定积分在几何上的应用-资料

合集下载

微积分定积分在几何中应用

微积分定积分在几何中应用

(二)定积分在几何中的应用定积分在几何中的应用 (1)求平面图形的面积求平面图形的面积由定积分的定义和几何意义可知,函数y=f(x)在区间[a,b]上的定积分等于由函数y=f(x),x=a ,x=b 和轴所围成的图形的面积的代数和。

由此可知通过求函数的定积分就可求出曲边梯形的面积。

例如:求曲线2f x =和直线x=l ,x=2及x 轴所围成的图形的面积。

轴所围成的图形的面积。

分析:由定积分的定义和几何意义可知,由定积分的定义和几何意义可知,函数在区间上的定积分等于由曲线函数在区间上的定积分等于由曲线和直线,及轴所围成的图形的面积。

和直线,及轴所围成的图形的面积。

所以该曲边梯形的面积为所以该曲边梯形的面积为2233222112173333x f x dx ===-=ò (2)求旋转体的体积求旋转体的体积(I)由连续曲线y=f(x)与直线x=a 、x=b(a<b) 及x 轴围成的平面图形绕x 轴旋转一周而成的旋转体的体积为2()()b aV f x d x p=ò。

(Ⅱ)由连续曲线y=g(y)与直线y=c 、y=d(c<d)及y 轴围成的平面图形绕y 轴旋转一周而成的旋转体的体积为2()()dcV g y d y p =ò。

(III)由连续曲线y=f(x)( ()0f x ³)与直线x=a 、x=b(0a £ <b)及y 轴围成的平面图形绕y 轴旋转一周而成的旋转体的体积为2()()baV xf x d x p =ò。

例如:例如:求椭圆求椭圆22221x y a b +=所围成的图形分别绕x 轴和y 轴旋转一周而成的旋转体的体积。

转体的体积。

分析:椭圆绕x 轴旋转时,旋转体可以看作是上半椭圆22()b y a x a x a a=--££,与x 轴所围成的图形绕轴旋转一周而成的,轴所围成的图形绕轴旋转一周而成的,因此椭圆因此椭圆22221x y a b+=所围成的图形绕x 轴旋转一周而成的旋转体的体积为轴旋转一周而成的旋转体的体积为 222222222322()()14()33aay aaaa b b v a x dx a x dxaa ba x x aba pp p p ---=-=-=-=òò椭圆绕y 轴旋转时,旋转体可以看作是右半椭圆22,()a x b y b y b b=--££,与y轴所围成的图形绕y 轴旋转一周而成的,因此椭圆22221x y a b+=所围成的图形绕y 轴旋转一周而成的旋转体的体积为一周而成的旋转体的体积为222222222322()()14()33bby b bb b a a v b y dy b y dy b b a b y y a bb p p p p ---=-=-=-=òò(3)求平面曲线的弧长求平面曲线的弧长(I)、设曲线弧由参数方程、设曲线弧由参数方程 (){()()x t t y t j a b f =££=给出其中''(),()t t j f 在[,]a b 上连续,则该曲线弧的长度为'2'2[()][()]()s t t d xbaj f =+ò。

定积分在几何及物理中的应用

定积分在几何及物理中的应用
一.定积分的几何意义是什么?
1、如果函数f(x)在 [a , b] 上连续且 f ( x ) ≥ 0 时, b dx 那么:定积分 就表示以 y=f(x)为曲边 a f ( x) y 的曲边梯形面积。 y f ( x)
A a f ( x )dx
b
A
a b x 曲边梯形的面积
曲边梯形的面积的负值
4
1 2 1 3 4 (4 y y y ) |0 2 6
1 2 1 3 40 4 :求两曲线围成的平面图形的面积的一般步骤:
(1)作出示意图;(弄清相对位置关系) (2)求交点坐标;(确定积分的上限,下限)
(3)确定积分变量及被积函数;
S = S曲边梯形OABC - S曲边梯形OABD
C o
yx
2 x 1 1 S = ( x - x )dx ( x ) |0 . 0 3 3 3
1 2
3 2

1
0
xdx x dx
2 0
1
O
3
D
2 y xx
A
例 2.计算由曲线 y 2x , 直线 y x 4以及 x 轴所围 成的图形的面积. 解:作出y=x-4, y 2x 的图象 如图所示: y 2x x=8 解方程组 得 :{y=4 , y x 4
(4)列式求解.
定积分在几何中的应用
1.求下列曲线所围成的图形的面积:
(1)y=x2,y=2x+3;
(2)y=ex,y=e,x=0.
32 (1)S 1 ((2 x 3) x )dx 3 1 x (2)S 0 (e e )dx 1
3 2
2、计算由曲线 y 2 x 和直线 y x 4 所围成

定积分在几何和物理中的应用

定积分在几何和物理中的应用

定积分在几何和物理中的应用定积分是高等数学中非常重要的一个概念,它可以用于计算曲线、曲面的面积或体积,还可以应用到物理学、工程学中。

在本文中,我们将着重探讨定积分在几何和物理中的应用。

一、计算面积我们首先来看一个简单的例子,如果我们想要计算一个曲线所围成的面积,我们需要怎么做呢?假设曲线为y=f(x),我们可以将这条曲线分成若干个无限小的小矩形,每个小矩形的宽度为Δx,高度为函数值f(x),则该小矩形的面积为f(x)Δx。

我们将所有小矩形的面积相加,得到所求的曲线面积S:S=∫a^b f(x) dx其中a和b分别是曲线的起点和终点。

这里的∫符号代表积分符号,具体的计算方法不在本文中详细说明。

二、计算体积在物理学中,我们经常需要计算物体的体积,定积分也可以帮助我们实现这一目的。

比如我们需要计算一个旋转曲线所围成的立体体积,我们可以依然使用之前的方法将其分解成无限小的小圆柱体积,每个小圆柱的体积可以表示为:V=π[f(x)]^2dx我们将所有小圆柱的体积相加,得到所求的立体体积V:V=∫a^b π[f(x)]^2dx三、计算重心和质心在物理学中,重心和质心是非常重要的概念。

对于一个平面图形或者一个立体体形,它的重心和质心分别表示为:重心:(∫xdS)/(∫dS)质心:(∫xdm)/(∫dm)这里的dS和dm分别表示面元和质量元,x则表示距离中心的距离。

我们可以通过对图形进行分割并使用定积分来计算重心和质心。

四、积分在物理学中的应用定积分在物理学中的应用非常广泛,比如我们可以使用它来计算弹性势能、动能、功、功率等物理量。

举一个简单的例子,假设质量为m的物体从高度为h处自由落下,当它下落到高度为y 时,它的速度为v,我们可以使用动能和势能的转化关系求出v,设重力加速度为g,则它下落过程中失去的重力势能为mgh-mgy,同时增加的动能为(1/2)mv^2,因此:mgh-mgy=(1/2)mv^2v=sqrt(2g(h-y))我们可以使用定积分来求解物体在过程中的运动状态,以及计算其他物理量的值。

定积分在几何学上的应用

定积分在几何学上的应用
一、 平面图形的面积 二、已知平行截面面积函数的立体体积
一、平面图形的面积
1. 直角坐标情形
y y f (x)
设曲线
与直线
及 x 轴所围曲 边梯形面积为 A , 则
o
a
x
x
dbx
x
dA f (x) dx
b
A a f (x) dx
y y f1(x) y f2 (x)
右图所示图形面积为
b
A a f1(x) f2 (x) dx
A 40 y d x
利用椭圆的参数方程
x y
a cos t b sin t
(0 t 2 )
y b
o xxdxa x
应用定积分换元法得
4
ab
12
2
ab
4ab 2 sin 2 t dt 0
当 a = b 时得圆面积公式
一、平面图形的面积
2. 极坐标情形
求由曲线

围成的曲边扇形的面积 .
在区间
2
(1
1 y 2 ) 2d y 1 (2 y)2 d y 0
内容小结
1. 平面图形的面积 直角坐标方程
边界方程 极坐标方程
2. 已知平行截面面面积函数的立体体积
旋转体的体积 绕x轴: 绕y轴:
上任取小区间
则对应该小区间上曲边扇形面积的近似值为
dA 1 ( ) 2 d
2
所求曲边扇形的面积为
r ( ) d
A 1 2 ( ) d 2
x
一、平面图形的面积
例 计算阿基米德螺线 到 2 所围图形面积 .
解:
A 2 1 (a )2 d
02
a2 2
13
3

定积分在几何上的应用

定积分在几何上的应用

定积分在几何上的应用
定积分就是求函数f(X)在区间[a,b]中图线下包围的面积。

即由y=0,x=a,x=b,y=f(X)所围成图形的面积。

这个图形称为曲边梯形,特例是曲边三角形。

绕x轴旋转体体积公式是V=π∫[a,b]f(x)^2dx。

绕y轴旋转体积公式同理,将x,y互换即可,
V=π∫[a,b]φ(y)^2dy。

或者是V=2π∫[a,b]y*f(y)dy,也是绕x轴旋转体积。

绕x轴旋转体的侧面积为A=2π∫[a,b]y*(1+y'^2)^0.5dx,其中y'^2是y对x的导数的平方。

若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。

一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。

一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。

几何,就是研究空间结构及性质的一门学科。

它是数学中最基本的研究内容之一,与分析、代数等等具有同样重要的地位,并且关系极为密切。

几何学发展历史悠长,内容丰富。

它和代数、分析、数论等等关系极其密切。

6.2 定积分在几何学上的应用

6.2 定积分在几何学上的应用

圆柱
圆锥
圆台
问题:一般地,考虑如图所示的曲边梯形绕 x 轴旋 转一周而形成的空间立体,其体积为多少?
y
y = f (x)
0a
bx
取积分变量为 x, x ∈[a,b] y
y = f (x)
在[a, b]上任取小区间 [ x, x + dx]
o
x x + dx
x
考虑以 d x 为底的窄曲边梯形 绕 x 轴旋转而成的薄片 ∆V 体积的近似值
设曲线弧为 y = f ( x) (a ≤ x ≤ b),
其中 f ( x)在[a, b]上有一阶连续导数 y = f ( x)
y
取积分变量为 x,x∈ [a, b]
在 [a, b] 上任取小区间[ x, x + dx],
以对应小切线段的长代替小弧段的长
} dy
dx
∆s ≈ (dx)2 + (dy)2 = 1 + y′2dx o ax x + dx b x
∫1
A= ( 0
y

y2 ) d
y
=
2
3
3
y2

y3 1
3
=
0
1. 3
例2 计算抛物线 y2 = 2x 与直线 y = x − 4 所围图形 的面积 .
例2 计算抛物线 y2 = 2x 与直线 y = x − 4 所围图形 的面积 .
解:( 一)取 y 为积分变量。
y
∫ s = 4 [ ( y + 4) − y2 ] d y
其体积可以近似看作以 f (x) 为底半径,高为 d x 的 薄圆柱体的体积,即 两个量的乘
∆V ≈ π [ f ( x)]2 dx = dV

定积分在几何中的应用

定积分在几何中的应用

782020年第 5 期中定积分在几何中的应用杨姜维一、平面图形的面积(一)以为积分变量的情形1.在直角坐标中,设曲线()与直线及轴所围成的平面图形面积为,则面积元素,面积。

例1:求曲线与直线及轴所围成的平面图形的面积。

解:如图1,面积元素,图形面积=2.设曲线与直线及轴所围成的图形面积为,则面积元素,面积。

3.设由,所围成的平面图形的面积:函数由大减小(上减下),积分从左到右;那么,第一种情况里面的面积公式,也可以看作是,轴即直线。

例2:求直线与抛物线所围成的平面图形的面积。

解:由图2分析可知,交点面积元素,图形面积4.任意由所围成的平面图形(图3)的面积。

例3:求抛物线,与轴及直线在第一象限所围成的平面图形的面积。

解:如图4,由交点面积+(二)以为积分变量的情形1.由曲线、直线及轴围成的平面图形面积:。

2.由曲线、直线及轴围成的平面图形面积:。

3.由曲线直线及轴围成的平面图形面积:若,。

可看作是函数由大减小(右减左),积分从下到上。

例4:计算抛物线与直线所围成的图形的面积。

定积分在几何中的应用,主要体现在求解平面图形的面积和旋转体的体积等,文中主要介绍了求解平面图形面积的几种情形,即分别以为积分变量来讨论;求旋转体体积的两种情况,即曲线分别围绕轴和轴旋转一周所得的立体体积。

JIAO HAI TAN HANG/教海探航解:如图5,由交点为方便计算,选取为积分变量,则有4.任意由曲线直线及轴围成的平面图形面积:。

二、旋转体的体积一个平面图形围绕其所在平面上的一条直线旋转一周而成的立体即为旋转体,常见的旋转体有圆柱体、圆锥、圆台、球体等,这些都有对应的体积公式,面对日常生活中所用到的水杯、花瓶等立体物件,求解体积时可考虑以下情况:(一)曲线绕轴旋转的情形由连续曲线与直线及轴所围成的曲边梯形绕轴旋转一周而成的立体,选为积分变量,该旋转体的体积元素,体积为。

(二)曲线绕轴旋转的情形由曲线、直线及轴围成的平面图形绕轴旋转一周所得的立体,选为积分变量,该旋转体的体积元素,体积为。

定积分在几何计算中的应用

定积分在几何计算中的应用

定积分在几何计算中的应用定积分是高等数学中的一个重要概念,它在几何计算中有着广泛的应用。

在几何学中,定积分可以用来计算曲线的长度、曲面的面积、体积等等。

下面我们就来看看定积分在几何计算中的应用。

定积分可以用来计算曲线的长度。

对于一条曲线,我们可以将其分成无数个小段,然后对每个小段的长度进行求和,最终得到整条曲线的长度。

这个过程可以用定积分来表示,即:L = ∫a^b √(1+(dy/dx)^2) dx其中,a和b分别表示曲线的起点和终点,dy/dx表示曲线在每个点的斜率。

这个式子的意义是,将曲线分成无数个小段,每个小段的长度为√(1+(dy/dx)^2) dx,然后对所有小段的长度进行求和,最终得到整条曲线的长度。

定积分可以用来计算曲面的面积。

对于一个曲面,我们可以将其分成无数个小面元,然后对每个小面元的面积进行求和,最终得到整个曲面的面积。

这个过程可以用定积分来表示,即:S = ∫∫D √(1+(∂z/∂x)^2+(∂z/∂y)^2) dxdy其中,D表示曲面的投影区域,z表示曲面在每个点的高度,∂z/∂x和∂z/∂y分别表示曲面在每个点在x和y方向上的斜率。

这个式子的意义是,将曲面分成无数个小面元,每个小面元的面积为√(1+(∂z/∂x)^2+(∂z/∂y)^2) dxdy,然后对所有小面元的面积进行求和,最终得到整个曲面的面积。

定积分可以用来计算体积。

对于一个立体图形,我们可以将其分成无数个小体元,然后对每个小体元的体积进行求和,最终得到整个立体图形的体积。

这个过程可以用定积分来表示,即:V = ∫∫∫E dxdydz其中,E表示立体图形的空间区域。

这个式子的意义是,将立体图形分成无数个小体元,每个小体元的体积为dxdydz,然后对所有小体元的体积进行求和,最终得到整个立体图形的体积。

定积分在几何计算中有着广泛的应用,可以用来计算曲线的长度、曲面的面积、体积等等。

这些应用不仅在数学中有着重要的意义,也在实际生活中有着广泛的应用,例如在建筑设计、工程计算等领域中都有着重要的作用。

定积分在几何学中的应用

定积分在几何学中的应用

定积分在几何学中的应用一、旋转体的体积旋转体就是由一个平面图形绕这平面内一条直线旋转一周而成的立体. 这直线叫做旋转轴.常见的旋转体: 圆柱、圆锥、圆台、球体.旋转体都可以看作是由连续曲线y =f (x )、直线x =a 、a =b 及x 轴所围成的曲边梯形绕x 轴旋转一周而成的立体.设过区间],[b a 内点x 且垂直x 轴的平面左侧的旋转体的体积为V (x ),当平面左右平移dx 后, 体积的增量近似为∆V =π[f (x )]2dx ,于是体积元素为dV = π[f (x )]2dx ,旋转体的体积为dx x f V ba 2)]([π⎰=. 例1 已知球体的半径为r ,求球体的体积.解 在一象限中,圆的方程为:222r y x =+,即:22x r y -=在[0,r ]上任取一点x ,则体积的微元为 dx x f dv ⋅⋅=2)]([πdx x r )(22-⋅=π故32234)(r dx x r V r r ππ=-⋅=⎰-. 结论: (1)由b x a x x f y y ====,),(,0所围平面图形绕x 轴旋转一周所生成的立体体积⎰=b a x dx x f V )(2π (2)由d y c y x y x ====,,0),(ϕ所围平面图形绕y 旋转一周所得旋转体体积 ⎰=dc y dy y V )(2ϕπ 例 2 过点)0,1(P 作抛物线2-=x y 的切线,求该切线与抛物线2-=x y 及x 轴所围平面图形绕x 轴旋转而成的旋转体体积.解 设切点为)2,(00-x x ,则切线方程为)1(2210--=x x y因为切点在切线上,所以)1(2212000--=-x x x 由于30=x ,因此切线方程为)1(21-=x y 故 ⎰⎰=---=313226)2()1(41πππdx x dx x V x . 例3 设平面图形由,2x y =与直线x =1,y =0围成,求:(1)绕x 轴旋转所成的旋转体的体积;(2)绕y 轴旋转所成的旋转体的体积.设立体在x 轴的投影区间为],[b a ,过点x 且垂直于x 轴的平面与立体相截,截面面积为A (x ),则体积元素为A (x )dx ,立体的体积为dx x A V b a )(⎰=例4 一平面经过半径为R 的圆柱体的底圆中心,并与底面交成角α,计算这平面截圆柱所得立体的体积解 取这平面与圆柱体的底面的交线为x 轴,底面上过圆中心、且垂直于x 轴的直线为y 轴,那么底圆的方程为x 2 +y 2=R 2,立体中过点x 且垂直于x 轴的截面是一个直角三角形,两个直角边分别为22x R -及αtan 22x R -,因而截面积为αtan )(21)(22x R x A -=,于是所求的体积为dx x R V R R αtan )(2122-=⎰-ααtan 32]31[tan 21332R x x R R R =-=-. 二、平面曲线的弧长设A ,B 是曲线弧上的两个端点,在弧AB 上任取分点A =M 0,M 1, M 2, ⋅ ⋅ ⋅ ,M i -1,M i ,⋅ ⋅ ⋅,M n -1,M n =B ,并依次连接相邻的分点得一内接折线,当分点的数目无限增加且每个小段M i -1M i 都缩向一点时,如果此折线的长∑=-ni i i M M 11||的极限存在,则称此极限为曲线弧AB 的弧长,并称此曲线弧AB 是可求长的.定理光滑曲线弧是可求长的1、直角坐标情况设曲线弧由方程))((b x a x f y ≤≤=给出,其中)(x f y =在区间],[b a 上具有一阶连续导数,这曲线弧的长度为()dx x f s ba ⎰+=21例5 求曲线()21ln x y -=相应于210≤≤x 的一段曲线的弧长. 解 由已知,有 dx x x s ⎰-+=2102211dx x x ⎰⎪⎭⎫ ⎝⎛-+++-=21011111 21011ln 21x x -++-=3ln 21+-=. 2、参数方程情形设曲线弧由参数方程x =ϕ(t )、y =ψ(t ) (α≤t ≤β )给出,其中ϕ(t )、ψ(t )在[α, β]上具有连续导数,其弧长为⎰'+'=βαψϕdt t t s )()(22. 例6 计算摆线x =a (θ-sin θ),y =a (1-cos θ)的一拱(0 ≤θ ≤2π )的长度.解 弧长元素为θθθd a a ds 2222sin )cos 1(+-=θθd a )cos 1(2-=θθd a 2sin 2=. 所求弧长为⎰=πθθ202sin 2d a s πθ20]2cos 2[2-=a =8a .。

55定积分在几何中的应用.

55定积分在几何中的应用.

x g 2 ( y)
x g1 ( y)
c
0
x
图5-8
例5
求由曲线 y 2 x与直线
2
x y40 所
围成的封闭图形的面积(如图5-10). 解 ∵曲线与直线的交点坐标是 (2,2), (8,4) 所求的面积
y 4
-
y 2 2x
y x4
S
1 2 2 ( y 4 2 y )dy
3
y
y x2
(1,1)
y x
o0
1
x
图5-8
2)在 [c, d ] 上 g1 ( y) g 2 ( y) (图5-9),由连续区 线 x g1 ( y) 、x g 2 ( y) 及两条直线 的封闭图形的面积
y
d
yc
、 y d 所围成
S

d
c
[ g1 ( y) g 2 ( y)]dy
5.5定积分在几何中的应用
一、定积分的微元法 二、平面图形的面积 三、体积 四、平面曲线的弧长
一、定积分的微元法
定积分的应用很广,仅介绍它在几何方面和物理 方面的一些应用。首先说明一种运用定积分解决实际 问题时常用的方法——将所求量表达成为定积分的分 析方法——微元法(或元素法). 本章第一节,在将具体问题中所求的量 S(如曲边 梯形的面积,变速直线运动的路程)表达成定积分:
r r ( )
0


x
x
图5-11
2)求曲边扇形的面积:
假定 ,且 ( ) 在 [ , ] 上连续,
求曲边扇形的面积. 取极角 为积分变量,它的变化区间为 [ , ] ,
在 [ , ] 上任取一小区间 [ , d ] ,该区间上的

定积分的意义及其在几何中的应用

定积分的意义及其在几何中的应用

定积分的意义及其在几何中的应用定积分是微积分中的一种重要概念,它是反映了函数在一些区间上面积的大小。

定积分的含义非常丰富,不仅可以用于求函数的面积、周长、体积等几何问题,还广泛应用于物理学、经济学、生物学等领域的计算与分析中。

首先,定积分的最基本的含义是求函数在一些区间上的面积。

对于非负连续函数f(x),可以将其图像以下方的函数图形为界,通过分割区间,构造出一系列较窄的矩形,然后求出这些矩形的面积之和,即可近似地得到曲线下面积的值。

随着分割区间的无穷细小,这个近似的面积将趋近一个确切的值,即定积分。

如果函数是负值或者非连续的情况,面积的计算则需要对函数图像进行分段处理,并分别计算每个部分的面积。

所以,定积分在几何中的应用可以明确地用于求曲线与坐标轴之间的面积。

其次,定积分也可以用于求曲线的弧长。

由于曲线的形状较为复杂,无法直接计算其弧长,但通过将曲线分成许多较小的线段,并每个线段用直线段来代替,再对这些直线段进行求和的方式,可以用定积分来近似计算曲线的长度。

当分割的线段无限细小时,这个近似的弧长将趋近于曲线的实际弧长。

这种方法虽然只能得到近似值,但对于一些无法获得解析解的复杂曲线来说,这种近似是非常有用的。

此外,在三维几何中,定积分可以应用于计算旋转体的体积。

对于一个曲线沿着坐标轴旋转形成的立体,可以将其分成许多非常薄的盘状元素,并计算每个盘状元素的体积,然后通过定积分将这些体积相加,即可得到整个旋转体的体积。

这个方法适用于各种形状的旋转体,能够有效地求解这些体积。

除了在几何中的应用,定积分在物理学、经济学、生物学等领域也有广泛的应用。

在物理学中,定积分可以用于计算各种形状物体的质心、重心等。

在经济学中,定积分常用于求解定量经济模型中的微积分方程,如求解需求曲线、利润函数等。

在生物学中,定积分可以用于计算生物体的体积、质量、功率等。

总之,定积分是微积分中一个重要的概念,不仅在几何中用于求解曲线的面积、弧长、旋转体的体积等问题,还在许多学科中都有广泛的应用。

定积分在几何上的应用 主要是平面几何、立体几何和弧长

定积分在几何上的应用 主要是平面几何、立体几何和弧长

定积分在几何上的应用非常广泛,主要包括平面几何、立体几何和弧长三个方面。

在平面几何中,定积分可以用来求解面积。

例如,如果有一个曲线y=f(x),那么这条曲线与x轴所夹的面积可以通过对f(x)在x的某个区间[a,b]上进行定积分来求解。

此外,定积分也可以用来求解平面图形的面积,比如矩形、圆形、椭圆形等。

在立体几何中,定积分可以用来求解体积。

例如,如果有一个旋转体,它的基圆半径为r,高为h,那么这个旋转体的体积可以通过对基圆的周长进行定积分来求解。

此外,定积分也可以用来求解其他形状的体积,比如球体、圆锥体、圆柱体等。

在弧长方面,定积分也有应用。

例如,如果有一条曲线的长度为s,那么这条曲线的长度可以通过对曲线的斜率进行定积分来求解。

此外,定积分也可以用来求解其他形状的长度,比如圆弧、摆线等。

总的来说,定积分在几何上的应用非常广泛,它可以用来解决各种与几何量有关的计算问题。

定积分的几何学原理及应用

定积分的几何学原理及应用

定积分的几何学原理及应用一、定积分的概念定积分是微积分中的一个重要概念,用于描述曲线下面积、空间体积以及曲线长度等几何问题。

定积分的计算依赖于黎曼和的理论,通过将曲线或曲面分割成若干个小块,然后对这些小块的面积或体积进行求和来进行计算。

二、定积分的几何学原理定积分的几何学原理有以下三个方面的内容:1.曲线下面积的计算:对于一个实数区间[a, b]上的函数f(x),我们可以将其图像与x轴围成的曲线下的面积用定积分来表示。

通过将[a, b]区间分割成n个小区间,选取每个小区间上的一点,然后以这些小区间上的任意一点作为高,将每个小区间上的矩形面积进行求和,得到的极限就是曲线下面积的近似值。

当再令n趋于无穷大时,就得到了定积分表示的曲线下面积的准确值。

2.曲线长度的计算:类似于曲线下面积的计算,曲线的长度也可以用定积分来表示。

通过将曲线分割成若干个小线段,并将每个小线段的长度进行求和,就可以得到曲线的长度的近似值。

当分割的线段越来越小,小线段的数量趋近于无穷大时,得到的极限就是曲线的长度的准确值。

3.空间体积的计算:除了用于计算平面曲线的面积和长度外,定积分还可以用于计算空间中曲面下面体积的大小。

通过将曲面分割为许多小面元,并将每个小面元的体积进行求和,可以得到曲面下面体积的近似值。

当分割的小面元越来越小,小面元的数量趋近于无穷大时,得到的极限就是曲面下面体积的准确值。

三、定积分的几何学应用定积分作为微积分中的重要工具,广泛应用于几何学中的各种问题求解。

以下是几个典型的应用案例:1.求解平面区域面积:通过将平面分割成若干个小矩形或小三角形,然后计算每个小矩形或小三角形的面积,并将其进行求和,可以得到给定平面区域的面积。

这在工程测量、物体表面积的计算等方面有重要应用。

2.求解线段长度:对于给定的曲线或曲面,通过将其分割成若干个小线段,然后计算每个小线段的长度,并将其进行求和,可以得到曲线或曲面的长度。

这种方法在导航、路径规划等领域中被广泛应用。

定积分在几何物理中的应用 非常好

定积分在几何物理中的应用 非常好

难点:理解可用定积分求解的物理问题的 特点,确定积分的上下限。
设物体运动的速度 v=v(t) ≥0,则此物 体在时间区间[a, b]内运动的距离s为
Si v(ti ) t v(ti ) t
一、变速直线运动的路程
b
s v(t )dt
a
n n i 1 i 1
v
v v(t )
练习: 1.如果 1N 力能拉长弹簧 1cm,为了将弹簧拉长 6cm, 克服弹力所作的功为( A ) (A)0.18J (B)0.26J (C)0.12J (D)0.28J (0 ≤ x ≤2) 10 2. 一物体在力 F ( x ) ( 单位 :N) 3 x 4 ( x 2) 的作用下,沿着与力 F 相同的方向,从 x=0 处运动到 x=4 处(单位:m),则力 F(x)所作的功为(B )J (A)44 (B)46 (C)48 (D)50 3. 一物体以速度 v(t ) 2t 2 (m/s)作直线运动,媒质的 阻力 F(N)与速度 v(m/s)的关系为 F 0.7v 2 ,试求在 时刻 t 0 (s)到 t 2 (s)这段时间内阻力做的功. 102.4J

法二:由定积分的几何意义,直观的可以得出路程即为 如图所示的梯形的面积,即
30 60 s 30 1350 2
一物体在恒力 F 单位 : N的作用下做直线运动 ,如 果物体沿着与力 F 相同的方向移动了 s (单位 : m), 则力F所作的功为W Fs.
二. 变力沿直线作功
l
Q
l
图1.7 - 4
F
动画演示弹簧 拉伸 或压缩.
l
1 2 1 2 由变力作功公式 , 得W kxdx kx kl J . 0 2 2 0 1 2 答 克服弹力所作的功为 kl J . 2

定积分在几何中的应用-文档资料

定积分在几何中的应用-文档资料
4
直线与x轴交点为(4,0)
SS S x [ 2 x d x (x 4 ) d x ] 1 2 2xd
0 4 4 8 8
x d x 4 ) d x ( x d x x d x ) ( x 4 ) d x 2 (x 2 2
0 4 4
0 4
4
确 定的 f () x 原 函 数 F () x
1、平面图形的面积
y
y f( x )
y
y f ( x ) 2
y f ( x ) 1
o
a
b x
o
Байду номын сангаас
a
b x
曲边梯形的面积
曲边梯形的面积
A f(x ) dx a
b
A [ f( x ) f ( x )] dx 1 a 2
b
1、平面图形的面积
2 y x 4 及其在点 ( 2 , 0) 和 ( 2 , 0 ) 处 2. 求抛物线 的切线所围成的图形的面积 .
x d x x d x
2 0 0
1
1
D
2 y xx
A

1
2
例 2 计算由曲线 y 2x , 直线 y x 4以及 x 轴所围 成的图形的面积.
解 两曲线的交点
( 0 ,0 ) ,( 8 ,4 ) .
y 2x
S2
S1
y x 4
y 2x y x4
3
y x2
A 6 x x) d x 1 (x
3 2 2
0
3 yx 6 x
A x 6) xd x 2 (x
2 3 0
3
于是所求面积

定积分在几何上的应用-资料

定积分在几何上的应用-资料
个 端 点 , 在 弧 上 插 入 分 点 M 1 M 2
Mn1 BMn
AM0,M1,Mi,
,Mn1,Mn B
oAM0
图6-2-18
x
并 依 次 连 接 相 邻 分 点 得 一 内 接 折 线 , 当 分 点 的 数 目
无 限 增 加 且 每 个 小 弧 段 都 缩 向 一 点 时 , n
y
段弧的长度.

y

1
x2
,
y

2
3
x2
3
ds 1(x1 2)2dx 1xdx, o a
bx
图6-2-20
所求弧长为
b
2
3
3
sa
1xdx [1(b)2(1a)2].
3
2019/11/8
第六章 定积分的应用
27
x
例 13 计算曲线 y n n sin d 的弧长(0 x n). 0
利用这个公式,可知上例中
2a
Vy20 x|f(x)|dx
2
2 0a ( t sti ) a n ( 1 ct) o d [ a ( t s sti )n ]
2 a 32 (t sit)n 1 ( cto )2 d st63a3. 0
2019/11/8
o
x
A21a2 (1cos)2d
20
图6-2-8

a2 0
(1 2 c o c s2 o )d s
a22 32sin4 1si2n 0
3 2
a2.
2019/11/8
第六章 定积分的应用
12
二、体积
1.旋转体的体积
旋转体就是由一个平面图形绕这平面内 一条直线旋转一周而成的立体.这直线叫做 旋转轴.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆柱
2019/11/21
圆锥
图6-2-9
第六章 定积分的应用
圆台
13
一 般 地 , 如 果 旋 转 体 是 由 连 续 曲 线 yf(x)、
直 线 xa、 xb及 x轴 所 围 成 的 曲 边 梯 形 绕
x轴 旋 转 一 周 而 成 的 立 体 , 体 积 为 多 少 ?
取积分变量为x, y
Vx
2ay2(x)dx
0
o
A
a 2a x
图6-2-14(1)
2 a 2 (1 cto )2a s (1 cto )dst 0
a 32 ( 1 3 cto 3 c s2 o t c s3 o t) ds t 52a3. 0
2019/11/21
第六章 定积分的应用
14
例 7 连接坐标原点O 及点 P(h, r)的直线、直线
x h及 x轴围成一个直角三角形.将它绕 x轴旋
转构成一个底半径为r 、高为h的圆锥体,计算
圆锥体的体积.
y
P
解 直线 OP方程为
y r x
o
h
r
h
x
取积分变量为x, x[0,h]
图6-2-11
在 [ 0 ,h ] 上 任 取 小 区 间 [ x ,x d ] , x
以 对 应 小 切 线 段 的 长 代 替 小 弧 段 的 长
小 切 线 段 的 长(dx)2(d)y2 1y2dx
弧长元素 ds 1y2dx弧长 s b 1y2dx. a
2019/11/21
第六章 定积分的应用
26
例 12
计算曲线
y

2
x
3 2
上相应于
x 从a 到b 的一
2019/11/21
第六章 定积分的应用
y x2 b a2

y2 b2
1
o
ax
图6-2-5
9
2.极坐标情形
d
设由曲线 ( )及射线 、 围成一曲边扇
()
d
形,求其面积.这里, ( )
在[ , ]上连续,且 ( ) 0.
dV A (x)d,x 立体体积
V
b
A(x)dx.
a
2019/11/21
第六章 定积分的应用
22
例 10 一平面经过半径为 R的圆柱体的底圆中
心,并与底面交成角 ,计算这平面截圆柱体所
得立体的体积.
解 取坐标系如图
R
底圆方程为
o
y
垂 直 x于 2x 轴 y2的 截 R面 2 为 直 角 三 角 形 xR x图6-2-16
V
aaa32
2
x3
3
dx
32 a3 105
.
2019/11/21
第六章 定积分的应用
17
类似地,如果旋转体是由连续曲线
x (y)、直线y c、y d 及y 轴所围
成的曲边梯形绕y 轴旋转一周而成的立体,
体积为 y
V d [(y)]2dy c
成 的 图 形 的 面 积 .
解 解方程组
y2 2x y x4
得两曲线的交点为
(2,2), (8,4).
选 y为积分变量 y[2,4]
dAy4y2dy

2
2019/11/21
第六章 定积分的应用
6
所求面积为
A
42
y4
y2 2
dy
2y
2019/11/21
第六章 定积分的应用
8
例 4 求 椭 圆 a x 2 2 b y 2 2 1 的 面 积 .

椭圆的参数方程

x y

a cost bsint
由对称性知总面积等于4倍第一象限部分面积.
A40a
ydx40bsin td(acot)s
2

4ab2sin2tdt a.b 0
o a xxxb x
图6-2-1(1)
o a xx b x
图6-2-1(2)
曲边梯形的面积
Aabf(x)dx
曲边梯形的面积
b
Aa[f2(x)f1(x)d ] x
2019/11/21
第六章 定积分的应用
2
例 1计 算 由 两 条 抛 物 线 y2x和 yx2所 围 成 的
图 形 的 面 积 .
第二节
定积分在几何上的应用
(Application of the Definite Integral to Geometry)
一、平面图形的面积 二、体积 三、平面曲线的弧长 四、小结
2019/11/21
第六章 定积分的应用
1
一、平面图形的面积
1.直角坐标情形
y yf(x)
y
yf2(x)
yf1(x)
o x Rx
垂 直 于 x 轴 的 截 面 为 等 腰 三 角 形 图6-2-17
截面面积 A (x ) h y hR 2 x 2
立体体积
VhR R
R2x2dx 1 R2h. 2
2019/11/21
第六章 定积分的应用
24
三、平面曲线的弧长
设 A、 B是 曲 线 弧 上 的 两y
解 两曲线的交点
(0,0) (1,1) 选 x为积分变量 x[0,1]
面积元素 dA ( xx2)dx
A01(
xx2)dx 32
3
x2

x3 3
1 0
1 3
.
2019/11/21
第六章 定积分的应用
3
例 2 计 算 由 曲 线 yx36x和 yx2所 围 成
的 图 形 的 面 积 .
4
于是所求面积 AA 1A2
A 02(x36xx2)d x03(x2x36x)dx
253 . 12
说明:注意各积分区间上被积函数的形式.
问题:积分变量只能选 x吗?
2019/11/21
第六章 定积分的应用
5
例 3 计 算 由 曲 线 y22x和 直 线 yx4所 围
第六章 定积分的应用
19
y
2a C
B xx2(y)
绕 y 轴 旋 转 的 旋 转 体 体 积xx1(y)
o a
A
2a
x
可看作平面图OABC与OBC
图6-2-14(2)
分别绕y轴旋转构成旋转体的体积之差.
Vy

2ax22 (y)d y
0

2ax12(y)dy
0
a2(tsit)n 2asitn dt
2019/11/21
第六章 定积分的应用
15
以 d为 底 x 的 窄 边 梯 形 绕 x 轴 旋 转 而 成 的 薄 片 的
体 积 为
dVhr x2dx
y
o
圆 锥 体 的 体 积
P
r
h
x
图6-2-11
V
0hhr x2dx
r 2 h2
x3 h 3 0
4y
y6 6
4 2
18
2019/11/21
第六章 定积分的应用
7
如果曲边梯形的曲边为参数方程
x y


(t) (t)
曲边梯形的面积 A t2(t)(t)d.t t1
( 其 中 t 1 和 t 2 对 应 曲 线 起 点 与 终 点 的 参 数 值 )
在 [t1,t2]( 或 [t2,t1]) 上 x(t)具 有 连 续 导 数 , y(t)连 续 .
面积元素 dA1[()]2d o x
2
曲边扇形的面积 A 1[()2]d.
图6-2-6
2
2019/11/21
第六章 定积分的应用
10
例 5 求 双 纽 线 2a2co 2 所 s围 平 面 图 形
的 面 积 .
解 由对称性知总面积=4倍第 一象限部分面积
A4A1
yf(x)
x[a,b]
在[a,b]上任取小区o
x xdx
x
间[x,xdx],
图6-2-10
取 以 d为 底 x 的 窄 边 梯 形 绕 x 轴 旋 转 而 成 的 薄
片 的 体 积 为 体 积 元 素 , dV [f(x)2 ]dx
旋转体的体积为 V b[f(x)]2dx a
2019/11/21
2 a2(tsit)n 2asitn dt 0
a3 2(tsit)n 2sitn dt63a3. 0
2019/11/21
第六章 定积分的应用
20
补充 如果旋转体是由连续曲线y f(x)、 直线xa、xb及x轴所围成的曲边梯形绕 y轴旋转一周而成的立体,体积为2co2sd
2
a2.
yx
A1
2a2co2s 图6-2-7
2019/11/21
第六章 定积分的应用
11
例 6 求心形线 a(1 cos )所围平面图形的
面积(a > 0).
解 dA 1a2(1co)s2d
2
利用对称性知
a1cos
d
此折线的长 | Mi1Mi |的极限存在,
i 1
则称此极限为曲线弧 AB的弧长.
2019/11/21
第六章 定积分的应用
25
1.直角坐标情形
y
设曲线弧为y f(x)
(a xb),其中f(x)
在[a,b]上有一阶连续导数
dy dx
取 积 分 变 量 为 x, 在 [a,b] o a x xdxb x 上 任 取 小 区 间 [x,xd]x , 图6-2-19
相关文档
最新文档