振动波动复习
大学物理复习题答案(振动与波动)
大学物理1复习题答案一、单选题(在本题的每一小题备选答案中,只有一个答案是正确的,请把你认为正确答案的题号,填入题干的括号内)1.一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。
将它们拿到月球上去,相应的周期分别为'T 1和'T 2。
则有 ( B )A .'T T >11且 'T T >22B .'T T =11且 'T T >22C .'T T <11且 'T T <22D .'T T =11且 'T T =222.一物体作简谐振动,振动方程为cos 4x A t ⎛⎫=+⎪⎝⎭πω,在4Tt =(T 为周期)时刻,物体的加速度为 ( B )A. 2ω B 。
2ω C 。
2ω D2ω3.一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A -,且向x 轴的正方向 运动,代表此简谐振动的旋转矢量图为 ( D )AAAAAAC)AxxAAxA B C D4。
两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为)cos(1αω+=t A x .当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为 ( B )A. )π21cos(2++=αωt A x B. )π21cos(2-+=αωt A x . C 。
)π23cos(2-+=αωt A x D. )cos(2π++=αωt A x . 5.波源作简谐运动,其运动方程为t y π240cos 100.43-⨯=,式中y 的单位为m ,t 的单位为s ,它所形成的波形以s m /30的速度沿一直线传播,则该波的波长为 ( A )A .m 25.0B .m 60.0C .m 50.0D .m 32.06.已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为: ( B )A .cos x t ππ⎛⎫=+ ⎪⎝⎭22233B .cos x t ππ⎛⎫=+ ⎪⎝⎭42233C .cos x t ππ⎛⎫=- ⎪⎝⎭22233D .cos x t ππ⎛⎫=- ⎪⎝⎭42233二. 填空题(每空2分)1. 简谐运动方程为)420cos(1.0ππ+=t y (t 以s 计,y 以m 计),则其振幅为 0.1 m ,周期为 0。
大学物理知识点总结:振动及波动
利用超声波的能量作用于人体组织,产生热效应、机械效应等,达到治疗目的,如超声碎石、超声刀 等。
地震监测和预测中振动分析
地震波监测
通过监测地震波在地球内部的传播情况和变化特征,研究地震的发生机制和震源性质。
振动传感器应用
在地震易发区域布置振动传感器,实时监测地面振动情况,为地震预警和应急救援提供 数据支持。
图像
简谐振动的图像是正弦或余弦曲线,表示了物体的位移随时间的变化关系。
能量守恒原理在简谐振动中应用
能量守恒
在简谐振动中,系统的机械能(动能 和势能之和)保持不变。
应用
利用能量守恒原理可以求解简谐振动 的振幅、角频率等物理量。
阻尼振动、受迫振动和共振现象
阻尼振动
当物体受到阻力作用时,其振动会逐渐减弱,直至停止。 这种振动称为阻尼振动。
惠更斯原理在波动传播中应用
01
惠更斯原理指出,波在传播过程中,每一点都可以看作是新的 波源,发出子波。
02
惠更斯原理可以解释波的反射、折射等现象,并推导出斯涅尔
定律等波动传播规律。
在实际应用中,惠更斯原理被为波动现象的研究提供了重要的理论基础。
04
干涉、衍射和偏振现象
误差分析
分析实验过程中可能出现的误差来源,如仪 器误差、操作误差等;对误差进行定量评估 ,了解误差对实验结果的影响程度;提出减 小误差的方法和措施,提高实验精度和可靠
性。
感谢您的观看
THANKS
实例
钟摆的摆动、琴弦的振动、地震波的传播等 。
振动量描述参数
振幅
描述振动大小的物理量,表示物体离开平衡 位置的最大距离。
频率
描述振动快慢的物理量,表示单位时间内振 动的次数。
高中物理第七讲---振动与波动
第七讲 振动与波动湖南郴州市湘南中学 陈礼生一、知识点击1.简谐运动的描述和基本模型⑴简谐振动的描述:当一质点,或一物体的质心偏离其平衡位置x ,且其所受合力F 满足(0)F kx k =->,故得2ka x x m ω=-=-,ω=则该物体将在其平衡位置附近作简谐振动。
⑵简谐运动的能量:一个弹簧振子的能量由振子的动能和弹簧的弹性势能构成,即222111222E m kx kA υ=+=∑ ⑶简谐运动的周期:如果能证明一个物体受的合外力F k x =-∑,那么这个物体一定做简谐运动,而且振动的周期22T πω==m 是振动物体的质量。
⑷弹簧振子:恒力对弹簧振子的作用:只要m 和k 都相同,则弹簧振子的振动周期T 就是相同的,这就是说,一个振动方向上的恒力一般不会改变振动的周期。
多振子系统:如果在一个振动系统中有不止一个振子,那么我们一般要找振动系统的等效质量。
悬点不固定的弹簧振子:如果弹簧振子是有加速度的,那么在研究振子的运动时应加上惯性力.⑸单摆及等效摆:单摆的运动在摆角小于50时可近似地看做是一个简谐运动,振动的周期为2T =,在一些“异型单摆”中,l g 和的含义及值会发生变化。
〔6〕同方向、同频率简谐振动的合成:假设有两个同方向的简谐振动,它们的圆频率都是ω,振幅分别为A 1和A 2,初相分别为1ϕ和2ϕ,则它们的运动学方程分别为111cos()x A t ωϕ=+ 222cos()x A t ωϕ=+因振动是同方向的,所以这两个简谐振动在任一时刻的合位移x 仍应在同一直线上,而且等于这两个分振动位移的代数和,即12x x x =+由旋转矢量法,可求得合振动的运动学方程为cos()x A t ωϕ=+这说明,合振动仍是简谐振动,它的圆频率与分振动的圆频率相同,而其合振幅为A =合振动的初相满足11221122sin sin tan cos cos A A A A ϕϕϕϕϕ+=+2.机械波:〔1〕机械波的描述:如果有一列波沿x 方向传播,振源的振动方程为y=Acos ωt ,波的传播速度为υ,那么在离振源x 远处一个质点的振动方程便是cos ()x y A t ωυ⎡⎤=-⎢⎥⎣⎦,在此方程中有两个自变量:t 和x ,当t 不变时,这个方程描写某一时刻波上各点相对平衡位置的位移;当x 不变时,这个方程就是波中某一点的振动方程.〔2〕简谐波的波动方程:简谐振动在均匀、无吸收的弹性介质中传播所形成的波叫做平面简谐波。
振动与波动(学生版)--2024年高考物理大题突破
大题 振动与波动振动与波动时高中力学的拓展内容,在历年高考中都有体现,多以选择题的形式出现偶尔也会以计算题的形式出现。
其中以波动形成与传播,振动方程、波动方程,波的叠加与干涉等为命题载体,当然也会与动力学相结合,借助经典圆周模型考察单摆等。
简谐运动的证明及方程1(2024·江苏泰州·一模)如图所示,一根粗细均匀的木筷下端绕有几圈铁丝,竖直浮在一个较大的盛水容器中,以木筷静止时下端所在位置为坐标原点O 建立直线坐标系,把木筷往下压一段距离x =10cm 后放手,木筷就在水中上下振动。
已知水的密度为ρ,重力加速度为g ,不计水的阻力。
(1)试证明木筷的振动是简谐运动;(2)观测发现筷子每10秒上下振动20次,从释放筷子开始计时,写出筷子振动过程位移随时间变化的关系式。
1.简谐运动的两种运动学描述(1)简谐运动图像即x -t 图像是描述质点振动情况的一种手段,直观反映了质点的位移x 随时间t 变化的规律。
(2)x =A sin 2πTt +φ是用函数表达式的形式表示质点的振动情况。
2.简谐运动的动力学描述:如果物体在运动方向上所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。
1(2024·重庆·一模)如图,光滑圆槽的半径L远大于小球运动的弧长。
甲、乙、丙三小球(均可视为质点)同时由静止释放,开始时乙球的位置B低于甲球位置A,甲球与圆偿圆心连线和竖直方向夹角为θ,丙球释放位置C为圆槽的圆心,Q为圆槽最低点;重力加速度为g。
若甲、乙、丙三球不相碰,求:(1)求甲球运动到O点速度大小;(2)通过计算分析,甲乙丙三球谁先第一次到达O点;(3)若单独释放甲球从降放到第15次经过O点所经历的时间。
波形图的综合应用1(2024高三·全国·专题练习)如图所示,一列水平向右传播的简谐横波,波速大小为v=0.6m/s,P质点的平衡位置坐标为x=0.96m。
振动和波动的基本知识
振动和波动的基本知识振动和波动是物理学中非常重要的两个概念,它们在自然界和日常生活中处处可见。
本文将为您介绍振动和波动的基本知识,包括定义、特征以及其应用领域等内容。
一、振动的基本概念和特征振动是物体在围绕平衡位置周围作往复运动的现象。
当物体受到外界扰动时,它会围绕平衡位置做周期性的往复运动。
振动的基本特征包括振幅、周期、频率和相位。
1. 振幅:振幅是指振动过程中物体偏离平衡位置的最大距离。
振幅越大,说明物体的振动幅度越大。
2. 周期:周期是指振动中,物体完成一次往复运动所需的时间。
用T表示,单位为秒。
周期与振动的频率有关,两者满足T=1/f。
3. 频率:频率是指单位时间内振动的次数。
用f表示,单位为赫兹(Hz)。
频率与周期相反,频率越高,则周期越短。
4. 相位:相位是指在一定时间内物体相对于某个参考点的位置。
可以用角度或时间表示。
相位差可以用来描述两个或多个振动之间的关系。
振动现象广泛存在于自然界和科学技术领域。
例如,机械振动的研究可以帮助我们设计更加稳定和高效的机械结构;电子设备中的振荡器可以产生稳定的电信号等。
二、波动的基本概念和分类波动是指能量在空间中传播的过程。
波动的主要特征包括振幅、波长、频率和波速等。
1. 振幅:波动中振幅表示波峰和波谷之间的最大偏移距离。
2. 波长:波长是指波动传播一个完整波周期所需要的距离。
用λ表示,单位为米。
波动的波长与频率成反比,满足λ=速度/频率。
3. 频率:波动的频率是指波动中单位时间内通过某个点的波的个数。
频率用f表示,单位为赫兹(Hz)。
4. 波速:波速是指波动在介质中传播的速度。
波速与波长和频率有关,满足v=λf。
根据波动的性质和传播介质的不同,波动可以分为机械波和电磁波两大类。
机械波需要介质来传播,例如水波、地震波等;而电磁波可以在真空中传播,包括光波、无线电波等。
三、振动和波动的应用领域振动和波动在科学技术的各个领域都有着重要的应用。
以下是一些具体的应用领域:1. 声波的应用:声波是一种机械波,在通信、音乐、医学等领域中有着广泛的应用。
复习振动第四节波动的基本规律第五节波的能量和波的衰减.ppt
2 ( 2 ) T
u
波动方程的物理意义:
给定x=x0时,
给定t=t0时,
m V 给定点振动方程
给定时刻波形曲线
* 当t 、x 都变化时,
描写任意时刻波线上任意点位移情况。
第五节
一、波的能量
波的能量与波的衰减
介质中各质点在各自平 衡位置附近振动动能 介质间相互作用产生弹性 形变势能
1 2 1 22 2 x E V E VA sin [ ( t )] p 2 2 u
二
能量密度
(energy density)
单位体积介质中的波动能量——能量密度w : 22
I
1
能量密度的平均值: ——平均能量密度
dx
能流密度(波的强度):垂直通过单位截面积的平均能流。
( W·m –2 ) 单位:瓦·米2
三 波的衰减 波的衰减:机械波在介质中传播时,强度(或振幅) 随传播距离的增加而减弱(小)。 导致波衰减的主要原因:
①扩散衰减:
②散射衰减:
由于波面扩大造成单位截面积通过的 波的能量减少。
由于散射使沿原方向传播的波的强度减弱。
③介质对波的吸收: 由于介质的粘滞性(内摩擦)等原 因,波的能量随传播距离的增加逐渐转化 为其他形式的能量。
平面简谐波在各个向同性的介质中传播的 衰减规律 平面简谐波沿x 轴正向传播,经厚度为dx 一层介质后, 强度衰减了-dI :
I0(x 0处的强度 )
两边积分得:
I
μ——介质的吸收系数
(由波的频率与介质性 质决定)。
I0
dIIdx
o
dI
I I0ex
扩散衰减 Variation of intensity of a spherical wave with distance: r2 * Sound from a point source A2 spreads out in all directions.
大学物理--振动波动试题
振动、波动部分1.把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度 ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为 (A) . (B) /2. (C) 0 . (D) .[ ]2.一劲度系数为k 的轻弹簧截成三等份,取出其中的两根,将它们并联,下面挂一质量为m 的物体,如图所示。
则振动系统的频率为(A) m k 32π1. (B) m k2π1. (C) m k 32π1. (D) m k62π1. [ ]3.一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间t = T/2(T 为周期)时,质点的速度为(A) φωsin A -. (B) φωsin A .(C) φωcos A -. (D) φωcos A . [ ] 4.一质点作简谐振动.其运动速度与时间的曲线如图所示.若质点的振动规律用余弦函数描述,则其初相应为(A) /6. (B) 5 /6. (C) -5 /6. (D) - /6.(E) -2 /3.[ ]5.一弹簧振子作简谐振动,总能量为E1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E2变为(A) E1/4. (B) E1/2.(C) 2E1. (D) 4 E1 . [ ]6.一质点作简谐振动,其振动方程为)cos(φω+=t A x .在求质点的振动动能时,得出下面5个表达式:(1))(sin 21222φωω+t A m . (2) )(cos 21222φωω+t A m .(3))sin(212φω+t kA . (4) )(cos 2122φω+t kA .(5))(sin 22222φω+πt m A Tmvv21其中m 是质点的质量,k 是弹簧的劲度系数,T 是振动的周期.这些表达式中 (A) (1),(4)是对的. (B) (2),(4)是对的. (C) (1),(5)是对的. (D) (3),(5)是对的. (E) (2),(5)是对的 .[ ]7.机械波的表达式为y = 0.03cos6 (t + 0.01x ) (SI) ,则(A) 其振幅为3 m . (B) 其周期为s 31.(C) 其波速为10 m/s . (D) 波沿x 轴正向传播. [ ]8.一平面简谐波以速度u 沿x 轴正方向传播,在t = t '时波形曲线如图所示.则坐标原点O 的振动方程为 (A) ]2)(cos[π+'-=t t b u a y . (B) ]2)(2cos[π-'-π=t t b u a y . (C)]2)(cos[π+'+π=t t b u a y . (D)]2)(cos[ππ-'-=t t b u a y . [ ]9.如图所示,两列波长为 的相干波在P 点相遇.波在S1点振动的初相是 1,S1到P 点的距离是r1;波在S2点的初相是 2,S2到P 点的距离是r2,以k 代表零或正、负整数,则P 点是干涉极大的条件为:(A) λk rr =-12. (B) π=-k 212φφ.(C) π=-π+-k r r 2/)(21212λφφ. (D ) π=-π+-k r r2/)(22112λφφ. [ ]10.两相干波源S1和S2相距 /4,( 为波长),S1的相位比S2的相位超前π21,在S1,S2的连线上,S1外侧各点(例如P 点)两波引起的两谐振动的相位差是:(A) 0. (B) π21. (C) . (D) π23. [ ]11.一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示.若t = 0时,(1) 振子在负的最大位移处,则初相为______________________;(2) 振子在平衡位置向正方向运动,则初相为________________;(3) 振子在位移为A/2处,且向负方向运动,则初相为______.SS 1S 2Pλ/412.一物体作简谐振动,其振动方程为)2135cos(04.0π-π=t x (SI) .(1) 此简谐振动的周期T =__________________;当t = 0.6 s 时,物体的速度v =__________________.13.一质点沿x 轴以 x = 0 为平衡位置作简谐振动,频率为 0.25 Hz .t = 0时x = -0.37 cm 而速度等于零,则振幅是_____________________,振动的数值表达式为______________________________.14.一简谐振动的旋转矢量图如图所示,振幅矢量长2 cm ,则该简谐振动的初相为____________.振动方程为______________________________.15.一单摆的悬线长l = 1.5 m ,在顶端固定点的竖直下方0.45 m 处有一小钉,如图示.设摆动很小,则单摆的左右 两方振幅之比A1/A2的近似值为_______________.16.图中所示为两个简谐振动的振动曲线.若以余弦函数表示这两个振动的合成结果,则合振动的方程为=+=21x x x __________(SI)17.已知波源的振动周期为4.00×10-2 s ,波的传播速度为300 m/s ,波沿x 轴正方向传播,则位于x1 = 10.0 m 和x2 = 16.0 m 的两质点振动相位差为__________.18.一平面简谐波沿x 轴负方向传播.已知 x = -1 m 处质点的振动方程为)c o s (φω+=t A y ,若波速为u ,则此波的表达式为__________.19.在同一媒质中两列频率相同的平面简谐波的强度之比I1 / I2 = 16,则这两列波的振幅之比是A1 / A2 = ____________________.20.两相干波源S1和S2的振动方程分别是)cos(1φω+=t A y 和)cos(2φω+=t A y .S1距P 点3个波长,S2距P 点 4.5个波长.设波传播过程中振幅不变,则两波同时传到P 点时的合振幅是________________.t0.45 m-21.一质量m = 0.25 kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点. 弹簧的劲度系数k = 25 N ·m-1. (1) 求振动的周期T 和角频率 .(2) 如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm 处,且物体沿x 轴反向运动,求初速v0及初相 . (3) 写出振动的数值表达式.22.一物体作简谐振动,其速度最大值vm = 3×10-2 m/s ,其振幅A = 2×10-2 m .若t = 0时,物体位于平衡位置且向x 轴的负方向运动. 求:(1) 振动周期T ; (2) 加速度的最大值am ;(3) 振动方程的数值式.23. 质量m = 10 g 的小球与轻弹簧组成的振动系统,按)318cos(5.0π+π=t x 的规律作自由振动,式中t 以秒作单位,x 以厘米为单位,求(1) 振动的角频率、周期、振幅和初相; (2) 振动的速度、加速度的数值表达式; (3) 振动的能量E ;(4) 平均动能和平均势能.24.一简谐振动的振动曲线如图所示.求振动方程.25.在一竖直轻弹簧的下端悬挂一小球,弹簧被拉长l0 = 1.2 cm 而平衡.再经拉动后,该小球在竖直方向作振幅为A = 2 cm 的振动,试证此振动为简谐振动;选小球在正最大位移处开始计时,写出此振动的数值表达式.-26.一质点同时参与两个同方向的简谐振动,其振动方程分别为x1 =5×10-2cos(4t + /3) (SI) , x2 =3×10-2sin(4t - /6)(SI)画出两振动的旋转矢量图,并求合振动的振动方程.27.一简谐波沿x轴负方向传播,波速为1 m/s,在x轴上某质点的振动频率为1 Hz、振幅为0.01 m.t = 0时该质点恰好在正向最大位移处.若以该质点的平衡位置为x轴的原点.求此一维简谐波的表达式.28.已知一平面简谐波的表达式为)37.0125cos(25.0xty-=(SI)(1) 分别求x1 = 10 m,x2 = 25 m两点处质点的振动方程;(2) 求x1,x2两点间的振动相位差;(3) 求x1点在t = 4 s时的振动位移.29.一平面简谐波沿x轴正向传播,其振幅和角频率分别为A和 ,波速为u,设t = 0时的波形曲线如图所示.(1) 写出此波的表达式.(2) 求距O点分别为 / 8和3 / 8 两处质点的振动方程.(3) 求距O点分别为 / 8和3 / 8 两处质点在t = 0时的振动速度.x uOy30.如图所示,S1,S2为两平面简谐波相干波源.S2的相位比S1的相位超前 /4 ,波长 = 8.00 m,r1 = 12.0 m,r2 = 14.0 m,S1在P点引起的振动振幅为0.30 m,S2在P点引起的振动振幅为0.20 m,求P点的合振幅.31.设入射波的表达式为)(2cos1TtxAy+π=λ,在x = 0处发生反射,反射点为一固定端.设反射时无能量损失,求(1) 反射波的表达式;(2) 合成的驻波的表达式;(3) 波腹和波节的位置.P SS2。
大物a振动波动重要知识点
大物a振动波动重要知识点
嘿,朋友们!咱今天就来讲讲大物 A 振动波动那些超级重要的知识点呀!
你知道吗,振动就像是心脏的跳动一样!比如说,一个钟摆的来回摆动,这就是振动啊。
它有自己的频率和振幅呢。
频率就好像是它摆动的快慢,振幅呢,就是摆动的幅度大小。
波动呢,那可太神奇啦!就像水面上的涟漪,一圈圈扩散出去。
好比你
往水里扔一块石头,那泛起的波浪就是波动呀!波动也有它的特征呀,像波长、波速。
波长呢,就是相邻两个波峰或波谷之间的距离。
振动和波动之间还有着紧密的联系呢!就好像是好朋友一样。
振动可以
产生波动,而波动中又包含着无数个微小的振动。
你们想想看,声音不就是一种波动吗?我们说话的声音,通过空气的振
动和波动传播出去,别人才能听到呢!这难道不神奇吗?
再来说说干涉和衍射。
干涉就像是两支队伍在互相较量,它们的波峰和波谷相遇时,会产生各种奇妙的现象。
就好像两队人在某个地方相遇,有的地方人特别多,有的地方人又很少。
衍射呢,就像是光可以绕过障碍物,就像我们能偷偷绕过大人去做一些小调皮的事儿一样。
哎呀呀,这些知识点真的是太重要啦!它们可是大物 A 中的精髓呀!大家可一定要好好掌握,这样才能在物理的海洋中畅游呀!
我的观点就是:大物 A 振动波动的这些知识点真的很关键,它们不仅能让我们更好地理解物理世界,还能启发我们去探索更多未知的领域呢!所以,大家加油学吧!。
第10章 振动与波动(习题与答案)
第10章 振动与波动一. 基本要求1. 掌握简谐振动的基本特征,能建立弹簧振子、单摆作谐振动的微分方程。
2. 掌握振幅、周期、频率、相位等概念的物理意义。
3. 能根据初始条件写出一维谐振动的运动学方程,并能理解其物理意义。
4. 掌握描述谐振动的旋转矢量法,并用以分析和讨论有关的问题。
5. 理解同方向、同频率谐振动的合成规律以及合振幅最大和最小的条件。
6. 理解机械波产生的条件。
7. 掌握描述简谐波的各物理量的物理意义及其相互关系。
8. 了解波的能量传播特征及能流、能流密度等概念。
9. 理解惠更斯原理和波的叠加原理。
掌握波的相干条件。
能用相位差或波程差概念来分析和确定相干波叠加后振幅加强或减弱的条件。
10. 理解驻波形成的条件,了解驻波和行波的区别,了解半波损失。
二. 内容提要1. 简谐振动的动力学特征 作谐振动的物体所受到的力为线性回复力,即kx F -= 取系统的平衡位置为坐标原点,则简谐振动的动力学方程(即微分方程)为x tx 222d d ω-= 2. 简谐振动的运动学特征 作谐振动的物体的位置坐标x 与时间t 成余弦(或正弦)函数关系,即)cos(ϕ+ω=t A x由它可导出物体的振动速度 )sin(ϕ+ωω-=t A v 物体的振动加速度 )cos(ϕ+ωω-=t A a 23. 振幅A 作谐振动的物体的最大位置坐标的绝对值,振幅的大小由初始条件确定,即2v ω+=2020x A4. 周期与频率 作谐振动的物体完成一次全振动所需的时间T 称为周期,单位时间内完成的振动次数γ称为频率。
周期与频率互为倒数,即ν=1T 或 T1=ν 5. 角频率(也称圆频率)ω 作谐振动的物体在2π秒内完成振动的次数,它与周期、频率的关系为 ωπ=2T 或 πν=ω26. 相位和初相 谐振动方程中(ϕ+ωt )项称为相位,它决定着作谐振动的物体的状态。
t=0时的相位称为初相,它由谐振动的初始条件决定,即0x v ω-=ϕtan应该注意,由此式算得的ϕ在0~2π范围内有两个可能取值,须根据t=0时刻的速度方向进行合理取舍。
振动波动复习
答案:B
3. 一质点作简谐振动,其振动方程为x = Acos(w t + j ).在求 质点的振动动能时,得出下面5个表达式:
1 (1) mw 2 A2 sin 2 (w t + j ) 2 1 2 (3) kA sin(w t + j ) 2
(5) 2π2 T2 mA2 sin 2 (w t + j )
wA
A
o -A
y
P*
u
x
t (s)
v
1 2
wA
t (s)
v v
yp
t
1 2 (B)
o
wA
o
wA
v
(A) 1 2
o
t (s)
o
1
(D)
2
t (s)
(C)
答案:A
P 点振动图
A
o -A
6. 一平面简谐波动在弹性媒质中传播时,在传播方 向上媒质中某质元在负的最大位移处,则它的能量是 (A)动能为零,势能最大
6 2
t 时刻x=4cm处质元的位置坐标值
4 10-2 - 2.6 10-2 = 1.4 10-2 (m)
x=4cm处质元
A
运动方向沿 x 轴正向。
O
. .2 4
p/6
p/3
x
7. 一质点在 x 轴上做简谐振动。选取质点向右运动通过E 点时做为计时的零点(t = 0)。经过2s后该质点第一次通 过F点,再经过2s后质点第2次经过F点。已知质点在E、F 两点具有相同的速率且EF =10m。求:(1)质点的振动方 程。(2)质点在E处的速率。
25 y( x , t ) = A cos(7 t πx + j 0 ) 3
大学物理(振动波动学知识点总结).
2
y
B
2)由图知A、B 点的振动状态为:
A
yA 0 vA 0
由旋转矢量法知:
yB A vB 0
B 0
A
2
3、已知波形曲线求某点处质元振动的初相位:
若已知某时刻 t 的波形曲线求某点处质元振动的初相位,则需从波形
曲线中找出该质元的振动位移 y0 的大小和正负及速度的正负。
y
u
关键:确定振动速度的正负。
大学物理
知识点总结
(机械振动与机械波)
第九章 机械振动与机械波
机械振动 简谐振动
简谐振动的 特征
简谐振动的描 述
简谐振动的合 成
阻尼振动 受迫振动
机械波
机械波的产 生
机械波的描 述
波动过程中能量 的传播
波在介质中的 传播规律
简谐振动的特征
回复力:
f kx
动力学方程: 运动学方程:
d2 x dt2
多普勒效应: (以媒质为参考系)
1)S 静止,R 运动 2)S 运动,R 静止
一般运动:
R
u VR u
s
s
R
u u Vs
s
R
R
u VR u Vs
s
习题类别:
振动:1、简谐振动的判定。(动力学) (质点:牛顿运动定律。刚体:转动定律。)
2、振动方程的求法。 ①由已知条件求方程②由振动曲线求方程。
2)若波形图对应t = 0 时,点A处对应质元的振动初相位。 3)若波形图对应t = T/4 时,点A处对应质元的振动初相位。
之间的距离。
②周期T :波前进一个波长的距离所需的时间。
③频率ν :单位时间内通过介质中某点的完整波的数目。
大学物理振动和波动知识点总结
大学物理振动和波动 知识点总结1.简谐振动的基本特征(1)简谐振动的运动学方程: cos()x A t ϖϕ=+(2)简谐振动的动力学特征: F kx =-r r 或 2220d x x d tϖ+= (3)能量特征: 222111222k p E E E mv kx KA =+=+=, k p E E = (4)旋转矢量表示: 做逆时针匀速转动的旋转矢量A r 在x 轴上的投影点的运动可用来表示简谐振动。
旋转矢量的长度A r 等于振动的振幅,旋转矢量的角速度等于谐振动的角频率,旋转矢量在0t =时刻与坐标轴x 的夹角为谐振动的初相。
2.描述简谐振动的三个基本量(1)简谐振动的相位:t ωϕ+,它决定了t 时刻简谐振动的状态;其中:00arctan(/)v x ϕω=-(2)简谐振动的振幅:A ,它取决于振动的能量。
其中:A =(3)简谐振动的角频率:ω,它取决于振动系统本身的性质。
3.简谐振动的合成(1)两个同方向同频率简谐振动的合成:合振动的振幅:A =合振幅最大: 212,0,1,2....k k ϕϕπ-==;合振幅最小:21(21),0,1,2....k k ϕϕπ-=+=(2)不同频率同方向简谐振动的合成:当两个分振动的频率都很大,而两个频率差很小时,产生拍现象,拍频为21ννν∆=-;合振动不再是谐振动,其振动方程为21210(2cos 2)cos 222x A t t ννννππ-+=(3)相互垂直的两个简谐振动的合成:若两个分振动的频率相同,则合成运动的轨迹一般为椭圆;若两个分振动的频率为简单的整数比,则合成运动的轨迹为李萨如图形。
(4)与振动的合成相对应,有振动的分解。
4.阻尼振动与受迫振动、共振:阻尼振动: 220220d x dx x dt dt βϖ++=;受迫振动 220022cos d x dx x f t dt dtβϖϖ++= 共振: 当驱动力的频率为某一特定值时,受迫振动的振幅将达到极大值.5.波的描述(1)机械波产生条件:波源和弹性介质(2)描述机械波的物理量:波长λ、周期T (或频率ν)和波速u ,三者之间关系为:uT λ= u λν=(3)平面简谐波的数学描述:(,)cos[()]xy x t A t uωϕ=±+; 2(,)cos()x y x t A t πωϕλ=±+;(,)cos 2()t x y x t A T πϕλ=±+ 其中,x 前面的±号由波的传播方向决定,波沿x 轴的正(负)向传播,取负(正)号。
高中物理振动与波动知识点总结
高中物理振动与波动知识点总结
哇塞,同学们!今天咱来好好唠唠高中物理的振动与波动知识点!你想想啊,振动就像是一个小精灵在那蹦跶,而波动呢,就像是一群小精灵排着队往前跑!
先说振动吧!就像你荡秋千,秋千来回晃,这就是振动啊!振动有啥特点呢?有振幅呀,那就是秋千晃的幅度大小,幅度大那摆动得就厉害呗!还有周期,你荡一次秋千用的时间就是周期喽!来,再想想那个钟摆,滴答滴答地晃,这也是振动呀!
说到波动,就好比是水面上的涟漪,一圈一圈往外扩。
波动有波长,就像涟漪一个圈到下一个圈的距离。
频率呢,就是涟漪产生的快慢喽!声音不也是一种波动嘛,高音低音就是频率不一样导致的呀!
咱再说说振动和波动的联系,就好像两个好朋友。
振动可以引起波动呢!你敲一下鼓,鼓面振动了,声音就以波动的形式传出去啦!
“诶呀,那这些知识点到底有啥用啊?”你可能会这么问。
用处可大了去啦!以后你学好多东西都得靠它们呀!比如理解声波、光波,甚至无线电波!你不想知道手机信号是咋传的?可不就是靠波动嘛!
总之呀,高中物理的振动与波动知识点就像是一把打开科学大门的钥匙,超级重要的!咱可别小瞧它们,得好好学,才能在物理的世界里畅游无阻呀!同学们,加油吧!让我们把这些知识点都拿下!。
大学物理振动波动复习资料
vmax A 0.8 m s 1
(2)
amax
2 2 6 . 4 m s A
2
v 0.8 sin(8t 2 / 3)
a 6.4 cos(8t 2 / 3)
2
(3)
1 2 Ek mv 3.2 10 3 2 sin 2 (8t 2 / 3) 2 1 2 3 2 2 E p kx 3.2 10 cos (8t 2 / 3) 2
x A cos(t )
1
物理学
第五版
2、描述谐振动的物理量 (1)振幅
x
A
x t 图
T
T 2
A xmax
(2)周期、频率
o
A
t
周期
T
2π
1 频率 T 2π 2π 2 π 圆频率 T
弹簧振子周期
m T 2π k
周期和频率仅与振动系统本身的物理性 质有关
A3
1 A2 2 o
x
4
(2k 1) ,
k 0, 1, 2
(2k 1)
4
A A3 A1 0.02m
24
物理学
第五版
第十章
机械波
教学基本要求 一 理解描述简谐波的各物理量的意义及 各量间的关系. 二 理解机械波产生的条件.掌握由已 知质点的简谐运动方程得出平面简谐波的 波函数的方法.理解波函数的物理意 义.理解波的能量传播特征及能流、能流 密度概念.
波动的种类: 机械波、电磁波、物质波
27
物理学
第五版
一 概念:
机械波、横波、纵波、振幅、频率、波长、波速、波函 数、波的能量、衍射、干涉、驻波、多普勒效应
大学物理 第十章 波动部分习题
第十章 波动一、简答题1、什么是波动? 振动和波动有什么区别和联系?答:波动一般指振动在介质中的传播。
振动通常指一个质点在平衡位置附近往复地运动,波动是介质中的无数个质点振动的总体表现。
2、机械波的波长、频率、周期和波速四个量中,(1) 在同一介质中,哪些量是不变的? (2) 当波从一种介质进入另一种介质中,哪些量是不变的?答:(1) 频率、周期、波速、波长 (2)频率和周期3、波动方程⎪⎭⎫ ⎝⎛-=u x cos y t A ω中的u x 表示什么? 如果把它写成⎪⎭⎫ ⎝⎛-=u x cos y ωωt A ,u x ω又表示什么? 答:u x 表示原点处的振动状态传播到x 处所需的时间。
ux ω表示x 处的质点比原点处的质点所落后的相位。
4、波动的能量与哪些物理量有关? 比较波动的能量与简谐运动的能量.答:波的能量与振幅、角频率、介质密度以及所选择的波动区域的体积都有关系。
简谐运动中是振子的动能与势能相互转化,能量保持守恒的过程;而行波在传播过程中某一介质微元的总能量在随时间变化,从整体上看,介质中各个微元能量的变化体现了能量传播的过程。
5. 平面简谐波传播过程中的能量特点是什么?在什么位置能量为最大?答案:能量从波源向外传播,波传播时某一体元的能量不守桓,波的传播方向与能量的传播方向一致,量值按正弦或余弦函数形式变化,介质中某一体元的波动动能和势能相同,处于平衡位置处的质点,速度最大,其动能最大,在平衡位置附近介质发生的形变也最大,势能也为最大。
6. 驻波是如何形成的?驻波的相位特点什么?答案:驻波是两列振幅相同的相干波在同一直线上沿相反方向传播时叠加而成。
驻波的相位特点是:相邻波节之间各质点的相位相同,波节两边质点的振动有的相位差。
7 惠更斯原理的内容是什么?利用惠更斯原理可以定性解释哪些物理现象?答案:介质中任一波振面上的各点,都可以看做发射子波的波源,其后任一时刻,这些子波的包络面就是该时刻的波振面。
物理高三物理力学与振动与波动知识归纳总结
物理高三物理力学与振动与波动知识归纳总结物理力学是物理学的基础学科之一,主要研究物体的运动、力和能量等。
而振动与波动是物理力学的重要内容之一,涉及到物体的周期性振动以及波的传播性质。
在高三物理学习中,我们详细学习了力学与振动与波动的知识,在这篇文章中,我将对这些知识进行归纳和总结。
一、力的运动学1. 位置、位移和路径物理学中常用的参考系有直角坐标系和极坐标系。
物体的位置是相对于参考点或参考物的,位移则是物体从一个位置到另一个位置的变化量。
物体在运动过程中的路径可以是直线、曲线或者复杂的轨迹。
2. 平均速度和瞬时速度平均速度是物体在某段时间内所移动的位移与时间的比值。
瞬时速度则是物体在某一瞬间的瞬时位移与瞬时时间的比值。
速度的单位是米每秒(m/s)。
3. 加速度和速度变化率加速度是速度变化率与时间的比值。
物体的加速度可以是正值(加速运动),也可以是负值(减速运动)。
加速度的单位是米每二次方秒(m/s²)。
4. 牛顿运动定律牛顿第一运动定律描述了静止物体和匀速运动物体的状态。
牛顿第二运动定律描述了力与加速度之间的关系,力等于物体的质量乘以物体的加速度。
牛顿第三运动定律描述了力的相互作用,任何作用力都会有一个等大相反的反作用力。
二、力的动力学1. 动量和动量守恒定律动量是物体质量与速度的乘积,动量等于质量乘以速度。
动量守恒定律指出,在一个孤立系统中,如果没有外力作用,则系统总动量守恒,即系统的初始动量等于系统的最终动量。
2. 冲量和冲量定理冲量是力与时间的乘积,冲量等于力乘以作用时间。
冲量定理描述了冲量与动量变化的关系,冲量等于物体动量的变化量。
3. 动能和动能定理动能是物体由于运动而具有的能量。
动能定理描述了物体动能与物体所受的净作用力之间的关系,动能的变化量等于物体所受的净作用力所做的功。
三、振动与波动1. 振动的基本概念振动是物体围绕平衡位置作周期性的往复运动。
振动的周期是完成一次往复运动所需的时间,频率是单位时间内完成的往复次数。
大学物理振动及波动往年部分试题讲解
1 y 0.1cos(7t ) (SI) 2分 0.12 3
-07级
x
4、试在下图中画出简谐振子的动能,振动势能和 机械能随时间t而变的三条曲线(设t = 0时物体经 过平衡位置).
E
E
t 0 T T 为简谐振动的周期 T/2
机械能 势能 动能
t
0
T/2
-05级
T
[动能、势能曲线各2分,机械能曲线1分]
一、选择题类
1. 一个弹簧振子和一个单摆(只考虑小幅度摆动),在地 面上的固有振动周期分别为T1和T2,将它们拿到月球上 去,相应的周期分别为 T1 和 T2 。则有 (A) T1 > T1且 T2 > T2. (B) T1 < T1且 T2 < T2 .
(D) T1= T1且 T2> T2.
解:(1)以O为坐标原点,由图可知,该点振动的 初始条件为: y0=Acos=0,v0=-Asin <0 所以
波的表达式为
=/2
y=Acos[t- x/u+/2]
ห้องสมุดไป่ตู้
(2) x=/8处的振动方程为 y=Acos[t-/8u+/2]=Acos[t-T/8+/2] = Acos[t+/4]
2 A 2
x=3/8处的质点振动速度为v=-Asin2(1/4-3/8)=
-03级
2 A 2
2.(本题10分) 一列平面简谐波在媒质中以波速u=5m/s沿 x轴正向传播,原点O处质元的振动曲线如图 所示. (1)求解并画出x=25m处质元的振动曲线.
(2)求解并画出t=3s的波形曲线. 解:(1)原点O处质元的振动方程为:
dy/dt=Aωcosωt (2)物体的速度与坐标的函数关系式为 v= .
振动波动知识点总结
振动波动知识点总结振动波动是物理学中的基础概念之一,涉及到物体在空间中振动和波动的运动规律。
振动波动不仅在日常生活中随处可见,而且在工程技术和科学研究中也有着重要的应用。
本文将从振动和波动的基本概念、波动类型、传播特性、波动在不同领域的应用等方面进行总结和介绍。
1. 振动的基本概念振动是物体在围绕平衡位置发生周期性的往复运动。
振动的特征包括振幅、周期、频率和相位等。
振幅是振动的最大位移,周期是振动完成一个往复运动所需的时间,频率是单位时间内振动的循环次数,相位是指振动的相对起点。
振动是物体表现出来的一种运动形式,包括机械振动、电磁振动等。
2. 振动的类型根据振动形式的不同,可以将振动分为机械振动、电磁振动和弹性体振动等。
机械振动是物体在受到外力作用下产生的振动,有自由振动和受迫振动之分。
电磁振动是指电场和磁场交替变化而产生的振动,包括交流电路振动和电磁波振动。
弹性体振动是由弹性体弹性形变引起的振动,包括弹簧振子、摆动等。
3. 波动的基本概念波动是能量在空间中传播的形式,包括机械波动和非机械波动。
机械波动是由介质的振动引起的能量传播,如水波、声波和地震波等;非机械波动是指在真空中能量传播,包括电磁波和引力波等。
波动波峰是波浪的最高点,波谷是波浪的最低点,波长是两个相邻波峰或波谷之间的距离,波速是波动传播的速度。
4. 波动的传播特性波动在传播过程中会遇到反射、折射、干涉和衍射等现象。
当波动遇到边界时,会发生反射现象,波动的方向会发生改变;当波动从一种介质传播到另一种介质时,会发生折射现象,波动的速度和方向都会发生改变;当波动受到干涉现象时,会出现波峰和波谷的叠加现象,波动的幅度会发生改变;当波动受到衍射现象时,波动会向波源周围扩散。
5. 波动在不同领域的应用波动在物理学、工程技术、地质学、天文学和医学等领域具有广泛的应用价值。
在音响和通讯领域,声波和电磁波的传播特性被广泛应用于声音的放大和信号的传输;在地震学领域,地震波的传播特性被用于地下构造的勘测;在医学领域,超声波的传播特性被用于医学成像和治疗。
大学物理题库-振动与波动
一、选择题(每题3分)1、当质点以频率ν 作简谐振动时,它的动能的变化频率为( )(A ) 2v(B )v (C )v 2 (D )v 42、一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2。
当0=t 时, 位移为cm 6,且向x 轴正方向运动。
则振动表达式为( )(A))(3cos 12.0ππ-=t x (B ))(3cos 12.0ππ+=t x (C ))(32cos 12.0ππ-=t x (D ))(32cos 12.0ππ+=t x3、 有一弹簧振子,总能量为E ,如果简谐振动的振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量变为 ( )(A )2E (B )4E (C )E /2 (D )E /4 4、机械波的表达式为()()m π06.0π6cos 05.0x t y +=,则 ( ) (A) 波长为100 m (B) 波速为10 m·s-1(C) 周期为1/3 s (D) 波沿x 轴正方向传播 5、两分振动方程分别为x 1=3cos (50πt+π/4) ㎝ 和x 2=4cos (50πt+3π/4)㎝,则它们的合振动的振幅为( )(A) 1㎝ (B )3㎝ (C )5 ㎝ (D )7 ㎝6、一平面简谐波,波速为μ=5 cm/s ,设t= 3 s 时刻的波形如图所示,则x=0处的质点的振动方程为 ( )(A) y=2×10-2cos (πt/2-π/2) (m)(B) y=2×10-2cos (πt + π) (m)(C) y=2×10-2cos(πt/2+π/2) (m)(D) y=2×10-2cos (πt -3π/2) (m)7、一平面简谐波,沿X 轴负方向 传播。
x=0处的质点的振动曲线如图所示,若波函数用余弦函数表示,则该波的初位相为( ) (A )0 (B )π (C) π /2 (D) - π /28、有一单摆,摆长m 0.1=l ,小球质量g 100=m 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5 y0 A cos( t 0 ) cos( t ) 3 3
波动方程
关键确定 0 3
o
3
y
5 x 5 x y cos[ ( t ) ] cos[ ( t ) ] 3 u 3 3 10 3
y / cm
(2)求 x1 5cm, x2 11cm 两处质点振动位相差。
x A cos( t )
观察法
3. t
4.
2.
A
tg
2 T v
x0
0
x (v0 )
2 0
2
k m
求相位的方法: 总的能量:
旋转矢量法。 1 2 E E k E p kA 2
一个周期中的平均值: 同频率简谐振动的合成:
x x1 x 2 x A cos( t 0 )
1 简谐振动的描述
dx v A sin( t ) dt A cos(t ) 2 dv 2 a A cos( t ) dt
简谐振动问题类型: (1)证明为简谐振动,并求周期? (2)写出振动方程?
参量A, , 的计算:
1.
2 m T 2 k
T
t
例
t 0 波形如图 (1)写出波动方程。 解:(1) 先写 o 点振动方程 由图可知
A 1cm
y / cm
1
0 .5
u 10 cm / s
p
2 5
8
11
14
0
x
x / cm
12 cm
12 T 1.2 s u 10
2 5 rad / s T 3
2 Δ Δx
体积元内媒质质点的总能量为:
x dE dE k dE p A sin [ ( t ) 0 ]dV u 能量密度:
2 2 2
w
dE x 2 A2 sin2 [ ( t ) 0 ] dV u
惠更斯原理 波的叠加原理 波的干涉 驻波
y y1 y2 2 A cos 2
x
cos t
波腹与波节
x1 ( t ) A1 cos( t 10 ) x2 ( t ) A2 cos( t 20 )
A A12 A22 2 A1 A2 cos( 20 10 )
A1 sin 1 A2 sin 2 tg 0 A1 cos 1 A2 cos 2
1
0 .5
5
8
11
14
x / cm
x1 (2) x1 处 y1 A cos[ ( t u ) 0 ] 解: x2 x2 处 y2 A cos[ ( t u ) 0 ]
位相差 2 Δ 2 1 ( x2 x1 ) ( x2 x1 ) u 2 2 ( x1 x2 ) ( 5 11 ) 反位相 12
波动 横波 纵波
波动方程:
波动方程的求解:
x y A cos[ (t ) 0 ] u
1.t=0时刻的0位置的振动方程。 2. 带入x/u,向右减,向左加。 已知波动方程求振动方程:带入x值即可
2 1 (t 2 t1 )
2 2 2u T 2 u