电磁干扰EMI及电磁兼容EMC
EMC试题答案
就成为电磁骚扰的重要特性) ; 2. 频谱宽度(频谱宽度是决定电磁骚扰频率范围的重要指 标) ; 3. 波形(波形是决定电磁骚扰频谱宽度的一个重要因素) ; 4. 出现率(按电磁骚扰的出现率可分为周期性骚扰、非周期 性骚扰和随机骚扰三种类型,周期性骚扰和非周期性骚扰一般 都是功能性的,随机骚扰可能是一种冲击噪声) ; 5. 辐射骚扰的极化特性(骚扰场强矢量的方向随时间变化的 特性,取决于天线的极化特性) ; 6. 辐射骚扰的方向特性(骚扰源朝空间各个方向辐射电磁骚 扰) ; 7. 天线有效面积(表征敏感设备接收骚扰场强能力的参数) ; 3、干扰量的频域表征与时域表征又何特点和异同? 电磁干扰的表征基本上有两种:频域表征和时域表征。 频域表征:用与频率有关的频谱特性来表示; 时域表征:用与时间有关的特性来表示; (幅值、前沿、宽度等)
第二章 1、电磁环境产生的有害影响有哪几种表现形式、影响机理、原因、 途径 电磁环境的有害影响主要表现为: 接收机等敏感设备性能降级; 机电设备、电子线路、元器件等误动作; 烧毁或击穿元器件; 电爆装置、易燃材料等意外触发或点燃等。 电磁环境产生有害影响的基本途径是: 预期和非预期发射通过敏感设 备的接收通道,如天线、传输线、电源线、壳体等进入系统,以及对 非预期能量的响应或由于非预期响应而进入系统。 电磁环境分析主要是估计最恶劣的环境电平。 2、电磁骚扰源的主要特性表征 电磁骚扰的特性可以由以下七项参数描述: 1. 规定带宽条件下的发射电平(规定带宽条件下的发射电平
第一章 1、基本定义:EMC、EMI、EMS EMC:设备或系统在其电磁环境中能正常工作且不对该环境中任何事 物构成不能承受的电磁骚扰的能力。 电磁兼容的两个方面:电磁干扰 EMI、电磁敏感度 EMS。 电磁干扰:由电磁骚扰引起的设备、传输通道或系统性能的下降。 电磁敏感度:在存在电磁骚扰的情况下,装置设备或系统不能避免性 能降低的能力。 2.骚扰源定义、主要原因、如何控制;发射或传播干扰分为哪几种? RE、CE 定义、含义、传播途径与机理。 电磁骚扰源:可能引起装置、设备或系统性能降低或对有生命或无生 命物质产生损害作用的任何形式的自然或电能装置 (自然电磁骚扰源 和认为电磁骚扰源) 。 主要原因:无论在任何条件下,只要 di dt 0 时,都会产生电磁噪声, 而电磁噪声占据了电磁骚扰的主要部分。 控制:除了从源的机理着手降低其产生电磁噪声的电平之外,广泛使 用的方法有:屏蔽、隔离、滤波、接地。 电磁噪声的传播方式从大类分:传导发射(CE) 、辐射发射(RE) 。 传导发射:主要指通过电源线、信号线、控制线和其他金属体传播的 电磁噪声。从广义上说,传导发射还包括不同设备、不同电路使用公 共地线或公共电源线所产生的公共阻抗耦合。 辐射发射:只从空间进行的传播。可以包括静电耦合、磁场耦合以及 电磁耦合。主要涉及线与线、机壳与机壳、天线与天线之间的耦合或 三者之间的交叉耦合;此外还包括场与线、天线、机壳之间的耦合。 (分近场耦合和远场耦合) 2、 EMI 的三要素、如何预防和降低? EMI 三要素: 传导和辐射电磁波的源; 电磁波借以发射或传导的传播媒介; 从接收到得信号中深受干扰的接收器。 预防和降低:三要素只要消除其一,EMI 就不会发生。只要设法减弱 发射源的信号电平或者切断传播途径或者对接收器进行保护而使其 免受干扰。 3、 电磁辐射干扰中近场与远场的概念
电子设计中的电磁兼容性与抗干扰技术
提高信号质量
保持信号的完整性,减少失真和噪 声。
满足法规要求
满足电磁兼容性(EMC)标准和规 定,确保产品符合市场准入要求。
滤波器的选择与应用
根据需求选择合适的滤波器类型
考虑滤波器的性能参数
根据电路特性和抗干扰需求,选择合适的 有源、无源、高通、低通或带通滤波器。
关注插入损耗、阻带衰减、频率响应等关 键参数,以确保滤波效果达到预期。
电磁屏蔽结构的设计需要考虑 屏蔽效能、重量、成本等因素 ,以达到最佳的性价比。
电磁屏蔽在电子设计中的应用
在电子设计中,电磁屏蔽广泛应用于各种电子设备和系统,如计算机、通信设备、 仪器仪表等。
电磁屏蔽可以有效降低外部电磁干扰对电子设备的影响,提高设备的稳定性和可靠 性。
同时,电磁屏蔽也可以防止电子设备产生的电磁辐射对周围环境造成干扰和污染。
EMC测试与评估
01
02
03
测试方法
包括传导发射测试、辐射 发射测试、抗扰度测试等 ,用于评估电子设备的电 磁兼容性能。
测试设备
包括信号发生器、频谱分 析仪、天线、电波暗室等 ,用于产生和测量电磁信 号。
评估指标
包括发射限值、抗扰度等 级等,用于衡量电子设备 在电磁环境中的性能表现 。
02
电磁干扰(EMI)来源与影
04
接地技术
接地原理与分类
接地原理
接地技术是电子设计中实现电磁兼容性和抗干扰的重要手段 之一。通过将设备或电路的某一点与大地连接,可以有效地 降低电磁辐射和静电积累,提高设备的稳定性和可靠性。
接地分类
根据接地的作用和目的,接地可以分为安全接地和信号接地 两类。安全接地主要是为了防止设备漏电、雷击等危险情况 ,而信号接地则是为了确保信号的稳定传输,减小信号之间 的干扰。
结构设计规范(EMC)
结构设计规范(EMC)一、简单介绍电磁兼容(Electromagnetic Compatibility , EMC)主要包含两方面的内容:电磁干扰(Electromagnetic interference , EMI);电磁敏感度(Electromagnetic susceptibility , EMS)。
电磁兼容设计基本目的:A 产品内部的电路互相不产生干扰,达到预期的功能。
B 产品产生的电磁干扰强度低于特定的极限值。
C 产品对外界的电磁干扰有一定的抵抗能力。
在整个工程项目中,必须在设计初期开始考虑电磁兼容设计。
一方面,这对整个工程项目是个效费比很高的措施,可以有效避免工程项目因为电磁兼容测试未通过而进行较大修改,产生不必要的成本增加。
另一方面,设计初期可以采取相对较多的措施来满足电磁兼容要求,而后期可采取的措施比较少。
在电磁兼容设计过程中,针对电磁兼容性设计中的重点和关键,分析并预测各种可能发生的电磁兼容问题,并从设计初期就采取各种技术措施,包括电路硬件与结构相结合、电路硬件与软件相结合的技术措施。
电磁兼容设计主要从三个方面进行:电磁干扰源、耦合途径、敏感设备。
耦合途径主要是传导和辐射。
具体在工程措施上,电磁兼容设计可分为:信号设计、线路设计、屏蔽、接地与搭接、滤波、合理布局。
其中与结构关系较大的有:屏蔽、接地与搭接、合理布局。
但这并不代表其他措施与结构设计完全无关,结构设计亦需配合完成其他措施比如滤波。
二、常用测试项目2.1、在电磁兼容性设计中遇到的常用测试项目,从干扰源与被干扰对象角度可分为两类:EMI(电磁发射测试)和EMS(电磁敏感度测试)。
EMI(电磁发射):被测设备为干扰源,测试被测设备对外界发射的电磁干扰水平。
EMS(电磁敏感度):被测设备为被干扰对象,通过测试仪器对其施加干扰,测试其抗干扰能力。
从干扰路径区分,又可分为传导测试与辐射测试两类。
综合起来测试项目可分为四种测试模式:CE-传导发射测试,CS-传导敏感度测试;RE-辐射发射测试,RS-辐射敏感度测试。
笔记本电脑五大基本使用常识
笔记本电脑五大基本使用常识-散热
笔记本电脑的散热无论是主动散热还是被动散热,都需依靠热传递空
虽然先进的电路设计和制造工艺可以使她不会干扰外界设备,但是却
也无法避免外来的“入侵者”:遭受外部电磁干扰。日常工作中最常 见的干扰源就是手机了,如果手机放在正在运作的笔记本电脑上面, 来电时很容易使电脑当机或是自动关机,所以应注意不要将手机放在 正在执行的笔记本电脑上头,尤其是键盘部位。
笔记本电脑五大基本使用常识 - EMI、EMC
笔记本电脑五大基本使用常识
电磁干扰EMI、电磁兼容EMC 键盘进水 散热 液晶萤幕 热插拔
笔记本电脑五大基本使用常识 - EMI、EMC
品质较好的台式机壳,能够遮罩自身和外部的电磁干扰,因此在工作 的时候不会干扰外界电子设备,也不容易受到其他电磁干扰。相形之 下笔记本电脑就显得“单薄”多了,没有像台式机一样的强硬外壳,
影响后,在实际的布线中,通常将这部分线路放在内层(一般笔
记本电脑主板都有6~8层),以防止高速信号对其他信号造成的 串扰。所以一般情况下,我们在主板上是看不到FSB的。
笔记本电脑五大基本使用常识-键盘进水
在笔记本电脑的身体结构中,键盘进水是最容易发生的事情,键盘进
水之后,由于键盘是无源键盘(不需要电源供应),不会引起电路部
笔记本电脑五大基本使用常识-液晶萤幕
LCD液晶萤幕属于最脆弱的元件了,由于它的薄玻璃结构,受到外力 很容易破裂,当然使用者不会故意摔碰,但是很有可能在阖上的笔记 型上面放些重物,从而使萤幕意外受损,厂商一般都在笔记型包装明 显的部位标明了笔记本电脑可以承受的重力,所以消费者在使用的时 候就应该特别注意。
浅显易懂,整体地讲清楚,什么是电磁兼容(EMC)
浅显易懂,整体地讲清楚,什么是电磁兼容(EMC)EMC概述(1)什么是电磁兼容性(EMC)?“电磁兼容性(EMC)”主要分为两种,一种是设备本身的电磁噪声对其他设备或人体带来的影响(电磁干扰,EMI:Electromagnetic Interference, Emission),另一种是设备是否会因来自外部的电磁干扰而发生误动作(电磁敏感性EMS:Electromagnetic Susceptibility, Immunity),之所称为“电磁兼容性”,是由于为了避免发生故障,这两方面都要兼顾。
以文字的形式写成“定义”是这样的,理解起来有点难是吧。
下面我将浅显易懂地、直观地解释一下。
我将以大家熟悉的半导体集成电路(LSI、IC)为主角进行解说。
首先是电磁干扰(EMI或电磁发射)。
如今,已经开发出并且在售的LSI和IC种类繁多。
为了便于说明,大致分类如下:①老式三端电源(7805和7905等)和低饱和电源(LDO)等直流电源相关产品。
这些产品要处理的信号是直流(DC)的。
②差分运算放大器(运算放大器)、电压比较器(比较器)、语音信号处理等相关的产品。
要处理的信号是基于正弦波的模拟信号和线性信号。
③微控制器、存储器、逻辑等相关的产品。
要处理的信号是数字信号。
④最近常用的开关电源和电荷泵电源等电源相关的产品;LED驱动器、LCD驱动器等显示相关的产品;PWM电机驱动器等驱动相关的产品。
这些LSI和IC是涉及到开关技术的产品。
其中①和②不产生电磁干扰(EMI),③和④产生电磁干扰(EMI)。
可以简单的理解为模拟LSI和线性LSI不会产生电磁噪声,而数字LSI和开关LSI会产生电磁噪声,这样说可能更直观更易懂。
由于直流电压本身没有基波和谐波分量,正弦波中的高次谐波分量(基波的N倍频分量)很少,因此不易产生电磁噪声。
而数字LSI 和开关LSI是处理矩形波(脉冲波)的产品,因此会产生比如在1GHz (千兆赫兹)左右的高次谐波分量(主要是奇次谐波)。
什么是EMI、EMS和EMC
什么是EMI、EMS和EMC
什幺是EMI、EMS和EMC?
在电气干扰领域有许多英文缩写。
EMI(Electro MagneTIc Interference)直译是电磁干扰。
这是合成词,我们应该分别考虑”电磁”和”干扰”。
所谓”干扰”,指设备受到干扰后性能降低以及对设备产生干扰的干扰源这二层意思。
第一层意思如雷电使收音机产生杂音,摩托车在附近行驶后电视画面出现雪花,拿起电话后听到无线电声音等,这些可以简称其为与”BC I”“TV I”“Tel I”,这些缩写中都有相同的”I”(干扰)(BC:广播)
那幺EMI标准和EMI检测是EMI的哪部分呢?理所当然是第二层含义,即干扰源,也包括受到干扰之前的电磁能量。
其次是”电磁”。
电荷如果静止,称为静电。
当不同的电位向一致移动时,便发生了静电放电,产生电流,电流周围产生磁场。
如果电流的方向和大小持续不断变化就产生了电磁波。
电以各种状态存在,我们把这些所有状态统称为电磁。
所以EMI标准和EMI检测是确定所处理的电的状态,决定如何检测,如何评价。
EMS(Electro MagneTIc SuscepTIbility)直译是”电磁敏感度”。
其意是指由于电磁能量造成性能下降的容易程度。
为通俗易懂,我们将电子设备比。
emc emi标准
emc emi标准EMC EMI标准。
EMC(Electromagnetic Compatibility)电磁兼容性是指电子设备在电磁环境中能够正常工作,而不对周围的其他设备和环境产生不可接受的干扰。
而EMI (Electromagnetic Interference)电磁干扰则是指电子设备在工作时对周围的其他设备和环境产生的不可接受的干扰。
因此,EMC和EMI标准就显得尤为重要。
EMC EMI标准的制定是为了保障电子设备在电磁环境中的正常工作和周围环境的安全,同时也是为了避免电子设备之间相互干扰,保证电子设备的稳定性和可靠性。
根据国际电工委员会(IEC)和国际特种电子电气委员会(CISPR)的相关标准,EMC EMI标准主要包括以下几个方面:首先,电磁兼容性测试标准。
电磁兼容性测试是指对电子设备在电磁环境中的抗干扰能力和对外界环境的电磁干扰能力进行测试。
这些测试包括辐射测试和传导测试,通过测试可以评估设备在电磁环境中的兼容性,以及其对外界环境的影响程度。
其次,电磁干扰限值标准。
电磁干扰限值标准规定了电子设备在工作时产生的电磁干扰应该符合的限值要求,以保证其不会对周围的其他设备和环境产生不可接受的干扰。
这些限值标准通常包括辐射限值和传导限值,通过对设备进行测试,可以评估其是否符合相关的限值要求。
再次,电磁兼容性设计标准。
电磁兼容性设计标准是指在电子设备的设计阶段就考虑其在电磁环境中的兼容性问题,通过合理的设计和布局,减少设备对外界环境的干扰,提高设备的抗干扰能力。
最后,电磁兼容性管理标准。
电磁兼容性管理标准是指在设备投入使用后,对其进行定期的检测和维护,以保证设备在使用过程中仍然符合相关的电磁兼容性要求,同时也是为了避免设备在使用过程中对周围环境产生不可接受的干扰。
总之,EMC EMI标准的制定和遵守对于保障电子设备在电磁环境中的正常工作和周围环境的安全至关重要。
只有通过严格的测试、合理的设计和管理,才能确保设备在电磁环境中的兼容性,并尽量减少对周围环境的干扰,从而保证设备的稳定性和可靠性。
电路中的电磁兼容性(EMC)设计
电路中的电磁兼容性(EMC)设计在电路设计中,电磁兼容性(EMC)是一个关键的问题。
EMC的解决方案需要在设计早期就考虑,并且需要在整个设计过程中维持高度的注意力。
本文将讨论EMC的一些基础概念和一些常见的EMC问题,并提供一些EMC设计的有效策略。
1. 什么是EMC?电磁兼容性(EMC)是指电子设备能够在相互干扰的情况下,共存和正常操作的能力。
EMC的目标是确保设备不会受到其他设备的干扰,也不会对其他设备产生干扰。
干扰可以通过电磁辐射(EMI)或电磁传导(EMC)产生。
EMC问题通常由不合格的设计,不合适的材料或故障引起。
2. 常见的EMC问题(1)电磁辐射(EMI):指设备发出电磁辐射,可能会对其他设备产生干扰。
这种干扰可以通过射频滤波器、电源滤波器和屏蔽来减少。
(2)电磁传导(EMC):指干扰信号通过电源线和信号线传递到其他设备。
这种问题可以通过保持信号线之间的距离、增加信号线屏蔽和使用合适的电源线过滤器来解决。
(3)静电放电(ESD):指设备在使用过程中触发静电,可能会损坏设备或对其他设备产生干扰。
这种问题可以通过合适的静电保护电路和地线来减少。
3. EMC设计策略(1)初期设计时,应考虑EMC问题。
制定EMC指标和设计方案,并需要在整个设计过程中维持高度的注意力。
(2)尽可能使用低噪声设计。
这将帮助减少EMI的辐射。
(3)尽量减少信号屏蔽。
屏蔽可以通过金属盒子或屏蔽板来实现。
屏蔽应当足够厚,以保证其有效性。
(4)使用合适的滤波器来限制EMI的传导。
放大器和电源应该使用EMI滤波器。
为了避免谐波振荡,应该在滤波器出的端口上放置电容。
4. 结论在现代电路设计中,EMC问题越来越重要。
设计者应该在设计的早期就考虑EMC问题,并在整个设计过程中维持高度的注意力。
通过使用合适的EMC设计策略和解决方案,可以有效地解决EMC问题,提高电路的性能和可靠性。
电磁兼容性(EMC)简介电磁兼容是研究电磁干扰的学科
电磁兼容性(EMC)简介电磁兼容是研究电磁干扰的学科。
电磁干扰是人们早就发现的电磁现象,它几乎和电磁效应的现象同时被发现,1981年英国科学家发表“论干扰”的文章,标志着研究干扰问题的开始。
1989年英国邮电部门研究了通信中的干扰问题,使干扰问题的研究开始走向工程化和产业化。
虽然电磁干扰问题由来已久,但电磁兼容这个新的综合性学科确是近代形成的。
40年代提出电磁兼容性(Electromagnetic Compatibility缩写为EMC)概念,是电磁干扰问题由单纯的排除干扰逐步发展成为从理论上、技术上全面控制用电设备在其电磁环境中正常工作能力保证的系统工程。
70年代以来,电磁兼容技术逐渐成为非常活跃的学科领域之一。
80年代,美国、德国、日本、前苏联、法国等经济发达国家在电磁兼容研究和应用方面达到很高的水平。
建立了相应的电磁兼容标准和规范,电磁兼容设计成为民用电子设备和军用武器装备研制中必须严格遵循的原则和步骤。
电磁兼容性成为产品可靠性保证中的重要组成部分。
90年代,电磁兼容性工程以事后检测处理发展到预先分析评估、预先检验、预先设计。
在我国电磁兼容理论和技术的研究起步较晚,直到80年代之后才组织系统地研究并制定国家级和行业级的电磁兼容性标准和规范。
90年代以来,随着国民经济和高科技产业的形迅速发展,在航空、航天、通信、电子等部门,电磁兼容技术受到格外重视。
电磁兼容性的定义由于电磁干扰源的大量普遍曾在,电磁干扰现象经常发生。
如果在一个系统中各种用电设备能和谐正常工作而不致相互发生电磁干扰造成性能改变和遭受损坏,人们就满意的称这个系统中的用电设备是相互兼容的。
但是随着用电设备功能的多样化、结构的复杂化、功率加大和频率提高,同时它们的灵敏度已越来越高,这种相互包容兼顾、各显其能的状态很难获得。
为了使系统达到电磁兼容,必须以系统的电磁环境为依据,要求每个用电设备不产生超过一定限度的电磁发射,同时又要求它具有一定的抗干扰能力。
电磁兼容三要素和电磁干扰标准
电磁兼容三要素和电磁干扰标准电磁兼容三要素和电磁干扰标准随着科技的不断发展,电子设备在我们的日常生活中扮演着越来越重要的角色。
然而,随之而来的电磁兼容性问题也日益突出,给我们的生活和工作带来了许多困扰。
为了更好地了解电磁兼容性,首先我们需要了解什么是电磁兼容三要素以及电磁干扰标准。
一、电磁兼容三要素1. 电磁兼容性的概念电磁兼容性是指电子设备在同一电磁环境中能够正常工作,互不干扰,同时也不受外界电磁干扰的能力。
电磁兼容性的三个基本要素是电磁干扰(EMI)、电磁兼容(EMC)和电磁脆弱性。
2. 电磁干扰(EMI)电磁干扰是指电子设备之间或者电子设备与电磁环境之间相互产生的电磁能量的干扰。
电磁干扰的发生会影响设备正常的工作,因此需要通过一定的方法来减小或屏蔽这种干扰。
3. 电磁兼容(EMC)电磁兼容是指电子设备在特定的电磁环境中能够相互协调工作,不产生电磁干扰。
电磁兼容性的设计需要在设备设计的早期阶段考虑,采取一些措施来保证电子设备在复杂的电磁环境中工作正常。
4. 电磁脆弱性电磁脆弱性是指电子设备在特定的电磁环境中容易受到电磁干扰的影响,导致设备性能下降甚至失效的情况。
了解电磁兼容性的三要素可以帮助我们更好地理解电子设备在电磁环境中的工作原理和方法,更好地设计和使用设备,减小电磁干扰对设备正常工作的影响。
二、电磁干扰标准1. 国际电工委员会(IEC)标准国际电工委员会是一个制定国际标准的组织,其制定的电磁兼容性标准被广泛应用于世界各国。
IEC标准涉及到电磁兼容性测试方法、电磁干扰限值等内容,帮助设备制造商和使用者了解设备在电磁环境中的性能。
2. 美国联邦通信委员会(FCC)标准美国联邦通信委员会制定的电磁干扰标准主要用于美国国内的电子设备,其标准内容与IEC标准有一定的差异,但也是全球范围内的重要标准之一。
3. 中国国家标准中国国家标准对电磁兼容性和电磁干扰标准也有相应的制定,帮助中国国内的设备制造商和使用者了解国内外的标准差异,更好地进行电磁兼容性测试和评估。
电磁兼容性及EMC指令标准规定、要求与测试方法
电磁兼容性及EMC指令标准规定、要求与测试方法一、EMC电磁兼容定义:1、电磁兼容性(EMC)是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的能力。
2、EMC包括两个方面的要求:①、一方面是指设备在正常运行过程中对所在环境产生的电磁干扰不能超过一定的限值;②、另一方面是指器具对所在环境中存在的电磁干扰具有一定程度的抗扰度,即电磁敏感性。
3、MC包括EMI(电磁干扰)及EMS(电磁耐受性)两部分,所谓EMI电磁干扰,乃为机器本身在执行应有功能的过程中所产生不利于其它系统的电磁噪声;而EMS乃指机器在执行应有功能的过程中不受周围电磁环境影响的能力。
4、电磁兼容(Electro Magnetic Compatibility)各种电气或电子设备在电磁环境复杂的共同空间中,以规定的安全系数满足设计要求的正常工作能力。
也称电磁兼容性。
它的含义包括电子系统或设备之间在电磁环境中的相互兼顾。
电子系统或设备在自然界电磁环境中能按照设计要求正常工作。
若再扩展到电磁场对生态环境的影响,则又可把电磁兼容学科内容称作环境电磁学。
二、电磁兼容EMC指令概述:1、EMC指令是欧洲联盟制定的一项法规,全称为电磁兼容性(Electromagnetic Compatibility)指令,编号为2014/30/EU。
该指令的目的是确保在欧洲市场上销售的电气和电子设备能够满足特定的电磁兼容性要求,从而减少设备之间的电磁干扰。
2、EMC指令适用于在欧洲市场上销售的电气和电子设备,当产品带电存在电磁干扰或抗干扰要求时,需要进行EMC认证并遵守EMC指令。
三、常见的EMC电磁兼容标准:1、电磁辐射测量及测试标准:①、EN 55032:对于工业、科学和医疗设备的辐射要求。
②、EN 55011:对于家用电器、信息技术设备和电信设备的辐射要求。
2、电磁感应测量及测试标准:①、EN 55024:对于工业、科学和医疗设备的电磁感应抗扰度要求。
EMCElectroMagneticCompatibility中文译作电磁兼容
EMC简介何谓EMC?EMC:ElectroMagnetic Compatibility中文译作电磁兼容。
简单的说,就是电子产品在工作环境里能够不受其他电器产品干扰正常工作,并且不发出其他产品不能承受的干扰。
EMC包括两个方面:电磁干扰(EMI)和电磁敏感度(EMS)。
其中EMI着眼于设备向外部发射的干扰, EMI通常包括传导(conduction)和辐射(radiation);而EMS着眼于外部电子产品发射的干扰对产品的干扰, EMS通常包括静电放电(ESD—Electrostatic discharge),辐射抗扰度(RF—RF Field strength susceptibility), 脉冲群(EFT—Electrical fast transients),雷击(Surge)。
为什么要执行EMC的要求?•地球上的频谱资源是有限的,随着新的电子设备的不断涌现,各种电子设备利用的频率间隔也越来越近,干扰现象也越来越严重。
•一些国家和地区都有自己的EMC要求,象美国和欧盟强制实施的FCC、CE认证,我们国家强制实施的CCC认证,日本非强制实施的VCCI等。
如果要进入这些市场,就必须要通过这些认证,否则会对产品的销售带来很大的负面影响,在美国、欧盟甚至触犯法律。
•一些存在危险的电子产品,如电爆武器、机器人、航天器等,如果不能承受干扰,就会发生爆炸。
什么是干扰?任何可能引起装置, 设备或系统性能降低或对有生命或无生命物质产生损害作用的电池现象。
通常也称干扰为噪声。
干扰是怎么传播的呢?•干扰的传播方式可以分为三种:1. 传导在较低的频率,干扰通常会沿着各种线材(电源线、信号线、PCB Trace)等进行传播。
2. 辐射在更高的频率,干扰通过空气以电磁波的方式发射。
3. 感应干扰还可以通过存在于线材、Trace、元器件之间的互感、互容进行传播。
UPS EMC测试标准标准有不同的体系,国际上的标准制定组织有 IEC (国际电工委员会)、CISPR (国际无线电干扰特别委员会)、ISO (国际标准化组织)等,其中CISPR是IEC的一个特别委员会。
电磁兼容EMC测试是什么,电磁兼容主要检测项目介绍
电磁兼容EMC测试是什么,电磁兼容主要检测项目介绍!EMC是电磁兼容的缩写,EMC=EMI+EMS EMI是电磁骚扰,EMS是电磁抗干扰。
EMl=RE(辐射骚扰)+CE(传导骚扰)+DP(骚扰功率)+H&F(谐波电流及电压波动和电压闪烁)EMS=ESD(静电放电抗扰度)+辐射抗扰度(RS)+EFT(电快速瞬变脉冲群干扰)+Surge(浪涌抗扰度)+CS(传导抗扰度)+PFMF(工频磁场抗扰度)+Dips(电压跌落及短时中断)上面是EMC的一些大概的测试项目,详细项目介绍可参考:电磁兼容EMC测试项目大全对产品而言,只要有电路的产品就需要做EMC。
不过电源线这种走工频交流电或者直流电的就不在EMC的范围之内,信号传输线缆需要做EMC的只有传输差分信号的线缆要做,如:USB数据线,HDMI,DP等。
一些传输模拟信号的是不用做EMC 的,如音频线、音视频线等。
电子电气产品EMC测试大致分为:1.多媒体设备(MME),由ITE及AV合并而成。
比如:电源适配器(用于MME的),PC及PC周边(USB线、键盘鼠标、耳机等),移动电源等。
2.家电电器,比如:搅拌器、面包机、果汁机等。
3.电气照明及类似。
如:LED灯、荧光灯、灯具的驱动电源、控制器等。
4.工业、科学和医疗射频设备5.测量、控制和试验室用的电气设备6.在居住、商业和轻工业环境中工作的电子电气设备7.在工业环境中工作的电子电气设备8.电子电器产品9.不间断电源(UPS)10.火警信号设备,故障信号设备以及个人救助呼叫设备用部件(一些安防的产品也可以划分成这个,比如监控摄像头)11.专业用音频,视频,音视频和娱乐表演灯光控制器产品(常见的如舞台灯)上述为做普通EMC的产品做RED认证、日本TELEC认证、FCC-ID认证的产品是属于无线产品比如:1.WPT(无线能量传输)常见的是无线充。
2.DTS(无线数据传输系统)如蓝牙音箱、蓝牙耳机、无线摄像头、无线行车记录仪等3.SRD(短距离无线传输)如一些433的遥控器。
EMC,EMI,EMS分别是什么?有什么区别和联系?
EMC,EMI,EMS分别是什么?有什么区别和联系?
⼀、EMC EMI EMS定义:
EMC(ElectromagneticCompatibility)
电磁兼容,是指设备或系统在电磁环境中性能不降级的状态。
电磁兼容,⼀⽅⾯要求系统内没有严重的⼲扰源,⼀⽅⾯要求设备或系统⾃⾝有较好的抗电磁⼲扰性。
电磁兼容是⼀门新兴的综合性边缘学科,它主要研究电磁波辐射,电磁⼲扰,雷击,电磁材料等⽅⾯。
EMI(ElectromagneticInterference)
电磁⼲扰,是指电⼦设备⾃⾝⼯作过程中,产⽣的电磁波,对外发射,从⽽对设备其它部分或外部其它设备造成⼲扰。
例如,TV荧光屏上常见的“雪花”,便表⽰接受到的讯号被⼲扰。
EMS(ElectromagneticSusceptibility)
电磁敏感度,是指设备受电磁⼲扰的敏感程度,越敏感的设备,越容易受到⼲扰。
因为有了EMI,才有了EMC,因为EMS达标,才能实现EMC。
⼆、测试:
EMC测试构成:
EMC包含两⼤项:EMI(⼲扰)和 EMS(敏感度,抗⼲扰)
EMI测试项包括:
RE(辐射发射)
CE(传导⼲扰)
Harmonic(谐波)
Flicker (闪烁)
EMS测试项包括:
ESD (静电)
EFT(瞬态脉冲⼲扰)
DIP(电压跌落)
CS(传导抗扰)
RS(辐射抗扰)
Surge(浪涌,雷击)
PFM(⼯频磁场抗扰度)。
电磁兼容EMC和电磁干扰EMI解析
电磁兼容EMC和电磁干扰EMI解析随着电子产品越来越多地采用低功耗、高速度、高集成度的LSI 电路,而使得这些装置比以往任何时候更容易受到电磁干扰的威胁。
而与此同时,大功率家电及办公自动化设备的增多,以及移动通信、无线网络的广泛应用等,又大大增加了电磁骚扰源。
这些变化迫使人们把电磁兼容作为重要的技术问题加以关注。
电磁兼容采用一定的技术手段,使同一电磁环境中的各种电子、电气设备都能正常工作,并且不干扰其他设备的正常工作,这就是电磁兼容 ( ElectromagneticCompatibility ,缩写为EMC。
)在国家标准GB/T4365-1995 中对电磁兼容严格的定义是:设备或系统在其电磁环境中能正常工作且不对该环境中任何事物构成不能承受的电磁骚扰的能力。
电磁兼容性包括两方面:电磁干扰( electromagnetic interference ;EMI )、电磁耐受( electromagnetic susceptibility; EMS )。
EMI指的是电气产品本身通电后,因电磁感应效应所产生的电磁波对周围电子设备所造成的干扰影响;EMS则是指电气产品本身对外来电磁波的干扰防御能力。
其中EMI包括:CE (传导干扰),RE (辐射干扰),PT(干扰功率测试)等等。
EMS 包括:ESD静电放电),RS (辐射耐受),EFT/B(快速脉冲耐受),surge (雷击),CS (传导耐受)等等。
常见的骚扰源显然,EMC设计的目的就是使所设计的电子设备或系统在预期的电磁环境中能够实现电磁兼容。
换而言之,就是说设计的电子设备或系统必须能够满足EMC标准规定的两方面的能力。
常见EMC测试项目电磁干扰(EMI)的原理EMI的产生原因各种形式的电磁干扰是影响电子设备兼容性的主要原因。
因此,了解电磁干扰的产生原因是抑制电磁干扰,提高电子产品电磁兼容性的重要前提。
电磁干扰的产生可以分为:1.内部干扰内部电子元件之间的相互干扰(1) 工作电源通过线路的分布电源和绝缘电阻产生漏电造成的干扰。
EMC-EMI之综合解决方案
EMC-EMI之综合解决方案引言概述:电磁兼容性(EMC)和电磁干扰(EMI)是现代电子设备设计中不可忽视的重要问题。
为了确保电子设备在电磁环境中的正常运行,需要采取综合的解决方案来解决EMC和EMI问题。
本文将介绍一种综合的解决方案,以确保电子设备在各种电磁环境下的正常工作。
一、电磁兼容性(EMC)问题1.1 电磁辐射- 电子设备在工作过程中会产生电磁辐射,可能会对周围设备和系统造成干扰。
- 采取屏蔽措施,如金属外壳和屏蔽罩,以减少电磁辐射。
1.2 电磁感应- 电子设备受到周围电磁场的感应,可能导致设备的正常工作受到干扰。
- 采取滤波措施,如滤波器和抑制器,以减少电磁感应。
1.3 电磁敏感性- 电子设备对外界电磁场的敏感性可能导致设备的正常工作受到干扰。
- 采取抗干扰措施,如增加设备的抗干扰能力和提高系统的抗干扰能力。
二、电磁干扰(EMI)问题2.1 电磁辐射源- 电子设备可能成为电磁辐射源,对周围设备和系统造成干扰。
- 采取屏蔽措施,如金属外壳和屏蔽罩,以减少电磁辐射。
2.2 电磁感应源- 电子设备可能成为电磁感应源,对周围设备的正常工作造成干扰。
- 采取滤波措施,如滤波器和抑制器,以减少电磁感应。
2.3 电磁敏感源- 电子设备可能成为电磁敏感源,对外界电磁场的敏感性可能导致设备的正常工作受到干扰。
- 采取抗干扰措施,如增加设备的抗干扰能力和提高系统的抗干扰能力。
三、综合解决方案3.1 设备设计- 采用合适的电磁屏蔽材料和结构设计,以减少电磁辐射和电磁感应。
- 优化电路布局和地线设计,以提高电磁兼容性。
3.2 电磁兼容性测试- 对电子设备进行电磁兼容性测试,以评估设备在电磁环境中的性能。
- 根据测试结果进行调整和优化,以提高设备的电磁兼容性。
3.3 抗干扰措施- 采用滤波器、抑制器和抗干扰电路等措施,以减少电磁干扰。
- 优化设备的抗干扰能力和提高系统的抗干扰能力。
四、效果评估和改进4.1 评估电磁兼容性- 对设备进行电磁兼容性评估,以检测设备在电磁环境中的性能。
什么叫电磁兼容性(EMC)
EMC(Electro Magnetic Compatibility)电磁兼容性(EMC)是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的能力。
因此,EMC包括两个方面的要求:一方面是指设备在正常运行过程中对所在环境产生的电磁干扰不能超过一定的限值;另一方面是指器具对所在环境中存在的电磁干扰具有一定程度的抗扰度,即电磁敏感性。
所谓电磁干扰是指任何能使设备或系统性能降级的电磁现象。
而所谓电磁干扰是指因电磁干扰而引起的设备或系统的性能下降。
电磁兼容-内容EMC包括EMI(电磁干扰)及EMS(电磁耐受性)两部份,所谓EMI电磁干扰,乃为机器本身在执行应有功能的过程中所产生不利于其它系统的电磁噪声;而EMS乃指机器在执行应有功能的过程中不受周围电磁环境影响的能力。
各种电子、电器产品以及电信设备或系统等,在使用的过程中存在相互干扰的现象。
所谓“电磁兼容(EMS)”,是指各种电的设备,包括电信设备和系统,在不损失信号所包含的信息的条件下,信号与干扰共存的能力。
换句话说,即在复杂的电磁环境中,设备或系统耐受干扰、保持正常工作的能力。
同时,也包括不对环境和周围设备构成无法承受的电磁干扰的性能。
因此“电磁兼容”, 也称“电磁兼容性”,包含了各种电的设备之间在电磁环境中相互兼顾的性质。
电磁兼容技术是一门迅速发展和交叉学科,涉及电子、计算机、通信、航空航天、铁路交通、电力、军事以及人民生活的各个方面。
在当今信息社会中,随着电子技术、计算机技术的发展,一个系统中采用的电气及电子设备数量大幅度增加,而且电子设备的频带日益加宽,功率逐渐增大,灵敏度提高,连接各种设备的电缆网络也越来越复杂。
因此,电磁兼容问题日显重要。
图1-21是电磁兼容概念图。
电磁兼容-包括内部干扰是指电子设备内部各元部件之间的相互干扰,包括以下几种:(1)工作电源通过线路的分布电容和绝缘电阻产生漏电造成的干扰;(与工作频率有关)(2)信号通过地线、电源和传输导线的阻抗互相耦合,或导线之间的互感造成的干扰;(3)设备或系统内部某些元件发热,影响元件本身或其它元件的稳定性造成的干扰;(4)大功率和高电压部件产生的磁场、电场通过耦合影响其它部件造成的干扰。
EMC
电磁兼容基本概念
1、电磁骚扰(EMD,ElectroMagnetic Disturbance)
电磁骚扰是指“任何可能引起装置、设备或系统性能降级或对有生命或无生命物质产生作用的电磁现象。
2、电磁干扰(EMI,ElectroMagnetic Interference)
电磁干扰是指“电磁骚扰引起的设备、传输通道或系统性能的下降”。
电磁骚扰仅仅是电磁现象,即客观存3、电磁兼容(EMC,ElectroMagnetic Compatibility)
一般指电气及电子设备在共同的电磁环境中能执行各自功能的共存状态,即要求在同一电磁环境中的上4、电磁干扰三元素:电磁干扰源、耦合途径、敏感设备。
物质产生作用的电磁现象。
电磁骚扰可能是电磁噪声、无用信号或传播媒介自身的变化”。
仅仅是电磁现象,即客观存在的一种物理现象,它可能引起设备性能的降级或损害,但不一定已经形成后果。
而电磁求在同一电磁环境中的上述各种设备都能正常工作又互不干扰,达到“兼容”状态。
通俗的讲就是…我不打你,你也不
已经形成后果。
而电磁干扰是由电磁骚扰引起的后果。
是…我不打你,你也不允许打我,当然更不允许自残‟。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二.电磁干扰EMI与电磁兼容EMC电磁干扰(Electromagnetic Interference),简称EMI,有传导干扰和辐射干扰两种。
传导干扰主要是电子设备产生的干扰信号通过导电介质或公共电源线互相产生干扰;辐射干扰是指电子设备产生的干扰信号通过空间耦合把干扰信号传给另一个电网络或电子设备。
为了防止一些电子产品产生的电磁干扰影响或破坏其它电子设备的正常工作,各国政府或一些国际组织都相继提出或制定了一些对电子产品产生电磁干扰有关规章或标准,符合这些规章或标准的产品就可称为具有电磁兼容性EMC(Electromagnetic Compatibility)。
电磁兼容性EMC标准不是恒定不变的,而是天天都在改变,这也是各国政府或经济组织,保护自己利益经常采取的手段。
1.传导干扰传导干扰一般是通过电压或电流的形式在电路中进行传播的,图6是测试电子设备产生传导干扰的基本方法,或表示传导干扰通过电源线传输的几种方式。
图6中,电子设备表示干扰信号源,CI表示共模干扰信号,DI表示差模干扰信号;V1、V2、V3分别表示用仪表对干扰信号进行测量的连接方法,低通滤波器是为了便于对V1、V2、V3进行测试,而另外加接进去的;R1、R2、R3、R4分别为各电子设备的接地电阻,也包括大地之间的电阻,接地电阻一般为几欧姆到几十欧姆,其阻值与地线的安装和地表面土壤结构有关;C1为电子设备对大地的电容,其容量与电子设备的体积还有地面距离有关,一般为几微微法到几千微微法。
从图6中我们可以看出:V1 = CI − DI (17)V2 = CI + DI (18)V3 = DI (19)从图6中我们还可以看出,差模干扰信号DI是通过电子设备两根电源输送线传输的,因此,必须用低通滤波器对它进行隔离;而共模干扰信号CI是通过电子设备对大地的电容C1传输的,由于C1的容量一般都非常小,C1对低频共模干扰信号的阻抗很大,因此,在低频段,共模干扰信号一般很容易进行抑制,但在的高频段,对共模干扰信号进行抑制,难度却要比差模干扰信号抑制的难度大很多。
图61-1.回路电流产生传导干扰图7是一个开关电源电路的几个主要部分,图中,C1、C2、C3、C4是各主要部分的对地电容或对机壳的电容,R1、R2、R3是地电阻或机壳的电阻(机壳接地);i1、i2、i3、i4是开关电源电路中几个主要部分的回路电流,i1是交流输入回路电流,i2是整流回路电流,i3是开关回路电流,i4是输出整流回路电流。
在这4个电流之中,i3的作用是最主要的,因为它受开关管Q1控制,其它电流全部都受它牵动而发生变化。
图7从电路中我们可以看出,i1、i2、i3所属的3个回路都是相互连接的,根据回路电流定律,i1、i2、i3之间具有代数和的关系,因此,只要3个电流中有一个电流的高频谐波对其它电路产生干扰,那么,3个电流都会对其它电路产生干扰,并且这种干扰主要是差模信号干扰。
i4与变压器初级的3个回路电流没有直接关系,它是通过磁感应产生的,因此它不会产生差模信号干扰,但它会产生共模信号干扰,i4产生共模信号干扰的主要回路一个是通过对地电容C4,另一个是变压器T1初、次级之间的电容(图中没有画出)。
另外,还有4个回路电流i5、i6、i7、i8,这四个回路电流一般人是不会太注意的。
这四个电流与前面的3个电流i1、i2、i3基本没有直接联系,它们都是通过电磁感应(电场与磁场感应)产生的。
在这几个电流中,其中以i7最严重,因为,变压器初级线圈产生的反电动势一端正好通过C3与大地相连,另一端经过其它3个回路与交流输入回路相连。
这里特别指出,凡是经过电容与大地相连回路的电流都是属于共模信号干扰电流,因此,i5、i6、i7、i8全部都属于共模信号干扰电流。
1-2.电磁感应产生传导干扰我们知道,在开关电源里面,开关电源变压器是最大的磁感应器件。
反激式开关电源变压器,就是通过把流过变压器初级线圈的电流转换成磁能,并把磁能存储在变压器铁心之中,然后,等电源开关管关断的时候,流过变压器初级线圈的电流为0的时候,开关电源变压器才把存储在变压器铁心之中磁能转换成电能,通过变压器次级线圈输出。
开关电源变压器在电磁转换过程中,工作效率不可能100%,因此,也会有一部分能量损失,其中的一部分能量损失就是因为产生漏磁,或漏磁通。
这些漏磁通穿过其它电路的时候,也会产生感应电动势。
感应电动势的大小可由(13)、(14)或(16)式求得。
图8图8是磁感应产生传导干扰的原理图,图8表示开关电源变压器产生的漏磁通穿过其它电路时,在其它电路中也产生感应电动势,其中漏磁通M1、M2、M3产生的感应电动势e1、e2、e3属于是差模干扰信号;M5、M6、M7、M8产生的感应电动势e5、e6、e7、e8属于是共模干扰信号。
M M图9图9是开关电源变压器产生的漏磁通的原理图。
开关电源变压器的漏磁通大约在5%~20%之间,反激式开关电源变压器为了防止磁饱和,在磁回路中一般都留有气隙,因此漏磁通比较大,即:漏感比较大。
因此,产生漏感干扰也特别严重,在实际应用中,一定要用铜箔片在变压器外围进行磁屏蔽。
从原理上来说,铜箔片不是导磁材料,对漏磁通是起不到直接屏蔽作用的,但铜箔片是良导体,交变漏磁通穿过铜箔片的时候会产生涡流,涡流产生的磁场方向正好与漏磁通的方向相反,是部分漏磁通被抵消,因此,铜箔片也可以起到磁屏蔽的作用。
检测漏磁通干扰的简便方法是,用示波器探头接成一个小短路环进行测量,最简便的方法就是把探头与地线端短路连在一起,相当于一个磁感应检测线圈。
把磁感应检测线圈靠近变压器或干扰电路,很容易看到干扰信号的存在。
值得一提的是,开关电源变压器初级线圈的漏感产生的反电动势et,在所有干扰信号之中是最不容忽视的,如图10所示。
当电源开关管关断的时候,开关电源变压器初级线圈的漏感产生的反电动势et几乎没有回路可释放,一方面,它只能通过初级线圈的分布电容进行充电,并让初级线圈的分布电容与漏感产生并联谐振;另一方面,它只能通过辐射向外进行释放,其中通过对地电容C3与大地相连,也是反电动势et释放能量的一个回路,因此,它对输入端也会产生共模信号干扰。
图102.辐射干扰辐射干扰一般是通过电磁感应的形式在空间进行传播的,图11是测试电子设备产生辐射干扰的基本方法,或表示电子设备产生的干扰信号通过电磁感应向空中辐射的原理。
图11中,电子设备表示干扰信号源,V1表示测量仪表,C1表示电子设备对大地的电容,C2表示电子设备与天线偶合的电容,即:电子设备通过电场对天线产生感应,这里的天线也可以看成是被干扰的设备。
图11的测试方法就是测试电子设备周围规定距离某处的电磁场强度,由于干扰信号一般都是一个频率成份非常丰富的非正弦波,因此,无法对它进行直接测量,只能对它其中某一个频率信号单独进行测量。
电子设备与天线感应产生的电流是位移电流,一般频率很高的位移电流在电路中每处的电流方向以及电流大小和电压幅度都是不一样的,我们无法对它直接进行测量,因此,在进行信号测量的时候一般都使用谐振天线,使天线谐振回路对某个频率的干扰交流信号产生谐振,然后再检测谐振信号的电压幅度。
在测试过程中,天线需要经常进行调谐,调谐就是调节天线振子的长度,或磁感应天线谐振回路中的电容,更多的是调谐选频放大器输入回路中的谐振电路参数。
图11图12是极化天线的工作原理图,图12-a)和图12-b)表示天线在电场中被感应产生极化的两种不同情形。
所谓极化就是导体或物体在电场力的作用下产生带电,这种带电是极化带电,即:导体或物体的一端带正电,而另一端带负电。
一般地说,导体或物体被极化带电,只是两端带电,而中心点是不带电的。
由于,极化天线的电场是一个交变电场,所以,天线总是在图12-a)和图12-b)之间来回变化。
12-a)和图12-b)最左边的图形是表示电场方向和天线的电荷分布曲线,中间图形表示载流子在极化天线中流动,右边图形表示天线的等效电路。
天线来回极化的工作原理可以等效成一个串联谐振电路,当天线在电场力的作用下被极化带电时,它又相当于一个电容在充电;当天线中的载流子在电场力的作用下来回移动时,它又相当于一个电感,并且在天线的周围会产生磁场。
当天线谐振电路产生谐振时,在天线串联谐振电路中会产生很大的谐振电流和很高的谐振电压(假设谐振电路的品质因数非常高),但实际使用的测量天线品质因数都不高,因为天线还要输出能量,即:需要从天线中取出测试信号。
要想从天线中取出信号,可以通过高频信号线(双线)把两根天线串联起来,相当于电缆线连接在两根天线的中间,然后把高频信号线(双线)的另一端作为输出;另一种方法是,高频信号线(双线)其中的一条接天线,另一条接大地,高频信号线(双线)的另一端作为输出。
前一种天线一般叫半波双振子天线或全波双振子天线,后一种叫半波或全波单振子天线。
显然,双振子天线性能要比单振子天线好很多。
ii极化天线LC 谐振回路LC 谐振回路极化天线a )b )图12这种测量方法是不很精确的,但没有其它更好的方法。
因为,任何谐振回路都是一个储能电路,这种储能电路是一点、一点地把电能量进行积累并存储起来的,在进行能量积累的过程中自身也会损耗能量,最后达到接收能量与损耗能量完全平衡的时候,谐振回路的电压幅度才停止增长,即:谐振回路的电压幅度与谐振回路的品质因数Q 值有关,但谐振回路的品质因数Q 值对于不同频率信号是不一样的,并且这种谐振回路无法检测干扰脉冲的瞬时值。
图13是谐振回路产生谐振的工作原理图。
图13-a )是一个含有谐波分量非常丰富的电压方波,图13-b )是LC 串联回路产生谐振时的电压波形。
当电压方波作用于LC 串联回路时,方波的前后沿都会对LC 串联回路产生激励(即接收能量),每次激励过后又会产生阻尼振荡(即损耗能量),当输入电压波形的上升率dv/dt 值大于谐振回路波形(正弦波)的上升率时,电路就会产生激励;当输入电压波形的上升率dv/dt 值小于谐振回路波形的上升率时,电路就会产生阻尼。
由于每次激励过后振荡回路的能量还没有损耗完,紧接着又来一次新的激励,使振荡电压一次、又一次地进行叠加,如果激励的相位与振荡波形的相位能保持同步,则振荡电压的幅度会越来越高,直到激励的能量与电路损耗的能量相等为止。
因此,当谐振回路的品质因数Q 值很高时,谐振电压也可以升得很高,理想的情况是Q 值无限高(即天线没有损耗),则产生谐振电压的幅度也会升得无限高,但这种情况是不存在的。
ttuu 00a)b)从图13还可以看出,LC 串联回路产生谐振时的电压幅度与激励波形的相位密切相关,而与激励波形的幅度反而相关不是特别大。
如果图13-a )中的电压方波之间的相位或周期不是严格保持相等,那么图13-b )中的波形就会产生严重抖动,并且谐振电压的幅度也会下降很多。