计量经济学实验一 一元回归模型

合集下载

《计量经济学》eviews实验报告一元线性回归模型详解

《计量经济学》eviews实验报告一元线性回归模型详解

计量经济学》实验报告一元线性回归模型-、实验内容(一)eviews基本操作(二)1、利用EViews软件进行如下操作:(1)EViews软件的启动(2)数据的输入、编辑(3)图形分析与描述统计分析(4)数据文件的存贮、调用2、查找2000-2014年涉及主要数据建立中国消费函数模型中国国民收入与居民消费水平:表1年份X(GDP)Y(社会消费品总量)200099776.339105.72001110270.443055.42002121002.048135.92003136564.652516.32004160714.459501.02005185895.868352.62006217656.679145.22007268019.493571.62008316751.7114830.12009345629.2132678.42010408903.0156998.42011484123.5183918.62012534123.0210307.02013588018.8242842.82014635910.0271896.1数据来源:二、实验目的1.掌握eviews的基本操作。

2.掌握一元线性回归模型的基本理论,一元线性回归模型的建立、估计、检验及预测的方法,以及相应的EViews软件操作方法。

三、实验步骤(简要写明实验步骤)1、数据的输入、编辑2、图形分析与描述统计分析3、数据文件的存贮、调用4、一元线性回归的过程点击view中的Graph-scatter-中的第三个获得在上方输入Isycx回车得到下图DependsntVariable:Y Method:LeastSquares□ate:03;27/16Time:20:18 Sample:20002014 Includedobservations:15VariableCoefficientStd.Errort-StatisticProb.C-3J73.7023i820.535-2.1917610.0472X0416716 0.0107S838.73S44 a.ooao R-squared0.991410 Meandependentwar119790.2 AdjustedR.-squared 0.990750 S.D.dependentrar 7692177 S.E.ofregression 7J98.292 Akaike infocriterion20.77945 Sumsquaredresid 7;12E^-08 Scliwarz 匚「爬伽20.37386 Loglikelihood -1&3.3459Hannan-Quinncriter. 20.77845 F-statistic 1I3&0-435 Durbin-Watsonstat0.477498Prob(F-statistic)a.oooooo在上图中view 处点击view-中的actual ,Fitted ,Residual 中的第一 个得到回归残差打开Resid 中的view-descriptivestatistics 得到残差直方图/icw Proc Qtjject PrintN^me FreezeEstimateForecastStatsResids凹Group:UNIIILtD Worktile:UN III LtLJ::Unti1DependentVariablesMethod;LeastSquares□ate:03?27/16Time:20:27Sample(adjusted):20002014Includedobservations:15afteradjustmentsVariable Coefficient Std.Errort-Statistic ProtJ.C-3373.7023^20.535-2.191761 0.0472X0.4167160.01075S38.735440.0000R-squared0.991410 Meandependeniwar1-19790.3 AdjustedR-squa.red0990750S.D.dependentvar 76921.77 SE.ofregre.ssion 7J98.292 Akaike infacriterion20.77945 Sumsquaredresid 7.12&-0S Schwarzcriterion 20.S73S6 Laglikelihood -153.84&9Hannan-Quinncrite匚20.77545 F-statistic1I3&0.435Durbin-Watsonstat 0.477498 ProbCF-statistic) a.ooaooo在回归方程中有Forecast,残差立为yfse,点击ok后自动得到下图roreestYFM J訓YForea空巾取且:20002015 AdjustedSErmpfe:2000231i mskJddd obaerratire:15Roof kter squa red Error理l%2Mean/^oLteError畐惯啟iJean Afe.PereersErro r5.451SSQThenhe鼻BI附GKWCE口.他腐4Prop&niwi□ooooooVactaree Propor^tori0.001^24G M『倚■底Props^lori09®475在上方空白处输入lsycs…之后点击proc中的forcase根据公式Y。

计量经济学上机实验

计量经济学上机实验

计量经济学上机实验上机实验一:一元线性回归模型实验目的:EViews软件的基本操作实验内容:对线性回归模型进行参数估计并进行检验上机步骤:中国内地2011年中国各地区城镇居民每百户计算机拥有量和人均总收入一.建立工作文件:1.在主菜单上点击File\New\Workfile;2.选择时间频率,A3.键入起始期和终止期,然后点击OK;二.输入数据:1.键入命令:DATA Y X2.输入每个变量的统计数据;3.关闭数组窗口(回答Yes);三.图形分析:1.趋势图:键入命令PLOT Y X2.相关图:键入命令 SCAT Y X 散点图:趋势图:上机结果:Yˆ11.958+0.003X=s (βˆ) 5.6228 0.0002t (βˆ) 2.1267 11.9826prob 0.0421 0.00002=0.831 R2=0.826 FR=143.584 prob(F)=0.0000上机实验二:多元线性回归模型实验目的:多元回归模型的建立、比较与筛选,掌握基本的操作要求并能根据理论对分析结果进行解释实验内容:对线性回归模型进行参数估计并进行检验上机步骤:商品的需求量与商品价格和消费者平均收入趋势图:散点图:上机结果:i Yˆ=132.5802-8.878007X1-0.038888X2s (βˆ) 57.118 4.291 0.419t (βˆ) 2.321 -2.069 -0.093prob 0.0533 0.0773 0.9286 R2=0.79 R2=0.73 F =13.14 prob(F)=0.00427三:非线性回归模型实验目的:EViews软件的基本操作实验内容:对线性回归模型进行参上机步骤:我国国有独立核算工业企业统计资料一.建立工作文件:1.在主菜单上点击File\New\Workfile;2.选择时间频率,A3.键入起始期和终止期,然后点击OK;二.输入数据:1.键入命令:DATA Y L K2.输入每个变量的统计数据;3.关闭数组窗口(回答Yes);三.图形分析:1.趋势图:键入命令PLOT Y K L2.相关图:键入命令 SCAT Y K L四.估计回归模型:键入命令LS Y C K L上机结果:Y =4047.866K1.262204L-1.227157s (βˆ) 17694.18 0232593 0.759696t (βˆ) 0.228768 5.426669 -1.615325prob 0.8242 0.0004 0.1407R2=0.989758 R2=0.987482 F=434.8689 prob(F)=0.0000上机实验四:异方差实验目的::掌握异方差的检验与调整方法的上机实现实验内容:我国制造工业利润函数行业销售销售行业销售销售实验步骤:一.检验异方差性1.图形分析检验:1) 观察Y、X相关图:SCAT Y X2) 残差分析:观察回归方程的残差图LS Y C X在方程窗口上点击Residual按钮;2. Goldfeld-Quant检验:SORT XSMPL 1 10LS Y C X(计算第一组残差平方和)SMPL 19 28LS Y C X(计算第二组残差平方和)计算F统计量,判断异方差性3.White检验:SMPL 1 28LS Y C X在方程窗口上点击:View\Residual\Test\White Heteroskedastcity 由概率值判断异方差性。

计量经济学实验报告

计量经济学实验报告

一、实验目的及要求:1、目的利用EVIEWS 实验软件,使学生在实验过程中全面了解和熟悉计量经济学的基本概念,熟悉一元线性回归模型估计的基本程序和基本方法。

2、内容及要求(1) 熟悉EVIEWS实验软件的基本操作程序和方法; (2) 掌握一元线性回归模型基本概念,了解其估计和检验原理 (3) 提交实验报告二、仪器用具:三、实验结果与数据处理:1下面是利用1970-1980年美国数据得到的回归结果。

其中Y 表示美国咖啡消费(杯/日.人),X 表示平均零售价格(美元/磅)。

注:262.2)9(2/=αt ,228.2)10(2/=αt6628.006.42)()1216.0(4795.06911.2ˆ2===-=R t se X Y tt)(值1. 写空白处的数值。

12. 对模型中的参数进行显著性检验。

3. 解释斜率系数1β的含义,并给出其95%的置信区间。

解:(1)1308.221216.06911.2)(00===ββse t0114.006.424795.0)(11-=-==tse ββ(2)用t 检验法分别对模型中的参数0β1β进行显著性水平检验: 在5%的显著性水平下,模型的自由度为11-2=9,且262.2)9(025.0=t 由于262.21308.220>=βt ,故该模型的截距项在统计上是显著的; 同理 262.206.421>=βt ,即斜率系数在统计上也是显著的。

(3)斜率系数4795.01-=β,小于0,在其他条件不变的情况下,咖啡的平均零售价格每增加一个单位,美国咖啡的日消费将平均减少0.4795个单位,说明咖啡的消费量与其平均零售价格呈负相关关系。

1β的95%的置信区间为:]4537.0,5053.0[)]ˆ(ˆ),ˆ(ˆ[12/112/1--+-即ββββααse t se t2美国各航空公司业绩的统计数据公布在《华尔街日报1999年年鉴》(The Wall Street Journal Almanac 1999)上。

一元线性回归模型(计量经济学)

一元线性回归模型(计量经济学)

总体回归函数说明被解释变量Y的平均状 态(总体条件期望)随解释变量X变化的 规律。至于具体的函数形式,则由所考 察的总体的特征和经济理论来决定。
在例2.1中,将居民消费支出看成是其可 支配收入的线性函数时,该总体回归函
数为: E (Y |X i)01 X i
它是一个线性函数。其中,0,1是未知
第二章 经典单方程计量经济学模型: 一元线性回归模型
§2.1 回归分析概述 §2.2 一元线性回归模型的基本假设 §2.3 一元线性回归模型的参数估计 §2.4 一元线性回归模型的统计检验 §2.5 一元线性回归模型的预测 §2.6 一元线性回归建模实例
§2.1 回归分析概述
一、变量间的关系及回归分析的基本概念 二、总体回归函数 三、随机扰动项 四、样本回归函数
1430 1650 1870 2112
1485 1716 1947 2200
2002
2420 4950 11495 16445 19305 23870 25025 21450 21285 15510
一个抽样
由于调查的完备性,给定收入水平X的消费 支出Y的分布是确定的。即以X的给定值为条 件的Y的分布是已知的,如 P(Y=561 | X = 800) =1/4。 进而,给定某收入Xi,可得消费支出Y的条 件均值,如 E(Y | X = 800) =605。 这样,可依次求出所有不同可支配收入水平 下相应家庭消费支出的条件概率和条件均值 ,见表2.1.2.
相关分析主要研究随机变量间的相关形式 及相关程度。变量间的相关程度可通过计 算相关系数来考察。
具有相关关系的变量有时存在因果关系,
这时,我们可以通过回归分析来研究它们
之间的具体依存关系。
课堂思考题

一元回归及检验实验报告

一元回归及检验实验报告

竭诚为您提供优质文档/双击可除一元回归及检验实验报告篇一:一元线性回归模型的参数估计实验报告山西大学实验报告实验报告题目:计量经济学实验报告学院:专业:课程名称:计量经济学学号:学生姓名:教师名称:崔海燕上课时间:一、实验目的:掌握一元线性回归模型的参数估计方法以及对模型的检验和预测的方法。

二、实验原理:1、运用普通最小二乘法进行参数估计;2、对模型进行拟合优度的检验;3、对变量进行显著性检验;4、通过模型对数据进行预测。

三、实验步骤:(一)建立模型1、新建工作文件并保存打开eviews软件,在主菜单栏点击File\new\workfile,输入startdate1978和enddate20XX并点击确认,点击save 键,输入文件名进行保存。

2输入并编辑数据在主菜单栏点击Quick键,选择empty\group新建空数据栏,先输入被解释变量名称y,表示中国居民总量消费,后输入解释变量x,表示可支配收入,最后对应各年分别输入数据。

点击name键进行命名,选择默认名称group01,保存文件。

得到中国居民总量消费支出与收入资料:xY年份19786678.83806.719797551.64273.219807944.24605.5198 184385063.919829235.25482.4198310074.65983.21984115 656745.7198511601.77729.2198613036.58210.9198714627 .788401988157949560.5198915035.59085.5199016525.994 50.9199118939.610375.8199222056.511815.3199325897.3 13004.7199428783.413944.2199531175.415467.919963385 3.717092.5199735956.218080.6199838140.919364.119994 027720989.3200042964.622863.920XX20XX20XX20XX20XX20XX46385.45127457408.164623.17 4580.485623.124370.126243.22803530306.233214.436811 .2注:y表示中国居民总量消费x表示可支配收入3、画散点图,判断被解释变量与解释变量之间是否为线性关系在主菜单栏点击Quick\graph出现对话框,输入“xy”,点击确定。

计量经济学第二篇一元线性回归模型

计量经济学第二篇一元线性回归模型

第二章 一元线性回归模型2.1 一元线性回归模型的基本假定有一元线性回归模型(统计模型)如下, y t = β0 + β1 x t + u t上式表示变量y t 和x t 之间的真实关系。

其中y t 称被解释变量(因变量),x t 称解释变量(自变量),u t 称随机误差项,β0称常数项,β1称回归系数(通常未知)。

上模型可以分为两部分。

(1)回归函数部分,E(y t ) = β0 + β1 x t ,(2)随机部分,u t 。

图2.1 真实的回归直线这种模型可以赋予各种实际意义,居民收入与支出的关系;商品价格与供给量的关系;企业产量与库存的关系;身高与体重的关系等。

以收入与支出的关系为例。

假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。

但实际上数据来自各个家庭,来自同一收入水平的家庭,受其他条件的影响,如家庭子女的多少、消费习惯等等,其出也不尽相同。

所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。

“线性”一词在这里有两重含义。

它一方面指被解释变量Y 与解释变量X 之间为线性关系,即另一方面也指被解释变量与参数0β、1β之间的线性关系,即。

1ty x β∂=∂,221ty β∂=∂0 ,1ty β∂=∂,2200ty β∂=∂2.1.2 随机误差项的性质随机误差项u t 中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。

所以在经济问题上“控制其他因素不变”是不可能的。

随机误差项u t 正是计量模型与其它模型的区别所在,也是其优势所在,今后咱们的很多内容,都是围绕随机误差项u t 进行了。

回归模型的随机误差项中一般包括如下几项内容: (1)非重要解释变量的省略,(2)数学模型形式欠妥, (3)测量误差等,(4)随机误差(自然灾害、经济危机、人的偶然行为等)。

2.1.3 一元线性回归模型的基本假定通常线性回归函数E(y t ) = β0 + β1 x t 是观察不到的,利用样本得到的只是对E(y t ) =β0 + β1 x t 的估计,即对β0和β1的估计。

计量经济学实验二-一元线性回归模型的估计、检验和预测

计量经济学实验二-一元线性回归模型的估计、检验和预测

目录一、加载工作文件 (7)二、选择方程 (7)1.作散点图 (7)2.进行因果关系检验 (9)三、一元线性回归 (10)四、经济检验 (12)五、统计检验 (13)六、回归结果的报告 (15)七、得到解释变量的值 (15)八、预测应变量的值 (17)实验二一元线形回归模型的估计、检验和预测实验目的:掌握一元线性回归模型的估计、检验和预测方法。

实验要求:选择方程进行一元线性回归,进行经济、拟合优度、参数显著性和方程显著性等检验,预测解释变量和应变量。

实验原理:普通最小二乘法,拟合优度的判定系数R2检验和参数显著性t检验等,计量经济学预测原理。

实验步骤:已知广东省宏观经济部分数据如表2-1所示,要根据这些数据研究和分析广东省宏观经济,建立宏观计量经济模型,从而进行经济预测、经济分析和政策评价。

实验二~实验十二主要都是用这些数据来完成一系列工作。

表2-1 广东省宏观经济数据续上表续上表一、加载工作文件广东省宏观经济数据已经制成工作文件存在盘中,命名为GD01.WF1,进入EViews后选择File/Open打开GD01.WF1。

二、选择方程根据广东数据(GD01.WF1)选择收入法国国内生产总值(GDPS)、财政收入(CS)、财政支出(CZ)和社会消费品零售额(SLC),分别把①CS作为应变量,GDPS作为解释变量;②CZ作为应变量,CS作为解释变量;③SLC作为应变量,GDPS作为解释变量进行一元线性回归分析。

1.作散点图从三个散点图(图2-1~图2~3)可以看出,三对变量都呈现线性关系。

图2-1 图2-2图2-3 2.进行因果关系检验从三个因果关系检验可以看出,GDPS是CS的因;CS不是CZ 的因;GDPS不是SLC的因。

但根据理论CS是CZ的因,GDPS是SLC的因,可能是由于指标设置问题。

所以还是把CS作为应变量,GDPS作为解释变量;CZ作为应变量,CS作为解释变量;SLC作为应变量,GDPD作为解释变量进行一元线性回归分析。

计量经济学实验一一元线性回归完成版

计量经济学实验一一元线性回归完成版

计量经济学实验⼀⼀元线性回归完成版实验⼀⼀元线性回归⽅程1.下表是中国2007年各地区税收Y和国内⽣产总值GDP的统计资料。

单位:亿元要求,运⽤Eviews软件:(1)作出散点图,建⽴税收随国内⽣产总值GDP变化的⼀元线性回归⽅程,并解释斜率的经济意义;解:散点图如下:得到估计⽅程为:0.07104710.62963=-y x这个估计结果表明,GDP 每增长1亿元,各地区税收将增加0.071047亿元。

(2) 对所建⽴的回归⽅程进⾏检验;解:从回归的估计的结果来看,模型拟合得较好。

可决系数20.7603R =,表明各地区税收变化的76.03%可由GDP 的变化来解释。

从斜率项的t 检验值看,⼤于5%显著性⽔平下⾃由度为229n -=的临界值0.025(29) 2.05t =,且该斜率满⾜0<0.071047<1,表明2007年,GDP 每增长1亿元,各地区税收将增加0.071047亿元。

(3) 若2008年某地区国内⽣产总值为8500亿元,求该地区税收收⼊的预测值及预测区间。

解:由上述回归⽅程可得地区税收收⼊的预测值:0.0710********.62963593.3Y =-= 下⾯给出税收收⼊95%置信度的预测区间:由于国内⽣产总值X 的样本均值与样本房差为()8891.126()57823134E X Var X ==于是,在95%的置信度下,0()E Y 的预测区间为593.3 2.045±593.3113.4761=±或(479.8239,706.7761)当GDP 为8500亿元时地区的税收收⼊的个值预测值仍为593.3。

同样的,在95%的置信度下,该地区的税收收⼊的预测区间为593.3 2.045593.3641.0421±=±或(-47.7,1234.3)。

资料来源:《深圳统计年鉴2002》,中国统计出版社解:(1)建⽴深圳地⽅预算内财政收⼊对GDP 的回归模型;得到回归⽅程:?0.134582 3.611151yx =-(2)估计所建⽴模型的参数,解释斜率系数的经济意义;X 的系数为0.314582,常数项为-3.611151。

实验3计量经济学实验一元线性回归模型

实验3计量经济学实验一元线性回归模型
ˆ0~N(0,,n(2Xi XX i2 )2)
ˆ1 ~N(1,,
2
) (Xi X)2
三、知识点回顾
n 4、最小二乘估计量的性质及分布
随机干扰项 i 的方差 2 的估计 ˆ 0 和 ˆ 1 的方差表达式中都包含随机干扰项 i 的方差 2
,由于随机干扰项 i 实际上是无法观察测量的,因此其
量 Y 的平均值。
三、知识点回顾
1、四种重要的关系式
(2)总体回归函数(方程): E(YXi)01Xi
其中总体回归参数真值 0 , 1 是未知的;总体回归方程也是 未知的。
(3)样本回归函数(方程): Yˆi ˆ0 ˆ1Xi
在实际应用中,从总体中抽取一个样本,进行参数估计,从 而获得估计的回归方程,系数 ˆ 0 , ˆ1 为估计的回归系数;用 这个估计的回归方程近似替代总体回归方程,其中估计的回 归系数 ˆ 0 , ˆ1 是总体参数真值 0 , 1 的估计值;基于估计方程 计算的 Y ˆ i 就为 E (Y X i ) 的估计值; 由于我们从来就无法知道真实的回归方程,因此计量经济学 分析注重的是这个估计的回归方程和估计的回归系数;
据;普通最小二乘法给出的判断拟合程度的标准是:残差平
方和最小,即:m in Q ne i2n(Y i Y ˆi)2n Y i (ˆ0ˆ1 X i) 2
i 1
i 1
i 1
最小二乘法就是:在使上述残差平方和Q 达到最小时,确定
模型中的参数 ˆ 0 和 ˆ 1 的值,或者说在给定观测值之下,选
择出 ˆ 0 , ˆ1 的值,使残差平方和Q 达到最小。
接近,这也说明OLS估计值是非常有价值的。
三、知识点回顾
n 4、最小二乘估计量的性质及分布

计量经济学 第4章 一元线性回归模型

计量经济学 第4章 一元线性回归模型

注意:
1、如果假设1、2满足,则假设3也满足;
2、如果假设4满足,则假设2也满足
以上假设也称为线性回归模型的经典假设或高斯 (Gauss)假设,满足该假设的线性回归模型,也 称为经典线性回归模型(Classical Linear Regression Model, CLRM)。
第二节 最小二乘法(OLS)
利用OLS来估计(4.3)式,可以得到所谓的估计回归直线,
ˆX ˆ a u
残差=实际值—估计值
ˆX ) ˆ Y (a ˆ Y Y ˆ u
2、计算残差的2次方的和,即残差平方和(RSS),得
ˆX )]2 ˆ 2 [Y (a ˆ u
-973 1314090 1822500 947508 -929 975870 1102500 863784 -445 334050 562500 198381 -412 185580 202500 170074 -159 23910 22500 25408 28 4140 22500 762 402 180720 202500 161283 511 382950 562500 260712 1018 1068480 1102500 1035510 963 1299510 1822500 926599 5769300 7425000 4590020
对于总体回归模型, y f ( x1 , x2 , , xk ) u 特别地,当只有一个自变量且 f ( x) 0 1 x 时,则有: (4.3) y 0 1 x u
0 为直线的截距, 1 为直 其中 0 和 1 为两个待定参数, 线的斜率。我们称(4.3)为一元线性总体回归模型。
函数关系与相关关系的区别
确定的函数关系可以直接用于经济活动,无需分析。

一元线性回归模型(计量经济学)

一元线性回归模型(计量经济学)

回归分析是一种统计方法,用于研究变量之间的关系。它基于最小二乘法,寻找最合适的直线来描述变 量间的线性关系。通过回归分析,我们可以理解变量之间的因果关系和预测未知数据。
一元线性回归模型的假设
1 线性关系
2 独立误差
一元线性回归模型假设自变量和因变量之 间存在线性关系。
模型的残差项是独立的,不受其他因素的 影响。
3 常数方差
4 正态分布
模型的残差项具有恒定的方差,即方差齐 性。
模型的残差项服从正态分布。
一元线性回归模型的估计和推断
1
模型估计
使用最小二乘法估计模型的回归系数。
2
参数推断
进行参数估计的显著性检验和置信区间估计。
3
模型拟合程度
使用残差分析和R平方评估模型的拟合程度。
模型评估和解释结果
通过残差分析和R平方等指标评估模型的拟合程度,并解释模型中回归系数的 含义。了解如何正确使用模型的结果,并识别异常值和离群点对模型的影响。
一元线性回归模型(计量 经济学)
在本节中,我们将介绍一元线性回归模型,探讨回归分析的基本概念和原理, 了解一元线性回归模型所做的假设,并学习模型的估计和推断方法。我们还 将探讨模型评估和解释结果的技巧,并通过实例应用和案例分析进一步加深 对该模型的理解。最后,我们将总结和得出结论。
回归分析的基本概念和原理
实例应用和案例分析
汽车价格预测Байду номын сангаас
使用一元线性回归模型预 测汽车价格,考虑车龄、 里程等因素。
销售趋势分析
通过一元线性回归模型分 析产品销售的趋势,并预 测未来销售。
学术成绩预测
应用一元线性回归模型预 测学生的学术成绩,考虑 学习时间、背景等因素。

计量经济学实验报告一元线性回归模型实验

计量经济学实验报告一元线性回归模型实验

2013-2014第1学期计量经济学实验报告实验(一):一元线性回归模型实验学号姓名:专业:国际经济与贸易选课班级:实验日期:2013年12月2日实验地点:K306实验名称:一元线性回归模型实验【教学目标】《计量经济学》是实践性很强的学科,各种模型的估计通过借助计算机能很方便地实现,上机实习操作是《计量经济学》教学过程重要环节。

目的是使学生们能够很好地将书本中的理论应用到实践中,提高学生动手能力,掌握专业计量经济学软件EViews的基本操作与应用。

利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和区间预测。

【实验目的】使学生掌握1.Eviews基本操作:(1)数据的输入、编辑与序列生成;(2)散点图分析与描述统计分析;(3)数据文件的存贮、调用与转换。

2. 利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和区间预测【实验内容】1.Eviews基本操作:(1)数据的输入、编辑与序列生成;(2)散点图分析与描述统计分析;(3)数据文件的存贮、调用与转换;2. 利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和区间预测。

实验内容以下面1、2题为例进行操作。

1、为了研究深圳地方预算中财政收入与国内生产总值关系,运用以下数据:(1)建立深圳的预算内财政收入对GDP的回归;(2)估计模型的参数,解释斜率系数的意义;(3)对回归结果进行检验;(4)若2002年的国内生产总值为3600亿元,试确定2002年财政收入的预测值和预α=)。

测区间(0.052、在《华尔街日报1999年年鉴》(The Wall Street Journal Almanac 1999)上,公布有美国各航空公司业绩的统计数据。

航班正点准时到达的正点率和此公司每10万名乘客中投诉1(1)做出上表数据的散点图(2)依据散点图,说明二变量之间存在什么关系?(3)描述投诉率是如何根据航班正点率变化,并求回归方程。

计量经济学一元线性回归模型总结

计量经济学一元线性回归模型总结

第一节 两变量线性回归模型一.模型的建立1.数理模型的基本形式y x αβ=+ (2.1)这里y 称为被解释变量(dependent variable),x 称为解释变量(independent variable)注意:(1)x 、y 选择的方法:主要是从所研究的问题的经济关系出发,根据已有的经济理论进行合理选择。

(2)变量之间是否是线性关系可先通过散点图来观察。

2.例如果在研究上海消费规律时,已经得到上海城市居民1981-1998年期间的人均可支配收入和人均消费性支出数据(见表1),能否用两变量线性函数进行分析?表1.上海居民收入消费情况年份 可支配收入 消费性支出 年份 可支配收入 消费性支出 1981 636.82 585 1990 2181.65 1936 1982 659.25 576 1991 2485.46 2167 1983 685.92 615 1992 3008.97 2509 1984 834.15 726 1993 4277.38 3530 1985 1075.26 992 1994 5868.48 4669 19861293.24117019957171.91586819871437.09128219968158.746763 19881723.44164819978438.896820 19891975.64181219988773.168662.一些非线性模型向线性模型的转化一些双变量之间虽然不存在线性关系,但通过变量代换可化为线性形式,这些双变量关系包括对数关系、双曲线关系等。

例3-2 如果认为一个国家或地区总产出具有规模报酬不变的特征,那么采用人均产出y与人均资本k的形式,该国家或者说地区的总产出规律可以表示为下列C-D生产函数形式y Akα=(2.2)也就是人均产出是人均资本的函数。

能不能用两变量线性回归模型分析这种总量生产规律?3.计量模型的设定 (1)基本形式:y x αβε=++ (2.3) 这里ε是一个随机变量,它的数学期望为0,即(2.3)中的变量y 、x 之间的关系已经是不确定的了。

计量经济学第二章经典单方程计量经济学模型:一元线性回归模型

计量经济学第二章经典单方程计量经济学模型:一元线性回归模型

第二章经典单方程计量经济学模型:一元线性回归模型一、内容提要本章介绍了回归分析的基本思想与基本方法。

首先,本章从总体回归模型与总体回归函数、样本回归模型与样本回归函数这两组概念开始,建立了回归分析的基本思想。

总体回归函数是对总体变量间关系的定量表述,由总体回归模型在若干基本假设下得到,但它只是建立在理论之上,在现实中只能先从总体中抽取一个样本,获得样本回归函数,并用它对总体回归函数做出统计推断。

本章的一个重点是如何获取线性的样本回归函数,主要涉及到普通最小二乘法(OLS)的学习与掌握。

同时,也介绍了极人似然估计法(ML)以及矩估计法(MM)。

本章的另一个重点是对样本回归函数能否代表总体回归函数进行统计推断,即进行所谓的统计检验。

统计检验包括两个方面,一是先检验样本回归函数与样本点的“拟合优度”, 第二是检验样本回归函数与总体回归函数的“接近”程度。

后者又包扌舌两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成:第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。

本章还有三方面的内容不容忽视。

其一,若干基本假设。

样本回归函数参数的估计以及对参数估计量的统计性质的分析以及所进行的统计推断都是建立在这些基本假设之上的。

其二,参数估计量统计性质的分析,包括小样本性质与大样本性质,尤其是无偏性、有效性与一致性构成了对样本估计量优劣的最主要的衡量准则oGoss-niarkov定理表明OLS估计量是最佳线性无偏估计量。

其三,运用样本回归函数进行预测,包扌舌被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。

二、典型例题分析例1、令kids表示一名妇女生育孩子的数目,educ表示该妇女接受过教育的年数。

生育率对教育年数的简单回归模型为kids= 00 + P i educ+ “(1)随机扰动项〃包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变卞的影响吗?请解释。

计量经济学【一元线性回归模型——参数估计】

计量经济学【一元线性回归模型——参数估计】

ˆ0计量ˆ1 和
可以分别表示为被解释变量观测Y值i
的线
性组合(线性函数);
ˆ证1 明
如( X下i : X )(Yi (Xi X )2
Y
)
(Xi X) (Xi X )2
(Yi
Y
)
ki (Yi Y )
其中ki :
(Xi X) (Xi X )2
ki
对ki于引0 进的 ki (X容i 易X证) 明有k如i X下i 的1 特性k:i2
2
,
,
,
,
,
,
,
,
i
1,
2,
n
假设3:随机误差项在不同样本点之间是独立的,不

Cov(i , j ) 0,,,,,,,i j,,,,i, j 1, 2, n
在序列相关,即:
一、一元线性回归模型的基本假设
假设 4:随机误差项与解释变量之间不相关, 即:
Cov( Xi , i ) 0,,,,,,,,,,,i 1, 2, n
:待估
E(Y
总样体本回回归归函函数数形形式式::Yˆi
| Xi)
ˆ0
0 ˆ1X i
1X i
其 计
中 估

ˆ0 , ˆ1 法ˆ0,, ˆ1求
是ˆ00,,ˆ11 出
的估计值,我们需要找到一种参数 , 并0 ,且1 这 种 参 数 估 计 方 法 保 证 了 估
计值 数
与总体真值
尽可能地接近;这种参
i
根据微 小,

分中
ˆ0 , ˆ1








使 i
ei2
待定系数

计量经济学eviews一元线性回归模型实验指导

计量经济学eviews一元线性回归模型实验指导

第二章 一元线性回归模型一、 实验目的掌握EViews 软件的基本功能,理解一元线性回归模型及最小二乘估计的基本原理。

二、 基本知识点:样本回归方程与总体回归方程的联系与区别;满足古典假设的前提,一元线性回归模型的最小二乘法参数估计,一元线性回归模型的检验以及均值与个值预测。

三、 实验内容及要求:依据经济学理论,以实际数据为基础,建立经济数学模型,分析经济变量之间的数量关系。

以本章所学内容,研究2012年中国各地区农村家庭人均生活消费支出与人均纯收入之间关系,数据来源于《2013年中国统计年鉴》。

要求:在认真理解本章内容的基础上,通过实验掌握一元线性回归模型的实际应用方法,并熟悉EViews 软件的基本使用方法。

四、 实验指导:由经济学理论知,收入是影响消费的主要因素,二者之间有密切关系。

二者之间关系的散点图如图2.4.1所示。

图2.4.1说明,各地区农村居民家庭人均生活消费支出与家庭人均纯收入大致呈现出线性相关关系。

(CD 表示农村居民家庭人均生活消费支出,RD 农村居民家庭人均纯收入)图2.4.1 RD —CD 散点图故假设二者之间关系设定为一元线性回归模型:i i i rd cd μββ++=10,其中cd i 各地区农村居民家庭人均生活消费支出,rd i 为各地区农村居民家庭人均纯收入,μi 为随机误差项,即除人均收入外,影响农村居民家庭人均生活消费支出的其他因素。

假设该模型满足古典假设,可运用OLS 方法估计模型的参数。

利用计量经济学软件EViews5.0。

建立工作文件STEP1:进入EViews 目录,然后双击EViews 程序图标,进入EViews 主页见图2.4.2。

图2.4.2 EViews工作界面STEP2:点击Eviews主页面菜单\Workfile见图2.4.3,弹出work对话框(图2.4.4)。

在work type中选择Unsteuctured/Undated【由于本例是截面数据】,并在observation中输入观察值得个数,本例为31(图2.4.4),点击OK出现数据编辑窗口(图2.4.5)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二一元回归模型
【实验目的】
掌握一元线性、非线性回归模型的建模方法
【实验内容】
建立我国税收预测模型
【实验步骤】
【例1】建立我国税收预测模型。

表1列出了我国1985-1998年间税收收入Y和国内生产总值(GDP)x的时间序列数据,请利用统计软件Eviews建立一元线性回归模型。

一、建立工作文件
⒈菜单方式
在录入和分析数据之前,应先创建一个工作文件(Workfile)。

启动Eviews软件之后,在主菜单上依次点击File\New\Workfile(菜单选择方式如图1所示),将弹出一个对话框(如图2所示)。

用户可以选择数据的时间频率(Frequency)、起始期和终止期。

图1 Eviews菜单方式创建工作文件示意图
图2 工作文件定义对话框
本例中选择时间频率为Annual(年度数据),在起始栏和终止栏分别输入相应的日期85和98。

然后点击OK,在Eviews软件的主显示窗口将显示相应的工作文件窗口(如图3所示)。

图3 Eviews工作文件窗口
一个新建的工作文件窗口内只有2个对象(Object),分别为c(系数向量)和resid(残差)。

它们当前的取值分别是0和NA(空值)。

可以通过鼠标左键双击对象名打开该对象查看其数据,也可以用相同的方法查看工作文件窗口中其它对象的数值。

⒉命令方式
还可以用输入命令的方式建立工作文件。

在Eviews软件的命令窗口中直接键入CREATE命令,其格式为:
CREATE 时间频率类型起始期终止期
本例应为:CREATE A 85 98
二、输入数据
在Eviews软件的命令窗口中键入数据输入/编辑命令:
DA TA Y X
此时将显示一个数组窗口(如图4所示),即可以输入每个变量的数值
图4 Eviews数组窗口
三、图形分析
借助图形分析可以直观地观察经济变量的变动规律和相关关系,以便合理地确定模型的数学形式。

⒈趋势图分析
命令格式:PLOT 变量1 变量2 ……变量K
作用:⑴分析经济变量的发展变化趋势
⑵观察是否存在异常值
本例为:PLOT Y X
⒉相关图分析
命令格式:SCAT 变量1 变量2
作用:⑴观察变量之间的相关程度
⑵观察变量之间的相关类型,即为线性相关还是曲线相关,曲线相关时大致是哪种类型的曲线
说明:⑴SCAT命令中,第一个变量为横轴变量,一般取为解释变量;第二个变量为纵轴变量,一般取为被解释变量
⑵SCAT命令每次只能显示两个变量之间的相关图,若模型中含有多个解释变量,可以逐个进行分析
⑶通过改变图形的类型,可以将趋势图转变为相关图
本例为:SCA T Y X
图5 税收与GDP趋势图
图5、图6分别是我国税收与GDP时间序列趋势图和相关图分析结果。

两变量趋势图
分析结果显示,我国税收收入与GDP 二者存在差距逐渐增大的增长趋势。

相关图分析显示,我国税收收入增长与GDP 密切相关,二者为非线性的曲线相关关系。

图6 税收与GDP 相关图
三、估计线性回归模型
在数组窗口中点击Proc\Make Equation ,如果不需要重新确定方程中的变量或调整样本区间,可以直接点击OK 进行估计。

也可以在Eviews 主窗口中点击Quick\Estimate Equation ,在弹出的方程设定框(图7)内输入模型:
Y C X 或 X C C Y *+=)2()1(
图7 方程设定对话框
还可以通过在Eviews 命令窗口中键入LS 命令来估计模型,其命令格式为:
LS 被解释变量 C 解释变量
系统将弹出一个窗口来显示有关估计结果(如图8所示)。

因此,我国税收模型的估计式为:
x y
0946.054.987ˆ+= 这个估计结果表明,GDP 每增长1亿元,我国税收收入将增加0.09646亿元。

图8 我国税收预测模型的输出结果
五、估计非线性回归模型
由相关图分析可知,变量之间是非线性的曲线相关关系。

因此,可初步将模型设定为指数函数模型、对数模型和二次函数模型并分别进行估计。

在Eviews 命令窗口中分别键入以下命令命令来估计模型:
双对数函数模型:LS log(Y) C log(X) 对数函数模型:LS Y C log(X) 指数函数模型:LS log(Y) C X 二次函数模型:LS Y C X X^2
还可以采取菜单方式,在上述已经估计过的线性方程窗口中点击Estimate 项,然后在弹出的方程定义窗口中依次输入上述模型(方法通线性方程的估计),其估计结果显示如图9、图10、图11图、12所示。

双对数模型:x y
ln 6823.02704.1ˆln += (3.8305) (21.0487)
9736.02=R 9714.02=R 05.443=F
对数模型:
x y ln 92.298532.26163ˆ+-=
(-8.3066) (9.6999)
8869.02=R 8775.02=R 0875.94=F
指数模型:x y
5
1007.25086.7ˆln -*+= (231.7463) (27.2685)
9841.02=R 9828.02=R 57.743=F
二次函数模型:2
71058.50468.07.1645ˆx x y -*++=
(7.4918) (3.3422) (3.4806)
9918.02=R 9903.02=R 78.661=F
图9 双对数模型回归结果
图10 对数模型回归结果
图11 指数模型回归结果
图12 二次函数模型回归结果
六、模型比较
四个模型的经济意义都比较合理,解释变量也都通过了T检验。

但是从模型的拟合优
R值最大,其次为指数函数模型。

因此,对这两个模型再做进一度来看,二次函数模型的2
步比较。

在回归方程(以二次函数模型为例)窗口中点击View\Actual,Fitted,Residual\ Actual,Fitted,Residual Table(如图13),可以得到相应的残差分布表。

图13 回归方程残差分析菜单
上述两个回归模型的残差分别表分别如下(图14、图15)。

比较两表可以发现,虽然二次函数模型总拟合误差较小,但其近期误差却比指数函数模型大。

所以,如果所建立的模型是用于经济预测,则指数函数模型更加适合。

图14 二次函数回归模型残差分别表
图15 指数函数模型残差分布表
练习题
1.下表是中国2007年各地区税收Y和国内生产总值GDP的统计资料。

单位:亿元
要求,运用Eviews软件:
(1)作出散点图,建立税收随国内生产总值GDP变化的一元线性回归方程,并解释斜率的
经济意义;
(2)对所建立的回归方程进行检验;
(3)若2008年某地区国内生产总值为8500亿元,求该地区税收收入的预测值及预测区间。

资料来源:《深圳统计年鉴2002》,中国统计出版社
(1)建立深圳地方预算内财政收入对GDP的回归模型;
(2)估计所建立模型的参数,解释斜率系数的经济意义;
(3)对回归结果进行检验;
(4)若是2005年年的国内生产总值为3600亿元,确定2005年财政收入的预测值和预
α=)。

测区间(0.05
根据上表资料:
(1)建立每股帐面价值和当年红利的回归方程;
(2)解释回归系数的经济意义;
(3)若序号为6的公司的股票每股帐面价值增加1元,估计当年红利可能为多少?4. 美国各航空公司业绩的统计数据公布在《华尔街日报1999年年鉴》(The Wall Street Journal
1
(1)画出这些数据的散点图
(2)根据散点图。

表明二变量之间存在什么关系?
(3)求出描述投诉率是如何依赖航班按时到达正点率的估计的回归方程。

1资料来源:(美)David R.Anderson等《商务与经济统计》,第405页,机械工业出版社
(4)对估计的回归方程的斜率作出解释。

(5)如果航班按时到达的正点率为80%,估计每10万名乘客投诉的次数是多少?
试建立曲线回归方程y
ˆ=a bx e (Y ˆ= a ln +b x )并进行计量分析。

6. 为研究美国软饮料公司的广告费用X 与销售数量Y 的关系,分析七种主要品牌软饮料公司的有关数据2(见下表)
分析广告费用对美国软饮料工销售影响的数量关系。

7. 表中是中国1978年-1997年的财政收入Y 和国内生产总值X 的数据:
中国国内生产总值及财政收入 单位:亿元
2
资料来源:(美)David R.Anderson 等《商务与经济统计》,第405页,机械工业出版社
试根据这些数据完成下列问题;
(1)建立财政收入对国内生产总值的简单线性回归模型,并解释斜率系数的经济意义; (2)估计所建立模型的参数,并对回归结果进行检验;
(3)若是1998年的国内生产总值为78017.8亿元,确定1998年财政收入的预测值和预测区间(0.05α=)。

相关文档
最新文档