遗传算法理论及其应用发展

合集下载

遗传算法原理步骤及发展状况和未来趋势

遗传算法原理步骤及发展状况和未来趋势

遗传算法原理步骤及发展状况和未来趋势遗传算法(Genetic Algorithm,GA)是一种受到生物学演化理论启发的优化算法,通过模拟自然界的生物进化过程,能逐步逼近最优解。

以下是遗传算法的原理步骤、发展状况和未来趋势的详细说明。

原理步骤:1.初始化种群:随机生成一组初始个体,称为种群。

2.适应度评估:根据问题的适应度函数,对种群中的每个个体进行评估,得到其适应度值。

3.选择:根据个体的适应度值,利用一定的策略选择出一部分个体作为父代。

4.交叉:对选出的父代个体进行交叉操作,生成新一代的子代个体。

5.变异:对新一代的子代个体进行变异操作,以增加种群的多样性。

6.替代:根据一定的策略,用新一代个体替代旧一代个体,生成下一代种群。

7.终止条件判断:根据问题设定的终止条件,判断是否满足停止进化的条件,若满足则结束,否则返回第2步。

发展状况:遗传算法最早由约翰·霍兰德(John Holland)于20世纪60年代提出,之后经过多位学者的改进和发展,得到了广泛应用。

随着计算机计算能力的提高,遗传算法在解决实际问题中的应用也逐渐增多。

目前,遗传算法已成为求解复杂优化问题的一种重要方法。

不仅在工程优化、组合优化、机器学习等领域得到广泛应用,还在解决传统算法难以解决的问题上显示出了很好的效果。

未来趋势:1.并行化:随着大数据和高性能计算的发展,遗传算法将更多地借助并行计算来提高效率,同时处理更复杂的问题。

2.启发式算法融合:遗传算法与其他启发式算法(如模拟退火、粒子群算法等)相结合,能够充分发挥各自的优势,进一步提高求解效果。

3.多目标优化:将遗传算法应用于多目标优化问题,在满足多个目标的约束条件下,寻找出一组最优解,将成为未来的研究热点。

4.自适应性:自适应遗传算法能够根据问题的特点,自动调节遗传算子的操作参数,使算法更加灵活有效,未来的发展将更加注重算法的自适应能力。

5.深度学习结合:将遗传算法与深度学习结合,可以进一步提高算法求解能力,例如通过遗传算法来优化深度神经网络的结构和超参数。

遗传算法遗传算法

遗传算法遗传算法
11
(5)遗传算法在解空间进行高效启发式搜索,而非盲 目地穷举或完全随机搜索;
(6)遗传算法对于待寻优的函数基本无限制,它既不 要求函数连续,也不要求函数可微,既可以是数学解 析式所表示的显函数,又可以是映射矩阵甚至是神经 网络的隐函数,因而应用范围较广;
(7)遗传算法具有并行计算的特点,因而可通过大规 模并行计算来提高计算速度,适合大规模复杂问题的 优化。
26
(4)基本遗传算法的运行参数 有下述4个运行参数需要提前设定:
M:群体大小,即群体中所含个体的数量,一般取为 20~100; G:遗传算法的终止进化代数,一般取为100~500; Pc:交叉概率,一般取为0.4~0.99;
Pm:变异概率,一般取为0.0001~0.1。
27
10.4.2 遗传算法的应用步骤
遗传算法简称GA(Genetic Algorithms)是1962年 由美国Michigan大学的Holland教授提出的模拟自然 界遗传机制和生物进化论而成的一种并行随机搜索最 优化方法。
遗传算法是以达尔文的自然选择学说为基础发展起 来的。自然选择学说包括以下三个方面:
1
(1)遗传:这是生物的普遍特征,亲代把生物信息交 给子代,子代总是和亲代具有相同或相似的性状。生 物有了这个特征,物种才能稳定存在。
18
(3)生产调度问题 在很多情况下,采用建立数学模型的方法难以对生
产调度问题进行精确求解。在现实生产中多采用一些 经验进行调度。遗传算法是解决复杂调度问题的有效 工具,在单件生产车间调度、流水线生产车间调度、 生产规划、任务分配等方面遗传算法都得到了有效的 应用。
19
(4)自动控制。 在自动控制领域中有很多与优化相关的问题需要求
10

遗传算法的研究与进展

遗传算法的研究与进展

遗传算法的研究与进展一、综述随着科学技术的不断发展和计算能力的持续提高,遗传算法作为一种高效的优化方法,在许多领域中得到了广泛的应用。

本文将对遗传算法的研究进展进行综述,包括基本原理、改进策略、应用领域及最新研究成果等方面的内容。

自1975年Brendo和Wolfe首次提出遗传算法以来,该算法已经发展成为一种广泛应用于求解最优化问题的通用方法。

遗传算法主要基于自然选择的生物进化机制,通过模拟生物基因的自然选择、交叉和变异过程来寻找最优解。

在过去的几十年里,众多研究者和开发者针对遗传算法的性能瓶颈和改进方向进行了深入探讨,提出了许多重要的改进策略。

本文将对这些策略进行综述,并介绍相关的理论依据、实现方法以及在具体问题中的应用。

遗传算法的核心思想是基于种群搜索策略,在一组可行解(称为种群)中通过选择、交叉和变异等遗传操作产生新的候选解,进而根据适应度函数在种群中选择优良的候选解,重复上述过程,最终收敛于最优解。

遗传算法的关键要素包括:染色体表示、适应度函数设计、遗传操作方法等。

为进一步提高遗传算法的性能,研究者们提出了一系列改进策略。

这些策略可以从以下几个方面对遗传算法进行改进:多目标优化策略:针对单点遗传算法在求解多目标优化问题时容易出现陷入局部最优解的问题,可以通过引入多目标遗传算法来求解多目标问题。

精英保留策略:为了避免遗传算法在进化过程中可能出现未成熟个体过早死亡的现象,可以采用精英保留策略来保持种群的优良特性。

基于随机邻域搜索策略:这种策略通过对当前解的随机邻域进行搜索,可以在一定程度上避免陷入局部最优解,并提高算法的全局收敛性。

遗传算法作为一种常用的优化方法,在许多领域都有广泛应用,如组合优化、约束满足问题、机器学习参数优化、路径规划等。

随着技术的发展,遗传算法在深度学习、强化学习和智能交通系统等领域取得了显著成果。

研究者们在遗传算法的设计和应用方面取得了一系列创新成果。

基于神经网络的遗传算法被用于解决非线性优化问题;基于模型的遗传算法通过建立优化问题模型来提高算法的精度和效率;一些研究还关注了遗传算法的鲁棒性和稳定性问题,提出了相应的改进措施。

遗传算法及其应用-毕业论文

遗传算法及其应用-毕业论文

摘要遗传算法是一种模拟自然界生物进化的搜索算法,由于它的简单易行、鲁棒性强,尤其是其不需要专门的领域知识而仅用适应度函数作评价来指导搜索过程,从而使它的应用范围极为广泛,并且己在众多领域得到了实际应用,取得了许多令人瞩目的成果,引起了广大学者和工程人员的关注。

在简要的介绍了遗传算法的发展历史和研究现状及其生物学、数学基础后,文中引出了遗传算法的基本概念和原理、分析了遗传算法的基本实现技术。

如:编码、适应度函数、遗传算法的三大遗传操作、参数规则等。

最后在介绍了遗传算法程序设计原则的基础上,编程实现了遗传算法在图像识别中的应用,在实践中检验了遗传算法的实际效果。

关键词:遗传算法,适应度函数,图像识别ABSTRACTThe gen etic algorithm is a kind of search ing method which simulates thenatural evolution. It is simple and easy to implement, especially it do not needthe special field kno wledge, so it has bee n using in very broad fields. Now thegen etic algorithm has got a lot of fruits, and more and more scholars beg in to pay atte ntio n on it.After brief in troducted the gen etic algorithm and studyed the history ofthe development status and biology, mathematical basis, webrought out the basic genetic algorithm concepts and principles, analysised the genetic algorithm to achieve the basic tech no logy. Such as: cod ing, fit ness function, gen etic algorithm of the three major genetic manipulation, and other parameters of the rules. Fin ally, in troduceda gen etic algorithm procedures based on theprinciples of design, programming a genetic algorithm in the application of image recog niti on, in practice, we test the practical effects of gen etic algorithm.Key word : genetic algorithm , Fitness function , image recognition引言当前科学技术正进入多学科互相交叉、互相渗透、互相影响的时代,生命科学与工程科学的交叉、渗透和相互促进是其中的一个典型例子,也是近代科学技术发展的一个显著特点。

遗传算法及应用

遗传算法及应用

遗传算法将问题的求解表示成“染色体”(用编码 表示字符串)。该算法从一群“染色体”串出发, 将它们置于问题的“环境”中,根据适者生存的原 则,从中选择出适应环境的“染色体”进行复制, 通过交叉、变异两种基因操作产生出新的一代更适 应环境的“染色体”种群。随着算法的进行,优良 的品质被逐渐保留并加以组合,从而不断产生出更 佳的个体。这一过程就如生物进化那样,好的特征 被不断的继承下来,坏的特征被逐渐淘汰。新一代 个体中包含着上一代个体的大量信息,新一代的个 体不断地在总体特性上胜过旧的一代,从而使整个 群体向前进化发展。对于遗传算法,也就是不断接 近最优解。
优势
总的来说,遗传算法与其他寻优算法相比的主要特点可以归纳如下: 1)遗传算法是对参数的编码进行操作,而不是对参数本身。 2)遗传算法是从许多初始点开始并行操作,而不是从一个点开始。因而 可以有效地防止搜索过程收敛于局部最优解,而且有较大可能求得全部 最优解。 3)遗传算法通过目标函数来计算适配度,而不要求其他的推导和附属信 息,从而对问题的依赖性较小。 4)遗传算法使用概率的转变原则,而不是确定性原则。 5)遗传算法在解空间内不是盲目地穷举或完全随机测试,而是一种启发 式搜索,其搜索效率往往优于其他算法。 6)遗传算法对于待寻优的函数基本无限制,它既不要求函数连续,更不 要求可微;既可以是数学解析式所表达的显函数,又可以是映射矩阵甚 至是神经网络等隐函数,因而应用范围很广。 7)遗传算法更适合大规模复杂问题的优化。
6.2遗传算法的基本操作与模式理论
下面通过一个简单的例子,详细描述遗传算法的基 本操作过程,然后给出简要的理论分析,从而清晰 地展现遗传算法的原理和特点。 6.2.1遗传算法的基本操作 例:设需要求解的优化问题为当自变量x在0~31之间 取整数值时寻找f(x)=x^2函数的最大值。枚举的方 法是将x取尽所有可能值,观察能否得到最高的目标 函数值。尽管对如此简单的问题该法是可靠的,但 这是一种效率很低的方法。下面运用遗传算法来求 解这个问题。

遗传算法理论及其应用发展

遗传算法理论及其应用发展

遗传算法理论及其应用发展摘要:首先介绍了遗传算法的基本工作原理和主要特点; 然后讨论了近年来从遗传算子、控制参数等方面对遗传算法的发展,并对遗传算法在国内外的研究进展和新的应用领域进行了讨论; 最后评述了遗传算法未来的研究方向和主要研究内容。

关键词:遗传算法; 遗传算子; 控制参数; 组合优化遗传算法[1] (Genetic Algorithms,简称GA )是由美国Michigan 大学的Holland教授于1975年首先提出的。

它源于达尔文的进化论、孟德尔的群体遗传学说和魏茨曼的物种选择学说; 其基本思想是模拟自然界遗传机制和生物进化论而形成的一种过程搜索最优解的算法。

从公开发表的论文看, 我国首先开始研究应用遗传算法的有赵改善和华中理工大学的师汉民等人。

遗传算法最早应用于一维地震波形反演中, 其特点是处理的对象是参数的编码集而不是问题参数本身, 搜索过程既不受优化函数联系性的约束, 也不要求优化函数可导, 具有较好的全局搜索能力; 算法的基本思想简单, 运行方式和实现步骤规范, 具有全局并行搜索、简单通用、鲁棒性强等优点, 但其局部搜索能力差, 容易出现早熟现象。

自1985年起, 国际遗传算法会议每两年召开一次, 在欧洲, 从1990年开始每隔一年也举办一次类似的会议。

1993年, 国际上第一本以遗传算法和进化计算为核心内容的学术期刊5 Evolutionary Com putation6 (进化计算) 在MIT 创刊; 1994年, 在美国奥兰多召开的IEEE World Congress on Computation Intelligence ( IEEE全球计算智能大会)上, 进化计算与模糊逻辑、神经网络一起统称为计算智能; 1997年, 5 IEEE Transaction son Evolutionary Computation6创刊。

这些刊物及时全面地报道了近年来遗传算法的最新研究成果。

遗传算法原理及其应用修改.

遗传算法原理及其应用修改.


编码原则


二进制编码与浮点数编码的比较


12
1.4 遗传算法的基本操作
选择


适应度计算: 按比例的适应度函数(proportional fitness assignment) 基于排序的适应度计算(Rank-based fitness assignment) 选择算法: 轮盘赌选择(roulette wheel selection) 随机遍历抽样(stochastic universal selection) 局部选择(local selection) 截断选择(truncation selection) 锦标赛选择(tournament selection)
组合图像处理和模式识别 目前已在图像恢复、图像边缘持征提取、几何形状识别等方面得到了应用;
18
人工生命 基于遗传算法的进化模型是研究人工生命现象的重要理论基础,遗传算法已 在其进化模型、学习模型、行为模型等方面显示了初步的应用能力; 遗传程序设计 Koza发展了遗传程序设计的慨念,他使用了以LISP语言所表示的编码方法, 基于对一种树型结构所进行的遗传操作自动生成计算机程序;
遗传算法——进化计算——计算智能——人工智能
所所所所所所
所所所所 所所所所 所所所所所所所 所所所所所 所所所所所 所所所所
所所所所
所所所所所 所所所所
所所所所
所所所所所所所
所所所所
5
1.2 遗传学基本概念与术语
染色体(chromosome):遗传物质的载体;

脱氧核糖核酸(DNA):大分子有机聚合物,双螺旋结构; RNA

对群体中的要交叉的个体进行两两随机配对。若群体大小为M, 则最多共有 [ M/2 ]对相互配对的个体组参与交叉。(若种群数 为奇数,则其中任一个个体多选一次配对)

介绍遗传算法的发展历程

介绍遗传算法的发展历程

介绍遗传算法的发展历程遗传算法(Genetic Algorithms,GA)是一种基于自然选择和遗传学原理的优化算法,由美国计算机科学家约翰·霍兰德(John Holland)在20世纪60年代提出。

遗传算法通过模拟自然界的进化过程,利用基因编码表示问题的解,通过交叉、变异等操作来探索解空间并逐步优化求解的过程。

以下是遗传算法发展的主要里程碑:1.早期研究(1960s-1970s):约翰·霍兰德在1960年代提出遗传算法的基本原理,并将其应用于函数优化问题。

他的研究引发了对遗传算法的广泛兴趣,但由于计算能力有限,遗传算法的应用范围较为受限。

2.第一代进化策略(1980s):20世纪80年代,德国科学家汉斯-皮特·舍维尔(Hans-Paul Schwefel)提出了一种基于自然选择的优化算法,称为“进化策略”。

舍维尔的工作开拓了遗传算法的领域,并引入了适应度函数、交叉和变异等基本概念。

3.遗传算法的理论完善(1990s):20世纪90年代,遗传算法的理论基础得到了进一步的完善。

约翰·霍兰德等人提出了“遗传算子定理”,指出在理论条件下,遗传算法可以逐步收敛到最优解。

同时,研究者们提出了多种改进策略,如精英保留策略、自适应参数调节等。

4.遗传算法的应用扩展(2000s):21世纪初,随着计算机计算能力的提高,遗传算法开始在更广泛的领域中得到应用。

遗传算法被成功应用于旅行商问题、网络优化、机器学习等诸多领域。

同时,研究者们在遗传算法的理论基础上,提出了多种变种算法,如基因表达式编码、改进的选择策略等。

5.多目标遗传算法(2024s):近年来,遗传算法的研究重点逐渐转向了解决多目标优化问题。

传统的遗传算法通常只能找到单一最优解,而多目标遗传算法(Multi-Objective Genetic Algorithms,MOGAs)可以同时多个目标的最优解,并通过建立一个解集合来描述问题的全局最优解。

遗传算法介绍及应用

遗传算法介绍及应用

遗传算法的介绍及应用目录1遗传算法介绍 (2)1.1遗传算法的产生和发展 (2)1.2 遗传算法的基本求解步骤 (2)1.2.1 编码 (2)1.2.2初始化: (3)1.2.3估计适应度: (3)1.2.4再生(选择): (3)1.2.5 交叉: (3)1.2.6 变异: (3)1.2.7 重复: (3)2 遗传算法的应用例子 (4)2.1 编码 (4)2.2 初始化 (4)2.3 计算适应度 (5)2.4 再生(选择) (5)2.5 交叉 (5)2.6 变异 (6)3 遗传算法解决TSP的例子 (7)3.1 TSP 问题描述 (7)3.2 遗传算法用于TSP 问题 (8)3.2.1 编码表示 (8)3.2.2 初始化群体和适应度函数及其终止条件的设定 (8)3.2.3 选择算子 (9)3.2.4 交叉算子 (9)3.2.5 变异算子 (10)3.2.6 TSP问题的总结 (10)1遗传算法介绍遗传算法(genetic algorithms,GA)是一种模拟自然选择和遗传机制的寻优方法,它是建立在达尔文的生物进化论和孟德尔的遗传学说基础上的算法。

基因杂交和基因突变可能产生对环境适应性强的后代,通过优胜劣汰的自然选择,适应值高的基因结构就保存下来。

遗传算法就是模仿了生物的遗传、进化原理,并引用了随机统计原理而形成的。

1.1遗传算法的产生和发展50 年代末60 年代初,生物学家Fraser 试图通过计算的方法来模拟生物界"遗传与选择"的进化过程,这便是GA 的雏形。

受此启发,Holland 教授认识到自然遗传可以转化为人工遗传算法。

1967 年Bagley 在其博士论文中首次提出了"遗传算法"这一术语。

1975 年,Holland 出版了《自然与人工系统中的适应性行为》。

该书系统地阐述了遗传算法的基本理论和方法,提出了遗传算法的基本定理-模式定理,从而奠定了遗传算法的理论基础。

遗传算法理论及其应用研究进展

遗传算法理论及其应用研究进展
边 霞 ,米 良
( 四川 大 学 a 计 算机 学 院 ;b 制 造科 学与 工程 学院 ,成都 6 0 6 ) . . 10 5 摘 要 :首先 阐述遗 传算 法的原 理和 求解 问题 的一般 过程 ; 然后 讨论 了近年 来从遗 传 算 子 、 制参 数 等 方面 对 控
遗传 算 法的改进 , 并对遗 传 算法在计 算机 科 学与人 工智 能、 自动控 制 以及 组合优 化等 领域 的应 用进 行 陈述 ; 最后
s e so mp o i g t e ei l rt ch me n i r v n he g n tcagoihmss c st e g n tco e a osa o r lp r me es,a l a h pp iain o u h a h e ei p r tr nd c nto a a t r swel st e a lc to f
B AN Xi I a ,MIL a g in “
( . ol eo o ptr c ne . ol eo nfc r gS i c E gnen ,S ha nvrt,C eg u6 6 ,C i ) a C lg C m ue Si c ,bC lg Mauat i c ne& n ie ig i unU i sy hn d 0 5 hn e f e e f un e r c ei 1 0 a
Absr t: Thi p rfrt e ut he prncp e a p o e s f t e e i ag rt ms, a d t e nr d e a nu t ac spa e s s to t i i l nd r c seso he g n tc lo ih i n h n i to uc d mbe f ro
化产生 出越来越好 的近似解 。在每一代 , 根据 问题域 中个体 的 适应度大小选择个体 , 并借 助 自然遗传学 的遗传算 子进行组合

遗传算法

遗传算法
6.452( x 0.125 y )(cos(x) cos(2 y ))2 f ( x, y ) 3.226 y 2 2 0.8 ( x 4.2) 2( y 7) x [0,10), y [0,10)
0 24 1 23 1 22 0 21 1 20 13
4 3 2 1 0
x [0,10), y [0,10)
(3) 计算适应度( 要求适应度函数:非负、求最大化) 这里适应度函数为 f (x, y) 。 初 始 种 群
Char 9 pp. 26
9.2.1 遗传算法的基本操作
3.遗传算法的基本操作
问题:求下列函数的最大值。
6.452( x 0.125 y )(cos(x) cos(2 y ))20 2 1 2 1 2 0 2 1 2 f ( x, y ) 3.226 y 2 2 0.8 ( x 4.2) 2( y 7)

x2
i 1, 2
第二代种群
x2
初始种群
x1
Char 9 pp. 21x1
在迭代60、80、95、100次时的种群
Char 9 pp. 22
9.2.1 遗传算法的基本操作
2.遗传算法的基本流程
最优化问题 目标函数 可行解 解的编码 一组 解
遗传算法
适应度函数 个 体
染 色 体 种 群
f ( x1 , x2 ) 20 x x2 10(cos 2 x1 cos 2 x2 )
2 1 2

5 xi 5
f
i 1, 2
x2
x2 x1 x1
Char 9 pp. 13x1
Char 9 pp. 14

遗传算法的原理及应用

遗传算法的原理及应用

遗传算法的原理及应用1. 引言遗传算法是一种受到生物进化理论启发而发展起来的优化算法,广泛应用于工程、优化问题求解等领域。

本文将介绍遗传算法的基本原理及其在实际应用中的一些案例。

2. 遗传算法的基本原理遗传算法主要基于达尔文的进化论思想,通过模拟自然进化过程中的选择、交叉和变异等操作,逐步搜索问题的最优解。

其基本原理可以总结为以下几个步骤:2.1 初始化种群在遗传算法中,首先需要初始化一个种群,种群中包含若干个个体,每个个体都代表了问题的一个解。

2.2 评估适应度对于每个个体,需要评估其适应度,即其解决问题的能力。

适应度的评估方法根据具体问题而定,可以是一个简单的数值,也可以是复杂的评估函数。

2.3 选择操作通过选择操作,选择适应度较高的个体作为父代,用于产生下一代的个体。

选择操作可以使用轮盘赌等方法,使适应度较高的个体有更大的概率被选中。

2.4 交叉操作交叉操作是通过交叉两个个体的染色体,为下一代产生新的个体。

交叉操作可以是单点交叉、多点交叉等不同的方式,用于保留父代个体中的有益信息。

2.5 变异操作变异操作是为了增加种群的多样性,避免陷入局部最优解。

通过对染色体的某些基因进行随机改变,可以产生新的个体。

2.6 替换操作替换操作是将下一代个体替换掉当前种群中的一部分个体,以达到更新种群的目的。

例如,可以选择保留适应度较高的个体,或者选择适应度最低的个体进行替换。

2.7 终止条件遗传算法的终止条件通常可以是达到迭代次数的上限、适应度达到某个阈值,或者经过长时间搜索无法得到更优解等情况。

3. 遗传算法的应用案例遗传算法在很多领域都有广泛应用,下面将介绍几个典型的应用案例。

3.1 优化问题求解遗传算法可以用于求解各种优化问题,例如旅行商问题、背包问题等。

通过合适的编码方式和适应度函数,可以高效地搜索问题的最优解。

3.2 参数优化在机器学习和数据挖掘等领域,遗传算法也被广泛应用于参数优化。

通过调整模型的参数,可以提高模型的性能。

遗传算法的一些改进及其应用

遗传算法的一些改进及其应用

遗传算法的一些改进及其应用一、本文概述遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的优化搜索算法,它通过模拟生物进化过程中的遗传、突变、交叉和选择等机制,寻找问题的最优解。

自其概念在20世纪70年代初被提出以来,遗传算法已经在多个领域得到了广泛的应用,包括机器学习、函数优化、组合优化、图像处理等。

然而,随着问题复杂度的增加和应用领域的拓宽,传统的遗传算法在求解效率和全局搜索能力上暴露出一些问题,因此对其进行改进成为了研究热点。

本文首先介绍了遗传算法的基本原理和流程,然后综述了近年来遗传算法的一些主要改进方法,包括改进编码方式、优化选择策略、设计新的交叉和变异算子、引入并行计算等。

接着,文章通过多个实际应用案例,展示了改进后遗传算法在求解实际问题中的优越性和潜力。

本文总结了当前遗传算法改进研究的主要成果,展望了未来的研究方向和应用前景。

通过本文的阐述,读者可以对遗传算法的基本原理和改进方法有全面的了解,同时也可以通过实际应用案例深入理解改进后遗传算法的优势和适用场景,为相关领域的研究和应用提供参考和借鉴。

二、遗传算法的基本原理遗传算法(Genetic Algorithm,GA)是一种基于自然选择和遗传学原理的优化搜索算法。

它模拟了自然选择、交叉(杂交)和突变等生物进化过程,通过迭代的方式寻找问题的最优解。

遗传算法的主要组成部分包括编码方式、初始种群生成、适应度函数、选择操作、交叉操作和变异操作。

在遗传算法中,问题的解被表示为“染色体”,通常是一串编码,可以是二进制编码、实数编码或其他形式。

初始种群是由一定数量的随机生成的染色体组成的。

适应度函数用于评估每个染色体的适应度或优劣程度,它通常与问题的目标函数相关。

选择操作根据适应度函数的值选择染色体进入下一代种群,适应度较高的染色体有更大的机会被选中。

交叉操作模拟了生物进化中的杂交过程,通过交换两个父代染色体的部分基因来生成新的子代染色体。

遗传算法综述

遗传算法综述

遗传算法综述遗传算法是计算数学中用于解决最优化的搜索算法,是进化算法的一种。

进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择以及杂交等。

在阅读了一些相关资料后,我整理出这篇综述,将通过五个部分来介绍遗传算法以及其在计算机科学领域的相关应用、一、起源和发展分支尝试性地将生物进化过程在计算机中模拟并用于优化问题求解开始于20世纪50年代末,其目的是将生物进化的思想引入许多工程问题中而成为一种优化工具,这些开拓性的研究工作形成了遗传算法的雏形。

但当时的研究进展缓慢,收效甚微。

原因是由于缺少一种通用的编码方式,人们只有通过变异才能改变基因结构,而无法使用交叉,因而增加了迭代次数。

同时算法本身需要较大的计算量,当时的计算机速度便无法满足要求,因而限制了这一仿生过程技术的迅速发展。

20世纪60年代中期,Holland在Fraser和Bremermann等人研究成果的基础上提出了位串编码技术,这种编码技术同时适用于变异操作和交叉操作。

遗传算法的真正产生源于20世纪60年代末到70年代初,美国Michigan大学的Holland教授在设计人工适应系统中开创性地使用了一种基于自然演化原理的搜索机制,并于1975年出版了著名的专著“Adaptation in Natural andArtificial Systems”,这些有关遗传算法的基础理论为遗传算法的发展和完善奠定了的基础。

同时,Holland教授的学生De Jong首次将遗传算法应用于函数优化中,设计了遗传算法执行策略和性能评价指标,他挑选的5个专门用于遗传算法数值实验的函数至今仍被频繁使用,而他提出的在线(on-line)和离线(off-line)指标则仍是目前衡量遗传算法优化性能的主要手段。

在Holland教授和他的学生与同事De Jong进行大量有关遗传算法的开创性工作的同时,德国柏林工业大学的Rechenberg和Schwefel等在进行风洞实验时,为了对描述物体形状的参数进行优化以获得更好的实验数据,将变异操作引入计算模型中,获得了意外的优良效果。

遗传算法理论与应用

遗传算法理论与应用

遗传算法理论与应用
遗传算法(Genetic Algorithms, GA)是一类以自然进化理论为基础的、广泛应用于解决最优化问题的强大算法。

它的基本思想是仿照生物进
化过程,直接操纵一组可表示问题的解的集合,通过“自然竞争和自然选择”机制来挑选出能够满足“最优”需求的解。

因此,遗传算法被广泛用
于求解最优化问题,如优化传输路径、求解最佳网络结构、求解触发器组、网络流分配等等。

遗传算法的基本原理可以描述如下:
1、初始化:初始化空间的一些初始解,这些解组成了一组初始种群。

2、选择:对种群中每个解进行筛选,按照其适应度(表征解质量的
指标)值,对解进行选择,使得适应度较高的解可以被转移至下一代种群中,并赋予该解更大的可能性参与进行问题。

3、交叉:将两个解进行染色体的部分交换,生成新的解,以增加的
空间。

4、变异:随机地将染色体的一些信息进行改变,以产生新的更有可
能的解。

5、重复:重复上述步骤,直到达到的停止条件为止。

遗传算法作为一种最优化技术,已经在工程中应用越来越广泛,这是
因为它具有以下优点:
1、遗传算法不需要事先知道最优解所在的区域。

遗传算法的简介、操作步骤、模式理论、算法实现、改进、在模糊控制中的应用、求极大值、PID整定

遗传算法的简介、操作步骤、模式理论、算法实现、改进、在模糊控制中的应用、求极大值、PID整定
从1985年起,国际上开始举行遗传算法国 际会议,后来更名为进化计算国际会议。
1.2 遗传算法的基本思想
1.3 遗传算法的搜索机制
遗传算法模拟自然选择和自然遗传过程中发生的繁殖、交叉和基 因突变现象,在每次迭代中都保留一组候选解,并按某种指标从 种群中选取较优的个体,利用遗传算子(复制、交叉和变异)对这 些个体进行组合,产生新一代的候选解群,重复此过程,直到满 足某种收敛指标为止。
期望的选择次 数fi/¯fi
实际的选 择次数
1
01101
13
0.14
0.58
1
2
11000
24
576
0.49
1.92
0.22
2
0
3
01000
8
64 361
0.06
4
10011
19
0.31
1.23
1
总计
1170
1
4
4
平均
293
0.25
1
1
最大值
576
0.49
1.97
2
2.4
交叉
复制:将更好的方案推广
2.6 结论
随机产生的四个初始串为:01101,11000,01000,10011。 对应的x的值为13,24,8,19 平均适配值:293 最大适配值:576 经过一次复制、交叉和变异操作之后,种群中最优个体的适
配值和平均适配值均有所提高。可见每经过一次这样的遗传 经复制后产生的新的种群为:01101,11000,11000,10011 算法步骤,问题的解便朝着最优解方向前进了一步,只要这 对应的x的值为13,24,24,19 个过程一直进行下去,它最终会走向全局最优解,而每一步 平均适配值:421 的操作是非常简单的,而且对问题的依赖性很小。 最大适配值:576

遗传算法的一些改进及其应用共3篇

遗传算法的一些改进及其应用共3篇

遗传算法的一些改进及其应用共3篇遗传算法的一些改进及其应用1遗传算法 (Genetic Algorithm) 是一种优化算法,它通过模拟生物进化过程来寻找最优解。

遗传算法最初由 J. Holland 在 1975 年提出,是模仿自然界生物的进化过程,利用选择、交叉和变异等基本遗传操作,搜索解空间中的最优解。

遗传算法优点在于能够处理复杂的非线性、多模优化问题,但在实际应用过程中存在一些问题,为了解决这些问题,对遗传算法进行了许多改进,下面介绍其中几种改进方法和应用。

改进一:精英选择策略在传统的遗传算法中,每次进行选择操作时都是随机选择个体进行交配,这导致一些较优秀的个体有可能被淘汰,因此提出了精英选择策略,即在每次进化过程中一定比例地选择适应度最好的个体,避免较好的个体被淘汰。

改进二:基因突变概率自适应策略在遗传算法中,变异操作可以增加个体的多样性,但是变异概率设置不当,可能会导致算法早熟收敛或者长时间停留在局部最优解。

为了避免这种情况,提出基因突变概率自适应策略,即根据当前代的适应度情况自适应计算变异概率,使变异概率既不过大,也不过小。

改进三:群体多样性保持策略为了保证遗传算法群体多样性,提出了数种策略:保持多样性的染色体种群操作,通过引进外来个体以增加多样性,以及通过避免重复染色体来保持多样性等方法。

应用一:函数优化函数优化是运用遗传算法的主要应用之一,它的目标是通过最小化目标函数,寻求函数的最小值或最大值。

应用遗传算法的一个优势在于它能够优化非凸性函数,而其他传统优化算法在优化过程中会陷入局部最优解。

应用二:机器学习机器学习需要寻找一个最佳的模型,而遗传算法可以用于选择合适的特征和参数,从而构建最佳的模型。

此外,遗传算法还可以用于优化神经网络的结构和权重,以提高神经网络的分类和预测性能。

应用三:工程优化遗传算法在工程中也有广泛的应用,如在电子电路设计中,可以通过遗传算法来寻找尽可能优秀的元器件匹配,从而达到最佳的电路性能。

遗传算法在实际中的应用

遗传算法在实际中的应用

遗传算法在实际中的应用遗传算法是一种基于生物进化理论的优化算法,通过模拟自然选择、交叉和变异等操作,来搜索最优解。

在实际应用中,遗传算法被广泛应用于各个领域,如工程设计、机器学习、经济决策等。

本文将从几个方面介绍遗传算法在实际中的应用。

遗传算法在工程设计中有着重要的应用。

在设计复杂的产品或系统时,往往需要考虑多个因素的平衡,如成本、性能、可靠性等。

遗传算法可以通过对设计空间进行搜索,找到最优的设计方案。

例如,在飞机设计中,可以使用遗传算法来确定最佳的翼型、机翼布局等参数,以满足飞行性能和经济效益的要求。

遗传算法在机器学习中也有广泛应用。

机器学习的目标是通过训练数据,让计算机自动学习并提高性能。

遗传算法可以用于优化机器学习算法的参数,以提高其准确性和泛化能力。

例如,在神经网络训练中,可以使用遗传算法来搜索最佳的权重和偏置,以提高网络的性能。

遗传算法在经济决策中也发挥着重要作用。

经济决策经常涉及到多个目标的权衡,如利润最大化和风险最小化。

遗传算法可以帮助决策者找到最佳的决策方案。

例如,在投资组合优化中,可以使用遗传算法来确定最佳的资产配置,以实现最大的收益和最小的风险。

遗传算法还可以应用于交通优化、生产调度、图像处理等领域。

在交通优化中,可以使用遗传算法来优化信号灯的配时方案,以减少交通拥堵。

在生产调度中,可以使用遗传算法来优化生产任务的排程,以提高生产效率。

在图像处理中,可以使用遗传算法来优化图像的压缩和增强算法,以提高图像质量。

总的来说,遗传算法作为一种优化算法,具有广泛的应用前景。

在实际中,遗传算法已经成功应用于多个领域,帮助人们解决了许多复杂的问题。

随着计算能力的不断提升和算法的不断改进,相信遗传算法在未来会有更加广泛和深入的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

遗传算法理论及其应用发展
王志美,陈传仁
(长江大学地球物理与石油资源学院,荆州 434023)
摘 要:遗传算法是现在地球物理勘探中应用广泛的一种最优化搜索方法。

文章综合概述了遗传算法的基本原理方法和发展方向,从该方法的可实现过程方面对其进行了分析,介绍了遗传算法的遗传过程、发展现状及其应用前景。

关键词:遗传算法;染色体;最优解1 基础理论
遗传算法(Genetic Alg orithm ,GA )是1975年由美国学者Holland 提出的,它是一种模拟自然选择和遗传学理论,依据适者生存的原理而建立的一种最优化高效搜索算法。

因其有很强的解决问题的能力和广泛的适应性,因而近年来渗透到研究与工程的各个领域,取得了良好的效果。

遗传算法是一种随机全局搜索算法,它对目标空间进行随机搜索。

它将问题域中的可能解看作是群体的一个个体或染色体,并对每一个个体用二进制表示法或浮点数表示法进行编码,实现模型的参数化,把代表模型集参数空间中的每一点都一一映射到染色体空间的染色体上,对群体反复进行基于遗传学的操作,根据预定的目标函数对每个个体进行评价,经过基本的遗传操作过程,并反复迭代不断优化繁殖以产生新的一代,不断得到更优的群体,同时以全局并行搜索方式来搜索优化群体中的最优个体,求得满足要求的最优解。

遗传算法的几个基本概念:
¹染色体(Chro mosome):在使用GA 时,需要把问题解编成具有固定结构的符号串,它的每一位代表一个基因。

一个染色体就代表问题的一个解,每个染色体称为一个个体。

º群体(Population ):每代所产生的染色体总数。

一个群体包含了该问题在这一代的一些解的集合。

»适应度(Fitness):每个个体对应一个具体问题的解,每个解对应的函数值即为适应函数,它是衡量染色体对环境适应度的指标,也是反映实际问题的目标函数。

2 计算方法
用遗传算法求解的过程是根据待解问题的参数集进行编码,随机产生一个种群,计算适应函数和选择率,进行选择、交叉、变异等遗传操作,如果满足迭代收敛条件,这个种群为最好个体,否则,对产生的新一代群体重新进行遗传操作,往复循环直到满足条件。

其模型原理如图1
所示。

图1 遗传算法搜索原理图
基本的遗传操作有:
¹选择(Select),按一定的概率从上代群体中选择M 对个体作为双亲,直接拷贝到下一代,染色体不发生变化。

一种最常用也最简单的选择概率计算公式为:
P s (x i )=f (x i )/2i
f (x i )其中f(x i )为模型x i 的适值。

º交叉(Crosso ver)是从旧的种群中随机选择两个个体,交换遗传信息,产生后代的过程。

»变异(M utation )即产生新基因的过程,对选
44
内蒙古石油化工 2006年第9期 
a 收稿日期:2006-05-06
作者简介:王志美(1984-),女,长江大学地球物理与石油资源学院硕士研究生。

中的群体中的个体(染色体),随机选取某一位进行取反运算。

这样可以防止遗传算法收敛到局部最优解,有助于扩大寻优范围,增强搜索能力。

尤其在遗传算法后期,种群中的个体和适应值都相似时,种群的进一步进化依赖于变异操作。

综上,运用遗传算法求最优解的过程可分为以下几个步骤:
¹对待解决问题进行编码;
º随机给定一组初始解X (0)=(X 1,X 2,…,X n );
»评价当前组的性能,对当前群体x (t)中每个个体x i 计算其适应度f(x i );
¼根据»的评价结果,从当前解中选择一定数量的解作为遗传操作的对象;
½对所选择的解进行遗传操作,得到一组新的解;
¾返回到»对该组新解进行评价;
¿若当前解满足要求或进化过程达到一定值,计算结束,否则转向¼继续。

遗传算法在最初几次迭代中,个体的出现是良莠并存的,适应度也不高,随着迭代次数的增加,适应度高的个体依次被遗传出来。

对于解决优化问题,如条件选择等,遗传算法有很多优势,特别是具有很高的搜索次序且搜索具有探索性和自进化能力。

3 GA 的应用现状和展望3.1 遗传算法的应用现状
遗传算法是多学科结合与渗透的产物,已经发展成一种自组织、自适应的综合技术。

作为一种有效的全局搜索方法,从产生至今已广泛地运用于包括工程设计、制造业、人工智能、计算机科学、生物工程、石油勘探、自动控制、社会科学、商业和金融等多个领域。

石油勘探方面主要应用于预测油田产量,优化油田开发,测井解释的最优化,推断地层渗透率分布等很多方面。

3.2 遗传算法的应用展望
遗传算法弥补了传统优化技术的不足,在油气勘探、开发领域中许多问题的求解和应用中展现了它的特点和魅力。

但在目前,遗传算法在理论和应用技术上都还存在一些不足和缺陷,在实际应用中有时候容易出现早熟收敛和收敛性能差的缺点,同时遗传算法并不是万能的,几乎都是针对特定问题求解而言的,并不能完全取代某个特定领域中已有的优化技术,他们都有各自的适用范围。

对于某一个特殊领域而言,遗传算法往往比不上处理该领域问题的算法。

因此,遗传算法现阶段的研究重点回到了基本
理论的开拓和深化以及对遗传算法有效的操作技术和方法的改进上来。

在油气勘探开发领域的应用中,将会随着应用领域的拓宽,其问题的规模和复杂程度越来越大,要想充分发挥遗传算法的优点,同时克服它的不足,趋势之一是采用混合算法的策略,即把遗传算法与模拟退火算法、神经网络、混沌理论等方法有效地结合起来,设计一个新的混合算法,达到取长补短的作用,使其在性能上突破单一算法的局限性,进一步提高优化质量和搜索效率;对一些基因操作进行改进,例如采用多点交叉、启发式交叉等交叉操作;自适应变异、多级变异等变异操作;在种群宏操作中引入小生存环境和物种形成的思想。

通过对遗传算法的基因操作进行改进,可以改进其收敛性能,提高收敛速度。

4 结束语
整个遗传算法的基础理论研究还显得薄弱,还有许多问题需要在实践中探索改进,近年来它的不断发展以及在许多方面的成功应用已显示出其独特的优势,随着遗传算法的进一步完善和发展以及在油气勘探、开发领域中应用的深入,其广泛的应用潜力将进一步得到挖掘,其应用范围还会不断地扩大,为解决一些石油勘探开发中的难题提供一个强有力的工具。

〔参考文献〕
[1] 姚姚.地球物理反演-基于理论与应用方法
[M ].北京:中国地质大学出版社,2002,76.[2] 李玉蓉,李霞,陈光海,胡兴中.遗传算法—国
际石油合作勘探开发项目投资组合的新方法[J].辽宁:海洋石油,2004:50~55.
[3] 石琳珂,孙铭心.地球物理遗传反演方法[M ].
北京:地震出版社,2000.
[4] 王光兰,贾永禄.遗传算法在油田产量预报中
的应用[J ].四川:西南石油学院学报,2000,22(2):34~35.
[5] 王飞朝.遗传算法编程分析[J ].陕西:火控雷
达技术,2005.6:63~66.
[6] 李敏强,寇纪淞.遗传算法的基本理论与应用
[M ].北京:科学出版社,2002.
[7] 郎兆新.油藏工程基础[M ].东营:石油大学出
版社,1994.
[8] 周明,孙树栋.遗传算法原理及应用[M ].北
京:国防工业出版社,1999.
[9] 余新宁,王文鹏,张骏.遗传算法程序的模块化
设计[J ].陕西:微机发展,2003,13(3):4~6.
Abstract :Genetic Algo rithm is an o ptimization searching m ethod,w hich is used comprehensively in modern exploration geophysics.T his article summarized the GA 's basic pr incipium ,computing metho d and its developm ent way integ rated.Analy zed this m ethod in its r ealization process and intr oduced GA's Genetic process ,development actuality and its using foregro und .
Key Words :Genetic Algo rithm ;Chro mosome;Optimal solution
45
 2006年第9期 王志美等 遗传算法理论及其应用发展。

相关文档
最新文档