B是相互独立的。

相互独立事件的概率计算公式为:P(A∪B) =P(A) + P(B) - P(A∩B)。

5. 条件概率条件概率是指在已知事件B发生的条件下,事件A发生的概率。

条件概率的计算公式为:P(A|B) = P(A∩B) / P(B)。

6. 事件的排列与组合排列是指从n个元素中选择m个进行有顺序的排列,计算公式为:A(n, m) = n! / (n-m)!。

组合是指从n个元素中选择m个进行无顺序的组合,计算公式为:C(n, m) = n! / (m! * (n-m)!)。

7. 互斥事件的概率计算当两个事件A和B满足P(A∩B) = 0时,我们称事件A和事件B是互斥的。

互斥事件的概率计算公式为:P(A∪B) = P(A) + P(B)。

8. 随机变量与概率分布随机变量是指一个试验结果的数值表示,它的取值是随机的。

高考概率大题及答案

高考概率大题及答案

高考概率大题及答案1.某市高中毕业生中有80%选择进入大学,20%选择就业。

已知选择就业的学生中,70%在第一年获得满意的工作,而选择进入大学的学生中,80%在第一年获得满意的工作。

现从该市高中毕业生中任选一人,问他第一年获得满意工作的概率是多少?解答:由全概率公式可知,某毕业生获得满意工作的概率可以分为两种情况:1)选择就业的情况下获得满意工作的概率:0.2 × 0.7 = 0.14 2)选择进入大学的情况下获得满意工作的概率:0.8 × 0.8 = 0.64因此,获得满意工作的总概率为:0.14 + 0.64 = 0.78所以,任选一人的第一年获得满意工作的概率为0.78。

2.一批产品某种型号有20%的不合格品。

现从中任意抽取2个进行检查,问两个都是合格品的概率是多少?解答:抽取两个产品都是合格品的概率可以通过计算来得到。

首先,第一次抽取的产品是合格品的概率为80%(不合格品的概率为20%)。

而第二次抽取的产品也是合格品的概率会受到第一次抽取的影响。

因为第一次抽取合格品后,剩下的产品中合格品的比例会减少。

假设第一次抽取合格品后,剩下的产品中有a个合格品和b个不合格品,则第二次抽取的产品也是合格品的概率为a/(a+b)。

因此,两个都是合格品的概率为:0.8 × (a/(a+b))具体数值需要根据实际情况来计算。

3.某门考试的通过率为60%,现已知通过考试的学生中,有70%是靠自己的努力而没有借助辅导班;而未通过考试的学生中,有30%是通过辅导班的帮助提高的。

现从所有参加考试的学生中任意选取一人,问他通过考试并没有借助辅导班的概率是多少?解答:通过考试并没有借助辅导班的概率可以分为两种情况:1)通过考试的学生中靠自己的努力的概率:0.6 × 0.7 = 0.42 2)通过辅导班帮助提高通过考试的概率:0.4 × 0.3 = 0.12因此,通过考试并没有借助辅导班的总概率为:0.42 + 0.12 = 0.54所以,任选一人通过考试并没有借助辅导班的概率为0.54。

高考真题数学概率题及答案

高考真题数学概率题及答案

高考真题数学概率题及答案高考真题中的数学概率题常常是考生们的心头之患,因为涉及到概率的计算和推断,考生们往往感到头疼。

在这里,我为大家整理了一些高考真题中常见的数学概率题及答案,希望能帮助大家更好地应对考试。

题目一:某班有30名学生,其中10名喜欢篮球,8名喜欢足球,6名喜欢羽毛球,3名以上三项兼喜的学生只有两名,问至少有多少名学生喜欢至少一项球类运动?
解答:设喜欢至少一项球类运动的学生有x名,根据题意可列出方程:10+8+6-x=30-2,解得x=22,因此至少有22名学生喜欢至少一项球类运动。

题目二:甲、乙、丙三人开车到达目的地的概率分别是0.6、0.7和0.8,求至少有一个人到达目的地的概率。

解答:根据概率的互补性,至少有一个人到达目的地的概率为1-三人都没有到达的概率,即1-(1-0.6)(1-0.7)(1-0.8)=1-0.4*0.3*0.2=0.976,所以至少有一个人到达目的地的概率是0.976。

题目三:已知随机事件A的概率为0.4,事件B的概率为0.3,且事件A与事件B相互独立,求事件A与事件B至少有一个发生的概率。

解答:由事件A与事件B相互独立可知,事件A与事件B至少有一个发生的概率为1-(1-0.4)(1-0.3)=1-0.6*0.7=0.58,所以事件A与事件B至少有一个发生的概率为0.58。

通过以上题目的解答,我们可以看到,数学概率题并不是难到无法解决的问题,只要掌握了基本的概率知识和解题技巧,就能在考试中得心应手。

希望以上内容能对大家有所帮助,祝愿大家在高考中取得优异的成绩。

新高考二卷数学概率

新高考二卷数学概率

新高考二卷数学概率新高考二卷数学概率概率这一部分是高考数学中的重要内容,也是容易被忽视的一部分。

在新高考二卷中,概率题目的出现频率也非常高。

下面我们将从概率的应用和概率的基本概念两个方面来谈一谈关于概率的知识点。

一、概率的应用1.古典概型古典概型是指一个试验中每种可能结果的概率相等的情况下,求某些结果概率的方法。

例如,在一个骰子游戏中,每个点数出现的概率都是 1/6。

我们可以用古典概型求出两个骰子点数和为 7 的概率为 1/6。

2.排列组合排列组合是高考数学中常用的一种概率问题的解决方法,特别常见于离散概率分布问题中。

例如,从 10 个不同颜色的球中随机抽取 4 个球,求得其中 3 个红球的概率可以用排列组合法求解。

3.条件概率条件概率是指在某些条件下,事件发生的概率。

例如,在一个有 10 名男生和 10 名女生的班级中,随机抽取一名学生,求抽到女生的概率可以用条件概率求解。

其中条件是从这个班级中抽到的学生为女生。

4.贝叶斯公式贝叶斯公式是概率统计学中的一种重要公式,在概率论、信息论和计算机科学等领域中广泛应用。

例如,在一个保险公司内,有三种等级的客户,分别为 A、B、C。

推销员要推销一种保险产品,客户的购买概率有所不同。

针对这种情况,可以使用贝叶斯公式进行计算。

二、概率的基本概念1.样本空间样本空间是指一个随机试验中所有可能结果所组成的集合。

例如,在掷骰子游戏中,样本空间为 {1,2,3,4,5,6}。

2.事件事件是一个样本空间的子集,可以表示为所选样本的属性。

例如,在掷两个骰子的游戏中,两个骰子点数和为 7 的事件可以表示为 {(1, 6),(2, 5),(3, 4),(4, 3),(5, 2),(6, 1)}。

3.概率概率是指一个事件发生的可能性或者程度,它通常用介于 0 到 1 之间的一个实数表示。

例如,在掷两个骰子的游戏中,两个骰子点数和为 7 的概率为 6/36,即 1/6。

4.互斥事件互斥事件是指两个事件不能同时发生的事件。

高中概率试题及答案

高中概率试题及答案

高中概率试题及答案一、选择题(每题2分,共10分)1. 抛一枚均匀的硬币,正面朝上的概率是多少?A. 0.5B. 0.25C. 0.75D. 12. 从52张扑克牌中随机抽取一张,抽到红桃的概率是多少?A. 1/4B. 1/2C. 1/3D. 1/133. 一个袋子里有3个红球和2个蓝球,随机取出一个球,取到蓝球的概率是多少?A. 1/3B. 1/2C. 2/5D. 3/54. 一个事件的概率为0.3,那么它的对立事件的概率是多少?A. 0.7B. 0.3C. 0.5D. 0.65. 一个班级有30名学生,其中10名男生和20名女生,随机抽取一名学生,抽到女生的概率是多少?A. 1/3B. 2/3C. 1/2D. 3/4二、填空题(每题3分,共15分)6. 一个骰子有6个面,每个面出现的概率是_________。

7. 如果一个事件的概率是0.4,那么它发生的概率是_________。

8. 从10个不同的球中随机抽取3个,不放回,抽到特定3个球的概率是_________。

9. 一个袋子里有5个红球和5个蓝球,随机取出2个球,两个球都是红球的概率是_________。

10. 一个事件的概率为0.2,那么它不发生的概率是_________。

三、解答题(每题5分,共10分)11. 一个袋子里有2个红球和3个蓝球,随机取出2个球,求至少一个红球的概率。

12. 一个班级有50名学生,其中25名男生和25名女生。

随机抽取3名学生,求至少有1名男生的概率。

四、计算题(每题7分,共14分)13. 一个袋子里有5个红球,3个蓝球和2个黄球。

随机取出3个球,求取出的球中至少有一个红球的概率。

14. 一个盒子里有10个球,其中3个是中奖球。

随机抽取2个球,求至少抽到一个中奖球的概率。

五、应用题(每题8分,共16分)15. 一个学校有500名学生,其中300名是高中生,200名是初中生。

随机抽取10名学生,求至少有8名高中生的概率。

高考数学2024概率与统计历年题目全集

高考数学2024概率与统计历年题目全集

高考数学2024概率与统计历年题目全集概率与统计是高中数学中一门重要的学科,也是高考数学考试的一部分。

在概率与统计中,我们需要通过概率的计算和统计的方法来分析和解决实际问题。

为了帮助同学们复习和准备高考数学考试,本文整理了高考数学2024概率与统计历年题目全集,希望能对同学们有所帮助。

1. 单项选择题1) 已知概率为P(A) = 0.2,P(B) = 0.4,事件A、B相互独立,求P(A并B)的值。

2) 一次抛掷一硬币,设正面向上的概率为p,反面向上的概率为q。

连续抛掷3次硬币,求正面朝上的次数不超过2次的概率。

3) 某音乐社有男生40人,女生60人。

从中随机抽取一人,求抽到女生的概率。

2. 典型案例题1) 某超市中购买了100个某品牌产品,其中有5个是次品。

现从中不放回地连续抽取3个产品,求至少有一个次品的概率。

2) 某餐厅的饭菜有4个主食和6个副食。

现从中选择2个饭菜,求至少有一个主食的概率。

3. 解答题1) 设事件A与事件B相互独立,且P(A) = 0.3,P(B) = 0.5。

求下列事件的概率:a) P(A并B)b) P(A或B)c) P(A的对立事件)2) 设P(A) = 0.4,P(B) = 0.3,P(A并B) = 0.1,求下列事件的概率:a) P(A的对立事件)b) P(B的对立事件)c) P(A或B)3) 有一批产品,其中20%是次品。

现从中不放回地连续抽取3个产品,求以下事件的概率:a) 已抽出的3个产品都是次品;b) 至少有一个次品。

(提示:利用组合数学中的排列、组合知识进行计算)本文仅列举了一部分高考数学2024概率与统计历年题目,希望能给同学们提供一些复习和备考的参考。

在备考过程中,同学们还需结合教材和课堂上的知识,多进行习题训练和模拟考试,提高解题能力和应试技巧。

祝同学们取得优异的高考成绩!。

2024全国高考真题数学汇编:概率与统计章节综合

2024全国高考真题数学汇编:概率与统计章节综合

2024全国高考真题数学汇编概率与统计章节综合一、单选题1.(2024上海高考真题)已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是()A .气候温度高,海水表层温度就高B .气候温度高,海水表层温度就低C .随着气候温度由低到高,海水表层温度呈上升趋势D .随着气候温度由低到高,海水表层温度呈下降趋势2.(2024天津高考真题)下列图中,线性相关性系数最大的是()A .B .C .D .二、多选题3.(2024全国高考真题)随着“一带一路”国际合作的深入,某茶叶种植区多措并举推动茶叶出口.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x ,样本方差20.01s ,已知该种植区以往的亩收入X 服从正态分布 21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布 2N x s,则()(若随机变量Z 服从正态分布 2,N,()0.8413P Z )A .(2)0.2P XB .(2)0.5P XC .(2)0.5P Y D .(2)0.8P Y 三、填空题4.(2024上海高考真题)某校举办科学竞技比赛,有、、A B C 3种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题.小申已完成所有题,已知小申完成A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72.现他从所有的题中随机选一题,正确率是.5.(2024天津高考真题),,,,A B C D E 五种活动,甲、乙都要选择三个活动参加.甲选到A 的概率为;已知乙选了A 活动,他再选择B 活动的概率为.6.(2024全国高考真题)甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为.四、解答题7.(2024全国高考真题)某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p ,设p 为升级改造后抽取的n 件产品的优级品率.如果p p 150件产品的数据,能否认为生12.247 )附:22()()()()()n ad bc K a b c d a c b d2P K k0.0500.0100.001k3.8416.63510.8288.(2024上海高考真题)为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围学业成绩0,0.50.5,11,1.51.5,22,2.5优秀5444231不优秀1341471374027(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有95%的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?(附:22(),n ad bc a b c d a c b d 其中n a b c d , 2 3.8410.05P .)9.(2024北京高考真题)某保险公司为了了解该公司某种保险产品的索赔情况,从合同险期限届满的保单中随机抽取1000份,记录并整理这些保单的索赔情况,获得数据如下表:赔偿次数01234单数800100603010假设:一份保单的保费为0.4万元;前3次索赔时,保险公司每次赔偿0.8万元;第四次索赔时,保险公司赔偿0.6万元.假设不同保单的索赔次数相互独立.用频率估计概率.(1)估计一份保单索赔次数不少于2的概率;(2)一份保单的毛利润定义为这份保单的保费与赔偿总金额之差.(i )记X 为一份保单的毛利润,估计X 的数学期望 E X ;(ⅱ)如果无索赔的保单的保费减少4%,有索赔的保单的保费增加20%,试比较这种情况下一份保单毛利润的数学期望估计值与(i )中 E X 估计值的大小.(结论不要求证明)10.(2024全国高考真题)某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成绩为0分;若至少投中一次,则该队进入第二阶段.第二阶段由该队的另一名队员投篮3次,每次投篮投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q (1)若0.4p ,0.5q 5分的概率.(2)假设0p q ,(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?(ii )为使得甲、乙所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?参考答案1.C【分析】根据相关系数的性质可得正确的选项.【详解】对于AB ,当气候温度高,海水表层温度变高变低不确定,故AB 错误.对于CD ,因为相关系数为正,故随着气候温度由低到高时,海水表层温度呈上升趋势,故C 正确,D 错误.故选:C.2.A【分析】由点的分布特征可直接判断【详解】观察4幅图可知,A 图散点分布比较集中,且大体接近某一条直线,线性回归模型拟合效果比较好,呈现明显的正相关,r 值相比于其他3图更接近1.故选:A 3.BC【分析】根据正态分布的3 原则以及正态分布的对称性即可解出.【详解】依题可知,22.1,0.01x s ,所以 2.1,0.1Y N ,故 2 2.10.1 2.10.10.84130.5P Y P Y P Y ,C 正确,D 错误;因为 1.8,0.1X N ,所以 2 1.820.1P X P X ,因为 1.80.10.8413P X ,所以 1.80.110.84130.15870.2P X ,而 2 1.820.1 1.80.10.2P X P X P X ,B 正确,A 错误,故选:BC .4.0.85【分析】求出各题库所占比,根据全概率公式即可得到答案.【详解】由题意知,,,A B C 题库的比例为:5:4:3,各占比分别为543,,121212,则根据全概率公式知所求正确率5430.920.860.720.85121212p .故答案为:0.85.5.3512【分析】结合列举法或组合公式和概率公式可求甲选到A 的概率;采用列举法或者条件概率公式可求乙选了A 活动,他再选择B 活动的概率.【详解】解法一:列举法从五个活动中选三个的情况有:,,,,,,,,,ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE ,共10种情况,其中甲选到A 有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE ,则甲选到A 得概率为:63105P;乙选A 活动有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE ,其中再选则B 有3种可能性:,,ABC ABD ABE ,故乙选了A 活动,他再选择B 活动的概率为31=62.解法二:设甲、乙选到A 为事件M ,乙选到B 为事件N ,则甲选到A 的概率为 2435C 3C 5P M ;乙选了A 活动,他再选择B 活动的概率为 133524351C 2C C P MN C P N M P M故答案为:35;126.12/0.5【分析】将每局的得分分别作为随机变量,然后分析其和随机变量即可.【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .该轮得分的概率 631448k P X,所以 31,2,3,48k E X k .从而 441234113382k k k E X E X X X X E X .记 0,1,2,3k p P X k k .如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p .而X 的所有可能取值是0,1,2,3,故01231p p p p , 1233232p p p E X .所以121112p p,1213282p p ,两式相减即得211242p,故2312p p .所以甲的总得分不小于2的概率为2312p p .故答案为:12.【点睛】关键点点睛:本题的关键在于将问题转化为随机变量问题,利用期望的可加性得到等量关系,从而避免繁琐的列举.7.(1)答案见详解(2)答案见详解【分析】(1)根据题中数据完善列联表,计算2K,并与临界值对比分析;(2)用频率估计概率可得0.64p ,根据题意计算p .【详解】(1)根据题意可得列联表:优级品非优级品甲车间2624乙车间7030可得2215026302470754.687550100965416K,因为3.841 4.6875 6.635,所以有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲,乙两车间产品的优级品率存在差异.(2)由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为960.64 150,用频率估计概率可得0.64p ,又因为升级改造前该工厂产品的优级品率0.5p ,则0.50.50.5 1.650.56812.247p ,可知p p所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了. 8.(1)12500(2)0.9h(3)有【分析】(1)求出相关占比,乘以总人数即可;(2)根据平均数的计算公式即可得到答案;(3)作出列联表,再提出零假设,计算卡方值和临界值比较大小即可得到结论.【详解】(1)由表可知锻炼时长不少于1小时的人数为占比17943282558058,则估计该地区29000名学生中体育锻炼时长不少于1小时的人数为25 290001250058.(2)估计该地区初中生的日均体育锻炼时长约为10.50.511 1.5 1.522 2.51391911794328580222220.9 .则估计该地区初中学生日均体育锻炼的时长为0.9小时.(3)由题列联表如下:1,2其他合计优秀455095不优秀177308485合计222358580提出零假设0H :该地区成绩优秀与日均锻炼时长不少于1小时但少于2小时无关.其中0.05 .22580(4530817750) 3.976 3.84195485222358.则零假设不成立,即有95%的把握认为学业成绩优秀与日均锻炼时长不小于1小时且小于2小时有关.9.(1)110(2)(i)0.122万元;(ii)这种情况下一份保单毛利润的数学期望估计值大于(i )中 E X 估计值【分析】(1)根据题设中的数据可求赔偿次数不少2的概率;(2)(ⅰ)设 为赔付金额,则 可取0,0.8,0.1.6,2.4,3,用频率估计概率后可求 的分布列及数学期望,从而可求 E X .(ⅱ)先算出下一期保费的变化情况,结合(1)的结果可求 E Y ,从而即可比较大小得解.【详解】(1)设A 为“随机抽取一单,赔偿不少于2次”,由题设中的统计数据可得 603010180010060301010P A.(2)(ⅰ)设 为赔付金额,则 可取0,0.8,1.6,2.4,3,由题设中的统计数据可得 800410010,0.810005100010P P ,603( 1.6)100050P ,303( 2.4)1000100P ,101(3)1000100P,故 4133100.8 1.6 2.430.27851050100100E故 0.40.2780.122E X (万元).(ⅱ)由题设保费的变化为410.496%0.4 1.20.403255,故 0.1220.40320.40.1252E Y (万元),从而 E X E Y .10.(1)0.686(2)(i )由甲参加第一阶段比赛;(i )由甲参加第一阶段比赛;【分析】(1)根据对立事件的求法和独立事件的乘法公式即可得到答案;(2)(i )首先各自计算出331(1)P p q 甲,331(1)Pq p 乙,再作差因式分解即可判断;(ii)首先得到X 和Y 的所有可能取值,再按步骤列出分布列,计算出各自期望,再次作差比较大小即可.【详解】(1)甲、乙所在队的比赛成绩不少于5分,则甲第一阶段至少投中1次,乙第二阶段也至少投中1次,比赛成绩不少于5分的概率 3310.610.50.686P .(2)(i )若甲先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P p q 甲,若乙先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P q p 乙,0p q ,3333()()P P q q pq p p pq 甲乙2222()()()()()()q p q pq p p q p pq q pq p pq q pq2222()333p q p q p q pq 3()()3()[(1)(1)1]0pq p q pq p q pq p q p q ,P P 甲乙,应该由甲参加第一阶段比赛.(ii)若甲先参加第一阶段比赛,比赛成绩X 的所有可能取值为0,5,10,15,333(0)(1)1(1)(1)P X p p q, 3213511C 1P X p q q ,3223(10)1(1)C (1)P X p q q ,33(15)1(1)P X p q ,332()151(1)1533E X p q p p p q记乙先参加第一阶段比赛,比赛成绩Y 的所有可能取值为0,5,10,15,同理 32()1533E Y q q q p()()15[()()3()]E X E Y pq p q p q pq p q 15()(3)p q pq p q ,因为0p q ,则0p q ,31130p q ,则()(3)0p q pq p q ,应该由甲参加第一阶段比赛.【点睛】关键点点睛:本题第二问的关键是计算出相关概率和期望,采用作差法并因式分解从而比较出大小关系,最后得到结论.。

高中概率高考真题总结

高中概率高考真题总结

最新高中概率高考真题总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2全国各地高考及模拟试卷试题分类----------概率选择题1.6名同学排成两排,每排3人,其中甲排在前排的概率是 ( B )A .121 B .21 C .61D .31 2.有10名学生,其中4名男生,6名女生,从中任选2名,恰好2名男生或2名女生的概率是 ( D )A .452B.152 C.31 D.157 3.甲乙两人独立的解同一道题,甲乙解对的概率分别是21,p p ,那么至少有1人解对的概率是 ( D )A.21p p +B.21p p ⋅C. 211p p ⋅-D.)1()1(121p p -⋅--4.从数字1, 2, 3, 4, 5这五个数中, 随机抽取2个不同的数, 则这2个数的和为偶数的概率是 ( B )A.51 B. 52 C. 53 D. 54 5.有2n 个数字,其中一半是奇数,一半是偶数,从中任取两个数,则所取的两数之和为偶数的概率是 ( C ) A 、12 B 、12n C 、121n n -- D 、121n n ++ 6.有10名学生,其中4名男生,6名女生,从中任选2名学生,恰好是2名男生或2名女生的概率是 ( C ) A .452 B .152 C .157D .31 7.已知P 箱中有红球1个,白球9个,Q 箱中有白球7个,(P 、Q 箱中所有的球除颜色外完全相同).现随意从P 箱中取出3个球放入Q 箱,将Q 箱中的球充分搅匀后,再 从Q 箱中随意取出3个球放入P 箱,则红球从P 箱移到Q 箱,再从Q 箱返回P 箱中的 概率等于 ( B )3A .51 B .1009 C .1001 D .538.已知集合A={12,14,16,18,20},B={11,13,15,17,19},在A 中任取一个元素用a i (i=1,2,3,4,5)表示,在B 中任取一个元素用b j (j=1,2,3,4,5)表示,则 所取两数满足a i >b I 的概率为( B ) A 、43 B 、53 C 、21 D 、51 9.在圆周上有10个等分点,以这些点为顶点,每3个点可以构成一个三角形,如果随机选择3个点,刚好构成直角三角形的概率是( B )10.已知10个产品中有3个次品,现从其中抽出若干个产品,要使这3个次品全部被抽出的概率不小于0.6,则至少应抽出产品 ( C ) A.7个 B.8个 C.9个 D.10个11.甲、乙独立地解决 同一数学问题,甲解决这个问题的概率是0.8,乙解决这个问题的概率是0.6,那么其中至少有1人解决这个问题的概率是( D ) A 、0.48 B 、0.52 C 、0.8 D 、0.92填空题1.纺织厂的一个车间有n (n>7,n ∈N )台织布机,编号分别为1,2,3,……,n ,该车 间有技术工人n 名,编号分别为1,2,3,……,n .现定义记号ij a 如下:如果第i 名 工人操作了第j 号织布机,此时规定ij a =1,否则ij a =0.若第7号织布机有且仅有一人 操作,则=+++++747372717n a a a a a 1 ;若3132333432n a a a a a +++++=,说明了什么: 第三名工人操作了2台织布机 ;2.从6人中选4人分别到巴黎,伦敦,悉尼,莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲,乙两人不去巴黎游览的概率为23.(用分数表示) 3.某商场开展促销抽奖活动,摇出的中奖号码是8,2,5,3,7,1,参加抽奖的每位顾客从0~9这10个号码中任意抽出六个组成一组,若顾客抽出的六个号码中至少有5 个与摇出的号码相同(不计顺序)即可得奖,则中奖的概率是___542____. 4.某中学的一个研究性学习小组共有10名同学,其中男生x 名(3≤x ≤9),现从中选出43人参加一项调查活动,若至少有一名女生去参加的概率为f(x),则f(x)max = _ 119120_解答题1.甲、乙两名篮球运动员,甲投篮的命中率为0.6,乙投篮的命中率为0.7,两人是否投中相互之间没有影响,求:(1)两人各投一次,只有一人命中的概率;(2)每人投篮两次,甲投中1球且乙投中2球的概率. 解:(1)P 1=0.6(1-0.7)+(1-0.6)0.7=0.46. 6分(2)P 2=[12C 0.6(1-0.6)]·[22C (0.7)2(1-0.7)0]=0.2352. 12分2.工人看管三台机床,在某一小时内,三台机床正常工作的概率分别为0.9,0.8,0.85,且各台机床是否正常工作相互之间没有影响,求这个小时内: (1)三台机床都能正常工作的概率;(2)三台机床中至少有一台能正常工作的概率.解:(1)三台机床都能正常工作的概率为P 1=0.9×0.8×0.85=0.612. 6分(2)三台机床至少有一台能正常工作的概率是P 2=1-(1-0.9)(1-0.8)(1-0.85)=0.997. 12分3.甲、乙两名篮球运动员,投篮的命中率分别为0.7与0.8. (1)如果每人投篮一次,求甲、乙两人至少有一人进球的概率; (2)如果每人投篮三次,求甲投进2球且乙投进1球的概率. 解:设甲投中的事件记为A ,乙投中的事件记为B ,(1)所求事件的概率为:P=P (A ·B )+P (A ·B )+P (A ·B ) =0.7×0.2+0.3×0.8+0.7×0.8 =0.94.6分(2)所求事件的概率为:5P=C 230.72×0.3×C 130.8×0.22=0.042336.12分4.沿某大街在甲、乙、丙三个地方设有红、绿交通信号灯,汽车在甲、乙、丙三个地方 通过(绿灯亮通过)的概率分别为31,21,32,对于在该大街上行驶的汽车, 求:(1)在三个地方都不停车的概率; (2)在三个地方都停车的概率; (3)只在一个地方停车的概率.1.甲、乙两名篮球运动员,甲投篮的命中率为0.6,乙投篮的命中率为0.7,两人是否投中相互之间没有影响,求:(1)两人各投一次,只有一人命中的概率;(2)每人投篮两次,甲投中1球且乙投中2球的概率. 解:(1)P 1=0.6(1-0.7)+(1-0.6)0.7=0.46. 6分(2)P 2=[12C 0.6(1-0.6)]·[22C (0.7)2(1-0.7)0]=0.2352. 12分2.工人看管三台机床,在某一小时内,三台机床正常工作的概率分别为0.9,0.8,0.85,且各台机床是否正常工作相互之间没有影响,求这个小时内: (1)三台机床都能正常工作的概率;(2)三台机床中至少有一台能正常工作的概率.解:(1)三台机床都能正常工作的概率为P 1=0.9×0.8×0.85=0.612. 6分(2)三台机床至少有一台能正常工作的概率是P 2=1-(1-0.9)(1-0.8)(1-0.85)=0.997. 12分3.甲、乙两名篮球运动员,投篮的命中率分别为0.7与0.8. (1)如果每人投篮一次,求甲、乙两人至少有一人进球的概率; (2)如果每人投篮三次,求甲投进2球且乙投进1球的概率. 解:设甲投中的事件记为A ,乙投中的事件记为B ,(1)所求事件的概率为:P=P (A ·B )+P (A ·B )+P (A ·B ) =0.7×0.2+0.3×0.8+0.7×0.8 =0.94.66分(2)所求事件的概率为:P=C 230.72×0.3×C 130.8×0.22=0.042336.12分4.沿某大街在甲、乙、丙三个地方设有红、绿交通信号灯,汽车在甲、乙、丙三个地方 通过(绿灯亮通过)的概率分别为31,21,32,对于在该大街上行驶的汽车, 求:(1)在三个地方都不停车的概率;(2)在三个地方都停车的概率; (3)只在一个地方停车的概率. 解:(1)P=31×21×32=91.4分 (2)P=32×21×31=918分 (3)P=32×21×32+31×21×32+31×21×31=187. 12分5.某种电路开关闭合后,会出现红灯或绿灯闪动.已知开关第一次闭合后,出现红灯和出现绿灯的概率都是21,从开关第二次闭合起,若前次出现红灯,则下一次出现红灯 的概率是31,出现绿灯的概率是32,若前次出现绿灯,则下一次出现红灯的概率是53, 出现绿灯的概率是52.问: (1)第二次闭合后,出现红灯的概率是多少?(2)三次发光中,出现一次红灯,两次绿灯的概率是多少? 解:(1)如果第一次出现红灯,则接着又出现红灯的概率是21×31, 如果第一次出现绿灯,则接着出现红灯的概率为21×53.∴第二次出现红灯的概率为21×31+21×53=157. 6分(2)由题意,三次发光中,出现一次红灯,两次绿灯的情况共有如下三种方式:7①出现绿、绿、红的概率为21×52×53; ②出现绿、红、绿的概率为21×53×32;③出现红、绿、绿的概率为21×32×52;10分 所求概率为21×52×53+21×53×32+21×32×52=7534.12分6.袋内装有35个球,每个球上都记有从1到35的一个号码,设号码n 的球重32n -5n+15克,这些球以等可能性从袋里取出(不受重量、号码的影响). (1)如果任意取出1球,试求其重量大于号码数的概率; (2)如果任意取出2球,试求它们重量相等的概率解:(1)由不等式32n -5n+15>n ,得n>15,或n<3.由题意,知n=1,2或n=16,17,…,35.于是所求概率为3522. 6分 (2)设第n 号与第m 号的两个球的重量相等,其中n<m ,则有32n -5n+15=32m -5m+15,∴(n -m )(n+m -15)=0, ∵n ≠m ,∴n+m=15,10分∴(n ,m )=(1,14),(2,13),…,(7,8). 故所求概率为8515957C 7235==. 12分7.口袋里装有红色和白色共36个不同的球,且红色球多于白色球.从袋子中取出2个球,若是同色的概率为12,求: (1) 袋中红色、白色球各是多少?(2) 从袋中任取3个小球,至少有一个红色球的概率为多少?8解:(1)令红色球为x 个,则依题意得223622363612x x C C C C -+=, (3分)所以227218350x x -+⨯=得x=15或x=21,又红色球多于白色球,所以x=21.所以红色球为21个,白色球为15个. ( 6分)(2)设从袋中任取3个小球,至少有一个红色球的事件为A ,均为白色球的事件为B ,则P (B )=1--P (A )=3153361C C - =191204 (12分)8.加工某种零件需要经过四道工序,已知死一、二、三、四道工序的合格率分别为910876、、、987,且各道工序互不影响 (1)求该种零件的合格率(2)从加工好的零件中任取3件,求至少取到2件合格品的概率(3)假设某人依次抽取4件加工好的零件检查,求恰好连续2次抽到合格品的概率(用最简分数表示结果)解:(1)该种零件合格率为198763109875P =⨯⨯⨯= (2)该种零件的合格率为35,则不合格率为25,从加工好的零件中任意取3个,至少取到2件合格品的概率223323332381()()()555125P C C =+=(3)恰好连续2次抽到合格品的概率22233223223216()1()()1()5555555625P =⨯⨯+⨯⨯+⨯⨯=9.同时抛掷15枚均匀的硬币一次 (1)试求至多有1枚正面向上的概率;(2)试问出现正面向上为奇数枚的概率与出现正面向上为偶数枚的概率是否相等?请说明理由.9解: (1)记“抛掷1枚硬币1次出现正面向上”为事件A ,P (A )=21,抛掷15枚硬币1次相当于作15次独立重复试验,根据几次独立重复试验中事件A 发生K 次的概率公式, 记至多有一枚正面向上的概率为P 1则P 1= P 15(0)+ P 15(1)=15015)21(C +15115)21(C =20481(2)记正面向上为奇数枚的概率为P 2,则有P 2= P 15(1)+ P 15(3)+…+ P 15(15)=15115)21(C +15315)21(C +…+151515)21(C=C C 31511515()21(++…+C 1515)–212)21(1415=⋅又“出现正面向上为奇数枚”的事件与“出现正面向上为偶数枚” 的事件是对立事件,记“出现正面向上为偶数枚” 的事件的概率为P 3∴ P 3=1–21=21∴相等10.如图,用D C B A ,,,一个正常工作且元件D C ,至少有一个正常工作时,系统M 正常工作.元件D C B A ,,,正常工作的概率依次为0.6,0.7,0.8,求元件连接成的系统M 工作的概率)(M P .解:由A ,B 构成系统F ,由C ,D 那么系统F 正常工作的概率)](1[)(B A P F P ⋅-=,系统G 正常工作的概率为)](1[)(D C P G P ⋅-=,由已知,得752.0)()()(=⋅=G P F P M P ,故系统M 正常工作的概率为0.752.11.有一批种子,每粒发芽的概率为32,播下5粒种子,计算:(Ⅰ)其中恰好有4粒发芽的概率; (Ⅱ)其中至少有4粒发芽的概率;(Ⅲ)其中恰好有3粒没发芽的概率. (以上各问结果均用最简分数作答)解:(Ⅰ)24380)31()32(445=⋅⋅C10(Ⅱ)2431122433224380)32()31()32(5445=+=+C (Ⅲ)24340243410)32()31(2335=⨯=C 12.袋中有大小相同的5个白球和3个黑球,从中任意摸出4个,求下列事件发生的概率.(1)摸出2个或3个白球; (2)至少摸出一个黑球.解: (Ⅰ)设摸出的4个球中有2个白球、3个白球分别为事件A 、B ,则 73)(,73)(481325482325=⋅==⋅=C C C B P C C C A P ∵A 、B 为两个互斥事件 ∴P (A+B )=P (A )+P (B )=76即摸出的4个球中有2个或3个白球的概率为76…………6分 (Ⅱ)设摸出的4个球中全是白球为事件C ,则P (C )=1414845=C C 至少摸出一个黑球为事件C 的对立事件其概率为14131411=-………………12分 13.2005年江苏省普通类高校招生进行了改革,在各个批次的志愿填报中实行平行志愿,按照“分数优先,遵循志愿”的原则进行投档录取.例如:在对第一批本科投档时,计算机投档系统按照考生的5门高考总分从高到低逐个检索、投档.当检索到某个考生时,再依次..按考生填报的A 、B 、C 三个院校志愿进行检索,只要被检索到3所院校 中一经出现....符合投档条件的院校,即向该院校投档,假设一进档即被该院校录取.张林今年的高考成绩为600分(超过本一线40分),他希望能上甲、乙、丙三所院校中的一所.经咨询知道,张林被甲校录取的概率为0.4,被乙校录取的概率为0.7,被丙校录取的概率为0.9.如果张林把甲、乙、丙三所院校依次填入A 、B 、C 三个志愿,求: (Ⅰ) 张林被B 志愿录取的概率;(Ⅱ) 张林被A 、B 、C 三个志愿中的一个录取的概率.解:记“张林被A 志愿录取”为事件1A ,“张林被B 志愿录取”为事件2A ,“张林被C 志愿录取”为事件3A .……………………………………………………1分(Ⅰ) 由题意可知,事件2A 发生即甲校不录取张林而乙校录取张林.∴2()(10.4)0.70.42P A =-⨯=.………… ………………………6分(Ⅱ) 记“张林被A 、B 、C 三个志愿中的一个录取”为事件A .由于事件1A 、2A 、3A 中任何两个事件是互斥事件,…… …………………………7分且3()(10.4)(10.7)0.90.60.30.90.162P A =-⨯-⨯=⨯⨯=… ……9分 ∴123123()()()()()0.40.420.1620.982P A P A A A P A P A P A =++=++=++=. 方法2:(Ⅱ) 记“张林被A 、B 、C 三个志愿中的一个录取”为事件A .由于事件A 的对立事件是“张林没有被A 、B 、C 三个志愿中的一个录取”. ……7分∴()1(10.4)(10.7)(10.9)P A =--⨯-⨯-… ………………10分10.60.30.10.982=-⨯⨯=.… …………………11分答:张林被B 志愿录取的概率为0.42;张林被A 、B 、C 三个志愿中的一个录取的概率为0.982.…… ……………………………………12分14.平面直角坐标系中有两个动点A 、B ,它们的起始坐标分别是(0,0),(2,2),动点A 、B从同一时刻开始每隔1秒钟向上、下、左、右四个方向中的一个方向移动1个单位,已知动点A 向左、右移动的概率都是41,向上、下移动的概率分别是31和p ,动点B向上、下、左、右四个方向中的一个方向移动1个单位的概率都是q . (Ⅰ)求p 和q 的值;(Ⅱ)试判断最少需要几秒钟,动点A、B能同时到达点D(1,2),并求在最短时间内同时到达点D的概率.解:(Ⅰ)由于质点A向四个方向移动是一个必然事件,…………………………2分所以1111443p+++=,所以16p=.………………………………4分同理可得14q=.……………………………………………………6分(Ⅱ)至少需要3秒可以同时到达点D.……………………………………8分经过3秒钟,点A到达点D的概率为3p右p上p上=112.……………………10分经过3秒钟,点B到达点D的概率为3199()464=.……………………12分所以,经过3秒钟,动点A、B同时到达点D的概率为1931264256⨯=.…14分15(1(2解:(14次中有3次正面16分(26次3次正面3次反面,设其12分 16.一位学生每天骑自行车上学,从他家到学校共有5个交通岗,假设他在每个交通岗遇到红灯是相互独立的,且首末两个交通岗遇红灯的概率均为p ,其余3个交通岗遇红灯的概率均为12.(Ⅰ)若23p =,求该学生在第三个交通岗第一次遇到红灯的概率;(Ⅱ)若该学生至多遇到一次红灯的概率不超过518,求p 的取值范围.解: (Ⅰ) 记该学生在第i 个交通岗遇红灯为事件i A (1,2,,5i =⋅⋅⋅),它们相互独立,则“这名学生在第三个交通岗第一次遇到红灯”为123A A A ⋅⋅.1231232111()()()()(1)(1)32212P A A A P A P A P A ⋅⋅=⋅⋅=-⨯-⨯=.答: 该学生在第三个交通岗第一次遇到红灯的概率为112. ------------------------ 6分注:本小问缺少事件命名、概型分析、答,各扣一分.(Ⅱ)过首末两个路口,过中间三个路口分别看作独立重复试验.该学生至多遇到一次红灯指没有遇红灯(记为A )或恰好遇一次红灯(记为B ),则A 与B 互斥.020322311()C (1)C (1)(1)28P A p p =-⋅-=-, --------------------------------------------- 7分 02121032232311131()C (1)C (1)C (1)C (1)(1)(1)22284P B p p p p p p =-⋅-+-⋅-=-+-.9分 该学生至多遇到一次红灯,为A B +,2221311()()()(1)(1)(1)(32)8844P A B P A P B p p p p p p +=+=-+-+-=-+,故215(32)418p p -+≤,即292780p p -+≤,解得1833p ≤≤. ----------------- 11分 又01p ≤≤,所以p 的取值范围为1[,1]3. -------------------------------------------- 12分注:p 的取值范围写成1[,1)3不扣分.17.高三(1)班、高三(2)每班已选出3名学生组成代表队,进行乒乓球对抗赛,比赛规则是:① 按“单打、双打、单打”顺序进行三盘比赛; ② 代表队中每名队员至少参加一盘比赛,不得参加两盘单打比赛; ③ 先胜两盘的队获胜,比赛结束.已知每盘比赛双方胜出的概率均为.21(Ⅰ)根据比赛规则,高三(1)班代表队共可排出多少种不同的出场阵容?(Ⅱ)高三(1)班代表队连胜两盘的概率是多少?(Ⅲ)高三(1)班代表队至少胜一盘的概率为多少?解:解:(Ⅰ)参加单打的队员有23A 种方法.参加双打的队员有12C 种方法. (2分)所以,高三(1)班出场画容共有)(121223种=⋅C A (4分) (Ⅱ)高三(1)班代表队连胜两盘,可分为第一盘、第二盘胜或第一盘负,其余两盘胜.所以,连胜两盘的概率为.832121212121=⨯⨯+⨯ (8分)(Ⅲ)高三(1)班至少胜盘,可分为:(1)胜一盘,此时的概率为 .41212121212121=⨯⨯+⨯⨯ (9分)(2)胜两盘,此时的概率为.212121212121212121=⨯⨯+⨯⨯+⨯ (11分)所以,高三(1)班至少胜一盘的概率为.432141=+ (12分)或:高三(1)班代表队至少胜一盘的对立事件为输掉前两盘 (10分)所以,所求概率为4321211=⨯- (12分)18.甲、乙两人各进行3次射击,甲每次击中目标的概率为21,乙每次击中目标的概率为32,(1)记甲击中目标的次数为ξ,求ξ的概率分布及数学期望E ξ; (2)求乙至多击中目标2次的概率;(3)求甲恰好比乙多击中目标2次的概率.(14分)19.为了支持三峡工程建设,某市某镇决定接受一批三峡移民,其中有3户 互为亲戚关系,将这3户移民随意安置到5个村民组 ① 求这3户恰好安置到同一村民组的概率② 求这3户中恰好有2户安置到同一村民组的概率解:①3户任意分配到5个村民组,共有53种不同分法,3户都在同一村民组共有5种方法,3户都在同一村民组的概率为350.045=,∴3户都在同一村民组的概率为0.04②恰有2户分到同一村民组的结果有2235,C A 种∴223530.485C A =∴恰有2户分到同一村民组的概率为0.4820.某制药厂设甲、乙两个研究小组,独立研制治疗禽流感的新药物. (1)设甲小组研制出新药物的概率为0.75,乙小组研制出新药物的概率为0.80,求甲、乙两组均研制出新药物的概率;(2)设甲、乙两组研制出新药物的概率相同。

概率学高考试题及答案

概率学高考试题及答案

概率学高考试题及答案概率学是高中数学课程中的一个重要分支,它研究随机事件的规律性。

以下是一套概率学高考试题及答案,供考生练习。

一、选择题(每题3分,共15分)1. 某班有30名学生,其中男生20人,女生10人。

从这30名学生中随机抽取一人,抽到男生的概率是多少?A. 1/3B. 2/3C. 1/2D. 3/5答案:B2. 一个袋子里装有3个红球和2个蓝球,随机取出2个球,至少有一个红球的概率是多少?A. 1/3B. 3/5C. 2/3D. 4/5答案:C3. 如果事件A和事件B是互斥的,且P(A) = 0.4,P(B) = 0.3,那么P(A∪B)等于多少?A. 0.7B. 0.6C. 0.5D. 0.4答案:B4. 抛一枚硬币两次,出现正面朝上的次数X服从什么分布?A. 正态分布B. 二项分布C. 泊松分布D. 几何分布答案:B5. 一个随机变量X服从参数为λ的泊松分布,那么P(X=k)等于多少?A. λ^k * e^(-λ) / k!B. k * λ^(k-1) * e^(-λ)C. λ * e^(-λ) / kD. e^(-λ) * (λ/k)答案:A二、填空题(每题2分,共10分)6. 一个盒子里有5个白球和3个黑球,随机取出2个球,两个都是白球的概率是______。

答案:5/147. 某次考试的及格率为70%,如果随机抽取10名学生,至少有7名学生及格的概率是______。

答案:[计算略]8. 一个骰子连续掷两次,点数之和为7的概率是______。

答案:5/369. 某工厂生产的产品中有2%是次品,如果随机抽取100件产品,期望的次品数是______。

答案:210. 一个随机变量X服从标准正态分布,那么P(-1 < X < 1) ≈______。

答案:0.6827三、解答题(共25分)11. 一个袋子里有5个红球和5个蓝球,随机取出3个球,求以下事件的概率:- 事件A:取出的3个球都是红球。

高考概率题总结全国卷

高考概率题总结全国卷

高考概率题总结全国卷引言在高考数学题中,概率题一直是考生们比较头疼的一部分。

概率题的解题思路需要考生熟练掌握概率的基本概念和计算方法,并能够灵活运用。

本文将总结全国卷中的高考概率题,从中提取出一些典型的题型和解题思路,帮助考生更好地应对概率题。

典型题型1. 互不相容事件的概率计算在概率题中,有些题目会给出一些互不相容事件的概率,要求计算它们的和或差的概率。

解题思路:首先,根据题意找出互不相容事件,并求出各个事件的概率。

然后,根据题目要求计算出所需的概率。

例如:题目:某班有60名学生,其中35名喜欢篮球,30名喜欢足球,15名既喜欢篮球又喜欢足球。

从该班中随机抽取一名学生,问该学生喜欢篮球或足球的概率是多少?解题思路:首先,喜欢篮球和足球的学生是互不相容的事件,所以我们只需计算出喜欢篮球和喜欢足球的概率,然后求和即可。

喜欢篮球的学生概率为35/60,喜欢足球的学生概率为30/60,喜欢篮球和足球的学生概率为15/60。

所以,喜欢篮球或足球的概率为(35/60) + (30/60) -(15/60) = 50/60 = 5/6。

2. 条件概率的计算在概率题中,有些题目会给出一些已知条件,并要求计算在这些条件下发生某事件的概率。

解题思路:首先,根据已知条件确定相关的事件和概率。

然后,根据概率的定义计算所需的概率。

例如:题目:某班有60名学生,其中35名喜欢篮球,30名喜欢足球。

从该班中随机抽取一名学生,已知该学生喜欢篮球,问该学生也喜欢足球的概率是多少?解题思路:首先,已知条件是该学生喜欢篮球,所以我们只需计算出喜欢篮球且喜欢足球的学生的概率,然后计算在喜欢篮球的条件下喜欢足球的概率。

喜欢篮球的学生概率为35/60,喜欢篮球且喜欢足球的学生概率为15/60。

所以,在已知该学生喜欢篮球的条件下,该学生也喜欢足球的概率为(15/60) /(35/60) = 3/7。

3. 独立事件的概率计算在概率题中,有些题目会给出一些独立事件的概率,并要求计算它们同时发生的概率。

高考概率经典解答题及答案

高考概率经典解答题及答案

高考概率经典解答题及答案下面是一些经典的高考概率题目及其答案:1. 问题:在一副扑克牌中,从中任意抽取一张牌,求抽到红桃的概率是多少?问题:在一副扑克牌中,从中任意抽取一张牌,求抽到红桃的概率是多少?答案:扑克牌中一共有52张牌,其中红桃有13张。

因此抽到红桃的概率为13/52,即1/4。

:扑克牌中一共有52张牌,其中红桃有13张。

因此抽到红桃的概率为13/52,即1/4。

2. 问题:有一个包含5只黑球和7只白球的箱子,从中不放回地随机抽取两个球,求抽到一黑一白的概率是多少?问题:有一个包含5只黑球和7只白球的箱子,从中不放回地随机抽取两个球,求抽到一黑一白的概率是多少?答案:抽取第一个球时,有5/12的概率抽到黑球,7/12的概率抽到白球。

抽取第二个球时,则有4/11的概率抽到与第一个球不同颜色的球。

:抽取第一个球时,有5/12的概率抽到黑球,7/12的概率抽到白球。

抽取第二个球时,则有4/11的概率抽到与第一个球不同颜色的球。

因此,抽到一黑一白的概率为(5/12) * (7/11) + (7/12) * (5/11) = 35/66。

3. 问题:有标准的六面骰子,投掷两次,求两次投掷的点数之和为7的概率是多少?问题:有标准的六面骰子,投掷两次,求两次投掷的点数之和为7的概率是多少?答案:投掷两次骰子,每次投掷的点数都有6种可能结果。

共有36种不同的点数组合。

:投掷两次骰子,每次投掷的点数都有6种可能结果。

共有36种不同的点数组合。

其中,和为7的组合有(1,6)、(2,5)、(3,4)、(4,3)、(5,2)和(6,1)这6种组合。

因此,两次投掷的点数之和为7的概率为6/36,即1/6。

以上是一些经典的高考概率题目及其答案,希望对您有帮助。

2024届新高考数学大题精选30题--概率统计(1)含答案

2024届新高考数学大题精选30题--概率统计(1)含答案

大题概率统计(精选30题)1(2024·浙江绍兴·二模)盒中有标记数字1,2的小球各2个.(1)若有放回地随机取出2个小球,求取出的2个小球上的数字不同的概率;(2)若不放回地依次随机取出4个小球,记相邻小球上的数字相同的对数为X(如1122,则X=2),求X的分布列及数学期望E X.2(2024·江苏扬州·模拟预测)甲、乙两人进行某棋类比赛,每局比赛时,若决出输赢则获胜方得2分,负方得0分;若平局则各得1分.已知甲在每局中获胜、平局、负的概率均为13,且各局比赛结果相互独立.(1)若比赛共进行了三局,求甲共得3分的概率;(2)规定比赛最多进行五局,若一方比另一方多得4分,则停止比赛,求比赛局数X的分布列与数学期望.2024届新高考数学大题精选30题--概率统计(1)3(2024·江苏南通·二模)某班组建了一支8人的篮球队,其中甲、乙、丙、丁四位同学入选,该班体育老师担任教练.(1)从甲、乙、丙、丁中任选两人担任队长和副队长,甲不担任队长,共有多少种选法?(2)某次传球基本功训练,体育老师与甲、乙、丙、丁进行传球训练,老师传给每位学生的概率都相等,每位学生传球给同学的概率也相等,学生传给老师的概率为17.传球从老师开始,记为第一次传球,前三次传球中,甲同学恰好有一次接到球且第三次传球后球回到老师手中的概率是多少?4(2024·重庆·模拟预测)中国在第75届联合国大会上承诺,努力争取2060年之前实现碳中和(简称“双碳目标”).新能源电动汽车作为战略新兴产业,对于实现“双碳目标”具有重要的作用.赛力斯汽车有限公司为了调查客户对旗下AITO问界M7的满意程度,对所有的意向客户发起了满意度问卷调查,将打分在80分以上的客户称为“问界粉”.现将参与调查的客户打分(满分100分)进行了统计,得到如下的频率分布直方图:(1)估计本次调查客户打分的中位数(结果保留一位小数);(2)按是否为“问界粉”比例采用分层抽样的方法抽取10名客户前往重庆赛力斯两江智慧工厂参观,在10名参观的客户中随机抽取2名客户赠送价值2万元的购车抵用券.记获赠购车券的“问界粉”人数为ξ,求ξ的分布列和数学期望Eξ .5(2024·福建三明·三模)某校开设劳动教育课程,为了有效推动课程实施,学校开展劳动课程知识问答竞赛,现有家政、园艺、民族工艺三类问题海量题库,其中家政类占14,园艺类占14,民族工艺类占12.根据以往答题经验,选手甲答对家政类、园艺类、民族工艺类题目的概率分别为25,25,45,选手乙答对这三类题目的概率均为12.(1)求随机任选1题,甲答对的概率;(2)现进行甲、乙双人对抗赛,规则如下:两位选手进行三轮答题比赛,每轮只出1道题目,比赛时两位选手同时回答这道题,若一人答对且另一人答错,则答对者得1分,答错者得-1分,若两人都答对或都答错,则两人均得0分,累计得分为正者将获得奖品,且两位选手答对与否互不影响,每次答题的结果也互不影响,求甲获得奖品的概率.6(2024·江苏南京·二模)某地5家超市春节期间的广告支出x (万元)与销售额y (万元)的数据如下:超市A B C D E 广告支出x 24568销售额y3040606070(1)从A ,B ,C ,D ,E 这5家超市中随机抽取3家,记销售额不少于60万元的超市个数为X ,求随机变量X 的分布列及期望E (X );(2)利用最小二乘法求y 关于x 的线性回归方程,并预测广告支出为10万元时的销售额.附:线性回归方程y =b x +a 中斜率和截距的最小二乘估计公式分别为:b =ni =1x i y i -nx yni =1x 2i -nx2,a =y -b x .7(2024·重庆·三模)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为12,各局比赛的结果都相互独立,第1局甲当裁判.记随机变量X i=1,第i局乙当裁判0,第i局甲或丙当裁判,i=1,2,⋅⋅⋅,n,p i=P X i=1,X表示前n局中乙当裁判的次数.(1)求事件“n=3且X=1”的概率;(2)求p i;(3)求E X ,并根据你的理解,说明当n充分大时E X 的实际含义.附:设X,Y都是离散型随机变量,则E X+Y=E X+E Y.8(2024·安徽池州·二模)学校组织某项劳动技能测试,每位学生最多有3次测试机会.一旦某次测试通过,便可获得证书,不再参加以后的测试,否则就继续参加测试,直到用完3次机会.如果每位学生在3次测试中通过的概率依次为0.5,0.6,0.8,且每次测试是否通过相互独立.现某小组有3位学生参加测试,回答下列问题:(1)求该小组学生甲参加考试次数X的分布列及数学期望E X ;(2)规定:在2次以内测试通过(包含2次)获得优秀证书,超过2次测试通过获得合格证书,记该小组3位学生中获得优秀证书的人数为Y,求使得P Y=k取最大值时的整数k.9(2024·辽宁·二模)一枚棋子在数轴上可以左右移动,移动的方式以投掷一个均匀的骰子来决定,规则如下:当所掷点数为1点时,棋子不动;当所掷点数为3或5时,棋子在数轴上向左(数轴的负方向)移动“该点数减1”个单位;当所掷的点数为偶数时,棋子在数轴上向右(数轴的正方向)移动“该点数的一半”个单位;第一次投骰子时,棋子以坐标原点为起点,第二次开始,棋子以前一次棋子所在位置为该次的起点.(1)投掷骰子一次,求棋子的坐标的分布列和数学期望;(2)投掷骰子两次,求棋子的坐标为-2的概率;(3)投掷股子两次,在所掷两次点数和为奇数的条件下,求棋子的坐标为正的概率.10(2024·广东湛江·一模)甲进行摸球跳格游戏.图上标有第1格,第2格,⋯,第25格,棋子开始在第1格.盒中有5个大小相同的小球,其中3个红球,2个白球(5个球除颜色外其他都相同).每次甲在盒中随机摸出两球,记下颜色后放回盒中,若两球颜色相同,棋子向前跳1格;若两球颜色不同,棋子向前跳2格,直到棋子跳到第24格或第25格时,游戏结束.记棋子跳到第n格的概率为P n n=1,2,3,⋅⋅⋅,25.(1)甲在一次摸球中摸出红球的个数记为X,求X的分布列和期望;(2)证明:数列P n-P n-1n=2,3,⋅⋅⋅,24为等比数列.11(2024·广东韶关·二模)小明参加社区组织的射击比赛活动,已知小明射击一次、击中区域甲的概率是13,击中区域乙的概率是14,击中区域丙的概率是18,区域甲,乙、丙均没有重复的部分.这次射击比赛获奖规则是:若击中区域甲则获一等奖;若击中区域乙则有一半的机会获得二等奖,有一半的机会获得三等奖;若击中区域丙则获得三等奖;若击中上述三个区域以外的区域则不获奖.获得一等奖和二等奖的选手被评为“优秀射击手”称号.(1)求小明射击1次获得“优秀射击手”称号的概率;(2)小明在比赛中射击4次,每次射击的结果相互独立,设获三等奖的次数为X,求X分布列和数学期望.12(2024·河北邢台·一模)小张参加某知识竞赛,题目按照难度不同分为A类题和B类题,小张回答A类题正确的概率为0.9,小张回答B类题正确的概率为0.45.已知题库中B类题的数量是A类题的两倍.(1)求小张在题库中任选一题,回答正确的概率;(2)已知题库中的题目数量足够多,该知识竞赛需要小张从题库中连续回答10个题目,若小张在这10个题目中恰好回答正确k个(k=0,1,2,⋯,10)的概率为P k,则当k为何值时,P k最大?13(2024·湖南衡阳·模拟预测)某电竞平台开发了A、B两款训练手脑协同能力的游戏,A款游戏规则是:五关竞击有奖闯关,每位玩家上一关通过才能进入下一关,上一关没有通过则不能进入下一关,且每关第一次没有通过都有再挑战一次的机会,两次均未通过,则闯关失败,各关和同一关的两次挑战能否通过相互独立,竞击的五关分别依据其难度赋分.B款游戏规则是:共设计了n(n∈N*且n≥2)关,每位玩家都有n次闯关机会,每关闯关成功的概率为13,不成功的概率为23,每关闯关成功与否相互独立;第1次闯关时,若闯关成功则得10分,否则得5分.从第2次闯关开始,若闯关成功则获得上一次闯关得分的两倍,否则得5分.电竞游戏玩家甲先后玩A、B两款游戏.(1)电竞游戏玩家甲玩A款游戏,若第一关通过的概率为34,第二关通过的概率为23,求甲可以进入第三关的概率;(2)电竞游戏玩家甲玩B款游戏,记玩家甲第i次闯关获得的分数为X i i=1,2,⋯,n,求E X i关于i的解析式,并求E X8的值.(精确到0.1,参考数据:2 37≈0.059.)14(2024·湖南邵阳·模拟预测)2023年8月3日,公安部召开的新闻发布会公布了“提高道路资源利用率”和“便利交通物流货运车辆通行”优化措施,其中第二条提出推动缓解停车难问题.在持续推进缓解城镇老旧小区居民停车难改革措施的基础上,因地制宜在学校、医院门口设置限时停车位,支持鼓励住宅小区和机构停车位错时共享.某医院门口设置了限时停车场(停车时间不超过60分钟),制定收费标准如下:停车时间不超过15分钟的免费,超过15分钟但不超过30分钟收费3元,超过30分钟但不超过45分钟收费9元,超过45分钟但不超过60分钟收费18元,超过60分钟必须立刻离开停车场.甲、乙两人相互独立地来该停车场停车,且甲、乙的停车时间的概率如下表所示:停车时间/分钟0,1515,30 30,45 45,60甲143a14a 乙162b13b设此次停车中,甲所付停车费用为X ,乙所付停车费用为Y .(1)在X +Y =18的条件下,求X ≥Y 的概率;(2)若ξ=X -Y ,求随机变量ξ的分布列与数学期望.15(2024·湖北·一模)2023年12月30号,长征二号丙/远征一号S运载火箭在酒泉卫星发射中心点火起飞,随后成功将卫星互联网技术实验卫星送入预定轨道,发射任务获得圆满完成,此次任务是长征系列运载火箭的第505次飞行,也代表着中国航天2023年完美收官.某市一调研机构为了了解当地学生对我国航天事业发展的关注度,随机的从本市大学生和高中生中抽取一个容量为n的样本进行调查,调查结果如下表:学生群体关注度合计关注不关注大学生12n710n高中生合计3 5 n附:α0.10.050.00250.010.001χα 2.706 3.841 5.024 6.63510.828χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.(1)完成上述列联表,依据小概率值α=0.05的独立性检验,认为关注航天事业发展与学生群体有关,求样本容量n的最小值;(2)该市为了提高本市学生对航天事业的关注,举办了一次航天知识闯关比赛,包含三个问题,有两种答题方案选择:方案一:回答三个问题,至少答出两个可以晋级;方案二:在三个问题中,随机选择两个问题,都答对可以晋级.已知小华同学答出三个问题的概率分别是34,23,12,小华回答三个问题正确与否相互独立,则小华应该选择哪种方案晋级的可能性更大?(说明理由)16(2024·湖北·二模)吸烟有害健康,现统计4名吸烟者的吸烟量x 与损伤度y ,数据如下表:吸烟量x 1456损伤度y3867(1)从这4名吸烟者中任取2名,其中有1名吸烟者的损伤度为8,求另1吸烟者的吸烟量为6的概率;(2)在实际应用中,通常用各散点(r ,y )到直线y =bx +a 的距离的平方和S =ni =1(bx i +a -y i )2 来刻画“整体接近程度”.S 越小,表示拟合效果越好.试根据统计数据,求出经验回归直线方程y =b x +a.并根据所求经验回归直线估计损伤度为10时的吸烟量.附:b =ni =1(x i -x )(y i -y)ni =1(x i -x)2,a =y -b x.17(2024·山东枣庄·一模)有甲、乙两个不透明的罐子,甲罐有3个红球,2个黑球,球除颜色外大小完全相同.某人做摸球答题游戏.规则如下:每次答题前先从甲罐内随机摸出一球,然后答题.若答题正确,则将该球放入乙罐;若答题错误,则将该球放回甲罐.此人答对每一道题目的概率均为12.当甲罐内无球时,游戏停止.假设开始时乙罐无球.(1)求此人三次答题后,乙罐内恰有红球、黑球各1个的概率;(2)设第n n ∈N *,n ≥5 次答题后游戏停止的概率为a n .①求a n ;②a n 是否存在最大值?若存在,求出最大值;若不存在,试说明理由.18(2024·安徽合肥·二模)树人中学高三(1)班某次数学质量检测(满分150分)的统计数据如下表:性别参加考试人数平均成绩标准差男3010016女209019在按比例分配分层随机抽样中,已知总体划分为2层,把第一层样本记为x 1,x 2,x 3,⋯,x n ,其平均数记为x,方差记为s 21;把第二层样本记为y 1,y 2,y 3,⋯,y m ,其平均数记为y,方差记为s 22;把总样本数据的平均数记为z ,方差记为s 2.(1)证明:s 2=1m +nn s 21+x -z 2 +m s 22+y -z 2 ;(2)求该班参加考试学生成绩的平均数和标准差(精确到1);(3)假设全年级学生的考试成绩服从正态分布N μ,σ2 ,以该班参加考试学生成绩的平均数和标准差分别作为μ和σ的估计值.如果按照16%,34%,34%,16%的比例将考试成绩从高分到低分依次划分为A ,B ,C ,D 四个等级,试确定各等级的分数线(精确到1).附:P μ-σ≤X ≤μ+σ ≈0.68,302≈17,322≈18,352≈19.19(2024·福建福州·模拟预测)甲企业生产线上生产的零件尺寸的误差X服从正态分布N0,0.22,规定X∈-0.2,0.2的零件为合格品.的零件为优等品,X∈-0.6,0.6(1)从该生产线上随机抽取100个零件,估计抽到合格品但非优等品的个数(精确到整数);(2)乙企业拟向甲企业购买这批零件,先对该批零件进行质量抽检,检测的方案是:从这批零件中任取2个作检测,若这2个零件都是优等品,则通过检测;若这2个零件中恰有1个为优等品,1个为合格品但非优等品,则再从这批零件中任取1个作检测,若为优等品,则通过检测;其余情况都不通过检测.求这批零件通过检测时,检测了2个零件的概率(精确到0.01).(附:若随机变量ξ∼Nμ,σ2,则Pμ-σ<ξ<μ+σ=0.9545,=0.6827,Pμ-2σ<ξ<μ+2σPμ-3σ<ξ<μ+3σ=0.9973)20(2024·河北保定·二模)某兴趣小组调查并统计了某班级学生期末统考中的数学成绩和建立个性化错题本的情况,用来研究这两者是否有关.若从该班级中随机抽取1名学生,设A =“抽取的学生期末统考中的数学成绩不及格”,B =“抽取的学生建立了个性化错题本”,且P (A |B )=23,P (B |A )=56,P B =23.(1)求P A 和P A B .(2)若该班级共有36名学生,请完成列联表,并依据小概率值α=0.005的独立性检验,分析学生期末统考中的数学成绩与建立个性化错题本是否有关,个性化错题本期末统考中的数学成绩合计及格不及格建立未建立合计(3)为进一步验证(2)中的判断,该兴趣小组准备在其他班级中抽取一个容量为36k 的样本(假设根据新样本数据建立的列联表中,所有的数据都扩大为(2)中列联表中数据的k 倍,且新列联表中的数据都为整数).若要使得依据α=0.001的独立性检验可以肯定(2)中的判断,试确定k 的最小值参考公式及数据:χ2=n ad -bc 2a +b c +d a +c b +d,n =a +b +c +d .α0.010.0050.001x a6.6357.87910.82821(2024·浙江绍兴·模拟预测)书接上回.麻将学习小组中的炎俊同学在探究完问题后返回家中观看了《天才麻将少女》,发现超能力麻将和现实麻将存在着诸多不同.为了研究超能力麻将,他使用了一些”雀力值”和”能力值”来确定每位角色的超能力麻将水平,发现每位角色在一局麻将中的得分与个人值和该桌平均值之差存在着较大的关系.(注:平均值指的是该桌内四个人各自的“雀力值”和“能力值”之和的平均值,个人值类似.)为深入研究这两者的关系,他列出了以下表格:个人值与平均值之差x-9-6-30369得分y-38600-23100-10900+11800+24100+36700(1)①计算x ,y 的相关系数r ,并判断x ,y 之间是否基本上满足线性关系,注意:保留至第一位非9的数.②求出y 与x 的经验回归方程.③以下为《天才麻将少女》中几位角色的”雀力值”和”能力值”:角色宫永照园城寺怜花田煌松实玄雀力值249104能力值241636试估计此四位角色坐在一桌打麻将每一位的得分(近似至百位)(2)在分析了更多的数据后,炎俊发现麻将中存在着很多运气的成分.为衡量运气对于麻将对局的影响,炎俊建立了以下模型,其中他指出:实际上的得分并不是一个固定值,而是具有一定分布的,存在着一个标准差.运气实际上体现在这一分布当中取值的细微差别.接下去他便需要得出得分的标准差.他发现这一标准差来源自两个方面:一方面是在(1)②问当中方程斜率b 存在的标准差Δb ;另一方面则是在不影响平均值的情况下,实际表现“个人值”X 符合正态分布规律X ~N μ,σ2 .(μ为评估得出的个人值.)已知松实玄实际表现个人值满足P X >10.5 =0.02275,求(1)③中其得分的标准差.(四舍五入到百位)(3)现在新提出了一种赛制:参赛者从平均值为10开始进行第一轮挑战,之后每一轮对手的”雀力值”和”能力值”均会提升至原来的43.我们设进行了i 轮之后,在前i 轮内该参赛者的总得分为E X i ;若园城寺怜参加了此比赛,求ni =1E X i2i参考数据和公式:①7i =1x i y i =1029000;7i =1y 2i =4209320000.②相关系数r =ni =1x i -x y i -yni =1x i -x2ni =1y i -y2;经验回归方程y =b x +a ,b =ni =1x i -x y i -yni =1x i -x2,a =y -b ⋅x;Δbb=1r 2-1n -2,其中n 为回归数据组数.③对于随机变量X~Nμ,σ2,Pμ-σ≤X≤μ+σ≈0.6827,Pμ-2σ≤X≤μ+2σ≈0.9545,Pμ-3σ≤X≤μ+3σ≈0.9973.④x <<1时,1+xα≈1+αx,α∈R;⑤对间接计算得出的值f=xy有标准差Δf满足Δff=Δx x 2+Δy y 2.⑥13136≈3.2×10-4;6.8≈2.6;2946524≈1715×1+9×10-422(2024·江苏南通·模拟预测)“踩高跷,猜灯谜”是我国元宵节传统的文化活动. 某地为了弘扬文化传统,发展“地摊经济”,在元宵节举办形式多样的猜灯谜活动.(1)某商户借“灯谜”活动促销,将灯谜按难易度分为B、C两类,抽到较易的B类并答对购物打八折优惠,抽到稍难的C类并答对购物打七折优惠,抽取灯谜规则如下:在一不透明的纸箱中有8张完全相同的卡片,其中3张写有A字母,3张写有B字母,2张写有C字母,顾客每次不放回从箱中随机取出1张卡片,若抽到写有A的卡片,则再抽1次,直至取到写有B或C卡片为止,求该顾客取到写有B卡片的概率.(2)小明尝试去找全街最适合他的灯谜,规定只能取一次,并且只可以向前走,不能回头,他在街道上一共会遇到n条灯谜(不妨设每条灯谜的适合度各不相同),最适合的灯谜出现在各个位置上的概率相等,小明准备采用如下策略:不摘前k1≤k<n条灯谜,自第k+1条开始,只要发现比他前面见过的灯谜适合的,就摘这条灯谜,否则就摘最后一条,设k=tn,记小明摘到那条最适合的灯谜的概率为P.①若n=4,k=2,求P;②当n趋向于无穷大时,从理论的角度,求P的最大值及P取最大值时t的值.(取1k+1k+1+⋯+1n-1=ln nk)23(2024·安徽·模拟预测)某校在90周年校庆到来之际,为了丰富教师的学习和生活,特举行了答题竞赛.在竞赛中,每位参赛教师答题若干次,每一次答题的赋分方法如下:第1次答题,答对得20分,答错得10分,从第2次答题开始,答对则获得上一次答题所得分数两倍的得分,答错得10分,教师甲参加答题竞赛,每次答对的概率均为12,每次答题是否答对互不影响.(1)求甲前3次答题的得分之和为70分的概率.(2)记甲第i次答题所得分数X i i∈N*的数学期望为E X i.(ⅰ)求E X1,E X2,E X3,并猜想当i≥2时,E X i与E X i-1之间的关系式;(ⅱ)若ni=1E X i>320,求n的最小值.24(2024·辽宁·模拟预测)某自然保护区经过几十年的发展,某种濒临灭绝动物数量有大幅度的增加.已知这种动物P 拥有两个亚种(分别记为A 种和B 种).为了调查该区域中这两个亚种的数目,某动物研究小组计划在该区域中捕捉100个动物P ,统计其中A 种的数目后,将捕获的动物全部放回,作为一次试验结果.重复进行这个试验共20次,记第i 次试验中A 种的数目为随机变量X i i =1,2,⋯,20 .设该区域中A 种的数目为M ,B 种的数目为N (M ,N 均大于100),每一次试验均相互独立.(1)求X 1的分布列;(2)记随机变量X =12020i =1X i.已知E X i +X j =E X i +E X j ,D X i +X j =D X i +D X j (i )证明:E X =E X 1 ,D X =120D X 1 ;(ii )该小组完成所有试验后,得到X i 的实际取值分别为x i i =1,2,⋯,20 .数据x i i =1,2,⋯,20 的平均值x =30,方差s 2=1.采用x和s 2分别代替E X 和D X ,给出M ,N 的估计值.(已知随机变量x 服从超几何分布记为:x ∼H P ,n ,Q (其中P 为总数,Q 为某类元素的个数,n 为抽取的个数),则D x =nQ P 1-QPP -nP -1 )25(2024·广东广州·一模)某校开展科普知识团队接力闯关活动,该活动共有两关,每个团队由n (n ≥3,n ∈N *)位成员组成,成员按预先安排的顺序依次上场,具体规则如下:若某成员第一关闯关成功,则该成员继续闯第二关,否则该成员结束闯关并由下一位成员接力去闯第一关;若某成员第二关闯关成功,则该团队接力闯关活动结束,否则该成员结束闯关并由下一位成员接力去闯第二关;当第二关闯关成功或所有成员全部上场参加了闯关,该团队接力闯关活动结束.已知A 团队每位成员闯过第一关和第二关的概率分别为34和12,且每位成员闯关是否成功互不影响,每关结果也互不影响.(1)若n =3,用X 表示A 团队闯关活动结束时上场闯关的成员人数,求X 的均值;(2)记A 团队第k (1≤k ≤n -1,k ∈N *)位成员上场且闯过第二关的概率为p k ,集合k ∈N *p k <3128中元素的最小值为k 0,规定团队人数n =k 0+1,求n .26(2024·广东深圳·二模)某大型企业准备把某一型号的零件交给甲工厂或乙工厂生产.经过调研和试生产,质检人员抽样发现:甲工厂试生产的一批零件的合格品率为94%;乙工厂试生产的另一批零件的合格品率为98%;若将这两批零件混合放在一起,则合格品率为97%.(1)从混合放在一起的零件中随机抽取3个,用频率估计概率,记这3个零件中来自甲工厂的个数为X ,求X 的分布列和数学期望;(2)为了争取获得该零件的生产订单,甲工厂提高了生产该零件的质量指标.已知在甲工厂提高质量指标的条件下,该大型企业把零件交给甲工厂生产的概率,大于在甲工厂不提高质量指标的条件下,该大型企业把零件交给甲工厂生产的概率.设事件A =“甲工厂提高了生产该零件的质量指标”,事件B =“该大型企业把零件交给甲工厂生产”、已知0<P B <1,证明:P A B >P A B.27(2024·湖南·二模)某大学有甲、乙两个运动场.假设同学们可以任意选择其中一个运动场锻炼,也可选择不锻炼,一天最多锻炼一次,一次只能选择一个运动场.若同学们每次锻炼选择去甲或乙运动场的概率均为12,每次选择相互独立.设王同学在某个假期的三天内去运动场锻炼的次数为X ,已知X 的分布列如下:(其中a >0,0<p <1)X0123Pa (1-p )2apa a 1-p(1)记事件A i 表示王同学假期三天内去运动场锻炼i 次i =0,1,2,3 ,事件B 表示王同学在这三天内去甲运动场锻炼的次数大于去乙运动场锻炼的次数.当p =12时,试根据全概率公式求P B 的值;(2)是否存在实数p ,使得E X =53若存在,求p 的值:若不存在,请说明理由;(3)记M 表示事件“甲运动场举办锻炼有奖的抽奖活动”,N 表示事件“王同学去甲运动场锻炼”,0<P M <1.已知王同学在甲运动场举办锻炼有奖的抽奖活动的情况下去甲运动场锻炼的概率,比不举办抽奖活动的情况下去甲运动场锻炼的概率大,证明:P M ∣N >P M ∣N.28(2024·山东济南·二模)随机游走在空气中的烟雾扩散、股票市场的价格波动等动态随机现象中有重要应用.在平面直角坐标系中,粒子从原点出发,每秒向左、向右、向上或向下移动一个单位,且向四个方向移动的概率均为14.例如在1秒末,粒子会等可能地出现在1,0,-1,0,0,1,0,-1四点处.(1)设粒子在第2秒末移动到点x,y,记x+y的取值为随机变量X,求X的分布列和数学期望E X ;(2)记第n秒末粒子回到原点的概率为p n.(i)已知nk=0(C k n)2=C n2n求p3,p4以及p2n;(ii)令b n=p2n,记S n为数列b n的前n项和,若对任意实数M>0,存在n∈N*,使得S n>M,则称粒子是常返的.已知2πnnen<n!<6π 142πn n e n,证明:该粒子是常返的.29(2024·山东潍坊·二模)数列a n 中,从第二项起,每一项与其前一项的差组成的数列a n +1-a n 称为a n 的一阶差数列,记为a 1 n ,依此类推,a 1 n 的一阶差数列称为a n 的二阶差数列,记为a 2n ,⋯.如果一个数列a n 的p 阶差数列a pn 是等比数列,则称数列a n 为p 阶等比数列p ∈N * .(1)已知数列a n 满足a 1=1,a n +1=2a n +1.(ⅰ)求a 1 1,a 1 2,a 13;(ⅱ)证明:a n 是一阶等比数列;(2)已知数列b n 为二阶等比数列,其前5项分别为1,209,379,789,2159,求b n 及满足b n 为整数的所有n 值.。

2024高考数学概率与统计历年题目大盘点

2024高考数学概率与统计历年题目大盘点

2024高考数学概率与统计历年题目大盘点概率与统计作为高中数学的重要内容之一,一直以来都是高考中的必考内容。

掌握好概率与统计的理论知识,并通过做题来加深对知识点的理解和应用能力的培养,对于顺利应对高考数学考试至关重要。

本文将通过对2024年高考数学概率与统计部分的历年题目进行大盘点,帮助同学们更好地掌握和复习这一知识点。

一、选择题1. 设随机变量X的概率密度函数为f(x) = kx^2,其中0<x<1,求k的值。

2. 设随机变量X的概率密度函数为f(x) = cx(1-x),其中0<x<1,求c的值。

3. 已知事件A发生的概率为P(A) = 0.4,事件B发生的概率为P(B) = 0.5,事件A与事件B独立,求事件A与事件B同时发生的概率P(A∩B)。

4. 写出使得事件A、B、C相互独立的随机试验的条件。

5. 已知事件A发生的概率为P(A) = 0.3,事件B发生的概率为P(B) = 0.4,事件A与事件B互斥,求事件"A或B发生"的概率P(A∪B)。

6. 已知事件A发生的概率为P(A) = 0.3,事件B发生的概率为P(B) = 0.4,且P(A∪B) = 0.6,求事件"A与B互斥"的概率P(A∩B)。

7. 一批产品共100个,其中有4个次品。

从中任意取出5个,求取出的样本中有2个次品的概率。

8. 已知事件A、B独立,P(A) = 0.4,P(B) = 0.6,求P(A∪B)与P(A∩B)。

二、计算题1. 某汽车4个月出事故的概率为0.01,问8个月中出事故至少2次的概率是多少?2. 某商品的销售量服从正态分布N(400,100),求销售量大于380的概率。

3. 某座城市的某个月的降水量服从正态分布N(150,25),求该月降水量大于200的概率。

4. 某厂生产的电视机寿命服从正态分布N(1000,100^2),求电视机寿命小于900的概率。

高考数学2024概率与统计历年题目全解

高考数学2024概率与统计历年题目全解

高考数学2024概率与统计历年题目全解概率与统计作为高考数学中的重要部分,一直是考生们难以逾越的“坎”。

为了帮助广大考生更好地应对高考概率与统计部分的考题,本文将对高考数学2024年概率与统计题目进行全面解析,希望能够为考生们提供帮助和指导。

1. 选择题部分选择题是高考中概率与统计部分的常见题型,也是考生们容易出错的地方。

以下是2024年高考概率与统计选择题的解答:题目一:已知事件A发生的概率为P(A)=0.6,事件B发生的概率为P(B)=0.3,且事件A与事件B相互独立。

求事件A发生且事件B不发生的概率。

解答一:事件A发生且事件B不发生,表示为A发生的概率P(A)乘以B不发生的概率P(B'),即P(A且B')=P(A)×P(B')=0.6×(1-0.3)=0.6×0.7=0.42。

因此,事件A发生且事件B不发生的概率为0.42。

题目二:已知事件C发生的概率为P(C)=0.4,事件D发生的概率为P(D)=0.5,且事件C与事件D相互独立。

求事件C或事件D发生的概率。

解答二:事件C或事件D发生,表示为C发生的概率P(C)加上D发生的概率P(D),即P(C或D)=P(C)+P(D)=0.4+0.5=0.9。

因此,事件C或事件D发生的概率为0.9。

2. 计算题部分计算题是概率与统计部分的重要考察内容,需要考生们掌握一定的计算方法和技巧。

以下是2024年高考概率与统计计算题的解答:题目一:某班有40名学生,其中20名男生、20名女生。

现从该班级随机选取3名学生,求选出的3名学生全为男生的概率。

解答一:选出的3名学生全为男生的概率等于从20名男生中选取3名学生的概率除以从40名学生中选取3名学生的概率。

即P(全为男生)=C(20,3)/C(40,3)=[20×19×18]/[40×39×38]=0.0283。

因此,选出的3名学生全为男生的概率为0.0283。

高三数学试卷概率题及答案

高三数学试卷概率题及答案

一、选择题(每题5分,共50分)1. 从一副52张的扑克牌中(去掉大小王),随机抽取一张牌,抽到红桃的概率是多少?A. 1/4B. 1/2C. 1/13D. 4/132. 一个袋子里装有5个红球和7个蓝球,随机取出一个球,取出红球的概率是多少?A. 5/12B. 7/12C. 1/2D. 5/73. 一枚均匀的硬币连续抛掷两次,至少出现一次正面的概率是多少?A. 3/4B. 1/2C. 1/4D. 1/34. 一个班级有40名学生,其中有20名男生和20名女生。

随机选择一名学生,这名学生是女生的概率是多少?A. 1/2B. 1/4C. 1D. 05. 一批产品中有10个正品和5个次品,随机抽取3个产品,至少抽取到2个正品的概率是多少?A. 21/55B. 36/55C. 45/55D. 54/55二、填空题(每题5分,共50分)6. 从1到10这10个数字中随机抽取一个数字,抽到偶数的概率是______。

7. 一批产品中有30%是次品,随机抽取5个产品,其中至少有1个次品的概率是______。

8. 抛掷两个均匀的正方体,两个正方体上点数之和为7的概率是______。

9. 一个密码锁由3位数字组成,每个数字可以是0到9中的任意一个,随机输入一个密码,输入正确的概率是______。

10. 一个班级有30名学生,其中有10名喜欢数学,15名喜欢物理,5名两者都喜欢。

随机选择一名学生,这名学生既喜欢数学又喜欢物理的概率是______。

三、解答题(每题20分,共40分)11. 甲、乙两人进行一场比赛,甲获胜的概率是0.6,乙获胜的概率是0.4。

如果比赛进行到一半时,甲领先2分,请问此时甲最终获胜的概率是多少?12. 一个袋子里装有10个球,其中有3个红球、4个蓝球和3个绿球。

随机取出3个球,求以下事件的概率:(1)取出3个球都是同一种颜色的概率;(2)取出3个球中有2个红球和1个蓝球的概率。

答案一、选择题1. A2. A3. A4. A5. B二、填空题6. 1/27. 0.7298. 6/36 = 1/69. 1/100010. 5/30 = 1/6三、解答题11. 由于甲领先2分,且甲获胜的概率为0.6,所以甲最终获胜的概率仍然是0.6。

高考真题数学概率题解析

高考真题数学概率题解析

高考真题数学概率题解析在高考中,数学概率题是必不可少的一部分,通常会出现在选择题或计算题中。

概率题主要考察考生对概率相关知识的理解和运用能力,解答这类题目需要考生具备严密的逻辑思维和计算能力。

下面将结合几道高考真题,对数学概率题进行解析,帮助考生更好地理解和掌握这一考点。

1. **【高考真题一】**已知事件A的概率为P(A) = 0.6,事件B的概率为P(B) = 0.5,且事件A与事件B相互独立,求事件A与事件B同时发生的概率。

**解析:**由题意可知,事件A与事件B相互独立,即P(A∩B)= P(A) ×P(B)。

所以,P(A∩B) = 0.6 × 0.5 = 0.3。

因此,事件A与事件B同时发生的概率为0.3。

2. **【高考真题二】**某班有60名学生,其中物理成绩在80分及以上的有40人,化学成绩在80分及以上的有30人,已知物理与化学成绩均在80分及以上的有20人,求任选一名学生,其物理或化学成绩在80分及以上的概率。

**解析:**设事件A表示物理成绩在80分及以上,事件B表示化学成绩在80分及以上。

题目要求求任选一名学生,其物理或化学成绩在80分及以上的概率,即P(A∪B)。

由全概率公式可得,P(A∪B) = P(A) + P(B) - P(A∩B)。

其中,P(A) = 40/60 = 2/3,P(B) = 30/60 = 1/2,P(A∩B) = 20/60 = 1/3。

代入计算可得,P(A∪B) = 2/3 + 1/2 - 1/3 = 5/6。

因此,任选一名学生,其物理或化学成绩在80分及以上的概率为5/6。

3. **【高考真题三】**设随机变量X的概率密度函数为 f(x) = a(1-x²),x∈[-1,1],已知E(X) = 0,求a的值。

**解析:**由概率密度函数的性质可知,积分∫f(x)dx在定义域内等于1。

因此,∫a(1-x²)dx = 1,化简得∫a -a(x²)dx = 1。

最新全国各地高中概率高考真题总结

最新全国各地高中概率高考真题总结

最新全国各地高中概率高考真题总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN全国各地高考及模拟试卷试题分类----------概率选择题1.6名同学排成两排,每排3人,其中甲排在前排的概率是 ( B ) A .121 B .21 C .61D .312.有10名学生,其中4名男生,6名女生,从中任选2名,恰好2名男生或2名女生的概率是 ( D )A .452 B. 152 C. 31 D. 1573.甲乙两人独立的解同一道题,甲乙解对的概率分别是21,p p ,那么至少有1人解对的概率是 ( D )A. 21p p +B. 21p p ⋅C. 211p p ⋅-D.)1()1(121p p -⋅--4.从数字1, 2, 3, 4, 5这五个数中, 随机抽取2个不同的数, 则这2个数的和为偶数的概率是 ( B )A. 51B. 52C. 53D. 54 5.有2n 个数字,其中一半是奇数,一半是偶数,从中任取两个数,则所取的两数之和为偶数的概率是 ( C ) A 、12 B 、12n C 、121n n -- D 、121n n ++ 6.有10名学生,其中4名男生,6名女生,从中任选2名学生,恰好是2名男生或2名女生的概率是 ( C )A .452B .152 C .157D .317.已知P 箱中有红球1个,白球9个,Q 箱中有白球7个,(P 、Q 箱中所有的球除颜色外完全相同).现随意从P 箱中取出3个球放入Q 箱,将Q 箱中的球充分搅匀后,再 从Q 箱中随意取出3个球放入P 箱,则红球从P 箱移到Q 箱,再从Q 箱返回P 箱中的 概率等于 ( B )A .51B .1009 C .1001D .53C9 2/C10 3 乘以C9 2/C10 38.已知集合A={12,14,16,18,20},B={11,13,15,17,19},在A 中任取一个元素用a i (i=1,2,3,4,5)表示,在B 中任取一个元素用b j (j=1,2,3,4,5)表示,则所取两数满足a i >b I 的概率为( B ) A 、43 B 、53 C 、21 D 、51 9.在圆周上有10个等分点,以这些点为顶点,每3个点可以构成一个三角形,如果随机选择3个点,刚好构成直角三角形的概率是( B )直径有5个A.14B.13C.12 D. 1510.已知10个产品中有3个次品,现从其中抽出若干个产品,要使这3个次品全部被抽出的概率不小于0.6,则至少应抽出产品 ( C ) A.7个 B.8个 C.9个 D.10个11.甲、乙独立地解决 同一数学问题,甲解决这个问题的概率是0.8,乙解决这个问题的概率是0.6,那么其中至少有1人解决这个问题的概率是( D ) A 、0.48 B 、0.52 C 、0.8 D 、0.92填空题1.纺织厂的一个车间有n (n>7,n ∈N )台织布机,编号分别为1,2,3,……,n ,该车间有技术工人n 名,编号分别为1,2,3,……,n .现定义记号ij a 如下:如果第i 名工人操作了第j 号织布机,此时规定ij a =1,否则ij a =0.若第7号织布机有且仅有一人操作,则=+++++747372717n a a a a a 1 ;若3132333432n a a a a a +++++=,说明了什么: 第三名工人操作了2台织布机 ;2.从6人中选4人分别到巴黎,伦敦,悉尼,莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲,乙两人不去巴黎游览的概率为23.(用分数表示) 3.某商场开展促销抽奖活动,摇出的中奖号码是8,2,5,3,7,1,参加抽奖的每位顾客从0~9这10个号码中任意抽出六个组成一组,若顾客抽出的六个号码中至少有5个与摇出的号码相同(不计顺序)即可得奖,则中奖的概率是___542____. 4.某中学的一个研究性学习小组共有10名同学,其中男生x 名(3≤x ≤9),现从中选出3人参加一项调查活动,若至少有一名女生去参加的概率为f(x),则f(x)max = _119120_解答题1.甲、乙两名篮球运动员,甲投篮的命中率为0.6,乙投篮的命中率为0.7,两人是否投中相互之间没有影响,求:(1)两人各投一次,只有一人命中的概率;(2)每人投篮两次,甲投中1球且乙投中2球的概率. 解:(1)P 1=0.6(1-0.7)+(1-0.6)0.7=0.46. 6分(2)P 2=[12C 0.6(1-0.6)]·[22C (0.7)2(1-0.7)0]=0.2352. 12分2.工人看管三台机床,在某一小时内,三台机床正常工作的概率分别为0.9,0.8,0.85,且各台机床是否正常工作相互之间没有影响,求这个小时内: (1)三台机床都能正常工作的概率;(2)三台机床中至少有一台能正常工作的概率.解:(1)三台机床都能正常工作的概率为P 1=0.9×0.8×0.85=0.612. 6分(2)三台机床至少有一台能正常工作的概率是P 2=1-(1-0.9)(1-0.8)(1-0.85)=0.997. 12分3.甲、乙两名篮球运动员,投篮的命中率分别为0.7与0.8.(1)如果每人投篮一次,求甲、乙两人至少有一人进球的概率; (2)如果每人投篮三次,求甲投进2球且乙投进1球的概率. 解:设甲投中的事件记为A ,乙投中的事件记为B ,(1)所求事件的概率为:P=P (A ·B )+P (A ·B )+P (A ·B ) =0.7×0.2+0.3×0.8+0.7×0.8 =0.94.6分 (2)所求事件的概率为:P=C 230.72×0.3×C 130.8×0.22=0.042336.12分4.沿某大街在甲、乙、丙三个地方设有红、绿交通信号灯,汽车在甲、乙、丙三个地方通过(绿灯亮通过)的概率分别为31,21,32,对于在该大街上行驶的汽车, 求:(1)在三个地方都不停车的概率; (2)在三个地方都停车的概率; (3)只在一个地方停车的概率.解:(1)P=31×21×32=91.4分(2)P=32×21×31=918分(3)P=32×21×32+31×21×32+31×21×31=187. 12分5.某种电路开关闭合后,会出现红灯或绿灯闪动.已知开关第一次闭合后,出现红灯和出现绿灯的概率都是21,从开关第二次闭合起,若前次出现红灯,则下一次出现红灯 的概率是31,出现绿灯的概率是32,若前次出现绿灯,则下一次出现红灯的概率是53, 出现绿灯的概率是52.问:(1)第二次闭合后,出现红灯的概率是多少?(2)三次发光中,出现一次红灯,两次绿灯的概率是多少? 解:(1)如果第一次出现红灯,则接着又出现红灯的概率是21×31, 如果第一次出现绿灯,则接着出现红灯的概率为21×53.∴第二次出现红灯的概率为21×31+21×53=157. 6分(2)由题意,三次发光中,出现一次红灯,两次绿灯的情况共有如下三种方式: ①出现绿、绿、红的概率为21×52×53; ②出现绿、红、绿的概率为21×53×32;③出现红、绿、绿的概率为21×32×52;10分 所求概率为21×52×53+21×53×32+21×32×52=7534.12分6.袋内装有35个球,每个球上都记有从1到35的一个号码,设号码n 的球重32n -5n+15克,这些球以等可能性从袋里取出(不受重量、号码的影响). (1)如果任意取出1球,试求其重量大于号码数的概率; (2)如果任意取出2球,试求它们重量相等的概率解:(1)由不等式32n -5n+15>n ,得n>15,或n<3.由题意,知n=1,2或n=16,17,…,35.于是所求概率为3522. 6分 (2)设第n 号与第m 号的两个球的重量相等,其中n<m ,则有32n -5n+15=32m -5m+15,∴(n -m )(n+m -15)=0,∵n ≠m ,∴n+m=15,10分∴(n ,m )=(1,14),(2,13),…,(7,8). 故所求概率为8515957C 7235==. 12分7.口袋里装有红色和白色共36个不同的球,且红色球多于白色球.从袋子中取出2个球,若是同色的概率为12,求:(1) 袋中红色、白色球各是多少?(2) 从袋中任取3个小球,至少有一个红色球的概率为多少?解:(1)令红色球为x 个,则依题意得223622363612x x C C C C -+=, (3分)所以227218350x x -+⨯=得x=15或x=21,又红色球多于白色球,所以x=21.所以红色球为21个,白色球为15个. ( 6分)(2)设从袋中任取3个小球,至少有一个红色球的事件为A ,均为白色球的事件为B ,则P (B )=1--P (A )=3153361C C - =191204 (12分)8.加工某种零件需要经过四道工序,已知死一、二、三、四道工序的合格率分别为910876、、、987,且各道工序互不影响 (1)求该种零件的合格率(2)从加工好的零件中任取3件,求至少取到2件合格品的概率(3)假设某人依次抽取4件加工好的零件检查,求恰好连续2次抽到合格品的概率(用最简分数表示结果) 解:(1)该种零件合格率为198763109875P =⨯⨯⨯= (2)该种零件的合格率为35,则不合格率为25,从加工好的零件中任意取3个,至少取到2件合格品的概率223323332381()()()555125P C C =+=(3)恰好连续2次抽到合格品的概率22233223223216()1()()1()5555555625P =⨯⨯+⨯⨯+⨯⨯=9.同时抛掷15枚均匀的硬币一次(1)试求至多有1枚正面向上的概率;(2)试问出现正面向上为奇数枚的概率与出现正面向上为偶数枚的概率是否相等? 请说明理由.解: (1)记“抛掷1枚硬币1次出现正面向上”为事件A ,P (A )=21,抛掷15枚硬币1次相当于作15次独立重复试验, 根据几次独立重复试验中事件A 发生K 次的概率公式, 记至多有一枚正面向上的概率为P 1则P 1= P 15(0)+ P 15(1)=15015)21(C +15115)21(C =20481(2)记正面向上为奇数枚的概率为P 2,则有P 2= P 15(1)+ P 15(3)+…+ P 15(15)=15115)21(C +15315)21(C +…+151515)21(C=C C 31511515()21(++…+C 1515)–212)21(1415=⋅又“出现正面向上为奇数枚”的事件与“出现正面向上为偶数枚” 的事件是对立事件,记“出现正面向上为偶数枚” 的事件的概率为P 3∴ P 3=1–21=21∴相等10.如图,用D C B A ,,,表示四类不同的元件连接成系统M .当元件B A ,至少有一个正常工作且元件D C ,至少有一个正常工作时,系统M 正常工作.元件D C B A ,,,正常工作的概率依次为0.50.6,0.7,0.8,求元件连接成的系统M 工作的概率)(M P .解:由A ,B 构成系统F ,由C ,D 构成系统G ,那么系统F 正常工作的概率)](1[)(B A P F P ⋅-=,系统G 正常工作的概率为)](1[)(D C P G P ⋅-=,由已知,得752.0)()()(=⋅=G P F P M P ,故系统M 正常工作的概率为0.752.11.有一批种子,每粒发芽的概率为32,播下5粒种子,计算: (Ⅰ)其中恰好有4粒发芽的概率; (Ⅱ)其中至少有4粒发芽的概率;(Ⅲ)其中恰好有3粒没发芽的概率. (以上各问结果均用最简分数作答)解:(Ⅰ)24380)31()32(445=⋅⋅C(Ⅱ)2431122433224380)32()31()32(5445=+=+C (Ⅲ)24340243410)32()31(2335=⨯=C 12.袋中有大小相同的5个白球和3个黑球,从中任意摸出4个,求下列事件发生的概率.(1)摸出2个或3个白球; (2)至少摸出一个黑球.解: (Ⅰ)设摸出的4个球中有2个白球、3个白球分别为事件A 、B ,则 73)(,73)(481325482325=⋅==⋅=C C C B P C C C A P ∵A 、B 为两个互斥事件 ∴P (A+B )=P (A )+P (B )=76即摸出的4个球中有2个或3个白球的概率为76…………6分 (Ⅱ)设摸出的4个球中全是白球为事件C ,则P (C )=1414845=C C 至少摸出一个黑球为事件C 的对立事件其概率为14131411=-………………12分13.2005年江苏省普通类高校招生进行了改革,在各个批次的志愿填报中实行平行志愿,按照“分数优先,遵循志愿”的原则进行投档录取.例如:在对第一批本科投档时,计算机投档系统按照考生的5门高考总分从高到低逐个检索、投档.当检索到某个考生时,再依次..按考生填报的A 、B 、C 三个院校志愿进行检索,只要被检索到3所院校中一经出现....符合投档条件的院校,即向该院校投档,假设一进档即被该院校录取.张林今年的高考成绩为600分(超过本一线40分),他希望能上甲、乙、丙三所院校中的一所.经咨询知道,张林被甲校录取的概率为0.4,被乙校录取的概率为0.7,被丙校录取的概率为0.9.如果张林把甲、乙、丙三所院校依次填入A 、B 、C 三个志愿,求: (Ⅰ) 张林被B 志愿录取的概率;(Ⅱ) 张林被A 、B 、C 三个志愿中的一个录取的概率.解:记“张林被A 志愿录取”为事件1A ,“张林被B 志愿录取”为事件2A ,“张林被C 志愿录取”为事件3A .……………………………………………………1分(Ⅰ) 由题意可知,事件2A 发生即甲校不录取张林而乙校录取张林.∴2()(10.4)0.70.42P A =-⨯=.………… ………………………6分(Ⅱ) 记“张林被A 、B 、C 三个志愿中的一个录取”为事件A .由于事件1A 、2A 、3A 中任何两个事件是互斥事件,…… …………………………7分且3()(10.4)(10.7)0.90.60.30.90.162P A =-⨯-⨯=⨯⨯=… ……9分∴123123()()()()()0.40.420.1620.982P A P A A A P A P A P A =++=++=++=.方法2:(Ⅱ) 记“张林被A 、B 、C 三个志愿中的一个录取”为事件A .由于事件A 的对立事件是“张林没有被A 、B 、C 三个志愿中的一个录取”. ……7分∴()1(10.4)(10.7)(10.9)P A =--⨯-⨯-… ………………10分10.60.30.10.982=-⨯⨯=.… …………………11分答:张林被B 志愿录取的概率为0.42;张林被A 、B 、C 三个志愿中的一个录取的概率为0.982.…… ……………………………………12分14.平面直角坐标系中有两个动点A 、B ,它们的起始坐标分别是(0,0),(2,2),动点A 、B从同一时刻开始每隔1秒钟向上、下、左、右四个方向中的一个方向移动1个单位,已知动点A 向左、右移动的概率都是41,向上、下移动的概率分别是31和p ,动点B向上、下、左、右四个方向中的一个方向移动1个单位的概率都是q . (Ⅰ)求p 和q 的值;(Ⅱ)试判断最少需要几秒钟,动点A 、B 能同时到达点D (1,2),并求在最短时间内同时到达点D 的概率 .解:(Ⅰ)由于质点A向四个方向移动是一个必然事件,…………………………2分所以1111443p+++=,所以16p=. (4)分同理可得14q=. (6)分(Ⅱ)至少需要3秒可以同时到达点D.……………………………………8分经过3秒钟,点A到达点D的概率为3p右p上p上=112.……………………10分经过3秒钟,点B到达点D的概率为3199()464=.……………………12分所以,经过3秒钟,动点A、B同时到达点D的概率为1931264256⨯=.…14分15(1(2解:(14次中有3次正面16分(26次3次正面3次反面,设其概12分 16.一位学生每天骑自行车上学,从他家到学校共有5个交通岗,假设他在每个交通岗遇到红灯是相互独立的,且首末两个交通岗遇红灯的概率均为p ,其余3个交通岗遇红灯的概率均为12. (Ⅰ)若23p =,求该学生在第三个交通岗第一次遇到红灯的概率;(Ⅱ)若该学生至多遇到一次红灯的概率不超过518,求p 的取值范围.解: (Ⅰ) 记该学生在第i 个交通岗遇红灯为事件i A (1,2,,5i =⋅⋅⋅),它们相互独立,则“这名学生在第三个交通岗第一次遇到红灯”为123A A A ⋅⋅.1231232111()()()()(1)(1)32212P A A A P A P A P A ⋅⋅=⋅⋅=-⨯-⨯=.答: 该学生在第三个交通岗第一次遇到红灯的概率为112. ------------------------- 6分注:本小问缺少事件命名、概型分析、答,各扣一分.(Ⅱ)过首末两个路口,过中间三个路口分别看作独立重复试验.该学生至多遇到一次红灯指没有遇红灯(记为A )或恰好遇一次红灯(记为B ),则A 与B 互斥.020322311()C (1)C (1)(1)28P A p p =-⋅-=-, ---------------------------------------------- 7分 02121032232311131()C (1)C (1)C (1)C (1)(1)(1)22284P B p p p p p p =-⋅-+-⋅-=-+-. -- 9分该学生至多遇到一次红灯,为A B +,2221311()()()(1)(1)(1)(32)8844P A B P A P B p p p p p p +=+=-+-+-=-+,故215(32)418p p -+≤,即292780p p -+≤,解得1833p ≤≤. ---------------- 11分 又01p ≤≤,所以p 的取值范围为1[,1]3. -------------------------------------------- 12分注:p 的取值范围写成1[,1)3不扣分.17.高三(1)班、高三(2)每班已选出3名学生组成代表队,进行乒乓球对抗赛,比赛规则是:① 按“单打、双打、单打”顺序进行三盘比赛; ② 代表队中每名队员至少参加一盘比赛,不得参加两盘单打比赛; ③ 先胜两盘的队获胜,比赛结束.已知每盘比赛双方胜出的概率均为.21(Ⅰ)根据比赛规则,高三(1)班代表队共可排出多少种不同的出场阵容?(Ⅱ)高三(1)班代表队连胜两盘的概率是多少?(Ⅲ)高三(1)班代表队至少胜一盘的概率为多少?解:解:(Ⅰ)参加单打的队员有23A 种方法.参加双打的队员有12C 种方法. (2分)所以,高三(1)班出场画容共有)(121223种=⋅C A (4分) (Ⅱ)高三(1)班代表队连胜两盘,可分为第一盘、第二盘胜或第一盘负,其余两盘胜.所以,连胜两盘的概率为.832121212121=⨯⨯+⨯ (8分)(Ⅲ)高三(1)班至少胜盘,可分为:(1)胜一盘,此时的概率为 .41212121212121=⨯⨯+⨯⨯ (9分)(2)胜两盘,此时的概率为.212121212121212121=⨯⨯+⨯⨯+⨯ (11分)所以,高三(1)班至少胜一盘的概率为.432141=+ (12分)或:高三(1)班代表队至少胜一盘的对立事件为输掉前两盘 (10分)所以,所求概率为4321211=⨯- (12分)19.为了支持三峡工程建设,某市某镇决定接受一批三峡移民,其中有3户 互为亲戚关系,将这3户移民随意安置到5个村民组 ① 求这3户恰好安置到同一村民组的概率 ② 求这3户中恰好有2户安置到同一村民组的概率解:①3户任意分配到5个村民组,共有53种不同分法,3户都在同一村民组共有5种方法,3户都在同一村民组的概率为350.045=,∴3户都在同一村民组的概率为0.04②恰有2户分到同一村民组的结果有2235,C A 种∴223530.485C A =∴恰有2户分到同一村民组的概率为0.4820.某制药厂设甲、乙两个研究小组,独立研制治疗禽流感的新药物. (1)设甲小组研制出新药物的概率为0.75,乙小组研制出新药物的概率为0.80,求甲、乙两组均研制出新药物的概率;(2)设甲、乙两组研制出新药物的概率相同。

专题17 概率-2023年高考数学真题题源解密(新高考)(原卷版)

专题17  概率-2023年高考数学真题题源解密(新高考)(原卷版)

专题17 概率目录一览2023真题展现考向一概率考向二离散型随机变量及其分布列真题考查解读近年真题对比考向一概率考向二离散型随机变量及其分布列考向三正太分布命题规律解密名校模拟探源易错易混速记/二级结论速记考向一概率1.(多选)(2023•新高考Ⅱ•第12题)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为α(0<α<1),收到0的概率为1﹣α;发送1时,收到0的概率为β(0<β<1),收到1的概率为1﹣β.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1)( )A.采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为(1﹣α)(1﹣β)2B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为β(1﹣β)2C.采用三次传输方案,若发送1,则译码为1的概率为β(1﹣β)2+(1﹣β)3D.当0<α<0.5时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率考向二离散型随机变量及其分布列2.(2023•新高考Ⅰ•第21题)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i次投篮的人是甲的概率;(3)已知:若随机变量X i服从两点分布,且P(X i=1)=1﹣P(X i=0)=q i,i=1,2,⋯,n,则E(ni=1X i)=ni=1q i.记前n次(即从第1次到第n次投篮)中甲投篮的次数为Y,求E(Y).【命题意图】【考查要点】概率多为小题。

2023年概率专题历年高考真题汇总小题解析版

2023年概率专题历年高考真题汇总小题解析版

概率专题历年高考真题汇总(小题)1.(·新课标Ⅰ, 3)为理解某地区旳中小学生旳视力状况, 拟从该地区旳中小学生中抽取部分学生进行调查, 事先已理解到该地区小学、初中、高中三个学段学生旳视力状况有较大差异, 而男女生视力状况差异不大. 在下面旳抽样措施中, 最合理旳抽样措施是().A. 简朴随机抽样B. 按性别分层抽样C. 按学段分层抽样D. 系统抽样解析:由于学段层次差异较大, 因此在不一样学段中抽取宜用分层抽样.故选C.2.(·新课标Ⅱ, 6)安排3名志愿者完毕4项工作, 每人至少完毕1项, 每项工作由1人完毕, 则不一样旳安排方式共有..)A. 12种B. 18种C. 24种D. 36种【答案】D 解析: 解法一: 将三人提成两组, 一组为三个人, 有种也许, 此外一组从三人在选调一人, 有种也许;两组前后在排序, 在对位找工作即可, 有种也许;合计有36种也许.解法二:工作提成三份有种也许, 在把三组工作分给3个人有也许, 合计有36种也许.3.(·新课标Ⅱ, 理8)我国数学家陈景润在哥德巴赫猜测旳研究中获得了世界领先旳成果. 哥德巴赫猜测是“每个不小于2旳偶数可以表达为两个素数旳和”, 如. 在不超过30旳素数中, 随机选用两个不一样旳数, 其和等于30旳概率是..)A. B. C. D.【答案】C 解析:30以内旳素数有10个, 满足和为30旳素数对有3对, 概率为, 选C.4.(·新课标Ⅰ, 2)如图, 正方形ABCD内旳图形来自中国古代旳太极图, 正方形内切圆中旳黑色部分和白色部分有关正方形旳中心成中心对称. 在正方形内随机取一点, 则此点取自黑色部分旳概率是()A. B. C. D.【答案】B 解析: 设正方形边长为, 则圆半径为, 则正方形旳面积为, 圆旳面积为, 图中黑色部分旳概率为, 则此点取自黑色部分旳概率为, 故选B;【解题技巧】解几何概型旳试题, 一般先求出试验旳基本领件构成旳区域长度(面积或体积), 再求出事件构成旳区域长度(面积或体积), 最终裔入几何概型旳概率公式即可.几何概型计算公式:P(A)=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国各地高考及模拟试卷试题分类----------概率选择题1.6名同学排成两排,每排3人,其中甲排在前排的概率是 ( B )A .121 B .21 C .61 D .31 2.有10名学生,其中4名男生,6名女生,从中任选2名,恰好2名男生或2名女生的概率是 ( D )A .452B.152 C.31 D.157 3.甲乙两人独立的解同一道题,甲乙解对的概率分别是21,p p ,那么至少有1人解对的概率是 ( D )A.21p p +B.21p p ⋅C. 211p p ⋅-D.)1()1(121p p -⋅--4.从数字1, 2, 3, 4, 5这五个数中, 随机抽取2个不同的数, 则这2个数的和为偶数的概率是 ( B )A.51 B. 52 C. 53 D. 54 5.有2n 个数字,其中一半是奇数,一半是偶数,从中任取两个数,则所取的两数之和为偶数的概率是 ( C ) A 、12 B 、12n C 、121n n -- D 、121n n ++ 6.有10名学生,其中4名男生,6名女生,从中任选2名学生,恰好是2名男生或2名女生的概率是 ( C ) A .452 B .152 C .157 D .31 7.已知P 箱中有红球1个,白球9个,Q 箱中有白球7个,(P 、Q 箱中所有的球除颜色外完全相同).现随意从P 箱中取出3个球放入Q 箱,将Q 箱中的球充分搅匀后,再 从Q 箱中随意取出3个球放入P 箱,则红球从P 箱移到Q 箱,再从Q 箱返回P 箱中的 概率等于 ( B ) A .51B .1009 C .1001 D .538.已知集合A={12,14,16,18,20},B={11,13,15,17,19},在A 中任取一个元素用a i (i=1,2,3,4,5)表示,在B 中任取一个元素用b j (j=1,2,3,4,5)表示,则 所取两数满足a i >b I 的概率为( B )A 、43 B 、53 C 、21 D 、51 9.在圆周上有10个等分点,以这些点为顶点,每3个点可以构成一个三角形,如果随机选择3个点,刚好构成直角三角形的概率是( B )A.10.已知10个产品中有3个次品,现从其中抽出若干个产品,要使这3个次品全部被抽出的概率不小于0.6,则至少应抽出产品 ( C ) A.7个 B.8个 C.9个 D.10个11.甲、乙独立地解决 同一数学问题,甲解决这个问题的概率是0.8,乙解决这个问题的概率是0.6,那么其中至少有1人解决这个问题的概率是( D ) A 、0.48 B 、0.52 C 、0.8 D 、0.92填空题1.纺织厂的一个车间有n (n>7,n ∈N )台织布机,编号分别为1,2,3,……,n ,该车 间有技术工人n 名,编号分别为1,2,3,……,n .现定义记号ij a 如下:如果第i 名 工人操作了第j 号织布机,此时规定ij a =1,否则ij a =0.若第7号织布机有且仅有一人 操作,则=+++++747372717n a a a a a 1 ;若3132333432n a a a a a +++++=,说明了什么: 第三名工人操作了2台织布机 ;2.从6人中选4人分别到巴黎,伦敦,悉尼,莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲,乙两人不去巴黎游览的概率为23.(用分数表示) 3.某商场开展促销抽奖活动,摇出的中奖号码是8,2,5,3,7,1,参加抽奖的每位顾客从0~9这10个号码中任意抽出六个组成一组,若顾客抽出的六个号码中至少有5 个与摇出的号码相同(不计顺序)即可得奖,则中奖的概率是___542____. 4.某中学的一个研究性学习小组共有10名同学,其中男生x 名(3≤x ≤9),现从中选出 3人参加一项调查活动,若至少有一名女生去参加的概率为f(x),则f(x)max = _ 119120_解答题1.甲、乙两名篮球运动员,甲投篮的命中率为0.6,乙投篮的命中率为0.7,两人是否投 中相互之间没有影响,求:(1)两人各投一次,只有一人命中的概率;(2)每人投篮两次,甲投中1球且乙投中2球的概率. 解:(1)P 1=0.6(1-0.7)+(1-0.6)0.7=0.46. 6分(2)P 2=[12C 0.6(1-0.6)]·[22C (0.7)2(1-0.7)0]=0.2352. 12分2.工人看管三台机床,在某一小时内,三台机床正常工作的概率分别为0.9,0.8,0.85, 且各台机床是否正常工作相互之间没有影响,求这个小时内: (1)三台机床都能正常工作的概率;(2)三台机床中至少有一台能正常工作的概率.解:(1)三台机床都能正常工作的概率为P 1=0.9×0.8×0.85=0.612. 6分 (2)三台机床至少有一台能正常工作的概率是P 2=1-(1-0.9)(1-0.8)(1-0.85)=0.997. 12分 3.甲、乙两名篮球运动员,投篮的命中率分别为0.7与0.8. (1)如果每人投篮一次,求甲、乙两人至少有一人进球的概率; (2)如果每人投篮三次,求甲投进2球且乙投进1球的概率. 解:设甲投中的事件记为A ,乙投中的事件记为B ,(1)所求事件的概率为:P=P (A ·B )+P (A ·B )+P (A ·B )=0.7×0.2+0.3×0.8+0.7×0.8 =0.94.6分(2)所求事件的概率为:P=C 230.72×0.3×C 130.8×0.22=0.042336.12分4.沿某大街在甲、乙、丙三个地方设有红、绿交通信号灯,汽车在甲、乙、丙三个地方 通过(绿灯亮通过)的概率分别为31,21,32,对于在该大街上行驶的汽车, 求:(1)在三个地方都不停车的概率; (2)在三个地方都停车的概率; (3)只在一个地方停车的概率.1.甲、乙两名篮球运动员,甲投篮的命中率为0.6,乙投篮的命中率为0.7,两人是否投 中相互之间没有影响,求:(1)两人各投一次,只有一人命中的概率;(2)每人投篮两次,甲投中1球且乙投中2球的概率.解:(1)P 1=0.6(1-0.7)+(1-0.6)0.7=0.46. 6分(2)P 2=[12C 0.6(1-0.6)]·[22C (0.7)2(1-0.7)0]=0.2352. 12分2.工人看管三台机床,在某一小时内,三台机床正常工作的概率分别为0.9,0.8,0.85, 且各台机床是否正常工作相互之间没有影响,求这个小时内: (1)三台机床都能正常工作的概率;(2)三台机床中至少有一台能正常工作的概率.解:(1)三台机床都能正常工作的概率为P 1=0.9×0.8×0.85=0.612. 6分 (2)三台机床至少有一台能正常工作的概率是P 2=1-(1-0.9)(1-0.8)(1-0.85)=0.997. 12分 3.甲、乙两名篮球运动员,投篮的命中率分别为0.7与0.8. (1)如果每人投篮一次,求甲、乙两人至少有一人进球的概率; (2)如果每人投篮三次,求甲投进2球且乙投进1球的概率. 解:设甲投中的事件记为A ,乙投中的事件记为B ,(1)所求事件的概率为:P=P (A ·B )+P (A ·B )+P (A ·B )=0.7×0.2+0.3×0.8+0.7×0.8 =0.94.6分(2)所求事件的概率为:P=C 230.72×0.3×C 130.8×0.22=0.042336.12分4.沿某大街在甲、乙、丙三个地方设有红、绿交通信号灯,汽车在甲、乙、丙三个地方 通过(绿灯亮通过)的概率分别为31,21,32,对于在该大街上行驶的汽车, 求:(1)在三个地方都不停车的概率; (2)在三个地方都停车的概率; (3)只在一个地方停车的概率. 解:(1)P=31×21×32=91. 4分 (2)P=32×21×31=918分 (3)P=32×21×32+31×21×32+31×21×31=187.12分5.某种电路开关闭合后,会出现红灯或绿灯闪动.已知开关第一次闭合后,出现红灯和出现绿灯的概率都是21,从开关第二次闭合起,若前次出现红灯,则下一次出现红灯 的概率是31,出现绿灯的概率是32,若前次出现绿灯,则下一次出现红灯的概率是53,出现绿灯的概率是52.问:(1)第二次闭合后,出现红灯的概率是多少?(2)三次发光中,出现一次红灯,两次绿灯的概率是多少? 解:(1)如果第一次出现红灯,则接着又出现红灯的概率是21×31, 如果第一次出现绿灯,则接着出现红灯的概率为21×53.∴第二次出现红灯的概率为21×31+21×53=157. 6分(2)由题意,三次发光中,出现一次红灯,两次绿灯的情况共有如下三种方式: ①出现绿、绿、红的概率为21×52×53; ②出现绿、红、绿的概率为21×53×32;③出现红、绿、绿的概率为21×32×52; 10分所求概率为21×52×53+21×53×32+21×32×52=7534. 12分6.袋内装有35个球,每个球上都记有从1到35的一个号码,设号码n 的球重32n -5n+15克,这些球以等可能性从袋里取出(不受重量、号码的影响). (1)如果任意取出1球,试求其重量大于号码数的概率; (2)如果任意取出2球,试求它们重量相等的概率解:(1)由不等式32n -5n+15>n ,得n>15,或n<3.由题意,知n=1,2或n=16,17,…,35.于是所求概率为3522. 6分(2)设第n 号与第m 号的两个球的重量相等,其中n<m ,则有32n -5n+15=32m -5m+15,∴(n -m )(n+m -15)=0, ∵n ≠m ,∴n+m=15,10分∴(n ,m )=(1,14),(2,13),…,(7,8).故所求概率为8515957C 7235==. 12分7.口袋里装有红色和白色共36个不同的球,且红色球多于白色球.从袋子中取出2个球, 若是同色的概率为12,求: (1) 袋中红色、白色球各是多少?(2) 从袋中任取3个小球,至少有一个红色球的概率为多少?解:(1)令红色球为x 个,则依题意得223622363612x x C C C C -+=, (3分)所以227218350x x -+⨯=得x=15或x=21,又红色球多于白色球,所以x=21.所以红色球为21个,白色球为15个. ( 6分) (2)设从袋中任取3个小球,至少有一个红色球的事件为A ,均为白色球的事件为B ,则P (B )=1--P (A )=3153361C C - =191204 (12分)8.加工某种零件需要经过四道工序,已知死一、二、三、四道工序的合格率分别为910876、、、987,且各道工序互不影响 (1)求该种零件的合格率(2)从加工好的零件中任取3件,求至少取到2件合格品的概率(3)假设某人依次抽取4件加工好的零件检查,求恰好连续2次抽到合格品的概率(用最简分数表示结果) 解:(1)该种零件合格率为198763109875P =⨯⨯⨯= (2)该种零件的合格率为35,则不合格率为25,从加工好的零件中任意取3个,至少取到2件合格品的概率223323332381()()()555125P C C =+=(3)恰好连续2次抽到合格品的概率22233223223216()1()()1()5555555625P =⨯⨯+⨯⨯+⨯⨯=9.同时抛掷15枚均匀的硬币一次 (1)试求至多有1枚正面向上的概率;(2)试问出现正面向上为奇数枚的概率与出现正面向上为偶数枚的概率是否相等? 请说明理由.解: (1)记“抛掷1枚硬币1次出现正面向上”为事件A ,P (A )=21, 抛掷15枚硬币1次相当于作15次独立重复试验, 根据几次独立重复试验中事件A 发生K 次的概率公式, 记至多有一枚正面向上的概率为P 1 则P 1= P 15(0)+ P 15(1)=15015)21(C +15115)21(C =20481(2)记正面向上为奇数枚的概率为P 2,则有P 2= P 15(1)+ P 15(3)+…+ P 15(15)=15115)21(C +15315)21(C +…+151515)21(C=C C 31511515()21(++…+C 1515)–212)21(1415=⋅又“出现正面向上为奇数枚”的事件与“出现正面向上为偶数枚” 的事件是对立事件,记“出现正面向上为偶数枚” 的事件的概率为P 3∴ P 3=1–21=21∴相等10.如图,用D C B A ,,,工作且元件D C ,至少有一个正常工作时,系统M 正常工作.已知元件D C B A ,,,正常工作的概率依次为0.5,0.6,0.7,0.8,求元件连接成的系统M 正常工作的概率)(M P .解:由A ,B 构成系统F ,由C ,D 构成系统那么系统F 正常工作的概率)](1[)(B A P F P ⋅-=,系统G 正常工作的概率为)](1[)(D C P G P ⋅-=,由已知,得752.0)()()(=⋅=G P F P M P ,故系统M 正常工作的概率为0.752.11.有一批种子,每粒发芽的概率为32,播下5粒种子,计算: (Ⅰ)其中恰好有4粒发芽的概率; (Ⅱ)其中至少有4粒发芽的概率;(Ⅲ)其中恰好有3粒没发芽的概率. (以上各问结果均用最简分数作答)解:(Ⅰ)24380)31()32(445=⋅⋅C(Ⅱ)2431122433224380)32()31()32(5445=+=+C (Ⅲ)24340243410)32()31(2335=⨯=C 12.袋中有大小相同的5个白球和3个黑球,从中任意摸出4个,求下列事件发生的概率.(1)摸出2个或3个白球; (2)至少摸出一个黑球.解: (Ⅰ)设摸出的4个球中有2个白球、3个白球分别为事件A 、B ,则 73)(,73)(481325482325=⋅==⋅=C C C B P C C C A P ∵A 、B 为两个互斥事件 ∴P (A+B )=P (A )+P (B )=76即摸出的4个球中有2个或3个白球的概率为76…………6分 (Ⅱ)设摸出的4个球中全是白球为事件C ,则P (C )=1414845=C C 至少摸出一个黑球为事件C 的对立事件其概率为14131411=-………………12分 13.2005年江苏省普通类高校招生进行了改革,在各个批次的志愿填报中实行平行志愿, 按照“分数优先,遵循志愿”的原则进行投档录取.例如:在对第一批本科投档时, 计算机投档系统按照考生的5门高考总分从高到低逐个检索、投档.当检索到某个考 生时,再依次..按考生填报的A 、B 、C 三个院校志愿进行检索,只要被检索到3所院校 中一经出现....符合投档条件的院校,即向该院校投档,假设一进档即被该院校录取.张 林今年的高考成绩为600分(超过本一线40分),他希望能上甲、乙、丙三所院校中 的一所.经咨询知道,张林被甲校录取的概率为0.4,被乙校录取的概率为0.7,被丙 校录取的概率为0.9.如果张林把甲、乙、丙三所院校依次填入A 、B 、C 三个志愿,求: (Ⅰ) 张林被B 志愿录取的概率;(Ⅱ) 张林被A 、B 、C 三个志愿中的一个录取的概率.解:记“张林被A 志愿录取”为事件1A ,“张林被B 志愿录取”为事件2A ,“张林被C 志愿录取”为事件3A .……………………………………………………1分 (Ⅰ) 由题意可知,事件2A 发生即甲校不录取张林而乙校录取张林.∴2()(10.4)0.70.42P A =-⨯=.………… ………………………6分 (Ⅱ) 记“张林被A 、B 、C 三个志愿中的一个录取”为事件A .由于事件1A 、2A 、3A 中任何两个事件是互斥事件,…… …………………………7分且3()(10.4)(10.7)0.90.60.30.90.162P A =-⨯-⨯=⨯⨯=… ……9分∴123123()()()()()0.40.420.1620.982P A P A A A P A P A P A =++=++=++=. 方法2:(Ⅱ) 记“张林被A 、B 、C 三个志愿中的一个录取”为事件A .由于事件A 的对立事件是“张林没有被A 、B 、C 三个志愿中的一个录取”. ……7分 ∴()1(10.4)(10.7)(10.9)P A =--⨯-⨯-… ………………10分10.60.30.10.982=-⨯⨯=.… …………………11分答:张林被B 志愿录取的概率为0.42;张林被A 、B 、C 三个志愿中的一个录取的概率为0.982.…… ……………………………………12分14.平面直角坐标系中有两个动点A 、B ,它们的起始坐标分别是(0,0),(2,2),动点A 、B 从同一时刻开始每隔1秒钟向上、下、左、右四个方向中的一个方向移动1个单位, 已知动点A 向左、右移动的概率都是41,向上、下移动的概率分别是31和p ,动点B 向上、下、左、右四个方向中的一个方向移动1个单位的概率都是q . (Ⅰ)求p 和q 的值;(Ⅱ)试判断最少需要几秒钟,动点A 、B 能同时到达点D (1,2),并求在最短时间内同时到达点D 的概率 .解:(Ⅰ)由于质点A 向四个方向移动是一个必然事件,…………………………2分所以1111443p +++=,所以16p =. ………………………………4分 同理可得14q =. ……………………………………………………6分(Ⅱ)至少需要3秒可以同时到达点D . ……………………………………8分 经过3秒钟,点A 到达点D 的概率为3p 右p 上p 上=112. ……………………10分 经过3秒钟,点B 到达点D 的概率为3199()464=. ……………………12分 所以,经过3秒钟,动点A 、B 同时到达点D 的概率为1931264256⨯=.…14分15(1(2解:(14次中有3次正面16分(26次3次正面312分16.一位学生每天骑自行车上学,从他家到学校共有5个交通岗,假设他在每个交通岗遇到红灯是相互独立的,且首末两个交通岗遇红灯的概率均为p,其余3个交通岗遇红灯的概率均为12.(Ⅰ)若23p=,求该学生在第三个交通岗第一次遇到红灯的概率;(Ⅱ)若该学生至多遇到一次红灯的概率不超过518,求p的取值范围.解: (Ⅰ)记该学生在第i个交通岗遇红灯为事件i A(1,2,,5i=⋅⋅⋅),它们相互独立,则“这名学生在第三个交通岗第一次遇到红灯”为123A A A⋅⋅.1231232111()()()()(1)(1)32212P A A A P A P A P A⋅⋅=⋅⋅=-⨯-⨯=.答: 该学生在第三个交通岗第一次遇到红灯的概率为112. -------------------------------------- 6分注:本小问缺少事件命名、概型分析、答,各扣一分.(Ⅱ)过首末两个路口,过中间三个路口分别看作独立重复试验.该学生至多遇到一次红灯指没有遇红灯(记为A)或恰好遇一次红灯(记为B),则A与B互斥.020322311()C (1)C (1)(1)28P A p p =-⋅-=-, ------------------------------------------------------- 7分 02121032232311131()C (1)C (1)C (1)C (1)(1)(1)22284P B p p p p p p =-⋅-+-⋅-=-+-. 9分 该学生至多遇到一次红灯,为A B +,2221311()()()(1)(1)(1)(32)8844P A B P A P B p p p p p p +=+=-+-+-=-+, 故215(32)418p p -+≤,即292780p p -+≤,解得1833p ≤≤. ------------------------ 11分 又01p ≤≤,所以p 的取值范围为1[,1]3. ---------------------------------------------------------12分 注:p 的取值范围写成1[,1)3不扣分. 17.高三(1)班、高三(2)每班已选出3名学生组成代表队,进行乒乓球对抗赛,比赛 规则是:① 按“单打、双打、单打”顺序进行三盘比赛; ② 代表队中每名队员至少 参加一盘比赛,不得参加两盘单打比赛; ③ 先胜两盘的队获胜,比赛结束. 已知每盘比赛双方胜出的概率均为.21(Ⅰ)根据比赛规则,高三(1)班代表队共可排出多少种不同的出场阵容?(Ⅱ)高三(1)班代表队连胜两盘的概率是多少?(Ⅲ)高三(1)班代表队至少胜一盘的概率为多少?解:解:(Ⅰ)参加单打的队员有23A 种方法.参加双打的队员有12C 种方法. (2分)所以,高三(1)班出场画容共有)(121223种=⋅C A (4分) (Ⅱ)高三(1)班代表队连胜两盘,可分为第一盘、第二盘胜或第一盘负,其余两盘胜.所以,连胜两盘的概率为.832121212121=⨯⨯+⨯ (8分) (Ⅲ)高三(1)班至少胜盘,可分为:(1)胜一盘,此时的概率为.41212121212121=⨯⨯+⨯⨯ (9分) (2)胜两盘,此时的概率为.212121212121212121=⨯⨯+⨯⨯+⨯ (11分) 所以,高三(1)班至少胜一盘的概率为.432141=+ (12分) 或:高三(1)班代表队至少胜一盘的对立事件为输掉前两盘 (10分) 所以,所求概率为4321211=⨯- (12分) 18.甲、乙两人各进行3次射击,甲每次击中目标的概率为21,乙每次击中目标的概率为32, (1)记甲击中目标的次数为ξ,求ξ的概率分布及数学期望E ξ;(2)求乙至多击中目标2次的概率;(3)求甲恰好比乙多击中目标2次的概率.(14分)19.为了支持三峡工程建设,某市某镇决定接受一批三峡移民,其中有3户 互为亲戚关系,将这3户移民随意安置到5个村民组① 求这3户恰好安置到同一村民组的概率② 求这3户中恰好有2户安置到同一村民组的概率解:①3户任意分配到5个村民组,共有53种不同分法,3户都在同一村民组共有5种方法,3户都在同一村民组的概率为350.045=,∴3户都在同一村民组的概率为0.04 ②恰有2户分到同一村民组的结果有2235,C A 种∴223530.485C A =∴恰有2户分到同一 村民组的概率为0.4820.某制药厂设甲、乙两个研究小组,独立研制治疗禽流感的新药物.(1)设甲小组研制出新药物的概率为0.75,乙小组研制出新药物的概率为0.80,求甲、 乙两组均研制出新药物的概率;(2)设甲、乙两组研制出新药物的概率相同。

相关文档
最新文档