2016-学年八年级下期末数学试卷
湖南省长沙市长郡教育集团2023-2024学年八年级下学期期末数学试题
湖南省长沙市长郡教育集团2023-2024学年八年级下学期期末数学试题一、单选题1.下列方程一定是一元二次方程的是( )A .22310x x+-= B .25630x y -=- C .20ax bx c ++= D .230x x -=2.关于一次函数23y x =-+,下列结论正确的是( )A .图象过点()1,1-B .其图象可由2y x =-的图象向上平移3个单位长度得到C .y 随x 的增大而增大D .图象经过一、二、三象限3.对甲、乙、丙、丁四名射击选手选行射击测试,每人射击10次,平均成绩均为9.5环,方差如表所示:则四名选手中成绩最稳定的是( )A .甲B .乙C .两D .丁4.函数y =3(x ﹣2)2+4的图像的顶点坐标是( )A .(3,4)B .(﹣2,4)C .(2,4)D .(2,﹣4) 5.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是7,10,9,8,7,9,9,8,对这组数据,下列说法正确的是( )A .中位数是8B .众数是9C .平均数是8D .方差是0 6.元旦将至,九(1)班全体学生互赠贺卡,共赠贺卡1980张,问九(1)班共有多少名学生?设九(1)班共有x 名学生,那么所列方程为( )A .21980x =B .(1)1980x x +=C .1(1)19802x x -= D .(1)1980x x -= 7.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( )A .平均数B .中位数C .众数D .方差8.将二次函数22y x =的图象向右平移2个单位,再向下平移3个单位,得到的函数图象的表达式是( )A .22(2)3y x =++B .22(2)-3y x =+C .22(-2)-3y x =D .22(-2)3y x =+9.若点()12,A y -,()22,B y ,()33,C y 在抛物线()221y x m =-+上,则1y ,2y ,3y 的大小关系是( )A .123y y y <<B .213y y y <<C .231y y y <<D .321y y y <<10.如图,已知开口向上的抛物线2y ax bx c =++与x 轴交于点()10-,,对称轴为直线1x =,则下列结论正确的有( )①20a b +=;②函数2y ax bx c =++的最小值为4a -;③若关于 x 的方程21ax bx c a ++=-无实数根,则105a <<; ④代数式()()()0a b b c c a ---<A .1个B .2个C .3个D .4个二、填空题11.关于x 的一元二次方程260x ax -+=的一个根是2,则a 的值为 .12.已知一组数据8,9,x ,3,若这组数据的平均数是7,则x =.13.一次函数145y x =+与2310y x =+的图象如图所示,则12y y >的解集是.14.若某等腰三角形的底和腰的长分别是一元二次方程2680x x -+=的两根,则这个等腰三角形的周长是 .15.“一河诗画,满城烟花”,每逢过年过节,人们会在美丽的浏阳河边上手持网红烟花加特林进行燃放,当发射角度与水平面成45度角时,烟花在空中的高度y (米)与水平距离x (米)接近于抛物线20.51038y x x =-+-,烟花可以达到的最大高度是米.16.已知二次函数()220y ax ax c a =-+≠的图象与x 轴的一个交点的坐标为()2,0-,则二次函数()220y ax ax c a =-+≠的图象与x 的另一个交点的坐标是.三、解答题17.选择适当的方法解下列方程:(1)()234-=x(2)2510x x -+= 18.如图,直线AB 与x 轴交于点()10A ,,与y 轴交于点 ()0,2B -.(1)求直线 AB 的解析式;(2)若直线AB 上的点C 在第一象限,且 3BOC S =V ,求点C 的坐标.19.已知关于x 的一元二次方程220x x m --=有实数根.(1)求m 的取值范围;(2)若两实数根分别为1x 和2x ,且22126x x +=,求m 的值.20.2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校为了解该校学生一周的课外劳动情况,随机抽取部分学生调查了他们一周的课外劳动时间,将数据进行整理并制成如下统计图.请根据图中提供的信息,解答下面的问题:(1)求图1中的m =____________,本次调查数据的中位数是____________h ,本次调查数据的众数是____________h ;(2)该校此次抽查的这些学生一周平均的课外劳动时间是多少?(3)若该校共有2000名学生,请根据统计数据,估计该校学生一周的课外劳动时间不小于3h 的人数.21.已知二次函数()20y ax bx c a =++≠的图象如图所示.(1)求这个二次函数的解析式;(2)根据图象回答:当0y >时,x 的取值范围;(3)当302x ≤≤时,求y 的取值范围. 22.为建设美丽城市,改造老旧小区.某市2021年投入资金1000万元,2023年投入资金1440万元.现假定每年投入的资金年增长率相同.(1)求该市改造老旧小区投入资金的年平均增长率;(2)2023年老旧小区改造的平均费用为每个小区96万元,2024年为提高老旧小区品质,每个小区改造费用增加50%,如果投入资金的年平均增长率保持不变,那么该市在2024年最多可以改造多少个老旧小区?23.如图1,是抛物线形的拱桥,当拱顶高离水面2米时,水面宽4米,如图建立平面直角坐标系,解答下列问题:(1)如图2,求该抛物线的函数解析式.(2)当水面AB 下降1米,到CD 处时,水面宽度增加多少米?(保留根号)24.对某一个函数给出如下定义:对于函数y ,若当a x b ≤≤,函数值y 的取值范围是m y n ≤≤,且满足()n m t b a -=-则称此函数为“t 系郡园函数”(1)已知正比例函数()14y ax x =≤≤为“1系郡园函数”,则a 的值为多少?(2)已知二次函数222y x ax a =-++,当13x ≤≤时,y 是“t 系郡园函数”,求t 的取值范围;(3)已知一次函数1y kx =+(a x b ≤≤且0k >)为“2系郡园函数”,(),P x y 是函数1y kx =+上的一点,若不论m 取何值二次函数()2221y mx m x m =+--+的图象都不经过点P ,求满足要求的点P 的坐标.25.如图,已知抛物线23y ax bx =+-与x 轴交于(1,0)A -,(3,0)B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求抛物线的解析式;(2)点D 是第四象限内抛物线上的一个动点(与点C ,B 不重合),过点D 作DF x ⊥轴于点F ,交直线BC 于点E ,连接BD ,若:2:3BEF BDE S S =△△,求出点D 的坐标;(3)若P 为x 轴上一动点,Q 为抛物线上一动点,是否存在点P 、Q ,使得以点B ,C ,P ,Q 为顶点的四边形是平行四边形?若存在,请求出P 的坐标;若不存在,请说明理由.。
江苏省徐州市度第二学期期末考试八年级数学试卷(Word版含答案)
江苏省徐州市第二学期期末考试八年级数学试题(提醒:本卷共6页,满分为140分,考试时间为90分钟;答案全部涂、写在答题卡上, 写在本卷上无效.)、一、选择题(每小题3分,共24分)1.下列成语描述的事件为随机事件的是A .守株待兔B .缘木求鱼C .水中捞月2 .下列图形中,是轴对称图形,但不是中心对称图形的是3. 下列调查方式较为合理的是A. 了解某班学生的身高,采用抽样的方式B .调查某晶牌电脑的使用寿命,采用普查的方式C. 调查骆马湖的水质情况,采用抽样的方式D. 调查全国初中学生的业余爱好,采用普查的方式y4. 下列分式中,与—3x相等的是2A 3^2 C .—二: -y;-3xxy6x25 •下列运算正确的是B. 2.2 2 = - 2C・「(二2厂(二3)= ..(-2) x ,(-3)6. 为了解我市八年级学生的视力状况,从中随机抽取此项调查的样本为A. 500C.被抽取500名学生的视力状况2018500名学生的视力状况进行分析,B .被抽取的500名学生D .我市八年级学生的视力状况7. 若A(x i,y i)、B(x2,y2)都在函数y= 的图像上,且X| v O v X2,则xA . y1 v y2B . y1 = y2&从一副扑克牌中任意抽取1张,下列事件:①抽到“ K”;②抽到“黑桃”:③抽到“大王”;④抽到“黑色的” 其中,发生可能性最大的事件是A .①B .②C .③八年级数学试题第1页(共6页)C. y i>y2 D • y i= = - y2D .④D •水涨船高二、填空题(每小题4分,共32分)9.当m= _________ ,分式m十1的值为零.m _110•若J2—x有意义,则x的取值范围是_______________ •11. 若口ABCD的周长为20,且AC= 5,则厶ABC的周长为________________12. ___________________________________________________ 若■ 48n是正整数,则n可取到的最小正整数为_________________________________________ •13. 如图,矩形ABCD的对角线AC、BD相交于点O, DE // AC , CE// BD,若BD = 5,则四边形DOCE的周长为___________ •ky= 的图像相交于A(m, 2), B两点.xk则不等式-2x> -的解集为x16 .下图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③再次用计算机模拟实验,当投掷次数为1000时,“钉尖向上”的概率一定是0.620 .其中,不合理的是___________ (填序号).14.如图,若正比例函数y=- 2x与反比例函数15.如图,△ OAC 和+ △ BADky= 的图像经过点凡若x都是等腰直角三角形,OA2 —AB2 = 12」ACO =Z ADB = 90°,反比例函数(第13题)八年级数学试题第2页(共6页)三、解答题(共84分) 17. (本题10分)计算:⑴冷12 — 3 — +1 , 3 — 2 |;\3(2)( 3 — 2)2 — ,3 X 12 .18.(本题10分)(1)计算: 52m —4(m+2) •m -23 -m (2)解方程:11 -x 门=一 3.x -2 2 - x19.(本题9分)某学校为了解学生的课外阅读情况,随机抽取了50名学生,并统计他们平均每天的课外阅读时间/ (单位:min),然后利用所得数据绘制成如下不完整的统计图表.课外阅读时间频数分布表课外阅读时间频数分布直方图(第 19 题)根据图表中提供的信息,回答下列问题: (1) a = __________ , b = _____________ ; (2) 将频数分布直方图补充完整;⑶若该校共1 000名学生,估计有多少学生平均每天的课外阅读时间不少于50min?课外阅读时间「百分比4S%16%50^t<70 a 40%700 V9016b24%合计 \ 50100%20.(本题6分)如图,在方格纸中,,5~ABC为格点三角形.(1)画出△ ABC绕点C顺时针旋转后的格点△ A i B i C,使得点P在厶A i B i C的内部;⑵在(1)的条件下,若/ ACB= n°,则/ A i CB=____________ ° (用含n的代数式表示).21. (本题i0分)在口ABCD中,BE丄CD于点E,点F在AB 上,且AF=CE,连接DF .(i)求证:四边形BEDF是矩形;⑵连接CF,若CF平分/ BCD,且CE=3, BE=4,求矩形BEDF的面积.22. (本题9分)“书香校园”活动中,某校同时购买了甲、乙两种图书,已知两种图书的购书款均为360元,甲种图书的单价比乙种图书低50%,甲种图书比乙种图书多4本.甲、乙两种图书的单价分别为多少元?八年级数学试题第4页(共6页)23. (本题10分)一辆汽车通过某段公路时,行驶时间t(h)与行驶速度v(km/h)之间成反比例k函数关系,t= ,其图像为图中一段曲线,端点为A(35, 1.2), B(m , 0.5).v(1)求k和m的值⑵若该路段限速60km / h,则汽车通过该路段至少需要多少时间?v(km/h)(第23题)24. (本题10分)已知:如图,在正方形ABCD中,点E、F、G分别在AB、AD、CD 上,AB= 6, AE = 2, DG > AE, BF = EG , BF 与EG 交于点P.(1) 求证:BF丄EG;(2) 连接DP,贝U DP的最小值为__________ •(第24题)25. (本题10分)探索函数y = x + (x > 0)的图像和性质.1已知正比例函数y=x与反比例函数y= 在第一象限内的图像如图所示•若P为函数x1y= x+ (其中x> 0)图像上任意一点,过P作PC垂直于x轴且与已知函数的图像、x1x轴分别交于点A、B、C,贝y PC= x + =AC+ BC,从而发现下述结论:x“点P可以看作点A沿竖直方向向上平移BC个长度单位(PA = BC)而得到”.的图像.1(2)观察图像,写出函数y = x + (x >0)两条件不同类型的性质.xx2017—2018学年度第二学期期末抽测八年级数学参考答案題号12345678 选项 A AC B B CAD9. -1 10.15. 616・①(D17. (I)原式-275-75 + 2-^3 (3分)《2・ ................................................................ 5 分(2)原式=3-40 + 4-6 (9 分)=1-4力・ .................................. 10 分 18. (|)原式二也.沁(2分)=如型口.怦 .................................... 4分加・2 3-m m-2 3-ms-2(m + 3) = -2m-6・(未去括号,不扣分) ...................... 5分(2) l=x-l-Xx-2)> (7 分)2x = 4, (8 分)x = 2.经检脸,“2是增根,原方程无解. ................................. 10分19. (1) 20.32%: .............................................................................................. 4 分(2) 如图: ....................................................... 6分 (3) 1000X(40%+32%+4%)=760・ ............................................................. 8 分(第 198) (第 2085)21. (I) V 四边形ABCD 是平行四边形、:・AACD. AB//CD ・ .................. I 分•:A2CE 、:・AB-AF 二CD ・CE 即 BF=DE ・ ............................................. 2 分 •••四边形BEDF 是平行四边形.(3分)又TBE 丄CD •'•ZB 妙90°・•……4分DBEDF 是矩形. ................................................... 5分(2) VCFT 分ZBCD •••ZDCQZDCF • (6 分)9:AB//CD. :.ZBFC^ZDCF.:MBCF 二ZBFC . (7 分) :.BOBF ・ ................................ 8 分在 MBCE 中,由勾股定理得 J?C = V C E 2 + 5E 2=732 + 42=5, :.BC-BF-5.・9 分:・S 杯问产BF ・BE = 5x4 = 20. ...............................................................10分 八年级第I 页(共2处)答:该校约有760名学生平均每夭的课外阅读时间不少干50 min. ................ 9分22・设乙种图书的单价是每本x元,则甲种图书的单价是每本0・5x元. ........... 1分由题意,得探一譽=4.解得x = 90.经检验.x = 90是所列方程的解.且当x = 90时,0.5A = 45符合题意. ............. 8分答:甲种图书的单价为每本45元.乙种图书的单价为每本90元. ............... 9分23. (1)将(35, 1.2)代入/ = -,得1.2 = —, (2 分) 解得k=42. ............................................ 3 分v 354? 4?将戶0.5代入/ =—,得0.5 = — , (5分) 解得尸84・................................................ 6分(2)将v=60代入/ =—,得/ = —, (7分)解得f=0 7・....................................... 8分v 60由函数图像(或增减性)可知,vW60时,/N0.7. ...................................................... 9分答:汽车通过该路段至少需耍0.7h. ........................................................................... 10分24. (I)证明:如图,过点E作EM丄CQ于点M,交BF于点N..................................... 1分•••四边形ABCD是正方形,Z2ZADC二ZDME=90° ・ .......................... 2 分•••四边形ADME是矩形,:.EM=AD=AB............................................................................ 3分又•:BF=EG,・(4 分) A /ABF=ZMEG・............... 5 分在R3EN中,•:乙ABF+ZENB今丫 ,二ZMEG+ZEN沪90。
2016-2017学年云南省昆明市盘龙区八年级(下)期末数学试卷
2016-2017学年云南省昆明市盘龙区八年级(下)期末数学试卷2016-2017学年云南省昆明市盘龙区八年级(下)期末数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)计算:$\sqrt{27}=$.2.(3分)若一组数据3,x,4,5,6的众数是3,则这组数据的中位数是$\frac{4+5}{2}=$.3.(3分)已知△ABC的各边长度分别为3cm、4cm、5cm,则连结各边中点的三角形的周长为$6+8+10=$.4.(3分)如图,函数$y=ax+4$和$y=bx$的图象相交于点A,则不等式$bx\geq ax+4$的解集为$x\geq 4\frac{1}{b-a}$.5.(3分)已知:在▱ABCD中,对角线AC、BD相交于点O,过点O的直线EF分别交AD于E、BC于F,$S_{\triangle AOE}=3$,$S_{\triangle BOF}=5$,则▱ABCD 的面积是$24$.6.(3分)如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则BF的长为$5$.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)要使式子$\sqrt{x+1}$有意义,则x的取值范围是(B).A.$x>1$ B.$x\geq -1$ C.$x\geq 1$ D.$x\geq 0$8.(4分)下列式子成立的是(B).A.$2+3=3$ B.$2-3=2-5$ C.$2\times3=6$ D.$\frac{2}{3}=0.6$9.(4分)为了考察甲、乙、丙3种小麦的苗高,分别从中随机各抽取了100株麦苗,测得数据,并计算其方差分别是:$S_{甲}^2=1.4$,$S_{乙}^2=18.8$,$S_{丙}^2=2.5$,则苗高比较整齐的是(A).A.甲种 B.乙种 C.丙种 D.无法确定10.(4分)下列各曲线中表示y是x的函数的是(D).A.$\sqrt{x+y}=1$ B.$x^2+y^2=1$ C.$y=\pmx$ D.$y=2x-1$11.(4分)如图,△ABC中,CD⊥AB于D,且E是AC 的中点.若AD=6,DE=5,则CD的长等于(C).A.$5$ B.$6$ C.$7$ D.$8$12.(4分)菱形ABCD的周长是20,对角线AC=8,则菱形ABCD的面积是(B).A.$12$ B.$24$ C.$40$ D.$48$13.(4分)将一次函数$y=-3x-2$的图象向上平移4个单位长度后,图象不经过(C).A.第一象限 B.第二象限 C.第三象限 D.第四象限14.(4分)已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的面积是(D).A.$2n-2$ B.$2n-1$ C.$2n$ D.$2n+1$三、解答题(本大题共9小题,共70分)15.(4分)计算:$\frac{3}{5}\times \frac{5}{7}\times\frac{7}{9}=$.解:$\frac{3}{5}\times \frac{5}{7}\times\frac{7}{9}=\frac{3\times 5\times 7}{5\times 7\times9}=\frac{1}{3}$.16.(5分)计算:$\frac{2}{3}+\frac{1}{5}-\frac{1}{6}-\frac{1}{15}=$.解:$\frac{2}{3}+\frac{1}{5}-\frac{1}{6}-\frac{1}{15}=\frac{10+3-5-2}{15}=\frac{6}{15}=\frac{2}{5}$.17.(8分)如图,在△ABC中,$AB=AC$,$D$是$BC$的中点,$E$是$AD$的垂足,$F$是$BE$的中点,$G$是$AF$的垂足,$AG$交$BC$于点$H$,求证:$BH=HC$.证明:因为$AB=AC$,所以XXX又因为$D$是$BC$的中点,所以$AD\perp BC$,即$\angle ADE=90^\circ$.又因为$E$是$AD$的垂足,所以$AE=DE$,又$\angle AFE=90^\circ$,所以$AF=EF$.因为$F$是$BE$的中点,所以$BF=FE$.又因为$AG\perp BF$,所以$AG$是$BF$的高,所以$AG=GF$.设$BH=x$,则$HC=BF-BH=2x-BC$.由勾股定理得$AE=\sqrt{AB^2-BE^2}=\sqrt{AB^2-\left(\frac{AD}{2}\right)^2}=\sqrt{AB^2-\left(\frac{AB}{2}\right)^2}=\frac{\sqrt{3}}{2}AB$.由相似三角形可得$\frac{EF}{AB}=\frac{1}{2}$,$\frac{AG}{AB}=\frac{2}{\sqrt{3}}$,$\frac{HC}{AB}=\frac{2x-AB}{AB}$.由正弦定理得$\frac{EF}{\sin \angle A}=\frac{AE}{\sin\angle AEF}$,即$\frac{EF}{AB}=\frac{\sin \angle A}{\sin\angle AEF}$.又$\angle AEF=90^\circ-\angle BAE=\angle C$,$\sin \angle A=\sin \angle B$,所以$\frac{EF}{AB}=\frac{\sin \angle B}{\sin \angle C}$.由正弦定理得$\frac{AG}{\sin \angle B}=\frac{AB}{\sin\angle BAG}$,即$\frac{AG}{AB}=\frac{\sin \angle B}{\sin\angle BAG}$.又$\angle BAG=90^\circ-\angle BAF=90^\circ-\angle C$,所以$\frac{AG}{AB}=\frac{\sin \angle B}{\cos\angle C}$.综上所述,$\frac{\sin \angle B}{\sin \angleC}=\frac{EF}{AB}=\frac{1}{2}$,$\frac{\sin \angle B}{\cos\angle C}=\frac{AG}{AB}=\frac{2}{\sqrt{3}}$,$\frac{2x-AB}{AB}=\frac{HC}{AB}$,即$\frac{2x-AB}{AB}=\frac{2x-2BH}{AB}=\frac{2x-2BC}{AB}+1$,即$x=BC$,所以XXX.18.(8分)已知函数$f(x)=\frac{2x^2-8x}{x-2}$,求$f(2+\frac{1}{x})$的值.解:$f(2+\frac{1}{x})=\frac{2(2+\frac{1}{x})^2-8(2+\frac{1}{x})}{2+\frac{1}{x}-2}=\frac{2(4+\frac{4}{x}+\frac{1}{x^2})-8-\frac{8}{x}}{\frac{1}{x}}=-2x^2-4x-8+\frac{16}{x}$.所以$f(2+\frac{1}{x})=-2x^2-4x-8+\frac{16}{x}$.19.(10分)如图,已知$\odot O$是正方形ABCD内切圆,P是线段AD上一点,连接PB、PC,交$\odot O$于点E、F,交BC于点Q,求证:$PQ=2QF$.证明:因为$\odot O$是正方形ABCD内切圆,所以$\angle AOE=45^\circ$,所以$\angle EOF=90^\circ$,所以$\angle EPF=45^\circ$,所以XXX.因为$BE=BF$,所以XXX,又因为$\angle EFB=90^\circ$,所以$\angle FBE=45^\circ$,所以$\angle EPQ=90^\circ+\angle FPQ$.所以$\angle EPQ+\angle FPQ=135^\circ$,所以$\anglePQF=45^\circ$,所以$\angle FQP=45^\circ$,所以$\triangle PQF$是等腰直角三角形,所以$PQ=2QF$.20.(10分)如图,在△ABC中,$D$、$E$、$F$分别是$BC$、$AC$、$AB$上的三个点,$AD$、$BE$、$CF$交于点$O$,且$\frac{BO}{OE}=\frac{CO}{OF}=2$,求证:$AD$、$BE$、$CF$交于一点,并且$S_{\triangle ABC}=4S_{\triangle OEF}$.证明:作$BE$的平行线$GH\parallel BE$,交$AC$于点$H$,则$\frac{AH}{HC}=\frac{BG}{GE}=2$.作$AD$的平行线$IJ\parallel AD$,交$BC$于点$J$,则$\frac{BJ}{JC}=\frac{AI}{ID}=2$.作$CF$的平行线$KL\parallel CF$,交$AB$于点$L$,则$\frac{BL}{LA}=\frac{CK}{KF}=2$.设$\triangle ABC$的面积为$S$,则$\triangle AHE\sim\triangle ABC$,$\triangle BGF\sim \triangle ABC$,$\triangle CKE\sim \triangle ABC$,所以$S_{\triangleAHE}=\frac{1}{9}S$,$S_{\triangle BGF}=\frac{1}{9}S$,$S_{\triangle CKE}=\frac{1}{9}S$,所以$S_{\triangle OEF}=S-S_{\triangle AHE}-S_{\triangle BGF}-S_{\triangleCKE}=\frac{4}{9}S$.又因为$\frac{BO}{OE}=\frac{CO}{OF}=2$,所以$\frac{BG}{GE}=\frac{BO}{OE}-1=1$,$\frac{CK}{KF}=\frac{CO}{OF}-1=1$,所以$GH\parallel BE$,$KL\parallel CF$,所以XXX$,所以$\frac{AJ}{JC}=\frac{HL}{LK}=\frac{3}{2}$。
2016-2017学年广西柳州市八年级(下)期末数学试卷
2016-2017学年广西柳州市八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题的四个选项中,只有一个项是符合题意的,每小题选对得3分,选错,不选或多均得零分,请把选择题的答案填入下面的表格中)1.(3分)若有意义,则x的取值范围是()A.x>1 B.x≥1 C.x>﹣1 D.x≥﹣12.(3分)一次函数y=2x﹣1中,当x=2时,y的值为()A.1 B.3 C.4 D.53.(3分)下列运算正确的是()A.+=2 B.=+C.2×=2 D.﹣=14.(3分)长方形的周长为30cm,其中一边长为x cm(其中0<x<15),面积为ycm2,则这样的长方形中y与x的关系可以写成()A.y=x2 B.y=(15﹣x)2C.y=2(15﹣x)D.y=x(15﹣x)5.(3分)某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,10,8,9,16,12,7,这组数据的中位数和众数分别是()A.10,12 B.12,11 C.11,12 D.12,126.(3分)一个三角形的三边长分别是3、4、5,则它的面积等于()A.6 B.12 C.15 D.207.(3分)正比例函数的图象经过点(﹣1,2),则这个图象必须经过点()A.(﹣2,1)B.(2,﹣1)C.(1,﹣2)D.(1,2)8.(3分)已知一次函数的图象大致如图所示,则下列结论正确的是()A.k>0,b>0 B.k<0,b<0 C.k>0,b<0 D.k<0,b>09.(3分)如图,在平行四边形ABCD中,AB=4,CE平分∠BCD交AD边于点E,且AE=3,则BC的长为()A.4 B.6 C.7 D.810.(3分)边长为4的正方形ABCD中,P是边AD上的动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF的值为()A.2 B.4 C.2 D.6二、填空题(本大题共6小题,每小题3分,满分18分)11.(3分)若一个三角形的三边满足c2﹣a2=b2,则这个三角形是.12.(3分)一次函数y=﹣2x+4的图象与x轴交点坐标是.13.(3分)如图所示,菱形ABCD的周长为24,∠ABC=60°,则AC=.14.(3分)直线y=3x向下平移2个单位后得到的直线解析式为.15.(3分)如果是整数,则正整数n的最小值是.16.(3分)如图,正方形ABCD的面积为49,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE得和最小,则这个最小值为.三、解答题(本大题共7小题,满分52分,解答时应写出必要的文字说明,演算步骤或推理过程)17.(6分)计算:﹣+18.(6分)如图,在四边形ABCD中,∠B=∠D,∠1=∠2,求证:四边形ABCD 是平行四边形.19.(6分)如图,已知在△ABC中,CD⊥AB于点D,AC=20,BC=15,DB=9,(1)求DC的长.(2)求证:△ABC是直角三角形.20.(8分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销量y(件)之间的关系如下表:若日销量y是销售价x的一次函数.(1)求出日销量y(件)与销售价x(元)的函数关系式;(2)求销售定价为30元时,每日的销售利润.21.(8分)“节约用水,从我做起”,市政府决定对市直机关500户家庭的用水情况做一次调查,调查小组随机抽查了其中100户家庭某个月的平均用水量(单位:顿)并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完成(2)求这100个样本数据的平均数.22.(8分)如图,将矩形ABCD沿AE折叠,使得点B恰好落在对角线AC上的点F处,若AB=6cm,BC=8cm,求EC的长.23.(10分)如图,在四边形OABC中,OA∥BC,∠OAB=90°,O为原点,点C 的坐标为(2,8),点B的坐标为(24,8),点D从点B出发,以每秒1个单位长度的速度沿BC向点C运动,点E同时从点O出发,以每秒3个单位长度的速度沿OA向A运动,当点E达到点A时,点D也停止运动,从运动开始,设D(E)点运动的时间为t秒.(1)连接AD,记△ADE得面积为S,求S与t的函数关系式,写出t的取值范围;(2)当t为何值时,四边形ABDE是矩形;(3)在(2)的条件下,当四边形ABDE是矩形,在x轴上找一点P,使得△ADP 为等腰三角形,直接写出所有满足要求的P点的坐标.2016-2017学年广西柳州市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题的四个选项中,只有一个项是符合题意的,每小题选对得3分,选错,不选或多均得零分,请把选择题的答案填入下面的表格中)1.(3分)若有意义,则x的取值范围是()A.x>1 B.x≥1 C.x>﹣1 D.x≥﹣1【分析】根据二次根式有意义,被开方数大于等于0列不等式求解即可.【解答】解:由题意得,x﹣1≥0,解得x≥1.故选:B.【点评】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.2.(3分)一次函数y=2x﹣1中,当x=2时,y的值为()A.1 B.3 C.4 D.5【分析】将x=2代入函数解析式即可得出答案.【解答】解:将x=2代入得:y=2×2﹣1=3.故选:B.【点评】本题考一次函数图象上点的坐标特征,图象上的点的坐标适合解析式.3.(3分)下列运算正确的是()A.+=2 B.=+C.2×=2 D.﹣=1【分析】利用二次根式的加减法对A、D进行判断;根据二次根式的性质对B进行判断;根据二次根式的乘法法则对C进行判断.【解答】解:A、原式=2,所以A选项错误;B、原式==5,所以B选项错误;C、原式=2,所以C选项正确;D、与﹣不能合并,所以D选项错误.故选:C.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.(3分)长方形的周长为30cm,其中一边长为x cm(其中0<x<15),面积为ycm2,则这样的长方形中y与x的关系可以写成()A.y=x2 B.y=(15﹣x)2C.y=2(15﹣x)D.y=x(15﹣x)【分析】直接表示出长方形的另一边长,进而利用长方形面积求法得出答案.【解答】解:∵长方形的周长为30cm,其中一边长为x cm(其中0<x<15),∴另一边长为:(15﹣x)cm,则y=x(15﹣x).故选:D.【点评】此题主要考查了函数关系式,正确表示出长方形边长是解题关键.5.(3分)某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,10,8,9,16,12,7,这组数据的中位数和众数分别是()A.10,12 B.12,11 C.11,12 D.12,12【分析】先把原数据按由小到大排列,然后根据中位数和众数的定义求解.【解答】解:原数据按由小到大排列为:7,8,9,10,12,12,14,16,所以这组数据的中位数==11,众数为12.故选:C.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数的定义.6.(3分)一个三角形的三边长分别是3、4、5,则它的面积等于()A.6 B.12 C.15 D.20【分析】由于32+42=52,易证此三角形是直角三角形,从而易求此三角形的面积.【解答】解:∵32+42=52,∴此三角形是直角三角形,=×3×4=6.∴S△故选:A.【点评】本题考查了勾股定理的逆定理.解题的关键是先证明此三角形是直角三角形.7.(3分)正比例函数的图象经过点(﹣1,2),则这个图象必须经过点()A.(﹣2,1)B.(2,﹣1)C.(1,﹣2)D.(1,2)【分析】求出函数解析式,然后根据正比例函数的定义用代入法计算.【解答】解:设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(﹣1,2),所以2=﹣k,解得:k=﹣2,所以y=﹣2x,把这四个选项中的点的坐标分别代入y=﹣2x中,等号成立的点就在正比例函数y=﹣2x的图象上,所以这个图象必经过点(1,﹣2).故选:C.【点评】本题考查正比例函数的知识.关键是先求出函数的解析式,然后代值验证答案.8.(3分)已知一次函数的图象大致如图所示,则下列结论正确的是()A.k>0,b>0 B.k<0,b<0 C.k>0,b<0 D.k<0,b>0【分析】根据一次函数的性质即可解决问题.【解答】解:由图象可知:k<0,b<0,故选:B.【点评】本题考查一次函数与系数的关系,解题的关键是熟练掌握基本知识,记住k<0,图象从左到右下降,k>0图象从左到右上升,b>0交y轴于正半轴,b=0经过原点,b<0经过y轴的负半轴.9.(3分)如图,在平行四边形ABCD中,AB=4,CE平分∠BCD交AD边于点E,且AE=3,则BC的长为()A.4 B.6 C.7 D.8【分析】由平行四边形的性质可得AD∥BC,且AD=BC,结合角平分线的性质可求得DE=DC=AB=4,则可求得AD的长,可求得答案.【解答】解:∵四边形ABCD为平行四边形,∴AB=CD=4,AD∥BC,AD=BC,∴∠DEC=∠BCE,∵CE平分∠BCD,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=4,∵AE=3,∴AD=BC=3+4=7,故选:C.【点评】本题主要考查平行四边形的性质,利用平行线的性质及角平分线的性质求得DE=DC是解题的关键.10.(3分)边长为4的正方形ABCD中,P是边AD上的动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF的值为()A.2 B.4 C.2 D.6【分析】如图,利用正方形的性质得∠CAD=∠BDA=45°,则可判断△APE和△PDF为等腰直角三角形,则利用等腰直角三角形的性质得PE=AP,PF=PD,PE+PF=(AP+PD).【解答】解:如图,∵四边形ABCD为正方形,∴∠CAD=∠BDA=45°,∵PE⊥AC于点E,PF⊥BD于点F,∴△APE和△PDF为等腰直角三角形,∴PE=AP,PF=PD,∴PE+PF=(AP+PD)=×4=2.故选:A.【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.两条对角线将正方形分成四个全等的等腰直角三角形.二、填空题(本大题共6小题,每小题3分,满分18分)11.(3分)若一个三角形的三边满足c2﹣a2=b2,则这个三角形是直角三角形.【分析】对原式变形,利用勾股定理的逆定理,从而确定三角形的形状.【解答】解:∵c2﹣a2=b2,∴a2+b2=c2,∴此三角形是直角三角形.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.12.(3分)一次函数y=﹣2x+4的图象与x轴交点坐标是(2,0).【分析】由于x轴上点的纵坐标为0,由此利用函数解析式即可求出横坐标的值.【解答】解:令y=0,则y=﹣2x+4=0,解得:x=2,故图象与x轴交点坐标是(2,0).【点评】此题比较简单,解答此题的关键是利用两坐标轴上点的坐标特点解决问题.13.(3分)如图所示,菱形ABCD的周长为24,∠ABC=60°,则AC=6.【分析】由菱形的四边相等可求得AB的长,结合条件可证得△ABC为等边三角形,则可求得AC的长.【解答】解:∵四边形ABCD为菱形,∴AB=BC=CD=AD==6,∵∠ABC=60°,∴△ABC为等边三角形,∴AC=AB=6,故答案为:6.【点评】本题主要考查菱形的性质,利用菱形的四边相等证得△ABC为等边三角形是解题的关键.14.(3分)直线y=3x向下平移2个单位后得到的直线解析式为y=3x﹣2.【分析】利用一次函数平移规律,上加下减进而得出平移后函数解析式即可.【解答】解:直线y=3x沿y轴向下平移2个单位,则平移后直线解析式为:y=3x﹣2,故答案为:y=3x﹣2【点评】此题主要考查了一次函数平移变换,正确记忆一次函数平移规律是解题关键.15.(3分)如果是整数,则正整数n的最小值是3.【分析】因为是整数,且==2,则3n是完全平方数,满足条件的最小正整数n为3.【解答】解:∵==2,且是整数;∴2是整数,即3n是完全平方数;∴n的最小正整数值为3.故答案是:3.【点评】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则=.除法法则=.解题关键是分解成一个完全平方数和一个代数式的积的形式.16.(3分)如图,正方形ABCD的面积为49,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE得和最小,则这个最小值为7.【分析】由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为49,可求出AB的长,从而得出结果.【解答】解:连接BD,与AC交于点F.∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为49,∴AB=7.又∵△ABE是等边三角形,∴BE=AB=7.∴所求最小值为7.故答案为:7【点评】此题主要考查了轴对称﹣﹣最短路线问题,难点主要是确定点P的位置.注意充分运用正方形的性质:正方形的对角线互相垂直平分.再根据对称性确定点P的位置即可.要灵活运用对称性解决此类问题.三、解答题(本大题共7小题,满分52分,解答时应写出必要的文字说明,演算步骤或推理过程)17.(6分)计算:﹣+【分析】首先把二次根式进行化简,然后再合并即可.【解答】解:原式=3﹣2+=2.【点评】此题主要考查了二次根式的加减法,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.18.(6分)如图,在四边形ABCD中,∠B=∠D,∠1=∠2,求证:四边形ABCD 是平行四边形.【分析】根据三角形内角和定理求出∠DAC=∠ACB,根据平行线的判定推出AD ∥BC,AB∥CD,根据平行四边形的判定推出即可.【解答】证明:∵∠1+∠B+∠ACB=180°,∠2+∠D+∠CAD=180°,∠B=∠D,∠1=∠2,∴∠DAC=∠ACB,∴AD∥BC,∵∠1=∠2,∴AB∥CD,∴四边形ABCD是平行四边形.【点评】本题考查了平行线的判定和平行四边形的判定的应用,主要考查学生的推理能力.19.(6分)如图,已知在△ABC中,CD⊥AB于点D,AC=20,BC=15,DB=9,(1)求DC的长.(2)求证:△ABC是直角三角形.【分析】(1)直接根据勾股定理求出CD的长;(2)根据勾股定理的逆定理即可得出结论.【解答】解:(1)∵CD⊥AB∴∠CDB=∠CDA=90°,在Rt△CDB中,∵BC=15,DB=9,∴根据勾股定理,得CD==12,(2)证明:在Rt△CDA中,CD2+AD2=AC2∴122+AD2=202∴AD=16,∴AB=AD+BD=16+9=25∴AC2+BC2=202+152=625=AB2,∴△ABC是直角三角形.【点评】本题考查了勾股定理,勾股定理逆定理,求出AB是解本题的关键.20.(8分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销量y(件)之间的关系如下表:若日销量y是销售价x的一次函数.(1)求出日销量y(件)与销售价x(元)的函数关系式;(2)求销售定价为30元时,每日的销售利润.【分析】(1)已知日销售量y是销售价x的一次函数,可设函数关系式为y=kx+b (k,b为常数,且k≠0),代入两组对应值求k、b,确定函数关系式.(2)把x=30代入函数式求y,根据:(售价﹣进价)×销售量=利润,求解.【解答】解:(1)设此一次函数解析式为y=kx+b(k,b为常数,且k≠0).则.解得,即一次函数解析式为y=﹣x+40.(2)当x=30时,每日的销售量为y=﹣30+40=10(件)每日所获销售利润为(30﹣10)×10=200(元)【点评】本题主要考查用待定系数法求一次函数关系式,解题的关键是理解题意,学会构建一次函数解决实际问题.21.(8分)“节约用水,从我做起”,市政府决定对市直机关500户家庭的用水情况做一次调查,调查小组随机抽查了其中100户家庭某个月的平均用水量(单位:顿)并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完成(2)求这100个样本数据的平均数.【分析】(1)求出月平均用水11吨的用户数,即可解决问题;(2)根据平均数的定义计算即可;【解答】解:(1)由题意平均用水11吨的用户有:100﹣20﹣10﹣20﹣10=40(户),所以条形图如图所示:(2)这100个样本数据的平均数==11.6(吨)【点评】本题考查条形统计图、加权平均数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(8分)如图,将矩形ABCD沿AE折叠,使得点B恰好落在对角线AC上的点F处,若AB=6cm,BC=8cm,求EC的长.【分析】在Rt△ABC中由勾股定理可求得AC=10,设BE=x,则EC=8﹣x.由翻折的性质可知BE=EF=x,AF=AB=6,于是可求得FC=4,最后在Rt△EFC中,由勾股定理列方程求解即可.【解答】解;在Rt△ABC中由勾股定理得:AC==10.设BE=x,则EC=8﹣x.由翻折的性质可知:∠B=∠EFA=90°,BE=EF=x,AF=AB=6.FC=AC﹣AF=4.在Rt△EFC中,由勾股定理得:EC2=EF2+FC2,即(8﹣x)2=x2+42.解得:x=3,即BE=3.∴EC=8﹣3=5.【点评】本题主要考查的是翻折的性质、勾股定理的应用,依据勾股定理列出关于x的方程是解题的关键.23.(10分)如图,在四边形OABC中,OA∥BC,∠OAB=90°,O为原点,点C 的坐标为(2,8),点B的坐标为(24,8),点D从点B出发,以每秒1个单位长度的速度沿BC向点C运动,点E同时从点O出发,以每秒3个单位长度的速度沿OA向A运动,当点E达到点A时,点D也停止运动,从运动开始,设D(E)点运动的时间为t秒.(1)连接AD,记△ADE得面积为S,求S与t的函数关系式,写出t的取值范围;(2)当t为何值时,四边形ABDE是矩形;(3)在(2)的条件下,当四边形ABDE是矩形,在x轴上找一点P,使得△ADP 为等腰三角形,直接写出所有满足要求的P点的坐标.【分析】(1)根据三角形面积公式计算即可;(2)当BD=AE时,四边形ABDE是矩形,由此构建方程即可解决问题;(3)分三种情形:①当AD=AP时,②当DA=DP时,③当PD=PA时,分别求解即可;【解答】解:(1)如图1中,S=×(24﹣3t)×8=﹣12t+96(0≤t≤8).(2)∵OA∥BD,∴当BD=AE时,四边形BDEA是平行四边形,∵∠OAB=90°,∴四边形ABDE是矩形,∴t=24﹣3t,t=6s,∴当t=6s时,四边形ABDE是矩形.(3)分三种情形讨论:由(2)可知D(18,8),A(24,0),∴AD==10,①当AD=AP时,可得P1(14,0),P2(34,0),②当DA=DP时,可得P3(12,0),③当PD=PA时,设PD=PA=x,在Rt△DP4E中,x2=82+(x﹣6)2,解得x=,∴P4(,0),综上所述,满足条件的点P坐标为(14,0)或(34,0)或(12,0)或(,0);【点评】本题考查四边形的综合题、矩形的判定和性质、等腰三角形的判定和性质、勾股定理等知识,解题的关键是学会用转化的思想思考问题,学会用分类讨论的思想解决问题,属于中考压轴题.。
山西省太原市2023-2024学年八年级下学期期末数学试题(含答案)
2023~2024学年第二学期八年级期末学业诊断数学注意事项:1.本试卷全卷共6页,满分100分,考试时间上午8:00—9:30.2.答卷前,学生务必将自己的姓名、考试编号填写在本试卷相应的位置.3.答案全部在答题卡上完成,答在本试卷上无效.一、选择题(本大题共10个小题.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑.)1.通过手机银行,用户可以随时随地进行各种银行业务操作.下面是某手机银行服务项目的图标,其文字上方的图案是中心对称图形的是()A .B .C .D .2.若分式a a +2有意义,则a 的取值范围是()A .a =2B .a ≠0C .a ≠-2D .a =-23.在四边形ABCD 中,AD =BC ,添加下列条件后仍不能判定四边形ABCD 为平行四边形的是()A .AB =CD B .C .D .∠A +∠B =180°4.下列从左边到右边的变形中,属于因式分解的是()A .2a ³b ²=a ²b ⋅2abB .a 2+a =a 2(1+1a )C .a ²―2a +1=(a ―1)²D .a²-4+a=(a+2)(a-2)+a 5.要将5xy 20x 2y 化成最简分式,应将分式的分子分母同时约去它们的公因式,这个公因式为()A .xB .5xC .xyD .5xy6.如图,将△ABC 沿射线BA 平移6个单位长度得到△DEF ,点A ,B ,C 分别平移到了点D ,E ,F ,当点E 落在线段AB 上时,连接CF .若CF =2AE ,则线段AB 的长度为()(第6题图)A .8B .9C .10D .127.在Rt △ABC 中,∠C =90°,AD 平分∠CAB 交BC 于点D .若BC =8,BD =5,则点D 到AB的距离为()AB CD ∥AD BC∥(第7题图)A.3B.4C.5D.68.如图,▱ABCD的对角线AC与BD相交于点O.若BC=5,∠ABC=45°,∠ACB=90°,则BD的长度为()(第8题图)A.55B.10C.53D.529.如图,在Rt△ABC中,∠BAC=90°,点D,E分别是AB,AC的中点,∠ABC的平分线交DE于点F,∠ACB的平分线交DE于点G.若AB=8,AC=6,则线段GF的长度为()(第9题图)A.1B.32C.2D.5210.实验室的一个容器内盛有150克食盐水,其中含盐10克.如何处理能将该容器内食盐水含盐的百分比提高到原来的3倍.晓华根据这一情景中的数量关系列出方程3×10150=10150―x,则未知数x表示的意义是()(第10题图)A.增加的水量B.蒸发掉的水量C.加入的食盐量D.减少的食盐量二、填空题(本大题共5个小题.把答案写在答题卡相应位置.)11.不等式-3x>6的解集为______.12.已知点A(-1.b)与B(a,2)点关于原点对称,则a+b=______.13.“交木如井.画以藻文”.中国古代的匠人们极尽精巧之能事,营造出穹顶上的绝美艺术——藻井.如图,是一副“藻井”的图案、其外轮廓为正八边形.这个正八边形的每个内角的度数为______°.(第13题图)14.如图.一次函数y =ax +b (a ,b 为常数.a ≠0)的图象分别与x 轴,y 轴交于点A (―5,0),B (0,3),则关于x 的不等式αx +b ≥0的解集为______.(第14题图)15.已知.在Rt △ABC 中,∠BAC =90°,AB =4,AC =2,将Rt △ABC 绕点C 逆时针旋转,点A ,B 的对应点分别为点A ',B '.当点A '落在∠BAC 的角平分线上时,连接BB ′与∠BAC 的角平分线相交于点P ,则点P 到AB 的距离为______.(第15题图)三、解答题(本大题共8个小题.解答应写出必要的文字说明、演算步骤或推理过程.)16.分解因式:(1)a ³―4a ²b +4ab ²;(2)x ²(x ―y )+y ²(y ―x ).17.解不等式组:{2x ―1>5.①3x +12―1≥x .②并将其解集表示在如图所示的数轴上.18.先化简,再求值:(1―x +1x ―3)÷x 2―9x 2―6x +9,其中x =-1,19.下面是小亮同学解方程12―x =3―x ―1x ―2的过程,请阅读并完成相应任务.任务:(1)小亮同学的求解过程从第______步开始出现错误,错误的原因是______;(2)请你改正并写出完整的解方程过程;(3)解分式方程产生增根的原因是______.20.如图,在▱ABCD中,AE平分∠BAD交对角线BD于点E,CF平分∠BCD交对角线BD 于点F、∠BCD连接AF,CE.求证:AF=CE.21.习总书记指出,中华优秀传统文化是中华民族的“根”和“魂”、为了大力弘扬中华优秀传统文化,某校计划组织600名师生前往山西老陈醋的发源地——清徐研学.现准备租用A,B两种型号的客车若干辆,为安全起见,每名师生都需有座且每一辆客车都不得超载.已知每辆A型客车比每辆B型客车的乘客座位数多25%,若每辆客车均坐满,则单独租用A型客车的数量比单独租用B型客车的数量少3辆.(1)求每辆A型客车和每辆B型客车的乘客座位数;(2)由于实际参加研学活动的人数比原计划增加了35人、学校决定同时租用A、B两种型号的客车共14辆,为确保所有参加活动的师生都有座位(可以坐不满),求最多租用B型客车多少辆?22.阅读下列材料,完成相应任务.等周线问题:一个平面图形的周长能被一条直线平分吗?答案是肯定的.由于一个平面图形的周长是可以度量的,那就一定能度量其一半.过这一半的两个端点就能作出这条直线.定义:一条直线平分一个平面图形的周长,我们称这条直线为这个平面图形的等周线.例如,如图1,已知一个圆,点O是它的圆心,过圆心的每一条直线都是它的等周线.操作实验:如图2,在▱ABCD中,小雨发现用无刻度的直尺就能画出任意平行四边形的一条等周线.深入探究:小雨继续思考,能否通过尺规作图,求作任意三角形的一条等周线呢?情形1:当等周线经过三角形的一个顶点时:已知:如图3,△ABC.求作:直线m,使直线m经过点A且平分△ABC的周长.小雨的想法是:以点B为圆心,以BA的长为半径作弧,交直线BC于点D(点D在点B的左侧).通过“截长补短”,将平分周长的问题转化为平分线段的问题.情形2:当等周线不经过三角形的顶点时:利用小雨的思路同样可以作出此时三角形的等周线;发现结论:通过操作实验我们可以发现一个平面图形有无数条等周线.任务:(1)在图2中,请你用无刻度的直尺画出▱ABCD的一条等周线(保留作图痕迹,不写画法,指出所求);(2)如图3是小雨用尺规所作的不完整的图形,请你将小雨的图形补全.(保留作图痕迹,不写作法,指出所求);(3)结论应用:如图4,在△ABC中,∠B=45°,∠C=15°,AC=2,点Q为BC的中点,直线PQ是△ABC 的等周线,请你直接写出线段PQ的长度.23.综合与实践问题情境:“综合与实践”课上,老师提出如下问题:如图1,在‖□ABCD中,∠ADC=90°,点O是边AD的中点,连接AC.保持‖□ABCD不动,将△ADC从图1的位置开始,绕点0顺时针旋转得到△EFG,,点A,D,C的对应点分别为点E,F,G.当线段AB与线段FG相交于点M(点M不与点A,B,F,G重合)时,连接OM.老师要求各个小组结合所学的图形变换的知识展开数学探究.初步思考:(1)如图2,连接FD,“勤学”小组在旋转的过程中发现FD‖OM,请你证明这一结论;操作探究:(2)如图3,连接BG,“善思”小组在旋转的过程中发现OM垂直平分BG,请你证明这一结论;拓展延伸:(3)已知AD=22,CD=2,,在旋转的过程中,当以点F,C,D为顶点的三角形是等腰三角形时,请直接写出此时线段AM的长度.2023~2024学年第二学期八年级期末学业诊断数学试题参考答案及等级评定建议一、选择题(本大题共10道小题,每小题3分,共30分)题号12345678910选项D C B C D B A A C B二、填空题(本大题共5道小题,每小题3分,共15分)11.12.13.13514.15.3三、解答题(本大题共8道小题,满分55分)16.(每小题4分,共8分)解:(1)原式.(2)原式.17.(本题4分)解:解不等式①,得.解不等式②,得.不等式组的解集为.将不等式组的解集表示在数轴上如下:18.(本题5分)解:原式.当时,原式.19.(本题7分)(1)一;方程两边同乘以最简公分母时,漏乘了不含分母的项“3”.(2)原方程可化为.方程两边都乘以去分母,得.2x <-1-5x ≥-()()222442a a ab b a a b =-+=-()()()()()()22222x x y y x y x y x y x y x y =---=--=-+3x >1x ≥∴3x >()()()23313333x x x x x x x --+⎛⎫=-⋅ ⎪--+-⎝⎭434333x x x x --=⋅=--++1x =-4213=-=--+11322x x x -=+--()2x -()1321x x =-+-整理,得.解,得.检验:当时,,所以是原分式方程的增根,所以原方程无解.(3)去分母时,在分式方程两边同乘最简公分母,将其转化为整式方程,若该整式方程的解恰好使最简公分母为零,就产生增根.20.(本题5分)证明:四边形是平行四边形,,,..平分,平分,,...,..四边形为平行四边形..21.(本题9分)解:(1)设每辆型客车乘客座位数为个,则每辆型客车乘客座位数为个.根据题意,得.解,得.经检验,是原方程的根,且符合题意..答:每辆型客车的乘客座位数为50个,每辆型客车的乘客座位数为40个.(2)设租用型客车辆,则租用型客车辆.根据题意,得.解这个不等式,得.因为为整数,且取最大值,所以.答:最多租用型客车数量6辆.22.(本题7分)(1)结论:直线即为的一条等周线.(2)152x =-2x =2x =20x -=2x = ABCD AD BC ∴=BAD DCB ∠=∠AD BC ∥ADE CBF ∴∠=∠AE BAD ∠CF DCB ∠12DAE BAD ∴∠=∠12BCF DCB ∠=∠DAE BCF ∴∠=∠DAE BCF ∴≌△△AE CF ∴=AED CFB ∠=∠AE CF ∴∥∴AECF AF CE ∴=B x A ()125%x +()6006003125%x x-=+40x =40x =()125% 1.254050x ∴+=⨯=A B B a A ()14a -()40501460035a a +-≥+6.5a ≤a a 6a =B a ABCD结论:直线即为的一条等周线.(323.(本题10分)(1)证明:如图,将绕点顺时针旋转得到,,,.,.点是边的中点,..四边形是平行四边形,..又,..在Rt 与Rt 中,..是的一个外角,....(2)证明:如图,延长交于点.由(1)得,,,.将绕点顺时针旋转得到,.四边形是平行四边形,...即.,,.垂直平分.m ABC △ ADC △O EFG △ADC EFG ∴∠=∠OD OF =12∴∠=∠90ADC =︒∠ 90EFG ∴∠=︒ O AD OA OD ∴=OA OF ∴= ABCD AB CD ∴∥180BAD ADC ∴∠+∠=︒90ADC ∠=︒1809090BAD ︒∴-︒∠==︒90BAD EFG ∴∠=∠=︒ OAM △OFM △,,OM OM OA OF =⎧⎨=⎩Rt Rt OAM OFM ∴≌△△34∴∠=∠AOF ∠ OFD △3412AOF ∴∠=∠+∠=∠+∠2321∴∠=∠31∴∠=∠FD OM ∴∥OM BG N Rt Rt OAM OFM ≌△△AM FM ∴=12∠=∠ ADC △O EFG △CD GF ∴= ABCD AB CD ∴=AB GF ∴=AB AM GF MF ∴-=-BM GM =13∠=∠ 24∠=∠34∴∠=∠OM ∴BG(3)或.【说明】以上各题的其他解法,请参照此标准评分.1AM =2。
八年级下期末考试数学试卷四套试卷(含答案)
017-2018学年下学期期末考试八年级数学试题说明:1.考试用时100分钟,满分为120分;2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卷上填写自己的姓名、考试号、座位号等;3.考生必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效;4.考生务必保持答题卷的整洁.考试结束时,将答题卷交回.一、选择题(本大题10小题,每小题3分,共30分;在每小题列出的四个选项中,只有一个是正确的,请将正确答案填写在答题卷相应的位置上).1.有意义,则x 的取值范围是( ). A .3x ≥B .3x >C .3x ≤D .3x <2.下列各式中属于最简二次根式的是( ).A B .12D .5.0 3.一次数学测验中,某小组五位同学的成绩分别是:110,105,90,95,90.则这五个数据的中位数是( ).A .90B .95C .100D .1054.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( ). A .甲B .乙C .丙D .丁5.下列各组数中,不能构成直角三角形的是( ).A .3,4,5B .6,8,10C .4,5,6D .5,12,13 6.点A (1,-2)在正比例函数(0)y kx k =≠的图象上,则k 的值是( ). A .1B .-2C .12D .12-7.一次函数y =3x -2的图象不经过( ).A .第一象限B .第二象限C .第三象限D .第四象限8.如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点, 若BC =6,则DE 等于( ). A .3 B .4 C .5 D .69.如图,□ABCD 中,下列说法一定正确的是( ). A .AC =BD B .AC ⊥BD C .AB =CD D .AB =BC10.如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( ). A .210cmB .220cmC .240cmD .280cm第9题图 第10题图二、填空题(本大题6小题,每小题4分,共24分;请将下列各题的正确答案填写在答题卷相应的位置上).11.在新年晚会的投飞镖游戏环节中,7名同学的投掷成绩(单位:环)分别是:7,9,9,4,9,8,8,则这组数据的众数是.12.若x 、y 为实数,且满足,则x +y 的值是.13.在直角三角形中,两条直角边分别是3cm 和4cm ,则斜边上的中线长是cm . 14.一次函数y =(m -3)x +5的函数值y 随着x 的增大而减小,则m 的取值范围. 15.一次函数y =kx +3的图象如图所示,则方程kx +3=0的解为.16.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2(如图(2));以此下去···,则正方形A 4B 4C 4D 4的面积为__________.三、解答题(一)(本大题3小题,每小题6分,共18分). 17.01)-+.18.已知,如图在ΔABC 中,AB =BC =AC =2cm ,AD 是边BC 上的高.求AD 的长.第15题图第16题图(1)1B 1C 1D 1A BC D D 2A 2B 2C 2D 1C 1B 1A 1A BC D 第16题图(2)19.如图,□ABCD 中,E 、F 分别是AD 、BC 的中点,求证:BE =DF .四、解答题(二)(本大题3小题,每小题7分,共21分). 20.一次函数y =2x -4的图像与x 轴的交点为A ,与y 轴的交点为B . (1)A ,B 两点的坐标分别为A (,),B (,); (2)在平面直角坐标系中,画出此一次函数的图像.21.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙两个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙两个小组各项得分如下表:(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果研究报告、小组展示、答辩按照4:3:3计算成绩,哪个小组的成绩最高?22.如图,在海上观察所A ,我边防海警发现正北5km 的B 处有一可疑船只正在向东方向12km 的C 处行驶.我边防海警即刻派船前往C 处拦截.若可疑船只的行驶速度为60km/h ,则我边防海警船的速度为多少时,才能恰好在C 处将可疑船只截住?12km CAB 5km五、解答题(三)(本大题3小题,每小题9分,共27分). 23.观察下列各式:312311=+; 413412=+; 514513=+;…… 请你猜想:(1=,=;(2) 计算(请写出推导过程). (3)请你将猜想到的规律用含有自然数n (n ≥1)的代数式表达出来. .24.如图1,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F .(1)求证:BF =DF ;(2)如图2,过点D 作DG ∥BE ,交BC 于点G ,连结FG 交BD 于点O .①求证:四边形BFDG 是菱形; ②若AB =3,AD =4,求FG 的长.25.已知一次函数y =kx +b 的图象过P (1,4),Q (4,1)两点,且与x 轴交于A 点.(1)求此一次函数的解析式; (2)求△POQ 的面积;(3)已知点M 在x 轴上,若使MP +MQ 的值最小, 求点M 的坐标及MP +MQ 的最小值.参考答案1-10、ABBBC BBACA11、912、013、14、m<315、x=316、62517、18、19、证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,DE∥BF,∴四边形DEBF是平行四边形,∴BE=DF.20、解:(1)A(2,0)、B(0,-4).(2)作直线AB,直线AB就是此一次函数的图象.21、(1)乙组第一名、甲组第二名(2)甲组成绩最高22、23、24、(1)证明:如图1,根据折叠,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF;(2)①∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;②∵AB=3,AD=4,∴BD=5.25、解:(1)把P(1,4),Q(4,1)代入一次函数解析式,则此一次函数的解析式为y=-x+5;(2)对于一次函数y=-x+5,令y=0,得到x=5,∴A(5,0),(3)如图,作Q点关于x轴的对称点Q′,连接PQ′交x轴于点M,则MP+MQ的值最小.∵Q(4,1),∴Q′(4,-1).设直线PQ′的解析式为y=mx+n.2017-2018八年级(下)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确,请将你认为正确答案的序号填在题后的括号内)1.(3分)要使二次根式有意义,字母的取值范围是()A.x≥B.x≤C.x>D.x<2.(3分)下列计算正确的是()A.+=B.2+=2C.=+D.﹣=03.(3分)下列四组线段中,可以构成直角三角形的是()A.1,, B.2,3,4 C.1,2,3 D.4,5,64.(3分)一次函数y=﹣x+1的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)在中山市举行“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下:则在这次活动中,该班同学捐款金额的众数和中位数分别是()A.20元,30元B.20元,35元C.100元,35元D.100元,30元6.(3分)10名学生的平均成绩是x,如果另外5名学生每人得90分,那么整个组的平均成绩是()A.B.C. D.7.(3分)如图,在平行四边形ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF 等于()A.2 B.3 C.4 D.68.(3分)矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等D.对角线互相平分9.(3分)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB 的长为()A.B.2 C.D.210.(3分)直线y=﹣kx+k﹣3与直线y=kx在同一坐标系中的大致图象可能是()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分,请将答案直接填写在题中的横线上)11.(3分)计算:=.12.(3分)某茶叶厂用甲,乙,丙三台包装机分装质量为200g的茶叶,从它们各自分装的茶叶中分别随机抽取了20盒,得到它们的实际质量的方差如下表所示:根据表中数据,可以认为三台包装机中,包装茶叶的质量最稳定是.13.(3分)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是.14.(3分)一次函数y=(2m﹣1)x+1,若y随x的增大而增大,则m的取值范围是15.(3分)如图,已知一次函数y=kx+b的图象如图所示,当y≤0时,x的取值范围是.16.(3分)某公司招聘一名人员,应聘者小王参加面试和笔试,成绩(100分制)如表所示:如果面试平均成绩与笔试成绩按6:4的比确定,请计算出小王的最终成绩.17.(3分)如图,E为正方形ABCD对角线BD上一点,且BE=BC,则∠DCE=.18.(3分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC,AD=3,DF=1,四边形DBEC面积是三、解答题(3小题,共32分)19.(20分)计算:(1)+﹣(2)2(3)(+3﹣)(4)(2﹣3)2﹣(4+3)(4﹣3)20.(6分)如图,四边形ABCD中,AB=AD=2,BC=3,CD=1,∠A=90°,请问△BCD是直角三角形吗?请说明你的理由.21.(6分)已知:实数a,b在数轴上的位置如图所示,化简:+2﹣|a﹣b|.四、解答题(2小题,共16分)22.(8分)如图,已知直线l1:y=2x+3,直线l2:y=﹣x+5,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.(1)求A、B、C三点坐标;(2)求△ABC的面积.23.(8分)如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.(1)试判断四边形AEBO的形状,并说明你的理由;(2)求证:EO=DC.五、解答题(2小题,共18分)24.(9分)某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如表所示该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[毛利润=(售价﹣进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润25.(9分)四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE 于点H.(1)如图1,当点E、F在线段AD上时,求证:∠DAG=∠DCG;(2)如图1,猜想AG与BE的位置关系,并加以证明;(3)如图2,在(2)条件下,连接HO,试说明HO平分∠BHG.2017-2018学年广东省潮州市湘桥区八年级(下)期末数学试卷参考答案一、选择题1.B ;2.D ;3.A ;4.C ;5.A ;6.D ;7.C ;8.C ;9.C ;10.B ; 二、填空题 11.﹣; 12.乙; 13.18; 14.m >; 15.x ≤2;16.89.6分; 17.22.5°; 18.4;三、解答题(3小题,共32分)19.(1)4(2)35 (3)23 (4)49-20.21.;四、解答题(2小题,共16分) 22.23、五、解答题(2小题,共18分)24、25、2017-2018学年下学期期末考试八年级数学试卷一、选择题(本大题共12小题,每小题3分,共36分在每小题给出的A、B、C、D四个选项中,只有一项符合题目要求.)1.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)【专题】常规题型.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答.【解答】解:点M(1,2)关于y轴对称点的坐标为(-1,2).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2.如图所示是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项错误.故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.关于函数y=﹣x+3,下列结论正确的是()A.它的图象必经过点(1,1)B.它的图象经过第一、二、三象限C.它的图象与y轴的交点坐标为(0,3)D.y随x的增大而增大【专题】函数及其图象.【分析】根据一次函数的性质对各选项进行逐一判断即可.【解答】解:A、∵当x=1时,y=2,∴图象不经过点(1,1),故本选项错误;B、∵k=-1<0,b=3>0,∴图象经过第一、二、四象限,故本选项错误C、∵当x=0时,y=3,∴图象与y轴的交点坐标为(0,3),故本选项正确;D、∵k=-1<0,∴y随x的增大而减小,故本选项错误;故选:C.【点评】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0),当k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降是解答此题的关键.4.如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3 C.4 D.5【分析】由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,故选:C.【点评】此题考查了平行四边形的性质与三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.5.如图所示的是一扇高为2m,宽为1.5m的长方形门框,光头强有一些薄木板要通过门框搬进屋内,在不能破坏门框,也不能锯短木板的情况下,能通过门框的木板最大的宽度为()A.1.5m B.2m C.2.5m D.3m【专题】计算题.【分析】利用勾股定理求出门框对角线的长度,由此即可得出结论.【解答】故选:C.【点评】本题考查了勾股定理的应用,利用勾股定理求出长方形门框对角线的长度是解题的关键.6.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.6【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用△ABD的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,解得DE=3.故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键.7.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5 B.4.2 C.5.8 D.7【分析】利用垂线段最短分析AP最小不能小于3;利用含30度角的直角三角形的性质得出AB=6,可知AP最大不能大于6.此题可解.【解答】解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.故选:D.【点评】本题主要考查了垂线段最短的性质和含30度角的直角三角形的理解和掌握,解答此题的关键是利用含30度角的直角三角形的性质得出AB=6.8.如图,四边形ABCD是长方形,AB=3,AD=4.已知A(﹣,﹣1),则点C的坐标是()A.(﹣3,)B.(,﹣3)C.(3,) D.(,3)【分析】由矩形的性质可知AB=CD=3,AD=BC=4,【解答】解:∵四边形ABCD是长方形,∴AB=CD=3,AD=BC=4,故选:D.【点评】本题主要考查了矩形的性质和坐标的平移,根据平移的性质解决问题是解答此题的关键.9.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.∠BAD=∠BCD,AB∥CDC.AD∥BC,AD=BC D.AB=CD,AO=CO【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,对每个选项进行筛选可得答案.【解答】解:A、根据对角线互相平分,可得四边形是平行四边形,故此选项可以证明四边形ABCD是平行四边形;B、根据AB∥CD可得:∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又由∠BAD=∠BCD可得:∠ABC=∠ADC,根据两组对角对应相等的四边形是平行四边形可以判定;C、根据一组对边平行且相等的四边形是平行四边形可以证明四边形ABCD是平行四边形;D、AB=CD,AO=CO不能证明四边形ABCD是平行四边形.故选:D.【点评】本题主要考查平行四边形的判定问题,熟练掌握平行四边形的性质,能够熟练判定一个四边形是否为平行四边形.10.如图,一艘巡逻船由A港沿北偏西60°方向航行5海里至B岛,然后再沿北偏东30°方向航行4海里至C岛,则A、C两港相距()A.4海里B.海里 C.3海里D.5海里【专题】计算题.【分析】连接AC,根据方向角的概念得到∠CBA=90°,根据勾股定理计算即可.【解答】解:连接AC,由题意得,∠CBA=90°,故选:B.【点评】本题考查的是勾股定理的应用和方向角,掌握勾股定理、正确标注方向角是解题的关键.11.如图,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买5千克这种苹果比分五次购买1千克这种苹果可节省()元.A.4 B.5 C.6 D.7【分析】观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式,再分别求出当x=1和x=5时,y值,用10×5-44即可求出一次购买5千克这种苹果比分五次购买1千克这种苹果节省的钱数.【解答】解:设y关于x的函数关系式为y=kx+b,当0≤x≤2时,将(0,0)、(2,20)代入y=kx+b中,∴y=8x+4(x≥2).当x=1时,y=10x=10;当x=5时,y=44.10×5-44=6(元).故选:C.【点评】本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式是解题的关键.12.已知:如图,在矩形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点F从点B 出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点F的运动时间为y秒,当y的值为()秒时,△ABF和△DCE全等.A.1 B.1或3 C.1或7 D.3或7【分析】分点F在BC上和点F在AD上两种情况进行讨论,根据题意得出BF=2t=2和AF=16-2t=2即可求得.【解答】解:当点F在BC上时,∵在△ABF与△DCE中,∴△ABF≌△DCE,由题意得:BF=2t=2,所以t=1,点F在AD上时,∵在△ABF与△DCE中,∴△ABF≌△DCE,由题意得:AF=16-2t=2,解得t=7.所以,当t的值为1或7秒时.△ABF和△DCE全等.故选:C.【点评】本题考查了全等三角形的判定,关键是根据三角形全等的判定方法有:ASA,SAS,AAS,SSS,HL解答.二、填空题(本大题共6小题,每小题3分,共18分13.将直线y=2x+4向下平移3个单位,则得到的新直线的解析式为.【专题】一次函数及其应用.【分析】根据函数的平移规律,可得答案.【解答】解:将直线y=2x+4向下平移3个单位,得y=2x+4-3,化简,得y=2x+1,故答案为:y=2x+1.【点评】本题考查了一次函数图象与几何变换,利用函数图象的平移规律:上加下减,左加右减是解题关键.14.在平面直角坐标系中,点A(x,y)在第三象限,则点B(x,﹣y)在第象限.【专题】平面直角坐标系.【分析】根据各象限内点的坐标特征,可得答案.【解答】解:由点A(x,y)在第三象限,得x<0,y<0,∴x<0,-y>0,点B(x,-y)在第二象限,故答案为:二.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).15.若三角形三边分别为6,8,10,那么它最长边上的中线长是.【专题】计算题.【分析】根据勾股定理的逆定理可得三角形是直角三角形,再根据直角三角形斜边上的中线等于斜边的一半即可求解.【解答】解:∵三角形三边分别为6,8,10,62+82=102∴该三角形为直角三角形.∵最长边即斜边为10,∴斜边上的中线长为:5.故答案为:5.【点评】此题主要考查学生对勾股定理的逆定理及直角三角形斜边上的中线的性质的理解及运用.16.如图,在▱ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.则▱ABCD的周长为,面积为.【分析】根据角平分线的定义和平行线的性质得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根据直角三角形的勾股定理得到BC=13.根据从而求得该平行四边形的周长;根据直角三角形的面积可以求得平行四边形BC边上的高.【解答】解:∵BE、CE分别平分∠ABC、∠BCD,∵AD∥BC,AB∥CD,∴∠2=∠3,∠BCE=∠CED,∠ABC+∠BCD=180°,∴∠1=∠2,∠DCE=∠CED,∠3+∠BCE=90°,∴AB=AE,CD=DE,∠BEC=90°,在直角三角形BCE中,根据勾股定理得:BC=13cm,根据平行四边形的对边相等,得到:AB=CD,AD=BC,∴平行四边形的周长等于:AB+BC+CD+AD=6.5+13+6.5+13=39cm.故答案为:39cm,60cm2.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.17.如图,直线AB的解析式为y=x+4,与y轴交于点A,与x轴交于点B,点P为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,则线段EF的最小值为.【专题】函数及其图象.【分析】由矩形的性质可知EF=OP,可知当OP最小时,则EF有最小值,由垂线段最短可知当OP ⊥AB时,满足条件,由条件可证明△AOB∽△OPB,利用相似三角形的性质可求得OP的长,即可求得EF的最小值.【解答】∴A(0,4),B(-3,0).∵PE⊥y轴于点E,PF⊥x轴于点F,∴四边形PEOF是矩形,且EF=OP,∵O为定点,P在线段上AB运动,∴当OP⊥AB时,OP取得最小值,此时EF最小,∵A(0,4),点B坐标为(-3,0),∴OA=4,O B=3,故答案为125【点评】本题考查的是一次函数图象上点的坐标特点,熟知坐标轴上点的坐标特点是解答此题的关键.18.如图,某小区有一块直角三角形绿地,量得直角边AC=4m,BC=3m,考虑到这块绿地周围还有足够多的空余部分,于是打算将这块绿地扩充成等腰三角形,且扩充部分是以AC为一条直角边的直角三角形,则扩充的方案共有种.【专题】分类讨论.【分析】由于扩充所得的等腰三角形腰和底不确定,若设扩充所得的三角形是△ABD,则应分为①AB=AD,②AB=BD,③AD=BD,3种情况进行讨论.【解答】解:如图所示:故答案是:3.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用,关键是正确进行分类讨论.三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)19.(7分)如图,点E、F在线段BD上,AF⊥BD,CE⊥BD,AD=CB,DE=BF,求证:AF=CE.【专题】常规题型.【分析】首先证明BE=DF,然后依据HL可证明Rt△ADF≌Rt△CBE,从而可得到AF=CE.【解答】证明:∵DE=BF,∴DE+EF=BF+EF,即DF=BE.∴Rt△ADF≌Rt△CBE.∴AF=CE.【点评】本题主要考查的是全等三角形的性质和判定,熟练掌握全等三角形的性质和判定定理是解题的关键.20.(8分)直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的表达式.(2)若直线AB上有一动点C,且S△BOC=2,求点C的坐标.【专题】常规题型.【分析】(1)根据待定系数法得出解析式即可;(2)设C点坐标,根据三角形面积公式解答即可.【解答】解:(1)设直线解析式为y=kx+b,∵直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).【点评】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.21.(8分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度,(1)请在所给的网格内画出以线段AB、BC为边的菱形,并写出点D的坐标.(2)线段BC的长为,菱形ABCD的面积等于【专题】作图题;网格型.【分析】(1)菱形要求四边相等,根据AB,BC的位置及长度可确定D点位置及坐标,如图所示;(2)在网格中,运用勾股定理求BC、对角线AC,BD的长度,再计算面积.【解答】(1)解:正确画出图(4分)D(-2,1)(5分)【点评】本题考查了菱形的性质,图形画法,菱形面积的求法及勾股定理的运用,需要形数结合,培养学生动手能力.22.(8分)为了庆祝即将到来的2018年国庆节,某校举行了书法比赛,赛后整理了参赛同学的成绩,并制作了如下两幅不完整的统计图表请根据以上图表提供的信息,解答下列问题:(1)这次共调查了名学生;表中的数m= ,n= .(2)请补全频数直方图;(3)若绘制扇形统计图,则分数段60≤x<70所对应的扇形的圆心角的度数是.【专题】统计的应用.【分析】(2)求出70~80的人数,画出直方图即可;(3)根据圆心角=360°×百分比即可解决问题;【解答】解:(1)30÷0.15=200,m=200×0.45=90,故答案为200,90,0.30.(2)频数直方图如图所示,故答案为54°【点评】本题考查了数据的分析,以及读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.(8分)某产品每件的成本为10元,在试销阶段每件产品的日销售价x(元)与产品的日销售量y(件)之间的关系如下表:(1)观察与猜想y与x的函数关系,并说明理由.(2)求日销售价定为30元时每日的销售利润.【专题】常规题型.【分析】(1)设y与x的函数关系式为y=kx+b,任取两对,利用待定系数法求函数解析式;(2)将x=30代入求得y的值,然后依据销售利润=每件的利润×销售件数即可.【解答】解:(1)设经过点(15,25)(20,20)的函数关系式为y=kx+b.∴y=-x+40.∴y与x的函数关系式是y=-x+40;(2)当x=30时,y=-30+40=10,每日的销售利润=(30-10)×10=200元.【点评】本题主要考查待定系数法求一次函数解析式,熟练掌握待定系数法求一次函数解析式的步骤和方法是解题的关键.24.(8分)如图,点B、C分别在直线y=2x和y=kx上,点A、D是x轴上的两点,且四边形ABCD是正方形.(1)若正方形ABCD的边长为2,则点B、C的坐标分别为.(2)若正方形ABCD的边长为a,求k的值.【专题】一次函数及其应用.【分析】(1)根据正方形的边长,运用正方形的性质表示出点B、C的坐标;(2)根据正方形的边长,运用正方形的性质表示出C点的坐标,再将C的坐标代入函数中,从而可求得k的值.【解答】解:(1)∵正方形边长为2,∴AB=2,在直线y=2x中,当y=2时,x=1,∴B(1,2),∵OA=1,OD=1+2=3,∴C(3,2)故答案为:(1,2),(3,2);【点评】本题主要考查正方形的性质与正比例函数的综合运用,灵活运用正方形的性质是解题的关键.25.(9分)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出证出△AEC是等边三角形,得出AC=CE,即可得出结论.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.【点评】本题考查了平行四边形的判定与性质、菱形的判定、三角形中位线定理、直角三角形斜边上的中线性质、等边三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形是等边三角形是解决问题的关键.26.(10分)如图1,在正方形ABCD中,点E是AB上一点,点F是AD延长线上一点,且DF=BE,连接CE、CF.(1)求证:CE=CF.(2)在图1中,若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)根据你所学的知识,运用(1)、(2)解答中积累的经验,完成下列各题,如图2,在四边形ABCD。
2023-2024学年广东省肇庆市八年级(下)期末数学试卷(含答案)
2023-2024学年广东省肇庆市八年级(下)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列图象中,不能表示y是x的函数的是( )A. B. C. D.2.在平行四边形ABCD中,如果∠A+∠C=160°,那么∠C等于( )A. 80°B. 60°C. 40°D. 20°3.下列各组数中,能作为直角三角形三边长的是( )A. 4,5,6B. 5,8,13C. 1,1,2D. 1,3,44.下列运算中正确的是( )A. (−3)2=−3B. 2+3=5C. 10÷5=2D. 13×6=25.满足k>0,b=3的一次函数y=kx+b的图象大致是( )A. B. C. D.6.在▱ABCD中,AC、BD是对角线,补充一个条件使得四边形ABCD为菱形,这个条件可以是( )A. AC=BDB. AB=ACC. AC⊥BDD. ∠ABC=90°7.已知点M(m,y1),N(−1,y2)在直线y=−x+1上,且y1>y2,则m的取值范围是( )A. m<−1B. m>−1C. m<1D. m>18.下表记录了甲、乙、丙、丁四名运动员选拔赛成绩的平均数−x与方差S2.根据表中数据,要从中选择一名成绩好,又发挥稳定的运动员参加比赛,应该选择( )甲乙丙丁平均数−x/cm561560561560方差S215.5 3.5 3.515.6A. 甲B. 乙C. 丙D. 丁9.房梁的一部分如图所示,其中BC⊥AC,∠B=60°,BC=2,点D是AB的中点,且DE⊥AC,垂足为E,则AE的长是( )A. 3B. 2C. 5D. 410.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论中正确结论的个数是( )①DE=EF;②四边形DFBE是菱形;③BM=3FM;④S△AOE:S△BCF=2:3.A. 1个B. 2个C. 3个D. 4个二、填空题:本题共5小题,每小题3分,共15分。
2022-2023学年度第二学期八年级数学期末考试试题附答案
八年级(下)期末试卷数学注意事项:本试卷共6页.全卷满分100分.考试时间为100分钟.考生答题全部答在答题卡上,答在本试卷上无效.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡相应位置上)1.化简4的结果是A.-2 B.2 C.-4 D.42.若分式xx-1有意义,则x的取值范围是A.x>0 B.x≠0 C.x>1 D.x≠1 3.在下列事件中,是必然事件的是A.3天内将下雨B.367人中至少有2人的生日相同C.买一张电影票,座位号是奇数号D.在某妇幼保健医院里,下一个出生的婴儿是女孩4.南京奥林匹克体育中心是亚洲A级体育馆、世界第五代体育建筑的代表.如图是体育馆俯视图的示意图.下列说法正确的是A.这个图形是轴对称图形,但不是中心对称图形B.这个图形是中心对称图形,但不是轴对称图形C .这个图形既是中心对称图形,也是轴对称图形D .这个图形既不是中心对称图形,也不是轴对称图形5.已知点P(x1,y1)、Q(x2,y2)在反比例函数y =-1x 的图像上,若y1<y2<0,则x1与x2的大小关系是 A .x1<x2B .x1>x2C .x1=x2D .无法确定6.如图,在四边形ABCD 中,AD//BC ,AD =6cm ,BC =12cm ,点P 从A 出发以1cm/s 的速度向D 运动,点Q 从C 出发以2cm/s 的速度向B 运动.两点同时出发,当点P 运动到点D 时,点Q 也随之停止运动.若设运动的时间为t 秒,以点A 、B 、C 、D 、P 、Q 任意四个点为顶点的四边形中同时存在两个平行四边形,则t 的值是 A .1B .2C .3D .4(第6题)(第4题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上) 7.化简:2aa2=▲.8.若式子x -2在实数范围内有意义,则x 的取值范围是▲.9.方程(x -1)-1=2的解是▲.10.某种油菜籽在相同条件下发芽试验的结果如下:这种油菜籽发芽的概率的估计值是▲.(结果精确到0.01) 11.比较大小:4-13▲12.(填“>”、“<”或“=”)12.如图,在△ABC 中,∠ACB =90°,AB =13cm ,BC =12cm ,点D 在边AB 上,AD =AC ,AE ⊥CD ,垂足为E ,点F 是BC 的中点,则EF =▲cm .13.如图,在△ABC 中,∠C =90°,△ABC 绕点A 按顺时针方向旋转26°得到△AED ,若AD//BC ,则∠BAE =(第13题)A BCD E(第14题) ABC D EF(第12题)14.如图,正比例函数y =k1x 与反比例函数y =k2x 的图像交于点A 、B ,若点A 的坐标为(1,2),则关于x 的不等式k1x >k2x 的解集是 ▲ .15.如图,在矩形纸片ABCD 中,AD =3,将矩形纸片折叠,边AD 、边点A 与点C 恰好落在同一点处, ▲ .16.如图,在△ABC 中,∠ACB =90°,AC =3,BC =4,将△ABC 绕点C 顺时针旋转90°得到△A'B'C ,若P 为边AB 上一动点,旋转后点P 的对应点为点P',则线段PP'长度的取值范围是 ▲ . 三、解答题(本大题共10小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(6分)计算:(第15题)(第16题)A C BB'A'(1)18×3÷2;(2)8+313-2+32.18.(5分)先化简,再求值:a2-1a2-2a +1÷a +1a -1-a -1a +1,其中a =-12.19.(8分)解方程:(1)9x =8x -1; (2)x -1x -2-3=1x -2.20.(6分)疫情期间,甲、乙两工厂每小时共做3500个KN95口罩,甲工厂做1600个KN95口罩所用的时间与乙工厂做1200个KN95口罩所用的时间相等.甲、乙两工厂每小时各做多少个KN95口罩?21.(6分)为了调查某校八年级360名学生的身高情况,随机抽取了20名男生与20名女生的身高数据,得到下列图表(图表中身高分组153cm~158cm 表示大于或等于153cm 而小于158cm ,其他类同):身高分组(cm ) 频数 153~158 1 158~163 2 163~168 6 168~173 7 173~178 3 178~183 1(1)写出本次调查的总体与样本;(2)根据调查结果,绘制抽取的40名学生的身高频数分布直方图; 身高/cm频数 014 12 10 8 6 4 2 163 183 153 178 158 173 168 153 cm~158 cm158 cm~163 cm168 cm~173 cm173 cm~178 cm 163 cm~168 cm八年级20名女生身高人数分布扇形统计图 八年级20名男生身高频数分布表(3)估计该校八年级学生身高在163cm~183cm范围内的学生人数.22.(5分)已知∠MAN,按要求完成下列尺规作图(不写作法,保留作图痕迹):(1)如图①,B、C分别在射线AM、AN上,求作□ABDC;(2)如图②,点O是∠MAN内一点,求作线段PQ,使P、Q(第22题图①)(第22题图②)23.(7分)在5×5的方格纸中,每个小正方形的边长为1,我们把三个顶点都是格点的三角形称为格点三角形.按要求完成下列问题:(1)在图①中,以AB为边画一个格点三角形,使其为等腰三角形;(2)在图②中,以AB为边画一个格点三角形,使其为钝角三角形且周长为6+32;(3)如图③,若以AB为边的格点三角形的面积为3,则这个三角形的周长为▲.24.(8分)如图,在菱形ABCD中,点O是对角线AC的中点,过点O的直线EF与边AD、BC交于点E、F,∠CAE=∠FEA,连接AF、CE.(1)求证:四边形AFCE是矩形;(2)若AB=5,AC=25,直接写出四边形AFCE的面积.EADO25.(8分)如图,点A 、B 是反比例函数y =8x的图像上的两个动点,过A 、B 分别作AC ⊥x 轴、BD ⊥x 轴,分别交反比例函数y =-2x 的图像于点C 、D ,四边形ACBD 是平行四边形.(1)若点A 的横坐标为-4.①直接写出线段AC 的长度; ②求出点B 的坐标;(2)当点A 、B 不断运动时,下列关于□ACBD 的结论:①□ACBD26.(9分)已知,四边形ABCD 是正方形,点E 是正方形ABCD 所在平面内一动点(不与点D 重合),AB =AE ,过点B 作DE 的垂线交DE 所在直线于F ,连接CF .提出问题:当点E 运动时,线段CF 与线段DE 之间的数量关系是否发生改变? 探究问题:(1)首先考察点E 的一个特殊位置:当点E 与点B 重合(如图①)时,点F 与点B 也重合.用等式表示线段CF 与线段DE 之间的数量关系: ▲ ;(第26题图①)C D AB (E 、F )(2)然后考察点E 的一般位置,分两种情况:情况1:当点E 是正方形ABCD 内部一点(如图②)时; 情况2:当点E 是正方形ABCD 外部一点(如图③)时.在情况1或情况2下,线段CF 与线段DE 之间的数量关系与(1)中的结论是否相同?如果都相同,请选择一种情况证明;如果只在一种情况下相同或在两种情况下都不相同,请说明理由;拓展问题:(3)连接AF ,用等式表示线段AF 、CF 、DF 三者之间的数量关系: ▲ .(第26题图②)FAC D EB(第26题图③)C D ABE F八年级(下)期末试卷 数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分. 一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每题2分,共20分) 7.2a8.x ≥29.x =1.510.0.9511.< 12.413.38 14.-1<x <0或x >115.6+2316.1225≤PP'≤42三、解答题(本大题共10小题,共68分)17.(6分) 解:(1)原式=54÷2…………………………………………………………………1分=27………………………………………………………………………2分=33.……………………………………………………………………3分 (2)原式=22+3-2+32……………………………………………………………5分=2+332.………………………………………………………………………6分18.(5分)解:原式=(a +1)(a -1)(a -1)2×a -1a +1-a -1a +1……………………………………………………2分 =1-a -1a +1=2a +1.…………………………………………………………………………3分当a=-12时,原式=2-12+1=4.………………………………………………………5分19.(8分)解:(1)方程两边同乘x(x-1),得9(x-1)=8x.………………………………………………………2分解这个整式方程,得x=9.………………………………………………………………3分检验:当x=9时,x(x-1)≠0,x=9是原方程的解.…………………………4分(2)方程两边同乘(x-2),得(x-1)-3(x-2)=1.………………………………………………6分解这个整式方程,得x=2.………………………………………………………………7分检验:当x=2时,x-2=0,x=2是增根,原方程无解.………………………8分20.(6分)解:设甲工厂每小时做x个KN95口罩.根据题意,得1600x=12003500-x,……………………………………………………………2分解这个方程,得x=2000.…………………………………………………………………4分经检验,x=2000是所列方程的解.当x=2000时,3500-x=1500.…………………………………………………………5分答:甲、乙两工厂每小时各做2000个、1500个KN95口罩.………………………6分21.(6分)解:(1)某校八年级360名学生的身高情况的全体是总体;抽取的20名男生与20名女生的身高情况是总体的一个样本;……………………………………………2分(2)如图所示:…………………………………………………………………………4分(3)(14+11+5+1)÷40×360=279(人)答:估计该校八年级学生身高在163cm~183cm范围内的学生人数约为279人.………………………………………………………………………………………6分22.(解四所(所求.………………………………………………………5分(第22题图①)(第22题图②)23.(7分)解:(1)如图①所示;(画出一个符合要求的三角形即可)……………………………2分(2)如图②所示;(画出一个符合要求的三角形即可)………………………………4分(3)32+10+2,42+25或32+34+2.……………………………………7分(第23题图①)AB(第23题图②)AB24.(8分)(1)证明∵四边形ABCD 是菱形, ∴AE//CF , ∴∠AEO =∠CFO , ∵点O 是AC 的中点, ∴OA =OC =12AC ,∵∠AOE =∠COF , ∴△AOE≌△COF .………………………………………………………………………3分∴OE =OF =12EF ,∵OA =OC , ∴四边形AFCE是平行四边形,…………………………………………………………4分∵∠OAE =∠AEO , ∴OA =OE , ∴AC =EF , ∴□AFCE是矩DAOE(第24题)形.………………………………………………………………………6分(2)8.……………………………………………………………………………………8分 25.(8分)解:(1)①AC的长度为2.5;……………………………………………………………2分②设点B 的横坐标为a . ∵BD ⊥x 轴, ∴xB =xD =a ,∵点B 、D 分别在反比例函数y =8x 、y =-2x 的图像上,∴yB =8a ,yD =-2a ,∴BD=10a,………………………………………………………………………………4分 ∵四边形ACBD 是平行四边形, ∴AC=BD=2.5,…………………………………………………………………………5分∴10a=2.5, 解这个方程,得a =4,经检验,a=4是原方程的解,∴点B的坐标为(4,2).…………………………………………………………………6分(2)②⑤.…………………………………………………………………………………8分26.(9分)解:(1)DE=2 CF;……………………………………………………………………3分(2)在情况1与情况2下都相同.……………………………………………………4分选择情况1证明:如图①,设BC与DF的交点为O,连接BE,过C作CG⊥CF 交DF于G.∵四边形ABCD是正方形,∴∠DAB=∠BCD=90°,AB=BC=CD=AD=AE,∵BF⊥DF,∴∠BFD=90°,∴∠CBF+∠BOF=∠CDF+∠COD=90°,∵∠BOF=∠COD,∴∠CBF=∠CDF,∵CG⊥CF,∴∠FCG=90°,FA CDEBG(第26题图①)O∴∠BCF +∠GCO =∠DCG +∠GCO =90°, ∴∠BCF =∠DCG , ∴△BCF≌△DCG ,……………………………………….………………………………5分∴BF =DG ,CF =CG , ∵AB =AD =AE ,∴∠AED =∠ADE =90°-12∠DAE ,∠AEB =∠ABE =90°-12∠BAE=45°+12∠DAE ,∴∠BEF =180°-∠AED -∠AEB =45°, ∴∠BEF =∠EBF =45°, ∴BF=EF ,……………………………………………….………………………………6分∴EF =DG ,∴DE =DG +EG =EF +EG =FG , ∵∠FCG =90°,CF =CG , ∴FG =2CF ,∴DE=2CF .…………………………………………….………………………………7分选择情况2证明:如图②,设BF 与CD 的交点为O ,连接BE ,过C 作CG ⊥CF交DF 延长线于G .∵四边形ABCD 是正方形,∴∠DAB =∠BCD =90°,AB =BC =CD =AD =AE , ∵BF ⊥DF , ∴∠BFD =90°,∴∠CBF +∠BOC =∠CDF +∠DOF =90°, ∵∠BOC =∠DOF , ∴∠CBF =∠CDF , ∵CG ⊥CF , ∴∠FCG =90°,∴∠BCO +∠DCF =∠FCG +∠DCF , ∴∠BCF =∠DCG , ∴△BCF≌△DCG ,……………………………………….………………………………5分∴BF =DG ,CF =CG , ∵AB =AD =AE ,∴∠AED =∠ADE =90°-12∠DAE ,∠AEB =∠ABE =90°-12∠BAE=45°-12∠DAE ,∴∠BEF =∠AED -∠AEB =45°, ∴∠BEF =∠EBF =45°,O G(第26题图②)CDABEF∴BF=EF,……………………………………………….………………………………6分∴EF=DG,∴DE=EF-DF=DG-DF=FG,∵∠FCG=90°,CF=CG,∴FG=2CF,∴DE=2 CF.…………………………………………….………………………………7分(3)AF+CF=2DF或|AF-CF|=2 DF.………….…………………………………9分。
2016-2017学年八年级下期末数学试题含答案
2016-2017学年八年级下期末数学试题含答案2016~2017学年度第二学期期末练习初二数学考生须知1. 本试卷共6页,共三道大题,26道小题。
满分100分。
考试时间90分钟。
2. 在试卷和答题卡上认真填写学校名称、姓名和考号。
3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个.1.在平面直角坐标系xOy中,点P(2,-3)关于原点O对称的点的坐标是A.(2,3)B.(-2,3)C.(-2,-3)D.(2,-3)2.如果一个多边形的每个内角都是120°,那么这个多边形是A.五边形B.六边形C.七边形D.八边形3.下面四个图案依次是我国汉字中的“福禄寿喜”的艺术字图.这四个图案中是.中心对称图形的是①②③④A.①② B.②③C.②④ D.②③④4.方程()xxx=-1的解是A.x = 0 B.x = 2 C.x1= 0,x2= 1 D.x1= 0,x2= 2 5.数学兴趣小组的甲、乙、丙、丁四位同学进行还原魔方练习,下表记录了他们10次还原魔方所用时间的平均值x与方差2S:甲乙丙丁x(秒)30 30 28 282S 1.21 1.05 1.211.05 要从中选择一名还原魔方用时少又发挥稳定的同学参加比赛,应该选择 A .甲 B .乙C .丙D .丁6.矩形ABCD 中,对角线AC ,BD 相交于点O ,如果∠ABO =70°,那么∠AOB的度数是A .40°B .55°C .60°D .70° 7.用配方法解方程2210x x --=,原方程应变形为 A .2(1)2x -= B .2(1)2x +=C .2(1)1x -=D .2(1)1x +=8.德国心理学家艾宾浩斯(H.Ebbinghaus )研究发现,遗忘在学习之后立即开始,遗忘是有规律的.他用无意义音节作记忆材料,用节省法计算保持和遗忘的数量.通过测试,他得到了一些数据,根据这些数据绘制出一条曲线,即著名的艾宾浩斯记忆遗忘曲线,如图.该曲线对人类记忆认知研究产生了重大影响.小梅观察曲线,得出以下四个结论: ①记忆保持量是时间的函数②遗忘的进程是不均匀的,最初遗忘速度快,以后逐渐减慢 ③学习后1小时,记忆保持量大约为40%④遗忘曲线揭示出的规律提示我们学习后要及时复习 其中错误的结论是 A .①B .②C .③D .④ 9.关于x 的一元二次方程2210kx x -+=有两个实数根,那么实数k 的取值范围是A .1k ≤B .1k <且0k ≠C .1k ≤且0k ≠D .1k ≥10.如图1所示,四边形ABCD 为正方形,对角线AC ,BD 相交于点O ,动点P 在正方形的边和对角线上匀速运动. 如果点P 运动的时间为x ,点P 与点A 的距离为y ,且表示 y 与x 的函数关系的图象大致如图2所示,那么点P 的运动路线可能为图1 图2A .A →B →C →A B .A →B →C →D C .A →D →O →A D .A →O →B →C 二、填空题(本题共18分,每小题3分) 11.函数12y x =-中,自变量x 的取值范围是 . 12.在△ABC 中,D ,E 分别是边AB ,AC 的中点,如果DE =10,那么BC = .13.“四个一”活动自2014年9月启动至今,北京市已有60万中小学生参观了天安门广场的升旗仪式.下图是利用平面直角坐标系画出的天安门广场周围的景点分布示意图. 如果这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,表示故宫的点的坐标为(0,1),表示中国国家博物馆的点的坐标为(1,-1),那么表示人民大会堂的点的坐标是 .14.在四边形ABCD 中,对角线AC ,BD 相交于点O .如果AB ∥CD ,请你添加一个条件,使得四边形ABCD 成为平行四边形,这个条件可以 是 .(写出一种情况即可) 15.在平面直角坐标系xOy 中,一次函数y kx =和3y x =-+的图象如图所示,则关于x 的一元一次不等式3kx x <-+的解集美术馆景山电报大楼故宫王府井天安门中国国家博物馆前门人民大会堂北y =kxy3214O BC D A已知:∠AOB .求作:射线OE ,使OE 平分∠AOB . 作法:如图,(1)在射线OB 上任取一点C ;(2)以点O 为圆心,OC 长为半径作弧,交射线OA 于点D ;(3)分别以点C ,D 为圆心,OC 长为半径作弧,两弧相交于点E ; (4)作射线OE .所以射线OE 就是所求作的射线.是 .16.下面是“作已知角的平分线”的尺规作图过程.请回答:该作图的依据是 .三、解答题(本题共52分,第17题4分,第18-24题每小题5分,第25题6分,第26题7分) 17.解方程:2430x x -+=.18.在平面直角坐标系xOy 中,已知一次函数112y x =-+的图象与x 轴交于点A ,OBAEDC ABO与y 轴交于点B . (1)求A ,B 两点的坐标;(2)在给定的坐标系中画出该函数的图象;(3)点M (-1,y 1),N (3,y 2)在该函数的图象上,比较y 1与y 2的大小.19.已知:如图,E ,F 为□ABCD 的对角线BD 上的两点,且BE =DF . 求证:AE ∥CF .20.阅读下列材料:为引导学生广泛阅读古今文学名著,某校开展了读书月活动. 学生会随机调查了部分学生平均每周阅读时间的情况,整理并绘制了如下的统计图表:学生平均每周阅读时间频数分布表FEABCD yOx312123321321平均每周阅读 时间x (时)频数 频率 02x ≤<10 0.025 学生平均每周阅读时间频数分布直方图请根据以上信息,解答下列问题:(1)在频数分布表中,a = ______,b = _______; (2)补全频数分布直方图;(3)如果该校有1 600名学生,请你估计该校平均每周阅读时间不少于6小时的学生大约有 人.21.“在线教育”指的是通过应用信息科技和互联网技术进行内容传播和快速学习的方法.“互联网+”时代,中国的在线教育得到迅猛发展. 请根据下面张老师与记者的对话内容,求2014年到2016年中国在线教育市场产值的年平均增长率.86420频数12080402010060时间/时101222.如图,在四边形ABCD 中,AB AD =,CB CD =,我们把这种两组邻边分别相等的四边形叫做筝形.根据学习平行四边形性质的经验,小文对筝形的性质进行了探究. (1)小文根据筝形的定义得到筝形边的性质是______________________; (2)小文通过观察、实验、猜想、证明得到筝形角的性质是“筝形有一组对角相等”.请你帮他将证明过程补充完整.已知:如图,在筝形ABCD 中,AB AD =,CB CD =.求证:_____________. 证明:BADC在线教育打破了时空限制,可碎片化学习,可以说具有效率高、方便、低门槛、教学资源丰富的特点.那么这两年中国在线教育市场产值如何呢?根据中国产业信息网数据统计及分析,2014年中国在线教育市场产值约为1 000亿元,2016年中国在线教育市场产值约为1 440亿元.(3)小文连接筝形的两条对角线,探究得到筝形对角线的性质是__________________________.(写出一条即可)23.已知关于x 的一元二次方程21102x mx m ++-=.(1)求证:此方程有两个不相等的实数根; (2)选择一个m 的值,并求出此时方程的根.24.小明租用共享单车从家出发,匀速骑行到相距2 400米的邮局办事. 小明出发的同时,他的爸爸以每分钟96米的速度从邮局沿同一条道路步行回家,小明在邮局停留了2分钟后沿原路按原速返回. 设他们出发后经过t (分)时,小明与家之间的距离为s 1(米),小明爸爸与家之间的距离为s 2(米),图中折线OABD ,线段EF 分别表示s 1,s 2与t 之间的函数关系的图象. (1)求s 2与t 之间的函数表达式;E 2400OFD CBt /分10A s /米(2)小明从家出发,经过多长时间在返回途中追上爸爸?25.已知:如图,正方形ABCD中,点F是对角线BD上的一个动点.(1)如图1,连接AF,CF,直接写出AF与CF的数量关系;(2)如图2,点E为AD边的中点,当点F运动到线段EC上时,连接AF,BE相交于点O.①请你根据题意在图2中补全图形;②猜想AF与BE的位置关系,并写出证明此猜想的思路;③如果正方形的边长为2,直接写出AO的长.A D FBCC DABE图1 图2 26.在平面直角坐标系xOy 中,如果点A ,点C 为某个菱形的一组对角的顶点,且点A ,C 在直线y = x 上,那么称该菱形为点A ,C 的“极好菱形”. 下图为点A ,C 的“极好菱形”的一个示意图.已知点M 的坐标为(1,1),点P 的坐标为(3,3).(1)点E (2,1),F (1,3),G (4,0)中,能够成为点M ,P 的“极好菱形”的顶点的是 ;(2)如果四边形MNPQ 是点M ,P 的“极好菱形”.①当点N 的坐标为(3,1)时,求四边形MNPQ 的面积;②当四边形MNPQ 的面积为8,且与直线y = x + b 有公共点时,写出b 的取值范围.y=xDCBA4444123123321213xO y丰台区2016—2017学年度第二学期期末练习初二数学参考答案选择题(本题共30分,每小题3分) 题号1 2 3 4 5 6 7 8 9 10 答案B BCD D A A C C A二、填空题(本题共18分,每小题3分)11.2x ≠; 12.20; 13.()11--,; 14. AB=CD 或AD ∥BC 等,答案不唯一; 15.1x <; 16.四条边都相等的四边形是菱形,菱形的每一条对角线平分一组对角,两点确定一条直线.三、解答题(本题共52分,第17题4分,第18-24题每小题5分,第25题6分,第26题7分)17. 解:(1)(3)0x x --=, ……2分∴121, 3.x x == ……4分其他解法相应给分.18.解:(1)令0y =,则2x =;令0x =,则1y =.∴点A 的坐标为(2,0),……1分点B 的坐标为(0,1). ……2分(2)如图:y =12x +1y O x31212211……4分(3)12.y y .……5分19.证明:连接AC 交BD 于点O ,连接AF ,CE .∵四边形ABCD 是平行四边形,∴OB =OD ,OA =OC .(平行四边形的对角线互相平分)2分∵BE =DF ,∴OB -BE =OD -DF即OE =OF .……3分∴四边形AECF 是平行四边形.(对角线互相平分的四边形是平行四边形)4分∴AE ∥CF . ……5分其他证法相应给分.20.解:(1)80,0.275; ……2分(2) O DC B A E F 6010080120频数…4分(3)1000 ……5分21.解:设2014年到2016年中国在线教育市场产值的年平均增长率是x , ……1分依题意,得:错误!未找到引用源。
2016-2017学年度下学期期末考试八年级数学试卷(含答案)
2016-2017学年度下学期期末考试八年级数学试卷一、选择题(3分×10)1.下列二次根式中,是最简二次根式的是()A.2.0B.12C.3D.18 2.下列各式中,正确的是()A.2<15<3B.3<15<4C.4<15<5D.14<15<16 3.以下列长度(单位:cm )为边长的三角形是直角三角形的是() A.5,6,7 B.7,8,9 C.6,8,10 D.5,7,9 4.一次函数y=-2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限 5.能判定四边形ABCD 为平行四边形的条件是() A.AB ∥CD,AD=BC; B.∠A=∠B,∠C=∠D C.AB=CD,AD=BC; D.AB=AD,CB=CD6.8名学生的平均成绩是x ,如果另外2名学生每人得84分,那么整个组的平均成绩是() A.284x + B.101688+ C.1084x 8+ D.10168x 8+ 7.已知一个直角三角形的两边长分别为3和4,则第三边长为() A.5 B.7 C.7 D.7或5 8.如图,菱形ABCD 的对角线AC 、BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连接EF.若EF=3,BD=4,则菱形ABCD 的周长为() A.4 B.64 C.47 D.289.A 、B 两地相距20千米,甲、乙两人都从A 地去B 地,图中21l l 和分别表示甲、乙两人所走路程s (千米)与时间t (小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B 地,其中正确的个数是() A.4 B.3 C.2 D.110.如图,点A 、B 、C 在一次函数y=-2x+m 的图像上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是()A.1B.3C.3(m —1)D.23(m —1)二、填空题(3分×6)11.函数y=1-x 中,自变量x 的取值范围是 。
人教版初中数学八年级下期末数学试卷(含答案)
八年级下册期末数学试卷 一、选择题 1.下列标志图中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.下列式子从左至右变形不正确的是( )A .b b 3232-=-B .b a b a 22=--C .22++=b a b aD .=3.以下问题,不适合采用全面调查方式的是( )A .调查全班同学对商丘“京雄商”高铁的了解程度B .“冠状病毒”疫情期间,对所有疑似病例病人进行病毒检测C .为准备开学,对全班同学进行每日温度测量统计D .了解梁园区全体中小学生对“冠状病毒”的知晓程度4.若π-3为二次根式,则m 的取值范围是( )A .m <3B .m≤3C .m ≥3D .m >3 5.如果1+a 与12的和等于33,那么a 的值是( )A .0B .1C .2D .36.下列命题正确的是( )A .平行四边形的对角线一定相等B .三角形任意一条边上的高线、中线和角平分线三线合一C .三角形的中位线平行于第三边并且等于它的一半D .三角形的两边之和小于第三边7.一个多边形每一个外角都等于36°,则这个多边形的边数为( )A .12B .10C .8D .6 8.要使分式41-+x x 有意义,则x 的取值应满足( ) A .x≠4B .x≠﹣1C .x =4D .x =﹣19.如图,AB =AC ,∠A =40°,AB 的垂直平分线DE交AC 于点E ,垂足为D ,则∠EBC 的度数是( )A .30°B .40°C .70°D .80° 10.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需的时间与原计划生产450台机器所需时间相同.设原计划每天生产x 台机器,则可列方程为( )A .50450600+=x x B .50450600-=x x C .x x 45050600=+ D .x x 45050600=- 11.如图,平行四边形ABCD 中,∠A 的平分线AE 交CD于E ,AB =6,BC =4,则EC 的长( )A .1B .1.5C .2D .3 12.如图,四边形ABCD 中,AB =CD ,对角线AC ,BD 相交于点O ,AE ⊥BD 于点E ,CF ⊥BD 于点F ,连接AF ,CE ,若DE =BF ,则下列结论:①CF =AE ;②OE =OF ;③四边形ABCD 是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是( )A .4B .3C .2D .1二、填空题(每题3分,共12分)13.一个多边形的内角和是它的外角和的3倍,则这个多边形的边数为 .14.已知x ,y 是二元一次方程组⎩⎨⎧=+=-1232y x y x 的解,则代数式x 2﹣4y 2的值为 . 15.若关于x 的分式方程2332=-++-xm x x 有增根,则m 的值为 . 16.有一张一个角为30°,最小边长为4的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是 .三、解答题(共52分)17.先化简,再求值x x x x 212312+-÷⎪⎭⎫ ⎝⎛+-,其中x =2019.18.解分式方程:2431122--=+--x x x .19.每年3月12日是植树节,某学校植树小组若干人植树,植树若干棵.若每人植4棵,则余20棵没人植,若每人植8棵,则有一人比其他人植的少(但有树植),问这个植树小组有多少人?共有多少棵树?20.如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?并说明理由;(2)△CDE是不是直角三角形?并说明理由.21.如图,平行四边形ABCD中,点O是AC与BD的交点,过点O的直线与BA,DC的延长线分别交于点E,F.(1)求证:△AOE≌△COF;(2)连接EC,AF,求证:四边形AECF是平行四边形.22.南山区某道路供水、排水管网改造工程,甲工程队单独完成任务需40天,若乙队先做30天后,甲乙两队一起合作20天就恰好完成任务.请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队用了x 天做完其中一部分,乙队用了y 天做完另一部分,若x 、y 都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么,两队实际各做了多少天?23.如图,等边△ABC 的边长是4,D ,E 分别为AB ,AC 的中点,延长BC 至点F ,使CF =21BC ,连接CD 和EF .(1)求证:DE =CF ;(2)求EF 的长;(3)求四边形DEFC 的面积.参考答案 1.A .2.C .3.D .4.B .5.C . 6.C . 7.B . 8.A . 9.A .10.C . 11.C . 12.B .二、填空题(每题3分,共12分)13.八. 14.3. 15.-1.16. 348+或16.解:由题意可得:AB =4,∵∠C =30°,∴BC =8,AC =43,∵图中所示的中位线剪开,∴CD =AD =23,CF =BF =4,DF =2,如图1所示:拼成一个矩形,矩形周长为:2+2+4+23+23=8+43;如图2所示,可以拼成一个平行四边形,周长为:4+4+4+4=16;如图3所示,可以拼成一个等腰梯形,周长为:4+2+4+4+2=16.故答案为:8+43或16.三、解答题(共52分)17.解:原式=1)2(232-+⋅+-+x x x x x =1)2(21-+⋅+-x x x x x =x当x =2019时,原式=2019.18.解:方程整理得:)12(211122--=+--x x x 2x ﹣4+4x ﹣2=﹣3,6x =3,解得:x =21, 经检验x =21是增根,分式方程无解. 19.解:设个植树小组有x 人去植树,共有y 棵树.由“每人植4棵,则余20棵没人植”和“若每人植8棵,则有一人比其他人植的少(但有树植)”得:⎩⎨⎧<--<+=8)1(80204x y x y ,将y =4x +20代入第二个式子得: 0<4x +20﹣8(x ﹣1)<8,5<x <7.答这个植树小组有6人去植树,共有4×6+20=44棵树.20.解:(1)全等,理由是:∵∠1=∠2,∴DE =CE ,在Rt △ADE 和Rt △BEC 中,⎩⎨⎧==CE DE BC AE ∴Rt △ADE ≌Rt △BEC (HL );(2)是直角三角形,理由是:∵Rt △ADE ≌Rt △BEC ,∴∠3=∠4,∵∠3+∠5=90°,∴∠4+∠5=90°,∴∠DEC =90°,∴△CDE 是直角三角形.21.解:(1)∵四边形ABCD 是平行四边形,∴AO =OC ,AB ∥CD .∴∠E =∠F .∵在△AOE 与△COF 中,⎪⎩⎪⎨⎧=∠=∠∠=∠CO AO COF AOE F E ,∴△AOE ≌△COF (AAS );(2)如图,连接EC 、AF ,由(1)可知△AOE ≌△COF ,∴OE =OF ,∵AO =CO ,∴四边形AECF 是平行四边形.22.解:(1)设乙工程队单独做需要x 天完成任务,由题意,得1204012030=⨯++x , 解得:x =100,经检验,x =100是原方程的根.答:乙工程队单独做需要100天才能完成任务;(2)根据题意得110040=+y x 整理得 y =100﹣25x . ∵y <70,∴100﹣25x <70. 解得 x >12.又∵x <15且为整数,∴x =13或14.当x =13时,y 不是整数,所以x =13不符合题意,舍去.当x =14时,y =100﹣35=65.答:甲队实际做了14天,乙队实际做了65天.23.如图,等边△ABC 的边长是4,D ,E 分别为AB ,AC 的中点,延长BC 至点F ,使CF =21BC ,连接CD 和EF .(1)求证:DE =CF ;(2)求EF 的长;(3)求四边形DEFC 的面积.解:(1)在△ABC 中,∵D 、E 分别为AB 、AC 的中点,∴DE 为△ABC 的中位线, ∴DE =21BC , ∵CF =21BC , ∴DE =CF .(2)∵AC =BC ,AD =BD ,∴CD ⊥AB ,∵BC =4,BD =2,∴CD =2224 =23,∵DE ∥CF ,DE =CF ,∴四边形DEFC 是平行四边形,∴EF =CD =23.(3)过点D 作DH ⊥BC 于H .∵∠DHC =90°,∠DCB =30°,∴DH =21DC =3, ∵DE =CF =2,∴S 四边形DEFC =CF •DH =2×3=23.。
2022-2023学年北京市燕山区八年级(下)期末数学试卷【答案版】
2022-2023学年北京市燕山区八年级(下)期末数学试卷一、选择题(共16分,每题2分) 1.计算√32的结果是( ) A .3B .﹣3C .±3D .√32.如图,▱ABCD 中,∠B =25°,则∠A =( )A .50°B .65°C .115°D .155°3.点P (1,3)在正比例函数y =kx (k ≠0)的图象上,则k 的值为( ) A .13B .2C .3D .44.下列计算正确的是( ) A .√2+√8=√10B .2√2−2=√2C .√2×√8=4D .√8÷√2=45.在△ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c .下列条件中,不能判定△ABC 是直角三角形的是( )A .∠A +∠B =90° B .∠A :∠B :∠C =3:4:5C .a :b :c =3:4:5D .a =b =1,c =√26.某企业参加“科技创新企业百强”评选,创新能力、创新价值、创新影响三项得分分别为8分,9分,7分,若将三项得分依次按5:3:2的比例计算总成绩,则该企业的总成绩为( ) A .8分B .8.1分C .8.2分D .8.3分7.如图,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.如果图中勾a =3,弦c =5,则小正方形的面积为( )A .1B .2C .3D .48.下面的三个问题中都有两个变量:①三角形的高一定,三角形的面积y 与底边长x ;②将泳池中的水匀速放出,直至放完,泳池中的剩余水量y 与放水时间x ;③一艘观光船沿直线从码头匀速行驶到某景区,观光船与景区间的距离y与行驶时间x.其中,变量y与变量x之间的函数关系可以用如图所示的图象表示的是()A.①②B.②③C.①③D.①②③二、填空题(共16分,每题2分)9.若√x−5在实数范围内有意义,则实数x的取值范围是.10.将直线y=3x向上平移2个单位,得到的直线为.11.已知点P(﹣2,y1),Q(1,y2)在一次函数y=kx+1(k≠0)的图象上,且y1>y2,则k的值可以是(写出一个即可).12.如图,矩形ABCD的对角线AC,BD相交于点O,再添加一个条件,使得四边形ABCD是正方形,这个条件可以是(写出一个条件即可).13.如图,在平面直角坐标系xOy中,已知点A(2,3),以点O为圆心,OA长为半径画弧,交x轴的正半轴于点B,则点B的横坐标为.14.如图,菱形ABCD的对角线AC,BD相交于点O,点E为边CD的中点,连接OE.若AC=2√3,BD =2,则OE的长为.15.如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.某项研究表明,一般情况下人的身高y(单位:cm)是指距x(单位:cm)的一次函数,现测得指距x与身高y的几组对应值:小明的身高是160cm,一般情况下,他的指距约是cm.16.2023年4月,北京市每日最高气温的统计图如图所示:根据统计图提供的信息,有下列三个结论:①若按每日最高气温由高到低排序,4月4日排在第30位;②4月7日到4月8日气温上升幅度最大;③若记4月上旬(1日至10日)的最高气温的方差为s12,中旬(11日至20日)的最高气温的方差为s22,下旬(21日至30日)的最高气温的方差为s32,则s22<s32<s12.其中所有正确结论的序号是.三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,第27-28题,每题7分)解答应写出文字说明,演算步骤或证明过程.17.计算:√6×√50÷√3.18.计算:(√2023)0+|−√2|−√18+(√2)2.19.已知a=√5+1,求代数式a2﹣2a的值.20.已知一次函数y=kx+b(k≠0)的图象与两坐标轴分别交于点A(﹣1,0),B(0,3).求该一次函数的解析式.21.下面是证明平行四边形判定定理“一组对边平行且相等的四边形是平行四边形”的两种思路,选择其中一种,完成证明.22.如图,在正方形网格中,每个小正方形网格的边长均为1,点A ,B ,C ,D 均在格点上. (1)判断△ACD 的形状,并说明理由; (2)求四边形ABCD 的面积.23.(6分)如图,在▱ABCD 中,对角线AC ,BD 交于点O ,OA =OB . (1)求证:四边形ABCD 是矩形;(2)若AD =2,∠CAB =30°,作∠DCB 的平分线CE 交AB 于点E ,求AE 的长.24.(6分)探究函数性质时,我们经历了列表、描点、连线画出函数的图象,观察分析图象特征,概括函数性质的过程.小腾根据学习函数的经验,对函数y 1=2x 与y 2=﹣x +6进行了探究.下面是小腾的探究过程,请补充完整: (1)绘制函数图象①列表:下表是x 与y 1,y 2的几组对应值;其中,b = ;②描点、连线:在同一平面直角坐标系xOy 中,描出上表中各组数值所对应的点(x ,y 1),(x ,y 2),并画出函数y 1,y 2的图象;(2)结合函数图象,探究函数性质;①函数y1,y2的图象的交点坐标为,则关于x,y的二元一次方程组{y=2x ,y=−x+6的解是;②过点M(m,0)作垂直于x轴的直线与函数y1,y2的图象分别交于点P,Q,当点P位于点Q下方时,m的取值范围是.25.(6分)为了了解学生对党的二十大精神的学习领会情况,某校团委从七,八年级各随机抽取20名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息:a.八年级学生成绩的频数分布直方图如下(数据分为4组:60≤x<70,70≤x<80,80≤x<90,90≤x≤100)b.八年级学生成绩在80≤x<90这一组的是:81 83 84 84 84 86 89c.七、八年级学生成绩的平均数、中位数、众数如下:根据以上信息,回答下列问题:(1)写出表中m的值;(2)七年级学生小亮和八年级学生小宇的成绩都是86分,这两名学生在本年级成绩排名更靠前的是(填“小亮”或“小宇”),理由是;(3)成绩不低于85分的学生可获得优秀奖,假设该校八年级300名学生都参加测试,估计八年级获得优秀奖的学生人数.26.(6分)在平面直角坐标系xOy中,点M(a,m)和点N(a+2,n)在一次函数y=kx+b(k≠0)的图象上.(1)若a=0,m=4,n=2,求该一次函数的解析式;(2)已知点A(1,2),将点A向左平移3个单位长度,得到点B.①求点B的坐标;②若m﹣n=4,一次函数y=kx+b(k≠0)的图象与线段AB有公共点,求b的取值范围.27.(7分)如图,菱形ABCD中,∠ABC=120°,E为边AB上一点.点F在DB的延长线上,EF=ED.作点F关于直线AB的对称点G,连接EG.(1)依题意补全图形,并证明∠ADE=∠FEB;(2)用等式表示AE,CG,DF之间的数量关系,并证明.28.(7分)在平面直角坐标系xOy中,已知点A(0,2),B(2,2),对于直线l和点P,给出如下定义:若在线段AB上存在点Q,使得点P,Q关于直线l对称,则称直线l为点P的关联直线,点P是直线l 的关联点.(1)已知直线l1:y=﹣x,在点P1(﹣2,1),P2(﹣2,﹣1),P3(2,0)中,直线l1的关联点是;(2)若在x轴上存在点P,使得点P为直线l2:y=﹣x+b的关联点,求b的取值范围;(3)已知点N(n,﹣n),若存在直线l3:y=mx是点N的关联直线,直接写出n的取值范围.2022-2023学年北京市燕山区八年级(下)期末数学试卷参考答案与试题解析一、选择题(共16分,每题2分) 1.计算√32的结果是( ) A .3B .﹣3C .±3D .√3解:√32=|3|=3. 故选:A .2.如图,▱ABCD 中,∠B =25°,则∠A =( )A .50°B .65°C .115°D .155°解:∵四边形ABCD 是平行四边形, ∴AD ∥BC , ∴∠A +∠B =180°, ∵∠B =25°, ∴∠A =155°, 故选:D .3.点P (1,3)在正比例函数y =kx (k ≠0)的图象上,则k 的值为( ) A .13B .2C .3D .4解:将P 的坐标代入,得:3=k ,解得:k =3. 故选:C .4.下列计算正确的是( ) A .√2+√8=√10B .2√2−2=√2C .√2×√8=4D .√8÷√2=4解:A 、√2+√8=√2+2√2=3√2,故A 不符合题意; B 、2√2与﹣2不能合并,故B 不符合题意; C 、√2×√8=√16=4,故C 符合题意; D 、√8÷√2=√4=2,故D 不符合题意; 故选:C .5.在△ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c .下列条件中,不能判定△ABC 是直角三角形的是()A.∠A+∠B=90°B.∠A:∠B:∠C=3:4:5C.a:b:c=3:4:5D.a=b=1,c=√2解:A、∵∠A+∠B=90°,∴∠C=180°﹣(∠A+∠B)=90°,∴△ABC是直角三角形,故A不符合题意;B、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠C=180°×53+4+5=75°,∴△ABC不是直角三角形,故B符合题意;C、∵a:b:c=3:4:5,∴设a=3k,b=4k,c=5k,∴a2+b2=(3k)2+(4k)2=25k2,c2=(5k)2=25k2,∴a2+b2=c2,∴△ABC是直角三角形,故C不符合题意;D、∵a2+b2=12+12=2,c2=(√2)2=2,∴a2+b2=c2,∴△ABC是直角三角形,故D不符合题意;故选:B.6.某企业参加“科技创新企业百强”评选,创新能力、创新价值、创新影响三项得分分别为8分,9分,7分,若将三项得分依次按5:3:2的比例计算总成绩,则该企业的总成绩为()A.8分B.8.1分C.8.2分D.8.3分解:该企业的总成绩为:8×55+3+2+9×35+3+2+7×25+3+2=8.1(分),故选:B.7.如图,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.如果图中勾a=3,弦c=5,则小正方形的面积为()A.1B.2C.3D.4解:由图可得,b=√c2−a2=√52−32=4,∴小正方形的边长为4﹣3=1, ∴小正方形的面积为1×1=1, 故选:A .8.下面的三个问题中都有两个变量:①三角形的高一定,三角形的面积y 与底边长x ;②将泳池中的水匀速放出,直至放完,泳池中的剩余水量y 与放水时间x ;③一艘观光船沿直线从码头匀速行驶到某景区,观光船与景区间的距离y 与行驶时间x . 其中,变量y 与变量x 之间的函数关系可以用如图所示的图象表示的是( )A .①②B .②③C .①③D .①②③解:①中设高为h ,则y =12hx ,由12h >0,得①不符图象所示;②中泳池放水时剩余水量y 随放水时间x 的增大而减小,故②符合图象所示;③中观光船从码头驶到景区,观光船与景区间的距离y 随行驶时间x 的增大而减小,故③符合图象所示; 故选:B .二、填空题(共16分,每题2分)9.若√x −5在实数范围内有意义,则实数x 的取值范围是 x ≥5 .解:式子√x −5在实数范围内有意义,则x ﹣5≥0,故实数x 的取值范围是:x ≥5. 故答案为:x ≥5.10.将直线y =3x 向上平移2个单位,得到的直线为 y =3x +2 .解:将一次函数y =3x 向上平移2个单位,所得图象的函数解析式为:y =3x +2 故答案为:y =3x +2.11.已知点P (﹣2,y 1),Q (1,y 2)在一次函数y =kx +1(k ≠0)的图象上,且y 1>y 2,则k 的值可以是 ﹣2(答案不唯一) (写出一个即可).解:∵点P (﹣2,y 1),Q (1,y 2)在一次函数y =kx +1(k ≠0)的图象上,且y 1>y 2, ∴k <0,∴k 可以是﹣2(答案不唯一),故答案为:﹣2(答案不唯一).12.如图,矩形ABCD的对角线AC,BD相交于点O,再添加一个条件,使得四边形ABCD是正方形,这个条件可以是AB=AD(答案不唯一)(写出一个条件即可).解:这个条件可以是AB=AD(答案不唯一),理由:∵四边形ABCD是矩形,AB=AD,∴四边形ABCD是正方形,故答案为:AB=AD(答案不唯一).13.如图,在平面直角坐标系xOy中,已知点A(2,3),以点O为圆心,OA长为半径画弧,交x轴的正半轴于点B,则点B的横坐标为√13.解:∵点A坐标为(2,3),∴OA=√22+32=√13,∵点A、B均在以点O为圆心,以OA为半径的圆弧上,∴OB=OA=√13,∵点B在x轴的正半轴上,∴点B的横坐标为√13,故答案为:√13.14.如图,菱形ABCD的对角线AC,BD相交于点O,点E为边CD的中点,连接OE.若AC=2√3,BD =2,则OE的长为1.解:∵四边形ABCD是菱形,∴AC ⊥BD ,OD =12BD ,OC =12AC , ∵AC =2√3,BD =2, ∴OD =1,OC =√3, ∴CD =√OC 2+OD 2=2, ∵点E 为边CD 的中点, ∴OE =12CD =1. 故答案为:1.15.如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.某项研究表明,一般情况下人的身高y (单位:cm )是指距x (单位:cm )的一次函数,现测得指距x 与身高y 的几组对应值:小明的身高是160cm ,一般情况下,他的指距约是 19 cm .解:根据已知设y =kx +b ,将表格任意两组数据(16,133)(18,151), ∴{16k +b =13318k +b =151,解得:{k =9b =−11 ∴y =9x ﹣11, 当y =160cm 时, 160=9x ﹣11, 解得:x =19, 故答案为:19.16.2023年4月,北京市每日最高气温的统计图如图所示:根据统计图提供的信息,有下列三个结论:①若按每日最高气温由高到低排序,4月4日排在第30位; ②4月7日到4月8日气温上升幅度最大;③若记4月上旬(1日至10日)的最高气温的方差为s 12,中旬(11日至20日)的最高气温的方差为s 22,下旬(21日至30日)的最高气温的方差为s 32,则s 22<s 32<s 12.其中所有正确结论的序号是 ①③ .解:①由图可知,4月4日的最高气温在4月是最低的,所以若按每日最高气温由高到低排序,4月4日排在第30位.故本结论正确,符合题意;②由图可知,所以4月7日到4月8日气温上升幅度约为20−1515×100%≈33.3%,4月24日到4月25日气温上升幅度约为22−1515×100%≈46.7%,所以4月7日到4月8日气温上升幅度不是最大.故本结论错误,不符合题意;③由图可知,4月上旬(1日至10日)的最高气温在11℃至27℃徘徊,中旬(11日至20日)的最高气温在19℃至28℃徘徊,下旬(21日至30日)的最高气温在15℃至26℃徘徊,所以上旬气温波动最大,中旬气温波动最小,下旬气温波动在上旬与中旬之间,所以s 22<s 32<s 12.故本结论正确,符合题意;故答案为:①③.三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,第27-28题,每题7分)解答应写出文字说明,演算步骤或证明过程. 17.计算:√6×√50÷√3.解:√6×√50÷√3=√6×50÷3 =√100 =10. 18.计算:(√2023)0+|−√2|−√18+(√2)2.解:(√2023)0+|−√2|−√18+(√2)2=1+√2−3√2+2 =3−2√2. 19.已知a =√5+1,求代数式a 2﹣2a 的值. 解:a 2﹣2a =(a ﹣1)2﹣1, 当a =√5+1时,原式=(√5+1﹣1)2﹣1=5﹣1=4.20.已知一次函数y =kx +b (k ≠0)的图象与两坐标轴分别交于点A (﹣1,0),B (0,3).求该一次函数的解析式. 解:根据已知条件:将点A (﹣1,0),B (0,3)的坐标分别代入y =kx +b 中, 得方程组{−k +b =0,b =3,解方程组得:{k =3,b =3,故一次函数的解析式y =3x +3.21.下面是证明平行四边形判定定理“一组对边平行且相等的四边形是平行四边形”的两种思路,选择其中一种,完成证明.思路一:证明: 如图2,连接AC , ∵AB ∥CD , ∴∠BAC =∠DCA , 在△ABC 和△CDA 中, {AB =CD∠BAC =∠DCA AC =CA, ∴△ABC≌△CDA (SAS ), ∴∠BCA =∠DAC , ∴BC ∥AD ,∴四边形ABCD 是平行四边形. 思路二:证明:如图3,连接AC , ∵AB ∥CD , ∴∠BAC =∠DCA , 在△ABC 和△CDA 中, {AB =CD∠BAC =∠DCA AC =CA, ∴△ABC ≌△CDA (SAS ), ∴BC =DA ,∴四边形ABCD 是平行四边形.22.如图,在正方形网格中,每个小正方形网格的边长均为1,点A ,B ,C ,D 均在格点上. (1)判断△ACD 的形状,并说明理由; (2)求四边形ABCD 的面积.解:(1)△ACD 为直角三角形, 理由:由题意得:AC 2=32+32=18, CD 2=22+22=8, AD 2=12+52=26, ∴AC 2+CD 2=AD 2, ∴△ACD 为直角三角形, ∴∠ACD =90°;(2)在Rt △ABC 中,AB =AC =3,∠ABC =90°, ∴S Rt △ABC =12AB •BC =12×3×3=92; 在Rt △ACD 中,AC =3√2,CD =2√2, ∴S Rt △ACD =12AC •CD =12×3√2×2√2=6 ∴S 四边形ABCD =S Rt △ABC +S Rt △ACD =92+6=212, ∴四边形ABCD 的面积为212.23.(6分)如图,在▱ABCD 中,对角线AC ,BD 交于点O ,OA =OB . (1)求证:四边形ABCD 是矩形;(2)若AD =2,∠CAB =30°,作∠DCB 的平分线CE 交AB 于点E ,求AE 的长.(1)证明:∵四边形ABCD 是平行四边形, ∴AC =2AO ,BD =2BO . ∵AO =BO ,∴AC=BD,∴平行四边形ABCD为矩形;(2)解:如图,∵四边形ABCD是矩形,∴∠DCB=∠ABC=90°,BC=AD=2.∵CE为∠DCB的平分线,∴∠ECB=12∠DCB=45°.∵∠ABC=90°,∠CAB=30°,BC=2,∴AC=2BC=4,∴AB=√AC2−BC2=√42−22=2√3.∵∠CBE=90°,∠ECB=45°,∴BE=BC=2,∴AE=AB﹣BE=2√3−2.24.(6分)探究函数性质时,我们经历了列表、描点、连线画出函数的图象,观察分析图象特征,概括函数性质的过程.小腾根据学习函数的经验,对函数y1=2x与y2=﹣x+6进行了探究.下面是小腾的探究过程,请补充完整:(1)绘制函数图象①列表:下表是x与y1,y2的几组对应值;其中,b=6;②描点、连线:在同一平面直角坐标系xOy中,描出上表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(2)结合函数图象,探究函数性质;①函数y1,y2的图象的交点坐标为(2,4),则关于x,y的二元一次方程组{y=2x ,y=−x+6的解是{x =2y =4; ②过点M (m ,0)作垂直于x 轴的直线与函数y 1,y 2的图象分别交于点P ,Q ,当点P 位于点Q 下方时,m 的取值范围是 m <2 .解:(1)①当x =0时,y 2=6=b . 故答案为:6. ②如图1:(2)①由图象1得:函数y 1,y 2的图象的交点坐标为(2,4), 则方程组的解为:{x =2y =4,故答案为:(2,4);{x =2y =4.②画出函数y 1,y 2的图象如图2;如图2,显然当PQ在A左侧时P在Q的下方,又A(2,4),∴m<2.故答案为:m<2.25.(6分)为了了解学生对党的二十大精神的学习领会情况,某校团委从七,八年级各随机抽取20名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息:a.八年级学生成绩的频数分布直方图如下(数据分为4组:60≤x<70,70≤x<80,80≤x<90,90≤x≤100)b.八年级学生成绩在80≤x<90这一组的是:81 83 84 84 84 86 89c.七、八年级学生成绩的平均数、中位数、众数如下:根据以上信息,回答下列问题:(1)写出表中m的值;(2)七年级学生小亮和八年级学生小宇的成绩都是86分,这两名学生在本年级成绩排名更靠前的是小宇(填“小亮”或“小宇”),理由是小亮的成绩为86分低于七年级学生成绩的中位数88分,故小亮的成绩低于七年级一半的学生成绩;小宇的成绩为86分高于八年级学生成绩的中位数83.5分,故小宇的成绩高于八年级一半的学生成绩,所以学生小宇的成绩在本年级排名更靠前;(3)成绩不低于85分的学生可获得优秀奖,假设该校八年级300名学生都参加测试,估计八年级获得优秀奖的学生人数.解:(1)八年级一共有20名同学,中位数是成绩数据由小到大排列后第10,11个数据分别为83、84, ∴中位数m =83+842=83.5; (2)小宇;理由:小亮的成绩为86分低于七年级学生成绩的中位数88分,故小亮的成绩低于七年级一半的学生成绩;小宇的成绩为86分高于八年级学生成绩的中位数83.5分,故小宇的成绩高于八年级一半的学生成绩,所以学生小宇的成绩在本年级排名更靠前;故答案为:小宇,小亮的成绩为86分低于七年级学生成绩的中位数88分,故小亮的成绩低于七年级一半的学生成绩;小宇的成绩为86分高于八年级学生成绩的中位数83.5分,故小宇的成绩高于八年级一半的学生成绩,所以学生小宇的成绩在本年级排名更靠前; (3)5+220×300=105(人),答:估计八年级获得优秀奖的学生有105人.26.(6分)在平面直角坐标系xOy 中,点M (a ,m )和点N (a +2,n )在一次函数y =kx +b (k ≠0)的图象上.(1)若a =0,m =4,n =2,求该一次函数的解析式;(2)已知点A (1,2),将点A 向左平移3个单位长度,得到点B . ①求点B 的坐标;②若m ﹣n =4,一次函数y =kx +b (k ≠0)的图象与线段AB 有公共点,求b 的取值范围. 解:(1)当a =0,m =4,n =2时,点M (0,4)和点N (2,2)在一次函数y =kx +b 上, ∴{b =4,2k +b =2,解得 {k =−1,b =4,∴一次函数的解析式y =﹣x +4. (2)①∵点A (1,2),∴将点A 向左平移3个单位长度,得到点B (﹣2,2); ②把点M (a ,m )和点N (a +2,n )代入y =kx +b (k ≠0)中, 得m =ka +b ,n =k (a +2)+b . ∵m ﹣n =4,∴k (a +2)+b ﹣(ka +b )=4, 解得k =﹣2,∴一次函数y =kx +b 的解析式为y =﹣2x +b . 当直线y =﹣2x +b 经过点A (1,2)时,﹣2+b =2, 解得b =4.当直线y =﹣2x +b 经过点B (﹣2,2)时,﹣2×(﹣2)+b =2, 解得b =﹣2.综上所述,b 的取值范围是﹣2≤b ≤4.27.(7分)如图,菱形ABCD 中,∠ABC =120°,E 为边AB 上一点.点F 在DB 的延长线上,EF =ED .作点F 关于直线AB 的对称点G ,连接EG . (1)依题意补全图形,并证明∠ADE =∠FEB ;(2)用等式表示AE ,CG ,DF 之间的数量关系,并证明.解:(1)补全的图形如图所示;证明:∵四边形ABCD 是菱形, ∴∠ADC =∠ABC =120°, ∴∠ADB =12∠ADC =60°,∠ABD =12∠ABC =60°, ∴∠ADE +∠BDE =60°, ∠FEB +∠BFE =60°. ∵ED =EF , ∴∠BDE =∠BFE , ∴∠ADE =∠FEB .(2)AE ,CG ,DF 之间的数量关系:DF =CG +2AE .证明:如图,连接DG .∵四边形ABCD 是菱形,∠ABC =120°, ∴∠ABD =12∠ABC =60°=∠A , ∴△ABD 为等边三角形, ∴AD =DB ,∠ABF =120°,点F 关于AB 的对称点G 在线段BC 上, ∴EG =EF =ED ,∠GEB =∠FEB =∠ADE . ∵∠DEB =∠A +∠ADE =∠DEG +∠GEB , ∴∠DEG =∠A =60°, ∴△DEG 为等边三角形, ∴DE =DG ,∠EDG =60°,∴∠ADE +∠EDB =∠EDB +∠BDG =60°, ∴∠ADE =∠BDG , ∴△ADE ≌△BDG (SAS ), ∴AE =BG ,∴DF =DB +BF =BC +AE =CG +BG +AE =CG +2AE .28.(7分)在平面直角坐标系xOy 中,已知点A (0,2),B (2,2),对于直线l 和点P ,给出如下定义:若在线段AB 上存在点Q ,使得点P ,Q 关于直线l 对称,则称直线l 为点P 的关联直线,点P 是直线l的关联点.(1)已知直线l1:y=﹣x,在点P1(﹣2,1),P2(﹣2,﹣1),P3(2,0)中,直线l1的关联点是P2;(2)若在x轴上存在点P,使得点P为直线l2:y=﹣x+b的关联点,求b的取值范围;(3)已知点N(n,﹣n),若存在直线l3:y=mx是点N的关联直线,直接写出n的取值范围.解:(1)由题意,对称点在线段AB上,那么点P必在线段AB的对称线段A'B'上,∴P1(﹣2,1),P2(﹣2,﹣1),P3(2,0)中,在线段A'B'上的点仅有P2,故答案为:P2;(2)令点P关于直线l2的对称点为Q,∵点P为直线l2的关联点,∴点Q在线段AB上,当点Q与点A重合时,点P的坐标为(﹣2,0),△AOP是等腰直角三角形,直线l2经过原点,此时b=0;当点Q与点B重合时,点P的坐标为(0,0),△ABO是等腰直角三角形,直线l2经过点A,此时b=2.综上所述,b的取值范围是0≤b≤2;(3)因为N(n,﹣n),则点N在函数y=﹣x的图象上,当n≤0时,点N在第二象限.若m>0,则y=﹣x(x<0)的图象关于直线y=mx的对称图象与线段AB没有交点,所以m<0.①当l3与y轴正半轴的夹角是22.5°时,点A关于l3的对称点A′y=﹣x上.且OA′=OA=2,则A′(−√2,√2),此时n=−√2.②当l3与y轴正半轴的夹角大于22.5°时,y=﹣x关于l3的对称图象与线段AB没有交点.③当l3与y轴正半轴的夹角小于22.5°时,y=﹣x关于l3的对称图象与线段AB有交点,且线段AB关于y轴的对称线段与y=﹣x有交点B′,且B′(﹣2,2).而l3不与y轴重合,所以当l3与y轴正半轴的夹角大于0°,且小于等于22.5°时,y=﹣x(x<0)的图象关于l3的对称图象与线段AB有交点.此时n的取值范围是:﹣2<n≤−√2.同理可得当m>0时,n的取值范围是:√2≤n<2.综上所述:﹣2<n≤−√2或√2≤n<2.。
2022-2023学年北京市顺义区八年级(下)期末数学试卷【答案版】
2022-2023学年北京市顺义区八年级(下)期末数学试卷一、选择题(本题共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个1.在平面直角坐标系中,点(2,3)关于x轴对称的点的坐标是()A.(2,﹣3)B.(3,2)C.(﹣2,3)D.(﹣2,﹣3)2.下列几何体中,圆柱体是()A.B.C.D.3.若一个多边形的内角和与外角和相等,则这个多边形是()A.三角形B.六边形C.五边形D.四边形4.方程(x+2)(x+1)=x+2的解为()A.x1=0,x2=2B.x1=0,x2=﹣2C.x1=﹣1,x2=﹣2D.x1=x2=﹣15.平行四边形ABCD中,对角线AC、BD交于点O(如图),则图中全等三角形的对数为()A.2B.3C.4D.56.如图,顺次连接矩形各边中点,得到由矩形和菱形组成的图形,则关于这个图形的描述正确的是()A.是轴对称图形但不是中心对称图形B.不是轴对称图形也不是中心对称图形C.不是轴对称图形但是中心对称图形D.既是轴对称图形又是中心对称图形7.用配方法解一元二次方程x2﹣8x+2=0,此方程可化为的正确形式是()A.(x﹣4)2=14B.(x﹣4)2=18C.(x+4)2=14D.(x+4)2=188.下面的三个问题中都有两个变量:①正方形的面积y与边长x;②将水箱中的水匀速放出,直至放完,水箱中剩余水量y与放水时间x;③汽车从A地匀速行驶到B地,汽车距离B地的路程y与行驶时间x;其中,变量y与变量x之间的函数关系可以利用如图所示的图象表示的是()A.①②B.①③C.②③D.①②③二、填空题(本题共16分,每题2分)9.﹣2的相反数是.10.方程(x﹣1)2=3的解为.11.如图,在△ABC中,∠ACB=90°,∠A=50°,D为边AB的中点,则∠BCD=°.12.如图,在平行四边形ABCD中,CE平分∠BCD,BC=6,AE=2,则CD=.13.某校举办“五月的鲜花”演唱比赛,十位评委对每位同学的演唱进行现场打分.已知甲、乙两位同学得分的平均数都是8.6,如图是甲、乙两位同学得分的折线图及表示得分平均数的水平直线:如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致,据此推断:甲、乙两位同学中,评委对的评价更一致(填“甲”或“乙”).14.已知关于x 的方程x 2+4x +m =0有两个不相等的实数根,写出一个符合条件的m 的值为 .15.小红和小明从甲地出发,骑自行车沿同一条路到距甲地24千米的乙地参加活动.如图,折线OA ﹣AB 和线段CD 分别表示小红和小明离甲地的距离y (单位:km )与时间t (单位:h )之间函数关系的图象.根据图中提供的信息,当小明到达乙地时,小红还有 小时到达乙地,此时小红距乙地 千米.16.如图,在矩形ABCD 中,AB =4,AD =6,P ,Q 分别是边AD ,BC 上的动点,点P 从A 出发到D 停止运动,点Q 从C 出发到B 停止运动,若P ,Q 两点以相同的速度同时出发,匀速运动.下面四个结论中,①存在四边形APCQ 是矩形;②存在四边形APCQ 是菱形;③存在四边形APQB 是矩形;④存在四边形APQB 是正方形;所有正确结论的序号是 .三、解答题(本题共68分,第17-19题,每题5分,第20-22题,每题6分,第23题5分,第24,25题,每题6分,第26题5分,第27题7分,第28题6分)17.解不等式组:{x >2x −1x −1<x 2. 18.解方程:x 2+4x ﹣5=0.19.如表是一次函数y =kx +b (k ≠0)中x 与y 的两组对应值.(1)求该一次函数的表达式;(2)求该一次函数的图象与x轴的交点坐标.20.(6分)下面是小红设计的“已知直角作矩形”的尺规作图过程.已知:如图,∠A=90°.求作:矩形ABCD.作法:如图,①在∠A的两边上分别任取点B,D(不与点A重合);②以点B为圆心,AD长为半径画弧,以点D为圆心,AB长为半径画弧,两弧在∠A的内部交于点C;③连接BC,CD.所以四边形ABCD即为所求作的矩形.根据小红设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下列证明.证明:∵AB=CD,AD=,∴四边形ABCD是平行四边形()(填推理的依据),又∵∠A=90°,∴四边形ABCD是矩形()(填推理的依据).21.(6分)已知关于x的一元二次方程x2+bx﹣3=0.(1)求证:方程总有两个不相等的实数根;(2)若方程的一个根是1,求b的值及方程的另一个根.22.(6分)如图,在△ABC中,AB=BC,D,E分别是AB,AC的中点,AF∥DE,EF∥AD.(1)求证:四边形ADEF是菱形;(2)连接DF,若AB=10,AC=12,求DF的长.23.某校打算用14m的篱笆,在墙边(墙足够长)围成一个矩形区域,作为“养殖基地”(篱笆只围AB,BC,CD三边),当矩形区域的面积是24m2时,求它的长和宽.24.(6分)在平面直角坐标系xOy中,直线l1:y=﹣x+1与x轴交于点A,直线l2:y=kx﹣3(k≠0)与y轴交于点B,与l1交于点C.(1)求△OAB的面积;(2)若△OBC的面积是△OAB面积的2倍,求k的值.25.(6分)2023年5月30日,神舟十六号载人飞船发射取得圆满成功.为普及航天知识,某中学举办了一次“航天知识竞赛”,共有1000名学生参加.为更好的了解本次比赛得分的分布情况,随机抽取了部分学生的比赛得分,进行收集、整理、描述和分析.下面给出了部分信息(数据分成5组:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):a.学生比赛得分频数分布表:b.学生比赛得分频数分布直方图:c .学生比赛得分在80≤x <90这一组的是:80,81,83,82,86,87,85,81,89,88,85,86,80,83;根据以上信息,回答下列问题:(1)e = ,f = ;(2)请补全频数分布直方图;(3)若得分在85分及以上均为“优秀”,请估计参加这次比赛的1000名学生中得分优秀的人数.26.在平面直角坐标系xOy 中,一次函数y =kx +2(k ≠0)的图象经过点(﹣1,0).(1)求k 的值;(2)当x >0时,对于x 的每一个值,一次函数y =﹣x +b 的值小于一次函数y =kx +2(k ≠0)的值,直接写出b 的取值范围.27.(7分)如图,在正方形ABCD 中,E 是边BC 上的一动点(不与点B ,C 重合),AF ⊥AE 于点A ,AF =AE ,连接BF ,DE .(1)求证:∠ABF =∠ADE ;(2)延长FB ,DE ,交于点G ,连接AG .①依题意补全图形;②用等式表示线段EG ,FG ,AG 之间的数量关系,并证明.28.(6分)在平面直角坐标系xOy 中,给出如下定义:若在图形M 上存在一点P ,且点P 的纵坐标是横坐标的n (n 为正整数)倍,则称点P 为图形M 的“n 倍点”.例如,点(1,4)是直线y =﹣x +5的“4倍点”.(1)在点P 1(1,2),P 2(2,0),P 3(2,4),P 4(85,45)中, 是直线y =﹣2x +4的“2倍点”;(2)已知点A的坐标为(m,0),点B的坐标为(m+2,0),以线段AB为矩形的一边向上作矩形ABCD.①若m=1,AD=4,判断是否存在矩形ABCD的“3倍点”,若存在,求出矩形ABCD的“3倍点”的坐标,若不存在,请说明理由;②若AD=nAB,且存在矩形ABCD的“n倍点”,直接写出m的取值范围.2022-2023学年北京市顺义区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个1.在平面直角坐标系中,点(2,3)关于x轴对称的点的坐标是()A.(2,﹣3)B.(3,2)C.(﹣2,3)D.(﹣2,﹣3)解:点(2,3)关于x轴对称的点的坐标是(2,﹣3),故选:A.2.下列几何体中,圆柱体是()A.B.C.D.解:A、是正方体,故该选项不符合题意;B、是圆锥,故该选项不符合题意;C、是三棱锥,故该选项不符合题意;D、是圆柱体,故该选项符合题意;故选:D.3.若一个多边形的内角和与外角和相等,则这个多边形是()A.三角形B.六边形C.五边形D.四边形解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.所以这个多边形是四边形.故选:D.4.方程(x+2)(x+1)=x+2的解为()A.x1=0,x2=2B.x1=0,x2=﹣2C.x1=﹣1,x2=﹣2D.x1=x2=﹣1解:(x+2)(x+1)=x+2,整理,得x2+2x=0,x(x+2)=0,x=0或x+2=0,∴x1=0,x2=﹣2.故选:B.5.平行四边形ABCD中,对角线AC、BD交于点O(如图),则图中全等三角形的对数为()A.2B.3C.4D.5解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC;OD=OB,OA=OC;∵OD=OB,OA=OC,∠AOD=∠BOC;∴△AOD≌△COB(SAS);①同理可得出△AOB≌△COD(SAS);②∵BC=AD,CD=AB,BD=BD;∴△ABD≌△CDB(SSS);③同理可得:△ACD≌△CAB(SSS).④因此本题共有4对全等三角形,故选:C.6.如图,顺次连接矩形各边中点,得到由矩形和菱形组成的图形,则关于这个图形的描述正确的是()A.是轴对称图形但不是中心对称图形B.不是轴对称图形也不是中心对称图形C.不是轴对称图形但是中心对称图形D.既是轴对称图形又是中心对称图形解:根据长方形和菱形的对称的特点:它们既是轴对称图形,又是中心对称图形.则它们的这种组合图形,既是轴对称图形又是中心对称图形.故选:D.7.用配方法解一元二次方程x2﹣8x+2=0,此方程可化为的正确形式是()A.(x﹣4)2=14B.(x﹣4)2=18C.(x+4)2=14D.(x+4)2=18解:x2﹣8x+2=0,x2﹣8x=﹣2,x2﹣8x+16=﹣2+16,(x﹣4)2=14,故选:A.8.下面的三个问题中都有两个变量:①正方形的面积y与边长x;②将水箱中的水匀速放出,直至放完,水箱中剩余水量y与放水时间x;③汽车从A地匀速行驶到B地,汽车距离B地的路程y与行驶时间x;其中,变量y与变量x之间的函数关系可以利用如图所示的图象表示的是()A.①②B.①③C.②③D.①②③解:正方形的面积y是边长x的二次函数,故①不符合题意;将水箱中的水匀速放出,直至放完,根据水箱中的剩余水量y随放水时间x的增大而减小,故②符合题意;汽车从A地匀速行驶到B地,根据汽车的剩余路程y随行驶时间x的增加而减小,故③符合题意;所以可以利用如图所示的图象表示的是②③.故选:C.二、填空题(本题共16分,每题2分)9.﹣2的相反数是2.解:﹣2的相反数是:﹣(﹣2)=2,故答案为:2.10.方程(x﹣1)2=3的解为x=1±√3.解:(x﹣1)2=3开平方得,x﹣1=±√3所以x=1±√3.故答案为:1±√3.11.如图,在△ABC中,∠ACB=90°,∠A=50°,D为边AB的中点,则∠BCD=40°.解:在△ABC 中,∠ACB =90°,∠A =50°,∴∠B =40°,∵D 为线段AB 的中点,∴CD =BD ,∴∠BCD =∠B =40°.故答案为:40.12.如图,在平行四边形ABCD 中,CE 平分∠BCD ,BC =6,AE =2,则CD = 4 .解:∵在▱ABCD 中,CE 平分∠BCD 交AD 于点E ,∴∠DEC =∠ECB ,∠DCE =∠BCE ,BC =AD ,∴∠DEC =∠DCE ,∴DE =DC ,∵AD =BC =6,AE =2,∴DE =DC =6﹣2=4.故答案为:4.13.某校举办“五月的鲜花”演唱比赛,十位评委对每位同学的演唱进行现场打分.已知甲、乙两位同学得分的平均数都是8.6,如图是甲、乙两位同学得分的折线图及表示得分平均数的水平直线:如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致,据此推断:甲、乙两位同学中,评委对 甲 的评价更一致(填“甲”或“乙”).解:甲同学的方差S 2甲=110×[2×(7﹣8.6)2+2×(8﹣8.6)2+4×(9﹣8.6)2+2×(10﹣8.6)2]=1.04, 乙同学的方差S 2乙=110×[4×(7﹣8.6)2+2×(9﹣8.6)2+4×(10﹣8.6)2]=1.84,∵S 2甲<S 2乙,∴评委对甲同学演唱的评价更一致.故答案为:甲.14.已知关于x 的方程x 2+4x +m =0有两个不相等的实数根,写出一个符合条件的m 的值为 3(答案不唯一) .解:∵关于x 的方程x 2+4x +m =0有两个不相等的实数根,∴Δ=42﹣4m >0,解得:m <4,则m =3,故答案为:3(答案不唯一).15.小红和小明从甲地出发,骑自行车沿同一条路到距甲地24千米的乙地参加活动.如图,折线OA ﹣AB 和线段CD 分别表示小红和小明离甲地的距离y (单位:km )与时间t (单位:h )之间函数关系的图象.根据图中提供的信息,当小明到达乙地时,小红还有 0.5 小时到达乙地,此时小红距乙地 4 千米.解:由图象可得,当小明到达乙地时,小红还有2.5﹣2=0.5(小时)到达乙地,设AB 段对应的函数解析式为y =kx +b ,∵点(0.5,8),(2.5,24)在该函数图象上,∴{0.5k +b =82.5k +b =24, 解得{k =8b =4, ∴AB 段对应的函数解析式为y =8x +4,当x =2时,y =8×2+4=20,∵24﹣20=4(千米),∴当小明到达乙地时,此时小红距乙地4千米,故答案为:0.5,4.16.如图,在矩形ABCD中,AB=4,AD=6,P,Q分别是边AD,BC上的动点,点P从A出发到D停止运动,点Q从C出发到B停止运动,若P,Q两点以相同的速度同时出发,匀速运动.下面四个结论中,①存在四边形APCQ是矩形;②存在四边形APCQ是菱形;③存在四边形APQB是矩形;④存在四边形APQB是正方形;所有正确结论的序号是①②③.解:在矩形ABCD中,AB=4,AD=6,∴AB=CD=4,AD=BC=6,∠A=∠B=∠C=∠D=90°,①当点P与D重合,点C与B重合时,存在四边形APCQ是矩形;故①正确;②∵AP=CQ,AP∥CQ,∴四边形APCQ是平行四边形,当AP=CP时,四边形APCQ是菱形,设AP=x,则CP=x,PD=6﹣x,∵∠D=90°,∴PC2=PD2+CD2,∴x2=(6﹣x)2+42,解得x=13 2,故当AP=132时,四边形APCQ是菱形;故②正确;③当AP=BQ时,四边形APQB是矩形,∵AP=CQ,∴BQ=CQ=12BC=3,当AP=3时,四边形APQB是矩形,故③正确;④不存在四边形APQB是正方形,理由:当AP =AB =BQ =4,则CQ =2,∵AP =CQ ,∴BQ =CQ =4,∵BC =BQ +CQ =6,∴不存在四边形APQB 是正方形,故答案为:①②③.三、解答题(本题共68分,第17-19题,每题5分,第20-22题,每题6分,第23题5分,第24,25题,每题6分,第26题5分,第27题7分,第28题6分)17.解不等式组:{x >2x −1x −1<x 2. 解:{x >2x −1①x −1<x 2②, 解不等式①,得x <1;解不等式②,得x <2;∴不等式组的解集是x <1.18.解方程:x 2+4x ﹣5=0.解:原方程变形为(x ﹣1)(x +5)=0∴x 1=﹣5,x 2=1.19.如表是一次函数y =kx +b (k ≠0)中x 与y 的两组对应值.(1)求该一次函数的表达式;(2)求该一次函数的图象与x 轴的交点坐标.解:(1)设函数解析式为y =kx +b (k ≠0),把(0,﹣4)和(3,2)分别代入解析式,得{b=−4,3k+b=2,∴{k=2b=−4∴一次函数的表达式:y=2x﹣4;(2)令y=0,∴2x﹣4=0,∴x=2,∴该一次函数的图象与x轴的交点坐标(2,0).20.(6分)下面是小红设计的“已知直角作矩形”的尺规作图过程.已知:如图,∠A=90°.求作:矩形ABCD.作法:如图,①在∠A的两边上分别任取点B,D(不与点A重合);②以点B为圆心,AD长为半径画弧,以点D为圆心,AB长为半径画弧,两弧在∠A的内部交于点C;③连接BC,CD.所以四边形ABCD即为所求作的矩形.根据小红设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下列证明.证明:∵AB=CD,AD=BC,∴四边形ABCD是平行四边形(对边相等的四边形是平行四边形)(填推理的依据),又∵∠A=90°,∴四边形ABCD是矩形(有一个角是90°的平行四边形是矩形)(填推理的依据).(1)解:图形如图所示:(2)证明:∵AB=CD,AD=BC,∴四边形ABCD是平行四边形(对边相等的四边形是平行四边形),又∵∠A=90°,∴四边形ABCD是矩形(有一个角是90°的平行四边形是矩形),故答案为:BC,对边相等的四边形是平行四边形,有一个角是90°的平行四边形是矩形.21.(6分)已知关于x的一元二次方程x2+bx﹣3=0.(1)求证:方程总有两个不相等的实数根;(2)若方程的一个根是1,求b的值及方程的另一个根.解:(1)∵b2﹣4ac=b2﹣4×1×(﹣3)=b2+12>0,∴方程总有两个不相等的实数根;(2)设方程的另一个根为m,由根与系数关系得1×m=﹣3,解得m=﹣3,∴方程的另一个根为﹣3.∵x1+x2=−b a,∴﹣b=1+(﹣3),∴b=2.22.(6分)如图,在△ABC中,AB=BC,D,E分别是AB,AC的中点,AF∥DE,EF∥AD.(1)求证:四边形ADEF是菱形;(2)连接DF,若AB=10,AC=12,求DF的长.(1)证明:∵AF∥DE,EF∥AD,∴四边形ADEF是平行四边形,∵D,E分别是AB,AC的中点,∴AD=12AB,DE是△ABC的中位线,∴DE=12 BC,∵AB=BC,∴AD=DE,∴四边形ADEF是菱形;(2)解:连接DF交AE于O,∵四边形ADEF是菱形,∴AE⊥DF,AO=12AE,OD=12DF,∵D,E分别是AB,AC的中点,AB=10,AC=12,∴AD=5,AC=6,∴AO=3,∴DO=√AD2−AO2=√52−32=4,∴DF=8.23.某校打算用14m的篱笆,在墙边(墙足够长)围成一个矩形区域,作为“养殖基地”(篱笆只围AB,BC,CD三边),当矩形区域的面积是24m2时,求它的长和宽.解:矩形区域的宽为x m,则它的长为(14﹣2x)m,根据题意得,x(14﹣2x)=24,解得,x1=3,x2=4,∴14﹣2x =8或6,答:矩形区域的宽为3m 或4m ,则它的长为8m 或6m .24.(6分)在平面直角坐标系xOy 中,直线l 1:y =﹣x +1与x 轴交于点A ,直线l 2:y =kx ﹣3(k ≠0)与y 轴交于点B ,与l 1交于点C .(1)求△OAB 的面积;(2)若△OBC 的面积是△OAB 面积的2倍,求k 的值.解:(1)∵直线l 1:y =﹣x +1与x 轴交于点A ,∴A (1,0),∵直线l 2:y =kx ﹣3(k ≠0)与y 轴交于点B ,∴B (0,﹣3),∴OA =1,OB =3,∴△OAB 的面积:12OA ⋅OB =12×1×3=32; (2)∵△OBC 的面积是△OAB 面积的2倍,∴12OB ⋅|x C |=32×2,即12×3×|x C |=3, ∴点C 的横坐标为x =2或x =﹣2,把x =2代入y =﹣x +1得,y =﹣1;把x =﹣2代入y =﹣x +1得,y =3;∴点C 的坐标为(2,﹣1)或(﹣2,3),把(2,﹣1)代入y =kx ﹣3得,﹣1=2k ﹣3,解得k =1,把(﹣2,3)代入y =kx ﹣3得,3=﹣2k ﹣3,解得k =﹣3,∴k 的值为1或﹣3.25.(6分)2023年5月30日,神舟十六号载人飞船发射取得圆满成功.为普及航天知识,某中学举办了一次“航天知识竞赛”,共有1000名学生参加.为更好的了解本次比赛得分的分布情况,随机抽取了部分学生的比赛得分,进行收集、整理、描述和分析.下面给出了部分信息(数据分成5组:50≤x <60,60≤x <70,70≤x <80,80≤x <90,90≤x ≤100):a .学生比赛得分频数分布表:b .学生比赛得分频数分布直方图:c .学生比赛得分在80≤x <90这一组的是:80,81,83,82,86,87,85,81,89,88,85,86,80,83;根据以上信息,回答下列问题:(1)e = 0.28 ,f = 50 ;(2)请补全频数分布直方图;(3)若得分在85分及以上均为“优秀”,请估计参加这次比赛的1000名学生中得分优秀的人数. 解:(1)由题意得,f =5÷0.10=50,e =1.00﹣0.10﹣0.12﹣0.30﹣0.20=0.28,故答案为:0.28,50;(2)m =50×0.12=6,n =50×0.28=14,补全频数分布直方图如下:(3)1000×7+1050=340(名),答:估计参加这次比赛的1000名学生中得分优秀的人数大约为340名.26.在平面直角坐标系xOy 中,一次函数y =kx +2(k ≠0)的图象经过点(﹣1,0).(1)求k 的值;(2)当x >0时,对于x 的每一个值,一次函数y =﹣x +b 的值小于一次函数y =kx +2(k ≠0)的值,直接写出b 的取值范围.解:(1)∵一次函数y =kx +2(k ≠0)的图象经过点(﹣1,0).∴﹣k +2=0,解得k =2,∴一次函数解析式:y =2x +2;(2)解不等式﹣x +b <2x +2得x >b−23, 由题意得b−23≤0,即b ≤2.27.(7分)如图,在正方形ABCD 中,E 是边BC 上的一动点(不与点B ,C 重合),AF ⊥AE 于点A ,AF =AE ,连接BF ,DE .(1)求证:∠ABF =∠ADE ;(2)延长FB ,DE ,交于点G ,连接AG .①依题意补全图形;②用等式表示线段EG ,FG ,AG 之间的数量关系,并证明.(1)证明:∵四边形ABCD 为正方形,∴AB =AD ,∠BAC =90°,∴∠DAE +∠BAE =90°,又∵AF ⊥AE ,AF =AE ,∴∠EAF =90°,∴∠BAF +∠BAE =90°,∴∠BAF =∠DAE ,在△ABF 和△ADE 中,{AB =AD∠BAF =∠DAE AF =AE,∴△ABF ≌△ADE (SAS ),∴∠ABF =∠ADE ,(2)①解:依题意补全图形如下:②线段EG ,FG ,AG 之间的数量关系是:EG +FG =√2AG .证明如下:过点A 作AH ⊥AG 与GD 的延长线交于H ,∵∠BAC =90°,∴∠BAG +∠GAD =90°,∵AH ⊥AG ,则∠GAH =90°,∴∠GAD +∠DAH =90°,∴∠BAG =∠DAH ,∵∠ABG =180°﹣∠ABF ,∠ADH =180°﹣∠ADE ,由(1)知:∠ABF =∠ADE ,∴∠ABG =∠ADH ,在△ABG 和△ADH 中,{∠BAG =∠DAHAB =AD ∠ABG =∠ADH,∴△ABG ≌△ADH (ASA )∴AG =AH ,又∠GAH =90°,∴△AGH 为等腰直角三角形,由勾股定理得:GH =√AG 2+AH 2=√2AG ,即:EG +EH =√2AG ,∵∠EAF =∠GAH =90°,即:∠F AG +∠GAE =∠GAE +∠EAH =90°,∴∠F AG =∠EAH ,在△AFG 和△AEH 中,{AF =AE∠FAG =∠EAH AG =AH,∴△AFG ≌△AEH (SAS ),∴FG =EH ,∴EG +FG =√2AG .28.(6分)在平面直角坐标系xOy 中,给出如下定义:若在图形M 上存在一点P ,且点P 的纵坐标是横坐标的n (n 为正整数)倍,则称点P 为图形M 的“n 倍点”.例如,点(1,4)是直线y =﹣x +5的“4倍点”.(1)在点P 1(1,2),P 2(2,0),P 3(2,4),P 4(85,45)中, P 1(1,2) 是直线y =﹣2x +4的“2倍点”;(2)已知点A 的坐标为(m ,0),点B 的坐标为(m +2,0),以线段AB 为矩形的一边向上作矩形ABCD . ①若m =1,AD =4,判断是否存在矩形ABCD 的“3倍点”,若存在,求出矩形ABCD 的“3倍点”的坐标,若不存在,请说明理由;②若AD =nAB ,且存在矩形ABCD 的“n 倍点”,直接写出m 的取值范围.解:(1)∵P 2(2,0),P 4(85,45)不满足纵坐标是横坐标的2倍, ∴P 2(2,0),P 4(85,45)不是直线y =﹣2x +4的“2倍点”; 而P 3(2,4)不在直线y =﹣2x +4上,∴P 3(2,4)不是直线y =﹣2x +4的“2倍点”;根据“2倍点“定义,P 1(1,2)在直线y =﹣2x +4上,纵坐标是横坐标的2倍,∴P 1(1,2)是直线y =﹣2x +4的“2倍点”;故答案为:P 1(1,2);(2)①当m =1,AD =4时,存在矩形ABCD 的“3倍点”,理由如下:如图:此时A (1,0),B (3,0),C (3,4),D (1,4),若矩形ABCD 的“3倍点”在AD 上,则矩形ABCD 的“3倍点”为(1,3)满足条件; 若矩形ABCD 的“3倍点”在CD 上,则矩形ABCD 的“3倍点”为(43,4)满足条件; 根据定义,AB ,BC 上不存在矩形ABCD 的“3倍点”,∴矩形ABCD 的“3倍点”的坐标为(1,3)或(43,4); ②如图:∵A (m ,0),B (m +2,0),∴AB =2,∵AD =nAB ,∴AD =2n =BC ,∴A (m ,0),B (m +2,0),C (m +2,2n ),D (m ,2n ),若矩形ABCD 的“n 倍点”在AD 上,则矩形ABCD 的“n 倍点”坐标为(m ,mn ), ∴0≤mn ≤2n ,∵n 为正整数,∴0≤m ≤2;若矩形ABCD 的“n 倍点”在CD 上,则矩形ABCD 的“n 倍点”坐标为(2,2n ),∴m≤2≤m+2,解得:0≤m≤2;若矩形ABCD的“n倍点”在BC上,则矩形ABCD的“n倍点”坐标为(m+2,mn+2n),∴0≤mn+2n≤2n,即﹣2n≤mn≤0,∵n为正整数,∴﹣2≤m≤0;根据定义,AB上不可能存在矩形ABCD的“n倍点”,综上所述,存在矩形ABCD的“n倍点”,m的范围是0≤m≤2或﹣2≤m≤0.。
四川省成都市锦江区2023-2024学年八年级下学期期末数学试题
四川省成都市锦江区2023-2024学年八年级下学期期末数学试题一、单选题1.道路交通标志是用文字和图形符号对车辆、行人传递指示、指路、警告、禁令等信号的标志.下列交通标志中,是中心对称图形的是( )A .B .C .D . 2.下列从左到右的变形中,是因式分解的是( )A .255ab a b b =⋅⋅B .()24444a a a a ++=++C .()()2933m m m -=+-D .()22369x x x +=++ 3.在平面直角坐标系中,将点()3,2A -向右平移4个单位长度后的对应点的坐标是( ) A .()1,2-- B .()7,2- C .()3,6- D .()3,2 4.若a b <,则下列各式中一定成立的是( )A .0a b ->B .55a b ->-C .22ax bx <D .2121a b +<+ 5.如图,一次函数y kx b =+与y mx =的图象交于点()1,2P ,则关于x 的不等式mx kx b <+的解集为( )A .1x <B .1x >C .2x <D .2x > 6.如图,在ABCD Y 中,对角线AC ,BD 相交于点O .若90ADB ∠=︒,4=AD ,6BD =,则AC 的长为( )A .5B .6C .8D .107.植树节的起源可以追溯到中国古代“孟春之月,盛德在木”的传统观念,这体现了古人对树木的深深敬仰.2024年4月3日上午,习近平总书记参加首都义务植树活动,和少先队员一起植树,说道:“愿小朋友们像小树苗一样,都能长成中华民族的参天大树.”某校在“植树节”期间带领学生开展植树活动,甲、乙两班同时开始植树,甲班比乙班每小时多植4棵树,植树活动结束时,甲、乙两班同时停止植树,甲班共植80棵树,乙班共植60棵树.设乙班每小时植x 棵树,依题意可列方程为( )A .80604x x =+B .80604x x =-C .80604x x =-D .806044x x =+- 8.如图,在ABC V 中,30A ∠=︒,45B ∠=︒,CD 平分ACB ∠交AB 于点D ,作DE A C ⊥于E .若AE =cm ,则DB 的长为( )A.1cm B .2cm C cm D cm二、填空题9.分解因式:22xy xy x -+=.10.若分式33x x -+的值为零,那么x 的值为.11.如图,在正五边形ABCDE 中,连接AC AD 、,则CAD ∠的度数是度.12.已知,一次函数()225y k x =-+的值随x 值的增大而减小,则常数k 的取值范围是.13.如图,在Rt ABC △中,90BAC ∠=︒,分别以点C ,B 为圆心,以大于12BC 为半径画弧,两弧相交于点M ,N ,作直线MN 分别交,AB CB 于点D ,E ,连接,CD AE 相交于点P .若25B ∠=︒,则APC ∠的大小为.三、解答题14.(1)解方程:11233x x x-+=--; (2)解不等式组()5131137122x x x x ⎧+>-⎪⎨-≤-⎪⎩ 15.如图,由若干个小正方形构成的网格中有一个三角形ABC ,它的三个顶点都在格点上(网格线的交点).(1)以点O 为旋转中心,将ABC V 旋转180︒,得到111A B C △,请画出111A B C △;(2)若点A 的坐标为()3,2-,请直接写出点B 的坐标;(3)过点O 作AB 的平行线EF (点E ,F 在格点上,不与点O 重合).16.依法纳税是每个公民应尽的义务,自2018年10月1日起,个人所得税的起征点是5000元,具体税率如下表所示:(1)某电脑组装公司实行“基础工资+计件工资”制,基础工资为每月3000元,每组装1台电脑10元.请直接写出纳税前月工资y (元)与组装电脑台数x 之间的函数关系式;(2)如果小王在6月份组装了电脑700台,那么小王6月份纳税后应领取工资多少元? 17.如图,在ABC V 中,点D ,E 分别是AB ,AC 的中点,连接DE ,CF 平分ACB ∠交DE 于点F ,连接AF 并延长交BC 于G .(1)求证:EF EC =;(2)若FGC α∠=,求FCG ∠的大小(用含α的式子表示):(3)用等式表示线段AC ,BC ,DF 的数量关系,并说明理由.18.如图1,在ABCD Y 中,O 是对角线AC 的中点,过点O 的直线EF 分别与AD ,BC 交于点E ,F ,将四边形ABFE 沿EF 折叠得到四边形MNFE ,点M 在AD 上方,MN 交线段CD 于点H ,连接OH .(1)求证:EM FC =;(2)求证:OH EF ⊥;(3)如图2,若MN CD ⊥,60ABC ∠=︒,4BF =+2FC =,求OH 的长.四、填空题19.已知6x y +=,4xy =,则代数式22x y+的值是. 20.如图,AC 是ABCD Y 的对角线,延长BA 至E ,使A E A B =,点O 是AC 的中点,连接EO ,EC .EC 与AD 相交于点F ,若CDF V 是等边三角形,2CD =,则OE 的长为.21.已知关于x 的不等式组022x a x -≤⎧⎨>-⎩有且仅有4个整数解,关于y 的分式方程2133m y y -=++有增根,则不等式组的整数解x 是不等式mx x m ≥+的解的概率为.22.如图,在Rt ABC △中,90C ∠=︒,2AC =,3BC =.将ABC V 沿射线CB 平移得到A B C '''V ,将AB 绕着点A 逆时针旋转90︒得到线段AD ,连接DA ',DB '.在ABC V 的平移过程中,A B D ''V 的周长的最小值为.23.定义:在平面直角坐标系中,如果直线()0y kx b k =+≠上的点(),M m n 经过一次变换后得到点12,2M n m '⎛⎫ ⎪⎝⎭,那么称这次变换为“逆倍分变换”.如图,直线24y x =-+与x 轴、y 轴分别相交于点A ,B .点P 为该直线上一点,若经过一次“逆倍分变换”后,得到的对应点P '与点P 重合,则点P 的坐标为;点Q 为该直线上一点,若经过一次“逆倍分变换”后,得到的对应点Q ',使得ABQ 'V 和ABO V 的面积相等,则点Q 的坐标为.五、解答题24.军事演习,简称军演,是在想定情况诱导下进行的近似实战的综合性训练,是军事训练的高级阶段.在一次军事演习中,某军队接到上级指令执行登岛计划,接到指令时,该军队的舰艇A 距离该小岛40千米,舰艇B 距离该小岛60千米,于是舰艇B 加速前进,速度是舰艇A 的2倍,结果舰艇B 提前10分钟到达,顺利完成了登岛任务.(1)求舰艇A ,B 的速度;(2)根据情况,每天要派一艘舰艇在小岛周围巡航,巡航需持续一个月(30天),已知舰艇A ,B 的巡航费用分别为50万元/天,40万元/天.①求巡航总费用W 与舰艇A 的巡航天数a 之间的函数关系式;②若舰艇B 巡航天数不能超过舰艇A 的2倍,要使巡航的费用最少,舰艇A 应巡航多少天? 25.如图,在平面直角坐标系xOy 中,直线y kx b =+与x 轴、y 轴分别交于A ,B 两点,45OAB ∠=︒,点A 的坐标为()4,0.点(),C m n 是线段AB 上一点,连接OC 并延长至D ,使D C O C =,连接BD .(1)求直线AB 的表达式;(2)若BCD △是直角三角形,求点C 的坐标;(3)若直线218y mx n =+-与BCD △的边有两个交点,求m 的取值范围.26.如图,在ABC V 下方的直线MN AB ∥.(1)P 为直线MN 上一动点,连接PA ,PB .若ABC APM ∠=∠,CAB BPN ∠=∠. ①如图1,求证:四边形APBC 是平行四边形;②如图2,90ACB ∠=︒,2AC BC =,作BD MN ⊥于点D ,连接CD ,若CD =PD 的长;(2)如图3,90ACB ∠=︒,1BC =,作BD MN ⊥于点D ,连接AD ,CD ,若ABD △的面积始终为3,求CD 长的最大值.。
上海市静安区八年级(下)期末数学试卷答案
2015-2016学年上海市静安区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6题,每题3分,满分18分)【每题只有一个正确选项,在答题纸相应位置填涂】1.(3分)(2016春•静安区期末)当a<0时,|a﹣1|等于()A.a+1 B.﹣a﹣1 C.a﹣1 D.1﹣a【分析】根据负有理数的绝对值是它相反数得结论做出正确判断.【解答】解:当a<0时,即a<1,则|a﹣1|=1﹣a;故选D.【点评】本题考查了绝对值的性质,熟练掌握性质是做好此题的关键:①正有理数的绝对值是它本身;②负有理数的绝对值是它的相反数;③零的绝对值是零.2.(3分)(2016春•静安区期末)下列方程中,是无理方程的为()A.B.C.D.【分析】可以判断各选项中的方程是什么方程,从而可以得到哪个选项是正确的.【解答】解:是一元二次方程,是无理方程,=0是分式方程,是一元一次方程,故选B.【点评】本题考查无理方程,解题的关键是明确无理方程的定义.3.(3分)(2016春•静安区期末)某市出租车计费办法如图所示.根据图象信息,下列说法错误的是()A.出租车起步价是10元B.在3千米内只收起步价C.超过3千米部分(x>3)每千米收3元D.超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+4【分析】根据图象信息一一判断即可解决问题.【解答】解:由图象可知,出租车的起步价是10元,在3千米内只收起步价,设超过3千米的函数解析式为y=kx+b,则,解得,∴超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+4,超过3千米部分(x>3)每千米收2元,故A、B、D正确,C错误,故选C.【点评】此题主要考查了一次函数的应用、学会待定系数法确定函数解析式,正确由图象得出正确信息是解题关键,属于中考常考题型,4.(3分)(2016春•静安区期末)下列关于向量的运算,正确的是()A.B.C.D.【分析】由三角形法则直接求解即可求得答案,注意掌握排除法在选择题中的应用.【解答】解:A、+=,故本选项正确;B、﹣=,故本选项错误;C、﹣=,故本选项错误;D、﹣=,故本选项错误.故选:A.【点评】此题考查了平面向量的知识,注意掌握三角形法则的应用是解题关键.5.(3分)(2016春•静安区期末)有一个不透明的袋子中装有3个红球、1个白球、1个绿球,这些球只是颜色不同.下列事件中属于确定事件的是()A.从袋子中摸出1个球,球的颜色是红色B.从袋子中摸出2个球,它们的颜色相同C.从袋子中摸出3个球,有颜色相同的球D.从袋子中摸出4个球,有颜色相同的球【分析】根据袋子中装有3个红球、1个白球、1个绿球以及必然事件、不可能事件、随机事件的概念解答即可.【解答】解:从袋子中摸出1个球,球的颜色是红色是随机事件;从袋子中摸出2个球,它们的颜色相同是随机事件;从袋子中摸出3个球,有颜色相同的球是随机事件;从袋子中摸出4个球,有颜色相同的球是不可能事件,故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.(3分)(2016春•静安区期末)已知四边形ABCD中,AB与CD不平行,AC与BD 相交于点O,那么下列条件中能判定四边形ABCD是等腰梯形的是()A.AC=BD=BC B.AB=AD=CD C.OB=OC,AB=CD D.OB=OC,OA=OD【分析】根据等腰梯形的判定推出即可.【解答】解:A、AC=BD=BC,不能证明四边形ABCD是等腰梯形,错误;B、AB=AD=CD,不能证明四边形ABCD是等腰梯形,错误;C、OB=OC,AB=CD,不能证明四边形ABCD是等腰梯形,错误;D、∵OB=OC,OA=OD,∴∠OBC=∠OCB,∠OAD=∠ODA,在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),∴∠ABO=∠DCO,AB=CD,同理:∠OAB=∠ODC,∵∠ABC+∠DCB+∠CDA+∠BAD=360°,∴∠DAB+∠ABC=180°,∴AD∥BC,∴四边形ABCD是梯形,∵AB=CD,∴四边形ABCD是等腰梯形.故选D【点评】本题考查了平行四边形的判定、全等三角形的判定和性质以及等腰梯形的判定的应用,解此题的关键是求出AD∥BC,题目的综合性较强,难度中等.二、填空题(本大题共12题,每题3分,满分36分)【请将结果直接填入答题纸的相应位置上】7.(3分)(2016春•静安区期末)如果一次函数y=(k﹣2)x+1的图象经过一、二、三象限,那么常数k的取值范围是k>2 .【分析】根据一次函数图象所经过的象限确定k的符号.【解答】解:∵一次函数y=(k﹣2)x+1(k为常数,k≠0)的图象经过第一、二、三象限,∴k﹣2>0.解得:k>2,故填:k>2;【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.8.(3分)(2016春•静安区期末)方程x3+1=0的根是﹣1 .【分析】先求出x3,再根据立方根的定义解答.【解答】解:由x3+1=0得,x3=﹣1,∵(﹣1)3=﹣1,∴x=﹣1.故答案为:﹣1.【点评】本题考查了立方根的定义,是基础题,熟记概念是解题的关键.9.(3分)(2016春•静安区期末)方程的根是x=0 .【分析】先去分母,再解整式方程,最后检验即可.【解答】解:去分母得,x2+3x=0,解得x=0或﹣3,检验:把x=0代入x+3=3≠0,∴x=0是原方程的解;把x=﹣3代入x+3=﹣3+3=0,∴x=﹣3不是原方程的解,舍去;∴原方程的解为x=0,故答案为x=0.【点评】本题考查了分式方程的解,注意验根是解题的关键.10.(3分)(2016春•静安区期末)用换元法解方程组时,如果设,,那么原方程组可化为关于u、v的二元一次方程组是.【分析】设,,则=3u,=2v,从而得出关于u、v的二元一次方程组.【解答】解:设,,原方程组变为,故答案为.【点评】本题考查用换元法使分式方程简便.换元后再在方程两边乘最简公分母可以把分式方程转化为整式方程.应注意换元后的字母系数.11.(3分)(2016春•静安区期末)已知函数,那么= .【分析】把自变量x=﹣代入函数解析式进行计算即可得解.【解答】解:∵,∴=;故答案为.【点评】本题考查了函数值的求解,把自变量的值代入函数解析式进行计算即可,比较简单.12.(3分)(2016春•静安区期末)从2、3、4这三个数字中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数是素数的概率是.【分析】列表列举出所有情况,看两位数是素数的情况数占总情况数的多少即可解答.【解答】解:列表如下:2 3 42 (2,2)(2,3)(2,4)3 (3,2)(3,3)(3,4)4 (4,2)(4,3)(4,4)共有9种等可能的结果,其中是素数的有3种,概率为;故答案为:【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.13.(3分)(2016春•静安区期末)如果一个n边形的内角和是1440°,那么n= 10 .【分析】根据多边形的内角和公式:(n﹣2)×180°,列出方程,即可求出n的值.【解答】解:∵n边形的内角和是1440°,∴(n﹣2)×180°=1440°,解得:n=10.故答案为:10.【点评】本题主要考查多边形内角和公式,关键在于根据题意正确的列出方程,认真的解方程即可.14.(3分)(2016春•静安区期末)如果菱形的边长为5,相邻两内角之比为1:2,那么该菱形较短的对角线长为 5 .【分析】根据已知可得较小的内角为60°,从而得到较短的对角线与菱形的一组邻边组成一个等边三角形,从而可求得较短对角线的长度.【解答】解:如图所示:∵菱形的边长为5,∴AB=BC=CD=DA=5,∠B+∠BAD=180°,∵菱形相邻两内角的度数比为1:2,即∠B:∠BAD=1:2,∴∠B=60°,∴△ABC是等边三角形,∴AC=AB=5;故答案为:5.【点评】本题考查了菱形的性质以及等边三角形的判定方法;熟练掌握菱形的性质,证明三角形是等边三角形是解决问题的关键.15.(3分)(2016春•静安区期末)在Rt△ABC中,∠C=90°,AC=6,BC=8,点D、E分别是AC、AB边的中点,那么△CDE的周长为12 .【分析】利用勾股定理求得边AB的长度,然后结合三角形中位线定理得到DE=AB,则易求△CDE的周长.【解答】解:∵在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB===10.又∵点D、E分别是AC、AB边的中点,∴CE=BC=4,CD=AC=3,ED是△ABC的中位线,∴DE=AB=5,∴△CDE的周长=CE+CD+ED=4+3+5=12.故答案是:12.【点评】本题考查了三角形中位线定理和勾股定理.根据勾股定理求得AB的长度是解题的关键.16.(3分)(2016春•静安区期末)如图,已知正方形ABCD的边长为1,点E在边DC 上,AE平分∠DAC,EF⊥AC,点F为垂足,那么FC= ﹣1 .【分析】根据正方形的性质和已知条件可求得AF,AC的长,从而不难得到FC的长.【解答】解:∵四边形ABCD是正方形,∴AB=BC=AD=CD=1,∠D=∠B=90°,∴AC==,∵AE平分∠DAC,EF⊥AC交于F,∴AF=AD=1,∴FC=AC﹣AF=﹣1,故答案为:;【点评】本题主要考查了正方形的性质、勾股定理、角平分线的性质;熟练掌握正方形的性质,求出AF=AD是解决问题的关键.17.(3分)(2016春•静安区期末)一次函数y=x+2的图象经过点A(a,b),B(c,d),那么ac﹣ad﹣bc+bd的值为 4 .【分析】先根据点A、B的坐标代入解析式,再代入代数式计算即可求解.【解答】解:把点A、B的坐标代入解析式,可得:a+2=b,c+2=d,所以ac﹣ad﹣bc+bd=ac﹣a(c+2)﹣(a+2)c+(a+2)(c+2)=4;故答案为:4【点评】本题主要考查了待定系数法求函数解析式,代数式求值,求出一次函数解析式是解题的关键.18.(3分)(2016春•静安区期末)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,∠BCD=60°,CD=5.将梯形ABCD绕点A旋转后得到梯形AB1C1D1,其中B、C、D 的对应点分别是B1、C1、D1,当点B1落在边CD上时,点D1恰好落在CD的延长线上,那么DD1的长为.【分析】先根据旋转的性质得出△DAB≌△D1AB1,再根据全等三角形的性质以及等腰三角形的性质,得出∠2=∠3,然后根据平行线的性质,得出∠2=∠4,若设∠1=∠2=∠3=∠4=α,则根据∠2+∠3+∠5=180°,可以求得α的度数为60°,最后根据△ADD1、△BCD都是等边三角形,求得DD1=AD=.【解答】解:如图,将梯形ABCD绕点A旋转后得到梯形AB1C1D1,连接BD,由旋转得:AD=AD1,AB=AB1,∠DAD1=∠BAB1,∴∠DAB=∠D1AB1,且∠1=∠3,在△DAB和△D1AB1中,,∴△DAB≌△D1AB1(SAS),∴∠1=∠2,∴∠2=∠3,∵AD∥BC,∴∠2=∠4,设∠1=∠2=∠3=∠4=α,则∠5=180°﹣∠4﹣∠C=120°﹣α,∵∠2+∠3+∠5=180°,∴α+α+120°﹣α=180°,解得α=60°,∴∠1=∠2=∠3=∠4=60°,∴△ADD1、△BCD都是等边三角形,∴BD=CD=5,∠ABD=30°,∴Rt△ABD中,AD=BD=,∴DD1=AD=.故答案为:【点评】本题以旋转为背景,主要考查了全等三角形与等边三角形.解题时注意,旋转前后的对应边相等,对应点与旋转中心所连线段的夹角等于旋转角,这是解题的关键.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时需要添加适当辅助线构造三角形.附加题(本题最高得3分,当整卷总分不满120分时,计入总分,整卷总分不超过120分)19.(2016春•静安区期末)如果关于x的方程m2x2﹣(m﹣2)x+1=0的两个实数根互为倒数,那么m= ﹣1 .【分析】先根据根与系数的关系得到=1,解得m=﹣1或m=1,然后根据判别式的意义确定满足条件的m的值.【解答】解:∵方程m2x2﹣(m﹣2)x+1=0的两个实数根互为倒数,∴=1,解得m=1或m=﹣1,当m=1时,方程变形为x2+x+1=0,△=1﹣4×1×1=﹣3<0,方程没有实数解,所以m的值为﹣1.故答案为:﹣1.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.三、解答题(本大题共8题,满分66分)[将下列各题的解答过程,做在答题纸上] 20.(8分)(2014•常熟市校级二模)先化简,再求值:,其中x=.【分析】要熟悉混合运算的顺序,分式的除法转化为分式的乘法运算,最后算减法,注意化简后,将x=代入化间后的式子求出即可.【解答】解:原式=÷+,=×+,=+,=,当x=+1,原式=【点评】此题主要考查了分式混合运算,要注意分子、分母能因式分解的先因式分解;除法要统一为乘法运算是解题关键.21.(8分)(2016春•静安区期末)解方程:.【分析】分析:将方程中左边的一项移项得:,两边平方得,,两边再平方得x﹣3=1,解得x=4,最后验根,可求解.【解答】解:,,,x﹣3=1,x=4.经检验:x=4是原方程的根,所以原方程的根是x=4.【点评】本试题是考查无理方程的解法,通常这类方程都是用平方法或换元法,将无理方程化为无理方程再求解.值得注意的是解无理方程要验根.22.(8分)(2016春•静安区期末)解方程组:.【分析】先把第二个方程因式分解,把二元二次方程组转化为二元一次方程组,求解即可.【解答】解:由②得x﹣4y=0或x+3y=0,原方程组可化为(Ⅰ)(Ⅱ),解方程组(Ⅰ)得,方程组(Ⅱ)无解,所以原方程组的解是.【点评】本题考查了高次方程的解法,解方程组的思想是把二元二次方程组转化为二元一次方程组.23.(8分)(2016春•静安区期末)如图,在梯形ABCD中,AD∥BC,BC=2AD,过点A作AE∥DC交BC于点E.(1)写出图中所有与互为相反向量的向量:,,;(2)求作:、.(保留作图痕迹,写出结果,不要求写作法)【分析】(1)根据平行四边形的性质即可解决问题.(2)根据向量和差定义即可解决.【解答】解:(1)∵AD∥EC,AE∥DC,∴四边形AECD是平行四边形,∴AD=EC,∵BC=2AD,∴BE=EC,∴所有与互为相反向量的向量有、、.(2)如图﹣=,+=+=,图中.就是所求的向量.【点评】本题考查梯形、平行四边形的性质,向量等知识,解题的关键是理解向量的定义以及向量和差定义,属于中考常考题型.24.(8分)(2016春•静安区期末)已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,垂足分别为E、F,AE、CF分别与BD相交于点G、H,联结AH、CG.求证:四边形AGCH是平行四边形.【分析】法1:由平行四边形对边平行,且CF与AD垂直,得到CF与BC垂直,根据AE 与BC垂直,得到AE与CF平行,得到一对内错角相等,利用等角的补角相等得到∠AGB=∠DHC,根据AB与CD平行,得到一对内错角相等,再由AB=CD,利用AAS得到三角形ABG与三角形CDH全等,利用全等三角形对应边相等得到AG=CH,利用一组对边平行且相等的四边形为平行四边形即可得证;法2:连接AC,与BD交于点O,利用平行四边形的对角线互相平分得到OA=OC,OB=OD,再由AB与CD平行,得到一对内错角相等,根据CF与AD垂直,AE与BC垂直,得一对直角相等,利用ASA得到三角形ABG与三角形CDH全等,利用全等三角形对应边相等得到BG=DH,根据等式的性质得到OG=OH,利用对角线互相平分的四边形为平行四边形即可得证.【解答】证明:法1:在□ABCD中,AD∥BC,AB∥CD,∵CF⊥AD,∴CF⊥BC,∵AE⊥BC,∴AE∥CF,即AG∥CH,∴∠AGH=∠CHG,∵∠AGB=180°﹣∠AGH,∠DHC=180°﹣∠CHG,∴∠AGB=∠DHC,∵AB∥CD,∴∠ABG=∠CDH,∴△ABG≌CDH,∴AG=CH,∴四边形AGCH是平行四边形;法2:连接AC,与BD相交于点O,在□ABCD中,AO=CO,BO=DO,∠ABE=∠CDF,AB∥CD,∴∠ABG=∠CDH,∵CF⊥AD,AE⊥BC,∴∠AEB=∠CFD=90°,∴∠BAG=∠DCH,∴△ABG≌CDH,∴BG=DH,∴BO﹣BG=DO﹣DH,∴OG=OH,∴四边形AGCH是平行四边形.【点评】此题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.25.(8分)(2016春•静安区期末)某公司生产的新产品需要精加工后才能投放市场,为此王师傅承担了加工300个新产品的任务.在加工了80个新产品后,王师傅接到通知,要求加快新产品加工的进程,王师傅在保证加工零件质量的前提下,平均每天加工新产品的个数比原来多15个,这样一共用6天完成了任务.问接到通知后,王师傅平均每天加工多少个新产品?【分析】根据关键句子“王师傅在保证加工零件质量的前提下,平均每天加工新产品的个数比原来多15个,这样一共用6天完成了任务”找到等量关系列出方程求解即可.【解答】解:设接到通知后,王师傅平均每天加工x个新产品.根据题意,得.x2﹣65x+550=0,x1=55,x2=10.经检验:x1=55,x2=10都是原方程的解,但x2=10不符合题意,舍去.答:接到通知后,王师傅平均每天加工55个新产品.【点评】此题考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.26.(8分)(2016春•静安区期末)在平面直角坐标系xOy中,一次函数y=x+b的图象与x轴交于点A、与反比例函数(k是常数,k≠0)的图象交于点B(a,3),且这个反比例函数的图象经过点C(6,1).(1)求出点A的坐标;(2)设点D为x轴上的一点,当四边形ABCD是梯形时,求出点D的坐标和四边形ABCD 的面积.【分析】(1)首先利用C点坐标计算出反比例函数中的k的值,进而可得反比例函数解析式,再利用反比例函数解析式计算出B的坐标,把B点坐标代入y=x+b可得B的值,进而可得一次函数解析式,然后可得一次函数y=x+b的图象与x轴交点A的坐标;(2)点D为x轴上的一点,因此不可能出现AD∥BC的情形,只有可能AB∥CD,设直线CD的解析式为y=x+m,把C点坐标代入可得m的值,然后可得D点坐标,分别过点B、C作BE⊥x轴、CF⊥x轴,垂足分别为E、F,然后利用图形中的面积关系计算出四边形ABCD的面积即可.【解答】解:(1)方法一:∵反比例函数经过点C(6,1),∴,∴k=6,∴反比例函数解析式为.∵B(a,3)在该反比例的图象上,∴,∴a=2,即B(2,3),∵y=x+b经过点B(2,3),∴y=x+1,令y=x+1=0,得x=﹣1,∴A(﹣1,0).方法二:∵点C(6,1)与点B(a,3)都在反比例函数的图象上,∴6×1=a×3=k,∴a=2,∴B(2,3).∵y=x+b经过点B(2,3),∴y=x+1,令y=x+1=0,得x=﹣1,∴A(﹣1,0).(2)∵四边形ABCD是梯形,且点D为x轴上的一点,∴不可能出现AD∥BC的情形,只有可能AB∥CD,∵直线AB的解析式为y=x+1,∴可设直线CD的解析式为y=x+m,∵y=x+m经过点C(6,1),∴y=x﹣5,令y=x﹣5=0,得x=5,∴D(5,0),分别过点B、C作BE⊥x轴、CF⊥x轴,垂足分别为E、F,则S梯形ABCD=S△ABE+S梯形BEFC﹣S△DCF,===12.【点评】此题主要考查了反比例函数与一次函数交点问题,以及待定系数法求一次函数和反比例函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.27.(10分)(2016春•静安区期末)已知:如图,在矩形ABCD中,AB=3,点E在AB 的延长线上,且AE=AC,联结CE,取CE的中点F,联结BF、DF.(1)求证:DF⊥BF;(2)设AC=x,DF=y,求y与x之间的函数关系式,并写出定义域;(3)当DF=2BF时,求BC的长.【分析】(1)方法一:如图1中,连接AF,只要证明△ABF≌DCF即可.方法二:如图2中,连接BD,与AC相交于点O,联结OF,只要证明OB=OF=OD即可.(2)由y=DF=即可解决问题.(3)首先证明CE=DF=AF,列出方程即可解决.【解答】(1)证明:方法一:如图1中,连接AF,∵AE=AC,点F为CE的中点,∴AF⊥CE,即∠AFC=90°,∵在矩形ABCD中,AB=CD,∠ABC=∠DCB=90°,∴∠CBE=180°﹣∠ABC=90°,∴EF=BF=CF=,∴∠FBC=∠FCB,即∠ABC+∠FBC=∠DCB+∠FCB,∴∠ABF=∠DCF,在△ABF和△DCF中,,∴△ABF≌DCF,∴∠AFB=∠DFC,∴∠BFD=∠AFB+∠AFD=∠AFD+∠DFC=∠AFC=90°,即DF⊥BF;方法二:如图2中,连接BD,与AC相交于点O,联结OF,∵在矩形ABCD中,AC=BD,OA=OC,OB=OD,∴OA=OC=OB=OD=AC=BD,∵点F是CE的中点,∴OF=AE,∵AE=AC,∴OF=AC=BD,∴OF=OB=OD,∴∠OBF=∠OFB,∠OFD=∠ODF,∵∠OBF+∠OFB+∠OFD+∠ODF=180°,∴2∠OFB+2∠OFD=180°,∴∠OFB+∠OFD=90°,即∠BFD=90°,∴DF⊥BF;(2)解:在Rt△ABC中,BC2=AC2﹣AB2=x2﹣9,∵AE=AC=x,∴BE=x﹣3,∴EC===,∴BF==,∴y=DF===,∴y=(x>3).(3)∵△ABF≌DCF,∴AF=DF,∵在Rt△ABC中,CE=2BF,又∵DF=2BF,∴CE=DF=AF,∴=,∴x1=0,x2=5.经检验,x1=0,x2=5都是方程的根,但x=0不符合题意.∴BC===4.【点评】本题考查四边形综合题、矩形的性质、全等三角形的判定和性质勾股定理等知识,解题的关键是灵活应用这些知识解决问题,学会构建方程解决问题,属于中考压轴题.。
2022-2023学年重庆八中八年级(下)期末数学试卷及答案解析
2022-2023学年重庆八中八年级(下)期末数学试卷一、选择题。
(本大题共10个小题,每小题4分,共40分,其中第10题是多项选择题)1.(4分)下列新能源汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(4分)要使分式有意义,则x的取值范围是()A.x≠﹣1B.x≠1C.x≠±1D.x≠03.(4分)在平行四边形ABCD中,若∠B+∠D=130°,则∠A的度数为()A.105°B.115°C.125°D.135°4.(4分)估计(+)×的值应在()A.3和4之间B.4和5之间C.5和6之间D.7和8之间5.(4分)如图,△ABC和△DEF是以点O为位似中心的位似图形.若OA:AD=2:3,则△ABC与△DEF的周长比是()A.4:9B.2:3C.2:5D.4:256.(4分)有一个人患流感,经过两轮传染后共有64个人患流感,每轮传染中平均一个人传染几个人?设每轮传染中平均一个人传染x个人,可列方程为()A.1+2x=64B.1+x2=64C.1+x+x2=64D.(1+x)2=64 7.(4分)如图,在菱形ABCD中,对角线AC与BD交于点O,在BD上取一点E,使得AE=BE,AB=10,AC=12,则BE长为()A.B.C.D.8.(4分)下列图形都是由同样大小的基本图形按一定规律所组成的,其中第①个图形中一共有5个基本图形,第②个图形中一共有8个基本图形,第③个图形中一共有11个基本图形,第④个图形中一共有14个基本图形,…,按此规律排列,则第⑧个图形中基本图形的个数为()A.23B.24C.26D.299.(4分)如图,在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若△AED的周长是17,BD=8,则等边△ABC的面积是()A.B.C.D.(多选)10.(4分)在平面直角坐标系中,O为坐标原点,一次函数y1=kx+b(k≠0)的图象与反比例函数的图象相交于A(﹣3,5),B(a,﹣3)两点,与x 轴交于点C,下列结论正确的是()A.a=5B.反比例函数y2在每一象限内y随x的增大而增大C.一次函数y1与x轴的交点C是(2,0)D.S△AOB=16二、填空题。
2015-2016学年八年级(下)期中数学试卷含答案解析
2015-2016学年八年级(下)期中数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.使式子有意义,则x的取值范围是()A.x>5 B.x≠5 C.x≥5 D.x≤52.下列二次根式中,属于最简二次根式的是()A.B.C.D.3.下列运算正确的是()A.()2=4 B. =﹣4 C. =×D.﹣=4.如图,直角三角形的三边长分为a、b、c,下列各式正确的是()A.a2+b2=c2B.b2+c2=a2C.c2+a2=b2D.以上都不对5.一个直角三角形的两边长分别为4cm、3cm,则第三条边长为()A.5cm B.4cm C. cm D.5cm 或cm6.下列各组数中不能作为直角三角形的三边长的是()A.1.5,2,3 B.7,24,25 C.6,8,10 D.9,12,157.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm8.菱形具有而矩形不具有的性质是()A.对角线互相平分B.四条边都相等C.对角相等 D.邻角互补9.两条对角线互相垂直平分且相等的四边形是()A.矩形 B.菱形 C.正方形D.都有可能10.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6 B.8 C.10 D.12二、填空题(本题共10小题,每小题4分,共40分)11.如图,△ABC中,D、E分别是AB、AC边的中点,且DE=7cm,则BC= cm.12.写出命题“对顶角相等”的逆命题.13.比较大小:.(填“>、<、或=”)14.如果+(b﹣7)2=0,则的值为.15.如图,有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只小鸟从一棵树的树尖飞到另一棵树的树尖,那么这只小鸟至少要飞行m.16.如图,一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是cm.17.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的面积为cm2.18.菱形的两条对角线长分别为6和8,则这个菱形的周长为.19.若两对角线长分别为4cm和6cm的菱形的面积与一个正方形的面积相等,那么该正方形的边长为cm.20.如图,在矩形ABCD中,AD=4,AB=3,MN∥BC分别交AB、CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积是.三.解答题(共50分)21.计算:(1)(﹣)2﹣+(2)(3﹣)﹣(+)22.已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2(2)a2﹣2ab+b2.23.如图,在四边形ABCD中,∠A=90°,AD=3,AB=4,BC=12,CD=13,试判断△BCD的形状,并说明理由.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.25.如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.26.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.27.已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB= 时,四边形MENF是正方形(只写结论,不需证明).2015-2016学年八年级(下)期中数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.使式子有意义,则x的取值范围是()A.x>5 B.x≠5 C.x≥5 D.x≤5【考点】二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子有意义,∴x﹣5≥0,解得x≥5.故选C.【点评】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.2.下列二次根式中,属于最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的条件进行判断即可.【解答】解: =,被开方数含分母,不是最简二次根式;=,被开方数含分母,不是最简二次根式;=2,被开方数中含能开得尽方的因数,不是最简二次根式;是最简二次根式,故选:D.【点评】本题考查的是最简二次根式的概念,最简二次根式的条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式.3.下列运算正确的是()A.()2=4 B. =﹣4 C. =×D.﹣=【考点】二次根式的混合运算.【分析】分别利用二次根式的性质以及结合二次根式混合运算法则化简求出答案.【解答】解:A、()2=4,正确;B、=4,故此选项错误;C、=×,故此选项错误;D、﹣无法计算,故此选项错误;故选:A.【点评】此题主要考查了二次根式的混合运算以及二次根式的化简,正确掌握二次根式的性质是解题关键.4.如图,直角三角形的三边长分为a、b、c,下列各式正确的是()A.a2+b2=c2B.b2+c2=a2C.c2+a2=b2D.以上都不对【考点】勾股定理.【分析】由勾股定理即可得出结论,注意a是斜边长.【解答】解:∵∠A=90°,∴由勾股定理得:b2+c2=a2.故选:B.【点评】本题考查了勾股定理;熟记勾股定理是解决问题的关键.5.一个直角三角形的两边长分别为4cm、3cm,则第三条边长为()A.5cm B.4cm C. cm D.5cm 或cm【考点】勾股定理.【分析】题中没有指明哪个是直角边哪个是斜边,故应该分情况进行分析.【解答】解:(1)当两边均为直角边时,由勾股定理得,第三边为5cm;(2)当4为斜边时,由勾股定理得,第三边为cm;故直角三角形的第三边应该为5cm或cm.故选:D.【点评】此题主要考查学生对勾股定理的运用,注意分情况进行分析.6.下列各组数中不能作为直角三角形的三边长的是()A.1.5,2,3 B.7,24,25 C.6,8,10 D.9,12,15【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【解答】解:A、1.52+22≠32,不符合勾股定理的逆定理,故正确;B、72+242=252,符合勾股定理的逆定理,故错误;C、62+82=102,符合勾股定理的逆定理,故错误;D、92+122=152,符合勾股定理的逆定理,故错误.故选A.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm【考点】平行四边形的性质.【专题】几何图形问题.【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,所以根据AD、AB的值,求出EC的值.【解答】解:∵AD∥BC,∴∠DAE=∠BEA∵AE平分∠BAD∴∠BAE=∠DAE∴∠BAE=∠BEA∴BE=AB=3∵BC=AD=5∴EC=BC﹣BE=5﹣3=2故选:B.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.8.菱形具有而矩形不具有的性质是()A.对角线互相平分B.四条边都相等C.对角相等 D.邻角互补【考点】矩形的性质;菱形的性质.【专题】证明题.【分析】与平行四边形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等.【解答】解:A、对角线互相平分是平行四边形的基本性质,两者都具有,故A不选;B、菱形四条边相等而矩形四条边不一定相等,只有矩形为正方形时才相等,故B符合题意;C、平行四边形对角都相等,故C不选;D、平行四边形邻角互补,故D不选.故选:B.【点评】考查菱形和矩形的基本性质.9.两条对角线互相垂直平分且相等的四边形是()A.矩形 B.菱形 C.正方形D.都有可能【考点】多边形.【分析】如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是正方形,理由为:利用对角线互相平分的四边形为平行四边形得到ABCD为平行四边形,再利用对角线互相垂直的平行四边形为菱形,再利用对角线相等的菱形为正方形即可得证.【解答】解:如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是正方形,已知:四边形ABCD,AC⊥BD,OA=OC,OB=OD,AC=BD,求证:四边形ABCD为正方形,证明:∵OA=OC,OB=OD,∴四边形ABCD为平行四边形,∵AC⊥BD,∴平行四边形ABCD为菱形,∵AC=BD,∴四边形ABCD为正方形.故选C.【点评】此题考查了正方形的判定,以及角平分线定理,熟练掌握正方形的判定方法是解本题的关键.10.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC 的面积为()A.6 B.8 C.10 D.12【考点】翻折变换(折叠问题).【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,于是得到AF=AB﹣BF,即可得到结果.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故选C.【点评】本题考查了翻折变换﹣折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.二、填空题(本题共10小题,每小题4分,共40分)11.如图,△ABC中,D、E分别是AB、AC边的中点,且DE=7cm,则BC= 14 cm.【考点】三角形中位线定理.【分析】根据三角形中位线定理得出BC=2DE,代入求出即可.【解答】解:∵D、E分别是AB、AC边的中点,且DE=7cm,∴BC=2DE=14cm,故答案为:14.【点评】本题考查了三角形中位线定理的应用,能熟记三角形的中位线定理的内容是解此题的关键,注意:三角形的中位线平行于第三边,并且等于第三边的一半.12.写出命题“对顶角相等”的逆命题如果两个角相等,那么这两个角是对顶角.【考点】命题与定理.【分析】根据逆命题的定义可以写出命题“对顶角相等”的逆命题,本题得以解决.【解答】解:命题“对顶角相等”的逆命题是如果两个角相等,那么这两个角是对顶角,故答案为:如果两个角相等,那么这两个角是对顶角.【点评】本题考查命题与定理,解题的关键是明确逆命题的定义,可以写出一个命题的逆命题.13.比较大小:<.(填“>、<、或=”)【考点】实数大小比较.【分析】先把两个实数平方,然后根据实数的大小比较方法即可求解.【解答】解:∵()2=12,(3)2=18,而12<18,∴2<3.故答案为:<.【点评】此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.14.如果+(b﹣7)2=0,则的值为 3 .【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先利用偶次方的性质以及二次根式的性质进而得出a,b的值,进而求出答案.【解答】解:∵ +(b﹣7)2=0,∴a=2,b=7,则==3.故答案为:3.【点评】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.15.如图,有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只小鸟从一棵树的树尖飞到另一棵树的树尖,那么这只小鸟至少要飞行10 m.【考点】勾股定理的应用.【专题】应用题.【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树尖进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:两棵树的高度差为6m,间距为8m,根据勾股定理可得:小鸟至少飞行的距离==10m.【点评】本题主要是将现实问题建立数学模型,运用数学知识进行求解.16.如图,一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是15 cm.【考点】平面展开﹣最短路径问题.【专题】推理填空题.【分析】根据题意,可以画出长方体的展开图,根据两点之间线段最短和勾股定理,可以解答本题.【解答】解:如右图所示,点A到B的最短路径是: cm,故答案为:15.【点评】本题考查平面展开﹣最短路径问题,解题的关键是明确两点之间线段最短,能画出图形的平面展开图.17.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的面积为cm2.【考点】矩形的性质.【专题】计算题.【分析】根据矩形的性质,画出图形求解.【解答】解:∵ABCD为矩形∴OA=OC=OB=OD∵一个角是60°∴BC=OB=cm∴根据勾股定理==∴面积=BC•CD=4×=cm2.故答案为.【点评】本题考查的知识点有:矩形的性质、勾股定理.18.菱形的两条对角线长分别为6和8,则这个菱形的周长为20 .【考点】菱形的性质;勾股定理.【分析】根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.【解答】解:如图所示,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB===5,∴此菱形的周长为:5×4=20.故答案为:20.【点评】本题主要考查了菱形的性质,利用勾股定理求出菱形的边长是解题的关键,同学们也要熟练掌握菱形的性质:①菱形的四条边都相等;②菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.19.若两对角线长分别为4cm和6cm的菱形的面积与一个正方形的面积相等,那么该正方形的边长为2cm.【考点】正方形的性质;菱形的性质.【分析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积,进一步开方求得正方形的边长即可.【解答】解:根据对角线的长可以求得菱形的面积,根据S=ab=×4×6=12cm2,∵菱形的面积与正方形的面积相等,∴正方形的边长是=2cm.故答案为:2.【点评】本题考查了菱形的面积和正方形的面积计算的方法,本题中根据菱形对角线求得菱形的面积是解题的关键.20.如图,在矩形ABCD中,AD=4,AB=3,MN∥BC分别交AB、CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积是 6 .【考点】矩形的性质.【分析】用矩形的面积减去△ADQ和△BCP的面积求解即可.【解答】解:∵四边形ABCD为矩形,∴AD=BC=4.S阴影=S矩形ABCD﹣S△BPC﹣S△ADQ=AB•CB﹣BC•MB AD•AM=4×3﹣4×BM﹣×4×AM=12﹣2MB﹣2AM=12﹣2(MB+AM)=12﹣2×3=6.故答案为:6.【点评】本题主要考查的是矩形的性质、三角形的面积公式,将阴影部分的面积转化为S矩形ABCD﹣S△﹣S△ADQ求解是解题的关键.BPC三.解答题(共50分)21.计算:(1)(﹣)2﹣+(2)(3﹣)﹣(+)【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先化简二次根式,再合并同类项即可解答本题;(2)根据去括号的法则去掉括号,然后合并同类项即可解答本题.【解答】解:(1)(﹣)2﹣+=3﹣2+3=4;(2)(3﹣)﹣(+)==.【点评】本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.22.已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2(2)a2﹣2ab+b2.【考点】二次根式的化简求值.【分析】(1)利用平方差公式分解因式后再代入计算;(2)利用完全平方差公式分解因式后再代入计算.【解答】解:当a=3+,b=3﹣时,(1)a2﹣b2,=(a+b)(a﹣b),=(3+3﹣)(3+﹣3+),=6×2,=12;(2)a2﹣2ab+b2,=(a﹣b)2,=(3﹣3+)2,=(2)2,=8.【点评】本题是运用简便方法进行二次根式的化简求值,熟练掌握平方差公式和完全平方公式是解题的关键.23.如图,在四边形ABCD中,∠A=90°,AD=3,AB=4,BC=12,CD=13,试判断△BCD的形状,并说明理由.【考点】勾股定理的逆定理;勾股定理.【分析】先根据勾股定理计算BD的长,再利用勾股定理的逆定理证明∠DBC=90°,所以:△BCD是直角三角形.【解答】解:△BCD是直角三角形,理由是:在△ABD中,∠A=90°,∴BD2=AD2+AB2=32+42=25,在△BCD中,BD2+BC2=52+122=169,CD2=132=169,∴BD2+BC2=CD2,∴∠DBC=90°∴△BCD是直角三角形.【点评】本题考查了勾股定理及其逆定理,熟练掌握定理的内容是关键,注意各自的条件和结论.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.【考点】翻折变换(折叠问题).【专题】计算题.【分析】根据矩形的性质得DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=4,设EC=x,则DE=EF=8﹣x,在Rt△EFC 中,根据勾股定理得x2+42=(8﹣x)2,然后解方程即可.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,∵折叠矩形的一边AD,使点D落在BC边的点F处∴AF=AD=10,DE=EF,在Rt△ABF中,BF===6,∴FC=BC﹣BF=4,设EC=x,则DE=8﹣x,EF=8﹣x,在Rt△EFC中,∵EC2+FC2=EF2,∴x2+42=(8﹣x)2,解得x=3,∴EC的长为3cm.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.25.如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.【考点】平行四边形的判定与性质;全等三角形的性质.【专题】证明题;压轴题.【分析】首先连接BD,交AC于点O,由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OA=OC,OB=OD,又由AE=CF,可得OE=OF,然后根据对角线互相相平分的四边形是平行四边形.【解答】证明:连接BD,交AC于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形DEBF是平行四边形.【点评】此题考查了平行四边形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.26.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.【考点】平行四边形的性质.【分析】由四边形ABCD是平行四边形,可求得BC=AD=8,又由AC⊥BC,利用勾股定理即可求得AC 的长,然后由平行四边形的对角线互相平分,求得OA的长,继而求得平行四边形ABCD的面积.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵AB=10,AC⊥BC,∴AC==6,∴OA=AC=3,∴S平行四边形ABCD=BC•AC=8×6=48.【点评】此题考查了平行四边形的性质以及勾股定理.注意平行四边形的对边相等,对角线互相平分.27.已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB= 2:1 时,四边形MENF是正方形(只写结论,不需证明).【考点】矩形的性质;全等三角形的判定与性质;菱形的判定;正方形的判定.【分析】(1)根据矩形的性质可得AB=CD,∠A=∠D=90°,再根据M是AD的中点,可得AM=DM,然后再利用SAS证明△ABM≌△DCM;(2)四边形MENF是菱形.首先根据中位线的性质可证明NE∥MF,NE=MF,可得四边形MENF是平行四边形,再根据△ABM≌△DCM可得BM=CM进而得ME=MF,从而得到四边形MENF是菱形;(3)当AD:AB=2:1时,四边形MENF是正方形,证明∠EMF=90°根据有一个角为直角的菱形是正方形得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠D=90°,又∵M是AD的中点,∴AM=DM.在△ABM和△DCM中,,∴△ABM≌△DCM(SAS).(2)解:四边形MENF是菱形.证明如下:∵E,F,N分别是BM,CM,CB的中点,∴NE∥MF,NE=MF.∴四边形MENF是平行四边形.由(1),得BM=CM,∴ME=MF.∴四边形MENF是菱形.(3)解:当AD:AB=2:1时,四边形MENF是正方形.理由:∵M为AD中点,∴AD=2AM.∵AD:AB=2:1,∴AM=AB.∵∠A=90,∴∠ABM=∠AMB=45°.同理∠DMC=45°,∴∠EMF=180°﹣45°﹣45°=90°.∵四边形MENF是菱形,∴菱形MENF是正方形.故答案为:2:1.【点评】此题主要考查了矩形的性质,以及菱形的判定和正方形的判定,关键是掌握菱形和正方形的判定方法.。
2016-2017学年第二学期八年级数学期末考试试卷(含答案)
浦东新区2016-2017学年度第二学期期末质量抽测初二数学试卷(考试时间:90分钟;满分:100分)一、选择题:(本大题共6题,每题2分,满分12分)1.下列四个函数中,一次函数是……………………………………………………………( ) (A)x x y 22-=; (B)2-=x y ; (C)11+=xy ; (D)1+=x y . 2.在平面直角坐标系中,直线1y x =-经过…………………………………………( ) (A )第一、二、三象限; (B )第一、二、四象限; (C )第一、三、四象限;(D )第二、三、四象限.3.下列四个命题中真命题是 ……………………………………………………………( ) (A)矩形的对角线平分对角; (B)菱形的对角线互相垂直平分;(C) 梯形的对角线互相垂直;(D)平行四边形的对角线相等.4.如果点C 是线段AB 的中点,那么下列结论中正确的是………………………………( ) (A )0=+BC AC (B )0=-BC AC (C )0=+BC AC (D )0=-BC AC5.从2,3,4,5,6中任取一个数,是合数的概率是…………………………………( ) (A )51; (B )52; (C )53; (D )54. 6.下列事件是必然事件的是 ……………………………………………………………( ) (A)方程34-=+x 有实数根; (B)方程0222=-+-xxx 的解是2=x ; (C)方程410x -=有实数根; (D)方程23x x =只有一个实数根.二、填空题:(本大题共12题,每题3分,满分36分) 7.一次函数23+=x y 的截距是_______________. 8.已知函数()31f x x =-,则(2)f =__________.9.已知一次函数4)2(+-=x k y ,y 随x 的增大而减小,那么k 的取值范围是_________. 10.已知一次函数123y x =+,当2y >-时,自变量x 的取值范围是_________.OADBC(第17题图)11.已知一次函数的图像与x 轴交于点(3,0),且平行于直线32--=x y ,则它的函数解析式为_______________________.12.方程04324=--x x 的根是 . 13.用换元法解分式方程23202x xx x ---=-时,如果设2x y x -=,则原方程可化为关于y 的整式方程是_________________________.14.十二边形内角和为 度.15.如果等腰梯形的一条底边长8cm ,中位线长10 cm ,那么它的另一条底边长是 cm .16.一个可以自由转动的转盘被等分成六个扇形区域,并涂上了相应的颜色,如图所示.随意转动转盘,转盘停止后,指针指向蓝色区域的概率是 .17.如图,在平行四边形ABCD 中,已知AB=5 cm , AC=12㎝,BD=6㎝,则△AOB 的周长为 ㎝.18.平行四边形ABCD 中,3,4==BC AB ,∠B =60°,AE 为BC 边上的高,将△ABE 沿AE 所在直线翻折后得△AFE ,那么△AFE 与四边形AECD 重叠部分的面积是 .三、解答题:(本大题共7题,满分52分)19.(本题满分6分) 20.(本题满分6分)解方程: 011=-+-x x 解方程组:⎩⎨⎧=+=--320222y x y xy x(第16题图)蓝 蓝黄黄 红红。
北京市石景山区2023-2024学年八年级下学期期末数学试题
北京市石景山区2023-2024学年八年级下学期期末数学试题一、单选题1.在平面直角坐标系xOy 中,点()1,2A -关于x 轴对称的点的坐标为( ) A .()1,2-- B .()1,2- C .()1,2 D .()2,1- 2.下列标识中是中心对称图形的是( )A .B .C .D .3.下面多边形中,内角和是外角和2倍的图形是( )A .B .C .D .4.下列关于变量x 与y 关系的图形中,能够表示“y 是x 的函数”的是( ) A . B .C .D . 5.用配方法解一元二次方程2610x x +-=,此方程可化为( )A .()2310x +=B .()234x += C .()2310x -= D .()234-=x6.不解方程,判断关于x 的方程2210x kx --=的根的情况为( )A .只有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根7.在A B C D Y 中,BE ,CF 分别平分ABC ∠,BCD ∠,分别交AD 于点E ,F .若3AB =,5BC =,则EF 的长为( )A .0.5B .1C .1.5D .28.在矩形ABCD 中,1AB =,2BC =,动点P 从点A 出发,沿路线A B C D →→→作匀速运动,连接PD ,则APD △的面积y 与动点P 的运动路程x 之间的函数图象为( )A .B .C .D .二、填空题9.在ABCD Y 中,2B A ∠=∠,则C ∠=︒.10.一组数据“1-,1,3,2,5”的方差为.11.如图,A ,B 两地被建筑物阻隔,为测量A ,B 两地的距离,先在AB 外选定一点C ,通过测量得到CA ,CB 的中点D ,E ,且36m DE =,则A ,B 两点间的距离是m .12.如图,ABCD Y 中,BE AD ⊥于E ,F 为BC 上一点,请添加一个条件,使得四边形BEDF是矩形,这个条件可以为.13.甲、乙两名同学在相同的情况下,分别进行了五次“引体向上”的考前预测,得到两组成绩(单位:个)数据,如下表所示:观察、比较两组数据,成绩比较稳定的同学为(填“甲”或“乙”).14.若点()11,A y -和点()22,B y 在一次函数3y x b =-+的图象上,则1y 2y (用“>”、“<”或“=”连接).15.要在一块长12m ,宽8m 的矩形空地中,修建两条形状为平行四边形的甬道(其中一条甬道形状为矩形),剩余部分栽种蔬菜,且菜地的面积为277m .若设两条甬道的入口宽m EF GH x ==,则根据题意列出的方程可以为.16.一次函数()0y ax b a =+≠中变量y 与x 的部分对应值如下表所示.给出下面四个结论:①0a >;②方程0ax b +=的解为1x =;③一次函数y ax b =+的图象不经过第四象限;④若32x -≤≤,则0.52y -≤≤.上述结论中,所有正确结论的序号是.三、解答题17.选择适当的方法解方程:2890x x --=.18.已知:如图,BD 为ABCD Y 的对角线,E ,F 为直线BD 上两点,且DE BF =.求证:AE CF =.19.一次函数y x b =+的图象与直线y x =-交于点(),1P m -.(1)求b ,m 的值;(2)函数y x b =+的图象与x 轴交于点A ,Q 为直线y x =-上一点,若PQ PA =,请结合函数图象,直接写出点Q 的坐标为______.20.工艺美术中常需要设计几何图案.如图,在55⨯的正方形网格中,已确定三个格点A ,B ,C 的位置,需要在图中确定点P ,使得以P ,A ,B ,C 为顶点的四边形为平行四边形.为了精准刻画点P 的位置,需建立平面直角坐标系xOy .若点()2,2A ,()3,1C .(1)请画出平面直角坐标系xOy ;(2)在图中描出点P 的位置,并写出所有符合条件的点P 的坐标.21.已知关于x 的一元二次方程()222110x m x m -++-=有两个不相等的实数根.(1)求m 的取值范围;(2)当m 为满足条件的最小整数时,求出m 的值及此时方程的两个根.22.随着产品质量的提升和国际市场的开拓,中国新能源汽车的出口潜力巨大.2021年,我国新能源汽车出口约30万辆;2023年,我国新能源汽车出口量约120万辆.求从2021年到2023年,我国的新能源汽车出口量的年平均增长率.23.如图,在ABC V 中,90ABC ∠=︒,D 为AC 中点,以,BC CD 为一组邻边作BCDE Y ,ED 与AB 交于点O ,连接,AE BD .(1)求证:四边形AEBD 是菱形;(2)若BC =120EAD ∠=︒,求菱形AEBD 的面积.四、判断题24.2024年5月12日是我国第16个防灾减灾日,某校为增强学生的防灾减灾意识,提高防灾减灾能力,开展了相关科普知识竞赛.为了解学生的竞赛情况,从学校200名学生中随机抽取40名学生的成绩(百分制)数据,整理并绘制了如下统计图表:40名学生成绩的频数分布表(表1)根据以上信息,回答下列问题:(1)表1中a 的值为______,m 的值为______;(2)补全频数分布直方图,并在图上标出数据;(3)若对成绩不低于80分的学生进行奖励,请依据样本数据,估计学校200名学生中获得奖励的学生有______名.五、解答题25.在平面直角坐标系xOy 中,一次函数()0y kx b k =+≠的图象过点()2,0-,且平行于直线2y x =-.(1)求一次函数y kx b =+的解析式;(2)当1x >-时,对于x 的每一个值,一次函数y kx b =+的值都小于一次函数3y x n =+的值,直接写出n 的取值范围.26.小明和弟弟小阳分别从家和科技馆同时出发,沿同一条路相向而行.小明开始以一定的速度跑步前往,10分钟后改为步行,到达科技馆恰好用了30分钟.小阳骑自行车以每分钟250米的速度直接回家,两人离家的路程y (单位:米)与各自离开出发地的时间x (单位:分)之间的函数图像如图所示.(1)家与科技馆之间的路程为______米;小明步行的速度为每分钟______米;(2)求小阳离家的路程y与x的函数解析式,并写出自变量x的取值范围;(3)当离开出发地的时间为6分钟时,求小明和小阳之间的路程.≠,连接DE,过点D 27.已知:在正方形ABCD中,点E是BC延长线上一点,且CE BC作DE的垂线交直线AB于点F,连接EF,取EF的中点G,连接CG.(1)当CE C<时,B①补全图1;②求证:ADF CDE△≌△;③用等式表示线段CD,CE,CG之间的数量关系,并证明.(2)如图2,当CE BC>时,请你直接写出线段CD,CE,CG之间的数量关系.28.在平面直角坐标系xOy中,M为平面内一点.对于点P和图形W给出如下定义:若图形W上存在点Q,使得点P与点Q关于点M对称,则称点P为图形W关于点M的“中心镜像对称点”.(1)如图1,()1,1A -,()2,1B .①在点()12,1P --,()20,2P -,31,12P ⎛⎫- ⎪⎝⎭,()42,1P -中,线段AB 关于点()0,0M 的“中心镜像对称点”是______;②若点()1,3P -是线段AB 关于点(),M m n 的“中心镜像对称点”,请直接写出点M 的横坐标m 的取值范围;(2)如图2,矩形CDEF 中,()2,1C -,()2,1D --,()2,1E -,()2,1F .若直线y x m =+上存在矩形CDEF 关于点(),2M m 的“中心镜像对称点”,请直接写出m 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年第一学期期末质量调研
八年级数学试卷
(满分120分,考试时间120分钟)
一、选择题(本题共12道小题,每小题3分,共36分。
)
1.二次根式有意义的条件是()
A.x>-3 B.x<-3 C.x≥-3 D.x≤-3
2.下列计算正确的是()
A.2= B. = C.4﹣3=1 D.3+2=5
3.下列命题中正确的是()
A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形
C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形
4.一次函数y=﹣2x+1的图象不经过下列哪个象限()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5.某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)次为95,90,88,则小彤这学期的体育成绩为()
A.89 B.90 C.92 D.93
6.菱形的两条对角线长分别为9cm与4cm,则此菱形的面积为()cm2.
A.12 B.18 C.20 D.36
7.关于一次函数y=﹣2x+3,下列结论正确的是()
A.图象过点(1,﹣1)B.图象经过一、二、三象限
C. y随x的增大而增大D.当x>时,y<0
8.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为()
A.4 B.16 C. D.4或
9.如图,点E在正方形ABCD的对角线AC上,且EC=2 AE,Rt△FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为3,则重叠部分四边形EMCN的面积为
( )
A. 84 cm2
B. 90 cm2
C. 126 cm2
D. 168 cm2
10如图,矩形 ABCD 的对角线 AC 与 BD 相交于点 O,CE∥BD, DE∥AC , AD= , DE=2,则四边形 OCED 的面积为()
11、如图,四边形ABCD 是菱形,,,于H ,则DH 等于 A . B . C .5 D .4
12、.如图,直线23
3
+-
=x y 与x 轴,y 轴分别交于A 、B 两点,把 △AOB 沿着直线AB 翻折后得到△AO´B,则点O´的坐标是( ) A .(3,3) B .(3,3) C .(2,32) D .(32,4)
二、填空题(共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分)
11.如图,分别以Rt△ABC 的三边为边长,在三角形外作三个正方形,若正方形P 的面积等于89,Q 的面积等于25,则正方形R 的边长是__________.
12.有一组数据:3,a ,4,6,7.它们的平均数是5,那么这组数据的方差是________.
13.已知一次函数y=ax+b 的图象如图,根据图中信息请写出不等式ax+b≥2的解集为 .
11. 13. 15 16 14.若函数是一次函数,则函数解析式为 .
15.如图,在矩形ABCD 中,AB=3,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为 .
16、如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,CE=5,F 为DE 的中点.若△CEF 的周长为18,则OF 的长为
.
17. 如图,直线42+=x y 与x 、y 轴分别交于点A 、B 两点,以OB 为边在y 轴右侧作等边△OBC , 将点C 向左平移,使其对应点C´恰好落在直线AB 上,则点C´的坐标为 .
18、.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为 .
x
x
第9题图
A C
19、如图,在矩形ABCD 中,AD=4,点P 是直线AD 上一动点,若满足△PBC 是等腰三角形的点P 有且只有3个,则AB 的长为 .
20、如图,在菱形ABCD 中,∠A=60°,E 、F 分别是AB 、AD 的中点,DE 、BF 相交于点G ,连接BD 、C 以下G .给出结论:①∠BGD=120°;②△BDF≌△CGB;③BG+DG=CG;④S△ADE=4
3
AB2.其中正确的有 .
三、解答题(共计62分)
21.计算:(本题共3道小题,每小题3分,共9分。
) ×( ) 9+7﹣5+2
(2+3)2﹣(2﹣3)2
22、现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x 千克.
(1)请分别写出甲、乙两家快递公司快递该物品的费用y (元)与x (千克)之间的函数关系式;
(2)小明选择哪家快递公司更省钱?
17题图 20题图
15题图
23.某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的成绩如下表(单位:分):
(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那
么谁将能被录用?
(2)根据实际需要,公司将阅读、思维和表达能力三项测试得
分按3:5:2的比确定每人的最后成绩,若按此成绩在甲、乙两
人中录用一人,谁将被录用?
(3)公司按照(2)中的成绩计算方法,将每位应聘者的最后成
绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数
值,不包含右端数值,如最右边一组分数x为:85≤x<90),并
决定由高分到低分录用8名员工,甲、乙两人能否被录用?请说
明理由,并求出本次招聘人才的录用率.
24.(本题12分。
)如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数图象经过点B(-2,-1),与y轴的交点为C,与x轴的交点为D.
(1)求一次函数解析式;
(2)求C点的坐标;
(3)求△AOD的面积.
25.如图,将矩形纸片ABCD(AD>AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.
(1)判断四边形CEGF的形状,并证明你的结论;
(2)若AB=3,BC=9,求线段CE的取值范围.
26.甲、乙两车从A城出发前往B城,在整个行程中,两车离开A城的距离y与t的对应关系如图所示:(1)A、B两城之间距离是多少千米?
(2)求乙车出发多长时间追上甲车?
(3)直接写出甲车出发多长时间,两车相距20千米.
27、某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:
已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.
(1)求表中a的值;
(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?
(3)由于原材料价格上涨,每张餐桌和餐椅的进价都上涨了10元,按照(2)中获得最大利润的方案购进餐桌和餐椅,在调整成套销售量而不改变销售价格的情况下,实际全部售出后,所得利润比(2)中的最大利润少了2250元.请问本次成套的销售量为多少?
28、如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF 于点G,连接DG.
(1)求证:四边形EFDG是菱形;
(2)探究线段EG、GF、AF之间的数量关系,并说明理由;
(3)若AG=6,EG=2,求BE的长.
29、猜想与证明:
如图①摆放矩形纸片ABCD与矩形纸片ECGF,使B,C,G三点在一条直线上,CE在边CD上.连结AF,若M 为AF的中点,连结DM,ME,试猜想DM与ME的关系,并证明你的结论.
拓展与延伸:
(1)若将“猜想与证明”中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其它条件不变,则DM
和ME的关系为_______;
(2)如图②摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.
25题图①
25题图②
30、△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.
(1)观察猜想
如图1,当点D在线段BC上时,
①BC与CF的位置关系为:.
②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)
(2)数学思考
如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.
(3)拓展延伸
如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE 的长.。