浙江省近五年(-)高考数学 最新分类汇编10 排列、组合 理
浙江近五年高考理科数学试题及参考答案
2007年普通高等学校招生全国统一考试(浙江卷)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)“1x >”是“2x x >”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分不必要条件D.既不充分也不必要条件(2)若函数()2sin()f x x ωϕ=+,x ∈R (其中0ω>,2ϕπ<)的最小正周期是π,且(0)3f =,则( ) A .126ωϕπ==, B .123ωϕπ==, C .26ωϕπ==,D .23ωϕπ==,(3)直线210x y -+=关于直线1x =对称的直线方程是( ) A.210x y +-= B.210x y +-= C.230x y +-=D.230x y +-=(4)要在边长为16米的正方形草坪上安装喷水龙头,使整个草坪都能喷洒到水.假设每个喷水龙头的喷洒范围都是关径为6米的圆面,则需安装这种喷水龙头的个数最少是( ) A.3B.4C.5D.6(5)已知随机变量ξ服从正态分布2(2)N σ,,(4)0.84P ξ=≤,则(0)P ξ=≤( ) A .0.16 B .0.32 C .0.68D ,0.84(6)若P 两条异面直线l m ,外的任意一点,则( ) A.过点P 有且仅有一条直线与l m ,都平行 B.过点P 有且仅有一条直线与l m ,都垂直 C.过点P 有且仅有一条直线与l m ,都相交 D.过点P 有且仅有一条直线与l m ,都异面 (7)若非零向量,a b 满足+=a b b ,则( ) A.2>2+a a b B.22<+a a b C.2>+2b a bD. 22<+b a b(8)设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )(9)已知双曲线22221(00)x y a b a b-=>>,的左、右焦点分别为1F ,2F ,P 是准线上一点,且12PF PF ⊥,124PF PF ab =,则双曲线的离心率是( ) A.2B.3C.2D.3(10)设21()1x x f x x x ⎧⎪=⎨<⎪⎩,≥,,,()g x 是二次函数,若(())f g x 的值域是[)0+,∞,则()g x 的值域是( ) A .(][)11--+∞,,∞B .(][)10--+∞,,∞C .[)0+,∞D .[)1+,∞第II 卷(共100分)二、填空题:本大题共7小题,每小题4分,共28分. (11)已知复数11i z =-,121i z z =+,则复数2z = . (12)已知1sin cos 5θθ+=,且324θππ≤≤,则cos2θ的值是 . (13)不等式211x x --<的解集是 .(14)某书店有11种杂志,2元1本的8种,1元1本的3种,小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种数是 (用数字作答). (15)随机变量ξ的分布列如下:ξ 1-0 1Pabc其中a b c ,,成等差数列,若13E ξ=,则D ξ的值是 . (16)已知点O 在二面角AB αβ--的棱上,点P 在α内,且45POB ∠=.若对于β内异于y x O y x O y x O yxO A . B . C . D.O 的任意一点Q ,都有45POQ ∠≥,则二面角AB αβ--的大小是.(17)设m 为实数,若{}22250()30()250x y x y x x y x y mx y ⎧⎫-+⎧⎪⎪⎪-⊆+⎨⎨⎬⎪⎪⎪+⎩⎩⎭≥,≥,≤≥,则m 的取值范围是 .三、解答题:本大题共5小题,共72分.解答应写出文字说明,证明过程或演算步骤. (18)(本题14分)已知ABC △的周长为21+,且sin sin 2sin A B C +=.(I )求边AB 的长;(II )若ABC △的面积为1sin 6C ,求角C 的度数.(19)(本题14分)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC BC ⊥,且2AC BC BD AE ===,M 是AB 的中点. (I )求证:CM EM ⊥;(II )求CM 与平面CDE 所成的角.(20)(本题14分)如图,直线y kx b =+与椭圆2214x y +=交于A B ,两点,记AOB △的面积为S . (I )求在0k =,01b <<的条件下,S 的最大值; (II )当2AB =,1S =时,求直线AB 的方程.(21)(本题15分)已知数列{}n a 中的相邻两项212k ka a -,是关于x 的方程2(32)320k kx k x k -++=的两个根,且212(123)k k a a k -=≤,,,.(I )求1a ,2a ,3a ,7a ; (II )求数列{}n a 的前2n 项和2n S ;(Ⅲ)记sin 1()32sin nf n n ⎛⎫=+⎪⎝⎭, EDCMA(第19题)BAyxO B(第20题)(2)(3)(4)(1)123456212(1)(1)(1)(1)f f f f n n n nT a a a a a a a a +-----=++++…, 求证:15()624n T n ∈*N ≤≤. (22)(本题15分)设3()3x f x =,对任意实数t ,记232()3t g x t x t =-.(I )求函数()()t y f x g x =-的单调区间;(II )求证:(ⅰ)当0x >时,()f x g ()()t f x g x ≥对任意正实数t 成立; (ⅱ)有且仅有一个正实数0x ,使得00()()x t g x g x ≥对任意正实数t 成立.2007年普通高等学校招生全国统一考试(浙江卷)数学(理工类)答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分.(1)A (2)D (3)D (4)B (5)A (6)B (7)C (8)D (9)B (10)C 二、填空题:本题考查基本知识和基本运算.每小题4分,满分28分. (11)1 (12)725-(13){}02x x << (14)266(15)59(16)90(17)403m ≤≤三、解答题(18)解:(I )由题意及正弦定理,得21AB BC AC ++=+,2BC AC AB +=,两式相减,得1AB =. (II )由ABC △的面积11sin sin 26BC AC C C =,得13BC AC =,由余弦定理,得222cos 2AC BC AB C AC BC+-=22()2122AC BC AC BC AB AC BC +--==, 所以60C =.(19)本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力.满分14分. 方法一:(I )证明:因为AC BC =,M 是AB 的中点, 所以CM AB ⊥. 又EA ⊥平面ABC , 所以CM EM ⊥.(II )解:过点M 作MH ⊥平面CDE ,垂足是H ,连结CH 交延长交ED 于点F ,连结MF ,MD .FCM ∠是直线CM 和平面CDE 所成的角. 因为MH ⊥平面CDE ,所以MH ED ⊥, 又因为CM ⊥平面EDM , 所以CM ED ⊥,则ED ⊥平面CMF ,因此ED MF ⊥.设EA a =,2BD BC AC a ===,在直角梯形ABDE 中,22AB a =,M 是AB 的中点, 所以3DE a =,3EM a =,6MD a =,得EMD △是直角三角形,其中90EMD =∠, 所以2EM MDMF a DE==.在Rt CMF △中,tan 1MFFCM MC==∠, 所以45FCM =∠,故CM 与平面CDE 所成的角是45. 方法二:如图,以点C 为坐标原点,以CA ,CB 分别为x 轴和y 轴,过点C 作与平面ABC 垂直的直线为z 轴,建立直角坐标系C xyz -,设EA a =,则(2)A a 00,,,(020)B a ,,,(20)E a a ,,.(022)D a a ,,,(0)M a a ,,. (I )证明:因为()EM a a a =--,,,(0)CM a a =,,,所以0EM CM =, 故EM CM ⊥.(II )解:设向量001y z (),,n =与平面CDE 垂直,则CE ⊥n ,CD ⊥n ,EDC MABE H即0CE =n ,0CD =n .因为(20)CE a a =,,,(022)CD a a =,,,所以02y =,02x =-, 即(122)=-,,n ,2cos 2CM CM CM ==,n n n, 直线CM 与平面CDE 所成的角θ是n 与CM 夹角的余角, 所以45θ=,因此直线CM 与平面CDE 所成的角是45.(20)本题主要考查椭圆的几何性质、椭圆与直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.满分14分.(Ⅰ)解:设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,,由2214x b +=,解得21221x b =±-,, 所以1212S b x x =- 221b b =-2211b b +-=≤.当且仅当22b =时,S 取到最大值1. (Ⅱ)解:由2214y kx b x y =+⎧⎪⎨+=⎪⎩,, 得22212104k x kbx b ⎛⎫+++-= ⎪⎝⎭,2241k b ∆=-+,EDCMAByzx211||1||AB k x x =+-2222411214k b kk -+=+=+. ②设O 到AB 的距离为d ,则21||Sd AB ==, 又因为2||1b d k=+,所以221b k =+,代入②式并整理,得42104k k -+=, 解得212k =,232b =,代入①式检验,0∆>,故直线AB 的方程是 2622y x =+或2622y x =-或2622y x =-+,或2622y x =--.21.本题主要考查等差、等比数列的基本知识,考查运算及推理能力.满分15分.(I )解:方程2(32)320k kx k x k -++=的两个根为13x k =,22k x =,当1k =时,1232x x ==,, 所以12a =;当2k =时,16x =,24x =, 所以34a =;当3k =时,19x =,28x =, 所以58a =时;当4k =时,112x =,216x =, 所以712a =.(II )解:2122n n S a a a =+++2(363)(222)n n =+++++++2133222n n n ++=+-.(III )证明:(1)123456212111(1)f n n n nT a a a a a a a a +--=+-++, 所以112116T a a ==, 2123411524T a a a a =+=. 当3n ≥时,(1)3456212111(1)6f n n n n T a a a a a a +--=+-++, 345621211116n n a a a a a a -⎛⎫+-++⎪⎝⎭≥2311111662622n⎛⎫+-++⎪⎝⎭≥ 1116626n=+>, 同时,(1)5678212511(1)24f n n n n T a a a a a a +--=--++5612212511124n n a a a a a a -⎛⎫-+++⎪⎝⎭≤31511112492922n ⎛⎫-+++⎪⎝⎭≤ 515249224n =-<. 综上,当n ∈N*时,15624n T ≤≤. 22.本题主要考查函数的基本性质,导数的应用及不等式的证明等基础知识,以及综合运用所学知识分析和解决问题的能力.满分15分.(I )解:316433x y x =-+.由240y x '=-=,得2x =±.因为当(2)x ∈-∞-,时,y '>0, 当(22)x ∈-,时,0y '<, 当(2)x ∈+∞,时,0y '>,故所求函数的单调递增区间是(2)-∞-,,(2)+∞,, 单调递减区间是(22)-,. (II )证明:(i )方法一:令2332()()()(0)33t x h x f x g x t x t x =-=-+>,则 223()h x x t '=-,当0t >时,由()0h x '=,得13x t =,当13()x x ∈+∞,时,()0h x '>, 所以()h x 在(0)+∞,内的最小值是13()0h t =. 故当0x >时,()()t f x g x ≥对任意正实数t 成立. 方法二:对任意固定的0x >,令232()()(0)3t h t g x t x t t ==->,则 11332()()3h t t x t -'=-,由()0h t '=,得3t x =. 当30t x <<时,()0h t '>. 当3t x >时,()0h t '<,所以当3t x =时,()h t 取得最大值331()3h x x =. 因此当0x >时,()()f x g x ≥对任意正实数t 成立.(ii )方法一:8(2)(2)3t f g ==. 由(i )得,(2)(2)t t g g ≥对任意正实数t 成立.即存在正实数02x =,使得(2)(2)x t g g ≥对任意正实数t 成立. 下面证明0x 的唯一性: 当02x ≠,00x >,8t =时,300()3x f x =,0016()43x g x x =-,由(i )得,30016433x x >-, 再取30t x =,得30300()3x x g x =,所以303000016()4()33x x x g x x g x =-<=, 即02x ≠时,不满足00()()x t g x g x ≥对任意0t >都成立. 故有且仅有一个正实数02x =,使得00()0()x t g x g x ≥对任意正实数t 成立. 方法二:对任意00x >,0016()43x g x x =-, 因为0()t g x 关于t 的最大值是3013x ,所以要使00()()x t g x g x ≥对任意正实数成立的充分必要条件是:300161433x x -≥, 即200(2)(4)0x x -+≤,①又因为00x >,不等式①成立的充分必要条件是02x =,所以有且仅有一个正实数02x =,使得00()()x t g x g x ≥对任意正实数t 成立.2008年普通高等学校招生全国统一考试(浙江卷)数 学(理科)参考公式:如果事件A B ,互斥,那么球的表面积公式24πS R =()()()P A B P A P B +=+其中R 表示球的半径 如果事件A B ,相互独立,那么球的体积公式34π3V R =()()()P A B P A P B =其中R 表示球的半径如果事件A 在一次试验中发生的概率是p 那么n 次独立重复试验中恰好发生 k 次的概率:()(1)k kn k n n P k C p p -=-一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知a 是实数,1a ii-+是纯虚数,则a =( ) A .1B .1-C .2D .2-2.已知U =R ,{}|0A x x =>,{}|1B x x =-≤,则()()UUA B BA =( )A .∅B .{}|0x x ≤C .{}|1x x >-D .{}|01x x x >-或≤3.已知a b ,都是实数,那么“22a b >”是“a b >”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.在(1)(2)(3)(4)(5)x x x x x -----的展开式中,含4x 的项的系数是( ) A .15-B .85C .120-D .2745.在同一平面直角坐标系中,函数3πcos 22x y ⎛⎫=+ ⎪⎝⎭([02π]x ∈,)的图象和直线12y =的交点个数是( ) A .0 B .1C .2D .46.已知{}n a 是等比数列,22a =,514a =,则12231n n a a a a a a ++++=( ) A .16(14)n--B .16(12)n-- C .32(14)3n -- D .32(12)3n --7.若双曲线22221x y a b-=的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是( ) A .3B .5C .3D .58.若cos 2sin 5αα+=-,则tan α=( ) A .12B .2C .12-D .2-9.已知,a b 是平面内两个互相垂直的单位向量,若向量c 满足()()0--=a c b c ,则c 的最大值是( ) A .1B .2C .2D .2210.如图,AB 是平面α的斜线段...,A 为斜足,若点P 在平面α内运动,使得ABP △的面积为定值,则动点P 的轨迹是( ) A .圆 B .椭圆 C .一条直线 D .两条平行直线2008年普通高等学校招生全国统一考试数 学(理科)第Ⅱ卷(共100分)注意事项:A B P α(第10题)1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上. 2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.二、填空题:本大题共7小题,每小题4分,共28分.11.已知0a >,若平面内三点23(1)(2)(3)A a B a C a -,,,,,共线,则a = . 12.已知12F F ,为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A B ,两点,若2212F A F B +=,则AB = .13.在ABC △中,角A B C ,,所对的边分别为a b c ,,.若(3)cos cos b c A a C -=,则cos A = .14.如图,已知球O 的面上四点A B C D ,,,,DA ⊥平面ABC ,AB BC ⊥,3DA AB BC ===,则球O 的体积等于 .15.已知t 为常数,函数22y x x t =--在区间[03],上的最大值为2,则t = . 16.用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是 (用数字作答)17.若00a b ,≥≥,且当001x y x y ⎧⎪⎨⎪+⎩,,≥≥≤时,恒有1ax by +≤,则以a b ,为坐标的点()P a b ,所形成的平面区域的面积等于 .三、解答题:本大题共5小题,共72分.解答应写出文字说明,证明过程或演算步骤.18.(本题14分)如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE CF ∥,90BCF CEF ∠=∠=,3AD =,2EF =.(Ⅰ)求证:AE ∥平面DCF ;(Ⅱ)当AB 的长为何值时,二面角A EF C --的大小为60?19.(本题14分)一个袋中装有若干个大小相同的黑球,白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是25;从袋中任意摸出2个球,至少得到1个白球的概率是79. (Ⅰ)若袋中共有10个球,ABCD (第14题)D A BEF C(第18题)(ⅰ)求白球的个数;(ⅱ)从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期望E ξ. (Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于710.并指出袋中哪种颜色的球个数最少.20.(本题15分) 已知曲线C 是到点1328P ⎛⎫- ⎪⎝⎭,和到直线58y =-距离相等的点的轨迹. l 是过点(10)Q -,的直线,M 是C 上(不在l 上)的动点;A B ,在l 上,MA l ⊥,MB x ⊥轴(如图).(Ⅰ)求曲线C 的方程;(Ⅱ)求出直线l 的方程,使得2QBQA为常数.21.(本题15分)已知a 是实数,函数()()f x x x a =-.(Ⅰ)求函数()f x 的单调区间;(Ⅱ)设()g a 为()f x 在区间[02],上的最小值. (ⅰ)写出()g a 的表达式;(ⅱ)求a 的取值范围,使得6()2g a --≤≤.22.(本题14分)已知数列{}n a ,0n a ≥,10a =,22*111()n n n a a a n +++-=∈N .记:12n n S a a a =+++,112121111(1)(1)(1)(1)(1)n n T a a a a a a =+++++++++.AB OQyxlM (第20题)求证:当*n ∈N 时, (Ⅰ)1n n a a +<; (Ⅱ)2n S n >-; (Ⅲ)3n T <2008年普通高等学校招生全国统一考试(浙江卷)数 学(理科)参考答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分 1.A 2.D 3.D 4.A 5.C 6.C 7.D 8.B 9.C 10.B二、填空题:本题考查基本知识和基本运算.每小题4分,满分28分. 11.12+ 12.8 13.33 14. 9π215.1 16.40 17.1 三、解答题18.本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力.满分14分. 方法一:(Ⅰ)证明:过点E 作EG CF ⊥交CF 于G ,连结DG ,可得四边形BCGE 为矩形,又ABCD 为矩形, 所以AD EG∥,从而四边形ADGE 为平行四边形, 故AE DG ∥.因为AE ⊄平面DCF ,DG ⊂平面DCF , 所以AE ∥平面DCF .(Ⅱ)解:过点B 作BH EF ⊥交FE 的延长线于H ,连结AH .D A B EFCHG由平面ABCD ⊥平面BEFC ,AB BC ⊥,得 AB ⊥平面BEFC , 从而AH EF ⊥.所以AHB ∠为二面角A EF C --的平面角.在Rt EFG △中,因为3EG AD ==,2EF =,所以60CFE ∠=,1FG =. 又因为CE EF ⊥,所以4CF =, 从而3BE CG ==.于是33sin 2BH BE BEH =∠=.因为tan AB BH AHB =∠,所以当AB 为92时,二面角A EF C --的大小为60.方法二:如图,以点C 为坐标原点,以CB CF ,和CD 分别作为x 轴,y 轴和z 轴,建立空间直角坐标系C xyz -.设AB a BE b CF c ===,,,则(000)C ,,,(30)A a ,,,(300)B ,,,(30)E b ,,,(00)F c ,,. (Ⅰ)证明:(0)AE b a =-,,,(300)CB =,,,(00)BE b =,,,所以0CB CE =,0CB BE =,从而CB AE ⊥,CB BE ⊥, 所以CB ⊥平面ABE .因为CB ⊥平面DCF ,所以平面ABE ∥平面DCF . 故AE ∥平面DCF .(Ⅱ)解:因为(30)EF c b =--,,,(30)CE b =,,, 所以0EF CE =,||2EF =,从而23()03()2b c b c b -+-=⎧⎪⎨+-=⎪⎩,,解得34b c ==,.所以(330)E ,,,(040)F ,,. 设(1)n y z =,,与平面AEF 垂直, 则0n AE =,0n EF =,DA BEFCyz x解得33(13)n a=,,. 又因为BA ⊥平面BEFC ,(00)BA a =,,, 所以2||331|cos |2||||427BA n a n BA BA n a a <>===+,,得到92a =. 所以当AB 为92时,二面角A EF C --的大小为60. 19.本题主要考查排列组合、对立事件、相互独立事件的概率和随机变量分布列和数学期望等概念,同时考查学生的逻辑思维能力和分析问题以及解决问题的能力.满分14分.(Ⅰ)解:(i )记“从袋中任意摸出两个球,至少得到一个白球”为事件A ,设袋中白球的个数为x ,则2102107()19xC P A C -=-=,得到5x =.故白球有5个.(ii )随机变量ξ的取值为0,1,2,3,分布列是ξ 0 1 2 3P112 512 512 112ξ的数学期望155130123121212122E ξ=⨯+⨯+⨯+⨯=. (Ⅱ)证明:设袋中有n 个球,其中y 个黑球,由题意得25y n =, 所以2y n <,21y n -≤,故112y n -≤. 记“从袋中任意摸出两个球,至少有1个黑球”为事件B ,则23()551y P B n =+⨯- 231755210+⨯=≤. 所以白球的个数比黑球多,白球个数多于25n ,红球的个数少于5n . 故袋中红球个数最少.20.本题主要考查求曲线的轨迹方程、两条直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.满分15分.(Ⅰ)解:设()N x y ,为C 上的点,则2213||28NP x y ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,N 到直线58y =-的距离为58y +.由题设得22135288x y y ⎛⎫⎛⎫++-=+ ⎪ ⎪⎝⎭⎝⎭.化简,得曲线C 的方程为21()2y x x =+. (Ⅱ)解法一:设22x x M x ⎛⎫+ ⎪⎝⎭,,直线:l y kx k =+,则()B x kx k +,,从而2||1|1|QB k x =++.在Rt QMA △中,因为222||(1)14x QM x ⎛⎫=++ ⎪⎝⎭,2222(1)2||1x x k MA k⎛⎫+- ⎪⎝⎭=+. 所以222222(1)||||||(2)4(1)x QA QM MA kx k +=-=++ . 2|1||2|||21x kx QA k++=+,222||2(1)112||||QB k k x QA k x k+++=+.当2k =时,2||55||QB QA =,从而所求直线l 方程为220x y -+=.AB OQ y xl M解法二:设22x x M x ⎛⎫+ ⎪⎝⎭,,直线:l y kx k =+,则()B x kx k +,,从而2||1|1|QB k x =++.过Q (10)-,垂直于l 的直线11:(1)l y x k=-+. 因为||||QA MH =,所以2|1||2|||21x kx QA k++=+,222||2(1)112||||QB k k x QA k x k+++=+.当2k =时,2||55||QB QA =,从而所求直线l 方程为220x y -+=.21.本题主要考查函数的性质、求导、导数的应用等基础知识,同时考查分类讨论思想以及综合运用所学知识分析问题和解决问题的能力.满分15分. (Ⅰ)解:函数的定义域为[0)+∞,,3()22x a x af x x x x--'=+=(0x >). 若0a ≤,则()0f x '>,()f x 有单调递增区间[0)+∞,.若0a >,令()0f x '=,得3ax =, 当03ax <<时,()0f x '<, 当3ax >时,()0f x '>. ()f x 有单调递减区间03a ⎡⎤⎢⎥⎣⎦,,单调递增区间3a ⎛⎫+∞ ⎪⎝⎭,. (Ⅱ)解:(i )若0a ≤,()f x 在[02],上单调递增, 所以()(0)0g a f ==.AB OQ yxl M Hl 1若06a <<,()f x 在03a ⎡⎤⎢⎥⎣⎦,上单调递减,在23a ⎛⎤ ⎥⎝⎦,上单调递增, 所以2()333a a a g a f ⎛⎫==-⎪⎝⎭. 若6a ≥,()f x 在[02],上单调递减, 所以()(2)2(2)g a f a ==-.综上所述,002()06332(2)6a a ag a a a a ⎧⎪⎪=-<<⎨⎪⎪-⎩,≤,,,,≥. (ii )令6()2g a --≤≤. 若0a ≤,无解.若06a <<,解得36a <≤. 若6a ≥,解得6232a +≤≤. 故a 的取值范围为3232a +≤≤.22.本题主要考查数列的递推关系,数学归纳法、不等式证明等基础知识和基本技能,同时考查逻辑推理能力.满分14分.(Ⅰ)证明:用数学归纳法证明.①当1n =时,因为2a 是方程210x x +-=的正根,所以12a a <.②假设当*()n k k =∈N 时,1k k a a +<,因为221k k a a +-222211(1)(1)k k k k a a a a ++++=+--+-2121()(1)k k k k a a a a ++++=-++, 所以12k k a a ++<.即当1n k =+时,1n n a a +<也成立.根据①和②,可知1n n a a +<对任何*n ∈N 都成立.(Ⅱ)证明:由22111k k k a a a +++-=,121k n =-,,,(2n ≥), 得22231()(1)n n a a a a n a ++++--=.因为10a =,所以21n n S n a =--.由1n n a a +<及2211121n n n a a a ++=+-<得1n a <,所以2n S n >-.(Ⅲ)证明:由221112k k k k a a a a +++=+≥,得111(2313)12k k ka k n n a a ++=-+≤,,,,≥所以23421(3)(1)(1)(1)2n n n a a a a a a -+++≤≥,于是2222232211(3)(1)(1)(1)2()22n n n n n n a a n a a a a a ---=<++++≤≥, 故当3n ≥时,21111322n n T -<++++<,又因为123T T T <<, 所以3n T <.绝密★考试结束前2009年普通高等学校招生全国统一考试(浙江卷)数 学(理科)本试题卷分选择题和非选择题两部分。
解析几何(解答题)--五年(2020-2024)高考数学真题分类汇编(解析版)
专题解析几何(解答题)考点五年考情(2020-2024)命题趋势考点01椭圆及其性质2024Ⅰ甲卷北京卷天津卷2023北京乙卷天津2022乙卷北京卷浙江卷2021北京卷Ⅱ卷2020ⅠⅡ卷新ⅠⅡ卷椭圆轨迹标准方程问题,有关多边形面积问题,定值定点问题,新结构中的新定义问题是高考的一个高频考点考点02双曲线及其性质2024Ⅱ卷2023Ⅱ新课标Ⅱ2022Ⅰ卷2021Ⅰ双曲线离心率问题,轨迹方程有关面积问题,定值定点问题以及斜率有关的证明问题以及新结构中的新定义问题是高考的高频考点考点03抛物线及其性质2023甲卷2022甲卷2021浙江甲卷乙卷2020浙江抛物线有关三角形面积问题,关于定直线问题,有关P 的证明类问题考点01:椭圆及其性质1(2024·全国·高考Ⅰ卷)已知A (0,3)和P 3,32 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3x -2y -6=0或x -2y =0.【详解】(1)由题意得b =39a 2+94b2=1,解得b 2=9a 2=12 ,所以e =1-b 2a2=1-912=12.(2)法一:k AP =3-320-3=-12,则直线AP 的方程为y =-12x +3,即x +2y -6=0,AP =0-3 2+3-322=352,由(1)知C :x 212+y 29=1,设点B到直线AP的距离为d,则d=2×9352=1255,则将直线AP沿着与AP垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B,设该平行线的方程为:x+2y+C=0,则C+65=1255,解得C=6或C=-18,当C=6时,联立x212+y29=1x+2y+6=0,解得x=0y=-3或x=-3y=-32,即B0,-3或-3,-3 2,当B0,-3时,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当B-3,-3 2时,此时k l=12,直线l的方程为y=12x,即x-2y=0,当C=-18时,联立x212+y29=1x+2y-18=0得2y2-27y+117=0,Δ=272-4×2×117=-207<0,此时该直线与椭圆无交点.综上直线l的方程为3x-2y-6=0或x-2y=0.法二:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B x0,y0,则x0+2y0-65=1255x2012+y209=1,解得x0=-3y0=-32或x0=0y0=-3,即B0,-3或-3,-3 2,以下同法一.法三:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B23cosθ,3sinθ,其中θ∈0,2π,则有23cosθ+6sinθ-65=1255,联立cos2θ+sin2θ=1,解得cosθ=-32sinθ=-12或cosθ=0sinθ=-1,即B0,-3或-3,-3 2,以下同法一;法四:当直线AB的斜率不存在时,此时B0,-3,S△PAB=12×6×3=9,符合题意,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当线AB的斜率存在时,设直线AB的方程为y=kx+3,联立椭圆方程有y =kx +3x 212+y 29=1,则4k 2+3 x 2+24kx =0,其中k ≠k AP ,即k ≠-12,解得x =0或x =-24k 4k 2+3,k ≠0,k ≠-12,令x =-24k 4k 2+3,则y =-12k 2+94k 2+3,则B -24k 4k 2+3,-12k 2+94k 2+3同法一得到直线AP 的方程为x +2y -6=0,点B 到直线AP 的距离d =1255,则-24k4k 2+3+2×-12k 2+94k 2+3-65=1255,解得k =32,此时B -3,-32 ,则得到此时k l =12,直线l 的方程为y =12x ,即x -2y =0,综上直线l 的方程为3x -2y -6=0或x -2y =0.法五:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当l 的斜率存在时,设PB :y -32=k (x -3),令P x 1,y 1 ,B x 2,y 2 ,y =k (x -3)+32x 212+y 29=1 ,消y 可得4k 2+3 x 2-24k 2-12k x +36k 2-36k -27=0,Δ=24k 2-12k 2-44k 2+3 36k 2-36k -27 >0,且k ≠k AP ,即k ≠-12,x 1+x 2=24k 2-12k 4k 2+3x 1x 2=36k 2-36k -274k 2+3,PB =k 2+1x 1+x 2 2-4x 1x 2=43k 2+13k 2+9k +2744k 2+3 ,A 到直线PB 距离d =3k +32k 2+1,S △PAB =12⋅43k 2+13k 2+9k +2744k 2+3⋅3k +32k 2+1=9,∴k =12或32,均满足题意,∴l :y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.法六:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当直线l 斜率存在时,设l :y =k (x -3)+32,设l 与y 轴的交点为Q ,令x =0,则Q 0,-3k +32,联立y =kx -3k +323x 2+4y 2=36,则有3+4k 2 x 2-8k 3k -32x +36k 2-36k -27=0,3+4k2x2-8k3k-3 2x+36k2-36k-27=0,其中Δ=8k23k-3 22-43+4k236k2-36k-27>0,且k≠-1 2,则3x B=36k2-36k-273+4k2,x B=12k2-12k-93+4k2,则S=12AQx P-x B=123k+3212k+183+4k2=9,解的k=12或k=32,经代入判别式验证均满足题意.则直线l为y=12x或y=32x-3,即3x-2y-6=0或x-2y=0.2(2024·全国·高考甲卷)已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,点M1,32在C上,且MF⊥x轴.(1)求C的方程;(2)过点P4,0的直线交C于A,B两点,N为线段FP的中点,直线NB交直线MF于点Q,证明:AQ⊥y 轴.【答案】(1)x24+y23=1(2)证明见解析【详解】(1)设F c,0,由题设有c=1且b2a=32,故a2-1a=32,故a=2,故b=3,故椭圆方程为x24+y23=1.(2)直线AB的斜率必定存在,设AB:y=k(x-4),A x1,y1,B x2,y2,由3x2+4y2=12y=k(x-4)可得3+4k2x2-32k2x+64k2-12=0,故Δ=1024k4-43+4k264k2-12>0,故-12<k<12,又x1+x2=32k23+4k2,x1x2=64k2-123+4k2,而N52,0,故直线BN:y=y2x2-52x-52,故y Q=-32y2x2-52=-3y22x2-5,所以y1-y Q=y1+3y22x2-5=y1×2x2-5+3y22x2-5=k x1-4×2x2-5+3k x2-42x2-5=k 2x1x2-5x1+x2+82x2-5=k2×64k2-123+4k2-5×32k23+4k2+82x2-5=k 128k2-24-160k2+24+32k23+4k22x2-5=0,故y1=y Q,即AQ⊥y轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意Δ的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.3(2024·北京·高考真题)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 ,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点0,t t >2 且斜率存在的直线与椭圆E 交于不同的两点A ,B ,过点A 和C 0,1 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.【答案】(1)x 24+y 22=1,e =22(2)t =2【详解】(1)由题意b =c =22=2,从而a =b 2+c 2=2,所以椭圆方程为x 24+y 22=1,离心率为e =22;(2)直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设AB :y =kx +t ,k ≠0,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立x 24+y 22=1y =kx +t,化简并整理得1+2k 2 x 2+4ktx +2t 2-4=0,由题意Δ=16k 2t 2-82k 2+1 t 2-2 =84k 2+2-t 2 >0,即k ,t 应满足4k 2+2-t 2>0,所以x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,若直线BD 斜率为0,由椭圆的对称性可设D -x 2,y 2 ,所以AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,在直线AD 方程中令x =0,得y C =x 1y 2+x 2y 1x 1+x 2=x 1kx 2+t +x 2kx 1+t x 1+x 2=2kx 1x 2+t x 1+x 2 x 1+x 2=4k t 2-2 -4kt +t =2t =1,所以t =2,此时k 应满足4k 2+2-t 2=4k 2-2>0k ≠0 ,即k 应满足k <-22或k >22,综上所述,t =2满足题意,此时k <-22或k >22.4(2024·天津·高考真题)已知椭圆x 2a 2+y 2b 2=1(a >b >0)椭圆的离心率e =12.左顶点为A ,下顶点为B ,C 是线段OB 的中点,其中S △ABC =332.(1)求椭圆方程.(2)过点0,-32 的动直线与椭圆有两个交点P ,Q .在y 轴上是否存在点T 使得TP ⋅TQ ≤0.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)x 212+y 29=1(2)存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.【详解】(1)因为椭圆的离心率为e =12,故a =2c ,b =3c ,其中c 为半焦距,所以A -2c ,0 ,B 0,-3c ,C 0,-3c 2 ,故S △ABC =12×2c ×32c =332,故c =3,所以a =23,b =3,故椭圆方程为:x 212+y 29=1.(2)若过点0,-32 的动直线的斜率存在,则可设该直线方程为:y =kx -32,设P x 1,y 1 ,Q x 2,y 2 ,T 0,t ,由3x 2+4y 2=36y =kx -32可得3+4k 2 x 2-12kx -27=0,故Δ=144k 2+1083+4k 2 =324+576k 2>0且x 1+x 2=12k 3+4k 2,x 1x 2=-273+4k2,而TP =x 1,y 1-t ,TQ=x 2,y 2-t ,故TP ⋅TQ =x 1x 2+y 1-t y 2-t =x 1x 2+kx 1-32-t kx 2-32-t =1+k 2 x 1x 2-k 32+t x 1+x 2 +32+t 2=1+k 2 ×-273+4k 2-k 32+t ×12k 3+4k 2+32+t 2=-27k 2-27-18k 2-12k 2t +332+t 2+3+2t 2k 23+4k 2=3+2t2-12t -45 k 2+332+t 2-273+4k 2,因为TP ⋅TQ ≤0恒成立,故3+2t 2-12t -45≤0332+t 2-27≤0,解得-3≤t ≤32.若过点0,-32的动直线的斜率不存在,则P 0,3 ,Q 0,-3 或P 0,-3 ,Q 0,3 ,此时需-3≤t ≤3,两者结合可得-3≤t ≤32.综上,存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.5(2023年全国乙卷理科)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率是53,点A -2,0 在C 上.(1)求C方程;(2)过点-2,3 的直线交C 于P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【答案】(1)y 29+x 24=1(2)证明见详解解析:(1)由题意可得b =2a 2=b 2+c 2e =c a =53,解得a =3b =2c =5,所以椭圆方程为y 29+x 24=1.(2)由题意可知:直线PQ 的斜率存在,设PQ :y =k x +2 +3,P x 1,y 1 ,Q x 2,y 2 ,联立方程y =k x +2 +3y 29+x 24=1,消去y 得:4k 2+9 x 2+8k 2k +3x +16k 2+3k =0,则Δ=64k 22k +3 2-644k 2+9 k 2+3k =-1728k >0,解得k <0,可得x 1+x 2=-8k 2k +34k 2+9,x 1x 2=16k 2+3k 4k 2+9,因为A -2,0 ,则直线AP :y =y 1x 1+2x +2 ,令x =0,解得y =2y 1x 1+2,即M 0,2y 1x 1+2,同理可得N 0,2y 2x 2+2,则2y 1x 1+2+2y2x 2+22=k x 1+2 +3 x 1+2+k x 2+2 +3 x 2+2=kx 1+2k +3 x 2+2 +kx 2+2k +3 x 1+2x 1+2 x 2+2=2kx 1x 2+4k +3 x 1+x 2 +42k +3x 1x 2+2x 1+x 2 +4=32k k 2+3k 4k 2+9-8k 4k +3 2k +34k 2+9+42k +3 16k 2+3k 4k 2+9-16k 2k +34k 2+9+4=10836=3,所以线段MN 的中点是定点0,3 .6(2020年高考课标Ⅱ)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)C 1:x 236+y 227=1,C 2:y 2=12x .解析:(1)∵F c ,0 ,AB ⊥x 轴且与椭圆C 1相交于A 、B 两点,则直线AB 的方程为x =c ,联立x =c x 2a 2+y 2b 2=1a 2=b 2+c 2,解得x =c y =±b 2a,则AB =2b 2a ,抛物线C 2的方程为y 2=4cx ,联立x =cy 2=4cx ,解得x =cy =±2c,∴CD =4c ,∵CD =43AB ,即4c =8b 23a ,2b 2=3ac ,即2c 2+3ac -2a 2=0,即2e 2+3e -2=0,∵0<e <1,解得e =12,因此,椭圆C 1的离心率为12;(2)由(1)知a =2c ,b =3c ,椭圆C 1的方程为x 24c 2+y 23c 2=1,联立y 2=4cxx24c2+y 23c 2=1,消去y 并整理得3x 2+16cx -12c 2=0,解得x =23c 或x =-6c (舍去),由抛物线的定义可得MF =23c +c =5c3=5,解得c =3.因此,曲线C 1的标准方程为x 236+y 227=1,曲线C 2的标准方程为y 2=12x .7(2021年新高考全国Ⅱ卷)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (2,0),且离心率为63.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |=3.【答案】解析:(1)由题意,椭圆半焦距c =2且e =c a =63,所以a =3,又b 2=a 2-c 2=1,所以椭圆方程为x 23+y 2=1;(2)由(1)得,曲线为x 2+y 2=1(x >0),当直线MN 的斜率不存在时,直线MN :x =1,不合题意;当直线MN 的斜率存在时,设M x 1,y 1 ,N x 2,y 2 ,必要性:若M ,N ,F 三点共线,可设直线MN :y =k x -2 即kx -y -2k =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得2kk 2+1=1,解得k =±1,联立y =±x -2x23+y 2=1 可得4x 2-62x +3=0,所以x 1+x 2=322,x 1⋅x 2=34,所以MN =1+1⋅x 1+x 22-4x 1⋅x 2=3,所以必要性成立;充分性:设直线MN :y =kx +b ,kb <0 即kx -y +b =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得bk 2+1=1,所以b 2=k 2+1,联立y =kx +bx 23+y 2=1可得1+3k 2 x 2+6kbx +3b 2-3=0,所以x 1+x 2=-6kb 1+3k 2,x 1⋅x 2=3b 2-31+3k 2,所以MN =1+k 2⋅x 1+x 22-4x 1⋅x 2=1+k2-6kb 1+3k22-4⋅3b 2-31+3k 2=1+k 2⋅24k 21+3k 2=3,化简得3k 2-1 2=0,所以k =±1,所以k =1b =-2或k =-1b =2 ,所以直线MN :y =x -2或y =-x +2,所以直线MN 过点F (2,0),M ,N ,F 三点共线,充分性成立;所以M ,N ,F 三点共线的充要条件是|MN |=3.8(2020年高考课标Ⅰ卷)已知A 、B 分别为椭圆E :x 2a2+y 2=1(a >1)左、右顶点,G 为E 的上顶点,AG ⋅GB =8,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E方程;(2)证明:直线CD 过定点.【答案】(1)x 29+y 2=1;(2)证明详见解析.【解析】(1)依据题意作出如下图象:由椭圆方程E :x 2a2+y 2=1(a >1)可得:A -a ,0 , B a ,0 ,G 0,1∴AG =a ,1 ,GB =a ,-1 ∴AG ⋅GB =a 2-1=8,∴a 2=9∴椭圆方程为:x 29+y 2=1(2)证明:设P 6,y 0 ,则直线AP 的方程为:y =y 0-06--3x +3 ,即:y =y 09x +3 联立直线AP 的方程与椭圆方程可得:x 29+y 2=1y =y 09x +3 ,整理得:y 02+9 x 2+6y 02x +9y 02-81=0,解得:x =-3或x =-3y 02+27y 02+9将x =-3y 02+27y 02+9代入直线y =y 09x +3 可得:y =6y 0y 02+9所以点C 的坐标为-3y 02+27y 02+9,6y 0y 02+9 .同理可得:点D 的坐标为3y 02-3y 02+1,-2y 0y 02+1∴直线CD 的方程为:y --2y 0y 02+1=6y 0y 02+9--2y 0y 02+1-3y 02+27y 02+9-3y 02-3y 02+1x -3y 02-3y 02+1,整理可得:y +2y 0y 02+1=8y 0y 02+3 69-y 04x -3y 02-3y 02+1 =8y 063-y 02 x -3y 02-3y 02+1整理得:y =4y 033-y 02 x +2y 0y 02-3=4y 033-y 02x -32故直线CD 过定点32,09(2020年新高考全国Ⅰ卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【答案】(1)x 26+y 23=1;(2)详见解析.解析:(1)由题意可得:c a =324a 2+1b 2=1a 2=b 2+c 2,解得:a 2=6,b 2=c 2=3,故椭圆方程为:x 26+y 23=1.(2)设点M x 1,y 1 ,N x 2,y 2 .因为AM ⊥AN ,∴AM·AN=0,即x 1-2 x 2-2 +y 1-1 y 2-1 =0,①当直线MN 的斜率存在时,设方程为y =kx +m ,如图1.代入椭圆方程消去y 并整理得:1+2k 2 x 2+4kmx +2m 2-6=0x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2②,根据y 1=kx 1+m ,y 2=kx 2+m ,代入①整理可得:k 2+1 x 1x 2+km -k -2 x 1+x 2 +m -1 2+4=0将②代入,k 2+1 2m 2-61+2k 2+km -k -2 -4km1+2k2+m -1 2+4=0,整理化简得2k +3m +1 2k +m -1 =0,∵A (2,1)不在直线MN 上,∴2k +m -1≠0,∴2k +3m +1=0,k ≠1,于是MN 的方程为y =k x -23 -13,所以直线过定点直线过定点E 23,-13.当直线MN 的斜率不存在时,可得N x 1,-y 1 ,如图2.代入x 1-2 x 2-2 +y 1-1 y 2-1 =0得x 1-2 2+1-y 22=0,结合x 216+y 213=1,解得x 1=2舍 ,x 1=23,此时直线MN 过点E 23,-13,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,所以AE 中点Q 满足QD 为定值(AE 长度的一半122-232+1+132=423).由于A 2,1 ,E 23,-13 ,故由中点坐标公式可得Q 43,13.故存在点Q 43,13,使得|DQ |为定值.10(2022年高考全国乙卷)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A 0,-2 ,B 32,-1两点.(1)求E 的方程;(2)设过点P 1,-2 的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT =TH.证明:直线HN 过定点.【答案】(1)y 24+x 23=1(2)(0,-2)解析:设椭圆E 的方程为mx 2+ny 2=1,过A 0,-2 ,B 32,-1,则4n =194m +n =1 ,解得m =13,n =14,所以椭圆E 的方程为:y 24+x 23=1.【小问2详解】A (0,-2),B 32,-1,所以AB :y +2=23x ,①若过点P (1,-2)的直线斜率不存在,直线x =1.代入x 23+y 24=1,可得M 1,-263 ,N 1,263 ,代入AB 方程y =23x -2,可得T -6+3,-263 ,由MT =TH 得到H -26+5,-263 .求得HN 方程:y =2+263x -2,过点(0,-2).②若过点P (1,-2)的直线斜率存在,设kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立kx -y -(k +2)=0x 23+y 24=1,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0,可得x 1+x 2=6k (2+k )3k 2+4x 1x 2=3k (4+k )3k 2+4,y 1+y 2=-8(2+k )3k 2+4y 2y 2=4(4+4k -2k 2)3k 2+4,且x 1y 2+x 2y 1=-24k 3k 2+4(*)联立y =y 1y =23x -2,可得T 3y12+3,y 1 ,H (3y 1+6-x 1,y 1).可求得此时HN :y -y 2=y 1-y 23y 1+6-x 1-x 2(x -x 2),将(0,-2),代入整理得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0,将(*)代入,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立,综上,可得直线HN 过定点(0,-2).11(2020年新高考全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)x 216+y 212=1;(2)18.解析:(1)由题意可知直线AM 的方程为:y -3=12(x -2),即x -2y =-4.当y =0时,解得x =-4,所以a =4,椭圆C :x 2a 2+y 2b 2=1a >b >0 过点M (2,3),可得416+9b 2=1,解得b 2=12.所以C 的方程:x 216+y 212=1.(2)设与直线AM 平行的直线方程为:x -2y =m ,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程x -2y =m 与椭圆方程x 216+y 212=1,可得:3m +2y 2+4y 2=48,化简可得:16y 2+12my +3m 2-48=0,所以Δ=144m 2-4×163m 2-48 =0,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:x -2y =8,直线AM 方程为:x -2y =-4,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d =8+41+4=1255,由两点之间距离公式可得|AM |=(2+4)2+32=35.所以△AMN 的面积的最大值:12×35×1255=18.12(2020年高考课标Ⅲ卷)已知椭圆C :x 225+y 2m 2=1(0<m <5)的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,求△APQ 的面积.【答案】(1)x 225+16y 225=1;(2)52.解析:(1)∵C :x 225+y 2m 2=1(0<m <5)∴a =5,b =m ,根据离心率e =ca=1-b a2=1-m 5 2=154,解得m =54或m =-54(舍),∴C 的方程为:x 225+y 2542=1,即x 225+16y 225=1;(2)不妨设P ,Q 在x 轴上方∵点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,过点P 作x 轴垂线,交点为M ,设x =6与x 轴交点为N 根据题意画出图形,如图∵|BP |=|BQ |,BP ⊥BQ ,∠PMB =∠QNB =90°,又∵∠PBM +∠QBN =90°,∠BQN +∠QBN =90°,∴∠PBM =∠BQN ,根据三角形全等条件“AAS ”,可得:△PMB ≅△BNQ ,∵x 225+16y 225=1,∴B (5,0),∴PM =BN =6-5=1,设P 点为(x P ,y P ),可得P 点纵坐标为y P =1,将其代入x 225+16y 225=1,可得:x P 225+1625=1,解得:x P =3或x P =-3,∴P 点为(3,1)或(-3,1),①当P 点为(3,1)时,故MB =5-3=2,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=2,可得:Q 点为(6,2),画出图象,如图∵A (-5,0),Q (6,2),可求得直线AQ 的直线方程为:2x -11y +10=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =2×3-11×1+1022+112=5125=55,根据两点间距离公式可得:AQ =6+52+2-0 2=55,∴△APQ 面积为:12×55×55=52;②当P 点为(-3,1)时,故MB =5+3=8,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=8,可得:Q 点为(6,8),画出图象,如图∵A (-5,0),Q (6,8),可求得直线AQ 的直线方程为:8x -11y +40=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =8×-3 -11×1+4082+112=5185=5185,根据两点间距离公式可得:AQ =6+52+8-0 2=185,∴△APQ 面积为:12×185×5185=52,综上所述,△APQ 面积为:52.1313(2023年北京卷)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)离心率为53,A 、C 分别是E 的上、下顶点,B ,D 分别是E 的左、右顶点,|AC |=4.(1)求E 的方程;(2)设P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线PA 与直线y =-2交于点N .求证:MN ⎳CD .【答案】(1)x 29+y 24=1(2)证明见解析:(1)依题意,得e =c a =53,则c =53a ,又A ,C 分别为椭圆上下顶点,AC =4,所以2b =4,即b =2,所以a 2-c 2=b 2=4,即a 2-59a 2=49a 2=4,则a 2=9,所以椭圆E 的方程为x 29+y 24=1.(2)因为椭圆E 的方程为x 29+y 24=1,所以A 0,2 ,C 0,-2 ,B -3,0 ,D 3,0 ,因为P 为第一象限E 上的动点,设P m ,n 0<m <3,0<n <2 ,则m 29+n 24=1,易得k BC =0+2-3-0=-23,则直线BC 的方程为y =-23x -2,k PD =n -0m -3=n m -3,则直线PD 的方程为y =n m -3x -3 ,联立y =-23x -2y =n m -3x -3,解得x =33n -2m +63n +2m -6y =-12n 3n +2m -6,即M 33n -2m +6 3n +2m -6,-12n 3n +2m -6,而k PA =n -2m -0=n -2m ,则直线PA 的方程为y =n -2mx +2,令y =-2,则-2=n -2m x +2,解得x =-4m n -2,即N -4mn -2,-2 ,又m 29+n 24=1,则m 2=9-9n 24,8m 2=72-18n 2,所以k MN =-12n3n +2m -6+233n -2m +6 3n +2m -6--4mn-2=-6n +4m -12 n -29n -6m +18 n -2 +4m 3n +2m -6=-6n 2+4mn -8m +249n 2+8m 2+6mn -12m -36=-6n 2+4mn -8m +249n 2+72-18n 2+6mn -12m -36=-6n 2+4mn -8m +24-9n 2+6mn -12m +36=2-3n 2+2mn -4m +12 3-3n 2+2mn -4m +12 =23,又k CD =0+23-0=23,即k MN =k CD ,显然,MN 与CD 不重合,所以MN ⎳CD .14(2023年天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左右顶点分别为A 1,A 2,右焦点为F ,已知A 1F =3,A 2F =1.(1)求椭圆方程及其离心率;(2)已知点P 是椭圆上一动点(不与端点重合),直线A 2P 交y 轴于点Q ,若三角形A 1PQ 的面积是三角形A 2FP 面积的二倍,求直线A 2P 的方程.【答案】(1)椭圆的方程为x 24+y 23=1,离心率为e =12.(2)y =±62x -2 .解析:(1)如图,由题意得a +c =3a -c =1,解得a =2,c =1,所以b =22-12=3,所以椭圆的方程为x 24+y 23=1,离心率为e =c a =12.(2)由题意得,直线A 2P 斜率存在,由椭圆的方程为x 24+y 23=1可得A 22,0 ,设直线A 2P 的方程为y =k x -2 ,联立方程组x 24+y 23=1y =k x -2,消去y 整理得:3+4k 2 x 2-16k 2x +16k 2-12=0,由韦达定理得x A 2⋅x P =16k 2-123+4k 2,所以x P =8k 2-63+4k 2,所以P 8k 2-63+4k 2,--12k3+4k 2,Q 0,-2k .所以S △A 2QA 1=12×4×y Q ,S △A 2PF =12×1×y P ,S △A 1A 2P =12×4×y P ,所以S △A 2QA 1=S △A 1PQ +S △A 1A 2P =2S △A 2PF +S △A 1A 2P ,所以2y Q =3y P ,即2-2k =3-12k3+4k 2,解得k =±62,所以直线A 2P 的方程为y =±62x -2 .15(2022高考北京卷)已知椭圆:E :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),焦距为23.(1)求椭圆E 的方程;(2)过点P (-2,1)作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当|MN |=2时,求k 的值.【答案】解析:(1)依题意可得b =1,2c =23,又c 2=a 2-b 2,所以a =2,所以椭圆方程为x 24+y 2=1;(2)解:依题意过点P -2,1 的直线为y -1=k x +2 ,设B x 1,y 1 、C x 2,y 2 ,不妨令-2≤x 1<x 2≤2,由y -1=k x +2x 24+y 2=1,消去y 整理得1+4k 2 x 2+16k 2+8k x +16k 2+16k =0,所以Δ=16k 2+8k 2-41+4k 2 16k 2+16k >0,解得k <0,所以x 1+x 2=-16k 2+8k 1+4k 2,x 1⋅x 2=16k 2+16k1+4k2,直线AB 的方程为y -1=y 1-1x 1x ,令y =0,解得x M =x 11-y 1,直线AC 的方程为y -1=y 2-1x 2x ,令y =0,解得x N =x 21-y 2,所以MN =x N -x M =x 21-y 2-x 11-y 1=x 21-k x 2+2 +1 -x 11-k x 1+2 +1=x 2-k x 2+2 +x 1k x 1+2=x 2+2 x 1-x 2x 1+2k x 2+2 x 1+2=2x 1-x 2k x 2+2 x 1+2=2,所以x 1-x 2 =k x 2+2 x 1+2 ,即x 1+x 22-4x 1x 2=k x 2x 1+2x 2+x 1 +4即-16k 2+8k 1+4k22-4×16k 2+16k 1+4k 2=k 16k 2+16k 1+4k 2+2-16k 2+8k 1+4k2+4 即81+4k 22k 2+k 2-1+4k 2 k 2+k =k1+4k216k2+16k -216k 2+8k +41+4k 2整理得8-k =4k ,解得k =-416(2022年浙江省高考)如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P (0,1)的两点,且点Q 0,12 在线段AB 上,直线PA ,PB 分别交直线y =-12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值;(2)求|CD |的最小值.【答案】解析:(1)设Q (23cos θ,sin θ)是椭圆上任意一点,P (0,1),则|PQ |2=12cos 2θ+(1-sin θ)2=13-11sin 2θ-2sin θ=-11sin θ+111 2+14411≤14411,当且仅当sin θ=-111时取等号,故|PQ |的最大值是121111.(2)设直线AB :y =kx +12,直线AB 方程与椭圆x 212+y 2=1联立,可得k 2+112 x 2+kx -34=0,设A x 1,y 1 ,B x 2,y 2 ,所以x 1+x 2=-kk 2+112x 1x 2=-34k 2+112 ,因为直线PA :y =y 1-1x 1x +1与直线y =-12x +3交于C ,则x C=4x 1x 1+2y 1-2=4x 1(2k +1)x 1-1,同理可得,x D =4x 2x 2+2y 2-2=4x 2(2k +1)x 2-1.则|CD |=1+14x C -x D =524x 1(2k +1)x 1-1-4x 2(2k +1)x 2-1=25x 1-x 2(2k +1)x 1-1 (2k +1)x 2-1=25x 1-x 2(2k +1)2x 1x 2-(2k +1)x 1+x 2 +1=352⋅16k 2+13k +1=655⋅16k 2+1916+13k +1≥655×4k ×34+1×123k +1=655,当且仅当k =316时取等号,故CD 的最小值为655.17(2021高考北京)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)一个顶点A (0,-2),以椭圆E 的四个顶点为顶点的四边形面积为45.(1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交y =-3交于点M ,N ,当|PM |+|PN |≤15时,求k 的取值范围.【答案】(1)x 25+y 24=1;(2)[-3,-1)∪(1,3].解析:(1)因为椭圆过A 0,-2 ,故b =2,因为四个顶点围成的四边形的面积为45,故12×2a ×2b =45,即a =5,故椭圆的标准方程为:x 25+y 24=1.(2)设B x 1,y 1 ,C x 2,y 2 , 因为直线BC 的斜率存在,故x 1x 2≠0,故直线AB :y =y 1+2x 1x -2,令y =-3,则x M =-x1y 1+2,同理x N =-x 2y 2+2直线BC :y =kx -3,由y =kx -34x 2+5y 2=20可得4+5k 2 x 2-30kx +25=0,故Δ=900k 2-1004+5k 2 >0,解得k <-1或k >1.又x 1+x 2=30k 4+5k 2,x 1x 2=254+5k 2,故x 1x 2>0,所以x M x N >0又PM +PN =x M +x N =x 1y 1+2+x 2y 2+2=x1kx1-1+x2kx2-1=2kx1x2-x1+x2k2x1x2-k x1+x2+1=50k4+5k2-30k4+5k225k24+5k2-30k24+5k2+1=5k故5k ≤15即k ≤3,综上,-3≤k<-1或1<k≤3.考点02双曲线及其性质1(2024·全国·高考Ⅱ)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...:过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n .(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x=2k y n-kx n1-k2-x n=2ky n-x n-k2x n1-k2,相应的y=k x-x n+y n=y n+k2y n-2kx n1-k2.所以该直线与C 的不同于P n 的交点为Q n2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n ,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k 1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV ⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV⋅UW 1-UV ⋅UWUV ⋅UW 2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2c 2+d 2-ac +bd2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n=121-k 1+k m -1+k 1-k mx 2n -y 2n=921-k 1+k m -1+k 1-k m .而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2=x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1 =12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1 =12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k-921-k 1+k 2-1+k 1-k 2.这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m .这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k=x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.2(2023年新课标全国Ⅱ卷)已知双曲线C 的中心为坐标原点,左焦点为-25,0 ,离心率为5.(1)求C的方程;(2)记C左、右顶点分别为A1,A2,过点-4,0的直线与C的左支交于M,N两点,M在第二象限,直线MA1与NA2交于点P.证明:点P在定直线上.【答案】(1)x24-y216=1(2)证明见解析.解析:(1)设双曲线方程为x2a2-y2b2=1a>0,b>0,由焦点坐标可知c=25,则由e=ca=5可得a=2,b=c2-a2=4,双曲线方程为x24-y216=1.(2)由(1)可得A1-2,0,A22,0,设M x1,y1,N x2,y2,显然直线的斜率不为0,所以设直线MN的方程为x=my-4,且-12<m<12,与x24-y216=1联立可得4m2-1y2-32my+48=0,且Δ=64(4m2+3)>0,则y1+y2=32m4m2-1,y1y2=484m2-1,直线MA1的方程为y=y1x1+2x+2,直线NA2的方程为y=y2x2-2x-2,联立直线MA1与直线NA2的方程可得:x+2 x-2=y2x1+2y1x2-2=y2my1-2y1my2-6=my1y2-2y1+y2+2y1my1y2-6y1=m⋅484m2-1-2⋅32m4m2-1+2y1m×484m2-1-6y1=-16m4m2-1+2y148m4m2-1-6y1=-13,由x+2x-2=-13可得x=-1,即x P=-1,据此可得点P在定直线x=-1上运动.3(2022新高考全国II卷)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=±3x.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P x1,y1,Q x2,y2在C上,且.x1>x2>0,y1>0.过P 且斜率为-3的直线与过Q 且斜率为3的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ ∥AB ;③|MA |=|MB |.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1)x 2-y 23=1(2)见解析:(1)右焦点为F (2,0),∴c =2,∵渐近线方程为y =±3x ,∴ba=3,∴b =3a ,∴c 2=a 2+b 2=4a 2=4,∴a =1,∴b =3.∴C 的方程为:x 2-y 23=1;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而x 1=x 2,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为y =k x -2 ,则条件①M 在AB 上,等价于y 0=k x 0-2 ⇔ky 0=k 2x 0-2 ;两渐近线方程合并为3x 2-y 2=0,联立消去y 并化简整理得:k 2-3 x 2-4k 2x +4k 2=0设A x 3,y 3 ,B x 3,y 4 ,线段中点N x N ,y N ,则x N =x 3+x 42=2k 2k 2-3,y N =k x N -2 =6kk 2-3,设M x 0,y 0 , 则条件③AM =BM 等价于x 0-x 3 2+y 0-y 3 2=x 0-x 4 2+y 0-y 4 2,移项并利用平方差公式整理得:x 3-x 4 2x 0-x 3+x 4 +y 3-y 4 2y 0-y 3+y 4 =0,2x 0-x 3+x 4 +y 3-y 4x 3-x 42y 0-y 3+y 4 =0,即x 0-x N +k y 0-y N =0,即x 0+ky 0=8k 2k 2-3;由题意知直线PM 的斜率为-3, 直线QM 的斜率为3,∴由y 1-y 0=-3x 1-x 0 ,y 2-y 0=3x 2-x 0 ,∴y 1-y 2=-3x 1+x 2-2x 0 ,所以直线PQ 的斜率m =y 1-y 2x 1-x 2=-3x 1+x 2-2x 0 x 1-x 2,直线PM :y =-3x -x 0 +y 0,即y =y 0+3x 0-3x ,代入双曲线的方程3x 2-y 2-3=0,即3x +y 3x -y =3中,得:y 0+3x 0 23x -y 0+3x 0 =3,解得P 的横坐标:x 1=1233y 0+3x 0+y 0+3x 0,。
近5年浙江理科数学考题分析(二项式计数原理)
浙江省新课程(2020-2021)高考数学试题的考查内容 (二项式、计数原理)年份 考查 内容2009年2010年2011年2012年排列、组合、概率与统计二项式特定项系数4,排列组合16,概率、期望19错排问题17,二项式定理14,概率、期望19 古典概型的概率9、数学期望,相互独立事件的概率15分类加法计数原理、组合6,二项式特定项系数14,期望192021-6.假设从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,那么不同的取法共有 种 种 种 种 D解析:第一种:奇奇偶偶 2254C C第二种:奇奇奇奇44C 第三种:偶偶偶偶45C2020-(9)有5本不同的书,其中语文书2本,数学书2本,物理书1本.假设将其随机的并排摆放到书架的同一层上,那么同一科目的书都不相邻的概率 (A )15 (B )25 (C )35 D 45【答案】B【解析】由古典概型的概率公式得522155222233232222=+-=A A A A A A A P . 2020--(17)有4位同窗在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、 “台阶”五个项目的测试,每位同窗上、下午各测试一个项目,且不重复. 假设上午意外“握力”项目,下午意外“台阶”项目,其余项目上、下午都各测试一人. 那么不同的安排方式共 有______________种(用数字作答).解析:此题要紧考察了排列与组合的相关知识点,突出对分类讨论思想和数学思维能力的考察,属较难题2642020-16.甲、乙、丙3人站到共有7级的台阶上,假设每级台阶最多站2人,同一级台阶上的人不区分站的位置,那么不同的站法种数是(用数字作答). 答案:336【解析】关于7个台阶上每一个只站一人,那么有37A 种;假设有一个台阶有2人,另一个是1人,那么共有1237C A 种,因此共有不同的站法种数是336种.2020--(16)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,如此的六位数的个数是____40 ______(用数字作答)。
浙江省高考数学试题(理)分类解析汇编-排列组合二项式定理算法框图
浙江省高考数学试题(理)分类解析汇编 专题7:排列组合、二项式定理、算法框图一、选择题1. (全国 理5分)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有【 】 (A )8种 (B )12种 (C )16种 (D )20种 【答案】B 。
【考点】排列、组合的实际应用。
【分析】使用间接法,首先分析从6个面中选取3个面,共36C 20=种不同的取法,而其中有2个面相邻,即8个角上3个相邻平面,选法有8种,则选法共有20-8=12种。
故选B 。
2.(全国 理5分)已知方程()()22220x x m x x n -+-+=的四个根组成一个首项为14的的等差数列,则 =-||n m 【 】(A )1 (B )43 (C )21 (D )83【答案】C 。
【考点】等差数列的性质,一元二次方程根与系数的关系。
【分析】设4个根分别为x 1、x 2、x 3、x 4,则x 1+x 2=2,x 3+x 4=2由四个根组成一个首项为14的的等差数列,设x 1为第一项,x 2必为第4项,可得数列为1357, , , 4444。
又∵m =x 1·x 2=716,n =x 3·x 4=1516,∴7151||16162m n -=-=。
故选C 。
3.(全国 理5分)()22222341111234nn nC C C C limn C C C C→∞++++=++++【 】(A )3 (B )31 (C )61(D )6 【答案】B 。
【考点】组合及组合数公式,极限及其运算。
【分析】利用组合数的性质对原式进行等价转化,再求极限:∵111k k km m m C C C ---=+,∴()()2222322232343341116n n n n n n C C C C C C C C C ++-++++=++++===又∵()()()()()1111234212122n n n n n n n C C C C n +-+-++++=⋅=,∴()()()()()222223411112341111162123312n n n n nn n n C C C C nlim lim limn n nn C C C C n →∞→∞→∞+-+++++===+-⎛⎫+++++ ⎪⎝⎭。
专题十 排列组合 2004-2018浙江高考真题分类汇编(学生版)
专题十排列组合近五年考查率:60% 考查要点:分类、分步计数原理;排列组合中的常用方法一、知识梳理1.分类加法计数原理完成一件事,有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法……在第n类方案中有m n种不同的方法.那么完成这件事共有N=________________种不同的方法.2.分步乘法计数原理完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法……做第n步有m n种不同的方法.那么完成这件事共有N=____________种不同的方法.3.两个计数原理解决计数问题时的方法最重要的是在开始计算之前要进行仔细分析——是需要分类还是需要分步.(1)分类要做到“______________”.分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到“______________”,即完成了所有步骤,恰好完成任务,当然步与步之间要______________,分步后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.4.排列(1)排列的定义:从n个不同元素中取出m(m≤n)个元素,按照____________排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数的定义:从n个不同元素中取出m(m≤n)个元素的________________的个数叫做从n个不同元素中取出m个元素的排列数,用符号______表示.(3)排列数公式:A m n=________________________.这里n,m∈N*,并且________.(4)全排列:n个不同元素全部取出的一个____________,叫做n个元素的一个全排列.A n n =n×(n-1)×(n-2)×…×3×2×1=__________,因此,排列数公式写成阶乘的形式为A m n=,这里规定0!=________.5.组合(1)组合的定义:从n个不同元素中取出m(m≤n)个元素____________,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的____________的个数,叫做从n个不同元素中取出m个元素的组合数,用符号________表示.(3)组合数公式:C m n=A m nA m m=____________=____________.这里n∈N*,m∈N,并且m≤n.(4)组合数的两个性质:①C m n=____________;②C m n +1=____________+____________.知识梳理答案:1.m 1+m 2+…+m n2.m 1×m 2×…×m n3.(1)不重不漏 (2)步骤完整 相互独立4.(1)一定的顺序 (2)所有不同排列 A m n (3)n (n -1)(n -2)…(n -m +1) m ≤n(4)排列 n ! n !(n -m )!1 5.(1)合成一组 (2)所有不同组合 C m n(3)n (n -1)(n -2)…(n -m +1)m ! n !m !(n -m )!(4)①C n -m n ②C m n C m -1n二、历年真题1.(2005•浙江,14)从集合{O ,P ,Q ,R ,S }与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).每排中字母O ,Q 和数字0至多只能出现一个的不同排法种数是_________.(用数字作答).2.(2007•浙江,14)某书店有11种杂志,2元1本的8种,1元1本的3种,小张有10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种数是_____________(用数字作答)3.(2008•浙江,16)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是__________(用数字作答)4.(2009•浙江,16)甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是 (用数字作答).5.(2010•浙江,17)有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复,若上午不测“握力”项目,下午不测“台阶,其余项目上、下午都各测试一人,则不同的安排方式共有种 (用数字作答)。
五年2018-2022高考数学真题按知识点分类汇编10-等差数列(含解析)
五年2018-2022高考数学真题按知识点分类汇编10-等差数列(含解析)一、单选题1.(2022·全国·统考高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AA k k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.92.(2022·北京·统考高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件3.(2021·北京·统考高考真题)已知{}n a 是各项均为整数的递增数列,且13a ≥,若12100n a a a ++⋅⋅⋅+=,则n 的最大值为( )A .9B .10C .11D .124.(2021·北京·统考高考真题)《中国共产党党旗党徽制作和使用的若干规定》指出,中国共产党党旗为旗面缀有金黄色党徽图案的红旗,通用规格有五种.这五种规格党旗的长12345,,,,a a a a a (单位:cm)成等差数列,对应的宽为12345,,,,b b b b b (单位: cm),且长与宽之比都相等,已知1288a =,596=a ,1192b =,则3b =A .64B .96C .128D .1605.(2020·全国·统考高考真题)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3699块B .3474块C .3402块D .3339块6.(2020·浙江·统考高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n N *∈,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .2428a a a = D .2428b b b =7.(2019·全国·高考真题)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B .310n a n =- C .228n S n n =-D .2122n S n n =-8.(2018·全国·高考真题)设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则5a = A .12-B .10-C .10D .12二、填空题9.(2022·全国·统考高考真题)记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d =_______.10.(2020·全国·统考高考真题)记n S 为等差数列{}n a 的前n 项和.若1262,2a a a =-+=,则10S =__________.11.(2020·海南·高考真题)将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{an },则{an }的前n 项和为________.12.(2019·全国·统考高考真题)记Sn 为等差数列{an }的前n 项和,12103a a a =≠,,则105S S =___________. 13.(2019·全国·高考真题)记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S =___________.三、解答题14.(2022·全国·统考高考真题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列. (1)求{}n a 的通项公式; (2)证明:121112na a a +++<. 15.(2022·全国·统考高考真题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+. (1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.16.(2022·全国·统考高考真题)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.17.(2022·浙江·统考高考真题)已知等差数列{}n a 的首项11a =-,公差1d >.记{}n a 的前n 项和为()n S n *∈N .(1)若423260S a a -+=,求n S ;(2)若对于每个n *∈N ,存在实数n c ,使12,4,15n n n n n n a c a c a c +++++成等比数列,求d 的取值范围.18.(2022·天津·统考高考真题)设{}n a 是等差数列,{}n b 是等比数列,且1122331a b a b a b ==-=-=.(1)求{}n a 与{}n b 的通项公式;(2)设{}n a 的前n 项和为n S ,求证:()1111n n n n n n n S a b S b S b +++++=-;(3)求211(1)nkk k k k a a b +=⎡⎤--⎣⎦∑.19.(2021·全国·统考高考真题)记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=. (1)证明:数列{}n b 是等差数列; (2)求{}n a 的通项公式.20.(2021·全国·统考高考真题)记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==.(1)求数列{}n a 的通项公式n a ; (2)求使n n S a >成立的n 的最小值.21.(2021·全国·统考高考真题)设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列. (1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 22.(2021·全国·统考高考真题)已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立. ①数列{}n a 是等差数列:②数列是等差数列;③213a a =. 注:若选择不同的组合分别解答,则按第一个解答计分.23.(2021·全国·统考高考真题)已知数列{}n a 满足11a =,11,,2,.n n n a n a a n ++⎧=⎨+⎩为奇数为偶数 (1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式; (2)求{}n a 的前20项和.24.(2021·全国·高考真题)记n S 为数列{}n a 的前n 项和,已知210,3n a a a >=,且数列是等差数列,证明:{}na 是等差数列.25.(2021·天津·统考高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=. (I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22nn c c -是等比数列; (ii)证明)*nk n N =∈ 26.(2020·天津·统考高考真题)已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N ;(Ⅲ)对任意的正整数n ,设()21132,,,.n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.27.(2020·山东·统考高考真题)某男子擅长走路,9天共走了1260里,其中第1天、第4天、第7天所走的路程之和为390里.若从第2天起,每天比前一天多走的路程相同,问该男子第5天走多少里.这是我国古代数学专著《九章算术》中的一个问题,请尝试解决.28.(2018·全国·高考真题)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.29.(2019·全国·高考真题)已知数列{an }和{bn }满足a 1=1,b 1=0,1434n n n a a b +-=+ ,1434n n n b b a +-=-.(1)证明:{an +bn }是等比数列,{an –bn }是等差数列; (2)求{an }和{bn }的通项公式.30.(2019·全国·高考真题)记Sn 为等差数列{an }的前n 项和,已知S 9=-a 5. (1)若a 3=4,求{an }的通项公式;(2)若a 1>0,求使得Sn ≥an 的n 的取值范围.31.(2019·全国·高考真题)已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+. (1)求{}n a 的通项公式;(2)设2log n n b a =,求数列{}n b 的前n 项和.参考答案:1.D【分析】设11111OD DC CB BA ====,则可得关于3k 的方程,求出其解后可得正确的选项. 【详解】设11111OD DC CB BA ====,则111213,,CC k BB k AA k ===, 依题意,有31320.2,0.1k k k k -=-=,且111111110.725DD CC BB AA OD DC CB BA +++=+++,所以30.530.30.7254k +-=,故30.9k =,故选:D 2.C【分析】设等差数列{}n a 的公差为d ,则0d ≠,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.【详解】设等差数列{}n a 的公差为d ,则0d ≠,记[]x 为不超过x 的最大整数. 若{}n a 为单调递增数列,则0d >,若10a ≥,则当2n ≥时,10n a a >≥;若10a <,则()11n a a n d +-=, 由()110n a a n d =+->可得11a n d >-,取1011a N d ⎡⎤=-+⎢⎥⎣⎦,则当0n N >时,0n a >, 所以,“{}n a 是递增数列”⇒“存在正整数0N ,当0n N >时,0n a >”; 若存在正整数0N ,当0n N >时,0n a >,取N k *∈且0k N >,0k a >, 假设0d <,令()0n k a a n k d =+-<可得k a n k d >-,且k ak k d->, 当1k a n k d ⎡⎤>-+⎢⎥⎣⎦时,0n a <,与题设矛盾,假设不成立,则0d >,即数列{}n a 是递增数列.所以,“{}n a 是递增数列”⇐“存在正整数0N ,当0n N >时,0n a >”.所以,“{}n a 是递增数列”是“存在正整数0N ,当0n N >时,0n a >”的充分必要条件. 故选:C. 3.C【分析】使数列首项、递增幅度均最小,结合等差数列的通项及求和公式求得n 可能的最大值,然后构造数列满足条件,即得到n 的最大值.【详解】若要使n 尽可能的大,则,递增幅度要尽可能小, 不妨设数列是首项为3,公差为1的等差数列,其前n 项和为,则,,所以11n ≤. 对于,,取数列各项为(1,2,10)n =⋯,1125a =,则1211100a a a ++⋅⋅⋅+=, 所以n 的最大值为11. 故选:C . 4.C【分析】设等差数列{}n a 公差为d ,求得48d =-,得到3192a =,结合党旗长与宽之比都相等和1192b =,列出方程,即可求解.【详解】由题意,五种规格党旗的长12345,,,,a a a a a (单位:cm)成等差数列,设公差为d , 因为1288a =,596=a ,可得519628848513a a d --===--, 可得3288(31)(48)192a =+-⨯-=, 又由长与宽之比都相等,且1192b =,可得3113a ab b =,所以3131192192=128288a b b a ⋅⨯==. 故选:C. 5.C【分析】第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,设n S 为{}n a 的前n 项和,由题意可得322729n n n n S S S S -=-+,解方程即可得到n ,进一步得到3n S .【详解】设第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,9(1)99n a n n =+-⨯=,设n S 为{}n a 的前n 项和,则第一层、第二层、第三层的块数分 别为232,,n n n n n S S S S S --,因为下层比中层多729块, 所以322729n n n n S S S S -=-+, 即3(927)2(918)2(918)(99)7292222n n n n n n n n ++++-=-+ 即29729n =,解得9n =, 所以32727(9927)34022n S S +⨯===.故选:C【点晴】本题主要考查等差数列前n 项和有关的计算问题,考查学生数学运算能力,是一道容易题. 6.D【分析】根据题意可得,21212222n n n n n b S a a S ++++=+=-,而1212b S a a ==+,即可表示出题中2468,,,b b b b ,再结合等差数列的性质即可判断各等式是否成立.【详解】对于A ,因为数列{}n a 为等差数列,所以根据等差数列的下标和性质,由4426+=+可得,4262a a a =+,A 正确;对于B ,由题意可知,21212222n n n n n b S a a S ++++=+=-,1212b S a a ==+, ∴234b a a =+,478b a a =+,61112b a a =+,81516b a a =+. ∴()47822b a a =+,26341112b b a a a a +=+++.根据等差数列的下标和性质,由31177,41288+=++=+可得()26341112784=2=2b b a a a a a a b +=++++,B 正确;对于C ,()()()()2224281111137222a a a a d a d a d d a d d d a -=+-++=-=-, 当1a d =时,2428a a a =,C 正确; 对于D ,()()22222478111213452169b a a a d a a d d =+=+=++,()()()()2228341516111125229468145b b a a a a a d a d a a d d =++=++=++,()22428112416832b b b d a d d d a -=-=-.当0d >时,1a d ≤,∴()113220d a d d a -=+->即24280b b b ->;当0d <时,1a d ≥,∴()113220d a d d a -=+-<即24280b b b ->,所以24280b b b ->,D 不正确. 故选:D.【点睛】本题主要考查等差数列的性质应用,属于基础题. 7.A【分析】等差数列通项公式与前n 项和公式.本题还可用排除,对B ,55a =,44(72)1002S -+==-≠,排除B ,对C ,245540,25850105S a S S ==-=⨯-⨯-=≠,排除C .对D ,24554150,5250522S a S S ==-=⨯-⨯-=≠,排除D ,故选A .【详解】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,故选A .【点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断. 8.B【详解】分析:首先设出等差数列{}n a 的公差为d ,利用等差数列的求和公式,得到公差d 所满足的等量关系式,从而求得结果3d =-,之后应用等差数列的通项公式求得51421210a a d =+=-=-,从而求得正确结果.详解:设该等差数列的公差为d , 根据题中的条件可得32433(32)224222d d d ⨯⨯⨯+⋅=⨯++⨯+⋅, 整理解得3d =-,所以51421210a a d =+=-=-,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差d 的值,之后利用等差数列的通项公式得到5a 与1a d 和的关系,从而求得结果. 9.2【分析】转化条件为()112+226a d a d =++,即可得解.【详解】由32236S S =+可得()()123122+36a a a a a +=++,化简得31226a a a =++, 即()112+226a d a d =++,解得2d =. 故答案为:2. 10.25【分析】因为{}n a 是等差数列,根据已知条件262a a +=,求出公差,根据等差数列前n 项和,即可求得答案. 【详解】{}n a 是等差数列,且12a =-,262a a +=设{}n a 等差数列的公差d根据等差数列通项公式:()11n a a n d +-= 可得1152a d a d +++= 即:()2252d d -++-+= 整理可得:66d = 解得:1d =根据等差数列前n 项和公式:*1(1),2n n n S na d n N -=+∈ 可得:()1010(101)1022045252S ⨯-=-+=-+= ∴1025S =.故答案为:25.【点睛】本题主要考查了求等差数列的前n 项和,解题关键是掌握等差数列的前n 项和公式,考查了分析能力和计算能力,属于基础题. 11.232n n -【分析】首先判断出数列{}21n -与{}32n -项的特征,从而判断出两个数列公共项所构成新数列的首项以及公差,利用等差数列的求和公式求得结果.【详解】因为数列{}21n -是以1为首项,以2为公差的等差数列, 数列{}32n -是以1首项,以3为公差的等差数列,所以这两个数列的公共项所构成的新数列{}n a 是以1为首项,以6为公差的等差数列, 所以{}n a 的前n 项和为2(1)16322n n n n n -⋅+⋅=-, 故答案为:232n n -.【点睛】该题考查的是有关数列的问题,涉及到的知识点有两个等差数列的公共项构成新数列的特征,等差数列求和公式,属于简单题目. 12.4.【分析】根据已知求出1a 和d 的关系,再结合等差数列前n 项和公式求得结果. 【详解】因213a a =,所以113a d a +=,即12a d =,所以105S S =11111091010024542552a d a a a d⨯+==⨯+. 【点睛】本题主要考查等差数列的性质、基本量的计算.渗透了数学运算素养.使用转化思想得出答案. 13.100【分析】根据题意可求出首项和公差,进而求得结果.【详解】317125,613a a d a a d =+=⎧⎨=+=⎩得11,2a d =⎧⎨=⎩ 101109109101012100.22S a d ⨯⨯∴=+=⨯+⨯= 【点睛】本题考点为等差数列的求和,为基础题目,利用基本量思想解题即可,充分记牢等差数列的求和公式是解题的关键. 14.(1)()12n n n a +=(2)见解析【分析】(1)利用等差数列的通项公式求得()121133n n S n n a +=+-=,得到()23nn n a S +=,利用和与项的关系得到当2n ≥时,()()112133n n n n n n a n a a S S --++=-=-,进而得:111n n a n a n -+=-,利用累乘法求得()12n n n a +=,检验对于1n =也成立,得到{}n a 的通项公式()12n n n a +=; (2)由(1)的结论,利用裂项求和法得到121111211n a a a n ⎛⎫+++=- ⎪+⎝⎭,进而证得. 【详解】(1)∵11a =,∴111S a ==,∴111S a =, 又∵n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列,∴()121133n n S n n a +=+-=,∴()23n n n a S +=, ∴当2n ≥时,()1113n n n a S --+=,∴()()112133n n n n n n a n a a S S --++=-=-,整理得:()()111n n n a n a --=+, 即111n n a n a n -+=-, ∴31211221n n n n n a a a a a a a a a a ---=⨯⨯⨯⋯⨯⨯ ()1341112212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--, 显然对于1n =也成立, ∴{}n a 的通项公式()12n n n a +=; (2)()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭∴12111na a a +++1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦15.(1)证明见解析; (2)78-.【分析】(1)依题意可得222n n S n na n +=+,根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,作差即可得到11n n a a --=,从而得证;(2)法一:由(1)及等比中项的性质求出1a ,即可得到{}n a 的通项公式与前n 项和,再根据二次函数的性质计算可得. 【详解】(1)因为221nn S n a n+=+,即222n n S n na n +=+①, 当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----, 即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈, 所以{}n a 是以1为公差的等差数列. (2)[方法一]:二次函数的性质由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=--⎪⎝⎭, 所以,当12n =或13n =时,()min 78n S =-. [方法二]:【最优解】邻项变号法由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-, 所以13n a n =-,即有1123210,0a a a a <<<<=.则当12n =或13n =时,()min 78n S =-.【整体点评】(2)法一:根据二次函数的性质求出n S 的最小值,适用于可以求出n S 的表达式;法二:根据邻项变号法求最值,计算量小,是该题的最优解.16.(1)证明见解析; (2)9.【分析】(1)设数列{}n a 的公差为d ,根据题意列出方程组即可证出; (2)根据题意化简可得22k m -=,即可解出.【详解】(1)设数列{}n a 的公差为d ,所以,()11111111224283a d b a d b a d b b a d +-=+-⎧⎨+-=-+⎩,即可解得,112db a ==,所以原命题得证. (2)由(1)知,112d b a ==,所以()1111121k k m b a a b a m d a -=+⇔⨯=+-+,即122k m -=,亦即[]221,500k m -=∈,解得210k ≤≤,所以满足等式的解2,3,4,,10k =,故集合{}1|,1500k m k b a a m =+≤≤中的元素个数为10219-+=.17.(1)235(N )2n n nS n *-=∈(2)12d <≤【分析】(1)利用等差数列通项公式及前n 项和公式化简条件,求出d ,再求n S ; (2)由等比数列定义列方程,结合一元二次方程有解的条件求d 的范围. 【详解】(1)因为42312601S a a a -+==-,, 所以()()46211260d d d -+--+-++=, 所以230d d -=,又1d >, 所以3d =, 所以34n a n =-, 所以()213522n na a n n n S +-==,(2)因为n n a c +,14n n a c ++,215n n a c ++成等比数列, 所以()()()212415n n n n n n a c a c a c +++=++,()()()2141115n n n nd c nd d c nd d c -+=-+-+-+++,22(1488)0n n c d nd c d +-++=,由已知方程22(1488)0n n c d nd c d +-++=的判别式大于等于0,所以()22148840d nd d ∆=-+-≥,所以()()168812880d nd d nd -+-+≥对于任意的n *∈N 恒成立,所以()()212320n d n d ----≥⎡⎤⎡⎤⎣⎦⎣⎦对于任意的n *∈N 恒成立,当1n =时,()()()()21232120n d n d d d ----=++≥⎡⎤⎡⎤⎣⎦⎣⎦, 当2n =时,由()()2214320d d d d ----≥,可得2≤d 当3n ≥时,()()21232(3)(25)0n d n d n n ---->--≥⎡⎤⎡⎤⎣⎦⎣⎦, 又1d > 所以12d <≤18.(1)121,2n n n a n b -=-= (2)证明见解析 (3)1(62)489n n +-+【分析】(1)利用等差等比数列的通项公式进行基本量运算即可得解; (2)由等比数列的性质及通项与前n 项和的关系结合分析法即可得证;(3)先求得212221212122(1)(1)k k k k k k k k a a b a a b ---+⎡⎤⎡⎤--+--⎣⎦⎣⎦,进而由并项求和可得114nk n k T k +==⋅∑,再结合错位相减法可得解.【详解】(1)设{}n a 公差为d ,{}n b 公比为q ,则11(1),n n n a n d b q -=+-=,由22331a b a b -=-=可得2112121d q d q d q +-=⎧⇒==⎨+-=⎩(0d q ==舍去), 所以121,2n n n a n b -=-=;(2)证明:因为120,n n b b +=≠所以要证1111()n n n n n n n S a b S b S b +++++=-, 即证111()2n n n n n n n S a b S b S b ++++=⋅-,即证1112n n n n S a S S ++++=-, 即证11n n n a S S ++=-,而11n n n a S S ++=-显然成立,所以1111()n n n n n n n S a b S b S b +++++=⋅-⋅;(3)因为212221212122(1)(1)k kk k k k k k a a b a a b ---+⎡⎤⎡⎤--+--⎣⎦⎣⎦2221(4143)2[41(41)]224k k k k k k k k --=-+-⨯++--⨯=⋅,所以211(1)n k k k k k a a b +=⎡⎤--⎣⎦∑2122212121221[((1))((1))]nk kk k k k k k k a a b a a b ---+==--+--∑124nk k k ==⋅∑,设124nk n k T k ==⋅∑所以2324446424nn T n =⨯+⨯+⨯+⋅⋅⋅+⨯,则2341244446424n n n T +⨯+⨯+⨯+⋅⋅⋅+⨯=,作差得()2341124(14)3244444242414n nn n n T n n ++⨯--=++++⋅⋅⋅+-⋅=-⨯-()126483n n +--=, 所以1(62)489n n n T +-+=,所以211(1)nkk k k k a a b +=⎡⎤--=⎣⎦∑1(62)489n n +-+. 19.(1)证明见解析;(2)()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩. 【分析】(1)由已知212n n S b +=得221n nn b S b =-,且0n b ≠,取1n =,得132b =,由题意得1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,消积得到项的递推关系111221n n n nb b b b +++=-,进而证明数列{}n b 是等差数列;(2)由(1)可得n b 的表达式,由此得到n S 的表达式,然后利用和与项的关系求得()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【详解】(1)[方法一]: 由已知212n n S b +=得221n n n b S b =-,且0n b ≠,12n b ≠, 取1n =,由11S b =得132b =, 由于n b 为数列{}n S 的前n 项积, 所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---, 所以1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---, 所以111221n n n nb bb b +++=-,由于10n b +≠ 所以12121n n b b +=-,即112n n b b +-=,其中*n ∈N 所以数列{}n b 是以132b =为首项,以12d =为公差等差数列; [方法二]【最优解】: 由已知条件知1231-⋅=⋅⋅⋅⋅n n n b S S S S S ①于是11231(2)--=⋅⋅⋅⋅≥n n b S S S S n . ②由①②得1nn n b S b -=. ③又212n nS b +=, ④ 由③④得112n n b b --=. 令1n =,由11S b =,得132b =.所以数列{}n b 是以32为首项,12为公差的等差数列.[方法三]:由212n n S b+=,得22=-nn nS b S ,且0n S ≠,0n b ≠,1n S ≠. 又因为111--=⋅⋅=⋅n n n n n b S S S S b ,所以1122-==-n n n n b b S S ,所以()1111(2)2222212---=-==≥---n n n n n n n S S b b n S S S .在212n n S b +=中,当1n =时,1132==b S . 故数列{}n b 是以32为首项,12为公差的等差数列.[方法四]:数学归纳法由已知212n nS b+=,得221n n n b S b =-,132b =,22b =,352=b ,猜想数列{}n b 是以32为首项,12为公差的等差数列,且112n b n =+. 下面用数学归纳法证明. 当1n =时显然成立.假设当n k =时成立,即121,21+=+=+k k k b k S k .那么当1n k =+时,11112++⎛⎫==+ ⎪⎝⎭k k k b b S k 331(1)1222k k k k ++⋅==+++. 综上,猜想对任意的n ∈N 都成立.即数列{}n b 是以32为首项,12为公差的等差数列.(2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列, ()3111222n n b n ∴=+-⨯=+, 22211n n n b n S b n+==-+,当n =1时,1132a S ==, 当n ≥2时,()121111n n n n n a S S n n n n -++=-=-=-++,显然对于n =1不成立, ∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩. 【整体点评】(1)方法一从212n n S b +=得221n n n b S b =-,然后利用n b 的定义,得到数列{}n b 的递推关系,进而替换相除消项得到相邻两项的关系,从而证得结论; 方法二先从n b 的定义,替换相除得到1nn n b S b -=,再结合212n n S b +=得到112n n b b --=,从而证得结论,为最优解;方法三由212n n S b +=,得22=-n n n S b S ,由n b 的定义得1122-==-n n n n b b S S ,进而作差证得结论;方法四利用归纳猜想得到数列112n b n =+,然后利用数学归纳法证得结论. (2)由(1)的结论得到112n b n =+,求得n S 的表达式,然后利用和与项的关系求得{}n a 的通项公式;20.(1)26n a n =-;(2)7.【分析】(1)由题意首先求得3a 的值,然后结合题意求得数列的公差即可确定数列的通项公式;(2)首先求得前n 项和的表达式,然后求解二次不等式即可确定n 的最小值. 【详解】(1)由等差数列的性质可得:535S a =,则:3335,0a a a =∴=,设等差数列的公差为d ,从而有:()()22433a a a d a d d =-+=-,()()()41234333322S a a a a a d a d a a d d =+++=-+-+++=-,从而:22d d -=-,由于公差不为零,故:2d =, 数列的通项公式为:()3326n a a n d n =+-=-.(2)由数列的通项公式可得:1264a =-=-,则:()()214252n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即:2526n n n ->-,整理可得:()()160n n -->, 解得:1n <或6n >,又n 为正整数,故n 的最小值为7.【点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用. 21.(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可;(2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可.【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n n n n .设0121111101212222Γ3333------=++++n n n , ⑧ 则1231111012112222Γ33333-----=++++n nn . ⑨由⑧-⑨得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--, 211213333n n n n nT --=++++,① 231112133333n n n n nT +-=++++,②①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---, 所以31(1)4323n n nnT =--⋅,所以2n n S T -=3131(1)(1)043234323n n n n n n ----=-<⋅⋅, 所以2nn S T <. [方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭nnn n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法 设()231()1-=++++=-n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭' 13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二. 【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁. (2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法. 22.证明过程见解析【分析】选①②作条件证明③,n n a S 的关系求出n a ,利用{}n a 是等差数列可证213a a =;也可分别设出公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系,进行证明.选①③作条件证明②选②③作条件证明①an b +,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a 是等差数列;也可利用前两项的差求出公差,然后求出通项公式,进而证明出结论.【详解】选①②作条件证明③: [方法一]:待定系数法+n a 与n S 关系式(0)an b a +>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n a a n =-,21a a =,故22133a a a ==.[方法二] :待定系数法设等差数列{}n a 的公差为d,等差数列的公差为1d ,1(1)n d -,将1(1)2n n n S na d -=+1(1)n d -,化简得())2222211111222d d n a n d n d n d ⎛⎫+-=+-+⎪⎝⎭对于n +∀∈N 恒成立.则有21211112,240,d d a d d d ⎧=⎪⎪-=-⎨=,解得112d d a =.所以213a a =.选①③作条件证明②:因为213a a =,{}n a 是等差数列, 所以公差2112d a a a =-=, 所以()21112n n n S na d n a -=+==,)1n +所以是等差数列. 选②③作条件证明①: [方法一]:定义法(0)an b a +>,则()2n S an b =+, 当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43a b =-; 当0b =时,()221,21n a a a a n ==-,当2n ≥时,2-1-2n n a a a =满足等差数列的定义,此时{}n a为等差数列; 当43a b =-4=3an b an a =+-03a=-<不合题意,舍去.综上可知{}n a 为等差数列. [方法二]【最优解】:求解通项公式因为213a a ===也为等差数列,所以公差1d()11n d -=21n S n a =,当2n ≥时,()()221111121n n n a S S n a n a n a -=-=--=-,当1n =时,满足上式,故{}n a 的通项公式为()121n a n a =-,所以()1123n a n a -=-,112n n a a a --=,符合题意.【整体点评】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,选①②时,法一:利用等差数列的通项公式是关于n的一次函数,直接设出(0)an b a =+>,平方后得到n S 的关系式,利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩得到{}n a 的通项公式,进而得到213a a =,是选择①②证明③的通式通法;法二:分别设出{}n a 与{}n S 的公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系1d 12d a =,进而得到213a a =;选①③时,按照正常的思维求出公差,表示出n S进行证明;选②③时,法一:利用等差数列的通项公式是关于n的一次函数,直接设出(0)an b a =+>,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a 是等差数1d的通项公式,利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,求出{}n a 的通项公式,进而证明出结论.23.(1)122,5,31n b b b n ===-;(2)300.【分析】(1)方法一:由题意结合递推关系式确定数列{}n b 的特征,然后求和其通项公式即可;(2)方法二:分组求和,结合等差数列前n 项和公式即可求得数列的前20项和.【详解】解:(1)[方法一]【最优解】:显然2n 为偶数,则21222212,1n n n n a a a a +++=+=+, 所以2223n n a a +=+,即13n n b b +=+,且121+12b a a ===, 所以{}n b 是以2为首项,3为公差的等差数列, 于是122,5,31n b b b n ===-. [方法二]:奇偶分类讨论由题意知1231,2,4a a a ===,所以122432,15b a b a a ====+=. 由11n n a a +-=(n 为奇数)及12n n a a +-=(n 为偶数)可知, 数列从第一项起,若n 为奇数,则其后一项减去该项的差为1, 若n 为偶数,则其后一项减去该项的差为2.所以*23()n n a a n N +-=∈,则()11331n b b n n =+-⨯=-.[方法三]:累加法由题意知数列{}n a 满足*113(1)1,()22nn n a a a n +-==++∈N . 所以11213(1)11222b a a -==++=+=, 322433223(1)3(1)11212352222b a a a a a --==++=+=+++=++=+=,则222121222111()()()121221+n n n n n n b a a a a a a a a a ---==-+-+-+=+++++++12(1)131n n n =+-+=-⨯.所以122,5b b ==,数列{}n b 的通项公式31n b n =-. (2)[方法一]:奇偶分类讨论 20123201351924620++++++++()()S a a a a a a a a a a a a =+=+++1231012310(1111)b b b b b b b b =-+-+-++-+++++110()102103002b b +⨯=⨯-=. [方法二]:分组求和由题意知数列{}n a 满足12212121,1,2n n n n a a a a a -+==+=+, 所以2122123n n n a a a +-=+=+.所以数列{}n a 的奇数项是以1为首项,3为公差的等差数列;同理,由2221213n n n a a a ++=+=+知数列{}n a 的偶数项是以2为首项,3为公差的等差数列. 从而数列{}n a 的前20项和为: 201351924260()()S a a a a a a a a =+++++++++1091091013102330022⨯⨯=⨯+⨯+⨯+⨯=. 【整体点评】(1)方法一:由题意讨论{}n b 的性质为最一般的思路和最优的解法; 方法二:利用递推关系式分类讨论奇偶两种情况,然后利用递推关系式确定数列的性质; 方法三:写出数列{}n a 的通项公式,然后累加求数列{}n b 的通项公式,是一种更加灵活的思路.(2)方法一:由通项公式分奇偶的情况求解前n 项和是一种常规的方法;方法二:分组求和是常见的数列求和的一种方法,结合等差数列前n 项和公式和分组的方法进行求和是一种不错的选择. 24.证明见解析.【分析】的公差d ,进一步写出的通项,从而求出{}n a 的通项公式,最终得证.【详解】∵数列是等差数列,设公差为d(n -=()n *∈N∴12n S a n =,()n *∈N∴当2n ≥时,()221111112n n n a S S a n a n a n a -=-=--=- 当1n =时,11121=a a a ⨯-,满足112n a a n a =-, ∴{}n a 的通项公式为112n a a n a =-,()n *∈N ∴()()111111221=2n n a a a n a a n a a --=----⎡⎤⎣⎦ ∴{}n a 是等差数列.【点睛】在利用1n n n a S S -=-求通项公式时一定要讨论1n =的特殊情况.25.(I )21,n a n n N *=-∈,4,n n N b n *=∈;(II )(i )证明见解析;(ii )证明见解析.【分析】(I )由等差数列的求和公式运算可得{}n a 的通项,由等比数列的通项公式运算可得{}n b 的通项公式;(II )(i )运算可得2224nn n c c =⋅-,结合等比数列的定义即可得证; (ii )放缩得21222422n n n n na n c a c +<-⋅,进而可得112n n k k k k-==,结合错位相减法即可得证. 【详解】(I )因为{}n a 是公差为2的等差数列,其前8项和为64. 所以12818782642a a a a ⨯++⋅⋅⋅+=+⨯=,所以11a =, 所以()12121,n n n n N a a *=+-=-∈;设等比数列{}n b 的公比为(),0q q >,所以()221321484q b b b q q b q ==-=--,解得4q =(负值舍去), 所以114,n n n b q n N b -*==∈;(II )(i )由题意,221441n n nn n b c b =++=,所以22224211442444n n n n n nn c c ⎛⎫⎛⎫=+-+=⋅ ⎪ ⎪⎝⎭⎝⎭-,所以220nn c c ≠-,且212222124424n n n n nn c c c c +++⋅==⋅--, 所以数列{}22nn c c -是等比数列; (ii )由题意知,()()22122222121414242222n n n n n n n n n a n n c c a +-+-==<-⋅⋅⋅,12n n-,所以112nn k k k-==, 设10121112322222nn k n k k n T --===+++⋅⋅⋅+∑, 则123112322222n nn T =+++⋅⋅⋅+, 两式相减得21111111122121222222212nn n n nn n n n T -⎛⎫⋅- ⎪+⎝⎭=+++⋅⋅⋅+-=-=--,所以1242n n n T -+=-,所以1112422nn k n k k n --==+⎫=-<⎪⎭【点睛】关键点点睛:最后一问考查数列不等式的证明,因为nk =错位相减法即可得证. 26.(Ⅰ)n a n =,12n n b -=;(Ⅱ)证明见解析;(Ⅲ)465421949n n n n +--+⨯.【分析】(Ⅰ)由题意分别求得数列的公差、公比,然后利用等差、等比数列的通项公式得到结果;(Ⅱ)利用(Ⅰ)的结论首先求得数列{}n a 前n 项和,然后利用作差法证明即可;(Ⅲ)分类讨论n 为奇数和偶数时数列的通项公式,然后分别利用指数型裂项求和和错位相减求和计算211n k k c -=∑和21nk k c =∑的值,据此进一步计算数列{}n c 的前2n 项和即可.【详解】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q . 由11a =,()5435a a a =-,可得d =1. 从而{}n a 的通项公式为n a n =. 由()15431,4b b b b ==-,又q ≠0,可得2440q q -+=,解得q =2,从而{}n b 的通项公式为12n n b -=.(Ⅱ)证明:由(Ⅰ)可得(1)2n n n S +=, 故21(1)(2)(3)4n n S S n n n n +=+++,()()22211124n S n n +=++, 从而2211(1)(2)02n n n S S S n n ++-=-++<,所以221n n n S S S ++<.(Ⅲ)当n 为奇数时,()111232(32)222(2)2n n n n n n n n a b n c a a n n n n-+-+--===-++,当n 为偶数时,1112n n n n a n c b -+-==,对任意的正整数n ,有222221112221212121k k nnnk k k c k k n --==⎛⎫=-=- ⎪+-+⎝⎭∑∑, 和223111211352321444444nnk kn n k k k n n c -==---==+++++∑∑① 由①得22314111352321444444n k n n k n n c +=--=+++++∑ ② 由①②得22111211312221121441444444414n n k n n n k n n c ++=⎛⎫- ⎪--⎝⎭=+++-=---∑, 由于11211121221121156544144334444123414nn n n n n n n ++⎛⎫-⎪--+⎝⎭--=-⨯--⨯=-⨯-, 从而得:21565994nk nk n c =+=-⨯∑. 因此,2212111465421949n nnnk k k nk k k n c c c n -===+=+=--+⨯∑∑∑. 所以,数列{}n c 的前2n 项和为465421949n n n n +--+⨯. 【点睛】本题主要考查数列通项公式的求解,分组求和法,指数型裂项求和,错位相减求和等,属于中等题. 27.140里.【分析】由条件确定,该男子这9天中每天走的路程数构成等差数列,根据等差数列的通项公式,和前n 项和公式,列式求解.【详解】解:因为从第2天起,每天比前一天多走的路程相同, 所以该男子这9天中每天走的路程数构成等差数列, 设该数列为{}n a ,第1天走的路程数为首项1a ,公差为d , 则91260S =,147390a a a ++=. 因为1(1)2n n n S na d -=+,1(1)n a a n d =+-, 所以11119(91)91260236390a d a a d a d ⨯-⎧+=⎪⎨⎪++++=⎩,解得110010a d =⎧⎨=⎩,则514100410140a a d =+=+⨯=, 所以该男子第5天走140里.28.(1)29n a n =-;(2)2=8n S n n -,最小值为–16.【分析】(1)方法一:根据等差数列前n 项和公式,求出公差,再代入等差数列通项公式即得结果;(2)方法二:根据等差数列前n 项和公式得n S ,根据二次函数的性质即可求出. 【详解】(1)[方法一]:【通性通法】【最优解】 公式法 设等差数列{}n a 的公差为d ,由315S =-得,()3237152d ⨯⨯-+=-,解得:=2d ,所以29n a n =-.[方法二]:函数+待定系数法设等差数列{}n a 通项公式为=+n a kn b ,易得+=7k b -,由315S =-,即2315a =-,即25k b +=-,解得:=2,=9k b -,所以29n a n =-.(2)[方法1]:邻项变号法 由1(1)=+2n n n d S na -可得2=8n S n n -.当0n a <,即29<0n -,解得14n ≤≤,所以n S 的最小值为41=4+6=16S a d -, 所以n S 的最小值为16-. [方法2]:函数法 由题意知2122n d d S n a n ⎛⎫=+- ⎪⎝⎭,即2=8n S n n -()2416n =--, 所以n S 的最小值为24=44?8=16S --,所以n S 的最小值为16-.【整体点评】(1)方法一:直接根据基本量的计算,利用等差数列前n 项和公式求出公差,即可得到通项公式,是该题的通性通法,也是最优解;方法二:根据等差数列的通项公式的函数形式特征,以及等差数列前n 项和的性质,用待定系数法解方程组求解;(2)方法一:利用等差数列前n 项和公式求n S ,再利用邻项变号法求最值; 方法二:利用等差数列前n 项和公式求n S ,再根据二次函数性质求最值. 29.(1)见解析;(2)1122nna n,1122nnb n.【分析】(1)可通过题意中的1434n n n a a b +-=+以及1434n n n b b a +-=-对两式进行相加和相减即可推导出数列{}n n a b +是等比数列以及数列{}n n a b -是等差数列;。
浙江省排列组合历年高中高考题包括答案 .docx
排 列 组 合1. 【 2009年. 浙江卷. 理16】甲、乙、丙3 人站到共有7 的台 上,若每 台 最多站2 人,同一 台上的人不区分站的位置, 不同的站法种数是(用数字作答) .2. 【 2008 年 . 浙江卷 . 理 16】用 1, 2,3, 4, 5, 6 成六位数(没有重复数字) ,要求任何相 两个数字的奇偶性不同,且 1 和 2 相 , 的六位数的个数是 (用数字作答 ).3. 【 2007 年 . 浙江卷 . 理 14】某 店有 11 种 志, 2 元 1 本的 8 种, 1 元 1 本的 3 种,小 有 10 元志(每种至多 一本, 10 元 好用完) , 不同 法的种数是 __________(用数字作答)4. 【 2005 年 . 浙江卷 . 理 9】 从集合 { O , P ,Q , R , S } 与 {0 , 1, 2, 3,4, 5,6, 7,8, 9} 中各任取 2 个元素排成一排 ( 字母和数字均不能重复 ) .每排中字母 O , Q 和数字 0 至多只能出 一个的不同排法种数是_________. ( 用数字作答 ) .5.【 2017 年. 浙江卷 .16 】从 6 男 2 女共 8 名学生中 出 1 人,副1 人,普通2 人 成 4 人服 ,要求服 中至少有1 名女生,共有 ______种不同的 法.(用数字作答)6.【 2018 年 . 浙江卷 .16 】从 1, 3, 5,7, 9 中任取 2 个数字,从 0, 2, 4,6 中任取 2 个数字,一共可以 成___________个没有重复数字的四位数 .( 用数字作答 )7. 【 2014 年 . 浙江卷 . 理 14】在 8 券中有一、二、三等 各 1 ,其余5 无 . 将 8 券分配 4个人,每人2 ,不同的 情况有_____种(用数字作答) .8. 【 2013 年 . 浙江卷 . 理 14】将 A , B , C ,D , E ,F 六个字母排成一排,且 A ,B 均在 C 的同 , 不同的排法共有 __________ 种( 用数字作答 ) .9. 【 2012 年 . 浙江卷 . 理 6】若从 1,2,3 ,⋯, 9 9 个整数中同 取 4 个不同的数,其和 偶数, 不同的取法共有 ()A . 60 种B . 63 种C . 65 种D . 66 种10. 【 2010 年 . 浙江卷 . 理 17】有 4 位同学在同一天的上、 下午参加 “身高与体重” 、“立定跳 ” 、“肺活量”、“握力”、“台 ”五个 目的 ,每位同学上、下午各 一个 目,且不重复 . 若上午不 “握力”目,下午不 “台 ” 目,其余 目上、下午都各 一人 . 不同的安排方式共有______________种(用数字作答) .11. 【 2011 年 . 浙江卷 . 理 9】有 5 本不同的 ,其中 文 2 本,数学 2 本,物理1 本. 若将其随机的并排 放到 架的同一 上, 同一科目的 都不相 的概率(A )1( B )2( C )3D455 55答案:33640 266 【答案】 8424660 126060 480 D264 48/120=2/5。
浙江新高考数学文科一轮复习创新方案热点题型10.2排列与组合(含答案详析)
第二节摆列与组合考点一摆列问题[例 1] 3 名男生, 4 名女生,依据不一样的要求排队,求不一样的排队方案的方法种数:(1)选此中 5 人排成一排;(2)排成前后两排,前排 3 人,后排 4 人;(3)全体站成一排,男、女各站在一同;(4)全体站成一排,男生不可以站在一同;(5)全体站成一排,甲不站排头也不站排尾.[自主解答 ] (1)问题即为从 7 个元素中选出 5 个全摆列,有A75= 2 520 种排法.(2)前排 3 人,后排 4 人,相当于排成一排,共有 A 77= 5 040 种排法.(3)相邻问题 (捆绑法 ) :男生一定站在一同,是男生的全摆列,有A 33种排法;女生一定站在一同,是女生的全摆列,有 A 44种排法;全体男生、女生各视为一个元素,有 A 22种排法,依据分步乘法计数原理,共有 A 33·A44·A 22= 288 种排法.(4)不相邻问题 (插空法 ):先安排女生共有 A 44种排法,男生在 4 个女生隔成的 5 个空中安排共有 A 53种排法,故共有 A 44·A 53=1 440 种排法.(5)先安排甲,从除掉排头和排尾的 5 个位中安排甲,有 A 51= 5 种排法;再安排其余人,有 A 66= 720 种排法.所以共有A15·A 66= 3 600 种排法.【互动研究】本例中若全体站成一排,男生一定站在一同,有多少种排法?解:(捆绑法 )即把全部男生视为一个元素,与 4 名女生构成 5 个元素全摆列,故有 A 33·A 55= 720 种排法.【方法例律】1.解决摆列问题的主要方法直接法把切合条件的摆列数直接列式计算捆绑法相邻问题捆绑办理,即能够把相邻元素当作一个整体参加其余元素摆列,同时注意捆绑元素的内部摆列插空法不相邻问题插空办理,即先考虑不受限制的元素的摆列,再将不相邻的元素插在前方元素摆列的空中除法法定序问题除法办理的方法,可先不考虑次序限制,摆列后再除以定序元素的全摆列2.解决摆列类应用题的策略(1)特别元素 ( 或地点 )优先安排的方法,即先排特别元素或特别地点.(2)分排问题直排法办理.(3)“小公司”摆列问题中先集中后局部的办理方法.1. (2012 ·宁高考辽 )一排 9 个座位坐了3 个三口之家,若每家人坐在一同,则不一样的坐法种数为()A. 3× 3! B .3× (3! )3C. (3! )4D. 9!分析:选C把一家三口当作一个摆列,而后再摆列这 3 家,所以知足题意的坐法种数为 A 33(A 33) 3= (3! )4.2. (2014 南·充模拟 )将 5名实习教师分派到高一年级的 3 个班实习,每班起码 1 名,最多 2 名,则不一样的分派方案有()A.30 种B.90 种C. 180 种D. 270 种2222分析:选B选分组,再摆列.分组方法共有C5 C3,所以共有C5C3322·A 3= 90.A 2 A 2考点二组合问题[例 2] (1)若从 1,2,3,, , 9 这 9 个整数中同时取 4 个不一样的数,其和为偶数,则不同的取法的种数是()A. 60B. 63C. 65(2)(2013 重·庆高考 )从 3 名骨科、 4 名脑外科和灾医疗小组,则骨科、脑外科和内科医生都起码有D. 665 名内科医生中选派 5 人构成一个抗震救1 人的选派方法种数是________(用数字作答 ).[自主解答](1)由于从1,2,3, ,,9 中共有 4 个不一样的偶数和5 个不一样的奇数,要使和为偶数,则 4 个数全为奇数,或全为偶数,或 2 个奇数和 2 个偶数,故有C45+ C44+ C25C24=66种不一样的取法.(2)按每科选派人数分为3,1,1 和 2,2,1 两类.入选派人数为3,1,1 时,有 3 类,共有 C33C41C51+ C31C43C51+ C31C41C53= 200 种选派方法.入选派人数为2,2,1 时,有 3 类,共有 C32C42C51+ C32C41C52+ C31C42C52= 390 种选派方法.故共有 590 种选派方法.[答案 ] (1)D(2)590【方法例律】1.解决组合应用题的一般思路第一整体分类,要注意分类时,不重复不遗漏,用到分类加法计数原理;而后局部分步,用到分步乘法计数原理.2.组合问题的常有题型及解题思路常有题型有选派问题,抽样问题,图形问题,会合问题,分组问题.解答组合应用题时,要在认真审题的基础上,分清问题能否为组合问题,对较复杂的组合问题,要搞清是“ 分类” 仍是“ 分步” 解决,将复杂问题经过两个原理化归为简单问题.3.含有附带条件的组合问题的常用方法往常用直接法或间接法,应注意“ 起码”“ 最多”“ 恰巧”等词的含义的理解,关于波及“ 起码”“ 至多”等词的组合问题,既可考虑反面情况即间接求解,也能够分类研究进行直接求解.1.某校开设 A 类选修课 3 门, B 类选修课 4 门,一位同学从中选 3 门.若要求两类课程中各起码选一门,则不一样的选法的种数为()A. 30 B .35C. 42D. 48分析:选 A法一:分两种状况:(1)2 门 A,1 门 B,有 C32C41= 12种选法; (2)1门 A,2门B,有 C31C42= 3×6= 18 种选法.所以共有12+ 18= 30 种选法.法二:清除法: A 类 3 门, B 类 4 门,共 7 门,选 3 门, A,B 各起码选 1 门,有 C73-C33- C43=35- 1- 4= 30 种选法.2.两人进行乒乓球竞赛,先赢3 局者获胜,决出输赢为止,则全部可能出现的情况(各人胜败局次的不一样视为不一样情况)种数为 ()A. 10B. 15C.20D.30分析:选 C分三种状况:恰巧打 3 局,有 2 种情况;恰巧打 4 局 (一人前 3局中赢 2局,输 1 局,第 4 局赢 ),共有 2C32= 6 种情况;恰巧打 5 局 (一人前 4 局中赢 2 局,输 2 局,第 5 局赢 ),共有 2C42= 12 种情况.全部可能出现的情况种数为2+ 6+12= 20.高频考点考点三摆列与组合的综合应用1.摆列与组合是高中数学中的重要内容,也是高考命题的一个热门,多以选择题或填空题的形式体现,试题难度不大,多为简单题或中档题.2.高考对摆列与组合综合应用题的考察主要有以下几个命题角度:(1)相邻问题;(2)相间问题;(3)特别元素 ( 地点 )问题;(4)多元问题等.[例 3](1)(2013烟·台模拟)有 4 张分别标有数字1,2,3,4的红色卡片和 4 张分别标有数字1,2,3,4的蓝色卡片,从这8 张卡片中拿出 4 张卡片排成一行,假如拿出的 4 张卡片所标的数______种 (用数字作答).字之和等于10,则不一样的排法共有(2)(2014西·安模拟)某地奥运火炬接力传达路线共分 6 段,传达活动分别由 6 名火炬手达成.假如第一棒火炬手只好从甲、乙、丙三人中产生,最后一棒火炬手只好从甲、乙两人________种 (用数字作答).中产生,则不一样的传达方法共有[自主解答](1)拿出的 4 张卡片所标数字之和等于10,共有三种状况:1144,2233,1234.所取卡片是1144 的共有 A 44种排法.所取卡片是2233 的共有 A 44种排法.所取卡片是1234,则此中卡片颜色可为无红色, 1 张红色, 2 张红色, 3 张红色,全部是红色,共有 A 44+C14A 44+ C24A 44+ C34A 44+ A 44= 16A44种排法,所以共有 18A 44= 18× 4× 3× 2× 1= 432 种排法.(2)甲传第一棒,乙传最后一棒,共有 A 44种方法.乙传第一棒,甲传最后一棒,共有 A 44种方法.丙传第一棒,共有C12·A44种方法.由分类加法计数原理得,共有 A 44+ A 44+C21·A 44= 96 种方法.[答案 ] (1)432 (2)96摆列与组合综合问题的常有种类及解题策略(1)相邻问题捆绑法.在特定条件下,将几个有关元素视为一个元向来考虑,待整个问题排好以后,再考虑它们“ 内部” 的摆列.(2)相间问题插空法.先把一般元素排好,而后把特定元素插在它们之间或两头的空当中,它与捆绑法有同样作用.(3)特别元素 ( 地点 )优先安排法.优先考虑问题中的特别元素或地点,而后再摆列其余一般元素或地点.(4)多元问题分类法.将切合条件的摆列分为几类,而每一类的摆列数较易求出,而后依据分类计数原理求出摆列总数.1. 8 名学生和 2 位老师站成一排合影, 2 位老师不相邻的排法种数为()82828282A. A C A D.A CA分析:选A相间问题用插空法,8 名学生先排,有 A 88种排法,产生9 个空, 2 位老师插空,有 A 92种排法,所以最后有 A 88A 92种排法.2.3 位男生和 3 位女生共 6 位同学站成一排,若男生甲不站两头, 3 位女生中有且只有两位女生相邻,则不一样排法的种数为()A. 360B. 288C.216D. 96分析:选 B先保证 3 位女生中有且只有两位女生相邻,则有C32·A22·A 33·A 42种排法,再从中清除甲站两头的排法,所以所求排法种数为22322222-C3·A 2·A 3·A4- 2C3·A 2·A2·A 3= 6× (6× 1224)= 288.3.将 4 名大学生疏派到 3 个乡镇去当村官,每个乡镇起码一名,则不一样的分派方案有________ 种(用数字作答 ) .分析:选出两人当作一个整体,再全摆列.共有C42·A33= 36 种分派方案.答案: 36———————————[讲堂概括——通法意会 ]———————————1 个辨别——摆列问题与组合问题的辨别方法辨别方法若互换某两个元素的地点对结果产生影响,则是摆列问题,即摆列问题与选用元素摆列次序有关若互换某两个元素的地点对结果没有影响,则是组合问题,即组合问题与选用元素组合次序没关3 个注意点——求解摆列与组合问题的三个注意点(1)解摆列与组合综合题一般是先选后排,或充足利用元素的性质进行分类、分步,再利用两个原理作最后办理.(2)解受条件限制的组合题,往常用直接法(合理分类 )和间接法 (清除法 )来解决.分类标准应一致,防止出现重复或遗漏.(3)关于选择题要慎重办理,注意等价答案的不一样形式,办理这种选择题可采纳清除法剖析选项,错误的答案都有重复或遗漏的问题.易误警告 (十二 )摆列与组合中的易错问题[典例 ]将6名教师分到 3 所中学任教,一所 1 名,一所 2 名,一所 3 名,则有 ________种不一样的分法.[解题指导 ]将6名教师分到 3 所中学,相当于将 6 名教师分红 3 组,相当于 3 个不一样元素.[分析 ]将6名教师分组,分三步达成:第 1 步,在 6 名教师中任取 1 名作为一组,有 C16种取法;第 2 步,在余下的 5 名教师中任取 2 名作为一组,有 C25种取法;第 3 步,余下的 3 名教师作为一组,有C33种取法.依据分步乘法计数原理,共有123C6C5C3= 60 种取法.再将这 3 组教师分派到 3 所中学,有 A 33= 6 种分法,故共有 60× 6=360 种不一样的分法.[答案 ] 360[名师评论 ] 1.假如审题不认真,极易以为有 C61C52C33= 60 种分法.由于此题中并无明确指出哪一所学校1名、2名、3名.2.解决摆列与组合应用题应要点注意以下几点:(1)第一要分清楚是摆列问题仍是组合问题,不可以将二者混杂.(2)在解决问题时,必定要注意方法的明确性,不可以造成重复计数.(3)分类议论时,要注意分类标准确实定,应做到不重不漏.牙语在小语种提早招生考试中,某学校获取5 个介绍名额,此中俄语 1 名,而且日语和俄语都要求一定有男生参加.学校经过选拔定下2 名,日语 2 名,西班3男2女共 5个介绍对象,则不一样的介绍方法的种数为()A. 20B. 22C. 24D. 36分析:选 C 3 个男生每个语种各介绍 1 个,共有 A 33A22种介绍方法;将 3 个男生疏为两2 2 23 2 2 2 2组,此中一组 2 个人,则共有 C3A 2A 2种介绍方法.所以共有 A 3A 2+ C3A 2A 2=24 种不一样的介绍方法.。
近5年浙江高考数学文科试题整理(初步版本1.1)
近5年浙江高考数学试题归纳整理(文科)一:集合与常用逻辑用语(2014浙江)设集合S ={x |x ≥2},T ={x |x ≤5},则S ∩T =( ). A .(-∞,5] B .[2,+∞) C .(2,5) D .[2,5](2014浙江)设四边形ABCD 的两条对角线为AC ,BD ,则“四边形ABCD 为菱形”是“AC ⊥BD ”的( ).A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件(2013浙江)设集合S ={x |x >-2},T ={x |-4≤x ≤1},则S ∩T =( ).A .[-4,+∞)B .(-2,+∞)C .[-4,1]D .(-2,1](2013浙江)若α∈R ,则“α=0”是sin α<cos α”的( ).A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件(2012浙江)设全集{1,2,3,4,5,6}U = ,设集合{1,2,3,4},{3,4,5}P Q ==,则UP C Q = A .{1,2,3,4,6}B .{1,2,3,4,5}C .{1,2,5}D .{1,2}(2012浙江)设a R ∈,则“1a =”是“直线1:210l ax y +-=与直线2:240l x y ++=平行 的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件(2011浙江)若{1},{1}P x x Q x x =<>,则 A .P Q ⊆B .Q P ⊆C .R C P Q ⊆D .R Q C P ⊆(2011浙江)若,a b 为实数,则 “0<ab <1”是“b <a1”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件 D .既不充分也不必要条件(2010浙江)设则(A) (B) (C)(D)(2010浙江)设0<x <,则“x sin 2x <1”是“x sinx <1”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件二: 算法初步(框图略)(2014浙江)若某程序框图如图所示,当输入50时,则该程序运行后输出的结果是__________.(2013浙江)若某程序框图如图所示,则该程序运行后输出的值等于__________.(2012浙江)若某程序框图如图所示,则该程序运行后输出的值是________.(2011浙江)某程序框图如图所示,则该程序运行后输出的k 的值是___________.(2010浙江)某程序框图所示,若输出的S=57,则判断框内为 (A) k >4? (B) k >5?(C) k >6?(D) k >7?2{|1},{|4},P x x Q x x =<=<P Q ={|12}x x -<<{|31}x x -<<-{|14}x x <<-{|21}x x -<<2π三:复数(2014浙江)已知i 是虚数单位,计算21i(1i)-+=__________.(2013浙江)已知i 是虚数单位,则(2+i)(3+i)=( ). A .5-5i B .7-5i C .5+5i D .7+5i(2012浙江)已知i 是虚数单位,则31ii+=- A .12i - B .2i -C .2i +D .12i +(2011浙江)若复数1z i =+,i 为虚数单位,则(1)i z +⋅=A . 13i +B .33i +C .3i -D .3(2010浙江)设i 为虚数单位,则 (A)-2-3i (B)-2+3i (C)2-3i(D)2+3i四:概率与统计(2014浙江)在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是__________.(2013浙江)从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这2名都是女同学的概率等于__________.(2012浙江)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为____________.(2012浙江)从边长为1的正方形的中心和顶点这五点中,随机(等可能)取两点,则该两点51ii-=+间的距离为22的概率是___________.(2011浙江)从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是 A .110 B .310 C .35 D .910(2011浙江)某小学为了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测3000名学生在该次数学考试中成绩小于60分的学生数是___600__________(2010浙江)在如图所示的茎叶图中,甲、乙两组数据的中位数分别是 、(2010浙江)在平行四边形ABCD 中,O 是AC 与BD 的交点,P 、Q 、M 、N 分别是线段OA 、OB 、OC 、OD 的中点,在APMC 中任取一点记为E ,在B 、Q 、N 、D 中任取一点记为F ,设G 为满足向量的点,则在上述的点G 组成的集合中的点,落在平行四边形ABCD 外(不含边界)的概率为OG OE OF =+五:计数原理(文科不学习)六:平面向量(2014浙江)设θ为两个非零向量a ,b 的夹角.已知对任意实数t ,|b +t a |的最小值为1.( ). A .若θ确定,则|a |唯一确定 B .若θ确定,则|b |唯一确定 C .若|a |确定,则θ唯一确定 D .若|b |确定,则θ唯一确定(2013浙江)设e 1,e 2为单位向量,非零向量b =x e 1+y e 2,x ,y ∈R .若e 1,e 2的夹角为π6,则||||x b 的最大值等于__________.(2012浙江)设a ,b 是两个非零向量 A .若||||||+=-a b a b ,则⊥a b B .若⊥a b ,则||||||+=-a b a bC .若||||||+=-a b a b ,则存在实数λ,使得λ=b aD .若存在实数λ,使得λ=b a ,则||||||+=-a b a b(2012浙江)在ABC ∆中,M 是BC 的中点,3,10AM BC ==,则AB AC ⋅=________.(2011浙江)若平面向量α、β 满足11αβ=≤,且以向量α、β为邻边的平行四边形的面积为12,则α和β的夹角 θ的取值范围是_________________. (2010浙江)已知平面向量则的值是 。
2012-2021高考真题数学汇编:排列、组合与二项式定理(1)(教师版)
2012-2021高考真题数学汇编:排列、组合与二项式定理(1)一.选择题(共24小题)1.(2021•乙卷)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者()A.60种B.120种C.240种D.480种2.(2020•海南)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者()A.2种B.3种C.6种D.8种3.(2020•北京)在(﹣2)5的展开式中,x2的系数为()A.﹣5 B.5 C.﹣10 D.104.(2020•山东)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种5.(2020•新课标Ⅰ)(x+)(x+y)5的展开式中x3y3的系数为()A.5 B.10 C.15 D.206.(2019•全国)(2+1)6的展开式中x的系数是()A.120 B.60 C.30 D.157.(2019•新课标Ⅲ)(1+2x2)(1+x)4的展开式中x3的系数为()A.12 B.16 C.20 D.248.(2018•新课标Ⅲ)(x2+)5的展开式中x4的系数为()A.10 B.20 C.40 D.809.(2018•上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.1610.(2017•新课标Ⅲ)(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80 B.﹣40 C.40 D.8011.(2017•全国)4个数字1和4个数字2可以组成不同的8位数共有()A.16个B.70个C.140个D.256个12.(2017•新课标Ⅰ)(1+)(1+x)6展开式中x2的系数为()A.15 B.20 C.30 D.3513.(2017•新课标Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成()A.12种B.18种C.24种D.36种14.(2016•全国)从1,2,3,4,5,6中任取三个不同的数相加,则不同的结果共有()A.6种B.9种C.10种D.15种15.(2016•四川)设i为虚数单位,则(x+i)6的展开式中含x4的项为()A.﹣15x4B.15x4C.﹣20ix4D.20ix416.(2016•四川)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为()A.24 B.48 C.60 D.7217.(2016•新课标Ⅱ)如图,小明从街道的E处出发,先到F处与小红会合,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18 C.12 D.918.(2016•上海)在(1+x)6的二项展开式中,x2项的系数为()A.2 B.6 C.15 D.2019.(2015•上海)组合数(n≥m≥2,m,n∈N*)恒等于()A.B.C.D.20.(2015•湖北)已知(1+x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为()A.212B.211C.210D.2921.(2015•新课标Ⅰ)(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20 C.30 D.6022.(2015•陕西)二项式(x+1)n(n∈N+)的展开式中x2的系数为15,则n=()A.7 B.6 C.5 D.423.(2015•广东)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,q,r,s∈N},F={(t,u,v,w),0≤v<w≤4且t,u,v,w∈N}(X)表示集合X中的元素个数,则card(E)(F)=()A.200 B.150 C.100 D.5024.(2015•四川)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()A.144个B.120个C.96个D.72个二.填空题(共34小题)25.(2021•浙江)已知多项式(x﹣1)3+(x+1)4=x4+a1x3+a2x2+a3x+a4,则a1=;a2+a3+a4=.26.(2021•上海)已知(1+x)n的展开式中,唯有x3的系数最大,则(1+x)n的系数和为.27.(2020•上海)从6个人挑选4个人去值班,每人值班一天,第一天安排1个人,第三天安排2个人,则共有种安排情况.28.(2020•浙江)二项展开式(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a4=,a1+a2+a3=.29.(2020•新课标Ⅱ)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学种.30.(2020•上海)已知二项式(2x+)5,则展开式中x3的系数为.31.(2020•新课标Ⅲ)(x2+)6的展开式中常数项是(用数字作答).32.(2020•天津)在(x+)5的展开式中,x2的系数是.33.(2019•上海)已知二项式(2x+1)5,则展开式中含x2项的系数为.34.(2019•天津)(2x﹣)8的展开式中的常数项为.35.(2019•浙江)在二项式(+x)9展开式中,常数项是,系数为有理数的项的个数是.36.(2019•上海)首届中国国际进口博览会在上海举行,某高校拟派4人参加连续5天的志愿者活动,其中甲连续参加2天,则不同的安排方法有种(结果用数值表示)37.(2019•上海)在的展开式中,常数项等于.38.(2018•新课标Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选种.(用数字填写答案)39.(2018•浙江)从1,3,5,7,9中任取2个数字,从0,2,4,一共可以组成个没有重复数字的四位数.(用数字作答).40.(2018•全国)多项式(1+x)3+(1+x)4中x2的系数为.(用数字填写答案)41.(2018•天津)在(x﹣)5的展开式中,x2的系数为.42.(2018•浙江)二项式(+)8的展开式的常数项是.43.(2018•上海)某校组队参加辩论赛,从6名学生中选出4人分别担任一、二、三、四辩,若其中学生甲必须参赛且不担任四辩(结果用数值表示)44.(2018•上海)设a∈R,若的二项展开式中的常数项相等,则a=45.(2018•上海)在(1+x)7的二项展开式中,x2项的系数为(结果用数值表示).46.(2017•全国)(x﹣2)6的展开式中x5的系数是.(用数字填写答案)47.(2017•上海)若排列数=6×5×4,则m=.48.(2017•浙江)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=,a5=.49.(2017•山东)已知(1+3x)n的展开式中含有x2的系数是54,则n=.50.(2017•天津)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数个.(用数字作答)51.(2017•浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,共有种不同的选法.(用数字作答)52.(2017•上海)若的二项展开式的各项系数之和为729,则该展开式中常数项的值为.53.(2017•上海)设a1、a2、…、a6为1、2、3、4、5、6的一个排列,则满足|a1﹣a2|+|a3﹣a4|+|a5﹣a6|=3的不同排列的个数为.54.(2016•北京)在(1﹣2x)6的展开式中,x2的系数为.(用数字作答)55.(2016•天津)(x2﹣)8的展开式中x7的系数为.(用数字作答)56.(2016•新课标Ⅰ)(2x+)5的展开式中,x3的系数是.(用数字填写答案)57.(2016•山东)若(ax2+)5的展开式中x5的系数是﹣80,则实数a=.58.(2016•上海)在(﹣)n的二项式中,所有的二项式系数之和为256,则常数项等于.三.解答题(共2小题)59.(2019•江苏)设(1+x)n=a0+a1x+a2x2+…+a n x n,n≥4,n∈N*.已知a32=2a2a4.(1)求n的值;(2)设(1+)n=a+b,其中a,b∈N*2﹣3b2的值.60.(2016•江苏)(1)求﹣的值;(2)设m,n∈N*,n≥m,求证:(m+1)+(m+2)+(m+3)+…++(n+1)=(m+1).2012-2021高考真题数学汇编:排列、组合与二项式定理(1)参考答案一.选择题(共24小题)1.(2021•乙卷)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者()A.60种B.120种C.240种D.480种【分析】5分先选2人一组,然后4组全排列即可.【解答】解:5名志愿者选2个5组,有种方法,有种,共有=240种,故选:C.【点评】本题主要考查排列组合的应用,利用先分组后排列的方法是解决本题的关键,是基础题.2.(2020•海南)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者()A.2种B.3种C.6种D.8种【分析】先把三名学生分成2组,再把2组学生分到两个村,利用排列组合知识直接求解.【解答】解:要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有:=6.故选:C.【点评】本题考查不同的安排方法种数的求法,考查排列组合等基础知识,考查运算求解能力,是基础题.3.(2020•北京)在(﹣2)5的展开式中,x2的系数为()A.﹣5 B.5 C.﹣10 D.10【分析】在二项展开式的通项公式中,令x的幂指数等于2,求出r的值,即可求得x2的系数.【解答】解:(﹣2)5的展开式中,通项公式为T r+8=•(﹣2)r•,令=2,可得x2的系数为•(﹣2)=﹣10,故选:C.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.4.(2020•山东)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种【分析】让场馆去挑人,甲场馆从6人中挑一人有:=6种结果;乙场馆从余下的5人中挑2人有:=10种结果;余下的3人去丙场馆;相乘即可求解结论.【解答】解:因为每名同学只去1个场馆,甲场馆安排1名,丙场馆安排6名,甲场馆从6人中挑一人有:=6种结果;乙场馆从余下的5人中挑6人有:=10种结果;余下的4人去丙场馆;故共有:6×10=60种安排方法;故选:C.【点评】本题考查排列组合知识的应用,考查运算求解能力,是基础题.5.(2020•新课标Ⅰ)(x+)(x+y)5的展开式中x3y3的系数为()A.5 B.10 C.15 D.20【分析】先把条件整理转化为求(x2+y2)(x+y)5展开式中x4y3的系数,再结合二项式的展开式的特点即可求解.【解答】解:因为(x+)(x+y)5=;要求展开式中x2y3的系数即为求(x2+y3)(x+y)5展开式中x4y4的系数;(x2+y2)(x+y)7展开式含x4y3的项为:x5•x6•y3+y2•x4•y=15x6y3;故(x+)(x+y)4的展开式中x3y3的系数为15;故选:C.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,二项式系数的性质,属基础题.6.(2019•全国)(2+1)6的展开式中x的系数是()A.120 B.60 C.30 D.15【分析】由二项式定理及展开式的通项得:T r+1=(2)6﹣r=26﹣r x,令=1,解得r=4,则(2+1)6的展开式中x的系数是22=60,得解.【解答】解:由二项式(2+1)6的展开式的通项为T r+1=(7)6﹣r=28﹣r x,令=6,解得r=4,则(2+4)6的展开式中x的系数是28=60,故选:B.【点评】本题考查了二项式定理及展开式的通项,属中档题.7.(2019•新课标Ⅲ)(1+2x2)(1+x)4的展开式中x3的系数为()A.12 B.16 C.20 D.24【分析】利用二项式定理、排列组合的性质直接求解.【解答】解:(1+2x5)(1+x)4的展开式中x2的系数为:1×+3×.故选:A.【点评】本题考查展开式中x3的系数的求法,考查二项式定理、排列组合的性质等基础知识,考查推理能力与计算能力,属于基础题.8.(2018•新课标Ⅲ)(x2+)5的展开式中x4的系数为()A.10 B.20 C.40 D.80【分析】由二项式定理得(x2+)5的展开式的通项为:T r+1=(x2)5﹣r()r=,由10﹣3r =4,解得r=2,由此能求出(x2+)5的展开式中x4的系数.【解答】解:由二项式定理得(x2+)7的展开式的通项为:T r+1=(x6)5﹣r()r=,由10﹣2r=4,解得r=2,∴(x7+)5的展开式中x2的系数为=40.故选:C.【点评】本题考查二项展开式中x4的系数的求法,考查二项式定理、通项公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.9.(2018•上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.16【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D1﹣A1ABB4,D1﹣A1AFF3满足题意,而C1,E1,C,D,E,和D8一样,有2×4=8,当A1ACC1为底面矩形,有6个满足题意,当A1AEE1为底面矩形,有8个满足题意,故有8+4+5=16故选:D.【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.10.(2017•新课标Ⅲ)(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80 B.﹣40 C.40 D.80【分析】(2x﹣y)5的展开式的通项公式:T r+1=(2x)5﹣r(﹣y)r=25﹣r(﹣1)r x5﹣r y r.令5﹣r=2,r =3,解得r=3.令5﹣r=3,r=2,解得r=2.即可得出.【解答】解:(2x﹣y)5的展开式的通项公式:T r+8=(2x)3﹣r(﹣y)r=25﹣r(﹣8)r x5﹣r y r.令2﹣r=2,r=3.令8﹣r=3,r=2.∴(x+y)(8x﹣y)5的展开式中的x3y8系数=22×(﹣3)3+23×5×=40.故选:C.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.11.(2017•全国)4个数字1和4个数字2可以组成不同的8位数共有()A.16个B.70个C.140个D.256个【分析】利用排列数的性质、计算公式直接求解.【解答】解:4个数字1和5个数字2可以组成不同的8位数共有:=70.故选:B.【点评】本题考查排列数的求法,考查排列数的性质、计算公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.12.(2017•新课标Ⅰ)(1+)(1+x)6展开式中x2的系数为()A.15 B.20 C.30 D.35【分析】直接利用二项式定理的通项公式求解即可.【解答】解:(1+)(1+x)6展开式中:若(7+)=(7+x﹣2)提供常数项1,则(6+x)6提供含有x2的项,可得展开式中x8的系数:若(1+)提供x﹣2项,则(1+x)2提供含有x4的项,可得展开式中x2的系数:由(7+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)5展开式中x2的系数为:15+15=30.故选:C.【点评】本题主要考查二项式定理的知识点,通项公式的灵活运用.属于基础题.13.(2017•新课标Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成()A.12种B.18种C.24种D.36种【分析】把工作分成3组,然后安排工作方式即可.【解答】解:4项工作分成3组,可得:,安排3名志愿者完成4项工作,每人至少完成1项,可得:6×=36种.故选:D.【点评】本题考查排列组合的实际应用,注意分组方法以及排列方法的区别,考查计算能力.14.(2016•全国)从1,2,3,4,5,6中任取三个不同的数相加,则不同的结果共有()A.6种B.9种C.10种D.15种【分析】利用组合数和列举法能求出结果.【解答】解:从1,2,6,4,5,7中任取三个不同的数相加,所得的最小值为1+2+2=6,最大值为4+5+6=15,1+8+3=6,3+2+4=5,1+2+5=1+3+4=2+3+7=9,1+8+6=2+6+6=2+7+5=11,1+3+6=2+2+6=3+2+5=12,3+8+6=14共有:10种不同结果.故选:C.【点评】本题考查三个数相加的不同的和的求法,考查排列组合、列举法等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.(2016•四川)设i为虚数单位,则(x+i)6的展开式中含x4的项为()A.﹣15x4B.15x4C.﹣20ix4D.20ix4【分析】利用二项展开式的通项公式即可得到答案.【解答】解:(x+i)6的展开式中含x4的项为x4•i8=﹣15x4,故选:A.【点评】本题考查二项式定理,深刻理解二项展开式的通项公式是迅速作答的关键,属于中档题.16.(2016•四川)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为()A.24 B.48 C.60 D.72【分析】用1、2、3、4、5组成无重复数字的五位奇数,可以看作是填5个空,要求个位是奇数,其它位置无条件限制,因此先从3个奇数中任选1个填入,其它4个数在4个位置上全排列即可.【解答】解:要组成无重复数字的五位奇数,则个位只能排1,3,共有2种排法,然后还剩4个数,剩余的4个数可以在十位到万位3个位置上全排列=24种排法.由分步乘法计数原理得,由8、2、3、4.故选:D.【点评】本题考查了排列、组合及简单的计数问题,此题是有条件限制排列,解答的关键是做到合理的分布,是基础题.17.(2016•新课标Ⅱ)如图,小明从街道的E处出发,先到F处与小红会合,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18 C.12 D.9【分析】从E到F最短的走法,无论怎样走,一定包括4段,其中2段方向相同,另2段方向相同,每种最短走法,即是从4段中选出2段走东向的,选出2段走北向的,由组合数可得最短的走法,同理从F到G,最短的走法,有C31=3种走法,利用乘法原理可得结论.【解答】解:从E到F,每条东西向的街道被分成2段,从E到F最短的走法,无论怎样走,其中2段方向相同,每种最短走法,即是从2段中选出2段走东向的,故共有C43C22=4种走法.同理从F到G,最短的走法31C32=3种走法.∴小明到老年公寓可以选择的最短路径条数为7×3=18种走法.故选:B.【点评】本题考查排列组合的简单应用,得出组成矩形的条件和最短走法是解决问题的关键,属基础题18.(2016•上海)在(1+x)6的二项展开式中,x2项的系数为()A.2 B.6 C.15 D.20【分析】根据二项展开式的通项公式求出展开式的特定项即可.【解答】解:(1+x)6的二项展开式中,通项公式为:T r+5=•17﹣r•x r,令r=2,得展开式中x2的系数为:=15.故选:C.【点评】本题考查了二项展开式通项公式的应用问题,是基础题目.19.(2015•上海)组合数(n≥m≥2,m,n∈N*)恒等于()A.B.C.D.【分析】直接利用组合数的简单性质求解即可.【解答】解:组合数===.故选:A.【点评】本题考查组合数的性质,基本知识的考查.20.(2015•湖北)已知(1+x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为()A.212B.211C.210D.29【分析】直接利用二项式定理求出n,然后利用二项式定理系数的性质求出结果即可.【解答】解:已知(1+x)n的展开式中第4项与第5项的二项式系数相等,可得,可得n=6+7=10.(1+x)10的展开式中奇数项的二项式系数和为:=79.故选:D.【点评】本题考查二项式定理的应用,组合数的形状的应用,考查基本知识的灵活运用以及计算能力.21.(2015•新课标Ⅰ)(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20 C.30 D.60【分析】利用展开式的通项,即可得出结论.【解答】解:(x2+x+y)5的展开式的通项为T r+4=,令r=2,则(x2+x)8的通项为=,令3﹣k=5,则k=1,∴(x3+x+y)5的展开式中,x5y5的系数为=30.故选:C.【点评】本题考查二项式定理的运用,考查学生的计算能力,确定通项是关键.22.(2015•陕西)二项式(x+1)n(n∈N+)的展开式中x2的系数为15,则n=()A.7 B.6 C.5 D.4【分析】由题意可得==15,解关于n的方程可得.【解答】解:∵二项式(x+1)n(n∈N+)的展开式中x2的系数为15,∴=15,即,解得n=3,故选:B.【点评】本题考查二项式定理,属基础题.23.(2015•广东)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,q,r,s∈N},F={(t,u,v,w),0≤v<w≤4且t,u,v,w∈N}(X)表示集合X中的元素个数,则card(E)(F)=()A.200 B.150 C.100 D.50【分析】对于集合E,s=4时,p,q,r从0,1,2,3任取一数都有4种取法,从而构成的元素(p,q,r,s)有4×4×4=64个,再讨论s=3,2,1的情况,求法一样,把每种情况下元素个数相加即可得到集合E的元素个数,而对于集合F,需讨论两个数:u,w,方法类似,最后把求得的集合E,F元素个数相加即可.【解答】解:(1)s=4时,p,q,r的取值的排列情况有4×2×4=64种;s=3时,p,q,r的取值的排列情况有3×3×3=27种;s=2时,有2×2×3=8种;s=1时,有8×1×1=6种;∴card(E)=64+27+8+1=100;(2)u=8时:若w=4,t,v的取值的排列情况有4×7=16种;若w=3,t,v的取值的排列情况有4×3=12种;若w=2,有4×8=8种;若w=1,有8×1=4种;u=8时:若w=4,t,v的取值的排列情况有3×2=12种;若w=3,t,v的取值的排列情况有3×7=9种;若w=2,有2×2=6种;若w=7,有3×1=4种;u=2时:若w=4,t,v的取值的排列情况有2×4=8种;若w=6,有2×3=8种;若w=2,有2×3=4种;若w=1,有4×1=2种;u=5时:若w=4,t,v的取值的排列情况有1×8=4种;若w=3,有3×3=3种;若w=6,有1×2=2种;若w=1,有1×3=1种;∴card(F)=100;∴card(E)+card(F)=200.故选:A.【点评】考查描述法表示集合,分布计数原理的应用,注意要弄清讨论谁,做到不重不漏.24.(2015•四川)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()A.144个B.120个C.96个D.72个【分析】根据题意,符合条件的五位数首位数字必须是4、5其中1个,末位数字为0、2、4中其中1个;进而对首位数字分2种情况讨论,①首位数字为5时,②首位数字为4时,每种情况下分析首位、末位数字的情况,再安排剩余的三个位置,由分步计数原理可得其情况数目,进而由分类加法原理,计算可得答案.【解答】解:根据题意,符合条件的五位数首位数字必须是4,末位数字为0、4;分两种情况讨论:①首位数字为5时,末位数字有3种情况,放在剩余的5个位置上43=24种情况,此时有2×24=72个,②首位数字为4时,末位数字有2种情况,放在剩余的2个位置上43=24种情况,此时有2×24=48个,共有72+48=120个.故选:B.【点评】本题考查计数原理的运用,关键是根据题意,分析出满足题意的五位数的首位、末位数字的特征,进而可得其可选的情况.二.填空题(共34小题)25.(2021•浙江)已知多项式(x﹣1)3+(x+1)4=x4+a1x3+a2x2+a3x+a4,则a1=5;a2+a3+a4=10.【分析】利用通项公式求解x3的系数,即可求出a1的值;利用赋值法,令x=1,即可求出a2+a3+a4的值.【解答】解:a1即为展开式中x3的系数,所以a5=;令x=1,则有7+a1+a2+a5+a4=(1﹣3)3+(1+2)4=16,所以a2+a8+a4=16﹣5﹣7=10.故答案为:5;10.【点评】本题考查了二项展开式的通项公式的运用以及赋值法求解系数问题,考查了运算能力,属于基础题.26.(2021•上海)已知(1+x)n的展开式中,唯有x3的系数最大,则(1+x)n的系数和为64.【分析】由已知可得n=6,令x=1,即可求得系数和.【解答】解:由题意,>,且>,所以n=6,所以令x=3,(1+x)6的系数和为76=64.故答案为:64.【点评】本题主要考查二项式定理.考查二项式系数的性质,属于基础题.27.(2020•上海)从6个人挑选4个人去值班,每人值班一天,第一天安排1个人,第三天安排2个人,则共有180种安排情况.【分析】根据题意,由组合公式得共有排法,计算即可得出答案.【解答】解:根据题意,可得排法共有.故答案为:180.【点评】本题考查组合数公式,解题关键是正确理解题意并熟悉组合数公式,属于基础题.28.(2020•浙江)二项展开式(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a4=80,a1+a2+a3=130.【分析】直接利用二项式定理的通项公式,求解即可.【解答】解:(1+2x)8=a0+a1x+a5x2+a3x7+a4x4+a5x5,则a4==80.a1+a2+a8=×6+7+83=130.故答案为:80;130.【点评】本题考查二项式定理的应用,只有二项式定理系数以及项的系数的区别,是基本知识的考查.29.(2020•新课标Ⅱ)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学36种.【分析】先从4人中选出2人作为一组有C42种方法,再与另外2人一起进行排列有A33种方法,相乘即可.【解答】解:因为有一小区有两人,则不同的安排方式共有C42A33=36种.故答案为:36.【点评】本题考查排列组合及分步计数原理的运用,属于基础题.30.(2020•上海)已知二项式(2x+)5,则展开式中x3的系数为10.【分析】由,可得到答案.【解答】解:,所以展开式中x3的系数为10.故答案为:10.【点评】本题考查利用二项式定理求特定项的系数,属于基础题.31.(2020•新课标Ⅲ)(x2+)6的展开式中常数项是240(用数字作答).【分析】先求出二项式展开式的通项公式,再令x的幂指数等于0,求得r的值,即可求得展开式中的常数项的值.【解答】解:由于(x2+)3的展开式的通项公式为T r+1=•2r•x12﹣3r,令12﹣3r=3,求得r=4•24=240,故答案为:240.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.32.(2020•天津)在(x+)5的展开式中,x2的系数是10.【分析】在的展开式的通项公式中,令x的幂指数等于2,求出r的值,即可得到展开式中x2的系数.【解答】解:∵的展开式的通项公式为T r+1= x3﹣r 2r x﹣2r=8r x5﹣8r,令 5﹣3r=8,得r=1,∴x2的系数是 8×=10,故答案为10.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.33.(2019•上海)已知二项式(2x+1)5,则展开式中含x2项的系数为40.【分析】先求得二项式展开式的通项公式,再令x的幂指数等于2,求得r的值,即可求得含x2项的系数值.【解答】解:二项式(2x+1)7的展开式的通项公式为T r+1=C5r•75﹣r•x5﹣r,令3﹣r=2,求得r=32项的系数值为C53•32=40,故答案为:40.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.34.(2019•天津)(2x﹣)8的展开式中的常数项为28.【分析】本题可根据二项式的展开式的通项进行计算,然后令x的指数为0即可得到r的值,代入r的值即可算出常数项.【解答】解:由题意,可知:此二项式的展开式的通项为:T r+1=(7x)8﹣r=•78﹣r•(﹣)r•x8﹣r•()r=•(﹣1)r38﹣4r•x5﹣4r.∴当8﹣8r=0,即r=2时,T r+8为常数项.此时T2+1=•(﹣1)628﹣8×2=28.故答案为:28.【点评】本题主要考查二项式的展开式的通项,通过通项中未知数的指数为0可算出常数项.本题属基础题.35.(2019•浙江)在二项式(+x)9展开式中,常数项是16,系数为有理数的项的个数是5.【分析】写出二项展开式的通项,由x的指数为0求得常数项;再由2的指数为整数求得系数为有理数的项的个数.【解答】解:二项式的展开式的通项为=.由r=0,得常数项是;当r=1,3,5,7,4时,∴系数为有理数的项的个数是5个.故答案为:,8.【点评】本题考查二项式定理及其应用,关键是熟记二项展开式的通项,是基础题.36.(2019•上海)首届中国国际进口博览会在上海举行,某高校拟派4人参加连续5天的志愿者活动,其中甲连续参加2天,则不同的安排方法有24种(结果用数值表示)【分析】根据分步计数原理即可求出.【解答】解:在五天里,连续的2天,剩下的3人排列53=24种,故答案为:24.【点评】本题考查了简单的分步计数原理,属于基础题.37.(2019•上海)在的展开式中,常数项等于15.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为0得常数项.【解答】解:展开式的通项为T r+2==,,得r=2,故展开式的常数项为第5项:C63=15.故答案为:15.【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.38.(2018•新课标Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选16种.(用数字填写答案)【分析】方法一:直接法,分类即可求出,方法二:间接法,先求出没有限制的种数,再排除全是男生的种数.【解答】解:方法一:直接法,1女2男31C48=12,2女1男82C47=4根据分类计数原理可得,共有12+4=16种,方法二,间接法:C83﹣C46=20﹣4=16种,故答案为:16【点评】本题考查了分类计数原理,属于基础题39.(2018•浙江)从1,3,5,7,9中任取2个数字,从0,2,4,一共可以组成1260个没有重复数字的四位数.(用数字作答).【分析】解:根据题意,分2种情况讨论:①,从0,2,4,6中取出的2个数字中没有0,②,从0,2,4,6中取出的2个数字中含有0,由分步计数原理计算每一种情况下四位数的数目,由加法原理计算可得答案.【解答】解:根据题意,分2种情况讨论:①,从0,7,4,有C38=3种取法,从1,6,5,7,4中任取2个数字55=10种取法,再将选出的4个全排列,安排在4个数位24=24种情况,一共可以组成3×10×24=720个没有重复数字的四位数;②,从3,2,4,有C51=3种取法,从4,3,5,8,9中任取2个数字72=10种取法,0不能在千位位置,其它2个数字任意排列33=18种情况一共可以组成7×10×18=540个没有重复数字的四位数;故一共可得组成720+540=1260个没有重复数字的四位数;故答案为:1260.【点评】本题考查排列组合及简单的计数问题,先选后排是解决问题的关键,属于综合题.40.(2018•全国)多项式(1+x)3+(1+x)4中x2的系数为9.(用数字填写答案)【分析】把(1+x)3和(1+x)4中x2的系数相加,既得所求.【解答】解:多项式(1+x)3+(5+x)4中x2的系数,即为(2+x)3和(1+x)3中x2的系数之和,为+=7,故答案为:9.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题41.(2018•天津)在(x﹣)5的展开式中,x2的系数为.【分析】写出二项展开式的通项,由x的指数为2求得r值,则答案可求.【解答】解:(x﹣)3的二项展开式的通项为=.由,得r=2.∴x7的系数为.故答案为:.【点评】本题考查二项式定理的应用,考查二项式系数的性质,关键是熟记二项展开式的通项,是基础题.42.(2018•浙江)二项式(+)8的展开式的常数项是7.【分析】写出二项展开式的通项并整理,由x的指数为0求得r值,则答案可求.【解答】解:由=.令=0.∴二项式(+)8的展开式的常数项是.故答案为:2.【点评】本题考查了二项式系数的性质,关键是熟记二项展开式的通项,是基础题.43.(2018•上海)某校组队参加辩论赛,从6名学生中选出4人分别担任一、二、三、四辩,若其中学生甲必须参赛且不担任四辩180(结果用数值表示)【分析】根据题意,分2步分析:①,学生甲可以担任一、二、三辩,有3种情况,②,在剩下的5名学生中任选3人,安排到其他三个辩手的位置,由分步计数原理计算可得答案.。
浙江省高中数学专题复习 试题选编10 排列、组合 理(含解析)新人教A版
浙江省2014届理科数学专题复习试题选编10:排列、组合一、选择题1 .(2013届浙江省高考压轴卷数学理试题)若从1,2,3,,9这9个整数中同时取4个不同的数,其和为奇数,则不同的取法共有 ( )A .60种B .63种C .65种D .66种【答案】A【解析】 若四个数之和为奇数,则有1奇数3个偶数或者3个奇数1个偶数.若1奇数3个偶数,则有1354=20C C 种,若3个奇数1个偶数,则有3154=40C C ,共有2040=60+种.2 .(浙江省海宁市2013届高三2月期初测试数学(理)试题)现准备将7台型号相同的健身设备全部分配给5个不同的社区,其中甲、乙两个社区每个社区至少2台,其它社区允许1台也没有,则不同的分配方案共有 ( )A .27种B .35种C .29种D .125种【答案】B3 .(浙江省新梦想新教育新阵地联谊学校2013届高三回头考联考数学(理)试题 )如图所示是某个区域的街道示意图(每个小矩形的边表示街道),那么从A 到B 的最短线路有( )条( )A .100B .400C .200D .250【答案】C4 .(浙江省建人高复2013届高三第五次月考数学(理)试题)用1、2、3、4、5、6组成一个无重复数字的六位数,要求三个奇数1、3、5有且只有两个相邻,则不同的排法种数为 ( )A .18B .108C .216D .432【答案】D5 .(浙江省金华十校2013届高三4月模拟考试数学(理)试题)从1,2,3,9这9个整数中任意取3个不同的数作为二次函数2()f x ax bx c =++的系数,则满足(1)2f Z ∈的函数()f x 共有( )A .263个B .264个C .265个D .266个【答案】B6 .(浙江省温岭中学2013届高三高考提优冲刺考试(三)数学(理)试题 )某校周四下午第五、六两节是选修课时间,现有甲、乙、丙、丁四位教师可开课.已知甲、乙教师各自最多可以开设两节课,丙、丁教师各自最多可以开设一节课.现要求第五、六两节课中A B每节课恰有两位教师开课(不必考虑教师所开课的班级和内容),则不同的开课方案共有___种. ( )A .15B .16C .19D .20【答案】C解析: 以丙、丁教师是否开课来讨论:(1)若丙、丁教师均不开课,情况有1种,(2)若丙、丁教师中恰有一人开课,情况有8C 121212=C C 种,(3)若丙、丁教师均开课,则①若丙、丁教师在相同节次开课,情况有2C 12=种,②若丙、丁教师在不同节次开课,情况有8)(C C 1212=+22A 种,综上,一共有1+8+2+8=19种,故选C7 .(浙江省五校联盟2013届高三下学期第一次联考数学(理)试题)将一个三位数的三个数字顺序颠倒,将所得到的数和原数相加,若和中没有一个数字是偶数,则称这个数是奇和数.那么,所有的三位数中,奇和数有 () A .80 B .100 C .120 D .160【答案】B8 .(浙江省五校2013届高三上学期第一次联考数学(理)试题)在1,2,3,4,5,6,7的任一排列1234567,,,,,,a a a a a a a 中,使相邻两数都互质的排列方式种数共有 () A .576 B .720 C .864 D .1152【答案】 C .9 .(浙江省温州中学2013届高三第三次模拟考试数学(理)试题),,,,A B C D E 五个人并排站成一排,如果,A B 必须相邻且C 在D 的右边,那么不同的排法种数有 () A .60种 B .48种 C .36种 D .24种【答案】 D .10.(浙江省温岭中学2013届高三高考提优冲刺考试(五)数学(理)试题)某人从{O ,P ,Q ,R }中选2个不同字母,从{0,2,5,6,8}中选3个不同数字组成车牌号,要求前三位是数字,后两位是字母,且数字0不能排在首位,O ,Q 不能同时选,字母O 和数字0要求不能相邻,那么满足要求的车牌号有( )个. () A .528 B .504C .456D .288【答案】C11.(浙江省十校联合体2013届高三上学期期初联考数学(理)试题)从0,4,6中选两个数字,从3.5.7中选两个数字,组成无重复数字的四位数.其中偶数的个数为 ()A.56 B.96 C.36 D.360【答案】B12.(温州市2013年高三第一次适应性测试理科数学试题)甲、乙两人计划从A、B、C三个景点中各选择两个游玩,则两人所选景点不全相同的选法共有()A.3种B.6种C.9种D.12种【答案】B13.(浙江省“六市六校”联盟2013届高三下学期第一次联考数学(理)试题)某电视台连续播放5个广告,其中3个不同的商业广告和2个不同的公益宣传广告,要求最后播放的必须是公益宣传广告,且2个公益宣传广告不能连续播放,则不同的播放方式有()A.18种B.36种C.48种D.120种【答案】B14.(浙江省稽阳联谊学校2013届高三4月联考数学(理)试题(word版))三个相同红球和一个白球放入4个不同盒子中(存放数量不限)的不同放法种数是()A.16B.64C.80D.150【答案】C15.(浙江省五校联盟2013届高三下学期第二次联考数学(理)试题)现需编制一个八位的序号,规定如下:序号由4个数字和2个x、1个y、1个z组成;2个x不能连续出现,且y在z的前面;数字在0、1、2、、9之间任选,可重复,且四个数字之积为8.则符合条件的不同的序号种数有()A.12600 B.6300 C.5040 D.2520【答案】B16.(浙江省六校联盟2013届高三回头联考理科数学试题)如图所示是某个区域的街道示意图(每个小矩形的边表示街道)那么从A到B的最短线路有( )条()A.100 B.400 C.200 D.250【答案】C17.(浙江省绍兴一中2013届高三下学期回头考理科数学试卷)六名大四学生(其中4名男生、2名女生)被安排到()A.B.C三所学校实习,每所学校2人,且2名女生不到同一学校,也不到C学校,男生甲不到A学校,则不同的安排方法共有()A.9种B.12种C.15种D.18种【答案】D18.(浙江省重点中学协作体2013届高三摸底测试数学(理)试题)如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成 “正交线面对”的个数是 ( )A .48B .36C .24D .18【答案】B19.(浙江省嘉兴市第一中学2013届高三一模数学(理)试题)如图,给定由10个点(任意相邻两点距离为1)组成的 正三角形点阵,在其中任意取三个点,以这三个点为顶 点构成的正三角形的个数是() A .13 B .14 C .15 D .17【答案】C二、填空题20.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))将FE D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法共有________种(用数字作答)【答案】48021.(2013年杭州市第一次高考科目教学质量检测理科数学试题)从3,2,1,0中任取三个数字,组成无重复数字的三位数中,偶数的个数是________(用数字回答).【答案】10解:考虑三位数“没0”和“有0”两种情况.【1】没0:2必填个位,22A 种填法;【2】有0:0填个位,23A 种填法;0填十位,2必填个位,12A 种填法;所以,偶数的个数一共有22A +23A +12A =10种填法.22.(浙江省湖州市2013年高三第二次教学质量检测数学(理)试题(word 版) )将7支不同的笔全部放入两个不同的笔筒中,每个笔筒中至少放两支笔,有____种不同的放法.(用数字作答)【答案】11223.(浙江省绍兴市2013届高三教学质量调测数学(理)试题(word 版) )甲、乙、丙三位学生在学校开设的三门选修课中自主选课,其中甲和乙各选修其中的两门,丙选修其中的一门,且每门选修课这三位学生中至少有一位选修,则不同的选法共有______种.【答案】2124.(浙江省一级重点中学(六校)2013届高三第一次联考数学(理)试题)有两排座位,前排11个座位,后排12个座位.现在安排甲、乙2人就座,规定前排中间的3个座位不能坐,并且甲、乙不能左右相邻,则一共有不同安排方法多少种?______(用数字作答).【答案】34625.(浙江省杭州二中2013届高三年级第五次月考理科数学试卷)将2个相同的a 和2个相同的b 共4个字母填在33*的方格内,每个小方格内至多填个字母,若使相同字母既不同行也不同列,则不同的填法共有_______种(用数字作答)【答案】19826.(浙江省温州市十校联合体2013届高三上学期期末联考理科数学试卷)用字母A 、Y,数字1、8、9构成一个字符不重复的五位号牌,要求字母A 、Y 不相邻,数字8、9相邻,则可构成的号牌个数是____(用数字作答) .【答案】 2427.(浙江省温州市2013届高三第三次适应性测试数学(理)试题(word 版) )用5个数字1、1、2、2、3可以组成不同的五位数有______个【答案】3028.(浙江省杭州四中2013届高三第九次教学质检数学(理)试题)有七名同学站成一排照相,其中甲必须站在正中间,并且乙、丙两位同学要站在一起,则不同的站法有_________.【答案】19229.(【解析】浙江省镇海中学2013届高三5月模拟数学(理)试题)给图中A 、B 、C 、D 、E 、F 六个区域进行染色,每个区域只染一种颜色,且相邻的区域不同色.若有4种颜色可供选择,则共有__________种不同的染色方案.【答案】答案96 解:先染ABC 有34A 种,若A,F 不相同,则F,E,D 唯一;若AF 相同,讨论EC,若EC 相同,D 有2种,则3412A ⨯⨯,若EC 不相同,D 有1种,则3411A ⨯⨯.所以一共有34A +3412A ⨯⨯+3411A ⨯⨯= 96种.30.(浙江省杭州高中2013届高三第六次月考数学(理)试题)前12个正整数组成一个集合{}1,2,3,,12⋅⋅⋅,此集合的符合如下条件的子集的数目为m :子集均含有4个元素,且A B CD EF (第16题图) A B CD EF (第16题图)这4个元素至少有两个是连续的.则m 等于_______ .【答案】36931.(浙江省宁波市2013届高三第二次模拟考试数学(理)试题)从6名候选人中选派出3人参加A 、B 、C 三项活动,且每项活动有且仅有1人参加,甲不参加A 活动,则不同的选派方法有__________种.【答案】10032.(浙江省嘉兴市2013届高三第二次模拟考试理科数学试卷)从点A 到点B 的路径如图所示,则不同的最短路径共有____条.【答案】22;33.(浙江省温州八校2013届高三9月期初联考数学(理)试题)某停车场有一排编号为1至7的七个停车空位,现有2辆不同的货车与2辆不同的客车同时停入,每个车位最多停一辆车,若同类车不停放在相邻的车位上,则共有________种不同的停车方案.【答案】44034.(浙江省杭州二中2013届高三6月适应性考试数学(理)试题)有6名同学参加两项课外活动,每位同学必须参加一项活动且不能同时参加两项,每项活动最多安排4人,则不同的安排方法有_____种.(用数字作答)【答案】.50B。
(浙江专用)高考数学一轮复习 专题十 计数原理 10.1 计数原理与排列、组合试题(含解析)-人教版
专题十计数原理【考情探究】课标解读考情分析备考指导主题内容一、计数原理、排列、组合1.分类加法计数原理,分步乘法计数原理(1)理解分类加法计数原理和分步乘法计数原理.(2)会用两个原理分析和解决一些简单的实际问题.2.排列与组合(1)理解排列、组合的概念.(2)能利用计数原理推导排列数公式、组合数公式.(3)能解决简单的实际问题.从近几年高考命题情况来看,这一部分主要考查分类加法、分步乘法计数原理以及排列、组合的简单应用.题型以选择题、填空题为主,在解答题中一般将排列、组合知识综合起来,有时也与求事件概率,分布列问题相结合考查.1.求特定项系数问题可以分两步完成:第一步是根据所给出的条件(特定项)和通项公式建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r);第二步是根据所求的指数求解所求的项.2.有理项是字母指数为整数的项.解此类问题必须合并通项公式中同一字母的指数,根据具体要求,令其为整数,再根据数的整除性来求解.1.用排列、组合知识解决计数问题时,如果遇到的情况较为复杂,即分类较多,标准也较多,同时所求计数的结果不太容易计算时,往往利用表格法、树状图法将其所有的可能一一列举出来,这样会更容易得出结果.2.求解二项展开式的特定项时,即求展开式中的某一项,如第n项,常数项、有理项、字母指数为某些特殊值的项,先准确写出通项T r+1=r a n-r b r,再把系数与字母分离出来(注意符号),最后根据题目中所指定的字母的指数所具有的特征,列出关系式求解即可.二、二项式定理1.能用计数原理证明二项式定理.2.会用二项式定理解决与二项展开式有关的简单问题.【真题探秘】§10.1计数原理与排列、组合基础篇固本夯基【基础集训】考点计数原理、排列、组合1.甲、乙、丙、丁、戊、己6名同学站成一排照毕业相,要求甲不站在两侧,而且乙和丙相邻、丁和戊相邻,则不同的站法种数为( )A.60B.96C.48D.72答案 C2.在我国第一艘航空母舰“某某舰”的某次舰载机起降飞行训练中,有5架“歼-15”飞机甲、乙、丙、丁、戊准备着舰,规定乙机不能最先着舰,且丙机必须在甲机之前着舰(不一定相邻),那么不同的着舰方法种数为( )A.24B.36C.48D.96答案 C3.中国国家队在2018俄罗斯世界杯亚洲区预选赛12强小组赛中以1比0力克韩国国家队,赛后有六名队员打算排成一排照相,其中队长主动要求排在排头或排尾,甲、乙两人必须相邻,则满足要求的排法有( )A.34种B.48种C.96种D.144种答案 C4.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有( )A.72种B.36种C.24种D.18种答案 B5.将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则不同放法共有( )A.480种B.360种C.240种D.120种答案 C6.高考结束后6名同学游览某市包括日月湖在内的6个景区,每名同学任选一个景区游览,则有且只有两名同学选择日月湖景区的方案有( )A.A62×A54种B.A62×54种C.C62×A54种D.C62×54种答案 D7.如图所示,用五种不同的颜色分别给A、B、C、D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有种.答案1808.有3女2男共5名志愿者要全部分到3个社区去参加志愿服务,每个社区1到2人,甲、乙两名女志愿者需到同一社区,男志愿者到不同社区,则不同的分法种数为.答案12综合篇知能转换【综合集训】考法一排列、组合问题的解题方法1.(2019某某万州二模,6)某中学某班主任要从7名同学(其中3男4女)中选出两名同学,其中一名担任班长,另一名担任学习委员,且这两名同学中既有男生又有女生,则不同的安排方法有( )A.42种B.14种C.12种D.24种答案 D2.(2018某某某某调研性检测,9)用数字0,1,2,3,4组成没有重复数字且大于3 000的四位数,这样的四位数有( )A.250个B.249个C.48个D.24个答案 C3.(2018豫北名校联考,9)2018年元旦假期,高三的8名同学准备拼车去旅游,其中(1)班、(2)班、(3)班、(4)班每班各两名,分乘甲乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中(1)班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一个班的乘坐方式共有( )A.18种B.24种C.48种D.36种答案 B4.(2019某某嘉峪关一中模拟)在高三某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生,如果2位男生不能连续出场,且女生甲不能排第一个,那么出场顺序的排法种数为.答案605.(2020届某某某某执信中学10月月考,14)有6X卡片分别写有数字1,1,1,2,2,2,从中任取4X,可排出的四位数有个.答案14考法二分组分配问题的解题方法6.(2018某某某某二模,8)某某西湖公园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,不同的安排方案共有( )A.90种B.180种C.270种D.360种答案 B7.(2019某某某某第一次统测,11)将甲、乙、丙、丁、戊共5人分配到A、B、C、D共4所学校,每所学校至少一人,且甲不去A学校,则不同的分配方法有( )A.72种B.108种C.180种D.360种答案 C8.(2018某某某某一模,5)某学校为了更好地培养尖子生,使其全面发展,决定由3名教师对5个尖子生进行“包教”,要求每名教师的“包教”学生不超过2人,则不同的“包教”方案有( )A.60种B.90种C.150种D.120种答案 B9.(2020届某某某某一中10月月考,7)小明和小红都计划在国庆节的7天假期中,到某某“两日游”,若他们不同一天出现在某某,则他们出游的不同方案共有( )A.16种B.18种C.20种D.24种答案 C【五年高考】考点计数原理、排列、组合1.(2017课标Ⅱ,6,5分)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A.12种B.18种C.24种D.36种答案 D2.(2016课标Ⅱ,5,5分)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24B.18C.12D.9答案 B3.(2015某某,6,5分)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )A.144个B.120个C.96个D.72个答案 B4.(2016课标Ⅲ,12,5分)定义“规X01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数,若m=4,则不同的“规X01数列”共有( )A.18个B.16个C.14个D.12个答案 C5.(2018课标Ⅰ,15,5分)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)答案166.(2017某某,14,5分)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有个.(用数字作答)答案 1 0807.(2017某某,16,4分)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有种不同的选法.(用数字作答)答案6608.(2015某某,12,5分)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)答案 1 560教师专用题组考点计数原理、排列、组合1.(2014大纲全国,5,5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组.则不同的选法共有( )A.60种B.70种C.75种D.150种答案 C2.(2014某某,9,5分)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.168答案 B3.(2014某某,8,5分)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )A.24对B.30对C.48对D.60对答案 C4.(2014某某,8,5分)设集合A={(x1,x2,x3,x4,x5)|x i∈{-1,0,1},i=1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为( )A.60B.90C.120D.130答案 D5.(2014某某,6,5分)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( )A.144B.120C.72D.24答案 D6.(2014某某,6,5分)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A.192种B.216种C.240种D.288种答案 B7.(2014某某,14,4分)在8X奖券中有一、二、三等奖各1X,其余5X无奖.将这8X奖券分配给4个人,每人2X,不同的获奖情况有种(用数字作答).答案608.(2014,13,5分)把5件不同产品摆成一排.若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种.答案369.(2018某某,23,10分)设n∈N*,对1,2,…,n的一个排列i1i2…i n,如果当s<t时,有i s>i t,则称(i s,i t)是排列i1i2…i n的一个逆序,排列i1i2…i n的所有逆序的总个数称为其逆序数,例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记f n(k)为1,2,…,n的所有排列中逆序数为k的全部排列的个数.(1)求f3(2), f4(2)的值;(2)求f n(2)(n≥5)的表达式(用n表示).解析本题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力.(1)记τ(abc)为排列abc的逆序数,对1,2,3的所有排列,有τ(123)=0,τ(132)=1,τ(213)=1,τ(231)=2,τ(312)=2,τ(321)=3,所以f3(0)=1,f3(1)=f3(2)=2.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此f4(2)=f3(2)+f3(1)+f3(0)=5.(2)对一般的n(n≥4)的情形,逆序数为0的排列只有一个:12…n,所以f n(0)=1.逆序数为1的排列只能是将排列12…n中的任意相邻两个数字调换位置得到的排列,所以f n(1)=n-1.为计算f n+1(2),当1,2,…,n的排列及其逆序数确定后,将n+1添加进原排列,n+1在新排列中的位置只能是最后三个位置.因此, f n+1(2)=f n(2)+f n(1)+f n(0)=f n(2)+n.当n≥5时,f n(2)=[f n(2)-f n-1(2)]+[f n-1(2)-f n-2(2)]+…+[f5(2)-f4(2)]+f4(2)=(n-1)+(n-2)+…+4+f4(2)=n2-n-22.因此,当n≥5时, f n(2)=n 2-n-22.疑难突破要做好本题,关键是理解“逆序”“逆序数”“f n(k)”的含义,不妨从比较小的1,2,3入手去理解这几个概念,这样就能得到f3(2). f4(2)是指1,2,3,4这4个数中逆序数为2的全部排列的个数,可以通过与f3(2), f3(1),f3(0)联系得到,4分别添加在f3(2)的排列中最后一个位置、f3(1)的排列中的倒数第2个位置、f3(0)的排列中的倒数第3个位置.有了上述的理解就能得到f n+1(2)与f n(2),f n(1), f n(0)的关系:f n+1(2)=f n(2)+f n(1)+f n(0)=f n(2)+n,从而得到f n(2)(n≥5)的表达式.【三年模拟】一、单项选择题(每题5分,共50分)1.(2020届九师联盟9月质量检测,8)从1,3,5,7,9中任取两个数,从0,2,4,6,8中任取2个数,则组成没有重复数字的四位数的个数为( )A.2 100B.2 200C.2 160D.2 400答案 C2.(2020届某某某某一中第一次月考,8)中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,甲、乙、丙三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、兔、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,那么不同的选法有( )A.50种B.60种C.70种D.90种答案 C3.(2020届某某某某七中第二次月考,4)7个人排成一排准备照一X合影,其中甲、乙要求相邻,丙、丁要求分开,则不同的排法有( )A.480种B.720种C.960种D.1 200种答案 C4.(2020届某某洪湖二中月考,9)“学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全党员、面向全社会的优质平台,现日益成为老百姓了解国家动态、紧跟时代脉搏的热门APP.该款软件主要设有“阅读文章”“视听学习”两个学习版块和“每日答题”“每周答题”“专项答题”“挑战答题”四个答题版块.某人在学习过程中,“阅读文章”与“视听学习”两个学习版块之间最多间隔一个答题版块的学习方法有( )A.192种B.240种C.432种D.528种答案 C5.(2018全国百所名校冲刺卷(四),8)航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一或最后一步,程序B和C在实施时必须相邻,则实验顺序的编排方法共有( )A.34种B.48种C.96种D.144种答案 C6.(2019某某金卷先享题二,8)在高三下学期初,某校开展教师对学生的家庭学习问卷调查活动,已知现有3名教师对4名学生家庭进行问卷调查,若这3名教师每位至少到一名学生家中问卷调查,又这4名学生的家庭都能且只能得到一名教师的问卷调查,那么不同的问卷调查方案的种数为( )A.36B.72C.24D.48答案 A7.(2019某某某某一模)如图所示的几何体由三棱锥P-ABC与三棱柱ABC-A1B1C1组合而成,现用3种不同颜色对这个几何体的表面涂色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的涂色方案共有( )A.6种B.9种C.12种D.36种答案 C8.(2018某某哈六中二模,9)从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为( )A.48B.72C.90D.96答案 D9.(2019某某某某模拟,8)已知三棱锥的6条棱代表6种不同的化工产品,有公共顶点的两条棱代表的化工产品放在同一仓库是安全的,没有公共顶点的两条棱代表的化工产品放在同一仓库是危险的.现用编号为1,2,3的三个仓库存放这6种化工产品,每个仓库放2种,那么安全存放的不同方法种数为( )A.12B.24C.36D.48答案 D二、多项选择题(共5分)10.(改编题)下列说法正确的是( )A.5个不同的球,放入8个不同的盒子中,每个盒子里至多放一个球,不同的放法有A85种B.5个不同的球,放入8个不同的盒子中,每个盒子放球数量不限,不同的放法有85种C.5个相同的球,放入8个不同的盒子中,每个盒子里至多放一个球,则不同的放法有C85种D.8个相同的小球,放入5个不同的盒子中,每盒不空的放法有C84种答案ABC三、填空题(每题5分,共15分)11.(2020届某某夏季高考模拟,13)某元宵灯谜竞猜节目,有6名守擂选手和6名复活选手,从复活选手中挑选1名选手为攻擂者,从守擂选手中挑选1名选手为守擂者,则攻擂者、守擂者的不同构成方式共有种.答案3612.(2020届某某寿光现代中学10月月考,14)某工厂将甲、乙等五名新招聘员工分配到三个不同的车间.每个车间至少分配一名员工,甲、乙两名员工必须分到同一个车间,则不同分法的种数为.答案3613.(2019某某某某中学第一次摸底考试,15)由数字0,1组成的一串数字代码,其中恰好有7个1,3个0,则这样的不同数字代码共有个.答案12014.(2020届某某东阳中学10月月考,14)安排甲、乙、丙、丁、戊5名大学生去某某、某某、某某三个城市进行暑期社会实践,每个城市至少安排一人,则不同的安排方式共有种;其中学生甲被单独安排去某某的概率是.答案150;775。
2022年高考数学(浙江专用)总复习教师用书:第10章 第2讲 排列与组合 Word版含解析
第2讲 排列与组合最新考纲 1.理解排列、组合的概念;2.能利用计数原理推导排列数公式、组合数公式;3.能解决简洁的实际问题.知 识 梳 理 1.排列与组合的概念名称 定义排列 从n 个不同元素中取出m (m ≤n )个不同元素依据肯定的挨次排成一列组合合成一组2.(1)从n 个不同元素中取出m (m ≤n )个元素的全部不同排列的个数,叫做从n 个不同元素中取出m 个元素的排列数.(2)从n 个不同元素中取出m (m ≤n )个元素的全部不同组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.3.排列数、组合数的公式及性质公式(1)A m n =n (n -1)(n -2)…(n -m +1)=n !(n -m )!(2)C m n =A m n A m m=n (n -1)(n -2)…(n -m +1)m !=n !m !(n -m )!(n ,m ∈N *,且m ≤n ).特殊地C 0n =1 性质(1)0!=1;A n n =n !(2)C m n =C n -m n ;C m n +1=C m n +C m -1n诊 1.推断正误(在括号内打“√”或“×”)(1)全部元素完全相同的两个排列为相同排列.( ) (2)两个组合相同的充要条件是其中的元素完全相同.( )(3)若组合式C x n =C mn ,则x =m 成立.( ) (4)k C k n =n C k -1n -1.( )解析 元素相同但挨次不同的排列是不同的排列,故(1)不正确;若C x n =C mn ,则x =m 或n -m ,故(3)不正确.答案 (1)× (2)√ (3)× (4)√2.从4本不同的课外读物中,买3本送给3名同学,每人各1本,则不同的送法种数是( ) A.12B.24C.64D.81解析 4本不同的课外读物选3本分给3位同学,每人一本,则不同的安排方法为A 34=24.答案 B3.(选修2-3P28A17改编)从4名男同学和3名女同学中选出3名参与某项活动,则男女生都有的选法种数是( ) A.18B.24C.30D.36解析 法一 选出的3人中有2名男同学1名女同学的方法有C 24C 13=18种,选出的3人中有1名男同学2名女同学的方法有C 14C 23=12种,故3名同学中男女生都有的选法有C 24C 13+C 14C 23=30种.法二 从7名同学中任选3名的方法数,再除去所选3名同学全是男生或全是女生的方法数,即C 37-C 34-C 33=30.答案 C4.(2021·浙江三市十二校联考)用1,2,3,4,5,6这六个数字组成没有重复数字的六位数共有________个;其中1,3,5三个数字互不相邻的六位数有________个.解析 用1,2,3,4,5,6组成没有重复数字六位数共有A 66=720个;将1,3,5三个数字插入到2,4,6三个数字排列后所形成的4个空中的3个,故有A 33A 34=144个.答案 720 1445.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为________(用数字作答).解析 末位数字排法有A 12,其他位置排法有A 34种,共有A 12A 34=48种.答案 486.(2021·绍兴调研)某市委从组织机关10名科员中选3人担当驻村第一书记,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为________(用数字作答).解析法一(直接法)甲、乙两人均入选,有C17C22种.甲、乙两人只有1人入选,有C12C27种方法,∴由分类加法计数原理,共有C22C17+C12C27=49(种)选法.法二(间接法)从9人中选3人有C39种方法.其中甲、乙均不入选有C37种方法,∴满足条件的选排方法是C39-C37=84-35=49(种).答案49考点一排列问题【例1】(2021·河南校级月考)3名女生和5名男生排成一排.(1)假如女生全排在一起,有多少种不同排法?(2)假如女生都不相邻,有多少种排法?(3)假如女生不站两端,有多少种排法?(4)其中甲必需排在乙前面(可不邻),有多少种排法?(5)其中甲不站最左边,乙不站最右边,有多少种排法?解(1)(捆绑法)由于女生排在一起,可把她们看成一个整体,这样同五个男生合在一起有6个元素,排成一排有A66种排法,而其中每一种排法中,三个女生间又有A33种排法,因此共有A66·A33=4 320(种)不同排法.(2)(插空法)先排5个男生,有A55种排法,这5个男生之间和两端有6个位置,从中选取3个位置排女生,有A36种排法,因此共有A55·A36=14 400(种)不同排法.(3)法一(位置分析法)由于两端不排女生,只能从5个男生中选2人,有A25种排法,剩余的位置没有特殊要求,有A66种排法,因此共有A25·A66=14 400(种)不同排法.法二(元素分析法)从中间6个位置选3个支配女生,有A36种排法,其余位置无限制,有A55种排法,因此共有A36·A55=14 400(种)不同排法.(4)8名同学的全部排列共A88种,其中甲在乙前面与乙在甲前面的各占其中12,∴符合要求的排法种数为12A88=20 160(种).(5)甲、乙为特殊元素,左、右两边为特殊位置.法一(特殊元素法)甲在最右边时,其他的可全排,有A77种;甲不在最右边时,可从余下6个位置中任选一个,有A16种;而乙可排在除去最右边位置后剩余的6个中的任一个上,有A16种;其余人6个人进行全排列,有A66种.共有A16·A16·A66种.由分类加法计数原理,共有A77+A16·A16·A66=30 960(种).法二(特殊位置法)先排最左边,除去甲外,有A17种,余下7个位置全排,有A77种,但应剔除乙在最右边时的排法A16·A66种,因此共有A17·A77-A16·A66=30 960(种).法三(间接法)8个人全排,共A88种,其中,不合条件的有甲在最左边时,有A77种,乙在最右边时,有A77种,其中都包含了甲在最左边,同时乙在最右边的情形,有A66种.因此共有A88-2A77+A66=30 960(种).规律方法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般接受特殊元素优先原则,即先支配有限制条件的元素或有限制条件的位置,对于分类过多的问题可以接受间接法.(2)对相邻问题接受捆绑法、不相邻问题接受插空法、定序问题接受倍缩法是解决有限制条件的排列问题的常用方法.【训练1】(1)(2021·新余二模)7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法种数为()A.120B.240C.360D.480(2)(2021·抚顺模拟)某班预备从甲、乙等七人中选派四人发言,要求甲乙两人至少有一人参与,那么不同的发言挨次有()A.30B.600C.720D.840解析(1)第一步,从甲、乙、丙三人选一个加到前排,有3种,其次步,前排3人形成了4个空,任选一个空加一人,有4种,第三步,后排4人形成了5个空,任选一个空加一人有5种,此时形成6个空,任选一个空加一人,有6种,依据分步计数原理有3×4×5×6=360种方法.(2)若只有甲乙其中一人参与,有C12C35A44=480种方法;若甲乙两人都参与,有C22C25A44=240种方法,则共有480+240=720种方法,故选C.答案(1)C(2)C考点二组合问题【例2】某市工商局对35种商品进行抽样检查,已知其中有15种假货.现从35种商品中选取3种.(1)其中某一种假货必需在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?解(1)从余下的34种商品中,选取2种有C234=561种,∴某一种假货必需在内的不同取法有561种.(2)从34种可选商品中,选取3种,有C334种或者C335-C234=C334=5 984种.∴某一种假货不能在内的不同取法有5 984种.(3)从20种真货中选取1件,从15种假货中选取2件有C120C215=2 100种.∴恰有2种假货在内的不同的取法有2 100种.(4)选取2种假货有C120C215种,选取3件假货有C315种,共有选取方式C120C215+C315=2 100+455=2 555种.∴至少有2种假货在内的不同的取法有2 555种.(5)选取3件的总数为C335,因此共有选取方式C335-C315=6 545-455=6 090种.∴至多有2种假货在内的不同的取法有6 090种.规律方法组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型;“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必需格外重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解.用直接法和间接法都可以求解,通常用直接法分类简单时,考虑逆向思维,用间接法处理.【训练2】(1)(2021·邯郸一模)现有6个不同的白球,4个不同的黑球,任取4个球,则至少有两个黑球的取法种数是()A.90B.115C.210D.385(2)(2021·湖州市质检)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种解析(1)分三类,取2个黑球有C24C26=90种,取3个黑球有C34C16=24种,取4个黑球有C44=1种,故共有90+24+1=115种取法,选B.(2)共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,∴共有不同的取法有C45+C44+C25C24=66(种).答案(1)B(2)D考点三排列、组合的综合应用【例3】4个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?解(1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?”即把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球放在另外2个盒子内,由分步乘法计数原理,共有C14C24C13×A22=144(种).(2)“恰有1个盒内有2个球”,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个盒子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,所以共有144种放法.(3)确定2个空盒有C24种方法.4个球放进2个盒子可分成(3,1)、(2,2)两类,第一类有序不均匀分组有C34C11A22种方法;其次类有序均匀分组有C24C22A22·A22种方法.故共有C24(C34C11A22+C24C22A22·A22)=84(种).规律方法(1)解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).对于排列组合的综合题目,一般是将符合要求的元素取出或进行分组,再对取出的元素或分好的组进行排列.(2)不同元素的安排问题,往往是先分组再安排.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,留意各种分组类型中,不同分组方法的差异.其次对于相同元素的“安排”问题,常用的方法是接受“隔板法”.【训练3】(1)某校高二班级共有6个班级,现从外地转入4名同学,要支配到该班级的两个班级且每班支配2名,则不同的支配方案种数为()A.A26C24B.12A26C24C.A26A24D.2A26(2)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券安排给4个人,每人2张,不同的获奖状况有________种(用数字作答).解析(1)法一将4人平均分成两组有12C24种方法,将此两组安排到6个班级中的2个班有A26(种).所以不同的支配方法有12C 24A 26(种).法二先从6个班级中选2个班级有C26种不同方法,然后支配同学有C24C22种,故有C26C24C22=1 2A26C24(种).(2)把8张奖券分4组有两种分法,一种是分(一等奖,无奖)、(二等奖,无奖)、(三等奖,无奖)、(无奖,无奖)四组,分给4人有A44种分法;另一种是一组两个奖,一组只有一个奖,另两组无奖,共有C23种分法,再分给4人有C23A24种分法,所以不同获奖状况种数为A44+C23A24=24+36=60.答案(1)B(2)60 [思想方法]1.对于有附加条件的排列、组合应用题,通常从三个途径考虑(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素.(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列数或组合数,再减去不合要求的排列数或组合数.2.排列、组合问题的求解方法与技巧(1)特殊元素优先支配;(2)合理分类与精确分步;(3)排列、组合混合问题先选后排;(4)相邻问题捆绑处理;(5)不相邻问题插空处理;(6)定序问题排解法处理;(7)分排问题直排处理;(8)“小集团”排列问题先整体后局部;(9)构造模型;(10)正难则反,等价条件.[易错防范]1.区分一个问题属于排列问题还是组合问题,关键在于是否与挨次有关.2.解受条件限制的排列、组合题,通常有直接法(合理分类)和间接法(排解法).分类时标准应统一,避开消灭重复或遗漏.3.解组合应用题时,应留意“至少”、“至多”、“恰好”等词的含义.4.对于安排问题,一般先分组,再安排,留意平均分组与不平均分组的区分,避开重复或遗漏.基础巩固题组(建议用时:25分钟)一、选择题1.(2022·四川卷)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为()A.24B.48C.60D.72解析由题意,可知个位可以从1,3,5中任选一个,有A13种方法,其他数位上的数可以从剩下的4个数字中任选,进行全排列,有A44种方法,所以奇数的个数为A13A44=3×4×3×2×1=72,故选D.答案 D2.(2021·东阳调研)某外商方案在4个候选城市中投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有()A.16种B.36种C.42种D.60种解析法一(直接法)若3个不同的项目投资到4个城市中的3个,每个城市一项,共A34种方法;若3个不同的项目投资到4个城市中的2个,一个城市一项、一个城市两项共C23A24种方法.由分类加法计数原理知共A34+C23A24=60(种)方法.法二(间接法)先任意支配3个项目,每个项目各有4种支配方法,共43=64种排法,其中3个项目落入同一城市的排法不符合要求共4种,所以总投资方案共43-4=64-4=60(种).答案 D3.10名同学合影,站成了前排3人,后排7人,现摄影师要从后排7人中抽2人站前排,其他人的相对挨次不变,则不同调整方法的种数为()A.C27A55B.C27A22C.C27A25D.C27A35解析首先从后排的7人中抽2人,有C27种方法;再把2个人在5个位置中选2个位置进行排列有A25种.由分步乘法计数原理知不同调整方法种数是C27A25.答案 C4.(2021·金华调研)甲、乙两人从4门课程中各选修两门,则甲、乙所选的课程中至少有1门不相同的选法共有________种()A.30B.36C.60D.72解析甲、乙所选的课程中至少有1门不相同的选法可以分为两类:当甲、乙所选的课程中2门均不相同时,甲先从4门中任选2门,乙选取剩下的2门,有C24C22=6种方法;当甲、乙所选的课程中有且只有1门相同时,分为2步:①从4门中选1门作为相同的课程,有C14=4种选法,②甲从剩余的3门中任选1门,乙从最终剩余的2门中任选1门有C13C12=6种选法,由分步乘法计数原理此时共有C14C13C12=24种方法.综上,共有6+24=30种方法.答案 A5.某台小型晚会由6个节目组成,演出挨次有如下要求:节目甲必需排在前两位,节目乙不能排在第一位,节目丙必需排在最终一位.该台晚会节目演出挨次的编排方案共有()A.36种B.42种C.48种D.54种解析分两类,第一类:甲排在第一位时,丙排在最终一位,中间4个节目无限制条件,有A44种排法;其次类:甲排在其次位时,从甲、乙、丙之外的3个节目中选1个节目排在第一位有C13种排法,其他3个节目有A33种排法,故有C13A33种排法.依分类加法计数原理,知共有A44+C13A33=42种编排方案.答案 B6.(2022·东北三省四市联考)甲、乙两人要在一排8个空座上就坐,若要求甲、乙两人每人的两旁都有空座,则有多少种坐法()A.10B.16C.20D.24解析一排共有8个座位,现有两人就坐,故有6个空座.∵要求每人左右均有空座,∴在6个空座的中间5个空中插入2个座位让两人就坐,即有A25=20种坐法.答案 C7.(2021·浙江五校联考)某次联欢会要支配3个歌舞类节目、2个小品类节目和1个相声类节目的演出挨次,则同类节目不相邻的排法种数是()A.72B.120C.144D.168解析法一先支配小品节目和相声节目,然后让歌舞节目去插空.支配小品节目和相声节目的挨次有三种:“小品1,小品2,相声”,“小品1,相声,小品2”和“相声,小品1,小品2”.对于第一种状况,形式为“□小品1歌舞1小品中2□相声□”,有A22C13A23=36(种)支配方法;同理,第三种状况也有36种支配方法,对于其次种状况,三个节目形成4个人,其形式为“□小品1□相声□小品2□”.有A22A34=48种支配方法,故共有36+36+48=120种支配方法. 法二先不考虑小品类节目是否相邻,保证歌舞类节目不相邻的排法共有A33·A34=144(种),再剔除小品类节目相邻的状况,共有A33·A22·A22=24(种),于是符合题意的排法共有144-24=120(种).答案 B8.(2021·青岛模拟)将甲、乙等5名交警安排到三个不同路口疏导交通,每个路口至少一人,且甲、乙在同一路口的安排方案共有()A.18种B.24种C.36种D.72种解析一个路口有3人的安排方法有C13C22A33(种);两个路口各有2人的安排方法有C23C22A33(种).∴由分类加法计数原理,甲、乙在同一路口的安排方案为C13C22A33+C23C22A33=36(种).答案 C二、填空题9.7位身高均不等的同学排成一排照相,要求中间最高,依次往两端身高渐渐降低,共有________种排法(用数字作答).解析先排最中间位置有一种排法,再排左边3个位置,由于挨次肯定,共有C36种排法,再排剩下右边三个位置,共一种排法,所以排法种数为C36=20(种).答案2010.(2021·余姚质检)3男3女共6名同学排成一列,同性者相邻的排法种数有________;任两个女生不相邻的排法有________(均用数字作答).解析分别把3男3女各看作一个复合元素,把这两个复合元素全排,3男3女内部也要全排,故有A33A33A22=72种;把3名女同学插入到3名男同学排列后所形成的4个空中的3个,故有A33·A34=144种.答案7214411.若把英语单词“good”的字母挨次写错了,则可能消灭的错误方法共有________种(用数字作答).解析把g、o、o、d 4个字母排一列,可分两步进行,第一步:排g和d,共有A24种排法;其次步:排两个o,共一种排法,所以总的排法种数为A24=12(种).其中正确的有一种,所以错误的共A24-1=12-1=11(种).答案11 12.(2021·金丽衢十二校联考)从5台甲型和4台乙型电视机中任意取出3台,其中至少要有甲型与乙型电视机各1台,则不同的取法共有________种(用数字作答).解析甲型2台乙型1台或甲型1台乙型2台,故共有C25C14+C15C24=70种方法.答案7013.(2021·淮北一模)寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E五个座位(一排共五个座位),上车后五人在这五个座位上任凭坐,则恰有一人坐对与自己车票相符座位的坐法有________种(用数字作答).解析设5名同学也用A,B,C,D,E来表示,若恰有一人坐对与自己车票相符的坐法,设E 同学坐在自己的座位上,则其他四位都不坐自己的座位,则有:BADC,BDAC,BCDA,CADB,CDAB,CDBA,DABC,DCAB,DCBA共9种坐法,则恰有一人坐对与自己车票相等座位的坐法有9×5=45种坐法.答案45力量提升题组(建议用时:20分钟)14.(2021·武汉调研)三对夫妻站成一排照相,则仅有一对夫妻相邻的站法总数是()A.72B.144C.240D.288解析第一步,先选一对夫妻使之相邻,捆绑在一起看作一个复合元素A,这对夫妻有2种排法,故有C13A22=6种排法;其次步,再选一对夫妻,这对夫妻有2种排法,从剩下的那对夫妻中选择一个插入到刚选的夫妻中,把这三个人捆绑在一起看作另一个复合元素B,有C12A22C12=8种排法;第三步,将复合元素A,B和剩下的那对夫妻中剩下的那一个进行全排列,有A33=6种排法,由分步乘法计数原理,知三对夫妻排成一排照相,仅有一对夫妻相邻的排法有6×8×6=288种,故选D.答案 D15.设集合A={(x1,x2,x3,x4,x5)|x i∈{-1,0,1},i=1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为()A.60B.90C.120D.130解析由于x i∈{-1,0,1},i=1,2,3,4,5,且1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3,所以x i中至少两个为0,至多四个为0.①x i(i=1,2,3,4,5)中4个0,1个为-1或1,A有2C15个元素;②x i中3个0,2个为-1或1,A有C25×2×2=40个元素;③x i中2个0,3个为-1或1,A有C35×2×2×2=80个元素;从而,集合A中共有2C15+40+80=130个元素.答案 D16.(2021·慈溪调考)在某班进行的演进竞赛中,共有5位选手参与,其中3位女生,2位男生,假如2位男生不能连着出场,且女生甲不能排在第一个,那么出场挨次的排法种数为________(用数字作答).解析若第一个出场是男生,则其次个出场的是女生,以后的挨次任意排,方法有C12C13A33=36种;若第一个出场的是女生(不是女生甲),则剩余的2个女生排列好,2个男生插空,方法有C12A22A23=24种.故全部出场挨次的排法种数为36+24=60.答案6017.(2021·诸暨模拟)从0,1,2,3,4,5这6个数字中任意取4个数字,组成一个没有重复且能被3整除的四位数,则这样的四位数共有________个(用数字作答).解析依据题意,只需组成的四位数各位数字的和能被3整除,则选出的四个数字有5种状况,①1,2,4,5;②0,3,4,5;③0,2,3,4;④0,1,3,5;⑤0,1,2,3;①时,共可以组成A44=24个四位数;②时,0不能在首位,此时可以组成3×A33=3×3×2×1=18个四位数,同理,③、④、⑤时,都可以组成18个四位数,则这样的四位数共24+4×18=96个. 答案9618.(1)现有10个保送上高校的名额,安排给7所学校,每校至少有1个名额,问名额安排的方法共有多少种?(2)已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,那么最多可确定多少个不同的点?解(1)法一每个学校至少一个名额,则分去7个,剩余3个名额分到7所学校的方法种数就是要求的安排方法种数.分类:若3个名额分到一所学校有7种方法;若安排到2所学校有C27×2=42(种);若安排到3所学校有C37=35(种).∴共有7+42+35=84(种)方法.法二10个元素之间有9个间隔,要求分成7份,相当于用6块档板插在9个间隔中,共有C69=84种不同方法.所以名额安排的方法共有84种.(2)①从集合B中取元素2时,确定C13A33个点.②当从集合B中取元素1,且从C中取元素1,则确定的不同点有C13×1=C13.③当从B中取元素1,且从C中取出元素3或4,则确定的不同点有C12A33个.∴由分类加法计数原理,共确定C13A33+C13+C12A33=33(个)不同点.。
近五年(2017-2021)高考数学真题分类汇编试卷含答案(不等式)
2
2
故 sin cos sin cos sin cos 3 , 2
故 sin cos ,sin cos ,sin cos 不可能均大于 1 .
2
取 , , ,
6
3
4
则 sin cos 1 1 ,sin cos 6 1 ,sin cos 6 1 ,
42
42
,
上下平移直线 y 3x z ,数形结合可得当直线过点 A 时, z 取最小值,
此时 zmin 31 3 6 .
故选:C.
3.B
x 1 0
【解析】画出满足约束条件
x
y
0
的可行域,如下图所示:
2x 3y 1 0
目标函数 z x 1 y 化为 y 2x 2z , 2
x 1
x 1
_________.
20.(2020·江苏)已知 5x2 y2 y4 1(x, y R) ,则 x2 y2 的最小值是_______.
x y 0, 21.(2020·全国(文))若 x,y 满足约束条件 2x y 0,,则 z=3x+2y 的最大值为
x 1,
_________.
2x y 2 0, 22.(2020·全国(理))若 x,y 满足约束条件 x y 1 0, 则 z=x+7y 的最大值为
__________.
34.(2017·山东(文))若直线 x y 1(a>0,b>0) 过点(1,2),则 2a+b 的最小值为 ab
______.
四、双空题
x 2,
35.(2019·北京(文))若
x,y
满足
y
1,
则 y x 的最小值为__________,
数学人教版新优化浙江大一轮复习课件:10.2排列与组合2
解法 2:至少要甲型和乙型电视机各一台可分两种情况:甲型 1 台乙
型 2 台;甲型 2 台乙型 1 台;故不同的取法有C52 C41 + C51 C42 =70 种,应选
关闭
C.
C
解析
答案
-20考点一
考点二
考点三
10.2
排列与组合
考情概览
年份
2016 2015 2014
9,5 分(理)
排列与组合 16,4 分 16,4 分
14,4 分(理)
考查要求
考向分析
2018
2017
1.了解排列、组合的概念.
2.会用排列数公式、组合数公式解决简单的实际问题.
排列组合知识考查比较灵活多变,既可单独命题,也可
以同概率知识结合起来考查.
从剩下的元素中去选取.
(2)“至少”或“最多”含有几个元素的组合题型:解这类题目必须十
分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直
接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思
维,用间接法处理.
-18考点一
考点二
考点三
对点训练(1)(202X浙江宁波十校联考)甲组有5名男同学,3名女同
【典例】 (202X浙江高考样卷)如图所示,某货场有两堆集装箱,
一堆2个,一堆3个,现需要全部装运,每次只能从其中一堆取最上面
以不相邻),那么不同的排法有(
)
A.24种
B.60种
C.90种
D.120种
关闭
因为 B 在 A 的右边与 B 在 A 的左边排法数相同,所以题设的排法只
浙江省近五年(-)高考数学 最新分类汇编2 函数 理
浙江省2013届高三最新理科数学(精选试题17套+2008-2012五年浙江高考理科试题)分类汇编2:函数一、选择题1 .(浙江省建人高复2013届高三第五次月考数学(理)试题)已知函数)(x f y =是定义在R 上的增函数,函数)1(-=x f y 的图像关于)0,1(对称.若对任意的R y x ∈,,不等式0)8()216(22<-++-y y f x x f 恒成立,则当3>x 时, 22y x +的取值范围是( )A . ()25,9B .()49,13C .()7,3D .()49,9【答案】B2 .(浙江省宁波市鄞州中学2012学年高三第六次月考数学(理)试卷 )已知)91(log 2)(3≤≤+=x x x f ,则函数[])()(22x f x f y +=的最大值为( )A .6B .13C .22D .33【答案】B3 .(浙江省绍兴市2013届高三教学质量调测数学(理)试题(word 版) )已知函数22log ,()1234,x f x x x ⎧⎪=⎨-+⎪⎩若方程()(=∈f x t t )R 有四个不同的实数 根,,,,则4321x x x x 的取值范围为 ( )A .(30,34)B .(30,36)C .(32,34)D .(32,36)【答案】C4 .(浙江省嘉兴市2013届高三4月教学测试数学(理)试卷及参考答案 (1))若10<<a ,x x a a log )1(log <-,则( )A .10<<xB .21<x C .210<<x D .121<<x 【答案】C;5 .(浙江省永康市2013年高考适应性考试数学理试题 )设函数266,0()34,0x x x f x x x ⎧-+≥=⎨+<⎩,若互不相等的实数123,,x x x 满足123()()()f x f x f x ==,则123x x x ++的取值范围是 ( )A .2026(,]33B .2026(,)33C .11(,6]3D .11(,6)3【答案】D6 .(2010年高考(浙江理))设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.存在零点的是( )A .[]4,2--B .[]2,0-C .[]0,2D .[]2,4【答案】 答案:A解析:将()x f 的零点转化为函数()()()x x h x x g =+=与12sin 4的交点,数形结合可知答案选A,本题主要考察了三角函数图像的平移和函数与方程的相关知识点,突出了对转化思想和数形结合思想的考察,对能力要求较高,属较难题7 .(浙江省湖州市2013年高三第二次教学质量检测数学(理)试题(word 版) )设()f x 为定义在R 上的奇函数,且0x >时,()()12xf x =,则函数()()sin F x f x x =-在[]ππ-,上的零点个数为 ( )A .2B .3C .4D .5【答案】D8 .(浙江省五校联盟2013届高三下学期第二次联考数学(理)试题)设0,1a a >≠且,函数1()log 1ax f x x -=+在(1,)+∞单调递减,则()f x( )A .在(,1)-∞-上单调递减,在(1,1)-上单调递增B .在(,1)-∞-上单调递增,在(1,1)-上单调递减C .在(,1)-∞-上单调递增,在(1,1)-上单调递增D .在(,1)-∞-上单调递减,在(1,1)-上单调递减【答案】A9 .(浙江省建人高复2013届高三第五次月考数学(理)试题)设定义域为R 的函数0x ,lg 0 x ,2x - 2{)(>≤-=x x x f ,若关于x 的函数1)(2)(22++=x bf x f y 有8个不同的零点,则实数b 的取值范围是 ( )A .)B .(-1,C .D .【答案】C10.(浙江省永康市2013年高考适应性考试数学理试题 )若函数1)12()(22+--+=x a a ax x f 为偶函数,则实数a 的值为 ( )A .1B .21-C .1或21-D .0【答案】C11.(2011年高考(浙江理))设函数2(0)()(0)x x f x x x -≤⎧=⎨>⎩,若)(αf =4,则实数α=( )A .4-或2-B .4-或2C .2-或4D .2-或2【答案】 【答案】B【解析】当0≤α时,4,42)(-==-=ααf ; 当0>α,4,42)(2===ααf .12.(2010年高考(浙江理))设函数的集合211()log (),0,,1;1,0,122P f x x a b a b ⎧⎫==++=-=-⎨⎬⎩⎭,平面上点的集合11(,),0,,1;1,0,122Q x y x y ⎧⎫==-=-⎨⎬⎩⎭,则在同一直角坐标系中,P 中函数()f x 的图象恰好..经过Q 中两个点的函数的个数是 ( )A .4B .6C .8D .10【答案】 答案:B 解析:当a=0,b=0;a=0,b=1;a=21,b=0; a=21,b=1;a=1,b=-1;a=1,b=1时满足题意,故答案选B,本题主要考察了函数的概念、定义域、值域、图像和对数函数的相关知识点,对数学素养有较高要求,体现了对能力的考察,属中档题13.(浙江省金华十校2013届高三4月模拟考试数学(理)试题)已知函数211()log ,(),()12x f x f a f a x -==-+若则= ( )A .2B .—2C .12D .—12【答案】D14.(浙江省杭州高中2013届高三第六次月考数学(理)试题)已知函数2()(42)46,f x ax a x a =+++-则使函数()f x 至少有一个整数零点的所有正整数a 的值之和等于 ( )A .8B .20C .26D .28【答案】B 二、填空题15.(浙江省宁波市2013届高三第二次模拟考试数学(理)试题)设函数⎩⎨⎧≤<-≤≤--=210021)(x x x x f 若函数]2,2[,)()(-∈--x ax x f x g 为偶函数,则实数a 的值为__________. 【答案】1216.(浙江省五校联盟2013届高三下学期第二次联考数学(理)试题)设函数22()9f x x x ax =---(a 为实数),在区间(,3)-∞-和(3,)+∞上单调递增,则实数a 的取值范围为______________. 【答案】(0,12]17.(浙江省温岭中学2013届高三高考提优冲刺考试(三)数学(理)试题 )已知函数()f x 是定义在R上的奇函数,且满足(2)()f x f x +=对任意x R ∈成立,当(1,0)x ∈-时()2xf x =,则2(log 5)f =_______.【答案】45-18.(2008年高考(浙江理))已知t 为常数,函数22y x x t =--在区间[03],上的最大值为2,则t =__________.【答案】119.(浙江省新梦想新教育新阵地联谊学校2013届高三回头考联考数学(理)试题 )若函数)4()1()12()82()3()1()(22-+++--++++=k x k x k k x k x k x f 的定义域用D 表示,则使0)(>x f 对∈x D 均成立的实数k 的范围是________【答案】20.(浙江省建人高复2013届高三第五次月考数学(理)试题)已知sin (0),()(1)1(0).xx f x f x x π<⎧=⎨-->⎩则1111()()66f f -+的值为________【答案】2-21.(浙江省稽阳联谊学校2013届高三4月联考数学(理)试题(word 版) )若函数 2010,(),x x f x x x >⎧=⎨-≤⎩,则()f x 的值域是__________. 【答案】[1,)-+∞22.(2011年高考(浙江理))若函数2()||f x x x a =-+为偶函数,则实数a = _____【答案】【解析】∵)(x f 为偶函数,∴)()(x f x f =-, 即,||)(||22a x a x a x x a x x -=+⇒+---=+-∴0=a .23.(浙江省永康市2013年高考适应性考试数学理试题 )定义:如果函数()y f x =在区间[],a b 上存在00()x a x b <<,满足0()()()f b f a f x b a-=-,则称0x 是函数()y f x =在区间[],a b 上的一个均值点.已知函数2()1f x x mx =-++在区间[]1,1-上存在均值点,则实数m 的取值范围是____;【答案】(0,2) 24.(浙江省金华十校2013届高三4月模拟考试数学(理)试题)对于函数f(x),若存在区间M=[a,b],使得{|(),}y y f x x M M =∈=,则称区间M 为函数()f x 的—个“好区间”.给出下列4个函数: ①f(x)= sinx:②f(x)=|2x-1|;③f(x)= x 3—3x:④f(x)=lgx+l.其中存在“好区间”的函数是________. (填入相应函数的序号) 【答案】②③④ 25.(浙江省宁波市十校2013届高三下学期能力测试联考数学(理)试题)下图展示了一个由区间(0,1)到实数集R 的映射过程:区间(0,1)中的实数m 对应数轴上的点M(点A 对应实数0,点B 对应实数1),如图①;将线段AB 围成一个圆,使两端点A.B 恰好重合,如图②;再将这个圆放在平面直角坐标系中,使其圆心在y 轴上,点A 的坐标为(0,1),在图形变化过程中,图①中线段AM 的长度对应于图③中的弧ADM的长度,如图③,图③中直线AM 与x 轴交于点N(,0n ),则m 的象就是n ,记作().f m n =给出下列命题:①1()14f =; ②1()02f =; ③()f x 是奇函数; ④()f x 在定义域上单调递增,则所有真命题的序号是______________.(填出所有真命题的序号) 【答案】②④ 26.(浙江省宁波市十校2013届高三下学期能力测试联考数学(理)试题)已知整数,,x y z 满足x y z >>,且33322237x y z +++++=,则整数组(,,)x y z 为____________ 【答案】(2,1,3)--27.(浙江省建人高复2013届高三第五次月考数学(理)试题)对于函数),(x f 若存在R x ∈0,使00)(x x f =成立,则称点()00,x x 为函数的不动点,对于任意实数b ,函数b bx ax x f -+=2)(总有相异不动点,实数a 的取值范围是_____ 【答案】(0,1)DD。
浙江省近五年(-)高考数学 最新分类汇编7 立体几何(1) 理
浙江省2013届高三最新理科数学(精选试题17套+2008-2012五年浙江高考理科试题)分类汇编7:立体几何(1)一、选择题1 .(浙江省“六市六校”联盟2013届高三下学期第一次联考数学(理)试题)如图所示,在正方体1111D C B A ABCD -中,E 为1DD 上一点,且131DD DE =,F 是侧面11C CDD 上的动点,且//1F B 平面BE A 1,则F B 1与平面11C CDD 所成角的正切值构成的集合是( )A .}23{ B .}1352{C .}22323|{≤≤m m D .}231352|{≤≤m m【答案】C2 .(浙江省新梦想新教育新阵地联谊学校2013届高三回头考联考数学(理)试题 )棱长为2的正方体1111ABCD A B C D -在空间直角坐标系中移动,但保持点( ) A .B 分别在x 轴、y 轴上移动,则点1C 到原点O 的最远距离为 ( )A.B.C .5 D .4【答案】D 3 .(浙江省温岭中学2013届高三高考提优冲刺考试(三)数学(理)试题 )某三棱锥的三视图如图所示,已知该三视图中正视图和俯视图均为边长为2的正三角形,侧视图为如图所示的直角三角形,则该三棱锥的体积为 ( ) A .1 B .3 C .4 D .5【答案】A4 .(浙江省建人高复2013届高三第五次月考数学(理)试题)设m 、n 是两条不同的直线,α、β是两1C (第10题图)ABCD E1A 1B 1D个不同的平面.考查下列命题,其中正确的命题是 ( )A .βαβα⊥⇒⊥⊂⊥n m n m ,,B .n m n m ⊥⇒⊥βαβα//,,//C .n m n m ⊥⇒⊥⊥βαβα//,,D .ββαβα⊥⇒⊥=⊥n m n m ,,【答案】B 5 .(2010年高考(浙江理))设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是 ( ) A .若l m ⊥,m α⊂,则l α⊥ B .若l α⊥,l m //,则m α⊥C .若l α//,m α⊂,则l m //D .若l α//,m α//,则l m // 【答案】 答案:B 6 .(浙江省绍兴市2013届高三教学质量调测数学(理)试题(word 版) )某四棱锥的底面为正方形,其三视图如图所示,则该四棱锥的体积等于俯视图正视图13( )A .1B .2C .3D .4【答案】B7 .(浙江省金华十校2013届高三4月模拟考试数学(理)试题)设m,n 是不同的直线,,αβ是不同的平面,下列命题中正确的是 ( )A .若m//,,,n m n αβαβ⊥⊥⊥则B .若m//,,,//n m n αβαβ⊥⊥则C .若m//,,//,n m n αβαβ⊥⊥则D .若m//,,//,//n m n αβαβ⊥则【答案】C 8 .(浙江省金华十校2013届高三4月模拟考试数学(理)试题)某三棱锥的三视图如图所示,该三棱锥的体积是( )C .2D .439 word 版) )如图,正四面体ABCD 的顶所成的角为45,顶点B 在平面α上的射影为点O .当顶点A 与所成角的正弦值等于( )C .426+ D .12225+10α的斜线段...,A 为斜足,若点P 在平面α内运动,使得ABP △( ) C .一条直线 D .两条平行直线11,AB =1,BC 将∆ABD 沿矩形的对角线BD 所在的直线进行翻( ) BD 垂直 B .存在某个位置,使得直线AB 与直线CD 垂直 C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直 【答案】【答案】B【解析】最简单的方法是取一长方形动手按照其要求进行翻着,观察在翻着过程,即可知选项B 是正确的.12.(浙江省宁波市2013届高三第二次模拟考试数学(理)试题)已知某几何体的三视图如图所示,则该几何体的体积是()A.338B.3316C.38D.316【答案】A二、填空题13.(浙江省杭州市2013届高三第二次教学质检检测数学(理)试题)一个空间几何体的三视图如图所示,则该几何体的表面积为_______________________.【答案】)31(50+14.(浙江省一级重点中学(六校)2013届高三第一次联考数学(理)试题)某几何体的三视图如图所示,根据图中标出的数据,则这个几何体的体积为 _______.俯视图15.(2009年普通高等学校招生全国统一考试(浙江理))若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是3cm.【答案】提示:该几何体是由二个长方体组成,下面体积为1339⨯⨯=,上面的长方体体积为3319⨯⨯=,因此其几何体的体积为1816.(浙江省湖州市2013年高三第二次教学质量检测数学(理)试题(word 版) )正方体1111ABCD A B C D -的棱长为2,MN 是它的内切球的一条弦(把球面上任意两点之间的连线段称为球的弦),P 为正方体表面上的动点,当弦MN 最长时,PM PN 的取值范围是____【答案】 []02,17.(浙江省“六市六校”联盟2013届高三下学期第一次联考数学(理)试题)一个空间几何体的三视图如图所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的体积为________.【答案】32 18.(浙江省永康市2013年高考适应性考试数学理试题 )如图,斜边长为4的直角ABC ∆,=90B ∠,60A ∠= 且A 在平面α上,B ,C 在平面α的同侧,M 为BC 的中点.若ABC ∆在平面α上的射影是以A 为直角顶点的三角形''C AB ∆,则M 到平面α的距离的取值范围是____正视图俯视图(第11题图)侧(左)视图【答案】5(2,)219.(浙江省宁波市十校2013届高三下学期能力测试联考数学(理)试题)一个组合体的三视图如图,则其体积为______________【答案】20π20.(浙江省五校联盟2013届高三下学期第二次联考数学(理)试题)如图是某几何体的三视图,其中正视图和侧视图是全等的矩形,底边长为2,高为3,俯视图是半径为1的圆,则该几何体的体积是_______.【答案】2π三、解答题 21.(浙江省绍兴市2013届高三教学质量调测数学(理)试题(word 版) )如图,在梯形ABCD中,//A B C D ,AD AB ⊥,4AD =.点P 在平面ABCD 上的射影为点O ,且P A P D ==,二面角P A D B--为45. (Ⅰ)求直线O A 与平面PAB 所成角的大小;(Ⅱ)若8A B B P +=,求三棱锥P A B D -的体积.KH OPE DCBAAP D ,∴P 点在平面ABCD 上的射影O 在线段A D 的中垂线上,设A AD EP AD ⊥⊥,,∴PEO ∠为二面角P A D B--的 2==ED ,又32==PDPA ,∴在以B 的直线为x 轴、y 轴建立空间直角坐标系,则P )0,2,2(-,(2,2,2)P A =--的平行向量m ),,z y ,则0,0,⎧⋅=⎪⎨⋅=⎪⎩PA n m n 即2220,0,x y z y --=⎧⎨=⎩取(1,0,1)n =∴直线A O 与平面PAB 所成角θ满足sin 12,所以直线O A 与平面PAB 所成角为30方法2:过O 点作O H A B ⊥,垂足为H ,连接P H .过O 作O K P H ⊥,垂足为K ,连接A K .PO ⊥平面ABCD ,∴PO A B ⊥. O H A B⊥,∴AB ⊥平面POH . 又OK ⊂平面POH , ∴A B O K ⊥,又OK P H ⊥,∴OK ⊥平面PAB . ∴OAK ∠就是O A 与平面PAB 所成角∵P A P D =,∴P 点在平面ABCD 上的射影O 在线段A D 的中垂线上,设A D 的中点为E ,连接,EP EO , ∴AD EP AD EO ⊥⊥,,∴PEO∠为二面角P A D B --的平面角,∴45P E O ∠=.在等腰△PAD 中,∵4AD =,∴2==ED EA ,又32==PD PA ,∴22=PE.在Rt △PEO 中,得2OP O E ==,∴OA =又2OH AE ==,2PO =,在Rt △POH 中,可得OK ∴1s i n 2O K O A K O A ∠==,∴30O A K ∠= 所以直线O A 与平面PAB 所成角为30(Ⅱ)设AB x =,则8PB x =-,连接O B . 在Rt △POB 中,222OBPOPB+=,又由(Ⅰ)得OE AE ⊥,OE AE =,∴45O A E ∠=,∴45O A B ∠=在△OAB 中,222OB AO AB =+-2cos AO AB OAB ⋅∠284x x =+-,又22)8(x PB -=,∴22)8()48(4x x x -=-++,得313=,即133A B =∴三棱锥P A B D -的体积13-∆=⋅P ABD ABD V S OP 111352423239=⨯⨯⨯⨯=22.(浙江省一级重点中学(六校)2013届高三第一次联考数学(理)试题)如图:在直三棱柱111ABC A B C -中,1AB AC ==,90BAC ∠=.(Ⅰ)若异面直线1A B 与11B C 所成的角为60,求棱柱的高h ;(Ⅱ)设D 是1BB 的中点,1DC 与平面11A BC 所成的角为θ,当棱柱的高h 变化时,求sin θ的最大值.【答案】解法1:(Ⅰ)由三棱柱111C B A ABC -是直三棱柱可知,1AA 即为高, 如图1,因为11//C B BC ,所以BC A 1∠是异面直线B A 1与11C B 所成的角或其补角,连接1A C ,因为AB AC =,所以11A B A C ==. 在Rt△ABC 中,由1AB AC ==,90BAC ∠=,可得BC =又异面直线1A B 与11B C 所成的角为60,所以160A BC ∠=,即△1A BC 为正三角形.于是111A B B C ==.在Rt△1A AB 中,1A B ==,得11AA =,即棱柱的高为1 (Ⅱ)设1(0)AA h h =>,如图1,过点D 在平面11A B BA 内作1DF A B ⊥于F ,则 由11A C ⊥平面11BAA B ,DF ⊂平面11BAA B ,得11A C DF ⊥. 而1111A C A B A =,所以DF ⊥平面11A BC .故1DC F ∠就是1DC 与平面11A BC 所成的角,即1DC F θ∠= 在Rt △DFB 中,由2h BD =,得DF =在Rt △11DB C 中,由12h B D =,11B C =得1DC =在Rt △1DFC 中,1sin DF DC θ===令()f h ==(Ⅰ)因为异面直线1A B 与11B C 所成的角60,所以111111||cos60||||BC A B B C A B ⋅=⋅,12=,=,解得1h = (Ⅱ)由D 是1BB 的中点,得(1,0,)2h D ,于是1(1,1,)2hDC =-.设平面11A BC 的法向量为(,,)x y z =n ,于是由1A B ⊥n ,11A C ⊥n ,可得 1110,0,A B A C ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0,x hz y -=⎧⎨=⎩ 可取(,0,1)h =n , 于是1sin|cos ,|DC θ=<>n .而111|||cos ,|||||DC DC DC ⋅<>===⋅n n n令()f h ==因为22899h h ++≥,当且仅当228h h=,即h =,等号成立.所以()f h ≤==, 故当h =,sin θ 23.(2011年高考(浙江理))如图,在三棱P ABC -中,AB=AC,D 为BC 的中点,PO⊥平面ABC,垂足O 落在线段AD 上,已知BC=8,PO=4,AO=3,OD=2. (1)证明:AP⊥BC;(2)在线段AP 上是否存在点M,使得二面角A MC B --为直二面角?若存在,求出AM 的长;若不存在,请说明理由.PACDO【答案】本题主要考查空间点、线、面位置关系,二面角等基础知识,空间向量的应用,同事考查想象能力和运算求解能力.满分15分. 方法以:(Ⅰ)证明:如图,以O 为原点,以射线OP 为z 轴的正半轴,建立空间直角坐标系O-xyz则O(0,0,0),A(0,-3,0),B(4,2,0),C(-4,2,0)P(0,0,4)(0,3,4),(8,0,0),AP BC ==-由此可得0AP BC ⋅=所以AP ⊥BC ,即AP⊥BC.(Ⅱ)解:设,1,(0,3,4),PM PA PM λλλ=≠=--BM BP PM BP PA λ=+=+(4,2,4)(0,3,4)λ=--+-- (4,23,44),λλ=----(4,5,0),(8,0,0).AC BC =-=-设平面BMC 的法向量1111(,,),n x y z = 平面APC 的法向量 1222(,,),n x y z =由110,0,BM n BC n ⎧⋅=⎪⎨⋅=⎪⎩ 得11114(23)(44)0,80,x y x x λλ--++-=⎧⎨-=⎩即1110,23,44x z y λλ=⎧⎪⎨+=⎪-⎩可取23(0,1,),44n λλ+=- 由210,0,AP n AC n ⎧⋅=⎪⎨⋅=⎪⎩即2222340,450,y z x y +=⎧⎨-+=⎩得22225,43,4x y z y ⎧=⎪⎪⎨⎪=⎪⎩可取2(5,4,3),n =- 由120n n ⋅=,得2343044λλ+-⋅=-解得25λ=,故AM=3 综上所述,存在点M 符合题意,AM=3. 方法二:(Ⅰ)证明:由AB=AC,D 是BC 的中点,得AD⊥BC, 又PO⊥平面ABC,得PO⊥BC.因为PO∩BC=0,所以BC⊥平面PAD 故BC⊥PA.(Ⅱ)解:如图,在平面PAD 内作BM⊥PA 于M,连CM. 由(Ⅰ)中知AP⊥BC,得AP⊥平面BMC. 又AP ⊂平面APC,所以平面BMC⊥平面APC.在Rt⊿ADB 中,AB 2=AD 2+BD 2=41,得在Rt⊿POD 中, PB 2=PO 2+OD 2,在Rt⊿PDB 中, PB 2=PD 2+BD 2,所以PB 2=PO 2+OD 2+BD 2=36,得PB=6.在Rt⊿POA 中, PA 2=AO 2+OP 2=25,得PA=5又2221cos ,23PA PB AB BPA PA PB +-∠==⋅从而2,PM PBCOS BPA =∠=所以3AM PA PM =-= 综上所述,存在点M 符合题意,AM=3.24.(浙江省温岭中学2013届高三高考提优冲刺考试(三)数学(理)试题 )已知四棱锥ABCD P -,⊥PA 底面ABCD ,AD AB BC AD ⊥,∥,AC 与BD 交于点O ,又3=PA ,6,32,2===BC AB AD .(1)求证: ⊥BD 平面PAC ; (2)求二面角A PB O --的余弦值.【答案】.证明:以AB 为x 轴, AD 为y 轴,AP 为z 轴,A 为坐标原点, 建立空间直角坐标系. 则)3,0,0(),0,6,32(),0,0,0(),0,2,0(),0,0,32(P C A D B)0,2,32(-=BD )3,0,32(),0,6,32(-==PB AC 01212=+-=∙AC BDAC BD ⊥∴⊥PA 又底面BD PA ABCD ⊥∴, ⊥∴BD 平面PAC ;(2)设PBO 平面的法向量为),,,,(z y x n =PBA 平面的法向量为),,0,1,0(=m0332=-=∙z x PB n ,0232=+-=∙y x BD n [)332,3,1(=n43由题可知二面角A PB O --为锐角,故余弦值为43 注:也可以PBDABPS S ∆∆=αcos 25.(2012年高考(浙江理))如图,在四棱锥P —ABCD 中,底面是边长为的菱形,且∠BAD =120°,且PA ⊥平面ABCD ,PA=M ,N 分别为PB ,PD 的中点. (Ⅰ)证明:MN ∥平面ABCD ;(Ⅱ) 过点A 作AQ ⊥PC ,垂足为点Q ,求二面角A —MN —Q 的平面角的余弦值.【答案】【解析】本题主要考察线面平行的证明方法,建系求二面角等知识点.(Ⅰ)如图连接BD .∵M ,N 分别为PB ,PD 的中点, ∴在∆PBD 中,MN ∥BD . 又MN ⊄平面ABCD , ∴MN ∥平面ABCD ; (Ⅱ)如图建系:A (0,0,0),P(0,0,M(,32,0), NC,3,0).设Q (x ,y ,z ),则(33)(33CQ x y z CP =--=--,,,,.∵(3)CQ CP λλ==-,,∴33)Q λ-,. 由0OQ CPOQ CP ⊥⇒⋅=,得:13λ=. 即:2Q . 对于平面AMN :设其法向量为()n a b c =,,. ∵33(0)=(300)2AM AN =-,,,,,.则300123000a AM n b b AN n c ⎧=⎪⎪⎧⎧⋅=+=⎪⎪⎪⇒⇒=⎨⎨⋅=⎪⎪⎩==⎪⎪⎩. ∴31(0)3n =,,. 同理对于平面AMN 得其法向量为(31v =-,,. 记所求二面角A —MN —Q 的平面角大小为θ, 则10cos n v n vθ⋅==⋅. ∴所求二面角A —MN —Q. 【答案.【答案】(Ⅰ)见解析;(Ⅱ)26.(浙江省金华十校2013届高三4月模拟考试数学(理)试题)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,O为AC与BD的交点,E为PB上任意一点.(I)证明:平面EAC⊥平面PBD;(II)若PD∥平面EAC,并且二面角B-AE-C的大小为45°,求PD:AD的值.【答案】27.(浙江省宁波市十校2013届高三下学期能力测试联考数学(理)试题)如图,ABC∆中,90,1,B AB BC D E ∠===、两点分别在线段AB AC 、上,满足,(0,1)AD AEAB ACλλ==∈.现将ABC ∆沿DE 折成直二面角A DE B --.(1)求证:当12λ=时,ADC ABE ⊥面面;(2)当(0,1)λ∈时,二面角E AC D --的大小能否等于4π?若能,求出λ的值;若不能,请说明理由.【答案】28.(浙江省永康市2013年高考适应性考试数学理试题 )如图,在三棱锥ABC P -中,直线⊥PA 平面ABC ,且︒=∠90ABC ,又点Q ,M ,N 分别是线段PB ,AB ,BC 的中点,且点K 是线段MN 上的动点.(Ⅰ)证明:直线//QK 平面PAC ;(Ⅱ)若BC AB PA ===8,且二面角M AK Q --,试求MK 的长度. ABCDEAB CD EKQ NMPCBA[【答案】(Ⅰ)连结QM ,因为点Q ,M ,N 分别是线段PB ,AB ,BC 的中点 所以QM ∥PA 且MN ∥AC ,从而QM ∥平面PAC 且MN ∥平面PAC 又因为MN ∩QM =M ,所以平面QMN ∥平面PAC 而QK ⊂平面QMN 所以QK ∥平面PAC(Ⅱ)方法1:过M 作MH ⊥AK 于H ,连QH ,则∠QHM 即为二面角M AK Q --的平面 角,设x MK =,且8===PC PB PA 则1624222++=x x x MH ,又4=QM ,且93cos =∠QHM ,所以==∠MHQM QHM tan 26162422=++xx x ,解得2=x ,所以MK 的长度为2方法2:以B 为原点,以BC 、BA 所在直线为x 轴y 轴建空间直角坐标系, 则A (0,8,0),M (0,4, 0),N (4,0,0),P (0,8,8),Q (0,4,4) , 设K (a ,b ,0),则a +b =4, AQ =(0,-4,4),)0,4,(a a AK --= 记(,,)n x y z AQK =为平面的一个法向量,则⎩⎨⎧+==⇒⎪⎩⎪⎨⎧=⋅=⋅ya ax z y Azk n AQ n )4(00取a z y ==则a x +=4, 则),,4(a a a n +=,又平面AKM 的一个法向量(0,0,1)m =,设二面角M AK Q --的平面角为θ 则|cos θ932)4(22=++=a a a ,解得1=a , 所以所以MK 的长度为229.(浙江省宁波市2013届高三第二次模拟考试数学(理)试题)如图,已知四棱锥P—ABCD的底面为菱形,且∠ABC=60°,AB=PC=2,AP=BP=2.(1)求证:平面PAB⊥平面ABCD;(2)求二面角A—PC—D的平面角的余弦值.【答案】30.(浙江省杭州高中2013届高三第六次月考数学(理)试题)如图,已知长方形ABCD中,1,2==AD AB ,M 为DC 的中点. 将ADM ∆沿AM 折起,使得平面⊥ADM 平面ABCM .(1)求证:BM AD ⊥(2)点E 是线段DB 上的一动点,当二面角D AM E --大小为3π时,试确定点E 的位置.【答案】取AM 的中点O,AB 的中点B,则OD OA ON ,,两两垂直,以O 为原点建立空间直角坐标系,如图.根据已知条件,得)0,0,22(A ,)0,2,22(-B ,)0,0,22(-M ,)22,0,0(D (1)由于)0,2,0(),22,0,22(-=-=BM AD ,则0=⋅BM AD ,故BM AD ⊥.(2)设存在满足条件的点E,并设DB DE λ=, 则)22,2,22()22,,(--=-λE E E z y x 则点E 的坐标为)2222,2,22(λλλ--.(其中]1,0[∈λ)易得平面ADM 的法向量可以取)0,1,0(1=n ,设平面AMEA的法向量为),,(2z y x n =,则)0,0,2(-=AM , )2222,2,2222(λλλ---=AE 则⎪⎩⎪⎨⎧=-++--=⋅=-=⋅0)2222()2()2222(0222λλλz y x AE n x AM n 则λλ2:)1(:0::-=z y x ,取)2,1,0(2λλ-=n *由于二面角D AM E --大小为3π,则|||||,cos |3cos 212121n n n n ⋅=><=π214)1(122=+--=λλλ,由于]1,0[∈λ,故解得332-=λ.故当E 位于线段DB 间,且332-=DB DE 时,二面角D AM E --大小为3π。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省2013届高三最新理科数学(精选试题17套+2008-2012五年浙江高考
理科试题)分类汇编10:排列、组合
一、选择题
1 .(浙江省温岭中学2013届高三高考提优冲刺考试(三)数学(理)试题 )某校周四下午第五、六两节是选修课时间,现有甲、乙、丙、丁四位教师可开课.已知甲、乙教师各自最多可以开设两节课,丙、丁教师各自最多可以开设一节课.现要求第五、六两节课中每节课恰有两位教师开课(不必考虑教师所开课的班级和内容),则不同的开课方案共有___种. ( )
A .15
B .16
C .19
D .20
【答案】C
解析: 以丙、丁教师是否开课来讨论:(1)若丙、丁教师均不开课,情况有1种,(2)若丙、丁教师中恰有
一人开课,情况有8C 121212=C C 种,(3)若丙、
丁教师均开课,则①若丙、丁教师在相同节次开课,情况有2C 1
2=种,②若丙、丁教师在不同节次开课,情况有
8)(C C 121
2=+22A 种,综上,一共有1+8+2+8=19种,故选C
2 .(浙江省稽阳联谊学校2013届高三4月联考数学(理)试题(word 版) )三个相同红球和一个白球放入4个不同盒子中(存放数量不限)的不同放法种数是 ( )
A .16
B .64
C .80
D .150
【答案】C
3 .(浙江省金华十校2013届高三4月模拟考试数学(理)试题)从1,2,3,9这9个整数中任意取3个不同的数作为二次函数2()f x ax bx c =++的系数,则满足
(1)2f Z ∈的函数()f x 共有 ( )
A .263个
B .264个
C .265个
D .266个 【答案】B 4 .(浙江省“六市六校”联盟2013届高三下学期第一次联考数学(理)试题)某电视台连续播放5个广告,其中3个不同的商业广告和2个不同的公益宣传广告,要
求最后播放的必须是公益宣传广告,且2个公益宣传广告不能连续播放,则不同的播放方
式有 ( )
A .18种
B .36种
C .48种
D .120种
【答案】B
5 .(2012年高考(浙江理))若从1,2,2,,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有 ( )
A .60种
B .63种
C .65种
D .66种
【答案】 【答案】D
【解析】1,2,2,,9这9个整数中有5个奇数,4个偶数.要想同时取4个不同的数其和为偶数,则取法有:4个都是偶数:1种;2个偶数,2个奇数:225460C C =种;4个都是奇数:455C =种.∴不同的取法共有66种. 6 .(浙江省新梦想新教育新阵地联谊学校2013届高三回头考联考数学(理)试题 )如图所示是某个区域的街道示意图(每个小矩形的边表示街道),那么从A 到B 的最短线路有( )条
( )
A .100
B .400
C .200
D .250
【答案】C
7 .(浙江省五校联盟2013届高三下学期第二次联考数学(理)试题)现需编制一个八位的序号,规定如下:
序号由4个数字和2个x 、1个y 、1个z 组成;2个x 不能连续出现,且y 在z 的前面;数字在0、1、2、、9之间任选,可重复,且四个数字之积为8.则符合条件的不同的序号种数有 ( )
A .12600
B .6300
C .5040
D .2520
【答案】B
8 .(浙江省建人高复2013届高三第五次月考数学(理)试题)用1、2、3、4、5、6组成一个无重复数字
的六位数,要求三个奇数1、3、5有且只有两个相邻,则不同的排法种数为 ( )
A .18
B .108
C .216
D .432
【答案】D
二、填空题
9 .(浙江省一级重点中学(六校)2013届高三第一次联考数学(理)试题)有两排座位,前排11个座位,
后排12个座位.现在安排甲、乙2人就座,规定前排中间的3个座位不能坐,并且甲、乙不能左右相邻,则一共有不同安排方法多少种?______(用数字作答).
【答案】346
10.(浙江省嘉兴市2013届高三4月教学测试数学(理)试卷及参考答案 (1))从点A 到点B 的路径如图
所示,则不同的最短路径共有____条.
【答案】22;
11.(2009年普通高等学校招生全国统一考试(浙江理))甲、乙、丙3人站到共有7级的台阶上,若每级
台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是 (用数字作答).
【答案】提示:对于7个台阶上每一个只站一人,则有37A 种;若有一个台阶有2人,另一个是1人,
则共有1237C A 种,因此共有不同的站法种数是336种.
12.(浙江省杭州高中2013届高三第六次月考数学(理)试题)前12个正整数组成一个集合{}1,2,3,,12⋅⋅⋅,
此集合的符合如下条件的子集的数目为m :子集均含有4个元素,且这4个元素至少有两个是连续的.则m 等于_______ .
【答案】369
B
A
B
13.(2008年高考(浙江理))用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是__________(用数字作答)
【答案】40
14.(浙江省绍兴市2013届高三教学质量调测数学(理)试题(word版))甲、乙、丙三位学生在学校开设的三门选修课中自主选课,其中甲和乙各选修其中的两门,丙选修其中的一门,且每门选修课这三位学生中至少有一位选修,则不同的选法共有______种.
【答案】21
15.(浙江省湖州市2013年高三第二次教学质量检测数学(理)试题(word版) )将7支不同的笔全部放入两个不同的笔筒中,每个笔筒中至少放两支笔,有____种不同的放法.(用数
字作答)
【答案】112
16.(2010年高考(浙江理))有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复. 若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人. 则不同的安排方式共有_______种(用数字作答).
【答案】答案:264
解析:本题主要考察了排列与组合的相关知识点,突出对分类讨论思想和数学思维能力的考察,属较难题
17.(浙江省宁波市2013届高三第二次模拟考试数学(理)试题)从6名候选人中选派出3人参加A、B、C三项活动,且每项活动有且仅有1人参加,甲不参加A活动,则不同的选派方法有__________种.
【答案】100。