分子生物学复习重点

合集下载

医学分子生物学复习重点

医学分子生物学复习重点

分子生物学需要掌握的重点一、DNA、RNA、蛋白质、质粒、基因、端粒、聚合酶、密码子、突变、变性的概念或结构、性质及特点;二、复制、转录、逆转录、翻译、加工修饰、靶向输送的主要过程及特点;三、癌基因的概念、原癌基因产物的类型及细胞定位、癌基因活化致癌的主要机制;四、常用分子生物学技术的原理、主要步骤、酶学及特点;五、基因表及其调控的原理、主要过程或步骤,乳糖操纵子的正、负调节机制;六、常用的基因诊断及基因治疗技术;七、基因克隆、基因诊断、基因治疗、管家基因、抑癌基因、Klenow片段、核蛋白体、限制性内切核酸酶、人类基因组计划、原位杂交的概念;八、双脱氧末端终止法DNA测序、重组DNA技术的主要步骤;九、结构基因、顺式作用元件、启动子、遗传密码、反式作用因子、氨基酰-tRNA、基因组文库、DNA多态性、转位因子、探针、Tm值、DNA微阵列、DNA甲基化的概念、性质;十、核酸分子杂交的主要类型、PCR的主要步骤及引物设计;十一、DNA、RNA及多肽链的合成方向;十二、真核细胞转染的基本方法;十三、细胞周期的主要调控点;十四、DNA损伤及修复的主要类型和机制;十五、基因文库筛选的主要方法及原理。

名词解释●质粒——是细菌细胞内携带的染色体外的DNA分子,是共价闭合的环状DNA分子,能独立进行复制。

质粒只有在宿主细胞内才能够完成自己的复制。

●基因——指贮存有功能的蛋白质多肽链或RNA序列及表达这些信息所需的全部核苷酸序列,是核酸分子中贮存遗传信息的遗传单位。

●癌基因——是细胞内控制细胞生长和分化的基因,具有潜在的诱导细胞恶性转化的特性,它的结构异常或表达异常,可以引起细胞癌变。

●基因克隆——是指把一个生物体的遗传信息(基因片段)转入另一个生物体内进行无性繁殖,得到一群完全相同的基因片段,又称DNA克隆。

●抑癌基因——是指存在于正常细胞内的一大类可抑制细胞生长并具有潜在抑癌作用的基因,当这类基因在发生突变、缺失或失活时可引起细胞恶性转化而导致肿瘤发生。

分子生物学复习

分子生物学复习

1、DNA是遗传物质的实验:肺炎双球菌的转化实验、噬菌体侵染细菌实验。

1、影响双螺旋结构稳定性因素:氢键(弱键,可加热解链,氢键堆积,有序排列)、磷酸酯键(强键,需酶促解链)、0.2mol/L NA生理盐条件(消除DNA单链上磷酸基团间的静电斥力)、碱基堆积力(非特异性结合力)、范德华力、疏水作用力。

不稳定性因素:磷酸基团间的静电斥力、碱基内能增加(温度),使氢键因碱基排列有序状态的破坏而减弱。

2、反向重复序列又称回文序列,指在双链DNA序列中按确定方向阅读双链中每条单链的序列都相同的DNA结构。

3、割裂基因:基因的编码顺序由若干非编码区域隔开,使阅读框不连续,这种基因称为割裂/断裂基因。

4、重叠基因:两个基因的核苷酸序列完全重叠或部分重叠的情况,即一段核苷酸片段被两个基因重复使用的现象。

7真核生物DNA序列组织:单拷贝序列、轻度重复序列、中度重复序列、高度重复序列。

5、基因家族:是真核生物基因组中来源相同,结构相似,功能相关的一组基因。

10、基因簇:指基因家族中的各成员紧密成簇排列成大段的串联重复单位,定位于染色体的特殊区域。

他们属于同一祖先的基因扩增产物。

11、基因簇中还包括一些没有功能的假基因,广义的基因家族分为两类,一种是家族成员的全序列至少编码序列的具有高度的同源序列,第二种是各成员间在编码产物上有大段高度保守的氨基酸序列。

12、DNA复制:亲代双链DNA分子在DNA聚合酶的作用下,分别以各单链DNA分子为模板,聚合与自身碱基可以互补配对的游离的dDTP,合成出两条与亲代DNA分子完全相同的子代DNA分子的过程。

13、复制子(复制单位):基因组内能独立进行复制的单位。

14、DNA复制的方式:θ型复制、滚动环式复制、D-环式复制。

15、复制叉:复制开始,在复制起点形成的一个特殊的叉形结构,是复制有关的酶和蛋白质组装成复合物和新链合成的部位。

16、复制叉,DNA的复制至少需要20多种酶和蛋白质结合在复制叉部位,形成复杂的复制体结构。

分子生物学考点

分子生物学考点

分生复习思考题一、名词解释:1.移动基因(movable gene):又叫转位因子(transposable elements),由于它可以在染色体基因上移动,甚至可以在不同染色体间跃迁,故又称跳跃基因。

2.断裂基因(Split gene):在真核细胞中的核苷酸序列中间插入与氨基酸编码无关的DNA间隔区段,使一个有功能的结构基因分隔成不连续的若干区段,将该间隔区段的DNA 片断称为断裂基因。

3.重叠基因(overlapping genes):不同基因的核苷酸序列有时为相邻两个基因共用,将核苷酸彼此重叠的两个基因称为重叠基因。

4.假基因(gene cluster):在基因序列中除了有正常的功能基因之外,还有无表达功能的畸变核苷酸序列片断,称为假基因。

5.同尾酶:即识别顺序不同,但酶切后产生同样黏性末端的两种限制性核酸内切酶。

6.质粒(plasmid):是一种裸露的、结构比病毒简单的、有自主复制能力的DNA(少数为RNA)分子。

7.柯斯(COS)质粒:Cosmid,黏性质粒,是一种用基因工程技术组建的特殊大肠杆菌质粒,它带有λ噬菌体的Cos位点和整个pBR322的DNA顺序。

8.基因组文库:是指包含有细胞全部基因组DNA的克隆株,这种克隆株群体称基因组文库。

9.cDNA文库:是指包含着细胞全部mRNA信息的cDNA克隆集合称为该组织或细胞的cDNA文库。

10.转化transformation:将质粒等外源DNA制剂引入细胞的过程,称为转化。

11.转染transfection:病毒(含噬菌)的DNA及其重组子导入受体细胞称转染。

12.转导transduction:特指以噬菌体颗粒为媒介转移遗传物质的过程。

13.启动子:启动子是起动基因转录所必需的一段DNA顺式调控元件,位于转录起始点上游,是DNA链上一段能与RNA聚合酶特异结合并能启动mRNA 合成的序列。

14.起始密码子:规定多肽链的第一位氨基酸的密码子为起始密码子。

分子生物学 科大重点知识点

分子生物学 科大重点知识点

分子生物学科大重点知识点1. DNA的结构和功能•DNA是由核苷酸组成的双链螺旋结构,包括脱氧核糖核酸(deoxyribonucleic acid) 和四种碱基 (腺嘌呤 Adenine,胸腺嘧啶Thymine,鸟嘌呤 Guanine,胞嘧啶 Cytosine)。

•DNA具有存储遗传信息、自我复制和编码蛋白质等重要功能。

•DNA的结构包括双螺旋结构、碱基配对、磷酸二酯键等。

2. DNA复制和遗传信息传递•DNA复制是指将一个DNA分子复制成两个完全相同的分子。

•DNA复制包括解旋、引物合成、DNA聚合酶的作用等步骤。

•遗传信息传递是指将DNA中的信息转录成RNA,然后翻译成蛋白质。

•遗传信息传递包括转录和翻译两个过程。

3. 基因调控和表达调控•基因调控是指通过控制基因的转录和翻译过程来调节蛋白质的表达水平。

•基因调控的机制包括启动子、转录因子、染色质重塑等。

•表达调控是指通过调控蛋白质的稳定性和活性来调节蛋白质的功能。

•表达调控的机制包括翻译调控、蛋白质修饰等。

4. DNA修复和突变•DNA修复是指通过一系列机制修复DNA中的损伤,保证基因组的完整性。

•DNA修复的机制包括直接修复、错配修复、核苷酸切除修复等。

•突变是指DNA序列的改变,可以是点突变、插入、缺失等。

•突变可以导致遗传信息的改变,对生物体的生存和发育产生影响。

5. 基因工程和基因编辑•基因工程是指通过改变或插入外源基因来改变生物体的性状。

•基因工程包括基因克隆、转基因技术、基因组编辑等。

•基因编辑是指通过切割和替换DNA序列来改变基因组的特定部分。

•基因编辑技术包括CRISPR/Cas9等。

6. 分子进化和物种起源•分子进化是指通过分析物种的基因组序列来推断物种的演化关系和起源。

•分子进化研究使用多种分析方法,包括系统发育树、基因家族等。

•分子进化为我们理解物种的起源和演化提供了重要的证据和线索。

以上是分子生物学的科大重点知识点,涵盖了DNA的结构和功能、DNA复制和遗传信息传递、基因调控和表达调控、DNA修复和突变、基因工程和基因编辑以及分子进化和物种起源等内容。

分子生物学复习资料

分子生物学复习资料

分子生物学复习资料一、名词解释1.表现型:是生物内在遗传因子的外在表现,是生物的一整套显而易见的遗传性状。

2.基因型:是某一生物个体全部基因组合的总称。

3.等位基因:基因以不同形式存在4.中心法则:5.核酸:是由众多核苷酸聚合而成的多聚核苷酸,包括RNA和DNA。

基本单位是核苷酸:有核糖核苷酸和脱氧核糖核苷酸。

6.核苷酸:是由含氮碱基、戊糖和磷酸三部分组成。

7.碱基:由嘌呤和嘧啶。

RNA(G、A、U、C),DNA(G、A、T、C)8.核酸的一级结构:是指构成一个核酸分子的各个核苷酸结构单元的排列次序。

9.RNA的二级结构:发夹结构的形成原因:自我配对,在不同区段的互补序列之间形成碱基配对10.正超螺旋:在一端使绳子向紧缩方向捻转后,将绳子松弛使其处于自然状态,则会产生一个左旋的超螺旋以解除外加的捻转造成的胁变,这样的超螺旋叫做正超螺旋。

(双螺旋dna处于拧紧状态时所形成的超螺旋)11.负超螺旋:在一端使绳子向松缠方向捻转后,将绳子绳子两端连接起来,则会产生一个右旋的超螺旋以解除外加的捻转造成的胁变,这样的超螺旋叫做正超螺旋12.核酸的变性:在物理和化学因素的作用下,维系核酸二级结构的氢键和碱基堆积力受到破坏,DNA 由双链解旋为单链的过程。

13.增色效应:由于DNA变性引起的光吸收增加,也就是变性后DNA 溶液的紫外吸收作用增强的效应。

14.核酸的溶解温度(Tm):热变性使DNA分子双链解开一半所需的温度称为溶解温度。

(GC含量越高,Tm值越高。

经验公式:Tm=69.3+0.41*(G+C)%)15.核酸的复性:变性DNA在适当条件下,.分开的两条互补单链还可以全部或部分重新形成双螺旋DNA结构的现象称为复性(退火)16.核酸的分子杂交:利用不同来源的核酸分子按照碱基互补配对的原则形成稳定的杂交双链分子。

(升温变性,缓慢退火复性)17.基因组:细胞或者生物体所携带的一套完整的单倍体序列,包括全套基因和基因间区域。

(完整版)分子生物学期末复习.doc

(完整版)分子生物学期末复习.doc

(完整版)分子生物学期末复习.doc第一讲染色体与DNA一染色体(遗传物质的主要载体)1DNA作为遗传物质的优点:储存遗传信息量大;碱基互补,双螺旋结构使遗传稳定;核糖2′ -OH脱氢使在水中稳定性大于RNA;可以突变以进化,方便修复以稳定遗传2真核细胞染色体特点:①分子结构相对稳定;②能够自我复制,使亲子代之间保持连续性;③能够指导蛋白质的合成,从而控制整个生命过程;④能够产生可遗传的变异。

3 染色体蛋白主要分为组蛋白和非组蛋白两类。

真核细胞的染色体中, DNA与组蛋白的质量比约为 1:14组蛋白是染色体的结构蛋白,分为H1、H2A、H2B、H3及H4五种,与DNA共同组成核小体。

组蛋白含有大量的赖氨酸和精氨酸,其中 H3、H4富含精氨酸, H1富含赖氨酸。

H2A、H2B介于两者之间。

5 组蛋白具有如下特性:①进化上的极端保守性(不同种生物组蛋白的氨基酸组成十分相似)②无组织特异性(只有鸟类、鱼类及两栖类红细胞染色体不含H1而带有 H5)③ 肽链上氨基酸分布的不对称性(碱性氨基酸集中分布在N端的半条链上,而大部分疏水基团都分布在C端。

碱性的半条链易与DNA的负电荷区结合,而另外半条链与其他组蛋白、非组蛋白结合)④存在较普遍的修饰作用(如甲基化、乙基化、磷酸化及ADP核糖基化等。

修饰作用只发生在细胞周期的特定时间和组蛋白的特定位点上)二DNA1 真核细胞基因组的最大特点是它含有大量的重复序列2 C值反常现象:①所谓 C值,通常是指一种生物单倍体基因组DNA的总量②同类生物不同种属之间DNA总量变化很大。

从编码每类生物所需的DNA量的最低值看,生物细胞中的C值具有从低等生物到高等生物逐渐增加的趋势。

3 真核细胞DNA序列可被分为3类:①不重复序列(它占DNA 总量的 10%~80%。

不重复序列长约750~ 2 000bp ,相当于一个结构基因的长度)②中度重复序列(各种rRNA、 tRNA以及某些结构基因如组蛋白基因等都属于这一类)③高度重复序列—卫星 DNA(只存在于真核生物中,占基因组的 10%~60%,由 6~100个碱基组成)三染色体与核小体1 染色质 DNA的 Tm值比自由 DNA高,说明在染色质中DNA极可能与蛋白质分子相互作用2 在染色质状态下,由DNA聚合酶和RNA聚合酶催化的DNA 复制和转录活性大大低于在自由DNA 中的反应3 DNA片段均为 200bp基本单位的倍数,核小体是染色质的基本结构单位,由~200 bpDNA和组蛋白八聚体(由 H2A、H2B、 H3、 H4各两个分子生成)组成四级压缩:第一级(DNA+组蛋白→核小体)第二级(核小体→螺线管)第三级(螺线体→超螺旋)第四级(超螺线体→染色体)4 原核生物基因组原核生物的基因组很小,大多只有一条染色体,且 DNA含量少主要是单拷贝基因整个染色体 DNA几乎全部由功能基因与调控序列所组成;几乎每个基因序列都与它所编码的蛋白质序列呈线性对应状态。

分子生物学重点总结(全)

分子生物学重点总结(全)

15 逆转录PCR (reverse transcription PCR,RT-PCR):是将RNA逆转录和PCR结合起 来建立的一种PCR技术。首先进行逆转录产生cDNA,然后进行常规的PCR反应
16 cDNA末端快速扩增法(Rapid amplification of cDNA Ends,RACE) 是一种从细胞基因转录产物获得5`端或3`端未知序列的技术,分别被称为5`和3`RACE。RACE法的用途是利用已知的部分cDNA序列,获得全长序列,已经被用于克隆许多低丰度mRNA
17单链构象多态性PCR (SSCP-PCR) PCR产物变形后于中性胶中电泳,与正常对照比较,若
电泳行为异常,则认为内含突变的碱基。当发生突变时也会影响其空间结构,在聚丙烯酰胺凝胶把构象中有差异的DNA分子分离,分析的方法。
18分子杂交:互补的核苷酸序列通过碱基配对形成稳定的杂合双链分子的过程 称为分子杂交。
9串连重复序列:串联重复顺序(tandem repeats)固定的重复单位头尾相连所形成的重复顺序片段。约占整个人类基因组的10%
10管家基因:有些基因产物在整个生命过程中都是需要的或必不可少的,这类产物的编码基因在生物个体的几乎所有细胞中持续表达,这类基因通常称之为管家基因。
11癌基因 oncogene是细胞内控制细胞生长的基因,具有潜在的诱导细胞恶性转化的特性。癌基因异常表达时,其产物可使细胞无限形成的一种复合体。
6 反向重复顺序:是指两个顺序相同的拷贝在DNA链上呈反向排列。约占整个人类基因组的5%。 AGCTCGCATCG-CGATGCGAGCT
TCGAGCGTAGC-GCTACGCTCGA
7 顺式作用元件(cis-acting element)又称分子内作用元件,指被反式作用因子特异识别和结合的存在于DNA分子上的一些与基因转录调控有关的特殊顺序。主要包括启动子、增强子、反应元件、加尾信号、沉默子等

分子生物学复习重点

分子生物学复习重点

分子生物学复习重点第一章1、蛋白质的三维结构称为构象(conformation),指的是蛋白质分子中所有原子在三维空间中的排布,并不涉及共价键的断裂和生成所发生的变化。

2、维持和稳定蛋白质高级结构的因素有共价键(二硫键)和次级键,次级键有4种类型,即离子键、氢键、疏水性相互作用和范德瓦力。

3、蛋白质的二级结构是指肽链中局部肽段的构象,它们是完整肽链构象(三级结构)的结构单元,是蛋白质复杂的立体结构的基础,因此二级结构也可以称为构象单元。

α螺旋、β折叠是常见的二级结构。

4、一些肽段有形成α螺旋和β折叠两种构象的可能性(或形成势),这类肽段被称为两可肽。

5、两个或几个二级结构单元被连接肽段连接起来,进一步组合成有特殊几何排列的局域立体结构,称为超二级结构(介于二、三级结构间)。

超二级结构的基本组织形式有αα,βαβ和ββ等3类6、蛋白质家族(f amily) :一类蛋白质的一级结构有30%以上同源性,或一级结构同源性很低,但它们的结构和功能相似,它们也属于同一家族。

例如球蛋白的氨基酸序列相差很大,但属于同一家族。

超家族(superfamily):有些蛋白质家族之间,一级结构序列的同源性较低,但在许多情况下,它们的结构和功能存在一定的相似性。

这表明它们可能存在共同的进化起源。

这些蛋白质家族属于同一超家族。

7、结构域是一个连贯的三维结构,是可互换并且半独立的功能单位,在真核细胞中由一个外显子编码,由至少40个以上多至200个残基构成最小、最紧密也最稳定的结构,作为结构和功能单位,会重复出现在同一蛋白质或不同蛋白质中。

8、蛋白质一级结构所提供的信息有哪些?α螺旋、β折叠各自的特点?第二章1、DNA是由脱氧核糖核苷酸组成的长链多聚物,是遗传物质。

具有下列基本特性:①具有稳定的结构,能进行复制,特定的结构能传递给子代;②携带生命的遗传信息,以决定生命的产生、生长和发育;③能产生遗传的变异,使进化永不枯竭。

2、DNA链的方向总是理解为从5’—P端到3’—OH端。

分子生物学(全)

分子生物学(全)

第一章核酸的基本知识及核酸化学遗传物质必须具备的几个条件:(1)自我复制,代代相传。

(2)储备、传递信息的潜在能力。

(3)稳定性强,但能够变异。

(4)细胞分裂时把遗传信息有规律分配到子细胞中。

核酸的发现:1868年,瑞士青年科学家 F.Miescher核酸是遗传信息的载体证明试验:1944,O.Avery肺炎双球菌转化实验1952,A.D Hershey和M.Chase噬菌体感染实验DNA转化实验-DNA是遗传物质的证明结论是:S型菌的DNA将其遗传特性传给了R型菌,DNA就是遗传物质。

从此核酸是遗传物质的重要地位才被确立,人们把对遗传物质的注意力从蛋白质移到了核酸上。

噬菌体的侵染标记实验-DNA是遗传物质的证明烟草花叶病毒的感染和繁殖过程-证实RNA也是重要的遗传物质核酸是生命遗传信息的携带者和传递者核酸的元素组成:C H O N P核酸的元素组成有两个特点:1.一般不含S2.P含量较多,并且恒定(9%-10%)。

因此,实验室中用定磷法进行核酸的定量分析。

(DNA9.9%、RNA9.5%?)核酸(DNA和RNA)是一种线性多聚核苷酸,它的基本结构单元是核苷酸。

DNA A 核苷酸本身由核苷和磷酸组成,而核苷则由戊糖和碱基形成。

组成核酸的戊糖有两种。

DN 所含的戊糖为β-D-2-脱氧核糖;RNA所含的戊糖则为β-D-核糖。

核苷由戊糖和碱基缩合而成,嘌呤的N9或嘧啶的N1与戊糖C-1C-1’’-OH以C-N糖苷键相连接。

核苷酸是核苷的磷酸酯。

作为DNA或RNA结构单元的核苷酸分别是5′-磷酸-脱氧核糖核苷酸和5′-磷酸-核糖核苷酸。

核苷酸的衍生物ATP(腺嘌呤核糖核苷三磷酸)----最广泛;GTP(鸟嘌呤核糖核苷三磷酸);环化核苷酸cAMP 和cGMP主要功能是作为细胞之间传递信息的信使。

辅酶核苷酸:NAD+NADP+FMN FAD CoA生物化学上维生素与辅酶核苷酸的生物学作用(1)参与DNA、RNA的合成、蛋白质的合成、糖与磷脂的合成。

(完整版)分子生物学知识点归纳

(完整版)分子生物学知识点归纳

分子生物学1.DNA的一级结构:指DNA分子中核苷酸的排列顺序。

2.DNA的二级结构:指两条DNA单链形成的双螺旋结构、三股螺旋结构以及四股螺旋结构。

3.DNA的三级结构:双链DNA进一步扭曲盘旋形成的超螺旋结构。

4.DNA的甲基化:DNA的一级结构中,有一些碱基可以通过加上一个甲基而被修饰,称为DNA的甲基化。

甲基化修饰在原核生物DNA中多为对一些酶切位点的修饰,其作用是对自身DNA产生保护作用。

真核生物中的DNA甲基化则在基因表达调控中有重要作用。

真核生物DNA中,几乎所有的甲基化都发生于二核苷酸序列5’-CG-3’的C上,即5’-mCG-3’.5.CG岛:基因组DNA中大部分CG二核苷酸是高度甲基化的,但有些成簇的、稳定的非甲基化的CG小片段,称为CG岛,存在于整个基因组中。

“CG”岛特点是G+C含量高以及大部分CG二核苷酸缺乏甲基化。

6.DNA双螺旋结构模型要点:(1)DNA是反向平行的互补双链结构。

(2)DNA双链是右手螺旋结构。

螺旋每旋转一周包含了10对碱基,螺距为3.4nm. DNA 双链说形成的螺旋直径为2 nm。

每个碱基旋转角度为36度。

DNA双螺旋分子表面存在一个大沟和一个小沟,目前认为这些沟状结构与蛋白质和DNA间的识别有关。

(3)疏水力和氢键维系DNA双螺旋结构的稳定。

DNA双链结构的稳定横向依靠两条链互补碱基间的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持。

7.核小体的组成:染色质的基本组成单位被称为核小体,由DNA和5种组蛋白H1,H2A,H2B,H3和H4共同构成。

各两分子的H2A,H2B,H3和H4共同构成八聚体的核心组蛋白,DNA双螺旋缠绕在这一核心上形成核小体的核心颗粒。

核小体的核心颗粒之间再由DNA和组蛋白H1构成的连接区连接起来形成串珠样结构。

8.顺反子(Cistron):由结构基因转录生成的RNA序列亦称为顺反子。

9.单顺反子(monocistron):真核生物的一个结构基因与相应的调控区组成一个完整的基因,即一个表达单位,转录物为一个单顺反子。

分子生物学考试复习重点

分子生物学考试复习重点

分子生物学重点1.将外源基因导入的方法常用的基因工程真核细胞包括酵母细胞、动物细胞和植物细胞。

(1)外源基因导入酵母细胞:在对酵母细胞进行外源DNA转化时,一般先需要用酶将其细胞壁消化水解,变成原生质体。

蜗牛消化酶具有纤维素酶、甘露聚糖酶、葡萄糖酸酶以及几丁质酶等,对酵母菌细胞壁有良好水解作用。

原生质体在氯化钙和聚乙二醇存在下,重组DNA能容易地被宿主细胞吸收,转化的原生质体悬浮在营养瓶中,即可再生出新的细胞壁。

(2)外源基因导入动物细胞常用的方法有:1.磷酸钙共沉淀法。

2.DEAE-葡聚糖或聚阳离子,它们能结合DNA并促使细胞吸收;3.脂质体法4.脂质转染法5.电穿孔法6.显微注射法(3)外源基因导入植物细胞常用的方法有:1.转化法2.电穿孔和脂质体法3.显微注射法5.基因枪法4.农杆菌感染法:根瘤农杆菌的Ti质粒上有一段T-DNA ,又称转移DNA,能携带外源基因转移到植物细胞内,并整合到染色体DNA中,因此Ti质粒是目前植物基因工程中最常用的理想的基因载体。

2.核糖体活性中心(核糖体的活性位点)(1)mRNA结合位点(2)P位点(3)A位点(4)肽基转移酶活性位点(转肽酶中心)(5)5SrRNA位点(50S上)(6)E位点(50S上)与氨酰基-tRNA释放有关。

大小亚基在合成中的分工小亚基:对mRNA特殊序列的识别(SD序列)密码子与反密码子的相互作用。

大亚基:AA-tRNA,肽基-tRNA的结合,肽键的形成等。

3.凝胶电泳(操作的主要因素)技术原理流程图目的:分离不同的DNA分子电泳迁移率:电泳分子在电场作用下的迁移速度。

影响迁移率的因素:(1)与电场强度、电泳分子净电荷成正比;(2)与电泳分子的摩擦系数成反比分子摩擦系数为分子大小、极性、介质粘度的函数。

.DNA和RNA在电场中为多聚阴离子,电泳时向正极移动。

速度在于分子大小和构型。

.电泳介质:一般用琼脂糖和聚丙烯酰胺,浓度与所分离的DNA和RNA的大小有关。

分子生物学知识点归纳

分子生物学知识点归纳

分子生物学知识点归纳1.DNA的结构和功能:DNA是生物体内贮存遗传信息的分子,由磷酸、五碱基、脱氧核糖组成。

DNA以双螺旋结构存在,通过序列编码生物体的遗传信息,并在细胞分裂中复制和传递。

2.RNA的结构和功能:RNA是将DNA信息翻译为蛋白质的中间分子,有多种类型,包括信使RNA(mRNA)、转运RNA(tRNA)和核糖体RNA (rRNA)。

RNA具有与DNA类似的结构,但是鸟嘌呤(G)和胸腺嘧啶(T)被腺嘌呤(A)和尿嘧啶(U)所取代。

3.基因表达:基因表达是指将DNA中的遗传信息转录成RNA,然后翻译成蛋白质的过程。

这个过程包括转录、剪接、RNA修饰、起始和终止等多个步骤。

基因表达过程中的调控对于维持生物体的正常功能至关重要。

4.蛋白质合成:蛋白质合成是指RNA翻译成蛋白质的过程。

这个过程包括译码、蛋白质折叠和修饰。

蛋白质的结构和功能由其氨基酸序列决定,但结构和功能的形成还受到其他因素的调控。

5.基因组学:基因组学是研究生物体基因组的学科,包括基因组的结构、功能和演化。

随着高通量测序技术的发展,基因组学成为了分子生物学的前沿领域。

6.分子遗传学:分子遗传学是研究遗传信息传递和表达的分子机制的学科。

它研究遗传物质的结构、复制、易位、突变和修复等,以及遗传信息的传递和表达的分子级机制。

7.基因调控:基因调控是指细胞内基因表达的调节过程。

这个过程包括转录因子与DNA结合、组蛋白修饰、DNA甲基化等多个调控机制。

基因调控决定了细胞的发育、分化和对环境刺激的响应。

9.蛋白质相互作用和信号传导:蛋白质相互作用是指蛋白质之间的物理或化学交互作用。

这些相互作用对于细胞信号传导、代谢调控和细胞活动的协调起着重要作用。

10.DNA修复和细胞凋亡:DNA修复是细胞内修复DNA损伤的过程,以维持遗传稳定性。

细胞凋亡是指细胞主动性死亡的过程,常常发生在DNA 严重损伤和细胞失控增殖时。

以上只是分子生物学的一些知识点,这个领域还有很多其他的重要概念和研究方向,如非编码RNA、表观遗传学和细胞信号转导等。

分子生物学重点

分子生物学重点

一、名词解释基因:基因:编码一个蛋白质的全部组成所需信息的最短片段基因组:指一个物种单倍体的染色体所携带的一整套基因。

DNA变性:双链DNA分子加热分离成两条单链DNA分子的过程。

DNA复性:(退火)两引物分别与两条DNA的两侧序列特异性互补,形成双链的过程称为退火。

DNA的T m:OD增加值的中点温度(一般为85-95℃) 或DNA双螺旋结构失去一半时的温度C-值:一种生物单位体基因组DNA的总量。

C-值矛盾:基因组大小与机体的遗传复杂性缺乏相关性。

基因家族:真核细胞中,许多功能相关的基因成套组合,称为基因家族。

基因簇:同一基因家族中的成员紧密排列在一起,称为一个基因簇。

单顺反子:只编码一个蛋白质的mRNA称为单顺反子mRNA。

多顺反子:编码多个蛋白质的mRNA称为多顺反子mRNA 。

割裂基因:真核生物基因除了与mRNA相对应的编码序列外,还含有一些不编码序列插在编码序列之间,这些不编码序列在加工为成熟的mRNA时被去除。

这样的基因称为不连续基因或断裂基因。

卫星DNA :高度重复序列,在基因组中重复频率高,可达百万(106)以上,复性速度很快,序列一般较短,长10-300bp。

反向重复序列:双链DNA中的一段序列按确定的方向,读双链中的每条链的序列都相同,反向重复中的序列又称回文序列。

复制子:生物体的复制单位称为复制子。

一个复制子包括一个复制起点和复制终点。

复制叉:正在进行复制的复制起点呈现叉子的形式,称为复制叉。

复制眼:DNA复制的部分看上去象一只眼睛,称为复制眼。

半保留复制:每个子代分子的一条链来自亲代DNA,另一条则是新合成的,这种复制方式称为DNA的半保留复制。

岗崎片段:DNA复制时,随从链复制形成的不连续序列基因工程:在体外将核酸分子插入病毒、质粒、或其他载体分子,构成遗传物质的新组合,使之进入原先没有这类分子的寄主细胞内并进行持续稳定的繁殖和表达DNA复制的转录激活:聚合酶链式反应:即 PCR 技术,是一种在体外快速扩增特定基因或DNA序列的方法。

分子生物学复习资料-绝对重点

分子生物学复习资料-绝对重点

分子生物学复习资料(第一版)一名词解释1 Southern blot / Northern blot—DNA斑迹法 / RNA转移吸印技术。

是为了检测待检基因或其表达产物的性质和数量(基因拷贝数)常用的核酸分子杂交技术。

二者均属于印迹转移杂交术,所不同的是前者用于检测DNA样品;后者用于检测RNA样品。

2 cis-acting element / trans-acting factor—顺式作用元件 / 反式作用因子。

均为真核生物基因中的转录调控序列。

顺式作用元件是与结构基因表达调控相关、能被基因调控蛋白特异性识别和结合的特定DNA序列,包括启动子和上游启动子元件、增强子、反应元件和poly(A)加尾信号。

反式作用因子是能与顺式作用元件特异性结合、对基因表达的转录起始过程有调控作用的蛋白质因子,如RNA 聚合酶、转录因子、转录激活因子、抑制因子。

3VNTR / STR—可变数目串联重复序列 / 短串联重复。

均为非编码区的串联重复序列。

前者也叫高度可变的小卫星DNA,重复单位约9~24bp,重复次数变化大,变化高度多态性;后者也叫微卫星DNA,重复单位约2~6 bp,重复次数约10~60次,总长度通常小于150bp 。

(参考第7题)4 viral oncogene / cellular oncogene—病毒癌基因 / 细胞癌基因。

病毒癌基因指存在于逆转录病毒中、体外能使细胞转化、体内能导致肿瘤发生的基因;细胞癌基因也叫原癌基因,指存在于细胞内,与病毒癌基因同源的基因序列。

正常情况下不激活,与细胞增殖相关,是维持机体正常生命活动所必须的,在进化上高等保守。

当原癌基因的结构或调控区发生变异,基因产物增多或活性增强时,使细胞过度增殖,从而形成肿瘤。

第1 页/共16 页5 ORF / UTR—展开阅读框 / 非翻译区。

均指在mRNA中的核苷酸序列。

前者是特定蛋白质多肽链的序列信息,从起始密码子开始到终止密码子结束,决定蛋白质分子的一级功能;后者是位于前者的5'端上游和3'端下游的、没有编码功能的序列,主要参加翻译起始调控,为前者的多肽链序列信息改变为多肽链所必须。

医学分子生物学复习重点

医学分子生物学复习重点

第二章基因【目的要求】掌握:基因的概念及结构特点;结构基因;基因转录调控相关序列;顺式作用元件;多顺反子,单顺反子。

一、基因:是负责编码RNA或一条多肽链的DNA片段,包括编码序列、编码序列外的侧翼序列及插入序列。

二、结构基因:基因中编码RNA或蛋白质的DNA序列成为结构基因。

三、基因转录调控相关序列:1原核生物基因的调控序列中最基本的是启动子和终止子,有些基因中还有不同的调节蛋白结合位点或操纵元件。

操纵元件:是一段能够被不同基因表达调控蛋白识别和结合的DNA序列,是决定基因表达效率的关键元件。

2真核生物基因中的调控序列一般被称为顺式作用原件,包括启动子和上游启动子元件、增强子、反应元件和poly(A)加尾信号。

启动子和上游启动元件:TATA盒-TFIID-RNA聚合酶复合物(启动转录);CAA盒-CTF(决定转录的效率);GC盒-Sp1(促进转录)。

增强子:可特异性的与转录因子结合,增强转录因子的活性。

四、顺式作用元件:真核生物基因中的调控序列一般被称为顺式作用原件。

包括启动子和上游启动子元件、增强子、反应元件和poly(A)加尾信号。

五、多顺反子:原核生物的结构基因多转录为多顺反子mRNA,即每一个mRNA分子带有几种蛋白质的遗传信息(来自几个结构基因),利用共同的启动子及终止信号,组成“操纵子”的基因表达调控单元。

转录出来的mRNA分子可以编码几种不同的、但是多为功能相关蛋白质。

六、单顺反子:真核生物结构基因转录为单顺反子mRNA,即一个编码基因转录生成一个mRNA分子、经翻译生成一条多肽链,基本上没有操纵子的结构。

转录生成的mRNA前体中既有编码序列(外显子),又有间隔序列(内含子),需要进行转录后的剪切加工以及各种修饰,形成成熟的mRNA。

1熟悉:基因型;表现型;基因突变;;外显子;内含子;选择性剪接。

一、基因型:指逐代传递下去的成对因子的集合,因子中一个来源于父本,另一个来源于母本。

分子生物学详细知识点

分子生物学详细知识点

分子生物学详细知识点1.DNA和RNA:DNA(脱氧核糖核酸)和RNA(核糖核酸)是生物体内的两种核酸,DNA是多聚核苷酸的长链,包含编码基因信息,RNA是DNA的转录产物,在蛋白质合成中起着重要作用。

2.基因表达调控:基因表达调控是指在细胞中控制基因转录和翻译的过程。

包括转录因子的结合、启动子的甲基化、组蛋白修饰等。

3.蛋白质合成:蛋白质合成是指通过翻译过程将mRNA上的信息编码转化为氨基酸序列的蛋白质。

主要包括mRNA的翻译、氨基酸激活、核糖体的结合等步骤。

5. PCR技术:聚合酶链式反应(Polymerase Chain Reaction,PCR)是一种体外扩增DNA的方法,通过反复循环的变性、退火和延伸步骤,迅速扩增目标DNA序列。

6.基因突变:基因突变是指DNA序列的改变,包括点突变、插入和缺失等。

可以导致蛋白质的结构和功能的改变,从而影响生物体的表型。

7.基因组学:基因组学是研究基因组结构、功能和演化的学科。

包括基因组测序、基因注释、功能基因组学等内容。

8.蛋白质结构与功能:蛋白质的结构决定其功能,分子生物学研究了蛋白质的二级结构、三级结构和四级结构等方面,以及蛋白质与其他分子(如DNA、RNA、小分子)的相互作用。

9.克隆基因和表达蛋白:分子生物学通过克隆目标基因,将其插入表达载体中,转化至宿主细胞中,使目标基因在宿主中表达,并得到目标蛋白质。

10.分子进化:分子进化研究基因组的演化和多样性。

包括跨物种比较基因组、遗传多态性、分子标记等内容。

11. RNA干扰:RNA干扰是一种通过RNA分子抑制目标基因表达的现象。

包括小干扰RNA(siRNA)和微小RNA(miRNA),通过与mRNA结合形成双链结构,进而降解或抑制mRNA的翻译。

通过以上的介绍,可以看出分子生物学可以研究生命体内分子的结构、功能和相互作用等方面,对于深入了解生命现象的本质和基础具有重要意义。

分子生物学知识重点

分子生物学知识重点

分子生物学一、名词解释1.ORF 答:ORF是open reading frame的缩写,即开放阅读框架。

在DNA链上,由蛋白质合成的起始密码开始,到终止密码为止的一个连续编码列,叫做一个开放阅读框架。

2.结构基因答:结构基因(structural genes)可被转录形成mRNA,并翻译成多肽链,构成各种结构蛋白质或催化各种生化反应的酶和激素等。

3.断裂基因答:基因是核酸分子中贮存遗传信息的遗传单位,一个基因不仅仅包括编码蛋白质或RNA 的核酸序列,还包括保证转录所必需的调控序列、位于编码区 5' 端与 3' 端的非编码序列和内含子。

真核生物的结构基因,由若干个编码区和非编码区互相间隔开但又连续镶嵌而成,去除非编码区再连接后,可翻译出由连续氨基酸组成的完整蛋白质,这些基因称为断裂基因(split gene)。

4.选择性剪接答:选择性剪接(也叫可变剪接)是指从一个mRNA前体中通过不同的剪接方式(选择不同的剪接位点组合)产生不同的mRNA剪接异构体的过程,而最终的蛋白产物会表现出不同或者是相互拮抗的功能和结构特性,或者,在相同的细胞中由于表达水平的不同而导致不同的表型。

5.C值答:基因组的大小通常以其DNA的含量来表示,我们把一种生物体单倍体基因组DNA的总量成为C值(C value)。

6.生物大分子答:生物大分子指的是作为生物体内主要活性成分的各种分子量达到上万或更多的有机分子。

常见的生物大分子包括蛋白质、核酸、脂类、糖类。

7.酚抽提法答:酚抽提法最初于1976年由Stafford及其同事提出,通过改良,以含EDTA、SDS及无DNA酶的RNA酶裂解缓冲液破碎细胞,经蛋白酶K处理后,用pH8.0的Tris饱和酚抽提DNA,重复抽提至一定纯度后,根据不同需要进行透析或沉淀处理获得所需的DNA样品。

8.凝胶过滤层析答:凝胶过滤层析也称分子排阻层析或分子筛层析,利用凝胶分子筛对大小、形状不同的分子进行层析分离,是根据分子大小分离蛋白质混合物最有效的方法之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章基因表达调控1. 顺式作用元件:指调控真核生物结构基因转录的DNA序列,包括启动子、上游启动子元件、增强子、加尾信号和反应元件等。

它们通过与反式作用因子相互作用来发挥转录调控作用。

2.反式作用因子:指真核基因的转录调节蛋白,包含DNA结合结构域和转录激活结构域。

它们与顺式作用元件、RNA聚合酶相互作用,以及转录因子之间相互协同或者拮抗,反式调控另一基因的转录。

3. 操纵子:原核生物绝大多数基因按照功能相关性成簇串联排列,与启动子、操纵基因等调控元件共同组成一个转录单位,实现协调表达。

4.增强子是一种能够提高转录效率的顺式作用元件。

5.真核生物的调控元件:顺式作用元件和反式作用因子6. 顺式作用元件是指起转录调控作用的DNA序列,包括启动子、增强子、沉默子等。

7.转录水平的调控是原核生物基因表达的关键环节。

8.大肠杆菌的RNA聚合酶是σ亚基和核心酶构成。

9.转录起始是真核生物基因表达调控的关键。

10.真核生物表达可以在DNA水平、转录水平、转录后水平、翻译水平、翻译后水平上进行调控。

11..基因表达调控的基本规律是?A、基因表达具有时空特异性。

B、诱导表达和阻遏表达是基因表达调控的普遍方式。

C、基因表达受顺式作用元件和反式作用因子共同调节。

D、蛋白质-DNA以及蛋白质-蛋白质的相互作用是基因表达调控的分子基础。

E、基因表达调控是多层次的复杂调节。

12.真核基因组的特点有?A.真核基因组比原核基因组大得多。

B.真核基因组中只有10%的序列编码蛋白质、rRNA、tRNA。

C.真核生物编码蛋白质的基因是不连续的,转录后需要剪接去除内含子,这就增加了基因表达调控的层次。

D.真核生物是一个结构基因转录生成一条mRNA,即mRNA是单顺反因子,许多功能相关的蛋白将涉及多个基因的协调表达。

E.真核生物DNA在细胞核内与多种蛋白质结合构成染色质,这种复杂的结构直接影响着基因表达。

F.真核生物的遗传信息不仅存在于核DNA上,还存在于线粒体DNA上,调控既相互独立而又需要协调。

第八章细胞信号转导1、受体:位于细胞膜上或细胞内能特异识别配体并与之结合,进而引起生物学效应的特殊蛋白质,个别是糖脂。

2、信号转导:是通过多种分子相互作用的一系列有序反应,将来自细胞外的信息传递到细胞各种效应分子的过程。

3、第二信使物质:cAMP、cGMP、DAG、Ca2+、IP3等。

4.受体分膜表面受体和细胞内受体。

膜受体分为离子通道型受体、G蛋白偶联受体、蛋白激酶偶联受体。

5.调节信号转导分子主要包括G蛋白和接头蛋白。

6.各种信号转导机制具有的共同基本规律有?A、信号的传递和终止涉及许多双向反应。

B、细胞信号在转导过程中被逐级放大。

C、细胞信号转导途径既有通用性又有特异性。

7.G蛋白偶联受体介导的细胞信号转导途径有?.1)cAMP-PKA途径。

2)IP3/DAG-PKC途径。

3)Ca2+/钙调蛋白依赖性蛋白激酶途径。

第十一章1.抑癌基因:一类编码产物起抑制细胞增殖信号转导、负性调节细胞周期的作用,从而抑制细胞增殖和抑制肿瘤生成的基因。

2.癌基因:是指细胞内或病毒内存在的、编码产物能促使正常细胞恶性转化,即发生恶性变的基因。

3.癌基因包括细胞癌基因和病毒癌基因。

4.最常见的抑癌基因是RB基因、P53基因.5.癌基因和抑癌基因在肿瘤发生中的作用?A、细胞癌变的多基因协同。

B、细胞周期与细胞凋亡的分子调控机制是肿瘤研究的主线。

第十章基因变异与疾病1.基因变异主要有两种来源的变异:单核苷酸多态性(SNP)和拷贝数变异(CNV)。

2.人类基因组的治病突变可表现为:点突变、缺失、插入、重排。

3.依据基因变异在人群中的分布和生物学效应,我们可将其划分为DNA多态性和致病突变。

4.根据DNA序列变异的物理形态及其对基因功能的影响,人类的基因变异可大致划分为:点突变、大片段突变、短串联重复突变(STR)、拷贝数变异.5.单核苷酸多态性变异(SNP):给定人群中基因组的给定位点发现的单个核苷酸变异,人群中出现的频率>1%。

短串联重复序列(STR):可变数目的1~6bp核心单元组成的重复序列,一般总长度<200bp。

拷贝数多态性变异(CNV):人类基因组中大小从≥1kbp到超过Mb不等的DNA片段的拷贝数变异,它包括倒位、缺失、插入重复等的拷贝数变异,人群中出现的频率>1%时,称为拷贝数多态性。

6.可使基因功能减弱的DNA变异有:单倍型不足、反义RNA转录/基因组修饰、转录因子基因变异、影响mRNA稳定性的变异、显性负效应。

7.可使基因功能增强的DNA变异有:转录增强作用、增强子的位置效应、剂量效应、SNP创造新启动子、获得性RNA堆积。

8.单倍型:我们将一条染色体上紧密连锁的一组SNP位点组成的基因单位称作单倍型。

9.单倍型不足:是指给定基因的两个拷贝中的一个等位基因发生突变或缺失,另一个拷贝的表达产物不足以维持正常的细胞功能。

10.显性负效应:又称反显性效应,是指由于基因变异导致参与组成蛋白质复合体的某一成员蛋白产生了功能缺陷,改突变型蛋白虽仍能与野生型蛋白形成多蛋白质复合体,但却使该蛋白质复合体完全或部分丧失了功能,因此可引发显性表型。

第十九章1、cDNA文库:指含有某种组织细胞全部mRNA信息的重组DNA克隆群体。

以细胞总mRNA为模板,利用逆转录酶合成与mRNA互补的cDNA第一链,进而形成cDNA双链,与合适载体连接后转入受体菌扩增,由此建立cDNA文库。

2、双脱氧末端终止法(sanger法)原理:在DNA合成过程中不能形成3’,5’-磷酸二酯键而导致延伸终止的原理,利用4种2’,3’-双脱氧核苷酸代替部分脱氧核苷酸作为底物进行DNA合成效应,从而获得在不同部位终止的,长短不同的DNA片段。

3、southern印迹的原理:将待测基因组DNA经电泳分离后,转移到膜状支持物上使之固相化。

利用待测基因中一段已知序列作为探针,依据碱基配对即可复性形成杂交分子的原理,检测固相膜上待测基因组中与之互补的序列,并根据探针信号出现的位置和次数判断基因的拷贝数。

4、增色效应:DNA在紫外区260nm处的吸光值增加,并与解链程度成一定的比例关系,这种关系称为DNA的增色效应。

6、基因组文库:是指含有某种生物体全部基因片段的重组DNA克隆群体。

77.试述PCR的原理、基本步骤及其应用。

原理:PCR即聚合酶链式反应,是指在DNA聚合酶催化下,以母链DNA为模板,以特点引物为延伸起点,通过变性、退火、延伸等步骤,体外复制出与母链模板DNA互补的子链DNA过程,是一项DNA体外合成放大技术,能快速特异地在体外扩增任何目的DNA。

步骤:1) 双链DNA模板加热变性成单链(变性);2) 在低温下引物与单链DNA互补配对(退火);3) 在适宜温度下Taq DNA聚合酶催化引物3’-OH端加入脱氧核苷酸(延伸)。

应用:(可用于基因的体外交换、序列分析、基因突变分析等研究等许多方面。

)1)分子生物学领域基因克隆;DNA序列测定;突变分析;基因重组;基因定量;鉴定转录调控序列;转座子插入位点的确定;检测基因的修饰;2) 临床医学领域病原体诊断;遗传病的基因诊断;器官移植;肿瘤诊断;法医学;3) 动植物学的研究;4)其他领域如组织和群体生物学、古生物学等。

)8、获取基因的4种方式:用PCR技术获取基因,用反转录-PCR技术获取,从基因文库中获取,人工合成基因。

3、简述基因克隆的基本步骤及其重要工具酶。

步骤:(1) 获得目的基因。

(2) 限制性内切酶消化载体。

(3) 连接目的基因和载体。

(4) 重组DNA导入宿主细胞。

(5) 筛选并扩增获得重组克隆。

重要工具酶:限制性内切酶和DNA连接酶。

4、载体的定义及特点。

定义:载体是指能够携带目的基因在宿主细胞内扩增或表达的DNA分子。

特点:(1) 有复制子。

(2) 有单一限制性内切酶位点。

(3) 有筛选标志。

(4) 表达型载体具备完整的转录单位。

第二十一章1.基因诊断:用分子生物学技术针对DNA和/或mRNA进行定性、定量分析,通过分析这些遗传信息分子的序列,从而在分子水平上确定疾病的病因,具高度特异性。

2.限制性片段长度多态性(RFLP):指DNA序列上发生某个变异(如单碱基置换、少数碱基缺失或插入)后获得或丢失了某一限制性识别位点,使DNA限制性酶解片段的长度发生变化,在人群中形成两种或两种以上的限制性类型,可以用作遗传标志。

3.聚合酶链反应(PCR):一种在体外利用酶促反应获得特异序列的基因组DNA片段或cDNA的专门技术。

根据样品来源不同分为基因组PCR和反转录PCR两类。

4.反向点杂交(RDB):是改进的等位基因特异性寡核苷酸(ASO)分子杂交技术。

将针对各种突变和正常序列的ASO探针固定在杂交膜上,而将原来在ASO杂交体系中固定在膜上的PCR产物改为液相进行杂交,从而能够同时检测多种突变。

5.请简述基因诊断的基本流程。

(1) 样品的核酸抽提。

(2) 目的序列的扩增。

(3)核酸分子杂交。

(4) 信号检测。

2.用于遗传分析的代表性直接诊断技术主要有?(1)基因缺失或插入的诊断 1)Southern印迹法 2) PCR法(2)点突变的诊断 1) 等位基因特异性寡核苷酸分子杂交 2) 反向点杂交 3) 变性高效液相色谱(3) STR拷贝异常的诊断:常见于脆性X综合征、强直肌营养不良症。

3、用于遗传分析的代表性间接诊断技术主要有?RFLP连锁分析、基于短串联重复的微卫星分析、基于SNP的单倍型分析。

第二十三章1.基因治疗的基本方式:基因置换;基因扩增;抑制有害表达或过度表达的基因。

2.基因治疗的基本过程:选择治疗基因;利用载体把目的基因导入到受体细胞表达;选择基因的治疗靶细胞;治疗基因表达的检测。

3.基因转移的物理方法:直接注射法;基因枪法;电孔穿法。

4.基因转移的化学方法:磷酸钙共沉淀法;脂质体转染法;DEAE-葡聚糖发。

5.基因转移的生物学方法中常用的载体:反转录病毒、腺病毒、腺相关病毒、单纯孢疹病毒。

6.第一例真正意义上的基因治疗是用腺苷脱氨酶基因来治疗ADA基因缺陷引起的严重复合型免疫缺陷症的患者。

相关文档
最新文档