六年级数学易考易错题集锦
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学易考易错题集锦
一、培优题易错题
1.列方程解应用题:
(1)一个箱子,如果装橙子可以装18个,如果装梨可以装16个,现共有橙子、梨400个,而且装梨的箱子是装橙子箱子的2倍.请算一下,装橙子和装梨的箱子各多少个?(2)一群小孩分一堆苹果,每人3个多7个,每人4个少3个,求有几个小孩?几个苹果?
(3)一架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的速度和两城之间的航程.
【答案】(1)解:设装橙子的箱子x个,则装梨的箱子2x个,依题意有
18x+16×2x=400,
解得x=8,
2x=2×8=16.
答:装橙子的箱子8个,则装梨的箱子16个
(2)解:设有x个小孩,
依题意得:3x+7=4x﹣3,
解得x=10,
则3x+7=37.
答:有10个小孩,37个苹果
(3)解:设无风时飞机的航速为x千米/小时.
根据题意,列出方程得:
(x+24)× =(x﹣24)×3,
解这个方程,得x=840.
航程为(x﹣24)×3=2448(千米).
答:无风时飞机的航速为840千米/小时,两城之间的航程2448千米
【解析】【分析】(1)根据梨和橙子与各自箱数分别相乘,相加为两者的总数,求出装梨和橙子的箱子数。
(2)利用两种分法的苹果数是相同的,列出方程求解出小孩数和苹果数。
(3)利用逆风和顺风的路程是相同的,列出方程求出速度,再利用速度和时间求出航程。
2.用“⊕”定义一种新运算:对于有理数a和b,规定a⊕b=2a+b,如1⊕3=2×1+3=5 (1)求2⊕(﹣2)的值;
(2)若[()⊕(﹣3)]⊕ =a+4,求a的值.
【答案】(1)解:原式=2×2+(﹣2)=2
(2)解:根据题意可知:
2[(a+1)+(﹣3)]+ =a+4,
2(a﹣2)+ =a+4,
4(a﹣2)+1=2(a+4),
4a﹣8+1=2a+8,
2a=15,
a= .
【解析】【分析】(1)根据定义的新运算,进行计算。
(2)根据题目中定义的新运算,写出算式,计算出a的值
3.某工厂一周计划每天生产电动车80辆,由于工人实行轮休,每天上班人数不同,实际每天生产量与计划量相比情况如表(增加的为正数,减少的为负数):
日期一二三四五六日
增减数/辆+4-1+2-2+6-3-5
(2)本周总生产量是多少辆?比原计划增加了还是减少了?增加或减少多少辆?
【答案】(1)解:生产量最多的一天比生产量最少的一天多生产6-(-5)=6+5=11辆;(2)解:总产量4+(-1)+2+(-2)+6+(-3)+(-5)+80×7=561辆,
比原计划增加了,增加了561-560=1辆.
【解析】【分析】(1)根据列表得到生产量最多的一天是星期五,是(80+6)辆,产量最少的一天是星期日是(80-5)辆,生产量最多的一天比生产量最少的一天多生产6-(-5)辆;(2)根据题意总产量是80×7+4+(-1)+2+(-2)+6+(-3)+(-5),找出相反数,再由减去一个数等于加上这个数的相反数,求出本周总生产量,得到比原计划增加或减少了的值.
4.已知:如图,这是一种数值转换机的运算程序.
(1)若第1次输入的数为2,则第1次输出的数为1,那么第2次输出的数为;若第1次输入的数为12,则第5次输出的数为________.
(2)若输入的数为5,求第2016次输出的数是多少.
(3)是否存在输入的数x,使第3次输出的数是x?若存在,求出所有x的值;若不存
在,请说明理由.
【答案】(1)4、6
(2)解:5+3=8,8× =4,4× =2,2× =1,1+3=4,
∴若输入的数为5,则每次输出的数分别是8、4、2、1、4、2、1,…,
(2016−1)÷3=2015÷3=671 (2)
∴第2016次输出的数是2
(3)解:当x为奇数时,有 (x+3)+3=x,解得x=9(舍去),
× (x+3)=x,解得x=1,
当x为偶数时,有 × × x=x,解得x=0,
× x+3=x,解得x=4,
×( x+3)=x,解得x=2,
综上所述,x=0或1或2或4
【解析】【解答】解:(1)∵1+3=4,
∴第1次输出的数为1,则第2次输出的数为4.
×12=6,6× =3,3+3=6,6× =3,3+3=6,
∴第1次输入的数为12,则第5次输出的数为6.
【分析】(1)根据运算程序得到第1次输出的数为1,第2次输出的数为3+1,第1次输入的数为12,则第5次输出的数(12÷2÷2+3)÷2+3;(2)根据题意由输入的数为5,每次输出的数分别是8、4、2、1、4、2、1···,得到3次一循环,求出第2016次输出的数;(3)根据运算程序得到当x为奇数时和为偶数时,求出所有x的值.
5.在平面直角坐标系中,若点P(x,y)的坐标x、y均为整数,则称点P为格点.若一个多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如图中△ABC 是格点三角形,对应的S=1,N=0,L=4.
(1)写出图中格点四边形DEFG对应的S,N,L.
(2)已知任意格点多边形的面积公式为S=N+aL+b,其中a,b为常数.当某格点多边形对应的N=82,L=38,求S的值.
【答案】(1)解:根据图形可得:S=3,N=1,L=6
(2)解:根据格点三角形ABC及格点四边形DEFG中的S、N、L的值可得,
,
解得a ,
∴S=N+ L﹣1,
将N=82,L=38代入可得S=82+ ×38﹣1=100
【解析】【分析】(1)按照所给定义在图中输出S,N,L的值即可;(2)先根据(1)中三角形与四边形中的S,N,L的值列出关于a,b的二元一次方程组,解方程组求得a,b的值,从而求得任意格点多边形的面积公式,代入所给N,L的值即可求得相应的S的值.
6.数轴上有、、三点,分别表示有理数、、,动点从出发,以每秒个单位的速度向右移动,当点运动到点时运动停止,设点移动时间为秒.
(1)用含的代数式表示点对应的数:________;
(2)当点运动到点时,点从点出发,以每秒个单位的速度向点运动,点到达点后,再立即以同样的速度返回点.
①用含的代数式表示点在由到过程中对应的数:________ ;
②当 t=________ 时,动点 P、 Q到达同一位置(即相遇);
③当PQ=3 时,求 t的值.________
【答案】(1)
(2)2t-58;当时,t=32 ;当时,t=;t=3,29,35,,
【解析】(1)点所对应的数为:
( 2 )①
② 点从运动到点所花的时间为秒,点从运动到点所花的时间为秒
当时,:,:
,解之得
当时,:,:
,解之得
【分析】(1)向右移动,左边的数加上移动的距离就得移动后的数;(2)需分类讨论,16≤t≤39 和39 ≤ t ≤ 46两类分别计算.
7.十字交叉法的证明过程:设甲、乙两瓶溶液的质量分别为和,浓度分别为和(),将两瓶溶液混合后所得的溶液浓度为,求证:.【答案】证明:甲溶液中溶质的质量为,乙溶液中的溶质质量为,则混和溶
液中的溶质质量为,所以混合溶液的浓度为,所
以,即,,可见。
【解析】【分析】溶液的浓度=溶质的质量÷溶液的质量,溶质的质量=溶液质量×浓度。
根据计算方法分别表示出两个容器中溶质的质量和混合后的浓度,得到等式后用十字交叉法证明这个等式即可。
8.有两种溶液,甲溶液的酒精浓度为,盐浓度为,乙溶液中的酒精浓度为,盐浓度为.现在有甲溶液千克,那么需要多少千克乙溶液,将它与甲溶液混和后所得的溶液的酒精浓度是盐浓度的3倍?
【答案】解:假设把水都蒸发掉,则甲溶液盐占盐和酒精的:10%÷(15%+10%)=40%,乙溶液中盐占盐和酒精的:5%÷(45%+5%)=10%;
需要配的溶液盐占盐和酒精的:1÷(1+3)=25%;
则:(0.25-0.1):(0.4-0.25)=0.15:0.15=1:1,
1千克甲溶液中盐和酒精:1×(15%+10%)=0.25(千克),1千克乙溶液中盐和酒精:1×(5+45%)=0.5(千克)。
答:需要0.5千克乙溶液,将它与甲溶液混和后所得的溶液的酒精浓度是盐浓度的3倍。
【解析】【分析】可以这样来看,将溶液中的水剔出或者说蒸发掉,那么所得到的溶液就是盐溶在酒精中。
(事实上这种情况不符合物理规律,但这只是假设)。
这样就能分别求出甲、乙溶液中盐占盐和酒精的百分之几。
根据配制成溶液中酒精是盐的3倍先计算出配制后盐占盐和酒精的百分之几。
分别求出1千克甲、乙溶液中盐和酒精的质量,然后确定需要加入的乙溶液的重量即可。
9.瓶中装有浓度为的酒精溶液克,现在又分别倒入克和克的、两种酒精溶液,瓶中的浓度变成了.已知种酒精溶液浓度是种酒精溶液浓度的倍,那么种酒精溶液的浓度是百分之几?
【答案】解:新倒入的纯酒精重量:
(1000+100+400)×14%-1000×15%
=210-150
=60(克)
设A种酒精溶液的浓度为x,则B种为。
100x+400×=60
300x=60
x=0.2
答:A种酒精溶液的浓度是20%。
【解析】【分析】用混合后酒精的重量减去原来溶液中酒精的重量求出新加入的溶液中酒
精的重量。
设A种酒精溶液的浓度为x,则B种为,等量关系:A溶液中酒精的重量+B 溶液中酒精的重量=新加入酒精的重量,根据等量关系列出方程,解方程求出A中溶液酒精的浓度即可。
10.在浓度为40%的酒精溶液中加入5千克水,浓度变为30%,再加入多少千克酒精,浓度变为50%?
【答案】解:设原来有酒精溶液x千克。
30%x+1.5=40%x
0.1x=1.5
x=15
设再加入y千克酒精,溶液浓度变为50%。
10+0.5y=6+y
y=8
答:再加入8千克酒精,溶液浓度变为50%。
【解析】【分析】本题可以用两次方程作答,首先求出原来有酒精溶液的质量,即
,由此可以解得原来有酒精溶液的质量,然后设再加入y千克酒精,溶液浓度变为50%,即,即可解得再加入酒精的质量。