九上数学试卷

合集下载

江苏省徐州市睢宁县2024届九年级上学期期中数学试卷(含解析)

江苏省徐州市睢宁县2024届九年级上学期期中数学试卷(含解析)

2023—2024学年度第一学期期中九年级数学试题2023.11满分:140分,时间:90分钟)一、选择题(本大题共8小题,每小题3分,共24分.四个选项中只有一个正确选项)1.已知O 的半径为3,点P 在O 内,则OP 的长可能是()A.5B.4 C.3D.2答案:D解析:解:∵O 的半径为3,点P 在O 内,∴3OP <,即OP 的长可能是2.故选:D .2.用配方法解方程2210x x --=,下列配方正确的是()A.2(1)0x -= B.2(1)1x -= C.2(1)2x += D.()212x -=答案:D解析:解:因为2210x x --=所以221x x -=则2212x x -+=即()212x -=故选:D3.给出下列说法:①经过平面内的任意三点都可以确定一个圆;②等弧所对的弦相等;③长度相等的弧是等弧;④相等的弦所对的圆心角相等.其中正确的是()A.①③④B.②C.②④D.①④答案:B解析:解:①经过平面内不共线的三点确定一个圆,故①不符合题意;②等弧所对的弦相等,正确,故②符合题意;③长度相等的弧不一定是等弧,故③不符合题意;④在同圆或等圆中,相等的弦所对的圆心角相等,故④不符合题意,∴其中正确的是②.故选:B .4.函数22y kx =-与()0ky k x=≠在同一平面直角坐标系中的图像大致是()A. B.C. D.答案:C解析:解:A 、二次函数的开口方向向上,即0k >,反比例函数经过第一、三象限,即0k >,因为22y kx =-的对称轴0x =,故该选项是不符合题意;B 、二次函数的开口方向向上,即0k >,反比例函数经过第二、四象限,即0k <,此时k 互相矛盾,故该选项是不符合题意;C 、二次函数的开口方向向下,即0k <,反比例函数经过第二、四象限,即0k <,因为22y kx =-的对称轴0x =,故该选项是符合题意;D 、二次函数的开口方向向下,即0k <,反比例函数经过第一、三象限,即0k >,此时k 互相矛盾,故该选项是不符合题意;故选:C5.有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?经过计算,你的结论是:长比宽多()A.12步B.24步.C.36步D.48步答案:A解析:设矩形田地的长为x 步(30)x >,则宽为(60)x -步,根据题意得,(60)864x x -=,整理得,2608640x x -+=,解得36x =或24x =(舍去),所以(60)12x x --=.故选A .6.如图,PA 是O 的切线,切点为A ,PO 的延长线交O 于点B ,若25B ∠=︒,则P ∠的度数为()A.40︒B.50︒C.25︒D.65︒答案:A解析:解:如图所示,连接OA ,∵25B ∠=︒,∴222550AOP B ∠=∠=⨯︒=︒,∵PA 是O 的切线,∴90OAP ∠=︒,∴90905040P AOP ∠=︒-∠=︒-︒=︒,∴P ∠的度数为40︒.故选:A .7.以正六边形ABCDEF 的顶点C 为旋转中心,按顺时针方向旋转,使得新正六边形A B CD E F '''''的顶点E '落在直线BC 上,则正六边形ABCDEF 至少旋转的度数为()A.60︒B.90︒C.100︒D.30︒答案:B解析:解:连接CE ,∵正六边形的每个外角360606︒==︒,∴正六边形的每个内角18060120=︒-︒=︒,∴60MCD ∠=︒,120D ∠=︒,∵DC DE =∴()1180120302DCE DEC ∠=∠=⨯︒-︒=︒∴90MCE DCE MCD ∠=∠+∠=︒∴正六边形ABCDEF 至少旋转的度数为90︒故选:B .8.二次函数26y x x =-的图像如图所示,若关于x 的一元二次方程260x x m --=(m 为实数)的解满足15x <<,则m 的取值范围是()A.5m >- B.9m <- C.95m -≤<- D.95m -<<-答案:C解析:解:方程260x x m --=的解相当于26y x x =-与直线y m =的交点的横坐标,∵方程260x x m --=(m 为实数)的解满足15x <<,∴当1x =时,21615y =-⨯=-,当5x =时,25655y =-⨯=-,又∵()22639y x x x =-=--,∴抛物线26y x x =-的对称轴为3x =,最小值为9y =-,∴当15x <<时,则95y -≤<-,∴当95y -≤<-时,直线y m =与抛物线26y x x =-在15x <<的范围内有交点,即当95y -≤<-时,方程260x x m --=在15x <<的范围内有实数解,∴m 的取值范围是95y -≤<-.故选:C .二、填空题(本大题共10小题,每小题4分,共40分)9.已知关于x 的方程20x x m --=的一个根是3,则m =_______.答案:6解析:解:∵关于x 的方程20x x m --=的一个根是3,∴2330m --=,解得:6m =,故答案为:6.10.请在横线上写一个常数,使得关于x 的方程26x x -+_______0=.有两个相等的实数根.答案:9解析:解:1,6a b ==-,224(6)410,b ac c ∆=-=--⨯⨯=Q 9.c ∴=故答案为:9.11.方程2261x x -=的两根为1x 、2x ,则12x x +=_______.答案:3解析:解:移项得:22610x x --=,12632x x -=-+=∴,故答案为:3.12.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.答案:15π解析:解:圆锥的侧面积=12•2π•3•5=15π.故答案为15π.13.某学习机的售价为2000元,因换季促销,在经过连续两次降价后,现售价为1280元,设平均每次降价的百分率为x ,根据题意可列方程为________.答案:()2200011280x -=解析:解:依题意得:()2200011280x -=,故答案为:()2200011280x -=.14.已知拋物线2(1)(0)y a x c a =-+<经过点()11,y -、()24,y ,则1y ________2y (填“>”“<”或“=”).答案:>解析:解:依题意得:抛物线的对称轴为:1x =,()11,y ∴-关于1x =对称点的坐标为:()13,y ,134<< ,且抛物线开口向下,12y y ∴>,故答案为:>.15.已知二次函数243y kx x =--的图象与坐标轴有三个公共点,则k 的取值范围是__.答案:43k >-且0k ≠解析:解:由题意可知:2(4)4(3)0k ∆=--⨯⨯->且0k ≠,解得:43k >-且0k ≠,故答案为:43k >-且0k ≠.16.如图是二次函数2y ax bx c =++的图像,给出下列结论:①240b ac ->;②2b a =;③0a b c -+>;④0abc <.其中正确的是________(填序号)答案:①②④解析:解:∵抛物线与x 轴有两个不同交点,∴240b ac ->,故结论①正确;∵对称轴为直线=1x -,∴12ba-=-,∴2b a =,故结论②正确;由图像知,当=1x -时,0y <,∴<0a b c -+,故结论③不正确;∵抛物线开口向上,∴0a >,∴20b a =>,∵抛物线与y 轴的交点在负半轴,∴0c <,∴0abc <,故结论④正确;∴正确的是①②④.故答案为:①②④.17.如图,在ABC 中,60A ∠=︒,43cm BC =,则能够将ABC 完全覆盖的最小圆形纸片的半径是_______cm .答案:4解析:解:要使能够将ABC 完全覆盖的最小圆形纸片,则这个小圆形纸片是ABC 的外接圆,作ABC 的外接圆O ,连接BO ,CO ,作OD BC ⊥交BC 于D ,如图:60A ∠=︒ ,3cm BC =,120BOC ∴∠=︒,123cm 2BD BC ==,1602BOD BOC ∴∠=∠=︒,在Rt BOD 中,60BOD ∠=︒,90ODB ∠=︒,234cmsin 32BD BO BOD ∴==∠,故答案为:4.18.如图,O 的半径为2,点C 是半圆AB 的中点,点D 是 BC的一个三等分点(靠近点B ),点P 是直径AB 上的动点,则CP DP +的最小值_______.答案:23解析:解:如图,作点D 关于直径AB 的对称点D ¢,则点D ¢在圆上,连接CD ',CD '交直径AB 于点P ,∴CP DP CP D P D C ''+=+=,则CP DP +的最小值是D C '的长,∵点C 是半圆AB 的中点,O 的半径为2,∴ BC等于半圆AB 的一半,∴90BOC ∠=︒,∵点D 是 BC 的一个三等分点(靠近点B ),∴ BD等于 BC 的13,∴11903033BOD BOC ∠=∠=⨯︒=︒,∵点D 与点D ¢关于直径AB 的对称,∴30BOD BOD '∠=∠=︒,∴903060COD D OD '∠=︒-︒=︒=∠,∴OD CD '⊥,6060120COD COD D OD ''∠=∠+∠=︒+︒=︒,∴2D C CM '=,∵OC OD '=,∴1801801203022COD C '︒-∠︒-︒∠===︒,∴112122OM OC ==⨯=,∴CM ===∴2D C CM '==,即CP DP +的最小值是.故答案为:三、解答题(本大题共8小题,共76分.要求写出解答或计算过程)19.解方程:(1)225x x =;(2)233x x +=.答案:(1)10x =或252x =(2)132x -=或232x -=小问1解析:解:225x x=则()250x x -=那么0x =或250x -=即10x =或252x =小问2解析:解:233x x +=则2330x x +-=故2491221b ac ∆=-=+=所以322b x a -±-==即132x -+=或232x -=20.下表是二次函数24y x x c =-++的部分取值情况:x⋯024⋯y⋯c51⋯根据表中信息,回答下列问题:(1)二次函数24y x x c =-++图象的顶点坐标是_______;(2)求c 的值,并在平面直角坐标系中画出该二次函数的图象;(3)观察图象,写出0y >时x 的取值范围:_______.答案:(1)()2,5(2)1c =,作图见解析(3)22x -<<+。

九上初中数学试卷及答案

九上初中数学试卷及答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √2B. √3C. πD. -1/2答案:D2. 已知 a < b < 0,则下列不等式中正确的是()A. a > bB. -a > -bC. a^2 < b^2D. a^3 < b^3答案:B3. 若 m,n 是方程 x^2 - 3x + 2 = 0 的两个根,则 m + n 的值为()A. 1B. 2C. 3D. 4答案:B4. 在直角坐标系中,点 P(2, -3) 关于 x 轴的对称点的坐标是()A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)答案:A5. 已知 a,b 是方程 x^2 - 5x + 6 = 0 的两个根,则下列结论正确的是()A. a + b = 5B. ab = 6C. a^2 + b^2 = 11D. a^2 + b^2 = 25答案:B6. 已知函数 y = 2x + 1,则下列各点中,在函数图象上的是()A. (1, 3)B. (2, 5)C. (3, 7)D. (4, 9)答案:B7. 在等腰三角形 ABC 中,AB = AC,AD 是底边 BC 的中线,则下列结论正确的是()A. ∠BAD = ∠BACB. ∠BAD = ∠CADC. ∠BAC = ∠CADD. ∠BAD = ∠BDC答案:C8. 若 sin A = 1/2,则 A 的度数是()A. 30°B. 45°C. 60°D. 90°答案:A9. 已知等腰三角形 ABC 中,AB = AC,AD 是底边 BC 的中线,则下列结论正确的是()A. ∠BAD = ∠BACB. ∠BAD =∠CADC. ∠BAC = ∠CADD. ∠BAD = ∠BDC答案:C10. 已知函数 y = -x^2 + 2x,则下列各点中,在函数图象上的是()A. (1, 1)B. (2, 2)C. (3, 3)D. (4, 4)答案:B二、填空题(每题3分,共30分)11. 已知 a,b 是方程 x^2 - 3x + 2 = 0 的两个根,则 a + b = _______,ab = _______。

重庆一中九年级上期末数学试卷含答案解析

重庆一中九年级上期末数学试卷含答案解析

2022-2023重庆一中九年级(上)期末数学试卷一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑.1.在,﹣1,0,﹣3.2这四个数中,属于负分数的是()A.B.﹣1 C.0 D.﹣3.22.下列4个图形中,是中心对称图形但不是轴对称的图形是()A.B.C.D.3.下列计算正确的是()A.5m﹣2m=3 B.2a•3a=6a C.(ab3)2=ab6D.2m3n÷(mn)=2m24.下列说法中,正确的是()A.不可能事件发生的概率是0B.打开电视机正在播放动画片,是必然事件C.随机事件发生的概率是D.对“梦想的声音”节目收视率的调查,宜采用普查5.如图,AB∥CD,CB平分∠ABD.若∠C=40°,则∠D的度数为()A.90°B.100°C.110° D.120°6.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.在函数y=中,自变量x的取值范围是()A.x≥﹣3且x≠0 B.x≤3且x≠0 C.x≠0 D.x≥﹣38.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:29.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.2 B.4 C.4 D.810.如图,是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:第20个“上”字需用多少枚棋子()A.78 B.82 C.86 D.9011.近来爱好跑步的人越来越多,人们对跑步机的需求也越来越大.图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE 的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,则跑步机手柄的一端A 的高度h四舍五入到0.1m约为()(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)A.0.9 B.1.0 C.1.1 D.1.212.如图,平面直角坐标系中,矩形OABC的顶点B在第一象限,点C在x轴上,点A在y轴上,D、E分别是AB,OA中点.过点D的双曲线y=(x>0,k>0)与BC交于点G.连接DC,F在DC上,且DF:FC=3:1,连接DE,EF.若△DEF 的面积为6,则k的值为()A.B.C.6 D.10二、填空题:(本大题共6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡中对应的横线上.13.经过十多年的成长,中国城市观众到影院观影的习惯已经逐渐养成:,某影院观众人次总量才23400,但到已经暴涨至1350000.其中1350000用科学记数法表示为.14.计算:2tan60°﹣|1﹣|﹣(﹣)﹣2=.15.如图,在矩形ABCD中,AB=2AD=4,以点A为圆心,AB为半径的圆弧交CD 于点E,交AD的延长线于点F,则图中阴影部分的面积为.(结果保留π)16.从﹣1,0,1,2,3这5个数中,随机抽取一个数记为a,使得二次函数y=2x2﹣4x﹣1当x>a时,y随x 的增大而增大,且使关于x的分式方程+2=有整数解的概率为.17.“欢乐跑中国•重庆站”比赛前夕,小刚和小强相约晨练跑步.小刚比小强早1分钟跑步出门,3分钟后他们相遇.两人寒暄2分钟后,决定进行跑步比赛.比赛时小刚的速度始终是180米/分,小强的速度是220米/分.比赛开始10分钟后,因雾霾严重,小强突感身体不适,于是他按原路以出门时的速度返回,直到他们再次相遇.如图所示是小刚、小强之间的距离y(千米)与小刚跑步所用时间x(分钟)之间的函数图象.问小刚从家出发到他们再次相遇时,一共用了分钟.18.如图,四边形ABCD为正方形,H是AD上任意一点,连接CH,过B作BM ⊥CH于M,交AC于F,过D作DE∥BM交AC于E,交CH于G,在线段BF上作PF=DG,连接PG,BE,其中PG交AC于N点,K为BE上一点,连接PK,KG,若∠BPK=∠GPK,CG=12,KP:EF=3:5,求的值为.三、解答题:(本大题共2个小题,每小题7分,共14分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.19.已知:如图,在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC,求证:AB=AC.20.在期末考试来临之际,同学们都进入紧张的复习阶段,为了了解同学们晚上的睡眠情况,现对年级部分同学进行了调查统计,并制成如下两幅不完整的统计图:(其中A代表睡眠时间8小时左右,B代表睡眠时间6小时左右,C代表睡眠时间4小时左右,D代表睡眠时间5小时左右,E代表睡眠时间7小时左右),其中扇形统计图中“E”的圆心角为90°,请你结合统计图所给信息解答下列问题:(1)共抽取了名同学进行调查,同学们的睡眠时间的中位数是小时左右,并将条形统计图补充完整;(2)请你估计年级每个学生的平均睡眠时间约多少小时?四、解答题:(本大题共4个小题,每小题10分,共40分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.21.计算:(1)3a(a+1)﹣(3+a)(3﹣a)﹣(2a﹣1)2(2)(﹣x+2)÷.22.如图,一次函数y=ax﹣2(a≠0)的图象与反比例函数y=(k≠0)的图象交于第二象限的点,且与x轴、y轴分别交于点C、D.已知tan∠AOC=,AO=.(1)求这个一次函数和反比例函数的解析式;(2)若点F是点D关于x轴的对称点,求△ABF的面积.23.冬至过后,昼夜温差逐渐加大,山城的市民们已然感受到了深冬的寒意.在还未普遍使用地暖供暖设备的山城,小型电取暖器仍然深受市民的青睐.某格力专卖店销售壁挂式电暖器和卤素/石英式取暖器(俗称“小太阳”),其中壁挂式电暖器的售价是“小太阳”售价的5倍还多100元,12月份壁挂式电暖器和“小太阳”共销售500台,壁挂式电暖器与“小太阳”销量之比是4:1,销售总收入为58.6万元.(1)分别求出每台壁挂式电暖器和“小太阳”的售价;(2)随着“元旦、春节”双节的来临和气温的回升,销售进入淡季,1月份,壁挂式电暖器的售价比12月下调了4m%,根据经验销售量将比12月下滑6m%,而“小太阳”的销售量和售价都维持不变,预计销售总收入将下降到16.04万元,求m 的值.24.阅读下列材料,解决后面两个问题:一个能被17整除的自然数我们称为“灵动数”.“灵动数”的特征是:若把一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的整倍数(包括0),则原数能被17整除.如果差太大或心算不易看出是否是17的倍数,就继续上述的“截尾、倍大、相减、验差”的过程,直到能清楚判断为止.例如:判断1675282能不能被17整除.167528﹣2×5=167518,16751﹣8×5=16711,1671﹣1×5=1666,166﹣6×5=136,到这里如果你仍然观察不出来,就继续…6×5=30,现在个位×5=30>剩下的13,就用大数减去小数,30﹣13=17,17÷17=1;所以1675282能被17整除.(1)请用上述方法判断7242和2098754 是否是“灵动数”,并说明理由;(2)已知一个四位整数可表示为,其中个位上的数字为n,十位上的数字为m,0≤m≤9,0≤n≤9且m,n为整数.若这个数能被51整除,请求出这个数.五、解答题:(本大题共2个小题,每小题12分,共24分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.25.如图,在等腰直角△ABC中,∠ACB=90°,CA=CB,CD为斜边AB上的中线.(1)如图1,AE平分∠CAB交BC于E,交CD于F,若DF=2,求AC的长;(2)将图1中的△ADC绕点D顺时针旋转一定角度得到△ADN,如图2,P,Q 分别为线段AN,BC的中点,连接AC,BN,PQ,求证:BN=PQ;(3)如图3,将△ADC绕点A顺时针旋转一定角度到△AMN,其中D的对应点是M,C的对应点是N,若B,M,N三点在同一直线上,H为BN中点,连接CH,猜想BM,MN,CH之间的数量关系,请直接写出结果.26.如图1,已知抛物线y=x2+2x﹣3与x轴相交于A,B两点,与y轴交于点C,D为顶点.(1)求直线AC的解析式和顶点D的坐标;(2)已知E(0,),点P是直线AC下方的抛物线上一动点,作PR⊥AC于点R,当PR最大时,有一条长为的线段MN(点M在点N的左侧)在直线BE上移动,首尾顺次连接A、M、N、P构成四边形AMNP,请求出四边形AMNP的周长最小时点N的坐标;(3)如图2,过点D作DF∥y轴交直线AC于点F,连接AD,Q点是线段AD上一动点,将△DFQ沿直线FQ折叠至△D1FQ,是否存在点Q使得△D1FQ与△AFQ 重叠部分的图形是直角三角形?若存在,请求出AQ的长;若不存在,请说明理由.2022-2023重庆一中九年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑.1.在,﹣1,0,﹣3.2这四个数中,属于负分数的是()A.B.﹣1 C.0 D.﹣3.2【考点】有理数.【分析】根据小于0的分数是负分数,可得答案.【解答】解:﹣3.2是负分数,故选:D.2.下列4个图形中,是中心对称图形但不是轴对称的图形是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,符合题意.故选:D.3.下列计算正确的是()A.5m﹣2m=3 B.2a•3a=6a C.(ab3)2=ab6D.2m3n÷(mn)=2m2【考点】整式的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】根据合并同类项、单项式乘以单项式、积的乘方、单项式除以单项式,即可解答.【解答】解:A、5m﹣2m=3m,故错误;B、2a•3a=6a2,故错误;C、(ab3)2=a2b6,故错误;D、2m3n÷(mn)=2m2,正确;故选:D.4.下列说法中,正确的是()A.不可能事件发生的概率是0B.打开电视机正在播放动画片,是必然事件C.随机事件发生的概率是D.对“梦想的声音”节目收视率的调查,宜采用普查【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、不可能事件发生的概率是0,故A符合题意;B、打开电视机正在播放动画片,是随机事件,故B不符合题意;C、随机事件发生的概率是0<P<1,故C不符合题意;D、对“梦想的声音”节目收视率的调查,宜采用抽样调查,故D不符合题意;故选:A.5.如图,AB∥CD,CB平分∠ABD.若∠C=40°,则∠D的度数为()A.90°B.100°C.110° D.120°【考点】平行线的性质.【分析】先利用平行线的性质易得∠ABC=40°,因为CB平分∠ABD,所以∠ABD=80°,再利用平行线的性质两直线平行,同旁内角互补,得出结论.【解答】解:∵AB∥CD,∠C=40°,∴∠ABC=40°,∵CB平分∠ABD,∴∠ABD=80°,∴∠D=100°.故选B.6.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先求此不等式的解集,再根据不等式的解集在数轴上表示方法画出图示即可求得.【解答】解:,由①得,x>﹣2;由②得,x≤3;可得不等式组的解集为﹣2<x≤3,在数轴上表示为:故选C.7.在函数y=中,自变量x的取值范围是()A.x≥﹣3且x≠0 B.x≤3且x≠0 C.x≠0 D.x≥﹣3【考点】函数自变量的取值范围.【分析】根据分式有意义的条件分母不等于0得x≠0,再由二次根式有意义的条件得x+3≥0,解不等式组得出自变量x的取值范围即可.【解答】解:由题意得,解得xx≥﹣3且x≠0,故选A.8.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:2【考点】相似三角形的判定与性质;平行四边形的性质.【分析】先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再根据S△DEF :S△ABF=4:25即可得出其相似比,由相似三角形的性质即可求出DE:AB的值,由AB=CD即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∵S△DEF :S△ABF=4:25,∴DE:AB=2:5,∵AB=CD,∴DE:EC=2:3.故选B.9.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.2 B.4 C.4 D.8【考点】垂径定理;等腰直角三角形;圆周角定理.【分析】根据圆周角定理得∠BOC=2∠A=45°,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.【解答】解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故选:C.10.如图,是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:第20个“上”字需用多少枚棋子()A.78 B.82 C.86 D.90【考点】规律型:图形的变化类.【分析】可以将上字看做有四个端点每次每个端点增加一个,还有两个点在里面不发生变化.【解答】解:“上”字共有四个端点每次每个端点增加一枚棋子,而初始时内部有两枚棋子不发生变化,所以第20个“上”字需要4×20+2=82枚棋子.故选B.11.近来爱好跑步的人越来越多,人们对跑步机的需求也越来越大.图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE 的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,则跑步机手柄的一端A 的高度h四舍五入到0.1m约为()(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)A.0.9 B.1.0 C.1.1 D.1.2【考点】解直角三角形的应用﹣坡度坡角问题.【分析】过C点作FG⊥AB于F,交DE于G.在Rt△ACF中,根据三角函数可求CF,在Rt△CDG中,根据三角函数可求CG,再根据FG=FC+CG即可求解.【解答】解:如图,过C点作FG⊥AB于F,交DE于G.∵CD与地面DE的夹角∠CDE为12°,∠ACD为80°,∴∠ACF=∠FCD﹣∠ACD=∠CGD+∠CDE﹣∠ACD=90°+12°﹣80°=22°,∴∠CAF=68°,在Rt△ACF中,CF=AC•sin∠CAF≈0.744m,在Rt△CDG中,CG=CD•sin∠CDE≈0.336m,∴FG=FC+CG≈1.1m.故跑步机手柄的一端A的高度约为1.1m.故选C.12.如图,平面直角坐标系中,矩形OABC的顶点B在第一象限,点C在x轴上,点A在y轴上,D、E分别是AB,OA中点.过点D的双曲线y=(x>0,k>0)与BC交于点G.连接DC,F在DC上,且DF:FC=3:1,连接DE,EF.若△DEF 的面积为6,则k的值为()A.B.C.6 D.10【考点】反比例函数系数k的几何意义;三角形中位线定理.【分析】设矩形OABC中OA=2a、AB=2b,由D、E分别是AB,OA中点知点D(b,2a)、E(0,a),过点F作FP⊥BC于点P,延长PF交OA于点Q,可得四边形OCPQ是矩形,即OQ=PC、PQ=OC=2b,证△CFP∽△CDB得==,可得CP=,FP=、EQ=EO﹣OQ=、FQ=PQ﹣PF=,根据S梯形ADFQ﹣S△ADE﹣S△EFQ=6求得ab 即可得答案.【解答】解:设矩形OABC中OA=2a,AB=2b,∵D、E分别是AB,OA中点,∴点D(b,2a)、E(0,a),如图,过点F作FP⊥BC于点P,延长PF交OA于点Q,∵四边形OABC 是矩形, ∴∠QOC=∠OCP=∠CPQ=90°, ∴四边形OCPQ 是矩形, ∴OQ=PC ,PQ=OC=2b , ∵FP ⊥BC 、AB ⊥BC , ∴FP ∥DB , ∴△CFP ∽△CDB , ∴==,即,可得CP=,FP=,则EQ=EO ﹣OQ=a ﹣=,FQ=PQ ﹣PF=2b ﹣=,∵△DEF 的面积为6, ∴S 梯形ADFQ ﹣S △ADE ﹣S △EFQ =6,即•(b +b )•a ﹣ab ﹣×b•=6, 可得ab=, 则k=2ab=,故选:B二、填空题:(本大题共6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡中对应的横线上.13.经过十多年的成长,中国城市观众到影院观影的习惯已经逐渐养成:,某影院观众人次总量才23400,但到已经暴涨至1350000.其中1350000用科学记数法表示为 1.35×106 .【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:将1350000用科学记数法表示为:1.35×106. 故答案为:1.35×106.14.计算:2tan60°﹣|1﹣|﹣(﹣)﹣2= ﹣8 .【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】本题涉及特殊角的三角函数值、负整数指数幂、绝对值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:2tan60°﹣|1﹣|﹣(﹣)﹣2=2+1﹣2﹣9=﹣8.故答案为:﹣8.15.如图,在矩形ABCD 中,AB=2AD=4,以点A 为圆心,AB 为半径的圆弧交CD 于点E ,交AD 的延长线于点F ,则图中阴影部分的面积为 ﹣2.(结果保留π)【考点】扇形面积的计算.【分析】首先利用三角函数求的∠DAE 的度数,然后根据S 阴影=S扇形AEF﹣S △ADE 即可求解.【解答】解:∵AB=2AD=4,AE=AD , ∴AD=2,AE=4.DE===2,∴直角△ADE 中,cos ∠DAE==,∴∠DAE=60°,则S△ADE =AD•DE=×2×2=2,S扇形AEF==,则S阴影=S扇形AEF﹣S△ADE=﹣2.故答案是:﹣2.16.从﹣1,0,1,2,3这5个数中,随机抽取一个数记为a,使得二次函数y=2x2﹣4x﹣1当x>a时,y随x 的增大而增大,且使关于x的分式方程+2=有整数解的概率为.【考点】概率公式;二次函数的性质.【分析】根据二次函数y=2x2﹣4x﹣1得到开口向上且对称轴为直线x=﹣=2,得到a=2或3,由于解关于x的分式方程+2=有整数解,得到a=3,于是得到结论.【解答】解:∵二次函数y=2x2﹣4x﹣1的开口向上且对称轴为直线x=﹣=2,∴当x>2时,y随x 的增大而增大,∵当x>a时,y随x 的增大而增大,∴a=2或3,∵解关于x的分式方程+2=得x=,∵关于x的分式方程+2=有整数解,∴a=3,∴概率为,故答案为:.17.“欢乐跑中国•重庆站”比赛前夕,小刚和小强相约晨练跑步.小刚比小强早1分钟跑步出门,3分钟后他们相遇.两人寒暄2分钟后,决定进行跑步比赛.比赛时小刚的速度始终是180米/分,小强的速度是220米/分.比赛开始10分钟后,因雾霾严重,小强突感身体不适,于是他按原路以出门时的速度返回,直到他们再次相遇.如图所示是小刚、小强之间的距离y(千米)与小刚跑步所用时间x(分钟)之间的函数图象.问小刚从家出发到他们再次相遇时,一共用了分钟.【考点】一次函数的应用.【分析】由图象可以看出,0﹣1min内,小刚的速度可由距离减小量除以时间求得,1﹣3min内,根据等量关系“距离减小量=小刚跑过的路程+小强跑过的路程”可得出小强的速度;由于小刚的速度始终是180米/分,小强的速度开始是220米/分,则他们的速度之差是40米/分,则10分钟相差400米,设再经过t分钟两人相遇,利用相遇问题得到180t+120t=400,然后求出t后加上前面的15分钟可得到小刚从家出发到他们再次相遇的时间总和.【解答】解:小刚比赛前的速度v1==100(米/分),设小强比赛前的速度为v2(米/分),根据题意得2×(v1+v2)=440,解得v2=120米/分,小刚的速度始终是180米/分,小强的速度开始为220米/分,他们的速度之差是40米/分,10分钟相差400米,设再经过t分钟两人相遇,则180t+120t=400,解得t=(分)所以小刚从家出发到他们再次相遇时5+10+=(分).故答案为.18.如图,四边形ABCD为正方形,H是AD上任意一点,连接CH,过B作BM ⊥CH于M,交AC于F,过D作DE∥BM交AC于E,交CH于G,在线段BF上作PF=DG,连接PG,BE,其中PG交AC于N点,K为BE上一点,连接PK,KG,若∠BPK=∠GPK,CG=12,KP:EF=3:5,求的值为.【考点】相似三角形的判定与性质;正方形的性质.【分析】连接DF,构建菱形EBFD和平行四边形GPFD,证明KP∥EF,得△BPK ∽△BFE,列比例式为=,设BP=3x,BF=5x,则PF=CM=DG=2x,EG=3x,根据BM=12列方程解出x的值,计算EG的长;设AC与KG交于点O,过K作KP⊥AC于P,过G作GQ⊥AC于Q,则KP∥GQ,根据同角的三角函数求KP、GQ、OP、OQ的长,证明△KPO∽△GQO,根据相似比为2:3分别求OK、OG的长,并相加即可得KG的长,最后计算比值即可.【解答】解:连接DF,∵四边形ABCD为正方形,∴BC=CD,∠BCD=90°,∴∠BCM+∠MCD=90°,∵BM⊥CH,∴∠BMC=90°,∴∠BCM+∠MBC=90°,∴∠MCD=∠MBC,∵DE∥BM,∴∠DGC=∠BMG=90°,∴∠DGC=∠BMC=90°,∴△BMC≌△CGD,∴BM=CG=12,CM=DG,∵PF=DG,∴PF=DG=CM,在△ABE和△ADE中,∵,∴△ABE≌△ADE(SAS),∴BE=ED,∠AEB=∠AED,∴∠BEF=∠FED,∵DE∥BM,∴∠DEF=∠EFB,∴∠BEF=∠EFB,∴BE=BF,∴BE=BF=ED,∴四边形EBFD是菱形,∴∠BFE=∠EFD,∴GD=PF,GD∥PF,∴四边形GPFD是平行四边形,∴GP∥DF,∴∠BPG=∠BFD,∵∠BPK=∠KPG,∴2∠BPK=2∠BFE,∴∠BPK=∠BFE,∴PK∥EF,∴△BPK∽△BFE,∴=,设BP=3x,BF=5x,则PF=CM=DG=2x,EG=3x,∵FM∥DE,∴△CFM∽△CEG,∴,∴,∴FM=,∵BM=12,∴BF+FM=12,5x+=12,解得:x1=2,x2=﹣12(舍),∴EG=3x=6;FM==2,CM=2x=4,∵∠BKP=∠BPK,∴BK=BP=3x=6,∵BF=5x=10,∴EK=10﹣6=4,设AC与KG交于点O,过K作KP⊥AC于P,过G作GQ⊥AC于Q,则KP∥GQ,∵∠BEF=∠DEF,∴==,∵∠BEF=∠BFE=∠CFM,∴tan∠BEF=tan∠CFM====2,∵EK=4,∴KP=,EP=,同理得:GQ=,EQ=,∴PQ=EQ﹣EP=﹣=,∵KP∥GQ,∴△KPO∽△GQO,∴=,∴,∴OP=×PQ=×=,由勾股定理得:OK===,∴OG=,∴KG=OK+OG=,∴==;故答案为:.三、解答题:(本大题共2个小题,每小题7分,共14分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.19.已知:如图,在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC,求证:AB=AC.【考点】全等三角形的判定与性质;等腰三角形的判定.【分析】根据在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC,求证△AED≌△ACD,然后利用等量代换即可求的结论.【解答】证明:∵AD平分∠EDC,∴∠ADE=∠ADC,在△AED和△ACD中,∵∴△AED≌△ACD(SAS),∴∠C=∠E,又∵∠E=∠B.∴∠C=∠B,∴AB=AC.20.在期末考试来临之际,同学们都进入紧张的复习阶段,为了了解同学们晚上的睡眠情况,现对年级部分同学进行了调查统计,并制成如下两幅不完整的统计图:(其中A代表睡眠时间8小时左右,B代表睡眠时间6小时左右,C代表睡眠时间4小时左右,D代表睡眠时间5小时左右,E代表睡眠时间7小时左右),其中扇形统计图中“E”的圆心角为90°,请你结合统计图所给信息解答下列问题:(1)共抽取了20名同学进行调查,同学们的睡眠时间的中位数是6小时左右,并将条形统计图补充完整;(2)请你估计年级每个学生的平均睡眠时间约多少小时?【考点】条形统计图;用样本估计总体;扇形统计图;中位数.【分析】(1)由B的人数和所占百分数求出共抽取的人数;再求出E和A的人数,由中位数的定义求出中位数,再将条形统计图补充完整即可;(2)求出所抽取的20名同学的平均睡眠时间,即可得出结果.【解答】解:(1)共抽取的同学人数=6÷30%=20(人),睡眠时间7小时左右的人数=20×=5(人),睡眠时间8小时左右的人数=20﹣6﹣2﹣3﹣5=4(人),按照睡眠时间从小到大排列,各组人数分别为2,3,6,5,4,睡眠时间分别为4,5,6,7,8,共有20个数据,第10个和第11个数据都是6小时,它们的平均数也是6小时,∴同学们的睡眠时间的中位数是6小时左右;故答案为:20,6;将条形统计图补充完整如图所示:(2)∵平均数为(4×8+6×6+2×4+3×5+5×7)=6.3(小时),∴估计年级每个学生的平均睡眠时间约6.3小时.四、解答题:(本大题共4个小题,每小题10分,共40分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.21.计算:(1)3a(a+1)﹣(3+a)(3﹣a)﹣(2a﹣1)2(2)(﹣x+2)÷.【考点】分式的混合运算;单项式乘多项式;完全平方公式;平方差公式.【分析】结合平方差公式、完全平方公式和分式混合运算的概念和运算法则进行求解即可.【解答】解:(1)原式=3a2+3a﹣9+a2﹣4a2﹣1+4a=7a﹣10.(2)原式=(﹣x+2)÷=×=﹣.22.如图,一次函数y=ax﹣2(a≠0)的图象与反比例函数y=(k≠0)的图象交于第二象限的点,且与x轴、y轴分别交于点C、D.已知tan∠AOC=,AO=.(1)求这个一次函数和反比例函数的解析式;(2)若点F是点D关于x轴的对称点,求△ABF的面积.【考点】反比例函数与一次函数的交点问题;待定系数法求一次函数解析式;轴对称的性质.【分析】(1)先过点A作AE⊥x轴于E,构造Rt△AOE,再根据tan∠AOC=,AO=,求得AE=1,OE=3,即可得出A(﹣3,1),进而运用待定系数法,求得一次函数和反比例函数的解析式;(2)先点F是点D关于x轴的对称点,求得F(0,2),再根据解方程组求得B (1,﹣3),最后根据△ABF的面积=△ADF面积+△BDF面积,进行计算即可.【解答】解:(1)过点A作AE⊥x轴于E,∵tan∠AOC=,AO=,∴Rt△AOE中,AE=1,OE=3,∵点A在第二象限,∴A(﹣3,1),∵反比例函数y=(k≠0)的图象过点A,∴k=﹣3×1=﹣3,∴反比例函数的解析式为y=﹣,∵一次函数y=ax﹣2(a≠0)的图象过点A,∴1=﹣3a﹣2,解得a=﹣1,∴一次函数的解析式为y=﹣x﹣2;(2)一次函数的解析式y=﹣x﹣2中,令x=0,则y=﹣2,∴D(0,﹣2),∵点F是点D关于x轴的对称点,∴F(0,2),∴DF=2+2=4,解方程组,可得或,∴B(1,﹣3),∵△ADF面积=×DF×CE=6,△BDF面积=×DF×|x B|=2,∴△ABF的面积=△ADF面积+△BDF面积=6+2=8.23.冬至过后,昼夜温差逐渐加大,山城的市民们已然感受到了深冬的寒意.在还未普遍使用地暖供暖设备的山城,小型电取暖器仍然深受市民的青睐.某格力专卖店销售壁挂式电暖器和卤素/石英式取暖器(俗称“小太阳”),其中壁挂式电暖器的售价是“小太阳”售价的5倍还多100元,12月份壁挂式电暖器和“小太阳”共销售500台,壁挂式电暖器与“小太阳”销量之比是4:1,销售总收入为58.6万元.(1)分别求出每台壁挂式电暖器和“小太阳”的售价;(2)随着“元旦、春节”双节的来临和气温的回升,销售进入淡季,1月份,壁挂式电暖器的售价比12月下调了4m%,根据经验销售量将比12月下滑6m%,而“小太阳”的销售量和售价都维持不变,预计销售总收入将下降到16.04万元,求m 的值.【考点】一元二次方程的应用.【分析】(1)设每台小太阳为x元,则每台壁挂式电暖器的售价为(5x+100)元,根据销售总收入为58.6万列出方程即可解决问题(2)根据题意表示出羽绒服的销量与价格,进而结合销售总收入下降为16.04万元得出等式求出即可.【解答】解:(1)设每台小太阳为x元,则每台壁挂式电暖器的售价为(5x+100)元,∵1月份(春节前期)共销售500件,每台壁挂式电暖器与小太阳销量之比是4:1,∴每台壁挂式电暖器与小太阳销量分别为:400件和100件,根据题意得出:400(5x+100)+100x=586000,解得:x=260,∴5x+100=1400(元),答:每台壁挂式电暖器和小太阳的售价为:1400元,260元;(2)∵2月份每台壁挂式电暖器销量下滑了6m%,售价下滑了4m%,小太阳销量和售价都维持不变,结果销售总收入下降为16.04万元,∴400(1﹣6m%)×1400×(1﹣4m%)+100×260=160400解得:m1=10,m2=(不合题意舍去),答:m的值为10.24.阅读下列材料,解决后面两个问题:一个能被17整除的自然数我们称为“灵动数”.“灵动数”的特征是:若把一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的整倍数(包括0),则原数能被17整除.如果差太大或心算不易看出是否是17的倍数,就继续上述的“截尾、倍大、相减、验差”的过程,直到能清楚判断为止.例如:判断1675282能不能被17整除.167528﹣2×5=167518,16751﹣8×5=16711,1671﹣1×5=1666,166﹣6×5=136,到这里如果你仍然观察不出来,就继续…6×5=30,现在个位×5=30>剩下的13,就用大数减去小数,30﹣13=17,17÷17=1;所以1675282能被17整除.(1)请用上述方法判断7242和2098754 是否是“灵动数”,并说明理由;(2)已知一个四位整数可表示为,其中个位上的数字为n,十位上的数字为m,0≤m≤9,0≤n≤9且m,n为整数.若这个数能被51整除,请求出这个数.【考点】因式分解的应用.【分析】(1)根据“灵动数”的特征,列出算式求解即可;(2)先求出51×52<2700,51×55>2800,根据整数的定义求出51×53,51×54的积,从而求解.【解答】解:(1)724﹣2×5=714,71﹣4×5=51,51÷17=3,所以7242能被17整除,是“灵动数”;209875﹣4×5=209855,20985﹣5×5=20960,2096﹣0×5=2096,209﹣6×5=179,179÷17=10…9,所以209875不能被17整除,不是“灵动数”;(2)∵51×52<2700,51×55>2800,51×53=2703,51×54=2754,∴这个数是2703或2754.五、解答题:(本大题共2个小题,每小题12分,共24分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.25.如图,在等腰直角△ABC中,∠ACB=90°,CA=CB,CD为斜边AB上的中线.(1)如图1,AE平分∠CAB交BC于E,交CD于F,若DF=2,求AC的长;(2)将图1中的△ADC绕点D顺时针旋转一定角度得到△ADN,如图2,P,Q 分别为线段AN,BC的中点,连接AC,BN,PQ,求证:BN=PQ;。

数学九年级上册试卷【含答案】

数学九年级上册试卷【含答案】

数学九年级上册试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若 a > b,则 -a 与 -b 的大小关系是()A. -a > -bB. -a < -bC. -a = -bD. 无法确定2. 下列函数中,奇函数是()A. y = x^2B. y = x^3C. y = |x|D. y = sin(x)3. 已知三角形ABC中,∠A = 30°,∠B = 60°,则∠C的度数是()A. 30°B. 60°C. 90°D. 120°4. 若一个正方形的边长为a,则其面积为()A. aB. a^2C. 2aD. 4a5. 下列数中,无理数是()A. √9B. √16C. √3D. π二、判断题(每题1分,共5分)1. 任何数乘以0都等于0。

()2. 一元二次方程的解一定是两个实数根。

()3. 对角线相等的平行四边形一定是矩形。

()4. 负数的偶数次幂是正数。

()5. 直角三角形的两个锐角互余。

()三、填空题(每题1分,共5分)1. 若 a = 3,b = -2,则 a + b = _____。

2. 函数 y = 2x + 1 的图像是一条______。

3. 若sin(α) = 1/2,则α 的一个可能值是______°。

4. 一个圆的半径为 r,则其直径为______。

5. 若一个等差数列的首项为 a1,公差为 d,则第 n 项 an =______。

四、简答题(每题2分,共10分)1. 解释什么是二次函数,并给出一个例子。

2. 什么是相似三角形?相似三角形的性质有哪些?3. 什么是绝对值?如何计算一个数的绝对值?4. 解释什么是等差数列,并给出一个例子。

5. 什么是勾股定理?请简要说明。

五、应用题(每题2分,共10分)1. 已知一个等腰三角形的底边长为10cm,腰长为13cm,求这个三角形的面积。

数学九年级上册试卷【含答案】

数学九年级上册试卷【含答案】

数学九年级上册试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 如果一个数的平方等于16,那么这个数是()A. 2B. 4C. -4D. 2或-42. 下列函数中,哪一个是一次函数?()A. y = 2x^2B. y = 3x + 1C. y = x^3D. y = √x3. 在直角坐标系中,点(3, -4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 下列哪个式子是二次方程?()A. 2x + 3 = 5B. x^2 + 2x + 1 = 0C. 3x 4 = 2x + 1D. x^3 + 2x = 05. 如果一个三角形的两边分别是8cm和15cm,那么第三边的长度可能是()A. 7cmB. 17cmC. 23cmD. 24cm二、判断题(每题1分,共5分)1. 两个负数相乘的结果是正数。

()2. 一元二次方程的解一定是实数。

()3. 在等腰三角形中,底角相等。

()4. 互为相反数的两个数的和一定是0。

()5. 任何数乘以0都等于0。

()三、填空题(每题1分,共5分)1. 如果一个数的立方等于64,那么这个数是______。

2. 一元一次方程3x 5 = 2的解是______。

3. 在直角坐标系中,点(0, -2)位于______轴上。

4. 两个质数的乘积是合数。

()5. 如果一个三角形的两边分别是6cm和8cm,那么第三边的长度不可能是______cm。

四、简答题(每题2分,共10分)1. 解释什么是绝对值,并给出一个例子。

2. 什么是平行线?在直角坐标系中,如何判断两条线是否平行?3. 简述二次方程的求根公式。

4. 什么是等边三角形?等边三角形的特征是什么?5. 解释什么是函数,并给出一个一次函数的例子。

五、应用题(每题2分,共10分)1. 一个长方形的周长是26cm,长是8cm,求宽。

2. 如果一个数的平方加上这个数等于12,求这个数。

3. 在直角坐标系中,点A(2, 3)和点B(4, 7)之间的距离是多少?4. 解方程:2x 5 = 3x + 2。

2024年北京朝阳区初三九年级上学期期末数学试题和答案

2024年北京朝阳区初三九年级上学期期末数学试题和答案

张卡片,除所标注文字不同外无其他差别.其中,写有“珍稀濒危植.随机摸出一张卡片写有“珍的扇形作圆锥的侧面,记扇形的半径为R,所在一定范围内变化时,l与S都随R的变第12题图第14题图试题13.某科技公司开展技术研发,在相同条件下,对运用新技术生产的一批产品的合格率进行检测,下表是检测过程中的一组统计数据:估计这批产品合格的产品的概率为.14.如图,AB 是半圆O 的直径,将半圆O 绕点A 逆时针旋转30°,点B 的对应点为B ',连接A B ',若AB =8,则图中阴影部分的面积是_______.15.对于向上抛的物体,在没有空气阻力的条件下,上升高度h ,初速度v ,抛出后所经历的时间t ,这三个量之间有如下关系:221gt vt h -=(其中 g 是重力加速度,g 取10m/s 2).将一物体以v=21m/s 的初速度v 向上抛,当物体处在离抛出点18m 高的地方时,t 的值为 .16.已知函数y 1=kx +4k -2(k 是常数,k ≠0),y 2=ax 2+4ax -5a (a 是常数,a ≠0),在同一平面直角坐标系中,若无论k 为何值,函数y 1和y 2的图象总有公共点,则a 的取值范围是_______.三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.解方程x 2-1 =6x .18.关于x 的一元二次方程x 2-(m +4)x +3(m +1)=0 .(1)求证:该方程总有两个实数根;(2)若该方程有一根小于0,求m 的取值范围.抽取的产品数n 5001000150020002500300035004000合格的产品数m 476967143119262395288333673836合格的产品频率nm0.9520.9670.9540.9630.9580.9610.9620.959图2图3图1图1 图2试题北京市朝阳区2023~2024学年度第一学期期末检测九年级数学试卷参考答案及评分标准(选用)2024.1一、选择题(共16分,每题2分)题号12345678答案DABCACAC二、填空题(共16分,每题2分)三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分)17.解:方程化为x 2 -6x =1.x 2 -6x+9 =10.1032=-)(x .103±=-x .1031+=x ,1032-=x .18.(1)证明:依题意,得=[-(m +4)]2-4×3(m +1) =(m -2)2.∵(m -2)2≥0,∴0≥∆∴该方程总有两个实数根.(2)解:解方程,得x =.∴x 1= m +1,x 2=3.依题意,得m +1<0.∴m <-1.19.解:(1)根据题意,设该二次函数的解析式为 y 2=a (x -1)2+4.当x =0时,y 2 =3∴a =-1.∴y 2=-x 2+2x +3.题号9101112答案x 1=3,x 2=-3相切(1,3)140题号13141516答案答案不唯一,如0.9593438+π1.2或3a <0或a ≥52线段垂直平分线上的点与这条线段两个端点的距离相等.三角形的外角等于与它不相邻的两个内角的和.由题意可知,抛物线顶点C ),(9254.设抛物线对应的函数解析式)4(2+-=x a y试题26. 解:(1)由题意知,a +b +c = 9a +3b +c .∴b = -4a .∴22=-=a b t . (2)∵a >0,∴当x ≥t 时,y 随x 的增大而增大;当x ≤t 时,y 随x 的增大而减小.设抛物线上的四个点的坐标为A (t -1,m A ) ,B (t ,m B ),C (2,n C ),D (3,n D ).点A 关于对称轴x =t 的对称点为A'(t +1,m A )∵抛物线开口向上,点B 是抛物线顶点,∴m A >m B .ⅰ 当t ≤1时,n C < n D∴t +1≤2.∴m A ≤n C ,∴不存在m >n ,不符合题意.ⅱ 当1<t ≤2时,n C < n D∴2<t +1≤3.∴m A >n C .∴存在m >n ,符合题意.ⅲ当2<t ≤3时,∴n 的最小值为m B .∵m A >m B .. ∴存在m >n ,符合题意.ⅳ 当3<t <4时,n D <n C .∴2<t -1<3.∴m A >n D .∴存在m >n ,符合题意.ⅴ 当t ≥4时,n D <n C .∴t -1≥3.∴m A ≤n D ,∴不存在m >n ,不符合题意.综上所述,t 的取值范围是1<t <4.)解:补全图1,如图.证明:延长AF到点G,使得GF=AF,连接,连接GE并延长,与AB的延长。

九年级上册数学试卷附答案

九年级上册数学试卷附答案

九年级上册数学试卷附答案题目一:选择题1. 设集合A={x | 5 ≤ x ≤ 10},则A中元素的个数等于()A. 4B. 5C. 6D. 7答案:C. 62. 下列等价变形是()A. 1.6千克=1600克B. 5千米=500米C. 9百=900D. 1/2小时=30分钟答案:D. 1/2小时=30分钟3. 平方根的定义域一定是()A. 自然数B. 整数C. 有理数D. 实数答案:D. 实数4. 设AB的长度为15厘米,AC的长度是AB长度的3倍,BD的长度是AB长度的2倍,则BD的长度是()厘米。

A. 15B. 30C. 45D. 60答案:B. 305. 已知a,b,c都是非零实数,且abc=1,则下列说法正确的是()A. a+b+c>0B. a+b+c<0C. a+b+c=1D. a+b+c=-1答案:B. a+b+c<0题目二:填空题1. 在 x + 3=7 的两边同时减去3,可得x=______。

答案:42. 如果直线l垂直于直线m,则直线m与直线l相交时的夹角为______度。

答案:903. 下列各数中,是整数,但不是自然数的是______。

答案:04. 如果二次方程 x^2+bx+12=0 的根为2和-3,则b的值为______。

答案:15. 设集合A={x | x为偶数},则A的元素个数是______。

答案:无穷多个题目三:计算题1. 计算:2.3 * (4.5 + 6.7)答案:33.042. 计算:(7 - 4) *3.8答案:11.43. 计算:(2^3 ÷ 4) + (√16 - 2)答案:54. 计算:18 ÷ (9 - 3) + 4 × 2答案:125. 计算:(2^3 + 4 × 5) ÷ 3答案:10题目四:解答题1. 某商品原价为150元,现进行8折优惠,请计算打完折后的价格是多少元?答案:120元2. 在一组数据中,平均数为45,如果将其中一个数减少10,则平均数变为43,请计算原来的那个数是多少?答案:553. 如图所示,矩形ABCD中,AB=15cm,BC=3cm,通过顶点C和边AB做垂线CE,垂足为E。

2024-2025学年湖北省部分学校九年级(上)第一次月考数学试卷(含解析)

2024-2025学年湖北省部分学校九年级(上)第一次月考数学试卷(含解析)

2024-2025学年湖北省部分学校九年级(上)第一次月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.一元二次方程4x2+x−3=0中一次项系数、常数项分别是( )A. 2,−3B. 0,−3C. 1,−3D. 1,02.解方程(x+1)2=3(1+x)的最佳方法是( )A. 直接开平方法B. 配方法C. 公式法D. 因式分解法3.抛物线y=−3x2+2x−1与y轴的交点为( )A. (0,1)B. (0,−1)C. (−1,0)D. (1,0)4.若关于x的一元二次方程(k−1)x2+x+1=0有实数根,则k的取值范围是( )A. k≥54B. k>54C. k>54且k≠1 D. k≤54且k≠15.若关于x的方程x2−kx−3=0的一个根是x=3,则k的值是( )A. −2B. 2C. −12D. 126.关于x的方程|x2−2x−3|=a有且仅有两个实数根,则实数a的取值范围是( )A. a=0B. a=0或a=4C. a>4D. a=0或a>47.在手拉手学校联谊活动中,参加活动的每个同学都要给其他同学发一条励志短信,总共发了110条,设参加活动的同学有x个,根据题意,下面列出的方程正确的是( )A. 12x(x+1)=110 B. 12x(x−1)=110 C. x(x+1)=110 D. x(x−1)=1108.已知函数y=ax2+bx+c的图象如图,那么关于x的方程ax2+bx+c+2=0的根的情况是( )A. 无实数根B. 有两个相等实数根C. 有两个同号不等实数根D. 有两个异号实数根9.二次函数y=ax2+bx+c,若ab<0,a−b2>0,点A(x1,y1),B(x2,y2)在该二次函数的图象上,其中x1<x2,x1+x2=0,则( )A. y1=−y2B. y1>y2C. y1<y2D. y1、y2的大小无法确定10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc<0;②b>a+c;③2a−b=0;④b2−4ac<0.其中正确的结论个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题:本题共5小题,每小题3分,共15分。

数学九年级上试卷

数学九年级上试卷

数学九年级上试卷一、选择题(每题3分,共30分)1. 一元二次方程x^2-2x = 0的根是()A. x_1=0,x_2=-2B. x_1=1,x_2=2C. x_1=1,x_2=-2D. x_1=0,x_2=22. 二次函数y = x^2+2x - 3的顶点坐标是()A. (-1,-4)B. (1,-4)C. (-1,-2)D. (1,-2)3. 下列图形中,既是轴对称图形又是中心对称图形的是()A. 等边三角形。

B. 平行四边形。

C. 正五边形。

D. 圆。

4. 关于x的一元二次方程(k - 1)x^2+2x - 2 = 0有两个不相等的实数根,则k的取值范围是()A. k>(1)/(2)B. k≥slant(1)/(2)C. k>(1)/(2)且k≠1D. k≥slant(1)/(2)且k≠15. 已知二次函数y = ax^2+bx + c(a≠0)的图象如图所示,对称轴为直线x = 1,下列结论中正确的是()(此处可插入一个二次函数图象,由于无法实际插入,考试时可在试卷中给出)A. ac>0B. 当x>1时,y随x的增大而增大。

C. 2a + b = 0D. a - b + c = 06. 把抛物线y=-x^2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的表达式为()A. y =-(x - 1)^2+3B. y =-(x + 1)^2+3C. y =-(x - 1)^2-3D. y =-(x + 1)^2-37. 若关于x的方程x^2-5x + k = 0的一个根是0,则另一个根是()A. - 5.B. 5.C. 0.D. -2.8. 一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两张卡片,分别写有数字2,3,现随机从口袋里取出一张卡片,求这张卡片与口袋外的两张卡片上的数作为三角形三边的长,能构成三角形的概率是()A. (1)/(4)B. (1)/(2)C. (3)/(4)D. 1.9. 在同一坐标系中,一次函数y = ax + c和二次函数y = ax^2+c的图象大致为()(此处可插入四个选项对应的图象,由于无法实际插入,考试时可在试卷中给出)10. 对于二次函数y = mx^2-2mx - 3m,以下说法不正确的是()A. 图象与y轴的交点坐标为(0,-3m)B. 图象的对称轴在y轴的右侧。

数学月考9年级上册试卷【含答案】

数学月考9年级上册试卷【含答案】

数学月考9年级上册试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x² 4x + 3,则f(2)的值为:A. 1B. 2C. 3D. 42. 在三角形ABC中,若∠A = 90°,AB = 3,AC = 4,则BC的长度为:A. 5B. 6C. 7D. 83. 下列哪个数是无理数?A. √9B. √16C. √25D. √264. 若sinθ = 1/2,且θ是锐角,则cosθ的值为:A. √3/2B. √2/2C. 1/2D. 1/√25. 二项式展开式(a + b)⁵的系数和为:A. 1B. 2C. 3D. 4二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。

()2. 一元二次方程ax² + bx + c = 0(a ≠ 0)的判别式Δ = b² 4ac。

()3. 若一组数据的方差为0,则这组数据中的每个数都相等。

()4. 在平面直角坐标系中,点(3, -4)在第四象限。

()5. 两个函数若它们的定义域和值域都相同,则这两个函数是同一函数。

()三、填空题(每题1分,共5分)1. 若函数f(x) = 2x + 3,则f(-1) = _______。

2. 若一组数据的平均数为10,则这组数据的总和为_______。

3. 在直角坐标系中,点(2, 3)关于y轴的对称点坐标为_______。

4. 若sinθ = 3/5,且θ在第二象限,则cosθ = _______。

5. 若一个等差数列的首项为3,公差为2,则该数列的第5项为_______。

四、简答题(每题2分,共10分)1. 解释什么是函数的单调性。

2. 简述勾股定理的内容。

3. 什么是绝对值?如何计算一个数的绝对值?4. 解释直角坐标系中,第一象限的特点。

5. 简述等差数列的通项公式。

五、应用题(每题2分,共10分)1. 解一元二次方程x² 5x + 6 = 0。

数学九年级上册全册试卷【含答案】

数学九年级上册全册试卷【含答案】

数学九年级上册全册试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若 a > b,则 -a 与 -b 的大小关系是()A. -a > -bB. -a < -bC. -a = -bD. 无法确定2. 下列函数中,奇函数是()A. y = x^2B. y = x^3C. y = |x|D. y = sin(x)3. 二项式 (a+b)^10 展开后的项数为()A. 10B. 11C. 20D. 214. 若直线 y = 2x + 3 与 x 轴相交于点 A,与 y 轴相交于点 B,则三角形 OAB(O 为坐标原点)的面积是()A. 3B. 4.5C. 6D. 95. 在等差数列 {an} 中,若 a1 = 3,d = 2,则 a10 = ()A. 19B. 20C. 21D. 22二、判断题(每题1分,共5分)6. 若两个实数的和为0,则这两个实数互为相反数。

()7. 任何两个奇函数的乘积一定是偶函数。

()8. 一元二次方程的解一定为实数。

()9. 在直角坐标系中,所有平行于 y 轴的直线都是 y 的函数。

()10. 等差数列的公差可以为0。

()三、填空题(每题1分,共5分)11. 若 |x| = 5,则 x = _______。

12. 二项式系数 C(10, 2) 的值为 _______。

13. 函数 y = 3x + 4 的图像是一条 _______。

14. 在等差数列 {an} 中,若 a3 = 8,a7 = 20,则公差 d = _______。

15. 若一个正方形的边长为 a,则其面积为 _______。

四、简答题(每题2分,共10分)16. 简述等差数列的定义及其通项公式。

17. 解释一元二次方程的判别式及其意义。

18. 描述直角坐标系中,一次函数图像的特点。

19. 什么是奇函数和偶函数?给出一个例子。

20. 解释二次函数的顶点公式及其应用。

五、应用题(每题2分,共10分)21. 解一元二次方程 x^2 5x + 6 = 0。

人教版九年级上册《数学》期末考试卷及答案【可打印】

人教版九年级上册《数学》期末考试卷及答案【可打印】

人教版九年级上册《数学》期末考试卷及答案【可打印】一、选择题(每题1分,共5分)1. 若x^2 3x + 2 = 0,则x的值为多少?A. 1B. 2C. 1D. 22. 若sin(θ) = 1/2,则θ的值为多少?A. 30°B. 45°C. 60°D. 90°3. 若一个正方形的边长为4cm,则其面积为多少?A. 16cm^2B. 8cm^2C. 12cm^2D. 6cm^24. 若一个长方体的长、宽、高分别为2cm、3cm、4cm,则其体积为多少?A. 24cm^3B. 12cm^3C. 6cm^3D. 8cm^35. 若一个等腰三角形的底边长为6cm,腰长为5cm,则其面积为多少?A. 15cm^2B. 10cm^2C. 12cm^2D. 8cm^2二、判断题(每题1分,共5分)1. 一个等边三角形的三个内角都是60°。

()2. 一个正方形的对角线互相垂直且平分。

()3. 一个圆的半径是直径的一半。

()4. 一个长方体的对角线互相垂直。

()5. 一个等腰三角形的底角等于顶角。

()三、填空题(每题1分,共5分)1. 一个等边三角形的每个内角是______度。

2. 一个正方形的对角线长是边长的______倍。

3. 一个圆的周长是直径的______倍。

4. 一个长方体的体积是长、宽、高的______。

5. 一个等腰三角形的底边长是腰长的______倍。

四、简答题(每题2分,共10分)1. 简述等边三角形的性质。

2. 简述正方形的性质。

3. 简述圆的性质。

4. 简述长方体的性质。

5. 简述等腰三角形的性质。

五、应用题(每题2分,共10分)1. 一个等边三角形的边长为10cm,求其周长。

2. 一个正方形的边长为8cm,求其对角线长。

3. 一个圆的直径为14cm,求其周长。

4. 一个长方体的长、宽、高分别为6cm、4cm、3cm,求其体积。

5. 一个等腰三角形的底边长为10cm,腰长为8cm,求其周长。

2024-2025学年辽宁省抚顺市新抚区九年级(上)期初数学试卷(含答案)

2024-2025学年辽宁省抚顺市新抚区九年级(上)期初数学试卷(含答案)

2024-2025学年辽宁省抚顺市新抚区九年级(上)期初数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列式子中,属于最简二次根式的是( )C. 0.3D. 7A. 12B. 232.下列各组数不能作为直角三角形三边长的是( )A. 3,4,5B. 3,4,5C. 0.3,0.4,0.5D. 30,40,503.一元二次方程x2−2x+1=0的根的情况是( )A. 无实数根B. 有两个实数根C. 有两个不相等的实数根D. 无法确定4.下列说法中不正确的是( )A. 对角线垂直的平行四边形是菱形B. 对角线相等的平行四边形是矩形C. 菱形的面积等于对角线乘积的一半D. 对角线互相垂直平分的四边形是正方形5.把抛物线y=−4x2向左平移2个单位,再向下平移3个单位,得到的抛物线的解析式为( )A. y=−4(x+2)2−3B. y=−4(x−2)2−3C. y=−4(x−3)2+2D. y=−4(x−3)2−26.已知二次函数y=−x2+1的图象上有三点(−3,y1),(−1,y2),(2,y3),则y1,y2,y3的大小关系是( )A. y1<y2<y3B. y1<y3<y2C. y3<y1<y2D. y3<y2<y17.某同学对数据26,36,36,46,5■,52进行统计分析发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是( )A. 平均数B. 中位数C. 方差D. 众数8.在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为( )A. B. C. D.9.如图,边长为2的正方形ABCD的对角线AC与BD交于点O,将正方形ABCD沿直线DF折叠,点C落在对角线BD上的点E处,折痕DF交AC于点M,则OM=( )A. 12B. 22C. 3−1D. 2−110.甲、乙两位同学周末相约骑自行车去游玩,沿同一路线从A地出发前往B地,甲、乙分别以不同的速度匀速骑行,甲比乙早出发5分钟.甲骑行20分钟后,乙以原速的1.5倍继续骑行,经过一段时间,乙先到达B地,甲一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:m)与甲骑行的时间x(单位:min)之间的关系如图所示,则下列说法中错误的是( )A. 甲的骑行速度是250m/minB. A,B两地的总路程为22.5kmC. 乙出发60min后追上甲D. 甲比乙晚5min到达B地二、填空题:本题共5小题,每小题3分,共15分。

2023-2024学年江苏省南通市如皋初级中学九年级(上)月考数学试卷(10月份)(含解析)

2023-2024学年江苏省南通市如皋初级中学九年级(上)月考数学试卷(10月份)(含解析)

2023-2024学年江苏省南通市如皋初级中学九年级(上)月考数学试卷(10月份)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.抛物线y=−x2+3x−2与y轴的交点坐标是( )A. (−2,0)B. (0,2)C. (1,2)D. (0,−2)2.抛物线y=2(x+2)2−14的顶点坐标为( )A. (2,14)B. (−2,14)C. (2,−14)D. (−2,−14)3.若将抛物线y=5x2先向右平移2个单位,再向上平移1个单位,得到的新抛物线的表达式为( )A. y=5(x−2)2+1B. y=5(x+2)2+1C. y=5(x−2)2−1D. y=5(x+2)2−14.已知抛物线y=x2+x−1经过点P(m,5),则代数式m2+m+2023的值为( )A. 2026B. 2027C. 2028D. 20295.已知二次函数y=−(x+ℎ)2,当x<−1时,y随着x的增大而增大,当x>−1时,y随x的增大而减小,当x=3时,y的值为( )A. −16B. −1C. −9D. 06.对于二次函数y=−2(x+3)2的图象,下列说法正确的是( )A. 开口向上B. 对称轴是直线x=−3C. 当x>−4时,y随x的增大而减小D. 顶点坐标为(−2,−3)7.如图,从某建筑物10m高的窗口A处用水管向外喷水,喷出的水成抛物线状(抛物线所在平面与墙面垂直).如果抛物线的最高点M距离墙1m,距离地面40m,则水流落地点B离墙的距离OB是( )3A. 2mB. 3mC. 4mD. 5m8.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc>0;②b<a+c;③当x<0时,y随x的增大而增大;④2c<3b;⑤a+b>m(am+b)(其中m≠1)其中正确的个数是( )A. 1B. 2C. 3D. 49.已知实数a、b满足a−b2=2,则代数式a2−3b2+a−9的最小值是( )A. −2B. −3C. −4D. −910.如图,在平面直角坐标系中,抛物线y=3x2−23x的顶点为A点,且与x轴的正2半轴交于点B,P点是该抛物线对称轴上的一点,则OP+1AP的最小值为( )2A. 3B. 23C. 3+232D. 3+234二、填空题:本题共8小题,共30分。

九年级数学上册测试题(含答案)

九年级数学上册测试题(含答案)

九年级数学上册测试卷满分100分 用时90分钟 家长签名:班级: 姓名: 座号: 评分:一、选择题( 10×3′=30′)1.一个等腰三角形的顶角是40°,则它的底角是( )A .40°B .50°C .60°D .70°2.下列命题中,不正确...的是( ) A .对角线相等的平行四边形是矩形. B .有一个角为60°的等腰三角形是等边三角形.C .直角三角形斜边上的高等于斜边的一半.D .正方形的两条对角线相等且互相垂直平分.3.下列函数中,属于反比例函数的是( )A .2x y =B .12y x =C .23y x =+D .223y x =+4.方程 x (x +3)= 0的根是( )A .x =0B .x =-3C .x 1=0,x 2 =3D .x 1=0,x 2 =-35.如图所示,圆柱体的主视图是( )6. 下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是( )A .球B .圆柱C .三棱柱D .圆锥7.如图,一飞镖游戏板,其中每个小正方形的大小相等,则随意投掷一个飞镖,击中黑色区域的概率是( )A .38B .12C .14D .138.如图,菱形ABCD 的对角线交于点O ,AC = 8cm ,BD = 6cm ,则菱形的高为( )A .485 cmB .245cm C .125 cm D.105cm A B CD9.若反比例函数1y x=-的图象经过点A (2,m ),则m 的值是( ) A .-2 B .2 C . 12- D . 1210.函数xk y =的图象经过(1,-1),则函数2y kx =+的图象是( )二、填空题( 6×4′=24′)11.在一个有10万人的城市,随机调查了2000人,其中有250人看中央电视台的早间新闻——朝闻天下.在该城市随便问一个人,他看中央电视台朝闻天下的概率大约是 .12.如果43=y x ,那么=-yy x 13.若反比例函数x k y =的图象经过点(-3, 4),则k= ,则此函数在每一个象限内y 随x 的增大而 .14.在△ABC 中,D 、E 、F 分别是AB 、BC 、AC 的中点,若△ABC 的周长为30 cm ,则△DFE 的周长为 cm .15.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率是 。

九年级上册数学全部试卷

九年级上册数学全部试卷

九年级上册数学全部试卷专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()A. aB. a/2C. √2aD. 2a2. 下列函数中,奇函数是()A. y = x^2B. y = |x|C. y = x^3D. y = sin(x)3. 已知三角形ABC中,AB=AC,∠BAC=40°,则∠ABC的度数为()A. 40°B. 70°C. 100°D. 140°4. 一个等差数列的前三项分别是2,5,8,则它的第10项是()A. 29B. 30C. 31D. 325. 若一个圆的半径为r,则它的面积是()A. 2πrB. πr^2C. 2r^2D. r^3二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。

()2. 在直角坐标系中,点(3, 4)到原点的距离是5。

()3. 一个等腰三角形的底角相等。

()4. 两个负数相乘的结果是正数。

()5. 任何数乘以0都等于0。

()三、填空题(每题1分,共5分)1. 平方差公式:a^2 b^2 = ()。

2. 一个正六边形的内角和为()度。

3. 若一个数的平方是16,则这个数是()。

4. 函数y = 3x + 2的图像是一条()。

5. 若一个正方形的对角线长为10cm,则它的边长是()cm。

四、简答题(每题2分,共10分)1. 解释什么是等差数列?2. 如何计算一个三角形的面积?3. 什么是平行四边形的对角线?4. 请解释函数的单调性。

5. 什么是直角坐标系?五、应用题(每题2分,共10分)1. 一个长方形的长是10cm,宽是5cm,求它的面积。

2. 一个等差数列的前三项分别是2,5,8,求它的第10项。

3. 一个圆的半径是7cm,求它的面积。

4. 若一个数的平方是25,求这个数。

5. 计算sin(45°)的值。

六、分析题(每题5分,共10分)1. 证明:若一个数是偶数,则它的平方也是偶数。

九年级上册数学全部试卷【含答案】

九年级上册数学全部试卷【含答案】

九年级上册数学全部试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()A. a/2B. a√2C. 2aD. a²2. 下列函数中,哪一个不是正比例函数?()A. y = 3xB. y = x/2C. y = 5D. y = 2x + 13. 在直角坐标系中,点P(2, -3)关于x轴的对称点是()A. (2, 3)B. (-2, -3)C. (2, 3)D. (-2, 3)4. 若一个等差数列的首项为3,公差为2,则第10项是()A. 21B. 19C. 17D. 155. 下列哪个图形不是中心对称图形?()A. 正方形B. 圆C. 等边三角形D. 矩形二、判断题(每题1分,共5分)6. 平行四边形的对角线互相平分。

()7. 任何两个等边三角形都是相似的。

()8. 一元二次方程的解可以是两个不相等的实数根。

()9. 函数y = x² + 1的图像是一条直线。

()10. 对角线相等的平行四边形一定是矩形。

()三、填空题(每题1分,共5分)11. 若一个等边三角形的边长为6cm,则它的面积是_______ cm²。

12. 若函数y = kx + b的图像经过点(2, 5)和(4, 9),则k的值是 _______。

13. 在直角坐标系中,点A(1, 2)到原点的距离是 _______。

14. 一个等差数列的前5项和为35,公差为3,则首项是 _______。

15. 若一个圆的半径为r,则它的周长是 _______。

四、简答题(每题2分,共10分)16. 简述平行线的性质。

17. 解释一元二次方程的判别式及其意义。

18. 什么是相似三角形?给出一个判定相似三角形的方法。

19. 描述一次函数图像的特点。

20. 什么是圆的标准方程?如何从标准方程中找到圆心和半径?五、应用题(每题2分,共10分)21. 一个长方形的长是宽的两倍,若长方形的周长是30cm,求长方形的长和宽。

初三上册九年级数学试卷

初三上册九年级数学试卷

一、选择题(每题4分,共40分)1. 下列各数中,绝对值最小的是()A. -3B. 2C. -2D. 02. 若方程 2x - 5 = 3x + 1 的解为 x,则 x 的值为()A. -6B. -4C. 2D. 13. 在直角坐标系中,点 P(2,3)关于 y 轴的对称点坐标为()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)4. 若 a > b,则下列不等式中正确的是()A. a + 1 > b + 1B. a - 1 > b - 1C. a + 1 < b + 1D. a - 1 < b - 15. 已知三角形的三边长分别为 3、4、5,则这个三角形是()A. 等腰三角形B. 等边三角形C. 直角三角形D. 梯形6. 下列函数中,y = kx 是一次函数的是()A. y = 2x + 3B. y = x^2 + 2x + 1C. y = 3x - 4D. y = √x7. 在△ABC中,∠A = 30°,∠B = 45°,则∠C 的度数为()A. 75°B. 90°C. 105°D. 120°8. 若 a、b、c 是等差数列的前三项,且 a + b + c = 18,a + c = 12,则公差d 为()A. 2B. 3C. 4D. 59. 已知一次函数 y = kx + b 的图象经过点(1,2),则该函数的斜率 k 和截距b 分别为()A. k = 2,b = 1B. k = 1,b = 2C. k = 2,b = 0D. k = 1,b = 110. 若sin α = 1/2,则α 的值为()A. 30°B. 45°C. 60°D. 90°二、填空题(每题4分,共40分)11. 若 a = 3,b = -2,则 a - b 的值为 _______。

九年级上册数学试卷及答案【含答案】

九年级上册数学试卷及答案【含答案】

九年级上册数学试卷及答案【含答案】专业课原理概述部分一、选择题1. 下列哪个数是素数?()A. 21B. 37C. 39D. 272. 一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的周长是多少cm?()A. 16cmB. 26cmC. 28cmD. 36cm3. 下列哪个式子是多项式?()A. 2x + 3B. 3x^2 5x + 2C. √x + 1D. 1/x + 24. 一个正方形的边长为6cm,那么它的面积是多少cm²?()A. 12cm²B. 24cm²C. 36cm²D. 48cm²5. 下列哪个数是无理数?()A. √9B. √16C. √3D. √1二、判断题1. 两个等腰三角形的底边长相等,那么这两个三角形全等。

()2. 一个数的平方根有两个,它们互为相反数。

()3. 两个负数相乘,结果一定是正数。

()4. 任何数乘以0都等于0。

()5. 两个正方形的面积相等,那么它们的边长也相等。

()三、填空题1. 一个等边三角形的边长为6cm,那么它的周长是____cm。

2. 一个数的平方是64,那么这个数是____。

3. 两个数的和为9,它们的差为3,那么这两个数分别是____和____。

4. 一个长方形的长是8cm,宽是4cm,那么它的面积是____cm²。

5. 下列各数中,____是合数。

四、简答题1. 解释什么是素数。

2. 解释什么是等腰三角形。

3. 解释什么是多项式。

4. 解释什么是无理数。

5. 解释什么是长方形的面积。

五、应用题1. 一个长方形的长是10cm,宽是5cm,求它的面积。

2. 一个等腰三角形的底边长为8cm,腰长为10cm,求这个三角形的面积。

3. 解方程:2x + 3 = 11。

4. 计算下列各式的值:√9,√16,√25。

5. 判断下列各数中,哪些是素数:23,39,47,57。

六、分析题1. 两个等腰三角形的底边长相等,那么这两个三角形是否全等?为什么?2. 两个正方形的面积相等,那么它们的边长是否相等?为什么?七、实践操作题1. 画出一个边长为6cm的正方形,并计算它的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020—2021学年度第一学期期中调研考试
九年级数学试卷
洪山区教育科学研究院命制 2020.11.12 本试卷共6页,24题.全卷满分120分,考试用时120分钟.
第Ⅰ卷(选择题共30分)
一、选择题(共10小题,每小题3分,共30分)
下列各题中有且只有一个正确答案,请在答题卡
...上将正确答案的标号涂黑.
1.一元二次方程2x²+1=6x化成一般形式后,一次项和常数项分别是()A.2x²、1 B.2、6 C.-6x、1 D.-6、1
2.下列食品图案中,是中心对称图形的是()
A.B.C.D.
3.解方程x²-6x+3=0,可用配方法将其变形为()
A. (x+3)²=3
B. (x-6)²=3
C.(x-3)²=3
D. (x-3)²=6
4.平面直角坐标系中,点(-2,9)关于原点对称的点坐标是( )
A. (-9,2)
B. (2,-9)
C. (2,9)
D. (-2,-9)
5.关于x的一元二次方程2x²+5x-1=0根的说法,正确的是( )
A. 方程没有实数根
B. 方程有两个相等实数根
C. 方程有两个不相等实数根
D. 方程有一个实数根
6.将抛物线y=2(x-1)²+3向右移1单位,上移2单位所得到的新抛物线解析式为( )
A. y=2(x-2)²-5
B. y=2x²+4
C. y=2(x-3)²+1
D. y=2(x-2)²+5
1 / 6
7.二次函数y=-x²-2x+c在-3≤x≤2的范围内有最大值为-5,则c的值是( )
A. -2
B. 3
C. -3
D. -6
)
8.抛物线y=ax²+bx+c(a>0)与直线y=bx+c在同一坐标系中的大致图像可能为(
A. B. C. D.
9.如图,武汉晴川桥可以近似地看作半径为250m的圆弧,桥拱和路面之间用数根钢索垂直相连,其正下方的路面AB长度为300m,那么这些钢索中最长的一根为( )
A. 50m
B. 45m
C. 40m
D. 60m
10.如图,正方形ABCD中,∠EAF=45°,有以下四个结论:
①BE+DF=EF
②BM²+DN²=MN²
③若AB=3,BE=1,则BN=3
④若CE=2,则DN =
其中正确的个数为( )
A.1个
B.2个
C.3个
D.4个
第Ⅱ卷(非选择题共90分)
二、填空题(共6小题,每小题3分,共18分)
将答案直接写在答题卡
...指定的位置上.
2 / 6
11.若x=2是方程x²-mx+2=0的根,则m=________.
12.如图,△ABC是⊙O的内接三角形,∠C=45°,AB=6,则⊙O的半径为________.
第12题图第13题图
13.如图,已知A(4,0)、B(0,3),以点B为圆心,AB的长为半径画圆,交y轴正半轴于点C,则线段AC的长度等于________.
14.在平面直角坐标系中,以点(2,0)为旋转中心,将点(1,3)顺时针旋转90°所得到的点坐标为________.
15.已知抛物线y=a(x-h)²+k与x轴交于(-2,0)、(3,0),则关于x的一元二次方程:a(x+h+6)²+k=0的解为________.
16.已知关于x的二次函数y=ax²-4ax+3a²-6,当x<0时,y随x的增大而减小.并且,当-1≤x≤3时,y有最小值1.则a的值为________.
三、解答题(共8小题,共72分)
在答题卡
...指定的位置上写出必要的演算过程或证明过程.
17.(本题满分8分)
解方程:2x²-3x+1=0.
18.(本题满分8分)
如图为二次函数y=-x²-x+2的图像,试根据图像回
答下列问题:
(1)方程-x²-x+2=0的解为____________;
(2) 当y>0时,x的取值范围是____________;
(3) 当-3<x<0时,y的取值范围是____________.
3 / 6
19. (本题满分8分)
湖北省预计将于今年年底实现全省贫困人口全部脱贫.2018年,湖北省精准脱贫专项资金合计约30亿元,据扶贫办报告,2020年湖北省政府将合计拨款43.2亿元用于脱贫攻坚最后一战.根据以上信息,请你计算在2018~2020年期间,湖北省脱贫专项资金年平均增长率为多少?
20.(本题满分8分)
请用直尺按要求在网格中作图,并标明字母(辅助线可用虚线作出,以下作图请勿超出网格范围).
(1)作出平行四边形ABDC;
(2)以AC为边,作出正方形ACMN;
.
(3)作出一条同时平分平行四边形ABDC与正方形ACMN面积的直线
21.(本题满分8分)
如图,△ABC为⊙O的内接三角形,∠ACB=60°,弦CD平分∠ADB.
(1)求证:△ABC为等边三角形;
(2)若BD=3,AD=5,过C点作BD的平行线交DA的延长线于点E,试求△CAE面积.
4 / 6
5 /
6
22.(本题满分10分)
某商场主营玩具销售,经市场调查发现,某种玩具的月销量y (件)是售价x (元/件)的一
次函数,该玩具的月销售总利润W =(售价-成本)×月销量,三者有如下数据:
售价x (元/件) 15 20 30 月销量y (件) 500 400 200 月销售总利润W (元) 2500
4000
4000
(1)试求y 关于x 的函数关系式(x 的取值范围不必写出);
(2)玩具的成本为_____元,当玩具售价x =_____元时,月销售总利润有最大值_____元;
(3)受市场波动原因,从本月起,该玩具成本上涨a 元/件(a >0),且物价局规定该玩具
售价最高不得超过25元/件.若月销量y 与售价x 仍满足(1)中的关系,预计本月总利润W 最高为3000元,请你求出a 的值.
23.(本题满分10分) 四边形ABCD 若满足∠A +∠C =180°,则我们称该四边形为“对角互补四边形”.
(1)如图1,四边形ABCD 为对角互补四边形,且满足∠BAD =90°,AB =AD ,求∠ACB
的度数.小云同学是这么做的:延长CB 至M ,使得BM =CD ,连AM ,可证明△CAD ≌ △MAB ,通过判断△MAC 的形状,可以得出结论. ①在图1中按要求完成作图,②△MAC 的形状为________,③∠ACB =________;
(2)如图2,四边形ABCD 为对角互补四边形,且满足∠BAD =60°,AB =AD ,试证明:
CA =CB +CD ;
(3)如图3,等腰△ABD 、等腰△CDE 的顶点分别为A 、C ,点B 在线段CE 上,且
6 / 6
∠BAD 与∠C 互补.请你判断∠DAE 与∠DBC 的数量关系并证明.
图1 图2 图3
24.(本题满分12分)
如图1,抛物线y =x ²+(m +1)x -(m +2)(其中m 为大于1-的常数)交坐标轴于A 、B 、
C 三点.
(1)当m =1时,
①直接写出A 、B 、C 的坐标A ________、B ________、C ________; ②点D 在抛物线上,且满足∠DAO =∠BCO ,试求D 点坐标;
(2) 如图2,点M 在抛物线上且位于x 轴下方,直线AM 、BM 分别交y 轴于P 、Q 两
点,MN ⊥y 轴于N .若
4
5
=OC OP ,试求OQ
ON 的值.
图1 图2。

相关文档
最新文档