供电系统保护详解

合集下载

电力系统继电保护课后习题解析(第二版)_张保会_尹项根主编(详解版)

电力系统继电保护课后习题解析(第二版)_张保会_尹项根主编(详解版)

电力系统继电保护课后习题答案11.1电力系统如果没有配备完善的继电保护系统,想象一下会出现什么情景?答:现代的电力系统离开完善的继电保护系统是不能运行的。

当电力系统发生故障时,电源至故障点之间的电力设备中将流过很大的短路电流,若没有完善的继电保护系统将故障快速切除,则会引起故障元件和流过故障电流的其他电气设备的损坏;当电力系统发生故障时,发电机端电压降低造成发电机的输入机械功率和输出电磁功率的不平衡,可能引起电力系统稳定性的破坏,甚至引起电网的崩溃、造成人身伤亡.如果电力系统没有配备完善的继电保护系统,则当电力系统出现不正常运行时,不能及时地发出信号通知值班人员进行合理的处理。

1.2继电保护装置在电力系统中所起的作用是什么?答:继电保护装置就是指能反应电力系统中设备发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置.它的作用包括:1.电力系统正常运行时不动作;2.电力系统部正常运行时发报警信号,通知值班人员处理,使电力系统尽快恢复正常运行;3.电力系统故障时,甄别出发生故障的电力设备,并向故障点与电源点之间、最靠近故障点断路器发出跳闸指令,将故障部分与电网的其他部分隔离.1.3继电保护装置通过哪些主要环节完成预定的保护功能,各环节的作用是什么?答:继电保护装置一般通过测量比较、逻辑判断和执行输出三个部分完成预定的保护功能。

测量比较环节是册来那个被保护电器元件的物理参量,并与给定的值进行比较,根据比较的结果,给出“是”、“非”、“0"或“1”性质的一组逻辑信号,从而判别保护装置是否应该启动.逻辑判断环节是根据测量环节输出的逻辑信号,使保护装置按一定的逻辑关系判定故障的类型和范围,最后确定是否应该使断路器跳闸。

执行输出环节是根据逻辑部分传来的指令,发出跳开断路器的跳闸脉冲及相应的动作信息、发出警报或不动作。

1.4 依据电力元件正常工作、不正常工作和短路状态下的电气量复制差异,已经构成哪些原理的保护,这些保护单靠保护整定值能求出保护范围内任意点的故障吗?答:利用流过被保护元件电流幅值的增大,构成了过电流保护;利用短路时电压幅值的降低,构成了低电压保护;利用电压幅值的异常升高,构成了过电压保护;利用测量阻抗的降低和阻抗角的变大,构成了低阻抗保护.单靠保护增大值不能切除保护范围内任意点的故障,因为当故障发生在本线路末端与下级线路的首端出口时,本线路首端的电气量差别不大。

应急备用电源供配电系统方案详解

应急备用电源供配电系统方案详解

随着自然环境的改变和科学技术的发展,为保障医疗疾控、科学研究、数据中心和消防救灾等重大工程项目的供电可靠性,用电负荷的要求也在不断提高。

除去正常的双重电源之外,还需要设置必要的应急电源。

应急电源的使用,能够提高线路供电的稳定性。

因此,在对重大工程项目的供电线路设计时,应确定安全可靠、经济合理的应急备用电源供配电系统设计方案。

本文通过介绍应急备用电源的概念、种类,以及特别重要负荷对应急备用电源的选用要求等,探讨应急备用电源的选用原则和方法,并介绍某大型项目应急备用电源供配电系统的设计方案。

1应急电源与备用电源1.1配置要求从概念范畴的角度,应急电源从属于备用电源,两者在使用目的、切换时间和供电时间要求上有所不同。

从使用目的来看,不同层级的负荷,可以按照用电需求的不同,配置必要的应急电源和备用电源。

在对备用电源的配置中,应当要按照相关的技术规范要求,如《建筑电气与智能化通用规范》G B55024—2022(以下简称《规范》),依据项目对供电的要求不同,针对不同的负荷,按照需求的不同,配置匹配的备用电源。

而针对特定的项目,如在一级负荷中特级负荷的供电,应当采用强制性要求的方式配备应急电源。

《规范》针对应急电源,给出了具体的要求:一是应急电源与非应急电源之间,应采用防止并列运行的措施;二是考虑到供电设备停电会出现一定的中断时间,因此,在对应急电源的设计时,应当要从切换时间入手,对应急电源的种类进行选择。

1.2设备分类及应用分析目前,能够作为应急电源的设备主要分为三类。

第一类为独立发电机组,这种设备能够独立进行发电,如柴油发电机组等。

第二类为专用馈电线路,这种设备与项目的供电线路不同,它能够独立于供电线路之外,为项目独立进行供电。

第三类为蓄电池组,这种设备能够通过充电和放电的方式,满足项目应急用电的需求。

在应急电源设计的过程中,具体类型需要根据供电条件、负荷性质、切换时间和供电时间的要求来选择,但与备用电源对切换时间的要求不同,应急电源对切换时间的要求比较高。

详解IT、TT、TN三种接地系统的区别

详解IT、TT、TN三种接地系统的区别

详解IT、TT、TN三种接地系统的区别电源侧的接地称为系统接地,负载侧的接地称为保护接地。

根据国际电⼯委员会规定的低压配电系统接地有IT系统、TT系统、TN系统三种⽅式。

⼩编为⼤家逐⼀介绍这三种系统。

字母含义(1)第⼀个字母表⽰电源端与地的关系:T-电源端有⼀点直接接地,I-电源端所有带电部分不接地或有⼀点通过阻抗接地。

(2)第⼆个字母表⽰电⽓装置的外露可导电部分与地的关系:T-电⽓装置的外露可导电部分直接接地,此接地点在电⽓上独⽴于电源端的接地点;N-电⽓装置的外露可导电部分与电源端接地点有直接电⽓连接IT系统:IT系统:电源变压器中性点不接地(或通过⾼阻抗接地),⽽电⽓设备外壳电⽓设备外壳采⽤保护接地。

适⽤于环境条件不良、易发⽣⼀相接地或⽕灾爆炸的场所,如10KV及 35KV的⾼压系统和矿⼭、井下的某些低压供电系统。

不适合在施⼯现场应⽤(常⽤TN-S接零保护系统),也可⽤于农村地区。

但不能装断零保护装置,因正常⼯作时中性线电位不固定,也不应设置零线重复接地。

TN系统:TN系统:电源变压器中性点接地,设备外露部分与中性线相连。

是将电⽓设备的⾦属外⽤保护零线与该中⼼点连接,称作保护接零系统。

按照中必线(⼯作零线)与保护线(保护零线)的组合事况TN系统⼜分以下三种形式:TN—C:电源变压器中性点接地,保护零线(PE)与⼯作零线(N)共⽤(简称PEN),称为三相四线制系统。

适⽤于三相负荷基本平衡场合,如果三相负荷不平衡,则PEN线中有不平衡电流,再加⼀些负适⽤于荷设备引起的谐波电流也会注⼊PEN,从⽽中性线N带电,且极有可能⾼于50V,它不但使设备机壳带电,对⼈⾝造成不安全,⽽且还⽆法取得稳定的基准电位;应将PEN线重复接地,其作⽤是当接零的设备发⽣相与外壳接触时,可以有效地降低零线对地电压。

缺陷:(1) 当三相负载不平衡时,在零线上出现不平衡电流,零线对地呈现电压,触及零线可能导致触电事故。

(2) 通过漏电保护开关的零线,只能作为⼯作零线,不能作为电⽓设备的保护零线,这是由于漏电开关的⼯作原理所决定的。

三相五线制详解

三相五线制详解

三相五线制工地电路布线详解根据JGJ/T-1992《民用建筑电气设计规范》,凡是新建、扩建、企事业、商业、居民住宅、智能建筑、基建施工现场及临时线路,一律实行三相五线制供电方式,做到保护零线和工作零线单独敷设.对现有企业应逐步将三相四线制改为三相五线制供电,具体办法应按三相五线制敷设要求的规定实施.定义:三级配电系统:总配电箱为一级,分配电箱为二级,末级配电箱为三级定义:三相电的概念:我们知道线圈在磁场中旋转时,导线切割磁场线会产生感应电动势,它的变化规律可用正弦曲线表示。

如果我们取三个线圈,将它们在空间位置上相差点120度角,三个线圈仍旧在磁场中以相同速度旋转,一定会感应出三个频率相同的感应电动势。

由于三个线圈在空间位置相差点120度角,故产生的电流亦是三相正弦变化,称为三相正弦交流电。

工业用电采用三相电,如三相交流电动机等。

相与相之间的电压是线电压,电压为380V。

相与中心线之间称为相电压,电压是220V。

什么是电源中性点?中性点是指变压器低压侧的三相线圈构成星形联结,联结点称中性点,又因其点为零电位,也称零线端,一般的零线就从此点引出的。

中性点接地后,所有该电网覆盖面的设备接地保护线可就近入地设置为地线,一旦出现漏电可通过大地传导回路到变压器中性点,以策安全。

定义:三相五线制:在三相四线制制供电系统中,把零线的两个作用分开,即一根线做工作零线(N),另外用一根线专做保护零线(PE),这样的供电结线方式称为三相五线制供电方式.三相五线制包括三根相线、一根工作零线、一根保护零线.三相五线制的接线方式如下图所示.为什么不是“五相”“六相”?你先要明白“相”在电中的含义,相是指相位角,比如常说的三相电,是指相位角在空间互成120°交流电。

如果使用移相技术,就比如简单的电容移相,我们一样可以得到四相、五相、N相都可以!但那在电力拖动中没有实际的应用意义,只在电子技术中有时用到。

为什么在电力拖动中大都使用三相(当然有时会用到单相),而不是四相、五相呢?因为发电机的三相绕组在空间120°分布时,交变磁力线均可最大限度的切割它们,成而最以限度的发出电能。

机电设备电气控制系统中常用的保护措施及作用

机电设备电气控制系统中常用的保护措施及作用

机电设备电气控制系统中常用的保护措施及作用
机电设备电气控制系统中常用的保护措施主要包括短路保护、过载保护和欠压保护。

这些保护措施的作用如下:
1. 短路保护:当电路发生短路时,电流会迅速增加,可能会损坏设备或电线。

短路保护装置(如熔断器或断路器)会在电流超过预定值时自动断开电路,以防止设备损坏和火灾发生。

2. 过载保护:当电机负荷过大时,电流也会增加,可能导致电机过热甚至烧毁。

过载保护装置通常会检测电机的运行电流,当电流超过预定值时,装置会自动切断电源,以防止电机过热。

3. 欠压保护:当电压过低时,电机的输出功率会降低,可能导致设备无法正常运行。

欠压保护装置会在电压低于预定值时自动切断电源,以保护电机和设备不受损坏。

这些保护措施可以有效地保护机电设备电气控制系统中的设备,防止因电流过大、电压过低或电机过载等问题而造成的损坏。

主设备主保护原理

主设备主保护原理

主设备主保护原理
主设备主保护在电力系统中是指最先动作的保护,其主要作用是保护发电机、变压器等设备免受故障或故障后果的伤害。

当回路发生故障时,回路上的保护将在瞬间发出信号断开回路的开断元件(如断路器),这个立即动作的保护就是主保护。

以变压器的主保护为例,它是按循环电流原理设计的,能够正确区分变压器内、外故障,并能瞬时切除保护区内的故障。

它主要是套管引出线相间短路、变压器内部以及中性点直接接地系统侧的单相接地短路保护,还可以反应变压器内部绕组的匝间短路。

这种保护方式对绕组引起的接触不良、变压器内部铁芯过热不能反应,当绕组匝间短路的匝数较少时也可能反应不出。

3.2 输电线路相间短路的方向电流保护详解

3.2 输电线路相间短路的方向电流保护详解
功率方向继电器 —— 用以判别短路功率的方向或测定电 压、电流之间相位角的继电器,也称功率方向元件。
➢ 由于正、反向故障时,短路功率方向不同,它将使保护的 动作具有一定的方向性。 ➢ 在常规保护中,方向元件有电磁型、感应型、整流型、晶 体管型、集成电路型等,常用的是整流型和晶体管型。
➢ 母线电压参考方向为“母线指向大地”,电流参考方向为 “母线指向线路”。
其之输间出的(相转位UC矩差或的电大压小24)而00 值改随变两。U者当B
输出为最大时的相位差称为最大
灵敏角。
arg
U K IK
Network Optimization Expert Team
k23
U
1
EI
Ik 2
k1处短路(对保护1为正方向)
U Ik1 Z1lk1
U
Ik1
k1
0 k1 90
第三章 电网的相间电流、电压保护 和方向性相间电流、电压保护
一、单侧电源网络的相间电流、电压保护 二、电网相间短路的方向性电流、电压保护
2021/4/6
1
问题的提出
2
1
A
B
C
三段式电流保护是以单侧电源网络为基础进行分析 的,各保护都安装在被保护线路靠近电源的一侧,或 者说线路的始端。
仅利用相间短路后电流幅值增大的特征来区分故障 与正常运行状态的,以动作电流的大小和动作时限的 长短配合来保证有选择地切除故障。
动作范围: senmax 900 ∵ 过渡电阻、线路阻抗角会变化, k最大0灵~敏90线
+j ∴ 功率方向继电器在正方向故障时,动作的角度应该是一个
范围。
动作区 .
考虑实现的方便性,这个角度通常U 取为:

POE供电技术详解(二)

POE供电技术详解(二)

POE供电技术详解(二)PoE 为使用标准的5 类、6 类和6A 类及以上对绞电缆向远程设备安全传输电力及数据的系统。

PoE 设计以避免以太网的数据和电源信号相互干扰,由此实现同步传输,而不会出现信号中断。

PoE 的工作原理是将市电电源转换成低压电源,然后通过综合布线将电力传输至启用PoE 的设备PD。

PoE 系统由提供电力的供电设备(PSE) 和接收电力的受电设备(PD) 组成。

(1)PSE 类型PSE 负责将电源注入以太对绞电缆,并实施功率的规划和管理,目前有两种类型的PSE。

Endpoint PSE:为由网络设备的端口完成供电,包括以太网交换机、路由器、集线器或其它网络交换设备等。

Mid-span PSE 是一种设备,专门的电源管理设备。

跨接在不具备PoE 功能的交换机与PoE 受电设备之间,每个端口对应有两个RJ45 插孔,一个连接至交换机、另一个连接远端设备。

规范不允许同时使用两种导线供电方案,要求必须作出选择。

供电设备(PSE)只为其中一种方案导线供电,被供电设备(PD)必须能够从这两种选项中接收功率。

为了不影响布线信道的近端串音(NEXT)、近端串音功率和(PSNEXT)、传播时延、回波损耗(Return Loss)和线路不平衡电阻值等指标的性能。

所以标准建议配线架之间不进行交叉连接,而只进行内部互连,保证整个信道不超过 4 个连接点。

(2)PDPD 位于PoE 配线系统的接收端,使用低电压直流(dc) 电工作。

许多PD 还具有集成式PoE 分离器,可以分离电流和数据,并将其重新分配给其他设备。

当用于VoIP、无线LAN和IP 安全应用时,PoE 系统无需安装单独的电气布线和电源插座,可以节约高达50%的总安装成本。

随着不间断电源(UPS) 集成到了大多数LAN 中,使用端跨PSE 的PoE 系统能在发生电源故障时保证设备的连续运转。

(3)端跨PSE 通常设计为端跨电源。

端跨PSE 通常内置在以太网交换机端口中,如下图所示:(4)中跨中跨PSE 位于以太网交换机和PD 之间,在网络中注入PD 所需的电力,不中断数据信号。

低压配电IT系统、TT系统、TN系统详解

低压配电IT系统、TT系统、TN系统详解

N

L1 L2 L3 N PE
PE U V W N L N PE
三相设备
单相设备
单相插座
TT 系统中负载 的所有接地均称 为保护接地
TT系统的特点
①共用接地线与工作零线没有电的联系; ②正常运行时,工作零线可以有电流,而专用保护线没有电流。
N
L1 L2 L3 N PE
PE U V W N L N PE
tn系统tn系统即电源中性点直接接地设备外露可导电部分与电源中性点直接电气连接的系tn系统主要是靠单相碰壳故障变成单相短路故障短路电流是tt系统的53并通过短路保护切断电源来实施电击防护的
低压配电系统的 接地方式 根据现行的国家标准《电压配电设计规范》,低 压配电系统有三种接地形式,即IT系统、TT系统、 TN系统 (1)第一个字母表示电源端与地的关系: T-电源端有一点直接接地 I-电源端所有带电部分不接地或有一点通过阻抗接地。 (2)第二个字母表示电气装置的外露可导电部分与 地的关系: T-电气装置的外露可导电部分直接接地,此接地点在 电气上独立于电源端的接地点; N-电气装置的外露可导电部分与电源端接地点有直接 电气连接。
如果用在供电距离很长时,供电线路对大地的 分布电容就不能忽视了。在负载发生短路故障或漏 电使设备外壳带电时,漏电电流经大地形成架路, 保护设备不一定动作,这是危险的。只有在供电距 离不太长时才比较安全。
I
电源
电气设备
二、TT系统
TT系统就是电源中性点直 接接地、用电设备外露可导 电部分也直接接地的系统。 通常将电源中性点的接地叫 做工作接地,而设备外露可 导电部分的接地叫做保护接 地。 TT系统中,这两个接地必 须是相互独立的。设备接地 可以是每一设备都有各自独 立的接地装置,也可以若干 设备共用一个接地装置。

半导体设备八大子系统详解

半导体设备八大子系统详解

半导体设备八大子系统详解半导体设备是现代电子科技中不可或缺的重要组成部分,其主要功能是将电子信号进行处理和控制。

而半导体设备的运行离不开八大子系统的协同工作。

这八大子系统分别是:供电系统、控制系统、处理系统、存储系统、输入输出系统、显示系统、通信系统以及保护系统。

供电系统是半导体设备最基本的子系统之一。

它负责为整个设备提供稳定而可靠的电源,确保设备正常工作。

供电系统主要包括电源管理单元、电源滤波器和电源控制器等组成部分。

电源管理单元用于监控和管理设备的供电情况,电源滤波器则用于过滤电源中的杂质和干扰信号,而电源控制器则起到对电源进行控制和保护的作用。

控制系统是半导体设备的核心子系统。

它负责对设备进行控制和管理,确保设备按照预定的程序和方式进行工作。

控制系统主要包括控制器、传感器和执行器等组成部分。

控制器是设备的大脑,它接收和处理来自传感器的信号,并根据预设的指令对执行器进行控制。

传感器负责感知设备的工作环境和状态,而执行器则负责执行控制信号,实现设备的动作和操作。

处理系统是半导体设备的核心处理单元,它负责进行数据的处理和计算。

处理系统主要由处理器、存储器和总线等组成部分。

处理器是设备的计算核心,它通过执行指令和操作数据来实现各种功能。

存储器用于存储数据和程序,而总线则负责处理器和其他部件之间的数据传输。

存储系统是半导体设备的数据存储单元,它负责存储设备的数据和程序。

存储系统主要包括内存和外存等组成部分。

内存是设备的工作内存,用于暂时存储数据和程序。

外存则用于永久存储数据和程序,如硬盘和固态硬盘等。

输入输出系统是半导体设备与外部环境进行信息交互的接口。

输入输出系统主要包括输入设备和输出设备等组成部分。

输入设备用于将外部信息输入到设备中,如键盘和鼠标等。

输出设备则用于将设备处理的结果输出到外部环境中,如显示器和打印机等。

显示系统是半导体设备的显示单元,它负责将设备处理的结果显示给用户。

显示系统主要包括显示器和显示控制器等组成部分。

工地TN-S供电系统电路布线详解

工地TN-S供电系统电路布线详解

接地及中性点的英文缩写
“PE”即英文“protecting earthing”
的缩写,意思是“保护导体、保护 接地”。“N”即英文“neutral point”
意思“中性点,零压点”
为什么在变压器端接地?
• 按照规定,380伏(三相)的民用电源的中性点
是不应该在进户端接地的(在变压器端接地,
这个接地是考虑到不能因悬浮点位造成高于电
工地TN-C-S供电系统电路布线 详解
国 家 规 定
• 根据JGJ/T-1992《民用建筑电气设计规范》 ,
凡是新建、扩建、企事业、商业、居民住宅、 智能建筑、基建施工现场及临时线路,一律实行 三相五线制供电方式,做到保护零线和工作零线 单独敷设.对现有企业应逐步将三相四线制改为 三相五线制供电,具体办法应按三相五线制敷设 要求的规定实施.
5、从第一级漏电保护器“N”出线端 接引到工作零接线端。
6、从第一级总漏电保护器引出相线 到多路分路隔离开关。
现以三路分三路为例, 详述总配电箱到分配电箱
的接法
1、从总配电箱的分配电开关分别引出黄、绿、红 (A、B、C)三相线,淡蓝色工作零线从工作零 接线端引出,黄绿双色PE保护零线从PE端子引出
源电压的点位,用户端的接地与变压器端的接
地在大地中是存在一定的电阻的),如果把电
源的中性点直接接地(这在民用电施工中是不
允许的),漏电保护器就失去了作用,不能保
护人身和电器设备的短路了。
与 三 相 四 线 制 无 异 了 。
零 线 使 用 , 否 则 发 生 混 乱 后 就
起 , 但 进 入 用 户 侧 后 不 能 当 作
定义:三级配电系统
总配电箱为一级,分配电 箱为二级,末级配电箱为三级。

详解低压配电系统中漏电、短路、零线断线原理及故障分析

详解低压配电系统中漏电、短路、零线断线原理及故障分析

详解低压配电系统中漏电、短路、零线断线原理及故障分析一、漏电漏电,是指外壳为金属的用电器,工作时不允许外壳带电,由于某种原因引起绝缘损坏使其外壳带电进而对人形成接触电压的现象。

漏电是介于正常和短路之间的一种故障,可以说漏电就是短路的前奏,及时排除这类故障是防止短路的有效措施。

检测漏电的最好方法就是用电笔接触带电体,如果氖泡亮一下立刻就熄灭,证明带电体带的就是静电,如果长亮定是漏电无疑。

漏电产生的原因:(1)有些用电器采用的电路板自身有问题(电路板低压电路没和220V的交流电隔离,本身就带有市电),采用开关电源的电器多属这一种情况。

如有些老式彩电,人一摸到天线就会有手麻的感觉,这就是天线和电路板相连产生的漏电。

不过这些电对人没多大危险,因为电路板和市电间有一个阻值很大的电阻,产生的电流很小。

(2)即便是用电器的电路板本身没问题,但由于某些元件漏电(尤其是电容)或是由于电路板受潮、灰尘太多,也会出现漏电的现象,如有一些电器外壳一开始不带电,但用了一段时间后又带电了,多属这种情况。

1.漏电故障的危害漏电发生的前提是电气设备外壳是金属而其作用只限于封闭与美观等,工作时不参与导电。

而灯具类电气设备其外壳一般为玻璃、塑料、透明陶瓷等材料,所以不会发生漏电现象。

故可能发生漏电的设备是外壳为金属且工作时不可带电的一类电气设备。

危害的对象则是当该类设备发生漏电时接触设备的人,而且故障不排除,发展下去就会演变为短路,造成相关一系列危害。

3.漏电保护接线漏电保护的空气开关一定要将火线和零线同时接入,不可接PE线。

防范措施如果出现外壳带电,摸到有明显的刺痛感,这种情况就有可能属于漏电了,可以用我们前面介绍的办法进行检测。

遇到这种情况应该从防范漏电入手。

笔者在实践中总结出了三种方法,供大家参考:①最简单的做法就是交换火线和零线的位置(如将两相插头转180度后再插入插座),这种方法一般很有效。

因为有些用电器必须遵循“左零右火”的原则,插反后就会出现外壳漏电的现象。

电力系统主设备保护概述

电力系统主设备保护概述

电力系统主设备保护概述1. 引言在电力系统中,主设备的保护是确保电力系统平安运行的重要环节。

主设备包括变压器、发电机、母线、断路器等重要组件。

保护措施的有效实施和运行对于系统的可靠性和稳定性至关重要。

本文将对电力系统主设备保护进行概述,并介绍主要的保护设备和功能。

2. 变压器保护变压器是电力系统中非常重要的设备,用于改变电压的大小。

为了保证变压器的平安运行,需要对其进行保护。

常见的变压器保护设备包括差动保护、油温保护、短路保护等。

差动保护是最常用的一种变压器保护装置,通过对变压器两侧电流进行比拟,及时发现并切除故障线路,保护变压器不受损坏。

油温保护通过监测变压器内部油温,当油温超过设定值时,自动切除电源,防止变压器过热。

短路保护用于检测变压器绕组的短路故障,及时切除电源,防止故障扩大。

3. 发电机保护发电机是电力系统中的能量转换设备,其保护同样非常重要。

发电机保护主要包括差动保护、过流保护、欠频保护等。

差动保护是最常见的发电机保护装置,通过对发电机定子电流、励磁电流进行比拟,及时发现并切除故障线路,保护发电机。

过流保护用于检测发电机电流超过额定值的情况,及时切除电源,防止电流过载引起发电机损坏。

欠频保护用于监测发电机输出频率,当频率过低时,自动切除电源,防止发电机超负荷运行。

4. 母线保护母线是电力系统中连接各个主要设备的重要局部,其保护同样重要。

常见的母线保护设备包括差动保护、电压保护、过流保护等。

差动保护通过对母线两侧电流进行比拟,及时切除故障线路,保护母线。

电压保护用于监测母线电压,当电压异常时,自动切除电源,防止电压过高或过低对母线造成损害。

过流保护用于检测母线电流超过额定值的情况,及时切除电源,防止电流过载引起母线损坏。

5. 断路器保护断路器是电力系统中用于控制和保护设备的关键局部,其保护同样至关重要。

常见的断路器保护设备包括过电流保护、短路保护、欠频保护等。

过电流保护用于监测断路器电流,当电流超过额定值时,自动切除电源,防止电流过载引起断路器损坏。

继电保护之重合闸详解

继电保护之重合闸详解

继电保护之重合闸详解继电保护是电力系统中不可或缺的一部分,它可以保护电力设备和人员的安全。

其中,重合闸作为一种常见的继电保护方式,具有非常重要的作用。

本文将从什么是重合闸、重合闸的作用和分类、重合闸的工作原理和应用场景等方面进行详细介绍。

什么是重合闸重合闸,即接通断开后再次合上电路的过程,也称为合闸再生。

它是继电保护的一种重要手段,旨在防止瞬时故障后电力系统任一设备发生排除或影响电力系统安全稳定运行的后果。

重合闸的作用和分类作用重合闸的主要作用有以下几个方面:1.恢复正常供电:当电力系统发生故障时,需要进行排除故障并恢复正常供电。

这时候,重合闸可以帮助电力系统更快地恢复供电,减少停电时间。

2.防止系统运行不稳定:当电力系统发生故障后,如果不及时恢复供电并通断设备,会导致其他设备运行不稳定,甚至引起系统崩溃。

重合闸可以有效地避免这种情况的发生。

3.保护设备和人员安全:电力系统发生故障后,重合闸可以有效地避免设备和人员出现意外损伤或伤亡的情况。

分类根据重合闸的种类和方式,可以将其分为以下几类:依照种类1.手动重合闸:需要人工操作才能实现。

2.自动重合闸:在电力系统发生故障后,继电保护装置会自动进行重合闸操作。

自动重合闸可以有效地保护电力系统和人员安全。

依照方式1.一次性重合闸:重合闸一次之后,对于同一故障的再次出现不再进行重合闸操作。

2.多次重合闸:重合闸可以进行多次。

重合闸的工作原理重合闸的工作原理可以概括为以下三个步骤:1.继电保护检测故障:当电力系统发生故障时,继电保护会立即检测到故障的位置和类型。

2.发送操作信号:继电保护对于故障的类型和位置进行分析,然后发送操作信号给操作机构或自动装置。

3.执行操作:操作机构或自动装置按照操作信号进行操作,完成重合闸。

重合闸的应用场景重合闸通常应用于以下几个场景:1.短路故障后的恢复:当电力系统发生短路故障后,需要进行排除故障和恢复供电。

重合闸可以快速地进行恢复供电,避免过长的停电时间。

POE_供电原理详解

POE_供电原理详解

‘AVUA vvA 7一飞</fL_百兆P0E 「2 3Q 綾序传输数据.空闲对化7届供电模式P0供电设备原理详解标准的五类网线有四对双绞线但是在 10M BASE-T 和100M BASE-T 中只用到其中的两对。

IEEE80 2.3af 允许两种用法:1.应用空闲脚供电时4、5脚连接为正极,7、8脚连接为负极。

下图为利用空闲线(4,5,7,8)传递48V 的电源。

POE 系统架构图解POES 统PSE 供电rx»据流-二%带电数S受电端亍 *2.利用信号线(123,6)同时传递数据信号和 48V 的电源。

应用数据脚供电时,将DC 电源 加在传输变压器的中点,在这种方式下线对1、2和线对3、6可以为任意极性。

传输数据 所用的芯线上同时传输直流电,其输电采用与以太网数据信号不同的频率,不影响数据的传 输。

PDF 面谈一下1000M BASE-T PO 供电系统b 7 6 5 d 3 2 I■ nunrPAI \ r'Ai / I 说t侦I空阳对If4av&3 供电时as 对DC/OC标准不允许同时应用以上两种情况。

备PD 必须能够同时适应两种情况。

供48V 到低电压的转换是较容易的 电源提供设备 该标准规定供电电源通常是 ,但同时应有1500V 的绝缘安全电压。

PSE 只能提供一种用法,但是电源应用设 48V 、13W 的。

PD 设备提 +卜3aPitf 3rP*r 2 1 Pdtf 11 Pair 4 A UIl1Rjis 水A头87651321超五类四对线缆图3 RJ-45插座示意图— ■"1 -1-- a1 1' H ■J_ 1 1 X» f:专「1(r '卜1I- H •ri1. flffi 3. m 3”门菲4.匕a礼n 鶴: s.粽*.L_.-L. b-- k铠,A % / 八I 1 >'Y .1■ ' - hr/n■ • c\, ■' "■tX儿1 -7d ■■.»畀J \'■,,<八■r<1 VJ 1 yJrt \訓LrXIl >ir=■■'ll ,.!' ”戶 -jiPOE 12POEjePOE K 电设备 1,2 3 6线序供电D 受怵端网络銮压器 (t rans foraer)*11/V\A 八 'zvva'J V 八P0E_7aPD受体端H 络变压器 (t rans foraej)图4供电电路分解细化1000M BASE-T PO 麒电系统4个线序对均传输数据,故无空闲对, 均采用数据对供电 周 4左图,1脚和2脚、3脚和6脚通过网络变压器进行电压、信号的分频、分离出来的电 压连接到桥式整流进行整流供电,如图 5图5后段整流电路T1r y,\ r_^ 河/VWV J '丁 m •一」車 片丿广广二-厂t !=J1*POE 供电设备人啾序供电以上讨论的是POE adapter 供电模式,典型的 POE ada pter 如下图POE 交换机供电示意图上层网络的黝据揍人'♦将耒自上层阿络的叛掘混合电死N 后,以阿线的形式对外供电并同时传输网緡数据哗朋齡5K 計POE ada pter■)1玄电源输入LA4 POE另一种是通过POE 供电交换机供电图7 POE 供电交换机以太网交换机/集线器受电设备Mids pan设备的供电通道以太网交换机/集线器受电设备POE棋电过程协商供电当在一个网络中布置PSE供电端设备时,POE以太网供电工作过程如下所示。

继电保护知识详解

继电保护知识详解
3)电流与电压之间的相位角改变 正常运行时电流与电压间的相位角是负荷的功率因数角,一般约为20°
,三相短路时,电流与电压之间的相位角是由线路的阻抗角决定的,一般 为60°~85°,而在保护反方向三相短路时,电流与电压之间的相位角则是 180°+(60°~85°)。
01 02
04 03
电力系统发生故障后,工频电气量变化的主要特征是:
二、基本要求
02 速动性
速动性是指继电保护装置应能尽快地切除 故障,以减少设备及用户在大电流、低电 压运行的时间,降低设备的损坏程度,提 高系统并列运行的稳定性。
二、基本要求
02 一般必须快速切除的故障有:
1)使发电厂或重要用户的母线电压低于有效值(一般为0.7倍 额定电压)。 2)大容量的发电机、变压器和电动机内部故障。 3)中、低压线路导线截面过小,为避免过热不允许延时切除 的故障。 4)可能危及人身安全、对通信系统造成强烈干扰的故障。 故障切除时间包括保护装置和断路器动作时间,一般快速保护 的动作时间为0.04s~0.08s,最快的可达0.01s~0.04s,一般 断路器的跳闸时间为0.06s~0.15s,最快的可达0.02s~0.06s。 对于反应不正常运行情况的继电保护装置,一般不要求快速动 作,而应按照选择性的条件,带延时地发出信号。
继电保护知识详解
汇报人:某某某
继电保护
当电力系统中的电力元件(如发电 机、线路等)或电力系统本身发生了故 障危及电力系统安全运行时,能够向运 行值班人员及时发出警告信号,或者直 接向所控制的断路器发出跳闸命令以终 止这些事件发展的一种自动化措施和设 备。实现这种自动化措施的成套设备, 一般通称为继电保护装置。
行的可靠性。
四、分类
继电保护可按以下4种方式分类:

复合电压闭锁过流保护的原理详解

复合电压闭锁过流保护的原理详解

复合电压闭锁过流保护的原理1。

低电压元件,电压取自本侧的YH(TV)或变压器各侧的YH(TV)。

动作判据:动作值小于低电压元件整定值。

2。

负序电压元件,电压取自本侧或变压器各侧,动作判据:动作值大于负序电压元件整定值。

3。

过流元件,电流取自本侧的LH(TA),任一相电流大于过流定值。

两个电压元件是或的关系,加上过流元件,就满足复合电压闭锁过流保护的出口条件了。

就是电压满足条件(正序小于一定的值,一般额定电压的60%-65%;负序电压大于一定的值;零序大于一定的值,三者只要一个满足就可以,或的关系)和电流满足(正序电流大于一定的值)跳开关了.复压闭锁过流的具体含义是什么?包括三个条件:1、低压元件;2、负序电压元件;3、过流元件功能保护配置。

方向闭锁的复合电压闭锁的过流保护,具有两时限出口,第一时限出口跳分段开关;第二时限跳主变各侧开关。

零压闭锁零序电流保护,具有两时限出口,第一时限出口跳分段开关;第二时限跳主变各侧开关。

零序过流保护PT断线检测过负荷保护告警反应非电量故障的有载瓦斯保护测量功能配置:全部电量的测量采用交流采样获得,可测量电压、保护电流、零序电压电流。

电力系统出现故障时常伴随的现象是电流的增大和电压的降低,过流保护就是通过系统故障时电流的急剧增大来实现的。

但是由于大型设备、机械的起动也会造成电流的瞬间增大,有可能造成开关的误动,为了防止其误动,在保护中增加低电压元件,将PT电压引入保护装置中,构成低电压闭锁过流,只有在“电流的增大和电压的降低”这两个条件同时满足时才出口跳闸。

在将过流保护用于变压器的后备保护用时,再增加一个负序电压元件,作为一个闭锁条件,这样就构成了复合电压闭锁过流了。

用于变压器保护:正常运行时,由于无负序电压,保护装置不动作。

当外部发生不对称短路时,故障相电流启动元件动作,负序电压继电器动作,经变压器两侧断路器跳闸,切除故障。

(1)在后备保护范围内发生不对称短路时,由负序电压启动保护,因此具有较高灵敏度;(2)在变压器后(高压侧)发生不对称短路时,复合电压启动元件的灵敏度与变压器的接线方式无关;(3)由于电压启动元件只接于变压器的一侧,所以接线较简单。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、35KV线路保护线路保护具有以下功能:(1)电流速断保护(包括纵差保护)。

电流速断保护按被保护设备的短路电流整定,当短路电流超过整定值时,侧保护装置动作,断路器跳闸,电流速断保护一般没有时限,不能保护线路全长(为避免失去选择性),即存在保护的死区.为克服此缺陷,常采用略带时限的电流速断保护以保护线路全长.时限速断的保护范围不仅包括线路全长,而深入到相邻线路的无时限保护的一部分,其动作时限比相邻线路的无时限保护大一个级差.(2)过电流保护(包括方向过电流保护)。

过电流保护一般分为定时限与反时限过流保护,电流速断保护,中性点不接地系统的单相接地保护。

由电流继电器,时间继电器和信号继电器组成,电流互感器和电流继电器组成测量元件,用来判断通过线路电流是否超过标准,时间继电器为延时元件,它以适当的延时来保证装置动作有选择性,信号继电器用来发出保护动作信号。

正常运行时,电流继电器和时间继电器的触点都是断开的,当被保护区故障或电流过大时,电流继电器动作,通过其触点启动时间继电器,经过预定的延时后,时间继电器触点闭合,将断路器跳闸线圈接通,断路器跳闸,故障线路被切除,同时启动了信号继电器,信号牌掉下,并接通灯光或音响信号。

电流一过某个值就动作电磁式:将电流接入继电器线圈,电流越大安匝越大磁通越大吸合衔铁力越大,大于设定的弹簧阻力时吸合动作.电子式:电流在固定电阻上产生压降,经比较电路,信号放大,出口动作微机式:小CT二次变换,模数转换,进CPU,按程序比较定值,CPU发动作指令,出口继电器动作(3)过负荷保护。

负荷电流,在大多数情况下,都是三相对称的,故过负荷保护只要接入一相电流,电流继电器来实现,并进过一定的延时作用于信号。

选择保护安装在哪一侧时,要考虑它能够反映变压器所有各侧线圈过负荷情况。

(4)低周波减载。

发电厂需要这些保护.80-90年代以前,我们国家的变配电所主要是载波通讯.专门有校时装置.主要是保证各电网间的周波保持一致.目前用的是GPS授时.保证并网时周波一致.当电网负荷过大时,发电机会因超负荷导致转速下降,电网的频率发生向下波动,甚至停机的重大事故.为了电厂的正常供电就必需有上面的保护.当然这些保护在输变站.当电网周波偏低时,切除不重要的用电负荷叫减载.电网的周波数升高是靠发电站自动调节.一般来说,周波数的下降和用电负荷过重,及发电能力不足有关.低周减载装置是专门监测系统频率的保护装置。

当电压大于整定值、电流大于整定值时,系统负荷过重,频率下降。

下降的速度(滑差)小于整定值,当频率下降到整定值时出口就动作,投了低周保护压扳出口的开关就会被跳掉,甩掉部分系统负荷,保证系统正常运行。

低周减载保护有个滑差闭锁,如果系统频率不是均匀变化,开始时频率下降比较快,超过滑差闭锁定值,那么低周减载保护被闭锁二、主变压器保护主保护差动保护和瓦斯保护共同组成变压器的主保护。

变压器的保护有本体保护(主保护)和后备保护。

其中本体保护有重瓦斯保护、轻瓦斯保护、油温过高、压力释放等。

这些保护可以作用于信号和驱动断路器跳闸。

另外重瓦斯保护、压力释放和变压器差动保护一起作为变压器主保护。

差动保护作为变压器内部以及套管引出线相间短路的保护以及中性点直接接地系统侧的单相接地短路保护,同时对变压器内部绕组的匝间短路也能反应。

瓦斯保护能反应变压器内部的绕组相间短路、中性点直接地系统侧的单相接地短路、绕组匝间短路、铁芯或其它部件过热或漏油等各种故障。

由上可以看出,差动保护对变压器内部铁芯过热或因绕组接触不良造成的过热无法反应,且当绕组匝间短路时短路匝数很少时,也可能反应不出。

而瓦斯保护虽然能反应变压器油箱内部的各种故障,但对于套管引出线的故障无法反应,因此,通过瓦斯保护与差动保护共同组成变压器的主保护。

后备保护后备保护是主保护或断路器拒动时,用来切除故障的保护.可以分为近后备和远后备两中变压器后备保护则有一般有零序保护、过流保护、过负荷保护,中性点间隙保护等. 远后备保护是当主保护或断路器拒动时,由相邻电力设备或线路的保护来实现的后备保护近后备保护是当主保护拒动时,由本电力设备或线路的另一套保护来实现的后备的保护:当断路器拒动时,由断路器失灵保护来实现后备保护。

后备保护分为两种:1.近后备保护:本段线路末端,1段保护涉及不到的区域,由2段来跳闸;2.远后备保护:采用相邻线路或下一段线路的断路器跳闸,经过两个延时的时限,也称3段保护。

非电量保护非电量保护,顾名思义就是指由非电气量反映的故障动作或发信的保护,一般是指保护的判据不是电量(电流、电压、频率、阻抗等),而是非电量,如瓦斯保护(通过油速整定)、温度保护(通过温度高低)、防暴保护(压力)、防火保护(通过火灾探头等)、超速保护(速度整定)等。

非电量保护可对输入的非电量接点进行SOE记录和保护报文记录并上传,主要包括本体重瓦斯、调变重瓦斯、压力释放、冷控失电、本体轻瓦斯、调变轻瓦斯、油温过高等,经压板直接出口跳闸或发信报警。

对于冷控失电,可选择是否经本装置延时出口跳闸,最长延时可达300分钟。

还可选择是否经油温过高非电量闭锁,投入时只有在外部非电量油温过高输入接点闭合时才开放冷控失电跳闸功能。

⑴带比率制动的纵差保护及差动速断保护。

纵联差动保护采用差动继电器作保护的测量元件,用来比较被保护元件各端电流的大小和相位之差,从而判断保护区内是否发生短路。

由于纵联差动保护只在保护区内短路时才动作,不存在与系统中相邻元件保护的选择性配合问题,因而可以快速切除整个保护区内任何一点的短路,这是它的可贵优点。

但是,为了构成纵联差动保护装置,必须在被保护元件各端装设电流互感器,并将它们的二次线圈用辅助导线连接起来,接差动继电器。

由于受辅助导线条件的限制,纵向连接的差动保护仅限于用在短线路上,对于发电机、变压器及母线等,则可广泛采用纵联差动保护实现主保护。

⑵复合电压启动过流保护,第一时限跳母联开关,第二时限跳主变高低压侧开关。

⑶过负荷保护。

⑷重瓦斯、轻瓦斯保护。

⑸有载重瓦斯保护。

⑹零序电压保护。

1.中性点直接接地运行时的零序保护变压器零序保护由零序电流保护组成,电流元件接到变压器中性点电流互感器的二次侧。

为提高可靠性和满足选择性,变压器中性点均配置两段式零序电流保护,每段均设置两个延时。

零序保护I段的动作电流延时t1和t2与相邻元件单相接地保护I段相配合。

一般取t1=0.5~1.Os,而取t2=t1+△t为时限阶段。

零序保护I段以t1延时动作于母线解列,以缩小故障影响范围;动作后仍不能消除故障,再以t2延时动作于发变组解列灭磁。

设置I段的目的主要是对付母线及其附近的短路,因这类故障对电力系统影响特别严重,应尽快切除。

零序保护Ⅱ段的动作电流及相应的延时t3和t4与相邻元件零序保护的后备段相配合,而t4=t3+△t。

t3作用于母线解列,t4作用于解列灭磁。

为防止变压器与系统并列之前,在变压器高压侧发生单相接地而误跳母联断路器,零序保护动作于母线解列的出口回路应经主变高压侧断路器的辅助触点闭锁。

2.主变中性点不接地运行时的零序保护22OKV及以上的大型变压器高压绕组均采用分级绝缘,绝缘水平偏低,例如220kV变压器中性点冲击耐压为400kV,l0 min;工频耐压为200kV。

主变不接地运行时,单相接地故障引起的工频过电压将超过变压器中性点绝缘水平。

如220kV主变最高工作电压为242kV,而其中性点不能长时间耐受242/√3=140kV的稳态电压,同时暂态电压值可能高达252kV(取暂态系数为1.8),超过了工频过电压允许值200kV,这时中性点避雷器可能会在暂态过电压下放电。

避雷器按冲击过电压设计,热容量小,在工频过电压下放电后不能灭弧,将造成避雷器爆炸。

另外在系统故障引起断路器非全相跳、合闸时,若发生失步也会使中性点与地之间最高电压超过中性点耐压允许值,甚至引起避雷器爆炸。

对此,前述零序保护往往不能起到保护作用,故目前在变压器中性点装设了放电间隙作为过电压保护。

但由于放电间隙是一种比较粗糙的保护,受外界环境状况变化的影响较大,并不可靠,且放电时间不能允许过长。

因此又装设了专门的零序电流电压保护,其任务是及时切除变压器,防止间隙长时间放电,并作为放电间隙拒动的后备。

零序电压元件的输入取自相应的母线电压互感器的开口三角形,用于反应单相接地时的零序过电压,间隙零序电流元件的输入取自放电间隙对地连线的电流互感器,用于反应间隙放电电流。

单相接地后,若放电间隙未动,则零序电压元件(3Uo)动作,经延时t(一般取t≤0.5s)动作于解列灭磁,切除变压器;若间隙零序电流元件(3Io)动作,则瞬时动作于解列灭磁。

零序电压元件3U。

的动作电压应低于变压器中性点绝缘耐压水平,但在电力系统中单相接地且不失去接地中性点的情况下,保护装置不应动作。

定值需经过计算,一般电压互感器二次侧电压为150~180V(α=2~3)。

间隙零序电流元件3I。

的动作电流,根据放电电流的经验数据整定,一般一次动作电流取为100A。

过电压继电器,用作变压器中性点过电压保护元件;过电流继电器用作变压器中性点过电流保护元件。

(7)PT断线保护。

PT是电压互感器的英文符号,PT断线最主要的是其保护熔断器烧断。

原因主要是二次侧过载、绝缘下降或短路造成的。

PT断线还可能是安装方面的问题,若PT引线安装位置不正确或固定不可靠,工作时可能受到电磁力矩的作用,而由于PT引线所受的都是方向交变的电磁力的作用,时间一长,引线就容易因为疲劳而断裂。

⑼主变温度报警。

三、10KV线路保护线路保护具有以下功能:⑴电流速断保护。

⑵过电流保护。

⑶过负荷保护。

⑸低周波减载。

三、、10KV电容器保护电容器保护具有以下功能:⑴电流速断保护。

⑵过电流保护。

⑶过电压保护。

⑷欠电压保护。

⑸零序电压保护。

三相电流平衡时,没有零序电流,不平衡时产生零序电流,零序保护就是用零序互感器采集零序电流,当零序电流超过一定值(综保中设定),综保接触器吸合,断开电路。

零序、正序、负序是进行电路分析时人为的将要分析的量分解成三个分量。

一般同一个回路的导线全部穿过同一个电流互感器(也叫零序互感器)时,互感器的次级没有输出,也就是该回路零序电流为零。

当线路出现漏电时(漏电发生在互感器以下),穿过互感器的电流矢量和不再为零,互感器次级就会有输出电流,利用这个原理可以进行漏电保护。

四、开关柜“五防”电力系统中的五防是指:①防止误分、合断路器。

②防止带负荷分、合隔离开关。

③防止带电挂(合)接地线(接地开关)。

④防止带接地线(接地开关)合断路器(隔离开关)。

⑤防止误入带电间隔。

五、消弧消谐消弧线圈主要是由带气隙的铁芯和套在铁芯上的绕组组成,它们被放在充满变压器油的油箱内。

相关文档
最新文档