模式识别ppt

合集下载

《模式识别》PPT课件

《模式识别》PPT课件
征组来。 ② 找一个较好的算法,以便在较短的时间内找出最优的那一组特征。
有两个极端的特征选择算法,一个是单独选择法,另一个是穷举选择法。
1. 单独选择法 就是把n个特征每个特征单独使用时的可分性准则函数值都算出来,按准则
函数值从大到小排序,如 J(x1)>J(x2)>…>J(xm)>…J(xn)
然后,取使J较大的前m个特征作为选择结果。 问题:这样得到的m个特征是否就是一个最优的特征组呢?
1 Pe 1 c
另一个极端情况是,如果能有一组特征使得
此时x划归 P类(,其i /错x误)概率1为, 0。且P( j / x) 0 , j i
可见后验概率越集中,错误概率就越小。后验概率分布越平缓(接近均匀分布)
,则分类错误概率就越i 大。
为了衡量后验概率分布的集中程度,需要规定一个定量准则,我们可以借助于 信息论中关于熵的概念。

的函数。可定义如下形式的广义熵:
P(1 / x) P(2 / x)
P(c / x)

,…
式中,
是一个实的正参数,

J
a C
[
P
(1
/
x),
P ( 2
/
x),,
P ( c
/
x)]
c
(21a 1)1[ P a (i / x) 1] i 1
a
a1
不同的 spital法则有
a
a值可以得到不同的熵分离度量,例如当
8.1.1 基于距离的可分性准则 各类样本之间的距离越大,则类别可分
性越大。因此,可以用各类样本之间的距离的平 均值作为可分性准则
Jd
1 2
c
Pi
i 1
c

模式识别详细PPT

模式识别详细PPT
迁移学习在模式识别中广泛应用于目标检测、图像分类等任务,通过将预训练模 型(如ResNet、VGG等)应用于新数据集,可以快速获得较好的分类效果。
无监督学习在模式识别中的应用
无监督学习是一种从无标签数据中提取有用信息的机器学习方法,在模式识别中主要用于聚类和降维 等任务。
无监督学习在模式识别中可以帮助发现数据中的内在结构和规律,例如在图像识别中可以通过聚类算 法将相似的图像分组,或者通过降维算法将高维图像数据降维到低维空间,便于后续的分类和识别。
通过专家知识和经验,手 动选择与目标任务相关的 特征。
自动特征选择
利用算法自动筛选出对目 标任务最相关的特征,提 高模型的泛化能力。
交互式特征选择
结合手动和自动特征选择 的优势,先通过自动方法 筛选出一组候选特征,再 由专家进行筛选和优化。
特征提取算法
主成分分析(PCA)
通过线性变换将原始特征转换为新的特征, 保留主要方差,降低数据维度。
将分类或离散型特征进行编码 ,如独热编码、标签编码等。
特征选择与降维
通过特征选择算法或矩阵分解 等技术,降低特征维度,提高 模型效率和泛化能力。
特征生成与转换
通过生成新的特征或对现有特 征进行组合、转换,丰富特征
表达,提高模型性能。
04
分类器设计
分类器选择
线性分类器
基于线性判别分析,适用于特征线性可 分的情况,如感知器、逻辑回归等。
结构模式识别
总结词
基于结构分析和语法理论的模式识别方法,通过分析输入数据的结构和语法进行分类和 识别。
详细描述
结构模式识别主要关注输入数据的结构和语法,通过分析数据中的结构和语法规则,将 输入数据归类到相应的类别中。这种方法在自然语言处理、化学分子结构解析等领域有

《模式识别课件》课件

《模式识别课件》课件
率和用户体验。
医学诊断
要点一
总结词
医学诊断是利用医学知识和技术对疾病进行诊断的过程, 模式识别技术在医学诊断中发挥着重要作用。
要点二
详细描述
模式识别技术可以辅助医生进行影像学分析、病理学分析 等,提高诊断准确性和效率,为患者提供更好的医疗服务 和治疗效果。
05
模式识别的挑战与未来发 展
数据不平衡问题
《模式识别课件》 ppt课件
xx年xx月xx日
• 模式识别概述 • 模式识别的基本原理 • 常见模式识别方法 • 模式识别的应用实例 • 模式识别的挑战与未来发展
目录
01
模式识别概述
定义与分类
定义
模式识别是对各种信息进行分类和辨 识的科学,通过模式识别技术,计算 机可以识别、分类和解释图像、声音 、文本等数据。
深度学习在模式识别中的应用
总结词
深度学习在模式识别中具有广泛的应用,能够自动提取特征并实现高效分类。
详细描述
深度学习通过构建多层神经网络来学习数据的内在特征。在模式识别中,卷积神经网络和循环神经网络等方法已 被广泛应用于图像识别、语音识别和自然语言处理等领域。
THANKS
感谢观看
人脸识别
总结词
人脸识别是一种基于人脸特征的生物识 别技术,通过采集和比对人脸图像信息 进行身份验证和识别。
VS
详细描述
人脸识别技术广泛应用于安全、门禁、考 勤、移动支付等领域,通过摄像头捕捉人 脸图像,并与数据库中存储的图像信息进 行比对,实现快速的身份验证和识别。
手写数字识别
总结词
手写数字识别是一种利用计算机技术自动识 别手写数字的技术,通过对手写数字图像进 行预处理、特征提取和分类实现识别。

模式识别培训教程PPT(94张)

模式识别培训教程PPT(94张)

线条透视
结构密度
遮盖关系
(二)建构性知觉理论 (Constructive perception)
知觉是一个积极的和建构的过程
知觉并不是由刺激输入直接引起的,而 是所呈现刺激与内部假设、期望、知识以 及动机和情绪因素交互作用的产物
知觉有时可受到不正确的假设和期望影 响,因而也会发生错误
邻近物 体大小 对大小 知觉的 影响
现代观点则认为,知觉是主动 和富有选择性的构造过程。
黄希庭:“知觉是直接作用于感觉器 官的事物的整体在脑中的反映,是人对感 觉信息的组织和解释的过程。”
梁宁建:“知觉是人脑对客观事物的 各种属性、各个部分及其相互关系的综合 的整体的反映,它通过感觉器官,把从环 境中得到的各种信息,如光、声音、味道 等转化为对物体、事件等的经验的过程。”
2. “泛魔堂”模型(“魔城”模型)
通过特征分析识别一个字母R
3.特征分析的生理学依据
1981年诺贝尔医学奖获得者:Hubel & Wiesel
4.特征分析的行为学证据
Neisser(1964)英文字母扫描实验 固定影像与静止影像的实验
5.特征分析说的评论 优点:避开预加工、减轻记忆负担、带有学习
由有关知觉对象的一般知识开始的加工, 由此可以形成期望或对知觉对象形成假 设,这种期望或假设制约着加工的所有 阶段或水平。又称之为概念驱动加工 (Concept-Driven Processing)
•Tulving, Mandler & Baumal的实验
自变量
上下文情况:无上下文、4字上下文、8字上下文 (考察自上而下加工)
1982年他在《科学》杂志上原创性地提出 了“拓扑性质初期知觉”的理论,向半个世纪 以来占统治地位的理论提出了挑战。随后20多 年的时间里,在与国际上持不同学术观点的学 者的争论与交流中,他以令人信服的系列科学 实验不断地完善和论证着这一假说,使之成为 被越来越多的国际同行所接受的学说,进而成 为有国际影响力的理论,他的成果也被《科 学》、《美国科学院院报》等著名学术刊物多 次刊登。2004年,著名知觉杂志《Visual Cognition》以专辑的形式刊载了陈霖教授的 成果并配发了大量国际著名学者的评论性文章。

模式识别及其分类课件

模式识别及其分类课件
模式识别及其分类课件
目录
• 引言 • 模式识别的基本概念 • 模式识别的分类方法 • 模式识别的应用案例 • 模式识别的未来趋势与挑战 • 总结与展望
01
引言
什么是模式识别
• 模式识别是指通过计算机自动识别和分类对象的技术。它通过 收集、处理和分析数据,从中提取出对象的特征和模式,并对 这些模式进行分类和识别。模式识别技术广泛应用于图像识别 、语音识别、自然语言处理等领域。
的挑战。
06
总结与展望
回顾模式识别的历史与成就
01 02 03
模式识别概念的起源
模式识别是指对输入的图像、声音、文本等数据进行分析 ,从中提取出有用的信息,并对其进行分类和识别的过程 。这个概念最早可以追溯到20世纪初,当时科学家们就开 始研究如何通过机器来识别和理解图像和声音等数据。
模式识别技术的发展历程
语音识别技术主要基于信号处理和机 器学习技术。通过对语音信号进行特 征提取和学习,实现语音识别。其中 ,关键的技术包括声学模型、语言模 型、解码器等。
发展趋势
随着深度学习技术的不断发展,语音 识别技术的准确性和稳定性不断提高 。未来,语音识别技术将更加注重隐 私保护和安全性,同时,也将与自然 语言处理等技术进一步融合,推动智 能化应用的发展。
手写数字识别
应用场景
手写数字识别技术主要用于银行支票、快递单据等手写文字的识别,以及各种需要手写输 入的应用场景。
技术原理
手写数字识别技术主要基于图像处理和机器学习技术。通过对手写数字图像进行特征提取 和学习,实现对手写数字的识别。其中,关键的技术包括特征提取、模型训练、数字识别 等。
发展趋势
随着深度学习技术的不断发展,手写数字识别技术的准确性和稳定性不断提高。未来,手 写数字识别技术将更加注重实时性和鲁棒性,同时,也将与自然语言处理等技术进一步融 合,推动智能化应用的发展。

模式识别的概念过程与应用PPT课件

模式识别的概念过程与应用PPT课件

红苹果
橙子 2.00
1.50
x1
0.60
0.80
1.00
1.20
1.40
模式识别 – 绪论
特征的分布
x2 3.00 2.50
红苹果
绿苹果
橙子 2.00
1.50
x1
0.60
0.80
1.00
1.20
1.40
模式识别 – 绪论
五、模式识别系统
待识模式 数据采集及预 处理
训练模式
数据采集及预 处理
特征提取与选 择
安全领域:生理特征鉴别(Biometrics),网 上电子商务的身份确认,对公安对象的刑侦和 鉴别;
模式识别 – 绪论
二、模式识别的应用
军事领域:巡航导弹的景物识别,战斗单元的 敌我识别;
办公自动化:文字识别技术和声音识别技术; 数据挖掘:数据分析; 网络应用:文本分类。
ቤተ መጻሕፍቲ ባይዱ
模式识别 – 绪论
《模式分类》,机械工业出版社,Richard O.
Duda
《模式识别》(第二版),清华大学出版社,边
肇祺,张学工;
特征提取与选 择
识别结果 模式分类
分类 训练
分类器设计
模式识别 – 绪论
六、模式识别问题的描述
给定一个训练样本的特征矢量集合:
D x 1 ,x 2 , ,x n ,x i R d
分别属于c个类别:
1,2, ,c
设计出一个分类器,能够对未知类别样本x进行分类
ygx ,R d 1 , ,c
模式识别 – 绪论
模式识别 – 绪论
第一章 绪论
模式识别 – 绪论
一、模式识别的概念
什么是模式识别? 模式识别研究的内容?

图像识别幻灯片课件

图像识别幻灯片课件
• x=(x1, x2)T, x1和 x2分别代表花瓣长度和宽度。 • 模式矢量 x=(x1, x2,……, xn)T 中元素性质取决于
描述物理模式自身所采用的方法。
花瓣宽度(cm)
• 模式类 w1、w2、w3分别表示Setosa (多刺的)、
Virginaca (单性的)和 Versicolor (杂色的)三种花。
训练过程
信息 获取
数据预 处理
特征提 取
和选择
分类器设计
分类决 策
输出结 果
图11.1 模式识别系统的基本构成
2. 常用的三种模式组合
(1) 模式矢量
• 1936年,Fisher论文提出判别式分析技术,通过 测量花瓣的宽度和长度识别三种不同类型的鸢 (yuan)尾属植物的花。
– Iris Setosa (多刺的) – Iris Virginaca (单性的) – Iris Versicolor (杂色的)
边界方程: d12(x) = d1(x)-d2(x) = 2.8x1+1.0x2-8.9 = 0
图11.5 美国Banker协会 的E-13B字体的字符 集和对应波形。
字符设计在97个字中以 便读取。每个字符 用含有精细磁性材 料的墨水印刷。
(设计者保证大的均值 分离和小的类分布 的一个示例)
(2) 相关匹配
• 受生物神经系统启发产生,大量使用非线性元素的计算 单元(神经元),类似大脑神经元的互联方式组织起来 。具有对一些特定问题的适应能力和并行处理能力。
• 20世纪40年代早期McCulloch和Pitts提出。 • 80年代Rumelhart、Hinton和Williams发展出“反向传播”
方式学习的德尔塔(delta)规则,为多层机器提供了一 种有效的训练方法。 • 结构:由许多互联的相同的节点(处理单元,PE)构成 。每个PE从“上游”的几个PE接受输入信号,产生一个 标量输出,传给“下游”的一组PE。

模式识别基础教程PPT课件

模式识别基础教程PPT课件

8
典型应用
语音识别(例如:IBM ViaVoice系统) 表情分析、年龄、种族、性别分类 OCR: 车牌照、集装箱号码… 手写体识别:汉王 手势识别:基于视觉的,基于数据手套 人脸识别、指纹识别、虹膜识别… 军事目标识别 生物信息、医学图像 遥感、气象
9
模式识别方法
模板匹配 结构模式识别 句法模式识别 统计模式识别 模糊模式识别
机特征向量,用概率统计理论对其进行建模, 用统计决策理论划分特征空间来进行分类。
12
统计模式识别的一般过程
测试模式 预处理
分类
训练 预处理
训练模式
特征提 取/选择
分类
特征提 取/选择
学习分类规则 错误率检测
13
模糊模式识别
1965年Zadeh提出模糊集理论
是对传统集合理论的一种推广
传统:属于或者不属于 模糊:以一定的程度属于
这种技术具有实时性的特点,而且有可能扩展到多个姿 态的人脸检测。
18
人脸的特征表示方法
矩形特征(Harr-like特征)
矩形特征的值是所有白色矩形中点的亮度值的和减 去所有灰色矩形中点的亮度值的和,所得到的差
有4种类型的矩形特征
19
输入图像
积分图像
基于积分图像的 Haar-like特征计
7
模式分类 vs. 模式聚类
Classification Clustering
Category “A”
Categ
(Supervised Classification)
Clustering
(Unsupervised Classification)
“Good” features
“Bad” features

模式识别 :模式识别概述.ppt

模式识别 :模式识别概述.ppt

2019/11/2
15
n
dij
| Xik Xjk |
k 1
② 欧几里德距离
dij
n Xik Xjk 2
k 1
③明考夫斯基距离
| | dij(q) n Xik Xjk q 1 q
k 1

其中当q=1时为绝对值距离,当q=2时为欧氏距离
2019/11/2
询,侦听,机器故障判断。
8. 军事应用
2019/11/2
9
§1-4 模式识别的基本问题
一.模式(样本)表示方法 1. 向量表示 : 假设一个样本有n个变量(特征)
Ⅹ= (X1,X2,…,Xn)T 2. 矩阵表示: N个样本,n个变量(特征)
变量
样本
x1
x2
X1
X11
X12
X2
X21
X22



XN
2019/11/2
11
4. 基元(链码)表示: 在右侧的图中八个基元 分别表示0,1,2,3, 4,5,6,7,八个方
向 和基元线段长度。 则右侧样本可以表示为
X1=006666
这种方法将在句法模式识 别中用到。
2019/11/2
12
二.模式类的紧致性
1. 紧致集:同一类模式类样本的分布比较 集中,没有或临界样本很少,这样的模 式类称紧致集。
16
④ 切比雪夫距离 dij() max | Xik Xjk | 1k n
q趋向无穷大时明氏距离的极限情况 ⑤ 马哈拉诺比斯距离
T
dij(M ) Xi Xj
1 Xi Xj
其中xi ,xj为特征向量, 为协方差。使用的条件是

模式识别讲义精品PPT课件

模式识别讲义精品PPT课件

最大最小距离法
该算法以欧氏距离为基础,首 先辨识最远的聚类中心,然后确 定其他的聚类中心,直到无新的 聚类中心产生。最后将样本按最 小距离原则归入最近的类。
几个算法的简单对比:
k均值和最大最小距离是聚类型算法 而K近邻和感知器属于分类,聚类和 分类
K-means算法缺点主要是: 1. 对异常值敏感 2. 需要提前确定k值
11
11
11 11
11
00
模式识别
-------几种聚类和分类算法的比较
1 11 01 11
110101110101
01
01
10
01
11
01
10
01
K均值算法
k均值算法是什么?
k均值算法也称为C-均值算法,是根据函数准则进行分类 的聚类算法,基于使聚类准则最小化。
依据课本的介绍,它是聚类集中每一个样本点到该聚类 中心的距离平方和。
MATLAB
运行结果
感知器算法
What:
感知器算法通过赏罚原则依据每次对训练集的训练不断修正 判别函数的权向量,当分类器发生错误分类的时候对分类器 进行“罚”,即对权向量进行修改,当感知器正确分类的时 候对分类器进行“赏”,对全向量不进行修改。这样经过迭 代计算后,通过训练集的训练得到最优的判别函数的权向量。
1 11 01 11
110101110101
01
01
10
01
11
01
10
01
代码实现 C语言:
参考数据:
1 11 01 11
110101110101
01
01
10
01
11
01
10
01

模式识别Pattern Recognition课件-新版.ppt

模式识别Pattern Recognition课件-新版.ppt
模式识别 Pattern Recognition
许建华 xujianhua@
南京师范大学计算机科学系
2007年3月- 6月
精品
第1章 绪论
1.1 模式识别与模式的概念 1.2 模式识别系统 1.3 关于模式识别的若干基本问题
精品
1.1 模式识别与模式的概念
1.1.1 基本概念 两个例子:
根据内容或者外观聚成相应的类
物以类聚,人以群分 精品
人的模式识别能力
人通过视觉、嗅觉、听觉、味觉、触觉接 收外界信息、再经过人脑根据已有知识 进行适当的处理后作出的判别事物或者 划分事物性质(类别)的能力
精品
模式识别 (Pattern Recognition)
用计算机来实现人的模式识别能力,即用计算机 实现人对各种事物或现象的分析、描述、判断、 识别
1k n k
k
精品
马哈拉诺比斯(Mahalanobis)距离
d(x, y) (x y)Σ1(x y)
其中协方差矩阵和均值为
Σ

l
1 1
l i 1
(xi

x)(xi

x)T
x

1 l
l i 1
xi
精品
1.3.4 数据的标准化
目的:消除各个分量之间数值范围大小对 算法的影响
幼儿认动物 图书归类
精品
幼儿认动物
老师教幼儿学(学习) 幼儿自己认(决策) 错分现象
精品
图书归类
归类 1 : 精美印刷的书 普通印刷的书
归类 2: 大开本的书 小开本的书 微型开本的书
归类 3:
数学类图书 物理学图书 化学类图书 计算机类图书 小说类图书 法律类图书
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2 确定超维分界面的感知器算法
l xi l x k wxi w0 wx k w0
w xi x k w xi x k cos w 0 cos (3.9)
3.1 线性判别函数和决策超平面
• 是原来距离的 w 2 cos 倍。这里,为xi-xk与之 间的夹角。事实上,式(3-9)表示的就是两点 之差 x i - x k 在权值向量或决策平面法矢量方向上 的投影,与阈值w0无关,如图3.2所示。
• 当足够大时,有
2 2 2 2 w 0 w * 0 w 1 w * 0 ( A8) 2 • 但 w 1 w * 0,由此推出矛盾,故 • 当足够大时,有 w 1 w* 。
3.2 确定超维分界面的感知器算法
• 我们称: l(x)=0为决策超平面。若分类对象只有 两类1、2,决策规则为
x ω1 x ω2 不定 如果 l x 0 如果 l x 0 如果 l x 0 (3.10)
• 可以证明,多次线性变换等价于一次线性变换。
• 若分类对象有多类,决策函数形式上仍为
3.1 线性判别函数和决策超平面
Linear Discriminant Functions and Decision Hyperplanes
• 我们先考虑一个两类问题及其线性判别函数。 设特征空间维数为 m,即xRm,超平面决策方 程可写为 • 这里,w=(w1,w2,,wm)T为权值向量,w0为阈值 (bias)。如果x1、x2两个点均在超平面上,则有
3.1 线性判别函数和决策超平面
πj :
T l j x w j x w j0
0 j 1,2,..., n (3.11)
• 但决策过程中会出现图 3.4所示的几种情况。类 别数越多,情况越复杂。因此,线性分类器只 对处理不同类别的样本分布在特殊区域的情况 才是有效的。例如,各个类别均位于超维立方 体的顶端。
x 2
x x
2 x
2
0
( A5)
• 令 2 max x x
x
2
T 2 w x 0 ,则 , x *
x
• 写成递推公式,就是
3.2 确定超维分界面的感知器算法
2 2 w 1 w * w w * 2 2 2 w 1 w * 2 2 2 2 2 2 2 w 0 w * ( A7)
T 如果 w x 0 T 如果 w x 0 T 如果 w x 0
不定, • 设样本 x 的类别为已知 (当然它来自于训练 的确定规则是 集), x T 1 x 1 , 但 w x 0, 则 x T 1 (3.14) x 2 , 但 w x 0, 则 x 当x 0 被正确分类时 , x
x x
2 x w w * x
x x
2
T T w w x 2 x x 2 x *
x
( A1)
3.2 确定超维分界面的感知器算法
T • 由于 x 为错分的样本, w x x 0 ,所以 2 2 2 x w 1 w * w w * x
第三章 线性分类器
Chapter 3 Linear Classifiers
• 我们知道,在一定条件下,基于后验概率或类 条件概率密度的分类器可转化为线性分类器。 这就是说,线性分类器是基于Bayes决策理论设 计的分类器的一个特例。
• 线性分类器的特点是结构简单,计算工作量小, 缺点是在很多情况下分类正确率不够高(?)。
(3.13)
3.2 确定超维分界面的感知器算法
• 由(3-14),我们有如下推论 T w x 0, x if x 被错分
(3.15)
• 若 w *为所求的解,则 T w x 0, x if x被错分 (3.16) * • 为了确定一组最佳的 w * ,对(3-12)求 J w 关 于 w 的一阶偏导数,则有 J w x (3.17) x w x
xk 新超平面
x2
w
w 1
原超平面
0 xi
x1
x1 x 2
图3.5 感知器算法
• 可以证明,只要两个类别是线性可分的,感知 器学习算法是收敛的,反之则不收敛。对线性 可分的样本集,学习结束时,线性分类器对训 练集的错分样本数为0。 • 例3.1,证明,对线性可分的样本集,线性分类 器采用感知器学习算法时,学习过程收敛。 方法一: • 设 w * 是一个解,则
2 • 又 w 0 w * 为一有限值,所以,当没有样本被
错分时,有
2 • w 1 w * 0,或 w 1 w* ,于是 2 w 0 w * 2 2

( A9)
• 也是有限值。 • 这说明,若两个类别是线性可分的,则在有 限步内,感知器学习算法收敛。
π : l x w x w0 0
T
(3.1)
3.1 线性判别函数和决策超平面
w T x1 w0 w T x 2 w0 0 (3.2)
(3.3)
• 或
w
T
x1 x 2 0
• 显然,w与x1-x2垂直。有时,人们称w为超平面 的法矢量。将(3.1)展开得
π : l x w1x1 w2 x2 ... wm xm w0 wi xi 0
i 0 m
(3.4)
3.1 线性判别函数和决策超平面
• 这里,x0=+1。平面在坐标轴xi上的截距为
w0 θi wi
(3.5)
• 图3.1给出了线性分类器决策超平面示意图。图 3.1指出,一个决策平面将输入空间分成了两个 区域,但到底哪个决策区域为分类器实际输出 大于0的区域取决于权值与阈值的正负号。例如, 1: l(x)= w1x1+w2x2++wmxm+w0=0与2 : l(x) =w1x1-w2x2--wmxm-w0=0所决定的平面完全相
3.2 确定超维分界面的感知器算法
• 根据梯度下降算法,有
J w w 1 w w x w x
x
(3.18)
• 式中,>0为学习率,或称之为步长因子,为 迭代次数。
• 特别地,设=1,且只有来自1的样本 x1 和来自 2的样本x 2 被错分,(3.18)变为
x=(x1, x2)T d(x, ) w0>0 w1<0 w2<0 x1
w0 w 2
d0
: l(x)>0的区域
0
w
w0 w 1
图3.1b 线性分类器决策超平面示意图
3.1 线性判别函数和决策超平面
• 同,但它们的决策区域却完全相反。因此,在 判断决策区域时,必须考虑法矢量的方向。根 据该图,坐标原点到决策平面的Euclid距离为 w0 w0 d0 (3.6) 2 2 2 w2 w1 w2 ... wm • 特征空间任意一点 x=(x1,x2,,xm)T到决策平面 的Euclid距离为 w1x1 w2 x2 ... wi xi ... wm xm w0 l x d x, π (3.7) 2 2 2
d0
: l(x)=w1x1+w2x2+w0=0
0
w
w0
1
x1
图3.2 两点xi、xk经w变换过程示意图
x2
w1
w2
l2(x) l2(xi)
2

1
0
xk xi
0
2
1
x1
l2(xk) 0
l1(x) l1(xk)
l1(xi)
图3.3 两点xi、xk经过2次线性变换示意图
3.1 线性判别函数和决策超平面
3.2 确定超维分界面的感知器算法
w 1 w x1 x 2 (3.19)
• 图3.5为感知器算法的一次学习过程。
• 感知器算法在具体实现时,初始权值分量可为 (0, 1)之间的随机数。一般地,步长因子0<<1。 步长太大,可能造成一次调整量过多(调整过 头);反之,太小,则需要更多的学习次数, 即学习时间长。
w1 w2 ... wm w
2
3.1 线性判别函数和决策超平面
• 更一般地,我们有
lx w 2 d x , π
(3.8)
• 称之为点x到平面的代数(有向)距离,即所谓 线性判别函数的值,它是Euclid距离的 w 2 倍。 思考一下,如何使有向距离l(x)变大。 • 另外,两点 xi、xk在特征(输入)空间的距离为 0=xi-xk,但

x x , 1 即可。设 为错分样本的集合,则
误差函数为
T w x J w x
x
(3.12)
x • 其中,学习系数 与样本是否被错分有关。
3.2 确定超维分界面的感知器算法
• 判别规则为 x 1 , x 2 ,
1 2 1
2 12
1
13
2
1 2
3
1
3
2
23
(a) 2类问题
3
(b) 3类问题特殊情况 (c) 多类问题一般情况
图3.4 线性分类器对多类问题形成的决策区域
3.2 确定超维分界面的感知器算法
(Perceptron Algorithm)
相关文档
最新文档