2009年温州市中考数学试题(含答案)
【最新资料】温州市中考数学试题分类解析专题2:代数式和因式分解
【分析】 直接应用平方差公式即可: x 2 9 x 3 x 3 。
8. ( 2009 年浙江温州 5 分) 某单位全体员工在植树节义务植树 240 棵.原计划每小时植树
a 棵。实际每小时植树的棵数是原计划的 1.2 倍,那么实际比原计划提前了
▲ 小时
完成任务 ( 用含 a 的代数式表示 ) .
【答案】 40 。 a
当
1 m=
时,原式=
2
6
1
2
3
1。
2
2
【考点】 整式的化简求值。
mm 6
7 ,其中 m=1 2
【分析】 应用平方差公式和单项式乘多项式法则化简后代
m=1 求值。 2
来临前完成加固任务. 设滨海区要加固的海堤长为 a 米,则完成整个任务的实际时间比原计
划时间少用了
▲ 天(用含 a 的代数式表示).
【答案】 a 。 180
【考点】 列代数式(工程问题)。
【分析】 根据工作时间 =工作量÷工作效率的关系, 由已知得, 原计划用的天数为 a 和实际 60
用的天数为
a
a ,二者相减即是完成整个任务的实际时间比原计划时间少用的天
a 2﹣ b2=( a +1)( a -
1)。
12. ( 2011 年浙江温州 5 分) 汛期来临前,滨海区决定实施“海堤加固”工程.某工程队
承包了该项目,计划每天加固 60 米.在施工前,得到气象部门的预报,近期有“台风”袭
击滨海区,于是工程队改变计划, 每天加固的海堤长度是原计划的 1.5 倍,这样赶在“台风”
【分析】 若分式 x 1 的值为零,则 x 1=0
x=1 。故选 B。
x2
x20
8. ( 2009 年浙江温州 4 分) 把多项式 x2 一 4x+4 分解因式,所得结果是【
2002年到2010年温州市数学中考试卷答案汇总
温州市2002年至2010年中考数学答案汇总(权威发布)汇总人:黄祖谈2002年温州中考数学试卷答案一、选择题(每小题4分,共48分)2003年中考数学试卷参考答案2004年温州中考数学试卷参考答案一、 填空题(本题有6题,每小题5分,共30分)13、x ≥3 14、1,-2,3 15、3 16、5/6 (3分)理由:只要合理都给满分,比如:第一个数为2/3,后一个数是前一个数的分子、分母都加1所得的数 17、C A B 18、6π 二、 解答题(本题有8小题,共72分) 19、(本题8分)原式=)8(21225)632(222122分分分+==⨯++20、(本题8分)画对一个给2分,二个给5分,三个给8分 略21、(本题8分) (1)∵AB ∥CD,∴∠B=∠C (2分) 又∵∠EAF=∠C,∴∠EAF=∠B (4分)(2)在⊿AFB 与⊿EFA 中,∵∠EAF=∠B,∠AFB=∠EFA,∴⊿AFB=∽⊿EFA (6分)∴AFEF FBAF =,即AF 2=FE ·FB (8分)(2) 当n 很大时,频率将会接近0.7(在0.7+0.01范围内都给分) (6分) (3)获得铅笔的概率约是0.7(在0.7+0.01范围内都给分) (8分) (4)圆心角的度数为0.7×360°=252° (10分) 23、(本题12分)(1)由图象知,当t 由0增大到4时,点P 由B C,∴BC==4×2=8(㎝) (3分) (2) a=S △ABC =21×6×8=24(㎝2) (6分)(3) 同理,由图象知 CD=4㎝,DE=6㎝,则EF=2㎝,AF=14㎝∴图1中的图象面积为4×8+2×14=60㎝2 (9分)(4) 图1中的多边形的周长为(14+6)×2=40㎝ b=(40-6)÷2=17秒 (12分) 24、(本题12分)解:(1)100000×(1+60%)-100000×(1+45%)=100000×15%=15000(吨)答:每天还可以增加15000吨工业用水 (4分)(2) y=10(x %-45%)=0.1x -4.5(45<x <100) (8分)(3)1170025)45.01(10000010)75.01(100000=+⨯-+⨯(万元)答:每天能增加11700万元工业产值。
2009年浙江省温州市中考数学模拟试题1
2009年某某省某某市中考数学模拟试题一考生须知:1、本试卷分试题卷和答题卷两部分。
满分120分,考试时间100分钟。
2、答题前,必须在答题卷的密封区内填写校名、某某和某某。
3、所有答案都必须做在答题卷指定的位置上,请务必注意试题序号和答题序号相对应。
4、考试结束后,上交试题卷和答题卷。
一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在 答题卷中相应的格子内. 注意可以用多种不同的方法来选取正确答案. 1.-6的相反数是( ).A 、-6B 、6C 、61-D 、612.温家宝总理有一句名言:“多么小的问题,乘以13亿,都会变得很大,多么大的经济总量,除以13亿,都会变得很小。
”如果每人每天浪费0.01千克粮食,,我国13亿人每天就浪费粮食( ) ×105 千克×106千克×107千克×108千克 3.函数y=1-x 中自变量x 的取值X 围是A.x>1B. x ≥1C. x<1D. x ≤1 4.将如图所示放置的一个直角三角形ABC ,(∠C=90°),绕斜边AB 旋转一周,所得到的几何体的正视图是下面四个图中的( )(A ) (B ) (C ) (D ) 5. 在反比例函数xky =(k <0)的图象上有两点A (x 1,y 1),B (x 2,y 2),且1x >2x >0,则12y y - 的值为( )A 、正数B 、负数C 、非正数D 、非负数7.把不等式组1010x x +>⎧⎨-⎩,≤的解集表示在数轴上,正确的是( )6.为了筹备班级初中毕业联欢会,班长对全班同学爱吃哪几种水果作了民意调查,那么最终1-1A . 1-1B . 1-1C . 1-1D .C B AxOy(第15题) α买什么水果,下面的调查数据中最值得关注的是( )A 、平均数B 、加权平均数C 、中位数D 、众数 8. 一副三角板,如图所示叠放在一起,则图中∠α的度数是( )A 、 75°B 、60°C 、65°D 、55°9.图①、图②、图③是三种方法将6根钢管用钢丝捆扎的截面图,三种方法所用的钢丝长分别为a,b,c, (不记接头部分),则a, b, c,的大小关系为( )。
2009年浙江省初中毕业生学业考试(温州市卷)
2009年浙江省初中毕业生学业考试(温州市卷)社会·思品试题卷卷Ⅰ一、选择题(本题有20小题,每小题2分,共40分。
请选出各题中一个最符合题意的选项,不选、多选、错选,均不给分。
)1.2008年11月5日,中央决定投资约▲人民币,扩大内需促进经济平稳较快增长。
A.1万亿B.2万亿 C.3万亿D.4万亿2.2009年3月1日,▲卫星成功实施撞月任务,宣告我国探月一期工程完美落幕。
A.“神舟一号” B.“嫦娥一号” C.“风云一号”D.“长征一号”3.2009年3月28日,自治区各族干部群众一万余人在拉萨布达拉宫广场隆重集会,热烈庆祝▲第一个百万农奴解放纪念日。
A.新疆 B.广西 C.宁夏D.西藏4.2009年1月20日,美国历史上第一位非洲裔总统▲宣誓就职。
A.华盛顿B.克林顿 C.布什D.奥巴马5. 张明同学给自己定出目标,每天坚持跑步锻炼,可总是不能持之以恒。
针对他的问题,最恰当的“处方”是A.磨砺意志 B.承受挫折 C.顺其自然D.放弃目标6.王老师在上课时就某一法律给出三个提示:“排行是老大,国法之根本,效力它最高”。
据此,这部法律应是A.民法 B.宪法 C.教育法 D.继承法7. 工人王洪军工作勤奋,不计较个人利益,利用自己掌握的技术,几年来为公司节约成本3400多万元。
这一事例最能说明他做到了我国公民基本道德规范中的A.爱国守法B.团结友善C.敬业奉献 D.明礼诚信8. “2008年,我国国民生产总值跃居世界第三,仅次于美国、日本,对世界经济贡献超过20%。
”这一令人振奋的消息表明我国A.已经超越了社会主义初级阶段 B.经济建设取得了巨大成就C.仅在精神文明建设上取得成果 D.已经实现社会主义现代化9. 对漫画《不负重托》正确的解读是A.我国人民直接决定国家大事B.我国一切权力属于人大代表C.人大代表仅仅代表个人利益D.人大代表要反映人民的意愿10. 2009年国家对农民的补贴将比去年增加171亿元,还计划在未来三年里投资8500亿元用于城乡医疗改革。
温州市2009年初中毕业生学业考试
温州市2009年初中毕业生学业考试数学试卷分析报告今年我市初中毕业生数学学业试卷严格按照《数学课程标准》和《省学业考试说明》规定的各项要求和精神,并参考了我省各地市新课程实验教材的要求,命题做到“不超不高”,即在内容上不超过《学业考试说明》在考试目标中所列的范围,在要求上不高于《学业考试说明》在考试目标中所列的考试要求。
根据浙江省初中毕业生学业考试试卷的质量要求以及本着有利于学校实施素质教育、有利于高中初中办学、有利于减轻学生负担的原则。
在命题时,我们以学生正常学习状态作为把握考试要求的参照点,不考虑学生过度学习的因素,以正确引导教学。
2009年温州市数学学业考试试题紧密联系学生的生活和社会实际,从实际问题出发选取素材,考查学生在实际情境中获取信息、分析和处理问题的能力,以及理解和运用数学知识的水平。
试题的情境能引起学生兴趣,联系实际的问题符合学生的认知水平。
有一定难度的试题以能力立意,着重考查数学思想方法、数学思考和解决问题的能力,所涉及的内容均是《学业考试说明》中规定的重点内容。
2009年温州市数学学业考试试题,在基本保持近年学业考试命题风格的基础上,进一步设计出更能体现新课程理念,更为灵活的试题。
试题具有明显的时代特征,在考查数学知识与技能的基础上,更重视对数学思想方法的理解与应用,重视数学与现实的联系,重视学生提取数学信息的能力,在题型设计,情景安排及提问方式等方面有更多的创新。
在考查学生对初中数学核心基础知识理解、掌握程度的同时,以数学知识为载体,考查学生将知识迁移到相同或类似情境的迁移能力,从而检测学生已有的和潜在的后续学习能力,体现考基础、考能力、考素质的水平目标测试,达到了有利于引导和促进数学教学全面落实《数学课程标准》所设立的课程目标,有利于更新教师的课堂教学理念,改进教师的教学行为,有利于改善学生的数学学习方式。
分析研究试卷,对促进今后数学学业考试命题工作和初中数学教学及研究,提高教学质量,全面推行素质教育,深化考试改革,有着极为重要的意义。
2009年浙江省温州市中考数学模拟试题(9)
数学一、仔细选一选1.2008年3月5日上午9时,十一届全国人大一次会议开幕,温家宝总理在政府工作报告中指出,全国财政用于教育支出五年累计达2.43万亿元,用科学记数法表示为(▲)元A 2.43×1010B 2.43×1011C 2.43×1012D 2.43×10132. 如图所示是由几个小立方块所搭成的几何体,那么这个几何体的主视图是(▲)3.最高气温(℃)25262728天数1123A.27,28 B.27.5,28 C.28,27 D.26.5,274. 如图所示,等腰梯形ABCD中,AD BC BD DC∥,⊥,点E是BC边的中点,ED AB∥,则BCD等于(▲)A.30B.60C.70D.755. 如图所示,有5张写有数字的卡片(如图1所示),它们的背面都相同,现将它们背面朝上(如图2所示),从中翻开任意一张是数字2的概率是(▲)A.15B.23C.25D.12 A.B.C.D.第2题BA DCE第4题23532如图1如图2第1题第5题6. 已知关于x 的方程m x +2=2(m —x )的解满足|x -21|-1=0,则m 的值是 ( ) A .10或52 B .10或-52 C -10或52 D .-10或52-7. 在Rt △ABC 中,∠C =90º,b =35c ,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,则sinB 的值是( ▲ )(A )35(B )45(C )34(D )438. 如图所示,ABC △的顶点坐标分别为(43)A --,,(03)B -,,(21)C -,,如将B 点向右平移2个单位后再向上平移4个单位到达1B 点,若设ABC △的面积为1S ,1AB C △的面积为2S ,则12S S ,的大小关系为( ▲ )A .12S S >B .12S S =C .12S S <D .不能确定9. 如图(1),将一块正方形木板用虚线划分成36个全等的小正方形,然后,按其中的实线切成七块形状不完全相同的小木片,制成一副七巧板.用这副七巧板拼成图(2)的图案,则图(2)中阴影部分的面积是整个图案面积的( ▲ )A .18 B .14 C .17 D 2210.如图所示,已知直线l 的解析式是434-=x y ,并且与x 轴、y 轴分别交于A 、B 两点。
2009年浙江省温州市中考数学模拟试题(10)
2009年某某省某某市中考数学模拟试题十(总分:120分 时间:100分钟)一、选择题:(每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的) 1.一个数的相反数是3,则这个数是( )A. 31-B. 31 C. 3- D. 3 2.在“2008”奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为84.610⨯帕的钢材,那么84.610⨯的原数为( ) A .4 600 000 B .46 000 000 C .460 000 000 D .4 600 000 0003.下列命题中真命题是————————————————————————( ) (A )任意两个等边三角形必相似; (B )对角线相等的四边形是矩形;(C )以400角为内角的两个等腰三角形必相似;(D )一组对边平行,另一组对边相等的四边形是平行四边形4.抛物线2)8(2+--=a y 的顶点坐标是——————————————-——( ) A 、(2,8) B 、(8,2) C 、(—8,2) D 、(—8,—2)5. 如图,△ABC 和△DEF 是两个形状大小完全相同的等腰直角三角形,∠B=∠DEF=90°,点B 、C 、E 、F 在同一直线上.现从点C 、E 重合的位置出发,让△ABC 在直线EF 上向右作匀速运动,而△DEF 的位置不动.设两个三角形重合部分的面积为y ,运动的距离为x .下面表示y 与x 的函数关系式的图象大致是——————————( )6.若不等式组⎩⎨⎧>-<+mx x x 148 的解集是x >3,则m 的取值X 围是————————( )(A)m >3 (B)m ≥3 (C)m ≤3 (D)m <37.把长为8cm 的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,剪掉部分的面积为6cm 2,则打开后梯形的周长是—————( )A .(10+213)cmB .(10+13)cmC .22cmD .18cm3cm3cm第7题图AB C D(第14题图)OCBA点C 到直线l 的距离是————————————————————————( ) (A)1 或 5 (B)3 或 5 (C)4 (D)59.在Rt △ABC 的直角边AC 边上有一动点P(点P 与点A 、C 不重合),过点P 作直线截得的三角形与△ABC 相似,满足条件的直线最多有 ————————————————( ) (A)1条 (B)2条 (C)3条 (D)4条10.如图,在ΔABC 中,∠C =90°,AC =8,AB =10,点P 在AC 上,AP =2,若⊙O 的圆心在线段BP 上,且⊙O 与AB 、AC 都相切,则⊙O 的半径是——( )A. 1B.45C.712D.94二、填空题(每小题4分,共24分)11.函数124y x =-中,自变量x 的取值X 围是.x x 22=的解是 。
浙江省温州市中考数学真题试卷(含解析)
浙江省温州市中考数学试卷一、选择题(共10小题,每小题4分,共40分). 1.数1,0,23-,2-中最大的是( )A .1B .0C .23-D .2-2.原子钟是以原子的规则振动为基础的各种守时装置的统称,其中氢脉泽钟的精度达到了1700000年误差不超过1秒.数据1700000用科学记数法表示为( ) A .51710⨯B .61.710⨯C .70.1710⨯D .71.710⨯3.某物体如图所示,它的主视图是( )A .B .C .D .4.一个不透明的布袋里装有7个只有颜色不同的球,其中4个白球,2个红球,1个黄球.从布袋里任意摸出1个球,是红球的概率为( ) A .47B .37C .27D .175.如图,在ABC ∆中,40A ∠=︒,AB AC =,点D 在AC 边上,以CB ,CD 为边作BCDE ,则E ∠的度数为( )A .40︒B .50︒C .60︒D .70︒6.山茶花是温州市的市花、品种多样,“金心大红”是其中的一种,某兴趣小组对30株“金心大红”的花径进行测量、记录,统计如表:株数(株)79122花径()cm6.56.66.76.8这批“金心大红”花径的众数为( ) A .6.5cmB .6.6cmC .6.7cmD .6.8cm7.如图,菱形OABC 的顶点A ,B ,C 在O 上,过点B 作O 的切线交OA 的延长线于点D .若O 的半径为1,则BD 的长为( )A .1B .2C .2D .38.如图,在离铁塔150米的A 处,用测倾仪测得塔顶的仰角为α,测倾仪高AD 为1.5米,则铁塔的高BC 为( )A .(1.5150tan )α+米B .150(1.5)tan α+米 C .(1.5150sin )α+米D .150(1.5)sin α+米 9.已知1(3,)y -,2(2,)y -,3(1,)y 是抛物线2312y x x m =--+上的点,则( ) A .321y y y <<B .312y y y <<C .231y y y <<D .132y y y <<10.如图,在Rt ABC ∆中,90ACB ∠=︒,以其三边为边向外作正方形,过点C 作CR FG ⊥于点R ,再过点C 作PQ CR ⊥分别交边DE ,BH 于点P ,Q .若2QH PE =,15PQ =,则CR 的长为( )A .14B .15C .83D .65二、填空题(本题有6小题,每小题5分,共30分) 11.分解因式:225m -= . 12.不等式组30412x x -<⎧⎪⎨+⎪⎩的解为 .13.若扇形的圆心角为45︒,半径为3,则该扇形的弧长为 .14.某养猪场对200头生猪的质量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg 及以上的生猪有 头.15.点P ,Q ,R 在反比例函数ky x=(常数0k >,0)x >图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线,图中所构成的阴影部分面积从左到右依次为1S ,2S ,3S ,若OE ED DC ==,1327S S +=,则2S 的 值为 .16.如图,在河对岸有一矩形场地ABCD ,为了估测场地大小,在笔直的河岸l 上依次取点E ,F ,N ,使AE l ⊥,BF l ⊥,点N ,A ,B 在同一直线上.在F 点观测A 点后,沿FN方向走到M 点,观测C 点发现12∠=∠.测得15EF =米,2FM =米,8MN =米,45ANE ∠=︒,则场地的边AB 为 米,BC 为 米.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程) 17.(1)计算:04|2|(6)(1)--+--. (2)化简:2(1)(7)x x x --+.18.如图,在ABC ∆和DCE ∆中,AC DE =,90B DCE ∠=∠=︒,点A ,C ,D 依次在同一直线上,且//AB DE . (1)求证:ABC DCE ∆≅∆.(2)连结AE ,当5BC =,12AC =时,求AE 的长.19.A ,B 两家酒店规模相当,去年下半年的月盈利折线统计图如图所示.(1)要评价这两家酒店7~12月的月盈利的平均水平,你选择什么统计量?求出这个统计量.(2)已知A ,B 两家酒店7~12月的月盈利的方差分别为 1.073(平方万元),0.54(平方万元).根据所给的方差和你在(1)中所求的统计量,结合折线统计图,你认为去年下半年哪家酒店经营状况较好?请简述理由.20.如图,在64⨯的方格纸ABCD 中,请按要求画格点线段(端点在格点上),且线段的端点均不与点A ,B ,C ,D 重合.(1)在图1中画格点线段EF ,GH 各一条,使点E ,F ,G ,H 分别落在边AB ,BC ,CD ,DA 上,且EF GH =,EF 不平行GH .(2)在图2中画格点线段MN ,PQ 各一条,使点M ,N ,P ,Q 分别落在边AB ,BC ,CD ,DA 上,且5PQ MN =.21.已知抛物线21y ax bx =++经过点(1,2)-,(2,13)-. (1)求a ,b 的值;(2)若1(5,)y ,2(,)m y 是抛物线上不同的两点,且2112y y =-,求m 的值.22.如图,C ,D 为O 上两点,且在直径AB 两侧,连结CD 交AB 于点E ,G 是AC 上一点,ADC G ∠=∠. (1)求证:12∠=∠.(2)点C 关于DG 的对称点为F ,连结CF .当点F 落在直径AB 上时,10CF =,2tan 15∠=,求O 的半径.23.某经销商3月份用18000元购进一批T 恤衫售完后,4月份用39000元购进一批相同的T 恤衫,数量是3月份的2倍,但每件进价涨了10元.(1)4月份进了这批T 恤衫多少件?(2)4月份,经销商将这批T 恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a 件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a 件,然后将b 件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同. ①用含a 的代数式表示b .②已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值. 24.如图,在四边形ABCD 中,90A C ∠=∠=︒,DE ,BF 分别平分ADC ∠,ABC ∠,并交线段AB ,CD 于点E ,F (点E ,B 不重合).在线段BF 上取点M ,N (点M 在BN 之间),使2BM FN =.当点P 从点D 匀速运动到点E 时,点Q 恰好从点M 匀速运动到点N .记QN x =,PD y =,已知6125y x =-+,当Q 为BF 中点时,245y =.(1)判断DE 与BF 的位置关系,并说明理由. (2)求DE ,BF 的长. (3)若6AD =.①当DP DF =时,通过计算比较BE 与BQ 的大小关系.②连结PQ ,当PQ 所在直线经过四边形ABCD 的一个顶点时,求所有满足条件的x 的值.参考答案一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.数1,0,23-,2-中最大的是()A.1 B.0 C.23-D.2-解:22013-<-<<,所以最大的是1.故选:A.2.原子钟是以原子的规则振动为基础的各种守时装置的统称,其中氢脉泽钟的精度达到了1700000年误差不超过1秒.数据1700000用科学记数法表示为()A.51710⨯B.61.710⨯C.70.1710⨯D.71.710⨯解:61700000 1.710=⨯,故选:B.3.某物体如图所示,它的主视图是()A.B.C.D.解:根据主视图就是从正面看物体所得到的图形可知:选项A所表示的图形符合题意,故选:A.4.一个不透明的布袋里装有7个只有颜色不同的球,其中4个白球,2个红球,1个黄球.从布袋里任意摸出1个球,是红球的概率为()A.47B.37C.27D.17解:从布袋里任意摸出1个球,是红球的概率27=. 故选:C .5.如图,在ABC ∆中,40A ∠=︒,AB AC =,点D 在AC 边上,以CB ,CD 为边作BCDE ,则E ∠的度数为( )A .40︒B .50︒C .60︒D .70︒解:在ABC ∆中,40A ∠=︒,AB AC =, (18040)270C ∴∠=︒-︒÷=︒,四边形BCDE 是平行四边形, 70E ∴∠=︒.故选:D .6.山茶花是温州市的市花、品种多样,“金心大红”是其中的一种,某兴趣小组对30株“金心大红”的花径进行测量、记录,统计如表:株数(株) 7 9 12 2 花径()cm6.56.66.76.8这批“金心大红”花径的众数为( ) A .6.5cmB .6.6cmC .6.7cmD .6.8cm解:由表格中的数据可得,这批“金心大红”花径的众数为6.7, 故选:C .7.如图,菱形OABC 的顶点A ,B ,C 在O 上,过点B 作O 的切线交OA 的延长线于点D .若O 的半径为1,则BD 的长为( )A .1B .2C .2D .3解:连接OB ,四边形OABC 是菱形, OA AB ∴=, OA OB =, OA AB OB ∴==, 60AOB ∴∠=︒,BD 是O 的切线, 90DBO ∴∠=︒, 1OB =,33BD OB ∴==,故选:D .8.如图,在离铁塔150米的A 处,用测倾仪测得塔顶的仰角为α,测倾仪高AD 为1.5米,则铁塔的高BC 为( )A .(1.5150tan )α+米B .150(1.5)tan α+米 C .(1.5150sin )α+米D .150(1.5)sin α+米 解:过点A 作AE BC ⊥,E 为垂足,如图所示: 则四边形ADCE 为矩形,150AE =, 1.5CE AD ∴==,在ABE ∆中,tan 150BE BEAE α==,150tan BE α∴=,(1.5150tan )()BC CE BE m α∴=+=+,故选:A .9.已知1(3,)y -,2(2,)y -,3(1,)y 是抛物线2312y x x m =--+上的点,则( ) A .321y y y <<B .312y y y <<C .231y y y <<D .132y y y <<解:抛物线的对称轴为直线1222(3)x -=-=-⨯-,30a =-<,2x ∴=-时,函数值最大,又3-到2-的距离比1到2-的距离小, 312y y y ∴<<.故选:B .10.如图,在Rt ABC ∆中,90ACB ∠=︒,以其三边为边向外作正方形,过点C 作CR FG ⊥于点R ,再过点C 作PQ CR ⊥分别交边DE ,BH 于点P ,Q .若2QH PE =,15PQ =,则CR 的长为( )A .14B .15C .83D .65解:如图,连接EC ,CH .设AB 交CR 于J .四边形ACDE,四边形BCJHD都是正方形,45ACE BCH∴∠=∠=︒,90ACB∠=︒,90BCI∠=︒,180ACE ACB BCH∴∠+∠+∠=︒,90ACB BCI∠+∠=︒B∴,C,H共线,A,C,I共线,////DE AI BH,CEP CHQ∴∠=∠,ECP QCH∠=∠,ECP HCQ∴∆∆∽,∴12 PC CE EPCQ CH HQ===,15PQ=,5PC∴=,10CQ=,:1:2EC CH=,:1:2AC BC∴=,设AC a=,2BC a=,PQ CRCR AB⊥⊥,//CQ AB∴,//AC BQ,//CQ AB,∴四边形ABQC是平行四边形,10AB CQ∴==,222AC BC AB+=,25100a∴=,22a∴=25AC∴=,5BC=,1122AC BC AB CJ=,2545410CJ⨯∴==,10JR AF AB===,14CR CJ JR∴=+=,故选:A.二、填空题(本题有6小题,每小题5分,共30分)11.分解因式:225m-=(5)(5)m m+-.解:原式(5)(5)m m=-+,故答案为:(5)(5)m m-+.12.不等式组30412xx-<⎧⎪⎨+⎪⎩的解为23x-<.解:30412xx-<⎧⎪⎨+⎪⎩①②,解①得3x<;解②得2x -.故不等式组的解集为23x-<.故答案为:23x-<.13.若扇形的圆心角为45︒,半径为3,则该扇形的弧长为34.解:根据弧长公式:45331804lππ⨯==,故答案为:34π.14.某养猪场对200头生猪的质量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg及以上的生猪有140 头.解:由直方图可得,质量在77.5kg 及以上的生猪:903020140++=(头),故答案为:140.15.点P ,Q ,R 在反比例函数k y x=(常数0k >,0)x >图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线,图中所构成的阴影部分面积从左到右依次为1S ,2S ,3S ,若OE ED DC ==,1327S S +=,则2S 的值为 275.解:CD DE OE ==,∴可以假设CD DE OE a ===,则(3k P a ,3)a ,(2k Q a ,2)a ,(k R a,)a , 33k CP a ∴=,2k DQ a =,k ER a =, OG AG ∴=,2OF FG =,23OF GA =, 132223S S S ∴==, 1327S S +=,3815S ∴=,1545S =,2275S =,故答案为275. 16.如图,在河对岸有一矩形场地ABCD ,为了估测场地大小,在笔直的河岸l 上依次取点E ,F ,N ,使AE l ⊥,BF l ⊥,点N ,A ,B 在同一直线上.在F 点观测A 点后,沿FN 方向走到M 点,观测C 点发现12∠=∠.测得15EF =米,2FM =米,8MN =米,45ANE ∠=︒,则场地的边AB 为 152 米,BC 为 米.解:AE l ⊥,BF l ⊥,45ANE ∠=︒,ANE ∴∆和BNF ∆是等腰直角三角形,AE EN ∴=,BF FN =,15EF ∴=米,2FM =米,8MN =米,152825AE EN ∴==++=(米),2810BF FN ==+=(米),252AN ∴=,102BN =152AB AN BN ∴=-=(米);过C 作CH l ⊥于H ,过B 作//PQ l 交AE 于P ,交CH 于Q ,//AE CH ∴,∴四边形PEHQ 和四边形PEFB 是矩形,10PE BF QH ∴===,15PB EF ==,BQ FH =,12∠=∠,90AEF CHM ∠=∠=︒,AEF CHM ∴∆∆∽,∴255153CH AE HM EF ===, ∴设3MH x =,5CH x =,510CQ x ∴=-,32BQ FH x ==+,90APB ABC CQB ∠=∠=∠=︒,90ABP PAB ABP CBQ ∴∠+∠=∠+∠=︒,PAB CBQ ∴∠=∠,APB BQC ∴∆∆∽, ∴AP PB BQ CQ =, ∴151532510x x =+-, 6x ∴=,20BQ CQ ∴==,202BC ∴=,故答案为:152,202.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(104|2|(6)(1)-+--.(2)化简:2(1)(7)x x x --+.解:(1)原式2211=-++2=;(2)2(1)(7)x x x --+22217x x x x =-+--91x =-+.18.如图,在ABC ∆和DCE ∆中,AC DE =,90B DCE ∠=∠=︒,点A ,C ,D 依次在同一直线上,且//AB DE .(1)求证:ABC DCE ∆≅∆.(2)连结AE ,当5BC =,12AC =时,求AE 的长.【解答】证明:(1)//AB DE ,BAC D ∴∠=∠, 又90B DCE ∠=∠=︒,AC DE =,()ABC DCE AAS ∴∆≅∆;(2)ABC DCE ∆≅∆,5CE BC ∴==,90ACE ∠=︒, 222514413AE AC CE ∴=+=+=.19.A ,B 两家酒店规模相当,去年下半年的月盈利折线统计图如图所示.(1)要评价这两家酒店7~12月的月盈利的平均水平,你选择什么统计量?求出这个统计量.(2)已知A ,B 两家酒店7~12月的月盈利的方差分别为 1.073(平方万元),0.54(平方万元).根据所给的方差和你在(1)中所求的统计量,结合折线统计图,你认为去年下半年哪家酒店经营状况较好?请简述理由.解:(1)选择两家酒店月盈利的平均值;1 1.6 2.2 2.7 3.54 2.56A x +++++==,23 1.7 1.8 1.7 3.6 2.36B x +++++==; (2)平均数,方差反映酒店的经营业绩,A 酒店的经营状况较好.理由:A 酒店盈利的平均数为2.5,B 酒店盈利的平均数为2.3.A 酒店盈利的方差为1.073,B 酒店盈利的方差为0.54,无论是盈利的平均数还是盈利的方差,都是A 酒店比较大,故A 酒店的经营状况较好.20.如图,在64⨯的方格纸ABCD 中,请按要求画格点线段(端点在格点上),且线段的端点均不与点A ,B ,C ,D 重合.(1)在图1中画格点线段EF ,GH 各一条,使点E ,F ,G ,H 分别落在边AB ,BC ,CD ,DA 上,且EF GH =,EF 不平行GH .(2)在图2中画格点线段MN ,PQ 各一条,使点M ,N ,P ,Q 分别落在边AB ,BC ,CD ,DA 上,且5PQ MN =.解:(1)如图1,线段EF 和线段GH 即为所求;(2)如图2,线段MN 和线段PQ 即为所求.21.已知抛物线21y ax bx =++经过点(1,2)-,(2,13)-.(1)求a ,b 的值;(2)若1(5,)y ,2(,)m y 是抛物线上不同的两点,且2112y y =-,求m 的值.解:(1)把点(1,2)-,(2,13)-代入21y ax bx =++得,2113421a b a b -=++⎧⎨=-+⎩, 解得:14a b =⎧⎨=-⎩; (2)由(1)得函数解析式为241y x x =-+,把5x =代入241y x x =-+得,16y =,21126y y ∴=-=,12y y =,∴对称轴为2x =,451m ∴=-=-.22.如图,C ,D 为O 上两点,且在直径AB 两侧,连结CD 交AB 于点E ,G 是AC 上一点,ADC G ∠=∠.(1)求证:12∠=∠.(2)点C 关于DG 的对称点为F ,连结CF .当点F 落在直径AB 上时,10CF =,2tan 15∠=,求O 的半径.解:(1)ADC G ∠=∠,∴AC AD =,AB 为O 的直径,∴BC BD =,12∴∠=∠;(2)如图,连接DF ,AC AD =,AB 是O 的直径,AB CD ∴⊥,CE DE =,10FD FC ∴==,点C ,F 关于DG 对称,10DC DF ∴==,5DE ∴=,2tan 15∠=, tan 12EB DE ∴=∠=,12∠=∠,2tan 25∴∠=, 25tan 22DE AE ∴==∠, 292AB AE EB ∴=+=, O ∴的半径为294. 23.某经销商3月份用18000元购进一批T 恤衫售完后,4月份用39000元购进一批相同的T 恤衫,数量是3月份的2倍,但每件进价涨了10元.(1)4月份进了这批T 恤衫多少件?(2)4月份,经销商将这批T 恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a 件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a 件,然后将b 件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同.①用含a 的代数式表示b .②已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值. 解:(1)设3月份购进x 件T 恤衫,1800039000102x x+=, 解得,150x =,经检验,150x =是原分式方程的解,则2300x =,答:4月份进了这批T 恤衫300件;(2)①每件T 恤衫的进价为:39000300130÷=(元),(180130)(1800.8130)(150)(180130)(1800.9130)(1800.7130)(150)a a a b a b -+⨯--=-+⨯-+⨯--- 化简,得1502a b -=; ②设乙店的利润为w 元,150(180130)(1800.9130)(1800.7130)(150)543660054366003621002a w ab a b a b a a -=-+⨯-+⨯---=+-=+⨯-=+,乙店按标价售出的数量不超过九折售出的数量,a b ∴, 即1502a a -, 解得,50a ,∴当50a =时,w 取得最大值,此时3900w =,答:乙店利润的最大值是3900元.24.如图,在四边形ABCD 中,90A C ∠=∠=︒,DE ,BF 分别平分ADC ∠,ABC ∠,并交线段AB ,CD 于点E ,F (点E ,B 不重合).在线段BF 上取点M ,N (点M 在BN 之间),使2BM FN =.当点P 从点D 匀速运动到点E 时,点Q 恰好从点M 匀速运动到点N .记QN x =,PD y =,已知6125y x =-+,当Q 为BF 中点时,245y =. (1)判断DE 与BF 的位置关系,并说明理由.(2)求DE ,BF 的长.(3)若6AD =.①当DP DF =时,通过计算比较BE 与BQ 的大小关系.②连结PQ ,当PQ 所在直线经过四边形ABCD 的一个顶点时,求所有满足条件的x 的值.解:(1)DE 与BF 的位置关系为://DE BF ,理由如下:如图1所示:90A C ∠=∠=︒,360()180ADC ABC A C ∴∠+∠=︒-∠+∠=︒, DE 、BF 分别平分ADC ∠、ABC ∠,12ADE ADC ∴∠=∠,12ABF ABC ∠=∠, 1180902ADE ABF ∴∠+∠=⨯︒=︒, 90ADE AED ∠+∠=︒,AED ABF ∴∠=∠,//DE BF ∴;(2)令0x =,得12y =,12DE ∴=,令0y =,得10x =,10MN ∴=, 把245y =代入6125y x =-+, 解得:6x =,即6NQ =,1064QM ∴=-=, Q 是BF 中点,FQ QB ∴=,2BM FN =,642FN FN ∴+=+,解得:2FN =,4BM ∴=,16BF FN MN MB ∴=++=;(3)①连接EM 并延长交BC 于点H ,如图2所示:21012FM DE =+==,//DE BF ,∴四边形DFME 是平行四边形,DF EM ∴=,6AD =,12DE =,90A ∠=︒,30DEA ∴∠=︒,30DEA FBE FBC ∴∠=∠=∠=︒,60ADE ∴∠=︒,60ADE CDE FME ∴∠=∠=∠=︒,120DFM DEM ∴∠=∠=︒,1801203030MEB ∴∠=︒-︒-︒=︒,30MEB FBE ∴∠=∠=︒,180********EHB ∴∠=︒-︒-︒-︒=︒,4DF EM BM ===,122MH BM ∴==, 426EH ∴=+=, 由勾股定理得:22224223HB BM MH =-=-=22226(23)3BE EH HB ∴=-=+=当DP DF =时,61245x -+=, 解得:203x =, 2022141433BQ x ∴=-=-=, 2233> BQ BE ∴>;②(Ⅰ)当PQ 经过点D 时,如图3所示:0y =,则10x =;(Ⅱ)当PQ 经过点C 时,如图4所示:16BF =,90FCB ∠=︒,30CBF ∠=︒,182CF BF ∴==, 8412CD ∴=+=, //FQ DP ,CFQ CDP ∴∆∆∽,∴FQ CF DP CD=, ∴28612125x x +=-+, 解得:103x =; (Ⅲ)当PQ 经过点A 时,如图5所示://PE BQ ,APE AQB ∴∆∆∽,∴PE AE BQ AB=, 由勾股定理得:222212663AE DE AD =-=-=,6343103AB ∴=+=,∴612(12)63514103x x --+=-, 解得:143x =, 由图可知,PQ 不可能过点B ;综上所述,当10x =或103x =或143x =时,PQ 所在的直线经过四边形ABCD 的一个顶点.。
2009年浙江省温州市中考数学模拟试题(7)
B数学一、仔细选一选1、 -3的绝对值是( )A.-3 B.3 C.-1/3D.1/32、某市2007年的最高气温是39℃,最低气温是零下7℃,则计算该市2007年的温差,下列各式正确的是( )A.(+39)-(-7) B. (+39)+(-7) C. (+39)+(+7) D. (+39)-(+7) 3、 在直角坐标系中,点M (1,2)关于y 轴对称的点的坐标为( ) A.(1,-2) B.(2,-1) C.(-1,-2) D.(-1,2) 4、右图中几何体的正视图是( )5、2007年,中国月球探测工程的“嫦娥一号”卫星发射升空飞向月球,已知地球距离月球表面约为384000千米,那么这个距离用科学记熟法且保留三个有效数字表示为( )A.3.840×104千米 B.3.84×104千米 C.3.84 ×105千米 D.3.84×106千米6、已知等腰三角形的一个内角是30°,那么这个等腰三角形顶角的度数是( ) A . 75° B . 120° C .30° D . 30°或120°7、在平面直角坐标系中,把直线y=2x 向右平移一个单位长度后,其直线解析式为( ) A. y=2x+1 B. y=2x-1 C. y=2x+2 D8、把 x 2-4分解因式的结果是( )A.(x-2) 2B. (X+4)(X-4) C . (x-4)2D (x+2)(x-2) 9、如图,在⊙O中,弦AB,CD相交于点E。
已知∠ECB=60°, ∠AED=65°,那么∠ADE的度数是( )A. 40° B. 15° C. 55° D. 65° 10、我国股市交易中,每买卖一次需缴千分之七点五的各种费用。
某投资者以每股10元的价格买入上海某股票1000股,当该股票涨到12元时全部卖出,该投资者实际赢利为( ) A .2000元 B. 1925元 C . 1835元 D . 1910元 二. 认真填一填11、抛物线x x y 522-=+3与坐标轴的交点共有 个。
2009年浙江省温州市中考数学模拟试题(5)
2009年数学中考模拟试题五考生须知 :1、本试卷分试题卷和答题卷两部分。
满分120分,考试时间120分钟。
2、答题前,必须在答题卷的密封区内填写校名、某某和某某号。
3、所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。
4、考试结束后,上交试题卷和答题卷。
试题卷一、精心选一选:(本大题共8小题,每题3分,共24分. 在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!) 1.下列等式正确的是( ) A .3(1)1--=B .236(2)(2)2-⨯-= C .826(5)(5)5-÷-=-D .0(4)1-= 2.一元二次方程230x x -=的解是( ) A .0x =B .1203x x ==,C .1210,3x x == D .13x = 3. 若23a b b -=,则ab =( ) A .13 B .23 C .43D .534.在半径为18的圆中,120°的圆心角所对的弧长是( ) A .12π B .10π C .6π D .3π 5. 如图,在ABC ∆中,AD 平分BAC ∠且与BC 相交于点D , ∠B =40°,∠BAD =30°,则C ∠的度数是( ) A .70° B .80°C .100°D .110° 6.已知x+y = –5,xy = 6,则22x y +的值是( )A .1B .13C .17D .257.如图,正方形ABCD 的边长是3cm ,一个边长为1cm 的小正方形沿着正方形ABCD 的边AB →BC →CD →DA →AB 连续地翻转,那么这个小正方形第一次回到起始位置时,它的方向是 (A ) (B ) (C ) (D )8.如果一条直线l 经过不同的三点A (a ,b ),B(b ,a ),C (a-b ,b-a ),那么直线l 经过 (A) 第二、四象限 (B)第一、二、三象限 (7题) (C) 第一、三象限 (D)第二、三、四象限9.右图所示是一个三棱柱纸盒,在下面四个图中,只有一个是 这个纸盒的展开图,那么这个展开图是( )10.某小区现有一块等腰直角三角形形状的绿地,腰长为100米,直角顶点为A .小区物业管委会准备把它分割成面积相等的两块,有如下的分割方法: 方法一:在底边BC 上找一点D ,连接AD 作为分割线; 方法二:在腰AC 上找一点D ,连接BD 作为分割线;方法三:在腰AB 上找一点D ,作DE ∥BC ,交AC 于点E ,DE 作为分割线;方法四:以顶点A 为圆心,AD 为半径作弧,交AB 于点D ,交AC 于点E ,弧DE 作为分割线.这些分割方法中分割线最短的是(A )方法一(B )方法二(C )方法三(D )方法四二、细心填一填:(本大题共有6小题,每题4分,共24分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!)11.据中央电视台2007年5月22日报道,“杂交水稻之父”袁隆平院士培育的杂交水稻,自1976年推广种植以来,累计增产5200亿公斤,如果按照每年每人消耗500斤计算,就等于解决了世界上20亿人口一年的温饱问题.5200亿公斤用科学记数法可以表示为公斤. 12.已知在Rt ABC △中,∠C 为直角,AC = 4cm ,BC = 3cm ,sin ∠A =.A. B. C. D.13.2008年奥运火炬将在我省传递(传递路线为:某某—某某—香格里拉),某校学生小明在我省地图上设定的某某市位置点的坐标为(–1,0),火炬传递起点某某市位置点的坐标为(1,1).如图,请帮助小明确定出火炬传递终点香格里拉位置点的坐标为___________.14.已知m ,n 是关于x 的方程(k +1)x 2-x +1=0的两个实数 根,且满足k +1=(m +1)(n +1),则实数k 的值是.15.如图,把边长为1的正方形ABCD 绕顶点A 逆时针旋转30o到正方形AB ′C ′D ′,则它们的公共部分的面积等于.16.把正整数1,2,3,4,5,……,按如下规律排列:1 2,3, 4,5,6,7,(15题)8,9,10,11,12,13,14,15,…………按此规律,可知第n 行有个正整数.三、认真答一答:(本大题8小题,满分66分. 只要你认真思考, 仔细运算, 一定会解答正确的!) 17.(5+5分)(1)计算:2031(9)6452-⎛⎫-+-- ⎪⎝⎭(2) 用配方法解方程:0252=++x x18、(6分)解不等式组2012x x x -⎧⎪⎨-<⎪⎩≥,并利用数据表示不等式组的解集.1 2 3 4 0 1- 2- 3- 4- x19、(6分)化简求值:221323322+-++÷+++a a a a a a a ,其中,3=a .20.(本小题6分)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)作出格点ABC ∆关于直线DE 对称的111A B C ∆; (2)作出111A B C ∆绕点1B 顺时针方向旋转90°后的212A B C ∆; (3)求212A B C ∆的周长.21.(本题满分8分)2006根据表格中的信息解答下列问题:(1)求2006年外省区市在陕投资总额; (2)补全图①中的条形统计图;(3)2006年,外省区投资中有81亿元用于某某高新技术产业开发区,54亿元用于某某经济技术开发区,剩余资金用于我省其它地区.请在图②中画出外省区市在我省投资金额使用情况的扇形统计图(扇形统计图中的圆心角精确到1,百分比精确到1%).22.(10)如图,已知矩形ABCD ,AB=3,BC=3,在BC 上取两点E 、F (E 在F 左边),以EF 为边作等边三角形PEF ,使顶点P 在AD 上,PE、PF 分别交AC 于点G 、H. (1)求△PEF 的边长;(2)若△PEF 的边EF 在线段BC 上移动.试猜想:PH 与BE 有什么数量关系?并证明你猜想的结论.(22题)图①图②2006年外省区市在陕投资金额使用情况统计图(第20题图) 某某某它2006年外省区市在陕投资金额统计图 PH GFE DC BA23.(本小题8分)据国家税务总局通知,从2007年1月1日起,个人年所得12万元(含12万元)以上的个人需办理自行纳税申报.小X 和小赵都是某公司职员,两人在业余时间炒股.小X2006年转让沪市股票3次,分别获得收益8万元、1.5万元、5-万元;小赵2006年转让深市股票5次,分别获得收益2-万元、2万元、6-万元、1万元、4万元.小X2006年所得工资为8万元,小赵2006年所得工资为9万元.现请你判断:小 X 、小赵在2006年的个人年所得.....是否需要向有关税务部门办理自行纳税申报并说明理由. (注:个人年所得 = 年工资(薪金)+ 年财产转让所得.股票转让属“财产转让”,股票转让所得盈亏相抵后为负数的,则财产转让所得部分按零..“填报..”)24.(本小题12分)在平面直角坐标系xOy中,抛物线2y mx n =++经过(02)P A ,两点.(1)求此抛物线的解析式;(2)设抛物线的顶点为B ,将直线AB 沿y 轴向下平移两个单位得到直线l ,直线l 与抛物线的对称轴交于C 点,求直线l 的解析式;(3)在(2)的条件下,求到直线OB OC BC ,,距离相等的点的坐标.x2009年数学中考模拟试题五答题卷一、 精心选一选(30分)二、细心填一填(16分)11、 12、 13、14、 15、16、三、认真答一答 17(10分)(1)计算:2152-⎛⎫-- ⎪⎝⎭(2) 用配方法解方程:0252=++x x18、(6分)解不等式组2012x x x -⎧⎪⎨-<⎪⎩≥,并利用数据表示不等式组的解集.19、(6分)化简求值:221323322+-++÷+++a a a a a a a ,其中,3=a .20、(6分) (1)、(2)(3212 21、(8分)(1)2006年外省区市在陕投资总额为 (2)图①图②2006年外省区市 在陕投资金额使用情况统计图(第21题图)某某某它2006年外省区市在陕投资金额统计图(22题)23、(8分)PH G FEDCBAx2009年数学中考模拟试题五参考答案一、精心选一选二、细心填一填11、 5.2×101112、 0.6 13、 (1,4) 14、 -2 15、3316、 2n-1 三、认真答一答17、(1)20152-⎛⎫-- ⎪⎝⎭=1-4+5-4 =-2(2)解:移项,得x 2+5x=-2, …………………………………1分配方,得222)25(2)25(5+-=++x x …………………2分整理,得(25+x )2=417…………………………………3分直接开平方,得25+x =217±…………………………4分∴x 1=25217-,x 2=25217--…………………………5分18、 解:解不等式(1)得2x ≤ 1分 解不等式(2)得1x >- 3分能在数轴上正确表示出不等式组的解集 5分∴不等式组的解集是12x -<≤ 6分19、 化简代入得:272a a -=+20. 解:(1)、(2)如图所示:作出111A△、212; ······················ 4分(3)212A B C △的周长为4+.··················· 6分21.解:(1)2006年外省区市在陕投资总额为:124676647119423++++=(亿元). ··················· 2分 (2)如图①所示.····························· 5分 2006年外省区市在陕投资金额计图 2006年外省区市在陕投资金额使用情况统计图(3)如图②所示. ····························· 8分 22、解: (1)过P 作PQ BC ⊥于Q 矩形ABCD90B ∴=∠,即AB BC ⊥,又AD BC ∥ PQ AB ∴==1分PEF △是等边三角形60PFQ ∴=∠在Rt PQF △中(第21题答案图①) (第21题答案图②) 某某某它省区 市13% 某某高新技术 19%3sin 60PF=2PF ∴=……………………………3分PEF ∴△的边长为2. PH 与BE 的数量关系是:1PH BE -=………4分 在Rt ABC△中,3AB BC ==tan 13AB BC ∴==∠ 130∴=∠…………………………………5分PEF △是等边三角形2602PF EF ∴===∠,……………………………6分213=+∠∠∠330∴=∠13∴=∠∠FC FH ∴=…………………………………………7分 23PH FH BE EF FC +=++=,1PH BE ∴-=……………………………………………8分注:每题只给了一种解法,其他解法按本评标相应给分.23、解:小X 需要办理自行纳税申报,小赵不需要办理自行纳税申报.理由如下:设小X 股票转让总收益为x 万元,小赵股票转让总收益为y 万元,小X 个人年所得为1W 万元,小赵个人年所得为2W 万元. ··············· 1分 则8 1.55 4.5x =+-= ,2261410y =-+-++=-<. ······· 3分 ∴18 4.512.5W =+=(万元),2909W =+=(万元). ········ 5分 ∵112.5W =万元>12万元,29W =万元<12万元.∴ 根据规定小X 需要办理自行纳税申报,小赵不需要申报. ······ 7分24、解:(1)根据题意得3652m m n n ++=⎧⎨=⎩解得132m n ⎧=⎪⎨⎪=⎩所以抛物线的解析式为:212323yx x =++ ()由212323y x x =++得抛物线的顶点坐标为B (3-1), 依题意,可得C (3-1),且直线 过原点, 设直线 的解析式为y kx =,则31k =- 解得3k=所以直线 的解析式为33y x =(3)到直线OB 、OC 、BC 距离相等的点有四个,如图,由勾股定理得 OB=OC=BC=2, 所以△OBC 为等边三角形。
2009年浙江省温州市中考数学模拟试题(8)
2009年某某省某某市中考数学模拟试题八考生须知:1.本试卷分试题卷和答题卷两部分.满分120分,考试时间100分钟. 2.答题时,应该在答题卷指定位置内写明校名,某某和某某号.3.所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应. 4.考试结束后,上交试题卷和答题卷.试题卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.1.国家体育场“鸟巢”工程总占地面积21公顷,建筑面积2580002m 。
将举行奥运会、残奥会开闭幕式、田径比赛及足球比赛决赛。
奥运会后将成为市具有地标性的体育建筑和奥运遗产。
其中,2580002m 用科学计数法表示为( ). A .258×310 B .×410 C .×510 D .0.258×610 2).A .B .C .D .正面3.现有一个测试距离为5m 的视力表(如图),根据这个视力表,小华想制作一个测试距离为3m 的视力表,则图中的ba的值为( ).ab(第3题图)4 5 6 7 (第4题图)A .23 B .32 C .53 D .35、乙两位同学本学年11次数学测验成绩(整数)的统计如图,现在要从中挑选一人参加数学竞赛,下列选择及挑选的理由不合理的是( ).A .应选甲同学参加比赛.因为甲超过平均分的次数比乙多,比乙更容易获得高分.B .应选甲同学参加比赛.因为甲得分的方差比乙小,比乙的成绩更稳定.C .应选甲同学参加比赛.因为甲得分的众数比乙高,比乙更容易获得高分.D .应选乙同学参加比赛.因为甲得低分的次数比乙多,比乙更容易失误. 5.某校春季运动会比赛中,九年级(1)班、(5)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(5)班得分比为6:5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x 分,(5)班得y 分,根据题意所列的方程组应为( )A .65,240x y x y =⎧⎨=-⎩B .65,240x y x y =⎧⎨=+⎩C .56,240x y x y =⎧⎨=+⎩D .56,240x y x y =⎧⎨=-⎩ 6.一X 折叠型方桌子如图甲,其主视图如乙,已知AO =BO =50cm ,CO =DO =30cm ,现将桌子放平,要使桌面a 距离地面m 为40cm 高,则两条桌腿需要叉开的角度∠AOB 为A .150ºB .约105ºC .120ºD .90ºA BCO D ma(第6题图甲)(第6题图乙)(第7题图)A DCOBE(第8题图),已知直角坐标系中一条圆弧经过正方形网格的格点A 、B 、C 。
2009年 全国 117个地区中考试卷及答案
2009年全国各地中考试题及答案112份下载地址(截止到7月11日)(7月7日前的为红色)2009年安徽省初中毕业学业考试数学试题及答案2009年安徽省芜湖市初中毕业学业考试题及答案2009年北京高级中学中等学校招生考试数学试题及答案2009年福建省福州市课改实验区中考试卷及参考答案2009年福建省龙岩市初中毕业、升学考试试题及答案2009年福建省宁德市初中毕业、升学考试试题及答案2009年福建省莆田市初中毕业、升学考试试卷及答案2009年福建省泉州市初中毕业、升学考试试题及答案2009年福建省漳州市初中毕业暨高中阶段招生题及答案2009年甘肃省定西市中考数学试卷及答案2009年甘肃省兰州市初中毕业生学业考试试卷及答案2009年甘肃省庆阳市高中阶段学校招生考试题及答案2009年广东省佛山市高中阶段学校招生考试题及答案2009年广东省茂名市高中阶段招生考试试题及答案2009年广东省梅州市初中毕业生学业考试试题及答案2009年广东省清远市初中毕业生学业考试试题及答案2009年广东省深圳市初中毕业生学业考试试卷及答案2009年广东省肇庆市初中毕业生学业考试试题及答案2009年广西省崇左市初中毕业升学考试数学试题及答案2009年广西省桂林市百色市初中毕业暨升学试卷及答案2009年广西省河池市初中毕业暨升学统一考试卷及答案2009年广西省贺州市初中毕业升学考试试卷及答案2009年广西省柳州市初中毕业升学考试数学试卷及答案2009年广西省南宁市中等学校招生考试题及答案2009年广西省钦州市初中毕业升学考试试题卷及答案2009年广西省梧州市初中毕业升学考试卷及答案2009年贵州省安顺市初中毕业、升学招生考试题及答案2009年贵州省黔东南州初中毕业升学统一考试题及答案2009年河北省初中毕业生升学文化课考试试卷及答案2009年河南省初中学业水平暨高级中等学校招生卷及答2009年黑龙江省哈尔滨市初中升学考试题及答案2009年黑龙江省牡丹江市初中毕业学业考试题及答案2009年黑龙江省齐齐哈尔市初中毕业学业考试题及答案2009年黑龙江省绥化市初中毕业学业考试卷及答案(答案为扫描版)2009年湖北省鄂州市初中毕业及高中阶段招生题及答案2009年湖北省恩施自治州初中毕业生学业考试题及答案2009年湖北省黄冈市初中毕业生升学考试试卷及答案2009年湖北省黄石市初中毕业生学业考试联考卷及答案2009年湖北省黄石市初中毕业生学业考试试题及答案2009年湖北省十堰市初中毕业生学业考试试题及答案2009年湖北省武汉市初中毕业生学业考试试题及答案2009年湖北省襄樊市初中毕业、升学统一考试题及答案2009年湖北省孝感市初中毕业生学业考试试题及答案2009年湖北省宜昌市初中毕业生学业考试试题及答案2009年湖南省长沙市初中毕业学业考试试卷及答案2009年湖南省常德市初中毕业学业考试试题及答案2009年湖南省郴州市初中毕业考试数学试题及答案2009年湖南省衡阳市初中毕业学业考试试卷及参考答案2009年湖南省怀化市初中毕业学业考试卷及答案2009年湖南省娄底市初中毕业学业考试试题及答案2009年湖南省邵阳市初中毕业学业水平考试卷及答案2009年湖南省湘西自治州初中毕业学业考试卷及答案2009年湖南省益阳市普通初中毕业学业考试试卷及答2009年湖南省株洲市初中毕业学业考试数学试题及答案2009年吉林省长春市初中毕业生学业考试试题及答案2009年吉林省初中毕业生学业考试数学试题及答案2009年江苏省苏州市中考数学试题及答案(答案为扫描版)2009年江苏省中考数学试卷及参考答案2009年江西省中等学校招生考试数学试题及参考答案2009年辽宁省本溪市初中毕业生学业考试试题及答案2009年辽宁省朝阳市初中升学考试数学试题及答案2009年辽宁省抚顺市初中毕业生学业考试试卷及答案2009年辽宁省锦州市中考数学试题及答案2009年辽宁省铁岭市初中毕业生学业考试试题及答案2009年内蒙古赤峰市初中毕业、升学统一考试题及答案(答案为扫描版)2009年内蒙古自治区包头市高中招生考试试卷及答案2009年宁夏回族自治区初中毕业暨高中阶段招生题及答案2009年山东省德州市中等学校招生考试数学试题及答案2009年山东省东营市中等学校招生考试试题及答案2009年山东省济南市高中阶段学校招生考试试题及答案2009年山东省济宁市高中阶段学校招生考试试题及答案2009年山东省临沂市中考数学试题及参考答案2009年山东省日照市中等学校招生考试试题及参考答案2009年山东省泰安市高中段学校招生考试试题及答案2009年山东省威海市初中升学考试数学试卷及参考答案2009年山东省潍坊市初中学业水平考试数学试题及答案2009年山东省烟台市初中学生学业考试试题及答案2009年山东省枣庄市中等学校招生考试数学试题及答案2009年山东省中等学校招生考试数学试题及参考答案2009年山东省淄博市中等学校招生考试试题及答案2009年山西省初中毕业学业考试数学试卷及答案2009年山西省太原市初中毕业学业考试试卷及答案2009年陕西省初中毕业学业考试数学试题及答案2009年上海市初中毕业统一学业考试数学试卷及答案2009年四川省成都市高中学校统一招生考试试卷及答案2009年四川省达州市高中招生统一考试题及答案2009年四川省高中阶段教育学校招生统一考试题及答案2009年四川省泸州市高中阶段学校招生统一考试题及答(答案为扫描版)2009年四川省眉山市高中阶段教育学校招生试题及答案2009年四川省南充市高中阶段学校招生统一考试卷及答2009年四川省遂宁市初中毕业生学业考试试题及答案2009年台湾第一次中考数学科试题及答案2009年天津市初中毕业生学业考试数学试题及答案2009年新疆维吾尔自治区初中毕业生学业考试题及答案2009年云南省高中(中专)招生统一考试试题及答案2009年浙江省杭州市各类高中招生文化考试试题与答案2009年浙江省湖州市初中毕业生学业考试试题及答案2009年浙江省嘉兴市初中毕业生学业考试试卷及答案2009年浙江省金华市初中毕业生学业考试试卷及答案2009年浙江省丽水市初中毕业生学业考试试卷及答案2009年浙江省丽水市初中毕业生学业考试试题及答案2009年浙江省宁波市初中毕业生学业考试试题及答案2009年浙江省衢州市初中毕业生学业考试数学卷及答案2009年浙江省台州市初中学业考试数学试题及参考答案2009年浙江省温州市初中毕业生学业考试试题及答案(答案为扫描版)2009年浙江省义乌市初中毕业生学业考试题及参考答案2009年浙江省舟山市初中毕业生学业考试数学卷及答案2009年重庆市初中毕业暨高中招生考试数学试题及答案2009年重庆市江津市初中毕业学业暨高中招生试题及答2009年重庆市綦江县初中毕业暨高中招生考试题及答案。
2009年浙江省温州市中考数学模拟试题(12)
2009年某某省某某市中考数学模拟试题十二考生须知:1.本试卷分试题卷和答题卷两部分。
满分120分,考试时间100分钟。
2.答题时,必须在答题卷密封区内写明校名、某某和某某号。
3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。
4.考试结束后,上交试题卷和答题卷。
一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在答题卷中相应的格子内. 注意可以用多种不同的方法来选取正确答案. 1、如果a 与-2互为倒数,那么a 是(▲)A.-2B.-21 C.21 2、据统计,2008“超级男生”短信投票的总票数约327 000 000X ,将这个数写成科学数法是(▲)A ×106B ×107C ×108D ×1093、如图所示的图案中是轴对称图形的是(▲)4、已知α为等边三角形的一个内角,则cosα等于(▲)A.21B.22C.23D.335、已知圆锥的侧面积为10πcm 2,侧面展开图的圆心角为36º,则该圆锥的母线长为(▲)A.100cmB.10cmC. 10cmD.1010cm 6、某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,用1小时爬上山顶。
游客爬山所用时间t 与山高h 间的函数关系用图形表示是(▲)7、为了弘扬雷锋精神,某中学准备在校园内建造一座高2m 的雷锋人体雕像,向全体师生征集设计方案.小兵同学查阅了有关资料,了解到黄金分割数常用于人体雕像的设计中。
如图是小兵同学根据黄金分割数设计的雷锋人体雕像的方案,其中雷锋人体雕像下部的设计高度(精2≈1.414,3≈1.732,5≈2.236)是(▲)A. B. C. D.8、若反比例函数ky x=的图象经过点(-1,2),则这个函数的图象一定经过点(▲) A 、(2,-1) B 、(12-,2) C 、(-2,-1) D 、(12,2)9、中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏. 游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一X 哭脸,若翻到哭脸就不得奖. 参与这个游戏的观众有三次翻牌的机会(翻过的牌不能再翻). 某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是(▲)A.14 B.15 C.16 D.32010、阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=c a.根据该材料填空:已知x 1,x 2是方程x 2+6x ++3=0的两实数根,则21x x +12x x 的值为(▲) A.4 B.6二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.11、分解因式:x 3-4x =___.12、函数函数12-+=x x y 中自变量x 的取值X 围是;13、要在一个矩形纸片上画出半径分别是4cm 和1cm 的两个外切圆,该矩形纸片面积的最小值是 .14、如图有一直角梯形零件ABCD ,AD ∥BC ,斜腰DC 的长为10cm ,∠D =120︒,则该零件另一腰AB 的长是m.15、某住宅小区6月份随机抽查了该小区6天的用水量(单位:吨),结果分别是30、A B CD16、在数学中,为了简便,记1nk k =∑=1+2+3+…+(n -1)+ n .1!=1,2!=2×1,3!=3×2×1,…,n !=n ×(n -1)×(n -2)×…×3×2×1.则20061k k =∑-20071k k =∑+2007!2006!=___.三. 全面答一答 (本题有8个小题, 共66分)解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以.17(本小题满分6分)化简求值:a a a a a a a ÷--++--22121222,其中12+=a ;18(本小题满分6分)如图,在1010⨯正方形网格中,每个小正方形的边长均为1个单位.将ABC △向下平移4个单位,得到A B C '''△,再把A B C '''△绕点C '顺时针旋转90,得到A B C '''''△,请你画出A B C '''△和A B C '''''△(要求写出画法).AB C19(本小题满分6分)为迎接“城运会”,某射击集训队在一个月的集训中,对甲、乙两名运动员进行了10次测试,成绩如图所示:(1) 根据下图所提供的信息完成表格(2)如果你是教练,会选择哪位运动员参加比赛? 请说明理由.20(本小题满分8分)如图,小丽在观察某建筑物AB .(1)请你根据小亮在阳光下的投影,画出建筑物AB 在阳光下的投影.(2)已知小丽的身高为,在同一时刻测得小丽和建筑物AB 的投影长分别为和8m ,求建筑物AB 的高.21(本小题满分8分)温度与我们的生活息息相关,你仔细观察过温度计吗?如图12是一个温度计实物示意图,左边的刻度是摄氏温度(℃),右边的刻度是华氏温度(°F),AB(1)仔细观察图中数据,试求出y 与x 之间的函数表达式; (2)当摄氏温度为零下15℃时,求华氏温度为多少?22(本小题满分10分)如图,已知△ABC ,∠ACB=90º,AC=BC ,点E 、 F 在AB 上,∠ECF=45º,(1)求证:△ACF ∽△BEC (5分)(2)设△ABC 的面积为S ,求证:AF ·BE=2S (3)23(本小题满分10分)如图①②,图①是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图②.已知铁环的半径为5个单位(每个单位为5cm ),设铁环中心为O ,铁环钩与铁环相切点为M ,铁环与地面接触点为A ,∠MOA =α,且sinα=35. (1)求点M 离地面AC 的高度BM (单位:厘米); (2)11个单位,求铁环钩MF 的长度(单位:厘米). ②①24(本小题满分12分)如图,以O为原点的直角坐标系中,A点的坐标为(0,1),直线x=1交x轴于点B。
浙江省温州市2001-2012年中考数学试题分类解析 专题5 数量和位置变化
2001-2012年浙江温州中考数学试题分类解析汇编(12专题)专题5:数量和位置变化一、选择题1. (2003年浙江温州4分)函数x的取值范围是【】A.x≥2 B.x≥0 C.x>2 D.x≤2【答案】A。
【考点】函数自变量的取值范围,二次根式有意义的条件。
【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负-≥⇒≥。
故选A。
在实数范围内有意义,必须x20x22. (2004年浙江温州4分)将抛物线y=2x2向左平移1个单位,再向上平移3个单位得到的抛物线,其解析式是【】(A)y=2(x+1)2+3 (B) y=2(x-1)2-3(C) y=2(x+1)2-3 (D) y=2(x-1)2+3【答案】A。
【考点】二次函数图象与平移变换。
【分析】抛物线平移不改变a的值。
因此,原抛物线的顶点为(0,0),向左平移1个单位,再向上平移3个单位,那么新抛物线的顶点为(-1,3)。
故新抛物线的解析式为y=2(x+1)2+3。
故选A。
3. (2006年浙江温州4分)点A(1,2)向右平移2个单位得到对应点A’,则点A’的坐标是【】A.(1.4)B.(1.0) C.(-l,2) D.(3,2)【答案】D。
【考点】坐标平移。
【分析】根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加。
上下平移只改变点的纵坐标,下减上加。
因此,点A(1,2)向右平移2个单位得到对应点A’,则点A’的坐标是(3,2)。
故选D。
二、填空题1. (2004年浙江温州5分)要使函数y x的取值范围是▲ 。
≥。
【答案】x3【考点】函数自变量的取值范围,二次根式有意义的条件。
【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负x 30x 3-≥⇒≥。
2. (2004年浙江温州5分)找出能反应下列各情景中两个变量间关系的图象,并将代号填在相应横线上。
(1)矩形的面积一定时,它的长与宽的关系对应的图象是: ▲ (2)一辆匀速行驶的汽车,其速度与时间的关系对应的图象是: ▲(3)一个直角三角形的两直角边之和为定值时,其面积与一直角边长之间的关系对应的图象是: ▲【答案】C ;A ;B 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年温州市初中毕业学业考试数学试卷
卷Ⅰ
一、选择题(本题有10小题,每小题4分,共40分。
每小题只有一个选项是正确的,不选、多选、错选-均不给分)
1.在0,l,-2,-3.5这四个数中,是负整数的是( )
A.0 B.1 C.-2 D.-3.5
2.下列长度的三条线段能组成三角形的是( )
A.1cm, 2cm, 3.5cm B.4cm, 5cm, 9cm
C.5cm,8cm, 15cm D.6cm,8cm, 9cm
3.如图, AOB是⊙0的圆心角,∠AOB=80°,则弧AB所对圆周角∠ACB的度数是( ) A.40° B.45° C.50° D.80°
4.由两块大小不同的正方体搭成如图所示的几何体,它的主视图是( )
5.抛物线y=x2-3x+2与y轴交点的坐标是( )
A.(0,2) B.(1,O) C.(0,-3) D.(0,O)
6.九年级(1)班共50名同学,右图是该班体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于29分的成绩评为优秀,则该班此次
成绩优秀的同学人数占全班人数的百分比是( )
A.20% B.44%C.58%D.72%
7.把多项式x2-4x+4分解因式,所得结果是( )
A.x(x-4)+4 B.(x-2)(x+2) C.(x-2)2 D.(z+2)2
8.某次器乐比赛设置了6个获奖名额,共有ll名选手参加,他们的
比赛得分均不相同.若知道某位选手的得分。
要判断他能否获奖,在下列ll名选手成绩的统计量中,只需知道( )
A.方差 B.平均数C.众数 D.中位数
9.如图,△ABC中,AB=AC=6,BC=8,AE平分么BAC交BC于点E,点D为AB
的中点,连结DE,则△BDE的周长是( )
A.7+5 B.10 C.4+25 D.12
10.-张等腰三角形纸片,底边长l5cm,底边上的高长22.5cm.现沿底边依次
从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有-张是
正方形,则这张正方形纸条是( )
A.第4张 B.第5张 C.第6张 D.第7张
试卷Ⅱ
二、填空题(本题有6小题,每小题5分.共30分)
11.方程(x-1)2=4的解是
12.如图,将△OAB 绕点0按逆时针方面旋转至△0′A ′B ′,使点B 恰好落在边A ′B ′上.已知AB=4cm ,BB′=lcm ,则A ′B 长是 cm .
13.学校组织七、八、九年级同学参加某项综合实践活动.
如图所示的扇形统计图表示上述各年级参加人数的分布情况.
已知九年级有80人参加,则这三个年级参加该项综合实践活动共有 人
14.如图,△ABC 中,∠C=90°,AB=8,cosA=4
3,则AC 的长是 15.某单位全体员工在植树节义务植树240棵.原计划每小时植树口棵。
实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了 小时完成任务(用含口的代数式表示).
16.如图,已知正方形纸片ABCD 的边长为8,⊙0的半径为2,圆心在正方形的中心上,将纸片按图示方式折叠,使EA7恰好与6)0相切于点A ′(△EFA′与⊙0除切点外无重叠部分),延长FA ′交CD 边于点G ,则A′G 的长是
三、解答题(本题有8小题共80分)
17.(本题l0分)(1)计算:()121240
-++-; (2)先化简,再求值:(3+m)(3-m)+m(m-6)-7,其中m=
21 18.(本题6分)在学习中,小明发现:当n=1,2,3时,n 2-6n 的值都是负数.于是小朋猜
想:当n 为任意正整数时,n 2-6n 的值都是负数.小明的猜想正确吗?请简要说明你的理由.
19.(本题8分)在所给的9×9方格中,每个小正方形的边长都是1.按要求画平行四边形,使它的四个顶点以及对角线交点都在方格的顶点上.
(1)在图甲中画一个平行四边形,使它的周长是整数;
(2)在图乙中画一个平行四边形,使它的周长不是整数.(注:图甲、图乙在答题纸上)
20.(本题8分)一个个布袋中有8个红球和l6个白球,它们除颜色外都相同.
(1)求从袋中摸出一个球是红球的概率;
(2)现从袋中取走若干个白球,并放入相同数量的红球.搅拌均匀后,要使从袋中摸出一个球是红球的概率是昔,问取走了多少个白球?(要求通过列式或列方程解答)
21.(本题11分)如图,在平面直角坐标系中,直线AB 与Y 轴和X 轴分别交于点A 、点B ,
与反比例函数 在第一象限的图像交于点C(1,6)、点D(3,n).过点C 作CE 上y 轴于E ,过点D 作DF 上X 轴于F . x
m y =
(1)求m,n的值;
(2)求直线AB的函数解析式;
(3)求证:△AEC∽△DFB.
22.(本题11分)如图,在△ABC中,∠C=90°,AC=3,BC=4.0为BC边上一点,以0为圆心,OB为半径作半圆与BC边和AB边分别交于点D、点E,连结DE.’
(1)当BD=3时,求线段DE的长;
(2)过点E作半圆O的切线,当切线与AC边相交时,设交
点为F.求证:△FAE是等腰三角形.
23.(本题l2分)某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖纸盒.
(1)现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共l00个,设做竖式纸盒x个.①根据题意,完成以下表格:
竖式纸盒(个) 横式纸盒(个)
x
正方形纸板(张) 2(100-x)
长方形纸板(张) 4x
②按两种纸盒的生产个数来分,有哪几种生产方案?
(2)若有正方形纸板162张,长方形纸板口张,做成上述两种纸盒,纸板恰好用完.已知290<a<306.则n的值是.(写出一个即可)
24.(本题l4分)如图,在平面直角坐标系中,点A(3,0),B(33,2),(0,2).动点D以每秒1个单位的速度从点0出发沿OC向终点C运动,同时动点E以每秒2个单位的速
度从点A出发沿AB向终点B运动.过点E作EF上AB,交BC于点F,连结DA、DF.设运动时间为t秒.
(1)求∠ABC的度数;
(2)当t为何值时,AB∥DF;
(3)设四边形AEFD的面积为S.
①求S关于t的函数关系式;
②若-抛物线y=x2+mx经过动点E,当S<23时,求m的
取值范围(写出答案即可).。