遗传算法.ppt
合集下载
遗传算法的实例ppt课件.ppt
上述操作反复执行,个体逐渐优化
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
遗传算法的手工模拟计算示例
为更好地理解遗传算法的运算过程,下面用手工计算来简单地模拟遗传算法的各 个主要执行步骤。
例:求下述二元函数的最大值:
个体
A
B
C
D
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
步骤三:交叉
• 选中的优势个体进行交叉 ----- 由父个体生成子个体
相同的两个父个体生成相同的两个子个体
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
• 程序结束时,最优个体即为所求解 • 程序结束的判定
根据循环次数 根据最大适应度 根据种群中相同个体数与总个体数的比值
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
遗传算法各步骤的评价
• 选择 --- 优胜劣汰
011101 111001 101011 111001
配对情况 交叉点位置
1-2
1-2:2
3-4
3-4:4
交叉结果
011001 111101 101001 111011
变异点 变异结果
4 011101 5 111111 2 111001 6 111010
子代群体p(1) x1 x2
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
遗传算法的手工模拟计算示例
为更好地理解遗传算法的运算过程,下面用手工计算来简单地模拟遗传算法的各 个主要执行步骤。
例:求下述二元函数的最大值:
个体
A
B
C
D
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
步骤三:交叉
• 选中的优势个体进行交叉 ----- 由父个体生成子个体
相同的两个父个体生成相同的两个子个体
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
• 程序结束时,最优个体即为所求解 • 程序结束的判定
根据循环次数 根据最大适应度 根据种群中相同个体数与总个体数的比值
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
遗传算法各步骤的评价
• 选择 --- 优胜劣汰
011101 111001 101011 111001
配对情况 交叉点位置
1-2
1-2:2
3-4
3-4:4
交叉结果
011001 111101 101001 111011
变异点 变异结果
4 011101 5 111111 2 111001 6 111010
子代群体p(1) x1 x2
遗传算法ppt
现代优化算法-遗传算法
于是,得到第二代种群 S 2 :
s1 11001 25 , s2 01100 12 , s3 11011 27 , s4 10000 16
第二代种群 S2 中各染色体的情况如表 10-1 所示。 表 10-1 第二代种群 S2 中各染色体的情况 染色体 s1=11001 s2=01100 s3=11011 s4=10000 适应度 625 144 729 256 选择概率 积累概率 估计的选中次数 0.36 0.08 0.41 0.15 0.36 0.44 0.85 1.00 1 0 2 1
0, 1 二进制串。串的长度取决于求解的精度,例如假设解空间为[-1,
因为 221<3106<222,所以编码所用的二进制串至少需要 22 位。
2],求解精度
为保留六位小数,由于解空间[-1, 2]的长度为 3,则必须将该区间分为 3106 等分。
现代优化算法-遗传算法
(1) 采用 5 位二进制数编码染色体,将种群规模设定为 4,取下列个体组成初始 种群 S1 : s1 13(01101), s2 24(11000), s3 8(01000), s4 19(10011) (2) 定义适应度函数为目标函数 f x x 2 (3) 计算各代种群中的各个体的适应度, 并对其染色体进行遗传操作,直到适应 度最高的个体,即 31(11111)出现为止。迭代的过程为: 首先计算种群 S1 中各个体 si 的适应度 f si 如下。
f ( s1 ) f (13) 132 169; f ( s2 ) f (24) 24 2 576; f ( s3 ) f (8) 82 64; f ( s4 ) f (19) 19 2 61
《遗传算法详解》课件
特点
遗传算法具有全局搜索能力、对问题 依赖性小、可扩展性强、鲁棒性高等 特点。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择优秀 的解进行遗传操作。
迭代更新
重复以上过程,直到满足终止条 件。
变异操作
对某些基因进行变异,增加解的 多样性。
《遗传算法详解》 ppt课件
• 遗传算法概述 • 遗传算法的基本组成 • 遗传算法的实现流程 • 遗传算法的优化策略 • 遗传算法的改进方向 • 遗传算法的未来展望
目录
Part
01
遗传算法概述
定义与特点
定义
遗传算法是一种模拟生物进化过程的 优化算法,通过模拟基因遗传和变异 的过程来寻找最优解。
Part
05
遗传算法的改进方向
混合遗传算法的研究
混合遗传算法
结合多种优化算法的优点,提高遗传算法的全局搜索能力和收敛速 度。
混合遗传算法的原理
将遗传算法与其他优化算法(如梯度下降法、模拟退火算法等)相 结合,利用各自的优势,弥补各自的不足。
混合遗传算法的应用
在许多实际问题中,如函数优化、路径规划、机器学习等领域,混 合遗传算法都取得了良好的效果。
自适应交叉率
交叉率控制着种群中新个体的产生速度。自适应交叉率可以根据种群中个体的适应度差 异进行调整,使得适应度较高的个体有更低的交叉率,而适应度较低的个体有更高的交 叉率。这样可以提高算法的搜索效率。
自适应变异率
变异率决定了种群中新个体的产生速度。自适应变异率可以根据种群中个体的适应度进 行调整,使得适应度较高的个体有更低的变异率,而适应度较低的个体有更高的变异率
遗传算法具有全局搜索能力、对问题 依赖性小、可扩展性强、鲁棒性高等 特点。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择优秀 的解进行遗传操作。
迭代更新
重复以上过程,直到满足终止条 件。
变异操作
对某些基因进行变异,增加解的 多样性。
《遗传算法详解》 ppt课件
• 遗传算法概述 • 遗传算法的基本组成 • 遗传算法的实现流程 • 遗传算法的优化策略 • 遗传算法的改进方向 • 遗传算法的未来展望
目录
Part
01
遗传算法概述
定义与特点
定义
遗传算法是一种模拟生物进化过程的 优化算法,通过模拟基因遗传和变异 的过程来寻找最优解。
Part
05
遗传算法的改进方向
混合遗传算法的研究
混合遗传算法
结合多种优化算法的优点,提高遗传算法的全局搜索能力和收敛速 度。
混合遗传算法的原理
将遗传算法与其他优化算法(如梯度下降法、模拟退火算法等)相 结合,利用各自的优势,弥补各自的不足。
混合遗传算法的应用
在许多实际问题中,如函数优化、路径规划、机器学习等领域,混 合遗传算法都取得了良好的效果。
自适应交叉率
交叉率控制着种群中新个体的产生速度。自适应交叉率可以根据种群中个体的适应度差 异进行调整,使得适应度较高的个体有更低的交叉率,而适应度较低的个体有更高的交 叉率。这样可以提高算法的搜索效率。
自适应变异率
变异率决定了种群中新个体的产生速度。自适应变异率可以根据种群中个体的适应度进 行调整,使得适应度较高的个体有更低的变异率,而适应度较低的个体有更高的变异率
经典遗传算法教程 PPT
j 1
s(d) 是共享度函数
2)算法的改进
微种群遗传算法(GA)
双种群遗传算法(DPGA)
GA算法
终止条件:1)达到预定指标;2)达到预定代数。
双种群算法( DPGA)
基本思想:利用人类社会分工合作的机理。 分成:全局种群——粗搜索,寻找估计存在的最优区域;
局部种群 ——精搜索在全局划定的区域内,寻找最优点。
欺骗性函数
图式划分:指引相互之间竞争的定义位为同一集合的一组图式。 如#表示定义位,则H1=*1*0*,H2=*0*1* ,H3=*1*1*, H4=*0*0* 同属于划分*#*#*。
总平均习惯度(OAF):对一个给定图式,OAF即为其成员 的平均习惯度。
欺骗性函数——包含全局最优的图式其OAF不如包含局部 最优的OAF,这种划分称为欺骗划分,它会使GA陷入局部最优。 如最高阶欺骗函数有k个定义位,则此函数称k阶欺骗。
有重叠 0 < G <1 ③选择方法: 转轮法,精英选择法,竞争法、 ④交换率: Pc 一般为60~100%、 ⑤变异率: Pm 一般为0、1~10%
举例:
变异概率取0、001
初始种群和它的习惯度值 染色体的交换操纵
举例:
14
步骤1)编码:确定二进制的位数;组成个体(染色体)
二进制位数取决于运算
经典遗传算法教程
遗传算法基本原理
模拟自然界优胜劣汰的进化现象,把搜索空间映射为遗传 空间,把估计的解编码成一个向量——染色体,向量的每个 元素称为基因。
通过不断计算各染色体的习惯值,选择最好的染色体,获 得最优解。
遗传算法的基本运算
⑴ 选择运算 ⑵ 交换操作 ⑶ 变异
●选择运算
——从旧的种群中选择习惯度高的染色体,放入匹配集(缓冲 区),为以后染色体交换、变异,产生新的染色体作准备。
s(d) 是共享度函数
2)算法的改进
微种群遗传算法(GA)
双种群遗传算法(DPGA)
GA算法
终止条件:1)达到预定指标;2)达到预定代数。
双种群算法( DPGA)
基本思想:利用人类社会分工合作的机理。 分成:全局种群——粗搜索,寻找估计存在的最优区域;
局部种群 ——精搜索在全局划定的区域内,寻找最优点。
欺骗性函数
图式划分:指引相互之间竞争的定义位为同一集合的一组图式。 如#表示定义位,则H1=*1*0*,H2=*0*1* ,H3=*1*1*, H4=*0*0* 同属于划分*#*#*。
总平均习惯度(OAF):对一个给定图式,OAF即为其成员 的平均习惯度。
欺骗性函数——包含全局最优的图式其OAF不如包含局部 最优的OAF,这种划分称为欺骗划分,它会使GA陷入局部最优。 如最高阶欺骗函数有k个定义位,则此函数称k阶欺骗。
有重叠 0 < G <1 ③选择方法: 转轮法,精英选择法,竞争法、 ④交换率: Pc 一般为60~100%、 ⑤变异率: Pm 一般为0、1~10%
举例:
变异概率取0、001
初始种群和它的习惯度值 染色体的交换操纵
举例:
14
步骤1)编码:确定二进制的位数;组成个体(染色体)
二进制位数取决于运算
经典遗传算法教程
遗传算法基本原理
模拟自然界优胜劣汰的进化现象,把搜索空间映射为遗传 空间,把估计的解编码成一个向量——染色体,向量的每个 元素称为基因。
通过不断计算各染色体的习惯值,选择最好的染色体,获 得最优解。
遗传算法的基本运算
⑴ 选择运算 ⑵ 交换操作 ⑶ 变异
●选择运算
——从旧的种群中选择习惯度高的染色体,放入匹配集(缓冲 区),为以后染色体交换、变异,产生新的染色体作准备。
《遗传算法》课件
总结词
达到预设迭代次数
详细描述
当遗传算法达到预设的最大迭代次数时,算法终止。此时 需要根据适应度值或其他指标判断是否找到了满意解或近 似最优解。
总结词
达到预设精度
详细描述
当遗传算法的解的精度达到预设值时,算法终止。此时可 以认为找到了近似最优解。
总结词
满足收敛条件
详细描述
当遗传算法的解满足收敛条件时,算法终止。常见的收敛 条件包括个体的适应度值不再发生变化、最优解连续多代 保持不变等。
多目标优化
传统的遗传算法主要用于单目标优化问题。然而 ,实际应用中经常需要解决多目标优化问题。因 此,发展能够处理多目标优化问题的遗传算法也 是未来的一个重要研究方向。
适应性遗传算法
适应性遗传算法是指根据问题的特性自适应地调 整遗传算法的参数和操作,以提高搜索效率和精 度。例如,可以根据问题的复杂度和解的质量动 态调整交叉概率、变异概率等参数。
自适应调整是指根据个体的适应度值动态调整 适应度函数,以更好地引导遗传算法向更优解 的方向进化。
选择操作
总结词
基于适应度选择
详细描述
选择操作是根据个体的适应 度值进行选择,通常采用轮 盘赌、锦标赛等选择策略, 以保留适应度较高的个体。
总结词
多样性保护
详细描述
为了保持种群的多样性,选择操作可以采 用一些多样性保护策略,如精英保留策略 、小生境技术等。
梯度下降法是一种基于函数梯度的优化算法,与遗传算法结合使用可以加快搜索速度, 提高解的质量。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择适应 度较高的解进行遗传操作。
达到预设迭代次数
详细描述
当遗传算法达到预设的最大迭代次数时,算法终止。此时 需要根据适应度值或其他指标判断是否找到了满意解或近 似最优解。
总结词
达到预设精度
详细描述
当遗传算法的解的精度达到预设值时,算法终止。此时可 以认为找到了近似最优解。
总结词
满足收敛条件
详细描述
当遗传算法的解满足收敛条件时,算法终止。常见的收敛 条件包括个体的适应度值不再发生变化、最优解连续多代 保持不变等。
多目标优化
传统的遗传算法主要用于单目标优化问题。然而 ,实际应用中经常需要解决多目标优化问题。因 此,发展能够处理多目标优化问题的遗传算法也 是未来的一个重要研究方向。
适应性遗传算法
适应性遗传算法是指根据问题的特性自适应地调 整遗传算法的参数和操作,以提高搜索效率和精 度。例如,可以根据问题的复杂度和解的质量动 态调整交叉概率、变异概率等参数。
自适应调整是指根据个体的适应度值动态调整 适应度函数,以更好地引导遗传算法向更优解 的方向进化。
选择操作
总结词
基于适应度选择
详细描述
选择操作是根据个体的适应 度值进行选择,通常采用轮 盘赌、锦标赛等选择策略, 以保留适应度较高的个体。
总结词
多样性保护
详细描述
为了保持种群的多样性,选择操作可以采 用一些多样性保护策略,如精英保留策略 、小生境技术等。
梯度下降法是一种基于函数梯度的优化算法,与遗传算法结合使用可以加快搜索速度, 提高解的质量。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择适应 度较高的解进行遗传操作。
遗传算法原理及其应用PPT课件
遗传算法原理及其应 用
目录
• 遗传算法概述 • 遗传算法的基本原理 • 遗传算法的实现步骤 • 遗传算法的应用案例 • 遗传算法的优缺点与改进方向
01
遗传算法概述
定义与特点
01
定义
遗传算法是一种模拟生物进化过程的优化算法, 通过模拟基因遗传和自然选择的过程来寻找最优
解。 02
特点
遗传算法具有全局搜索能力、隐含并行性、自适 应性、对初始条件要求不严格等优点。
排班问题
遗传算法可以用于解决排班问题,如航空公司的航班排班、医院的医 护人员排班等,以实现资源的高效利用和满足各种约束条件。
遗传算法的优缺点与改进方
05
向
优点
全局搜索能力
遗传算法采用生物进化中的遗传机制, 通过种群搜索的方式进行搜索,能够 跳出局部最优解,寻找全局最优解。
鲁棒性
遗传算法对初始解和参数选择不敏感, 能够在不同领域和问题中应用。
02 多峰值函数优化
遗传算法能够处理多峰值函数,即函数值在多个 点达到最大或最小值的情况,通过全局搜索找到 所有峰值。
03 噪声和异常值处理
遗传算法具有较强的鲁棒性,能够处理噪声和异 常值对优化结果的影响。
组合优化问题
1 2 3
旅行商问题
遗传算法可用于求解旅行商问题,即寻找一条最 短的旅行路线,使得一个推销员能够访问所有指 定的城市并返回出发城市。
交叉操作
单点交叉
在个体基因串中选择一个点作为交叉点,将该点前后的基因进行互换,形成新的 个体。
多点交叉
在个体基因串中选择多个点作为交叉点,将不同个体的对应基因进行互换,形成 新的个体。
变异操作
基因位变异
随机选择个体基因串中的某个基因位,对该 基因位进行取反操作或随机替换。
目录
• 遗传算法概述 • 遗传算法的基本原理 • 遗传算法的实现步骤 • 遗传算法的应用案例 • 遗传算法的优缺点与改进方向
01
遗传算法概述
定义与特点
01
定义
遗传算法是一种模拟生物进化过程的优化算法, 通过模拟基因遗传和自然选择的过程来寻找最优
解。 02
特点
遗传算法具有全局搜索能力、隐含并行性、自适 应性、对初始条件要求不严格等优点。
排班问题
遗传算法可以用于解决排班问题,如航空公司的航班排班、医院的医 护人员排班等,以实现资源的高效利用和满足各种约束条件。
遗传算法的优缺点与改进方
05
向
优点
全局搜索能力
遗传算法采用生物进化中的遗传机制, 通过种群搜索的方式进行搜索,能够 跳出局部最优解,寻找全局最优解。
鲁棒性
遗传算法对初始解和参数选择不敏感, 能够在不同领域和问题中应用。
02 多峰值函数优化
遗传算法能够处理多峰值函数,即函数值在多个 点达到最大或最小值的情况,通过全局搜索找到 所有峰值。
03 噪声和异常值处理
遗传算法具有较强的鲁棒性,能够处理噪声和异 常值对优化结果的影响。
组合优化问题
1 2 3
旅行商问题
遗传算法可用于求解旅行商问题,即寻找一条最 短的旅行路线,使得一个推销员能够访问所有指 定的城市并返回出发城市。
交叉操作
单点交叉
在个体基因串中选择一个点作为交叉点,将该点前后的基因进行互换,形成新的 个体。
多点交叉
在个体基因串中选择多个点作为交叉点,将不同个体的对应基因进行互换,形成 新的个体。
变异操作
基因位变异
随机选择个体基因串中的某个基因位,对该 基因位进行取反操作或随机替换。
《遗传算法实例参考》课件
定义
遗传算法是一种模拟自然选择和遗传 机制的优化算法,通过模拟生物进化 过程中的基因遗传和变异过程来寻找 最优解。
特点
遗传算法具有全局搜索能力、隐含并 行性、自适应性、对初始条件要求不 高、鲁棒性强等优点。
遗传算法的基本原理
适应度函数
根据问题的目标函数来定义适 应度函数,用于评估每个个体 的适应度。
机器学习
用于支持向量机、神经网络等机器 学习模型的参数优化。
03
02
组合优化
用于求解如旅行商问题、背包问题 等组合优化问题。
调度与控制
用于生产调度、机器人路径规划等 控制系统的优化。
04
PART 02
遗传算法的实现步骤
初始化种群
初始解的产生
在遗传算法的开始阶段,需要随机生成一组初始解,这组解被称为种群。每个解 都是问题的一个潜在解决方案。
交叉操作
单点交叉(One-Point Crossover)
随机选择一个交叉点,将两个父代解在该点后的部分进行交换,形成两个子代解。
优点
能够引入新的解,增加解的多样性。
变异操作
要点一
位反转变异(Bit-Flip Mutation )
随机选择解中的一个位进行取反操作,以增加解的随机性 。
要点二
优点
能够防止算法陷入局部最优解,提高全局搜索能力。
PART 05
遗传算法实例:求解约束 优化问题
问题描述
求解约束优化问题
遗传算法可以用于求解具有约束条件的优 化问题,例如在物流、生产计划、金融等
领域中常见的优化问题。
约束条件
限制决策变量取值的条件,可以是等式或 不等式约束。
目标函数
需要最小化或最大化的目标函数,通常是 一个数学表达式,代表了问题的优化目标 。
遗传算法是一种模拟自然选择和遗传 机制的优化算法,通过模拟生物进化 过程中的基因遗传和变异过程来寻找 最优解。
特点
遗传算法具有全局搜索能力、隐含并 行性、自适应性、对初始条件要求不 高、鲁棒性强等优点。
遗传算法的基本原理
适应度函数
根据问题的目标函数来定义适 应度函数,用于评估每个个体 的适应度。
机器学习
用于支持向量机、神经网络等机器 学习模型的参数优化。
03
02
组合优化
用于求解如旅行商问题、背包问题 等组合优化问题。
调度与控制
用于生产调度、机器人路径规划等 控制系统的优化。
04
PART 02
遗传算法的实现步骤
初始化种群
初始解的产生
在遗传算法的开始阶段,需要随机生成一组初始解,这组解被称为种群。每个解 都是问题的一个潜在解决方案。
交叉操作
单点交叉(One-Point Crossover)
随机选择一个交叉点,将两个父代解在该点后的部分进行交换,形成两个子代解。
优点
能够引入新的解,增加解的多样性。
变异操作
要点一
位反转变异(Bit-Flip Mutation )
随机选择解中的一个位进行取反操作,以增加解的随机性 。
要点二
优点
能够防止算法陷入局部最优解,提高全局搜索能力。
PART 05
遗传算法实例:求解约束 优化问题
问题描述
求解约束优化问题
遗传算法可以用于求解具有约束条件的优 化问题,例如在物流、生产计划、金融等
领域中常见的优化问题。
约束条件
限制决策变量取值的条件,可以是等式或 不等式约束。
目标函数
需要最小化或最大化的目标函数,通常是 一个数学表达式,代表了问题的优化目标 。
遗传算法详解ppt课件
A1=0110 | 1 A2=1100 | 0 交叉操作后产生了两个新的字符串为:
A1’=01100 A2’=11001
一般的交叉操作过程:
图5-2 交叉操作
遗传算法的有效性主要来自于复制和交叉操作。复制虽然能够从旧种 群中选择出优秀者,但不能创造新的个体;交叉模拟生物进化过程中 的繁殖现象,通过两个个体的交换组合,来创造新的优良个体。
遗传算法在以下几个方面不同于传统优化 方法
① 遗传算法只对参数集的编码进行操作,而不是 参数集本身。
② 遗传算法的搜索始于解的一个种群,而不是单 个解,因而可以有效地防止搜索过程收敛于局部 最优解。
③ 遗传算法只使用适值函数,而不使用导数和其 它附属信息,从而对问题的依赖性小。
④ 遗传算法采用概率的、而不是确定的状态转移 规则,即具有随机操作算子。
表6-3列出了交叉操作之后的结果数据,从中可以看出交叉操作 的具体过程。首先,随机配对匹配集中的个体,将位串1、2配对,位
串3、4配对;然后,随机选取交叉点,设位串1、2的交叉点为k=4,
二者只交换最后一位,从而生成两个新的位串,即 串 串 1 2 : : 1 01 11 00 0 1 0 1 01 11 00 01 0 新 新 1 2串 串
图5–3
遗传算法的工作原理示意图
5.2 遗传算法应用中的一些基本问题
5.2.1 目标函数值到适值形式的映射
适值是非负的,任何情况下总希望越大越好;而目标 函数有正、有负、甚至可能是复数值;且目标函数和适值 间的关系也多种多样。如求最大值对应点时,目标函数和 适值变化方向相同;求最小值对应点时,变化方向恰好相 反;目标函数值越小的点,适值越大。因此,存在目标函 数值向适值映射的问题。
5.遗传算法
A1’=01100 A2’=11001
一般的交叉操作过程:
图5-2 交叉操作
遗传算法的有效性主要来自于复制和交叉操作。复制虽然能够从旧种 群中选择出优秀者,但不能创造新的个体;交叉模拟生物进化过程中 的繁殖现象,通过两个个体的交换组合,来创造新的优良个体。
遗传算法在以下几个方面不同于传统优化 方法
① 遗传算法只对参数集的编码进行操作,而不是 参数集本身。
② 遗传算法的搜索始于解的一个种群,而不是单 个解,因而可以有效地防止搜索过程收敛于局部 最优解。
③ 遗传算法只使用适值函数,而不使用导数和其 它附属信息,从而对问题的依赖性小。
④ 遗传算法采用概率的、而不是确定的状态转移 规则,即具有随机操作算子。
表6-3列出了交叉操作之后的结果数据,从中可以看出交叉操作 的具体过程。首先,随机配对匹配集中的个体,将位串1、2配对,位
串3、4配对;然后,随机选取交叉点,设位串1、2的交叉点为k=4,
二者只交换最后一位,从而生成两个新的位串,即 串 串 1 2 : : 1 01 11 00 0 1 0 1 01 11 00 01 0 新 新 1 2串 串
图5–3
遗传算法的工作原理示意图
5.2 遗传算法应用中的一些基本问题
5.2.1 目标函数值到适值形式的映射
适值是非负的,任何情况下总希望越大越好;而目标 函数有正、有负、甚至可能是复数值;且目标函数和适值 间的关系也多种多样。如求最大值对应点时,目标函数和 适值变化方向相同;求最小值对应点时,变化方向恰好相 反;目标函数值越小的点,适值越大。因此,存在目标函 数值向适值映射的问题。
5.遗传算法
遗传算法pptPPT课件
轮盘赌选择又称比例选择算子,它的基本思想是: 各个个体被选中的概率与其适应度函数值大小成 正比。
P(xi )
f (xi )
N
f (xj)
j 1
第18页/共66页
上述按概率选择的方法可用一种称为赌轮的原理来实现。 即做一个单位圆, 然后按各个染色体的选择概率将圆面划分 为相应的扇形区域(如图1所示)。这样, 每次选择时先转动轮 盘, 当轮盘静止时,上方的指针所正对着的扇区即为选中的扇 区,从而相应的染色体即为所选定的染色体。 例如, 假设种群 S中有4个染色体: s1,s2, s3, s4,其选择概率依次为: 0.11, 0.45, 0.29, 0.15, 则它们在轮盘上所占的份额如图1中的各扇形区域 所示。
i
qi P(xj ) j 1
第20页/共66页
一个染色体xi被选中的次数, 可以用下面的期望值 e(xi)来确定:
e(xi ) P(xi ) N
f (xi )
N
N
f (xj)
N
f (xi ) f (xj)/ N
f (xi ) f
j 1
j 1
其中f 为种群S中全体染色体的平均适应度值。
图1 赌轮选择示例
第19页/共66页
在算法中赌轮选择法可用下面的过程来模拟:
① 在[0, 1]区间内产生一个均匀分布的伪随机数r。 ② 若r≤q1,则染色体x1被选中。 ③ 若qk-1<r≤qk(2≤k≤N), 则染色体xk被选中。 其中的qi称为染色体xi(i=1, 2, …, n)的积累概率, 其计算公式 为:
步2 随机产生U中的N个染色体s1, s2, …, sN,组成初始 种群S={s1, s2, …, sN},置代数计数器t=1;
遗传算法课件PPT范文.ppt
课件
五.GA的各种变形(22)
II. 局部搜索、广域搜索与选择压力的关系 局部搜索与广域搜索是GA中的一对矛盾,只注重 局部搜索很可能陷入局优,只注重广域搜索则会 导致精确开发能力不强。因此,好的算法要将以 上二者综合考虑。一般来说,算法开始时应注重 广域搜索,通过使用较小的选择压力来实现;随 着迭代的进行,逐步偏重于局部搜索,通过使用 较大的选择压力来实现。
Pi
Fi NP
NP
Fi 令: PP0 0, PPi Pi
i 1
i 1
用动态标定来调节选择压力,采用旋轮法来共
同完成种群的选择。
课件
五.GA的各种变形(37)
5.5 停止准则
① 指定最大代数(常用):该方法简单但不 准确。
I. 交叉 a. 单切点交叉
C1 X x1, x2,, xk , yk1,, yn C2 Y y1, y2,, yk , xk1,, xn
课件
五.GA的各种变形(16)
b. 双切点交叉(与单切点交叉类似)
该方法最大的问题:如何在实际优化中保
持可行性。
切点
切点
P1 X x1,, xk , xk1,xl , xl1,, xn
Z X f x U 0, a
优点:考虑到了问题本身的性质,效率较高。但染色 体种群也可能因此而趋于聚集,导致种群的多样 性较差。
课件
五.GA的各种变形(20)
5.3 适值函数的标定(Scaling)
f1 1001
f2 1002
标定
f3 999
f4 997
f1 f1 f4 4 f2 f2 f4 5 f3 f3 f4 2 f4 f4 f4 0
II. 变异 a. 位值变异:
五.GA的各种变形(22)
II. 局部搜索、广域搜索与选择压力的关系 局部搜索与广域搜索是GA中的一对矛盾,只注重 局部搜索很可能陷入局优,只注重广域搜索则会 导致精确开发能力不强。因此,好的算法要将以 上二者综合考虑。一般来说,算法开始时应注重 广域搜索,通过使用较小的选择压力来实现;随 着迭代的进行,逐步偏重于局部搜索,通过使用 较大的选择压力来实现。
Pi
Fi NP
NP
Fi 令: PP0 0, PPi Pi
i 1
i 1
用动态标定来调节选择压力,采用旋轮法来共
同完成种群的选择。
课件
五.GA的各种变形(37)
5.5 停止准则
① 指定最大代数(常用):该方法简单但不 准确。
I. 交叉 a. 单切点交叉
C1 X x1, x2,, xk , yk1,, yn C2 Y y1, y2,, yk , xk1,, xn
课件
五.GA的各种变形(16)
b. 双切点交叉(与单切点交叉类似)
该方法最大的问题:如何在实际优化中保
持可行性。
切点
切点
P1 X x1,, xk , xk1,xl , xl1,, xn
Z X f x U 0, a
优点:考虑到了问题本身的性质,效率较高。但染色 体种群也可能因此而趋于聚集,导致种群的多样 性较差。
课件
五.GA的各种变形(20)
5.3 适值函数的标定(Scaling)
f1 1001
f2 1002
标定
f3 999
f4 997
f1 f1 f4 4 f2 f2 f4 5 f3 f3 f4 2 f4 f4 f4 0
II. 变异 a. 位值变异:
《遗传算法》PPT课件
2021/7/12
33
一、遗传算法入门
生物只有经过许多世代的不断演化(evolution),才能 更好地完成生存与繁衍的任务。 遗传算法也遵循同样的方式,需要随着时间的推移不 断成长、演化,最后才能收敛,得到针对某类特定问 题的一个或多个解。 因此,了解一些有关有生命的机体如何演化的知识, 对理解遗传算法的演化机制是是有帮助的。我们将扼 要阐述自然演化的机制(通常称为“湿”演化算法), 以及与之相关的术语。理解自然演化的基本机制。我 想,你也会和我一样,深深叹服自然母亲的令人着迷!
2021/7/12
23
智能交通
2021/7/12
24
图像识别系统
2021/7/12
25
云松
銮仙玉骨寒, 松虬雪友繁。 大千收眼底, 斯调不同凡。
2021/7/12
26
(无题)
白沙平舟夜涛声, 春日晓露路相逢。 朱楼寒雨离歌泪, 不堪肠断雨乘风。
2021/7/12
27
2021/7/12
28
2021/7/12
1.7.12 智能制造
1.7.13 智能CAI
1.7.14 智能人机接口
1.7.15 模式识别
1.7.16 数据挖掘与数据库中的知识发现
1.7.17 计算机辅助创新
1.7.18 计算机文艺创作
1.7.19 机器博弈
1.7.20 智能机器人
2021/7/12
18
1.8 人工智能的分支领域与研究方向
从模拟的层次和所用的方法来看,人工智能可分为符号智 能和计算智能两大主要分支领域。而这两大领域各自又有 一些子领域和研究方向。如符号智能中又有图搜索、自动 推理、不确定性推理、知识工程、符号学习等。计算智能 中又有神经计算、进化计算、免疫计算、蚁群计算、粒群 计算、自然计算等。另外,智能Agent也是人工智能的一 个新兴的重要领域。智能Agent或者说Agent智能则是以符
遗传算法PPT
f2 1002
标定
f2 f2 f4 5
f3 999
f3 f3 f4 2
f4 997
f4 f4 f4 0
相对差别小,选
择压力小,选优 功能弱化了
相对差别放大,
选择压力变大, 选优功能强化了
22
第二十二页,共52页。
五.GA的各种变形(21)
① 标定的目的: 使适值函数不会太大,有一定差别
例:NP=100,T=50 即100名学生,成绩前50名的选出。每人的选择
概率为1/50,有平均2个机会。 缺点:这种方法将花费较多的时间在适应值的
排序上。
34
第三十四页,共52页。
五.GA的各种变形(33)
II. 顺序选择: a. 步骤: ⑴ 从好到坏排序所有个体 ⑵ 定义最好个体的选择概率为 q,则第 j个个
机调度问题等等。 合法性问题:是否符合采用的编码规则的问题
3
第三页,共52页。
五.GA的各种变形(2)
② 实数编码:X x1, x2,, xn , xi R ,R为实数集
特征:方便运算简单,但反映不出基因的特征 ➢ 整数编码类似于顺序编码,但编码允许重复 适用于:新产品投入,时间优化,伙伴挑选 例:3212345 对顺序编码来说是不合法的,而 对整数编码来说是合法的;010200不合法的01 编码;
我们采用下面的修复策略使以上的编码合法。
5
第五页,① 顺序编码的合法性修复: I. 交叉修复策略,分为以下几种: a. 部分映射交叉 b. 顺序交叉 c. 循环交叉
6
第六页,共52页。
五.GA的各种变形(5)
a. 部分映射交叉(PMX) ( Partially Mapped Crossover):用特别的修复程序解决简单的 双切点交叉引起的非法性,步骤:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 变异
– 概率变异
7>1.5 => 选择2作为父代
交叉算子: • 单点交叉/两点交叉/多点交叉:
交叉算子: • 单点交叉/两点交叉/多点交叉:
范围[0,8],步长取2,可能的变异值:0,2,4,6,8,取 到每个变异值的概率相同
范围[0,8],根据高斯分布取 可能的变异值,取值概率符 合正态分布
遗传算法简介
主讲人:
目录
1. 背景简介……………遗传算法的生物学背景 2. 算法原理……………算法流程及算子的介绍 3. 算法评价……………优缺点及适用性评估
Байду номын сангаас
背景简介
遗传算法的生物学原理:
• 适者生存原则 • 自然选择 • 遗传和变异 • 种群演化
• NP问题:一个问题的单个解可以在有限时 间内被验证。
• 适用于灰箱/黑箱问题 • 潜在并行性 • 适应度函数评价,计算复杂度小 • 收敛性强 • 具有可扩展性,易与其他算法结合
• 收敛性/早熟的预防 • 遗传算子的设计 • 遗传算子的自适应设计 • 并行化研究
感谢倾听
• 确定个体:对问题进行编码
浮点数编码:真值编码 二进制编码:解空间映射到二进制序列
• 确定种群:
确定种群数量上限(20~100) 加入随机的个体 交叉/变异概率
基本算法原理
基本算法原理
种群世代更替: • 选择
– 根据适应度进行排序 – 概率选择函数/精英机制
• 交叉
– 对选择的结果进行交叉操作 – 概率交换部分序列生成新序列
• 具体适用于诸多领域如函数优化、组合优 化、生产调度、自动控制、机器学习、图 像处理、人工生命、遗传编程、机器学习、 数据挖掘等。均有很好的表现。
一般流程:
1.初始化人工种群 种群>个体>染色体>基因
2.计算个体的适应度 3.进行选择,交叉,变异等操作 4.迭代2,3步,直到满足停止规则
初始化人工种群:
– 概率变异
7>1.5 => 选择2作为父代
交叉算子: • 单点交叉/两点交叉/多点交叉:
交叉算子: • 单点交叉/两点交叉/多点交叉:
范围[0,8],步长取2,可能的变异值:0,2,4,6,8,取 到每个变异值的概率相同
范围[0,8],根据高斯分布取 可能的变异值,取值概率符 合正态分布
遗传算法简介
主讲人:
目录
1. 背景简介……………遗传算法的生物学背景 2. 算法原理……………算法流程及算子的介绍 3. 算法评价……………优缺点及适用性评估
Байду номын сангаас
背景简介
遗传算法的生物学原理:
• 适者生存原则 • 自然选择 • 遗传和变异 • 种群演化
• NP问题:一个问题的单个解可以在有限时 间内被验证。
• 适用于灰箱/黑箱问题 • 潜在并行性 • 适应度函数评价,计算复杂度小 • 收敛性强 • 具有可扩展性,易与其他算法结合
• 收敛性/早熟的预防 • 遗传算子的设计 • 遗传算子的自适应设计 • 并行化研究
感谢倾听
• 确定个体:对问题进行编码
浮点数编码:真值编码 二进制编码:解空间映射到二进制序列
• 确定种群:
确定种群数量上限(20~100) 加入随机的个体 交叉/变异概率
基本算法原理
基本算法原理
种群世代更替: • 选择
– 根据适应度进行排序 – 概率选择函数/精英机制
• 交叉
– 对选择的结果进行交叉操作 – 概率交换部分序列生成新序列
• 具体适用于诸多领域如函数优化、组合优 化、生产调度、自动控制、机器学习、图 像处理、人工生命、遗传编程、机器学习、 数据挖掘等。均有很好的表现。
一般流程:
1.初始化人工种群 种群>个体>染色体>基因
2.计算个体的适应度 3.进行选择,交叉,变异等操作 4.迭代2,3步,直到满足停止规则
初始化人工种群: