关于位错的理论与思考
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于位错的理论与思考
任新凯
1,什么是位错
位错是晶体中最为常见的缺陷之一,它对晶体材料的各种性质都有程度不同的影响,很早就被人们关注和研究,有了比较成熟的理论和大量的实验研究成果。
晶体在结晶时受到杂质、温度变化或振动产生的应力作用,或由于晶体受到打击、切削、研磨等机械应力的作用,使晶体内部质点排列变形,原子行间相互滑移,而不再符合理想晶体的有秩序的排列,由此形成的缺陷称位错。
位错是原子的一种特殊组态,是一种具有特殊结构的晶格缺陷,因为它在一个方向上尺寸较长,所以被称为线状缺陷。
位错的假说是在30年代为了解释金属的塑性变形而提出来的,50年代得到证实。
位错的存在对晶体的生长、相变、扩散、形变、断裂、以及其他许多物理化学性质都有重要影响,了解位错的结构及性质,对研究和了解金属尤为重要,对了解陶瓷等多晶体中晶界的性质和烧结机理,也是不可缺少的。
最初为解释的塑性变形而提出的一种排列缺陷模型.晶体滑移时,已滑移部分与未滑移部分在滑移面上的分界,称为"位错",又可称为差排。
它是一种"线缺陷".基本型式有两种:滑移方向与位错线垂直的称为"刃型位错";滑移方向与位错线平行的称为"螺型位错".位错的存在已经为等观察所证实.实际晶体在生长,变形等过程中都会产生位错.它对晶体的塑性变形,相变,扩散,强度等都有很大影响.
刃型位错
设有一简单立方结构的晶体,在切应力的作用下发生局部滑移,发生局部滑移后晶体内在垂直方向出现了一个多余的半原子面,显然在晶格内产生了缺陷,这就是位错,这种位错在晶体中有一个刀刃状的多余半原子面,所以称为刃型位错。
位错线的上部邻近范围受到压应力,而下部邻近范围受到拉应力,离位错线较远处原子排列正常。
通常称晶体上半部多出原子面的位错为正刃型位错,用符号“┴”表示,反之为负刃型位错,用“┬”表示。
当然这种规定都是相对的。
螺型位错
又称螺旋位错。
一个晶体的某一部分相对于其余部分发生滑移,原子平面沿着一根轴线盘旋上升,每绕轴线一周,原子面上升一个晶面间距。
在中央轴线处即为一螺型位错。
围绕位错线原
子的位移矢量称为滑移矢量或伯格斯(Burgers)矢量,对于螺型位错,位错线平行于伯格斯矢量。
刃型位错与螺型位错的区别
(1)刃型位错具有一个额外的半原子面,而螺型位错无;
(2)刃型位错必须与滑移方向垂直,也垂直与滑移矢量;而螺型位错线与滑移矢量平行,且位错线的移动方向与晶体滑移方向互相垂直。
(3)刃型位错的滑移线不一定是直线,可以是折线或曲线;而螺位错的滑移线一定是直线。
(4)刃位错的滑移面只有一个,其不能在其他面上进行滑移;而螺位错的滑移面不是唯一的。
(5)刃位错周围的点阵发生弹性畸变,既有切应变,又有正应变;而螺位错只有切应变而无正应变
混合位错
如前所述,刃位错的伯氏矢量垂直于位错线的方向,螺位错的伯氏矢量平行于其位错线方向。
但实际材料中位错的伯氏矢量往往既非平行又非垂直于位错线方向,这些位错兼具了刃位错和螺位错的特征,称为混合位错。
2,位错的间接观测
若材料中的位错线与材料表面相交(俗称位错“露头”),则交点处附近由于位错应力场的存在,其化学稳定性将低于表面的其它部分。
若用酸性(如和的混合溶液)对这样的表面进行腐蚀,则位错“露头”处的腐蚀速度将远高于其它部分,可形成一个“腐蚀坑”。
再利用一些表面显微观察技术(如、等等)便可以观察到位错的“露头”位置。
若施加外力令材料发生一系列微小变形,则每次变形后某一特定位错都将处于不同的位置。
如果每次变形后都对材料表面进行腐蚀,则同一位错形成的一系列腐蚀坑将粗略地显示出位错运动的轨迹。
进行上述观测的前提是材料表面能加工到具有足够高的,或者说足够低的。
利用(Transmission Electron Microscope,简称TEM)可直接观察到材料中的位错。
TEM观察的第一步是将金属样品加工成束可以穿过的薄膜。
在没有位错存在的区域,电子通过等间距规则排列的各晶面时将可能发生,其衍射角、晶面间距及电子之间满足()。
而在位错存在的区域附近,晶格发生了畸变,因此衍射强度亦将随之变化,于是位错附近区域所成的像便会与周围区域形成反差,这就是用TEM观察位错的基本原理,因上述原因造成的衬度差称为衍射衬度。
用TEM观察位错时,放大倍数一般选在5万到30万倍之间,这远未达到TEM放大倍数的极限。
部分TEM还配有对试样进行在观察中原位加热/变形的装置,可以直接对位错的运动进行实时观察。
(,简称FIM)和()技术提供了放大倍数更高(一般在300万倍以上)的观测方法,可在原子尺度对材料表面的位错进行直接观测。
3,位错的增殖与滑移
位错源
材料中的位错密度会随着塑性形变的进行而增加,材料内部存在着位错的起源与增殖的机制,这些机制在外加应力的作用下将被激活,以提供增加的位错数。
人们已发现材料中存在以下三种位错的起源(成核)机制:均匀成核、晶界成核和界面成核,其中最后一种包括各种沉淀相、分散相或增强等等。
位错的增殖机制主要也有三种机制:(Frank-Read source)机制、双增殖机制,和增殖机制。
位错的滑移与晶体塑性
在以前,材料行为的微观机理一直是严重困扰材料科学家重大难题。
,()从理想完整晶体模型出发,假定材料发生塑性切变时,微观上对应着切变面两侧的两个最密排晶面(即相邻间距最大的晶面)发生整体同步滑移。
,(),()和()三位科学家几乎同时提出了塑性变形的位错机制理论,解决了上述理论预测与实际测试结果相矛盾的问题。
位错理论认为,之所以存在上述矛盾,是因为晶体的切变在微观上并非一侧相对于另一侧的整体刚性滑移,而是通过位错的运动来实现的。
一个位错从材料内部运动到了材料表面,就相当于其位错线扫过的区域整体沿着该位错伯格斯矢量方向滑移了一个单位距离(相邻两晶面间的距离)。
这样,随着位错不断地从材料内部发生并运动到表面,就可以提供连续塑性形变所需的晶面间滑移了。
与整体滑移所需的打断一个晶面上所有原子与相邻晶面原子的相比,位错滑移仅需打断位错线附近少数原子的键合,因此所需的外加剪应力将大大降低。
在对材料进行“冷加工”(一般指在低于Tm下对材料进行的机械加工,Tm 为材料的绝对温度)时,其内部的位错密度会因为位错的萌生与增殖机制的激活而升高。
随着不同位错的启动以及位错密度的增大,位错之间的相互交截的情况亦将增加,这将显著提高滑移的阻力,在行为上表现为材料“越变形越硬”的现象,该现象称为()或应变硬化(strain hardening)。
缠结的位错常能在塑性形变初始发生时的材料中找
到,缠结区边界往往比较模糊;在发生动态()过程后,不同的位错缠结区将分别演化成一个个独立的胞状结构,相邻胞状结构间一般有小于15°的晶体学取向差(小角晶界)。
由于位错的积累和相互阻挡所造成的应变硬化可以通过适当的热处理方法来消除,这种方法称为。
退火过程中金属内部发生的或等过程可以消除材料的内应力,甚至完全恢复材料变形前的性能。
刃位错的攀移
位错可以在包含了其伯格斯矢量和位错线的平面内滑移。
螺位错的伯氏矢量平行于位错线,因此它可以在位错线所在的任何平面内滑移。
而刃位错的伯氏矢量垂直于位错线,所以它只有一个滑移面。
但刃位错还有一种在垂直于其滑移面方向上的运动方式,这就是攀移,即构成刃位错的多余半原子面的伸长或缩短。
攀移的驱动力来自于晶格中空位的运动。
若一个空位移到了刃位错滑移面上与位错线相邻的位置上,则位错核心处的原子将有可能“跃迁”到空位处,造成半原子面(位错核心)向上移动一个原子间距,这一刃位错“吸收”空位的过程称为正攀移。
若反之,有原子填充到半原子面下方,造成位错核心向下移动一个原子间距,则称为负攀移。
由于正攀移导致了多余半原子面的退缩,所以将使晶体在垂直半原子面方向收缩;反之,负攀移将使晶体在垂直半原子面方向膨胀。
因此,在垂直半原子面方向施加的压会促使正攀移的发生,反之拉应力则会促使负攀移的发生。
这是攀移与滑移在力学影响上的主要差别,因为滑移是由剪应力而非正应力促成的。
位错的滑移与攀移另一处差异在于相关性。
温度的升高能大大增加位错攀移的。
相比而言,温度对滑移的影响则要小得多。
4,位错对金属材料性能的影响
首先,金属材料的强度与位错在材料受到外力的情况下如何运动有很大的关系。
如果位错运动受到的阻碍较小,则材料强度就会较高。
实际材料在发生塑性变形时,位错的运动是比较复杂的,位错之间相互反应、位错受到阻碍不断塞积、材料中的溶质原子、第二相等都会阻碍位错运动,从而使材料出现加工硬化。
因此,要想增加材料的强度就要通过诸如:细化晶粒(晶粒越细小晶界就越多,晶界对位错的运动具有很强的阻碍作用)、有序化合金、第二相强化、固溶强化等手段使金属的强度增加。
以上增加金属强度的根本原理就是想办法阻碍位错的运动。