福建省福州市2022年九年级下学期适应性练习(一检)数学试题(含答案解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建省福州市2022年九年级下学期适应性练习(一检)数
学试题
学校:___________姓名:___________班级:___________考号:___________ 一、单选题
1.下列道路交通标志图中,是中心对称图形的是( )
A .
B .
C .
D .
2.下列事件中,是必然事件的是( ) A .通常温度降到0℃以下,纯净的水结冰 B .射击运动员射击一次,命中靶心 C .汽车累积行驶5000公里,从未出现故障 D .经过有交通信号灯的路口,遇到绿灯
3.在一个不透明的盒子中装有红球和白球共20个,这些球除颜色外无其它差别.随机从盒子中摸出一个球,记下球的颜色后,放回并摇匀.通过大量的实验后发现摸出白球的频率稳定在0.4,则盒子中白球的个数可能是( ) A .4 B .8 C .10
D .16
4.下列y 关于x 的函数中,是二次函数的是( ) A .y = 5x 2 B .y = 22 - 2x C .y = 2x 2 - 3x 3 + 1
D .y =
2
1x
5.如图,点D,E分别在℃ABC的边AB,AC上,且AD = 1,BD = 5,AE = 2,℃AED = ℃B,则AC的长是()
A.2.4B.2.5
C.3D.4.5
6.二次函数y = x2 +(a + 2)x + a的图象与x轴交点的情况是()
A.没有公共点B.有一个公共点
C.有两个公共点D.与a的值有关
7.如图,将一张矩形纸片沿两长边中点所在的直线对折,如果得到的两个矩形都与原矩形相似,则原矩形长与宽的比是()
A.2:1B.1:2
C
.3:2D1
8.函数y=1
x的图象是()
.
A.B.
C.D.
9.我国南宋数学家杨辉在《田亩比类乘除捷法》中记录了这样的一个问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何?”其大意是:矩形面积是864平方
步,其中长与宽和为60步,问长比宽多多少步?若设长比宽多
.....x步.,则下列符合题意的方程是()
A .(60 - x )x = 864
B .
606022
x x
-+⨯ = 864 C .(60 + x )x = 864
D .(30 + x )(30 - x )= 864
10.已知点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)均在抛物线y =2
6a x ax -++c 上,其
中y 2=3
2
a + c .下列说法正确的是( )
A .若|x 1 - x 2|≤|x 3 - x 2|,则y 2 ≥ y 3 ≥ y 1
B .若|x 1 - x 2|≥|x 3 - x 2|,则y 2 ≥ y 3 ≥ y 1
C .若y 1> y 3 ≥ y 2,则|x 1 - x 2|<|x 2 - x 3|
D .若y 1> y 3 ≥ y 2,则|x 1 - x 2|>|x 2 - x 3| 二、填空题
11.点( - 2, - 3)关于原点的对称点的坐标是 _________ . 12.底面半径为3,母线长为5的圆锥的高是 _________ .
13.若x = 1是一元二次方程x 2 +(m - 1)x - 2 = 0的解,则m 的值是 _____. 14.密闭容器内有一定质量的二氧化碳,在温度不变的情况下,当容器的体积V (单位:m 3)变化时,气体的密度ρ(单位:kg/m 3)随之变化,已知密度ρ是体积V 的反比例函数关系,它的图象如图所示,则当ρ = 3.3 kg/m 3时,相应的体积V 是 ____ m 3.
15.如图,℃A ,℃B ,℃C ,℃D ,℃E 两两不相交,且半径都是1,则图中阴影部分的面积是 _________ .
16.如图,在四边形ABCD 中,AB = 5,℃A = ℃B = 90°,O 为AB 中点,过点O 作OM ℃CD 于点M .E 是AB 上的一个动点(不与点A ,B 重合),连接CE ,DE ,若℃CED = 90°且
CE DE = 4
3
.现给出以下结论:
(1)℃ADE与℃BEC一定相似;
(2)以点O为圆心,OA长为半径作℃O,则℃O与CD可能相离;
(3)OM的最大值是5
2
;
(4)当OM最大时,CD = 125 24
.
其中正确的是_________ .(写出所有正确结论的序号)
三、解答题
17.解方程:x2-4x-7=0.
18.如图,℃ABC内接于℃O,℃A = 30°,过圆心O作OD℃BC,垂足为D.若℃O的半径为6,求OD的长.
19.一个不透明的盒子中有2枚黑棋,3枚白棋,这些棋除颜色外无其它区别.现将盒子中的棋摇匀,随机摸出一枚棋,不放回,再随机摸出一枚棋.
(1)请用列表法或画树状图法表示出所有可能的情况;
(2)求摸出的2枚棋都是白棋的概率.
20.汽车刹车后行驶的距离S(单位:m)关于行驶的时间t(单位:s)的函数解析式
是S = at2 + bt.当t = 1
2
时,S = 6;当t = 1时,S = 9.
(1)求该函数的解析式;
(2)请结合平面直角坐标系中给出的点,画出符合题意的函数图象,并写出汽车刹车后
到停下来前进了多远?
21.如图,已知线段BC绕某定点O顺时针旋转α得到线段EF,其中点B的对应点是E.
(1)请确定点O的位置(要求:尺规作图,保留作图痕迹,不写作法);
(2)在(1)的情况下,点A位于BC上方,点D位于EF右侧,且℃ABC,℃DEF均为等边三角形.求证:℃DEF是由℃ABC绕点O顺时针旋转α得到.
22.已知一次函数y = x - 5的图象与反比例函数
k
y
x
=(k≠0,x > 0)的图象交点的横
坐标是6.
(1)求k的值;
(2)若A是该反比例函数图象上的点,连接OA,将线段OA绕点O顺时针旋转90°得到线段OB,点B恰好在该一次函数的图象上,求点A的坐标.
23.如图,AB是半圆O的直径,C为半圆O上的点(不与A,B重合),连接AC,℃BAC的角平分线交半圆O于点D,过点D作AC的垂线,垂足为E,连接BE交AD 于点F.
(1)求证:DE是半圆O的切线;
(2)若AE = 6,半圆O的半径为4,求DF的长.
24.如图,四边形ABCD中,对角线AC,BD有交点,且℃ABC + ℃ADC = 90°.点E 与点C在BD同侧,连接BE,CE,DE,若℃ABD℃℃CBE.