对数概念及其运算

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数概念及其运算
知识点1对数
1.对数的定义
如果()1,0≠>a a a 的b 次幂等于N ,那么数b 叫做以a 为底N 的对数,记作,log b N a =其中a 叫做对数的底数,N 叫做真数。

在对数函数b N a =log 中,a 的取值范围是()1,0≠>a a 且,N 的取值范围是0>N
,b 的取值范围是R b ∈。

【注意】根据对数的定义可知
(1)零和负数没有对数,真数为正数,即0>N
(2)在对数中必须强调底数0>a 且1≠a
2.常用对数
(1)定义:以10为底的对数叫做常用对数,N 10log 记做N lg 。

(2)常用对数的性质
10的整数指数幂的对数就是幂的指数,即()是整数n n n =10lg
3.自然对数
(1)定义:以 71828.2=e 为底的对数叫做自然对数,N e log 通常记为InN 。

(2)自然对数与常用对数之间的关系:依据对数换底公式,可以得到自然对数与常用对数之间的关系:4343
.0lg lg lg N e N InN ==,即N InN lg 303.2=。

4.指数式与对数式的互化
(1)符号N a log 既是一个数值,也是一个算式,即已知底数和在某一个指数下的幂,求其指数的算式。

对数式b N a =log 的a 、N 、b 在指数式N a b =中分别是底数、指数和幂。

(2)充分利用指数式和对数式的互换,讲述四条规则:
①在b N a =log 中,必须0>N ,这是由于在实数范围内,正数任何次幂都是正数,因而N a b =中的N 总是正数,须强调零和负数没有对数。

②因为10=a ,所以01log =a 。

③因为,1a a =所以1log =a a 。

④因为N a b =,所以b N a =log ,所以N a
N g l a =0。

【例1】下列说法错误的是()
(A)负数和零没有对数(B )任何一个指数式都可以化为对数式
(C )以10为底的对数叫做常用对数(D )以e 为底的对数叫做自然对数
【例2】(1)把下列指数式写成对数式
①;2713=x ②;6441=⎪⎭⎫ ⎝⎛x ③;16121=⎪⎭⎫ ⎝⎛x ④51521=- (2)把下列对数式写成指数式:
①;29log 3=②;3001.0lg -=③5321log 2
-=。

知识点2对数的运算
对数的运算性质
如果0>a 且1≠a ,0>M
,0>N ,那么, (2)()R n M n M
n n a ∈⋅=log log ; (3)()0,,log log ≠∈=m R n m M m
n M a n a 。

用语言文字叙述对数运算法则为两个正数的积的对数等于这两个对数的和;两个正数的商的对数等于这两个正数的对数的差;一个正数的n 次方的对数,等于这个正数的对数的n 倍。

【例3】下列各式与c
ab lg
相等的是() 【例4】计算: ();5log 3log 322+()2log 4
5log 23log 4555-+. 知识点3换底公式
1.换底公式
2.换底公式的推论
【例5】计算:
();32log 18();5log 4log 2825⋅()()()2log 2log 3log 3log 39384++;
()91log 81log 251log 4532⋅⋅;()375754log 3
1log 9log 2log 5⋅⋅ 【例6】(1)已知,3lg ,2lg b a ==用b a ,表示45lg
的值; (2)已知,518,9log 18==b a 用b a ,表示45log 36的值。

反函数的概念
知识点反函数
1.定义
对函数()()D x x f y ∈=,设它的值域为A ,如果对A 中任意一个值y ,在D 中总有唯一确定的x 值与它对应,
且满足()x f y =,这样得到的x 关于y 的函数叫做()x f y =的反函数,记作()y f x 1-=,习惯上,自变量常用
x 来表示,而函数用y 表示,所以把它改写为:
()()A x x f y ∈=-1.
2.反函数存在的条件
函数()x f y =存在反函数的充要条件是函数()x f y =是定义域到值域上的一一映射所确定的函数。

注意:单调
函数必有反函数。

3.反函数与原函数的关系
(1)反函数和原函数互为反函数:如果函数()x f y =有反函数()x f y 1-=,那么函数()x f y 1-=的反函数是()x f y =,则()x f y =与()x f y 1-=互为反函数;
(2)反函数和原函数的定义域与值域互换
函数()x f y = 反函数()x f y 1-=
定义域
A C 值域 C A (3)互为反函数的函数的图像间的关系
函数()x f y =的图像和它的反函数()x f
y 1-=的图像关于直线x y =对称。

函数()x f y =的图像与()y f x 1-=的图像是同一个函数图像。

4.求反函数的步骤
(1)求函数()x f y =的值域(若值域显然,解题时常略去不写)。

(2)反解:由()x f y =写出x 关于y 的关系式; (3)改写:在()y f x 1-=中,将x ,y 互换得到()x f y 1-=
; (4)标明反函数的定义域,即(1)中求出的值域。

【例1】下列函数没有反函数的是:
①;532++=x y ②1
12+=x y ; ③;2123+-=x y ④()
⎩⎨⎧<≥-=03)0(32x x x x y
(A )①②③(B )①②④(C )②③④(D )①③④
【例2】求下列函数的反函数:
(1))2(2
12<-+=x x x y ; (2)()25142-≤≤-++=x x x y ;
【例3】求函数()112
≤+-=x x y 的反函数. 对数概念及运算与反函数总结
1、对数的运算法则(将高一级运算向低级运算转化)
(1)N M MN a a a log log log +=(2)N M N M a a a
log log log -= (3)M n M a n a log log =(4)M n
M a n a log 1log = 2、一个正数的对数是由首数加尾数组成的
3、几个常用的对数结论
4、换底公式:a
b a b b
c c a lg lg log log log ==
5、常用对数与自然对数
6、对数的运算:以同底为基本要求,注意质因数分解,未知数在指数位置即为求对数
7、研究反函数是否存在:从函数的单调性出发
8、反函数的定义域:与原函数的值域相同,必须研究原函数值域求得
9、求反函数的基本步骤,分段函数的反函数分段求得
10、原函数与反函数的图像关于
x y =对称 11、()[]x x f f =-1()f R x ∈()[]x x f f =-1()D x ∈
12、反函数具有保奇性,并且保持单调性不变
13、函数()a x f y +=与()a x f y +=-1不是互为反函数关系
14、互为反函数的公共点不一定在x y =上。

相关文档
最新文档