方格网土方计算表(自动计算)
方格网计算土方
这个图是施工单位进场后在基础开挖以前,由测量员或技术员对施工现场的自然地坪进行测量.先按矩型排点,排完以后点之间连上线就像百格网,横竖按一定距离分布测量点,一般根据场地大小设定(5米20米不等),测量标高,在百格网上标明标高数据。
绘制完成以后报监理或甲方验证签字,这个文件就是百格网。
它的主要用途就是确定土方的挖填工程量,以便于施工统计和结算。
土石方调配施工及计算问题:1,对于大面积土石方开挖,可采用方格网法,根据各点标高计算处土方工程的零线,根据零线可调配各个方格区域内挖填的土方,根据总量可计算出土方是否需要借土还是外弃。
当然,要注意土方要乘松散系数,比如挖1.09m3填1m3. 2,对于道路上的土石方,在设计图里有道路工程那一册,里面便有土石方调配平衡表,道路工程一般为1km内土石方平衡利用,超过1km需计算运距或者外借土.计算方法可采用纵断面的调配示意图来表示。
按1km一个区间进行调配。
主要依据:1,原始测量数据,原地面标高与开挖后标高;2,方格网平面图;3,设计图内的土石方平衡调配表;4,计算表;5,土石方计算规则,比如考虑松散系数等2.场地平整土方工程量的计算在编制场地平整土方工程施工组织设计或施工方案、进行土方的平衡调配以及检查验收土方工程时,常需要进行土方工程量的计算。
计算方法有方格网法和横断面法两种。
(1)方格网法用于地形较平缓或台阶宽度较大的地段.计算方法较为复杂,但精度较高,其计算步骤和方法如下:1)划分方格网根据已有地形图(一般用1:500的地形图)将欲计算场地划分成若干个方格网,尽量与测量的纵、横坐标网对应,方格一般采用20m×20m或40m×40m,将相应设计标高和自然地面标高分别标注在方格点的右上角和右下角。
将自然地面标高与设计地面标高的差值,即各角点的施工高度(挖或填),填在方格网的左上角,挖方为(-),填方为(+)。
2)计算零点位置在一个方格网内同时有填方或挖方时,应先算出方格网边上的零点的位置,并标注于方格网上,连接零点即得填方区与挖方区的分界线(即零线)。
网格法--土方量计算公式
网格法平整场地土方量计算公式:1、方格四个角点全部为填土式挖方,其土方量:)(443212h h h h a V +++= (注:4321,,,h h h h 为角点填方高度,为绝对值。
)2、方格的相邻两角点为挖方,另两角点为填方。
其挖方部分工程量:)(4322241212h h h h h h a V +++= 其填方部分工程量:)(4322341242h h h h h h a V +++= (注:21,h h 为需挖方角点挖方高度,43,h h 为需填方角点填方高度。
皆为绝对值。
)3、方格的三个角点为挖方,另一个角点为填方。
其填方部分工程量:))((643413424h h h h h a V ++= 其挖方部分工程量:4432123,2,1)22(6V h h h h a V +-++= (注:321,,h h h 为需挖方角点挖方高度,4h 为需填方角点填方高度。
皆为绝对值.)4、方格的一个角点为挖方,相对的角点为填方.另两个角点为零点时(零线为方格的对角线),其挖填方工程量为:h ba V 2=2。
常用方格网计算公式项目图示计算公式一点填方或挖方(三角形) 当时,二点填方或挖方(梯形)三点填方或挖方(五角形)四点填方或挖方(正方形)注:1)a—-方格网的边长,m;b、c-—零点到一角的边长,m;h1,h2,h3,h4—-方格网四角点的施工高程,m,用绝对值代入;Σh——填方或挖方施工高程的总和,m,用绝对值代入;-—挖方或填方体积,m.2)本表公式是按各计算图形底面积乘以平均施工高程而得出的。
土方方格网计算公式图示及推导
方格网土方计算公式推导:1、两点开挖工程量计算公式:如上图示:d=A*h2/(h1+h2); e=A*h3/(h3+h4); S1=d*h2/2; S2=e*h3/2S0=(d+e)/2*(h2+h3)/2/2根据拟柱体体积计算公式:V=B/6*(S1+4*S0+S2)将上面已知数代入公式可得:V=B/6*{A*h2/(h1+h2)*h2/2+4*[A*h2/(h1+h2)+A*h3/(h3+h4)]/2*(h2+h3)/2/2+h3*A*h3/(h3+h4)/2}=A*B/6*{h2*h2/(h1+h2)+ h2*(h2+h3)/(h1+h2)+ h3*(h2+h3)/(h3+h4)+h3*h3/(h3+h4)}/2=A*B/12*{(2h2^2+h2*h3)/ (h1+h2)+(2*h3^2+h2*h3)/(h3+h4)}2、三点开挖的挖方量计算公式:由图分解可得,挖方体积=v1+v2-(v3-v4),由拟柱体体积计算公式可以得出:V1={A*(h3+h4)/2+4*A/2*(h3+h2+h2+h4)/4}*B/6=A*B/12*{h3+h4+2*h2+h3+h4}=A*B*(h2+h3+h4)/6V2、V3、V4分别按四棱锥、三棱锥、三棱锥体积计算公式进行计算(体积=底面积*高/3)V2= [√(A^2+B^2)]*1/2*1/3*[√(A^2+B^2)]*(h2+h4)/2= (A^2+B^2)*(h2+h4) /12V3=A*B/2/3*h1=A*B*h1/6V4=h1/3*(B*h1/(h1+h4)*A*h1/(h1+h2)/2=A*B/6*h1^3/(h1+h2)/(h1+h4)V=V1+V2-V3+V4= A*B*(h2+h3+h4)/6+(A^2+B^2)*(h2+h4) /6+A*B/6*h1^2/(h1+h2)/(h1+h4)- A*B*h1/6= A*B /6*[ h2+h3+h4-h1+h1^3/(h1+h2)/(h1+h4)] +(A^2+B^2)*(h2+h4) /123、不机邻两点回填方量计算公式推导:如图示:从h1和h3处将图形分成平面为两个直角三角形体:h4侧的体积公式如下:Vh4=V1+V3-V2根据锥体体积公式:底面积*高/3可得V1=(h1+h3)/2*[√(A^2+B^2)] /3*[√(A^2+B^2)]/2=(h1+h3)*(A^2+B^2) /12 V2=A*B/2*h4/3= A*B*h4/6V3= h4/3*(B*h4/(h4+h1)*A*h4/(h4+h3)/2=A*B/6*h4^3/(h4+h1)/(h4+h3) V=(h1+h3)*(A^2+B^2) /12- A*B*h4/6+ A*B/6*h4^3/(h4+h1)/(h4+h3)= A*B/6*[h4^3/(h4+h1)/(h4+h3)-h4]+ (h1+h3)*(A^2+B^2) /12h2侧的体积公式推导方法h4侧的体积公式:Vh2=A*B/6*[h2^3/(h2+h1)/(h2+h3)-h2]+ (h1+h3)*(A^2+B^2) /12V=Vh2+Vh4=A*B/6*[h2^3/(h2+h1)/(h2+h3)-h2]+ (h1+h3)*(A^2+B^2) /12+ A*B/6*[h4^3/(h4+h1)/(h4+h3)-h4]+ (h1+h3)*(A^2+B^2) /12= A*B/6*[ h2^3/(h2+h1)/(h2+h3) + h4^3/(h4+h1)/(h4+h3) -h2-h4]+ (h1+h3)*(A^2+B^2) /6。
最全方格网-土方计算规则
方格网图由设计单位(一般在1:500的地形图上)将场地划分为边长a=10~40m的假设干方格,与测量的纵横坐标相对应,在各方格角点规定的位置上标注角点的自然地面标高(H)和设计标高(Hn),如图1-3所示.图1-3 方格网法计算土方工程量图二、场地平整土方计算(1)考虑的因素:① 满足生产工艺和运输的要求;② 尽量利用地形,减少挖填方数量;③争取在场区内挖填平衡,降低运输费;④有一定泄水坡度,满足排水要求.⑤场地设计标高一般在设计文件上规定,如无规定:A.小型场地――挖填平衡法;B.大型场地――最正确平面设计法(用最小二乘法,使挖填平衡且总土方量最小)。
\(2)初步标高(按挖填平衡)场地初步标高:H0=S(H11+H12+H21+H22)/4MH11、H12、H21、H22 ——一个方格各角点的自然地面标高;M——方格个数.或:H0=(∑H1+2∑H2+3∑H3+4∑H4)/4MH1--一个方格所仅有角点的标高;H2、H3、H4--分别为两个、三个、四个方格共用角点的标高.(3)场地设计标高的调整按泄水坡度、土的可松性、就近借弃土等调整.按泄水坡度调整各角点设计标高:①单向排水时,各方格角点设计标高为: Hn = H0 ±Li②双向排水时,各方格角点设计标高为:Hn = H0± Lx ix± L yi y施工高度为角点设计地面标高与自然地面标高之差,是以角点设计标高为基准的挖方或填方的施工高度.各方格角点的施工高度按下式计算:式中hn------角点施工高度即填挖高度(以“+”为填,“-”为挖),m;n------方格的角点编号(自然数列1,2,3,…,n).Hn------角点设计高程,H------角点原地面高程.4.计算“零点”位置,确定零线方格边线一端施工高程为“+”,假设另一端为“-”,则沿其边线必然有一不挖不填的点,即“零点”(如图1-4所示).图1-4 零点位置零点位置按下式计算:式中x1、x2 ——角点至零点的距离,m;h1、h2 ——相邻两角点的施工高度(均用绝对值),m;a —方格网的边长,m.确定零点的方法也可以用图解法,如图1-5所示.方法是用尺在各角点上标出挖填施工高度相应比例,用尺相连,与方格相交点即为零点位置。
方格网法计算土方
教材是这么说的:根据各角点施工高度的不同,零线(即方格边上施工高度为零、不填不挖的点的连线)可能将三角形划分为两种情况:三角形全部为挖方或全部为填方以及部分挖方和部分填方。
1、全填全挖的计算公式:
V=[a2*(h1+h2+h3)]/6
公式中a—方格的边长
h1、h2、h3—三角形各角点的施工高度
2、半填半挖(部分挖方和部分填方)的计算公式,由于零线将三角形划分成底面为三角形的锥体和底面为四边形的锲体,锥体和楔体体积公式分别:锥体的体积公式:
V锥体=(a2/6)×{h33/[(h1+h3) ×(h2+h3)]}
楔体的体积公式:
V楔体=(a2/6)×{h33/ [(h1+h3) ×(h2+h3)]-h3+h2+h1}
V锥体—锥体的体积(挖方或填方)
V楔体—楔体的体积(填方或挖方)
h1、h2、h3—三角形角点的施工高度(均用绝对值代入),但是h3恒指锥体顶点的施工高度。
网格法土方量计算公式
第 1 页网格法平整场地土方量计算公式:1、方格四个角点全部为填土式挖方,其土方量:)(443212h h h h a V +++= (注:4321,,,h h h h 为角点填方高度,为绝对值。
)2、方格的相邻两角点为挖方,另两角点为填方。
其挖方部分工程量:)(4322241212h h h h h h a V +++=其填方部分工程量:)(4322341242h h h h h h a V +++=(注:21,h h 为需挖方角点挖方高度,43,h h 为需填方角点填方高度。
皆为绝对值。
)3、方格的三个角点为挖方,另一个角点为填方。
其填方部分工程量:))((643413424h h h h h a V ++=其挖方部分工程量:4432123,2,1)22(6V h h h h a V +-++= (注:321,,h h h 为需挖方角点挖方高度,4h 为需填方角点填方高度。
皆为绝对值。
)4、方格的一个角点为挖方,相对的角点为填方。
另两个角点为零点时(零线为方格的对角线),其挖填方工程量为:hba V 2=2. 常用方格网计算公式项目图示计算公式一点填方或挖方(三当时,角形)二点填方或挖方(梯形)三点填方或挖方(五角形)四点填方或挖方(正方形)第2 页注:1)a——方格网的边长,m;b、c——零点到一角的边长,m;h1,h2,h3,h4——方格网四角点的施工高程,m,用绝对值代入;Σh——填方或挖方施工高程的总与,m ,用绝对值代入;——挖方或填方体积,m。
2)本表公式是按各计算图形底面积乘以平均施工高程而得出的。
第3 页。
网格法土方量计算公式
网格法平整场地土方量计算公式:1、方格四个角点全部为填土式挖方,其土方量:2a)h?h?(h?h?Vh,h,h,h为角点填方高度,为绝对值。
)(注:4321432142、方格的相邻两角点为挖方,另两角点为填方。
其挖方部分工程量:21)??(V4h?hh?h3214222hha其222hha填方部分工程量:34)(?V?4h?hh?h3421h,hhh,为需填方角点填方高度。
皆为绝对值。
(注:为需挖方角点挖方高度,)43213、方格的三个角点为挖方,另一个角点为填方。
其填方部分工程量:4?V46(h?h)(h?h)43142a其挖方32ha部分工程量:V?h)??2hh?2hV?(4143,1,2326hhh,h,为需填方角点填方高度。
皆为绝对值。
)(注:为需挖方角点挖方高度,43124、方格的一个角点为挖方,相对的角点为填方。
另两个角点为零点时2a(零线为方格的对角线),其挖填方工程量为:hV?b4/ 142 /常用方格网计算公式2.计算公式项目图示一点填方或挖方(三角形)当时,二点填方或挖方(梯)形三点填方或挖方(五角形)四点填方正(或挖方方形)4/ 3注:1)a——方格网的边长,m;b、c——零点到一角的边长,m;h,h,h,h方格网四角点的施工高程,m,用绝对值代入;Σh——填方或挖方施工高程的——1423)本表公式是按各计算图形底面积乘以平均施工高程而得出的。
2。
挖方或填方体积,用绝对值代入; ,m总和——,m4/ 4。
土方工程量计算-方格网法
绘制土方平衡表、土方调配表及土方调配图
从土方平衡表上可以一目了然地了解各个区的出土量和需土量、调拨关系和土方平衡情况。在土方调配表上则可更清楚地看到各区的土方盈缺情况。土方调配图上清楚地看到土方的调拨量,调拨方向和距离。
挖填方区划图
方格编号
挖方/m3
填方/m3
备注
VⅠ
32.3
16.5
VⅡ
17.6
施工标高+0.80
设计标高36.00
⑨ 角点编号
35.00 原地形标高
Hx=Ha±xh/L
当方格交叉点不在等高线上就要采用插入法计算出原地形标高。插入法求标高公式如下:
Ha——位于低边的等高线高程(m); x——角点至低边等高线的距离(m); h——等高距(m); L——相邻两等高线间最短距离(m)。
1
1
假设4-3点的设计标高是x,根据场地的坡度求出其他点的标高,标在角点上,如图;再求出每角点的设计标高。
5.求各角点的设计标高
H0′=4N(∑h1′+2∑h2′+3∑h3′+4∑h4′) ∑h1′=x-0.8+x-0.8+x-1.1+x-1.1+x-1.3+x-1.3 =6x-6.4m 2∑h2′=(x-0.4+x+x-0.4+x-1.0+x-1.0+x-0.9)×2 =12x-7.4m 3∑h3′=(x-0.7+x-0.7) ×3 =6x-4.2m 4∑h4′=(x-0.3+x-0.6)×4 =8x-3.6m H0′=4*8 (6x-6.4+12x-7.4+6x-4.2+8x-3.6)= x-0.675 H0′=X-0.675=H0 ∵ H0 ≈ 20.06 ∴ X=20.06+0.675≈20.74
绿化土方计算表
V=a2(h1+h2+h3+h4)/4------体积 * 平均高
式中:h1、h2、h3、h4—方格四然点挖或填的施工高度,均取绝对值,m; a—方格边长。 方格四个角点中,部分是挖方、部分是填方时,其挖方或填方体积分别为: V1、2=a2/4×[h12/(h1+h4)+h22/(h2+h3)] V3、4=a2/4×[h32/(h2+h3)+h42/(h1+h4)] 方格中三个角点为挖方(或填方)另一角点为填方时(或挖方)时,其填方部分的土方量 V4=a2h43/6(h1+h4)(h3+h4) 其挖方部分土方量为: V1、2、3=a2(2h1+h2+2h3-h4)/6+V4 ②三角棱柱体的体积计算方法。计算时先顺地形等高线将各个方格划分成三角形,每个三角 形三个角点的填挖施工高度用h1、h2、h3表示。当三角形三个角点全部为挖或全部为填时, V=a2(h1+h2+h3)/6 式中:a—方格边长,m; h1、h2、h3—三角形各角点的施工高度,用绝对值代入,m。 三角形三个角点有填有挖时,零线将三角形分成两部分,一个是底面为三角形的锥体,一个 是底面为四边形的楔体,其锥体部分体积为: V锥=a2h33/6(h1+h3)(h2+h3) 楔形部分的体积为: V楔=a2/6[h33/(h1+h3)(h2+h3)-h3+h2+h1] 式中:h1、h2、h3—三角形各角点的施工高度,取绝对值,m。其中h3指的是锥体顶点的施工高度。
将场地划分为边长10—40m的正方形方格网,通常以20m居多。再将场地设计标高和自然地 面标高分别标注在方格角上,场地设计标高与自然地面标高的差值即为各角点的施工高度 (挖或填),习惯以“+”号表示填方,“-”表示挖方。将施工高度标注于角点上,然后分别计 算每一方格地填挖土方量,并算出场地边坡的土方量。将挖方区(或填方区)所有方格计算 为了解整个场地的挖填区域分布状态,计算前应先确定“零线”的位置。零线即挖方区与填方区 的分界线,在该线上的施工高度为零。零线的确定方法是:在相邻角点施工高度为一挖一填 的方格边线上,用插入法求出零点的位置,将各相邻的零点连接起来即为零线。零线确定 ①四角棱柱的体积计算方法。方格四个角点全部为填或全部为挖,其挖方或填方体积为:
(完整word版)方格网计算土方例题
一、读识方格网图方格网图由设计单位(一般在1:500的地形图上)将场地划分为边长a=10~40m的若干方格,与测量的纵横坐标相对应,在各方格角点规定的位置上标注角点的自然地面标高(H)和设计标高(Hn),如图1-3所示。
图1-3 方格网法计算土方工程量图二、场地平整土方计算考虑的因素:① 满足生产工艺和运输的要求;② 尽量利用地形,减少挖填方数量;③争取在场区内挖填平衡,降低运输费;④有一定泄水坡度,满足排水要求。
⑤场地设计标高一般在设计文件上规定,如无规定:A.小型场地――挖填平衡法;B.大型场地――最佳平面设计法(用最小二乘法,使挖填平衡且总土方量最小)。
1、初步标高(按挖填平衡),也就是设计标高。
如果已知设计标高,1.2步可跳过。
场地初步标高:H0=(∑H1+2∑H2+3∑H3+4∑H4)/4MH1--一个方格所仅有角点的标高;H2、H3、H4--分别为两个、三个、四个方格共用角点的标高。
M—-方格个数。
2、地设计标高的调整按泄水坡度、土的可松性、就近借弃土等调整.按泄水坡度调整各角点设计标高:①单向排水时,各方格角点设计标高为:Hn = H0 ±Li②双向排水时,各方格角点设计标高为:Hn = H0± Lx ix± L yi y3。
计算场地各个角点的施工高度施工高度为角点设计地面标高与自然地面标高之差,是以角点设计标高为基准的挖方或填方的施工高度.各方格角点的施工高度按下式计算:式中 hn-——--—角点施工高度即填挖高度(以“+"为填,“—”为挖),m;n-—-—--方格的角点编号(自然数列1,2,3,…,n)。
Hn--——-—角点设计高程,H—-—-——角点原地面高程.4。
计算“零点”位置,确定零线方格边线一端施工高程为“+",若另一端为“—”,则沿其边线必然有一不挖不填的点,即“零点"(如图1-4所示)。
图1—4 零点位置零点位置按下式计算:式中 x1、x2 —-角点至零点的距离,m;h1、h2 ——相邻两角点的施工高度(均用绝对值),m;a -方格网的边长,m。
方格网土石方计算
土石方计算土方量的计算是建筑工程施工的一个重要步骤。
工程施工前的设计时期必需对土石方量进行预算,它直接关系到工程的费用概算及方案选优。
在现实中的一些工程项目中,因土方量计算的精准性而产生的纠纷也是常常碰到的。
如何利用测量单位现场测出的地形数据或原有的数字地形数据快速准确的计算出土方量就成了人们日趋关切的问题。
比较常常的几种计算土方量的方式有:方格网法、等高线法、断面法、DTM法、区域土方量平稳法和平均高程法等。
一、断面法本地形复杂起伏转变较大,或地狭长、挖填深度较大且不规那么的地段,宜选择横断面法进行土方量计算。
上图为一渠道的测量图形,利用横断面法进行计算土方量时,可依照渠LL,按必然的长度L设横断面A一、A二、A3……Ai等。
断面法的表达式为(1)在(1)式中,Ai-1,Ai别离为第i单元渠段起终断面的填(或挖)方面积;Li为渠段长;Vi为填(或挖)方体积。
土石方量精度与间距L的长度有关,L越小,精度就越高。
可是这种方式计算量大, 尤其是在范围较大、精度要求高的情形下更为明显;假设是为了减少计算量而加大断面距离,就会降低计算结果的精度; 因此断面法存在着计算精度和计算速度的矛盾。
二、方格网法计算关于大面积的土石方估算和一些地形起伏较小、坡度转变平缓的场地适宜用格网法。
这种方式是将场地划分成假设干个正方形格网,然后计算每一个四棱柱的体积,从而将所有四棱柱的体积汇总取得总的土方量。
在传统的方格网计算中,土方量的计算精度不高。
此刻咱们引入一种新的高程内插的方式,即杨赤中滤波推估法。
杨赤中推估杨赤中滤波与推估法确实是在复合变量理论的基础上,对已知离散点数据进行二项式加权游动平均,然后在滤波的基础上,成立随即特点函数和估值协方差函数,对待估点的属性值(如高程等)进行推估。
待估点高程值的计算第一绘方格网, 然后依照必然范围内的各高程观测值推估方格中心O的高程值。
绘制方格时要依照场地范围绘制。
由离散高程点计算待估点高程为(2)其中,为参加估值计算的各离散点高程观测值,为各点估值系数。
274267_方格网土方计算表(超简便版) (1)
挖方量(m³) 132.5 7 0 8 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
填方量(m³) 495 9 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
开挖面 300 11 0
6 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0