数字信号处理 实验四 IIR数字滤波器设计及软件实现

合集下载

实验四IIR数字滤波器的设计实验报告

实验四IIR数字滤波器的设计实验报告

实验四I I R数字滤波器的设计实验报告Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】数字信号处理实验报告实验四 IIR数字滤波器的设计学生姓名张志翔班级电子信息工程1203班学号指导教师实验四 IIR数字滤波器的设计一、实验目的:1. 掌握双线性变换法及脉冲响应不变法设计IIR数字滤波器的具体设计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR数字滤波器的MATLAB编程。

2. 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。

3. 熟悉Butterworth滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。

二、实验原理:1.脉冲响应不变法用数字滤波器的单位脉冲响应序列模仿模拟滤波器的冲激响应 ,让正好等于的采样值,即,其中为采样间隔,如果以及分别表示的拉式变换及的Z变换,则2.双线性变换法S平面与z平面之间满足以下映射关系:s平面的虚轴单值地映射于z平面的单位圆上,s平面的左半平面完全映射到z平面的单位圆内。

双线性变换不存在混叠问题。

双线性变换是一种非线性变换,这种非线性引起的幅频特性畸变可通过预畸而得到校正。

三、实验内容及步骤:实验中有关变量的定义:fc 通带边界频率; fr阻带边界频率;δ通带波动;At 最小阻带衰减; fs采样频率; T采样周期(1) =, δ=, =, At =20Db,T=1ms;设计一个切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。

MATLAB源程序:wp=2*1000*tan(2*pi*300/(2*1000));ws=2*1000*tan(2*pi*200/(2*1000));[N,wn]=cheb1ord(wp,ws,,20,'s'); %给定通带(wp)和阻带(ws)边界角频率,通带波动波动,阻带最小衰减20dB,求出最低阶数和通带滤波器的通带边界频率Wn[B,A]=cheby1(N,,wn,'high','s');%给定通带(wp)和阻带(ws)边界角频率,通带波动[num,den]=bilinear(B,A,1000);[h,w]=freqz(num,den);f=w/(2*pi)*1000;plot(f,20*log10(abs(h)));axis([0,500,-80,10]);grid;xlabel('频率');ylabel('幅度/dB')程序结果num =den = 1系统函数:123412340.0304 -0.1218z 0.1827z-0.1218z0.0304z H(z)=1.0000+1.3834z+1.4721z+ 0.8012z+0.2286z--------++幅频响应图:分析:由图可知,切比雪夫滤波器幅频响应是通带波纹,阻带单调衰减的。

数字信号处理实验报告四--IIR数字滤波器设计及软件实现

数字信号处理实验报告四--IIR数字滤波器设计及软件实现

实验四 IIR数字滤波器设计及软件实现姓名:班级:学号:一、实验目的(1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法;(2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。

(3)掌握IIR数字滤波器的MATLAB实现方法。

(3)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。

二、实验原理与方法设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。

基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。

MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。

第六章介绍的滤波器设计函数butter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。

本实验要求读者调用如上函数直接设计IIR数字滤波器。

本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。

三、实验内容及步骤(1)调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线,如图10.4.1所示。

由图可见,三路信号时域混叠无法在时域分离。

但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。

-10123t/ss (t )(a) s(t)的波形(b) s(t)的频谱f/Hz幅度图10.4.1三路调幅信号st 的时域波形和幅频特性曲线(2)要求将st 中三路调幅信号分离,通过观察st 的幅频特性曲线,分别确定可以分离st 中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。

IIR数字滤波器的设计及软件实现

IIR数字滤波器的设计及软件实现

IIR数字滤波器的设计及软件实现IIR数字滤波器(Infinite Impulse Response Digital Filter)是一种常用于信号处理的数字滤波器。

与FIR(Finite Impulse Response)滤波器不同,IIR滤波器的输出取决于过去的输入样本和输出样本。

1.确定滤波器的类型:根据实际应用需求选择低通滤波器、高通滤波器、带通滤波器或带阻滤波器。

2.确定滤波器的阶数:阶数决定了滤波器的频率响应特性的陡峭程度。

一般来说,阶数越高,滤波器的频率响应特性越陡峭。

阶数的选择需要权衡计算复杂度和滤波器性能。

3.设计滤波器的传递函数:传递函数是描述滤波器输入和输出之间关系的数学表达式。

传递函数可以通过频率响应要求来确定。

4.选择滤波器设计方法:针对不同的频率响应要求,可以选择不同的滤波器设计方法,如巴特沃斯方法、切比雪夫方法、椭圆方法等。

5.设计滤波器的参数:根据滤波器的传递函数和设计方法,计算滤波器的系数。

这些系数可以用于实现滤波器。

软件实现的步骤如下:1. 选择合适的软件平台:根据实际需求,选择适合的软件平台,如MATLAB、Python等。

2. 导入相关的滤波器设计库:选择合适的滤波器设计库,如MATLAB的Signal Processing Toolbox、Python的scipy.signal等。

3.使用滤波器设计函数:根据选择的滤波器设计方法,使用相应的函数进行滤波器设计。

这些函数可以根据输入的参数计算出滤波器的系数。

4.实现滤波器:使用得到的滤波器系数,将其用于滤波器的实现。

可以使用滤波器函数对信号进行滤波操作。

5.评估滤波器性能:根据实际应用需求,对滤波器的性能进行评估。

可以通过比较滤波器的输出和期望的输出,或者通过分析滤波器的频率响应特性来评估滤波器的性能。

需要注意的是,IIR数字滤波器的设计和实现过程可能相对复杂,需要一定的信号处理和数学基础。

在实际应用中,可以借助已有的滤波器设计库和工具来简化设计和实现过程。

实验四IIR数字滤波器的设计数字信号处理DSP

实验四IIR数字滤波器的设计数字信号处理DSP

实验四IIR数字滤波器的设计数字信号处理DSP
IIR数字滤波器是一种基于无限脉冲响应(Infinite Impulse Response)的数字滤波器。

相比于FIR(有限脉冲响应)滤波器,IIR滤
波器具有更低的复杂度和更快的响应速度,但可能会引入一定的稳定性问题。

设计IIR数字滤波器的一般步骤如下:
1.确定滤波器的规格:包括截止频率、通带增益、阻带衰减等参数。

这些参数将直接影响到滤波器的设计和性能。

2.选择滤波器结构:常见的IIR滤波器结构包括直接型I和II结构、级联型结构、并行型结构等。

选择适当的结构取决于滤波器的性能要求和
计算复杂度。

3. 选择滤波器的类型:根据滤波器的设计规格,可以选择巴特沃斯(Butterworth)、切比雪夫(Chebyshev)、椭圆(Elliptic)等不同类
型的IIR滤波器。

4.滤波器设计:根据所选择的滤波器类型和规格,设计滤波器的传递
函数。

可以借助MATLAB等工具进行数值计算和优化。

5.模拟滤波器转为数字滤波器:将设计好的IIR滤波器转换为数字滤
波器。

可以使用双线性变换等方法来实现。

6.实现滤波器:根据转换后的数字滤波器的差分方程,编写相应的代
码来实现滤波器功能。

7.评估滤波器性能:对设计好的IIR数字滤波器进行性能评估,包括
幅频响应、相频响应、群延迟等指标。

8.优化滤波器性能:根据实际情况,对滤波器的设计参数进行优化,以获得更好的性能。

以上是设计IIR数字滤波器的一般步骤,具体的设计方法和过程还需要根据实际情况进行调整。

实验四IIR数字滤波器设计实验报告

实验四IIR数字滤波器设计实验报告

实验四IIR数字滤波器设计实验报告
为了实现信号的滤波处理,IIR(或称为滤波器)数字滤波器是一种常用的信号处理
技术。

本次实验就是探究IIR数字滤波器的设计和分析。

在实验开始前,对于IIR数字滤波器有所了解,它是一种无限级别功能的数字滤波器,其功能强大,可以实现任意自定义系数的滤波器。

在预处理实验中,便首先采用Matlab
工具搭建了IIR数字滤波器的框架,考虑到本次滤波处理内容,本次采用的是Chebyshev
类型的等离子体,其滤波效果要求超过50dB,进一步完善了对于设计工作的要求。

经过Chebyshev Type I等离子体的设计,确定了系统的结构,并设定了15个滤波器,接着从设定的各项参量入手,从而确定系统各项参量,运用梯形图确定根位置,并使用MATLAB中的filter函数进行系统模拟,得到经历处理后系统输出信号与未经处理时对比,结果显示滤波效果达到了相应预期要求。

在实验中,IIR数字滤波器的设计让我深刻体会到了系统滤波的重要性以及十分强大
的功能。

而它的实现,又显示了精确的数字处理技术在信号处理中的重要作用,使得研究
信号处理时,得以有效和准确地对信号进行分辨和滤波处理。

实验四IIR数字滤波器设计及软件实现

实验四IIR数字滤波器设计及软件实现

实验四IIR数字滤波器设计及软件实现实验四涉及IIR数字滤波器设计及软件实现。

IIR数字滤波器是一种基于IIR(Infinite Impulse Response)的滤波器,采用了反馈结构,具有无限长的脉冲响应。

与FIR(Finite Impulse Response)数字滤波器相比,IIR数字滤波器具有更高的灵活性和更小的计算复杂度。

IIR数字滤波器的设计可以通过以下步骤进行:
1.确定滤波器的类型:低通、高通、带通或带阻。

2.确定滤波器的阶数:滤波器的阶数决定了其频率响应的陡峭程度。

3.设计滤波器的传递函数:传递函数是滤波器的数学模型,可以通过多种方法进行设计,如巴特沃斯、切比雪夫等。

4.将传递函数转换为差分方程:差分方程是IIR数字滤波器的实现形式,可以通过对传递函数进行离散化得到。

5.实现差分方程:差分方程可以通过递归运算的方式实现,使用递归滤波器结构。

IIR数字滤波器的软件实现可以使用各种数学软件或程序语言进行。

常见的软件实现语言包括MATLAB、Python等。

这些语言提供了丰富的数字信号处理库和函数,可以方便地实现IIR数字滤波器。

在软件实现中,需要将差分方程转换为计算机程序,然后输入待滤波的数字信号,并输出滤波后的信号。

此外,还可以对滤波器的参数进行调整,以达到满足特定滤波要求的效果。

总结起来,实验四的内容是设计和实现IIR数字滤波器,通过软件工具进行滤波效果的验证。

这是数字信号处理领域中常见的实验任务,可以帮助学生掌握IIR数字滤波器的设计和实现方法。

IIR数字滤波器设计及软件实现[1]

IIR数字滤波器设计及软件实现[1]

IIR数字滤波器设计及软件实现[1]IIR数字滤波器是一种常见的数字滤波器类型,它利用数字信号处理技术对信号进行滤波,广泛应用于信号处理、音频处理、图像处理等领域。

本文将介绍IIR数字滤波器的设计方法和软件实现。

一、IIR数字滤波器的基本原理IIR数字滤波器是一种基于递归算法的数字滤波器,它可以用于对离散时间信号进行滤波。

具体而言,IIR数字滤波器是由一组差分方程组成的,其中包括有限冲激响应(FIR)和无限冲激响应(IIR)数字滤波器两种类型。

与FIR数字滤波器不同的是,IIR数字滤波器是具有无限冲激响应的性质,因此可以实现更高阶的滤波效果。

IIR数字滤波器可以用如下的一阶滤波器来进行递归实现:y(n) = a1 * y(n-1) + a0 * x(n) - b1 * x(n-1)其中,x(n)表示输入信号,y(n)表示输出信号,a0、a1、b1是滤波器的系数。

这种一阶滤波器可以通过级联组合来构成更高阶的滤波器,形成一系列级联的一阶滤波器。

1.滤波器类型的选择在开始设计IIR数字滤波器之前,需要先确定所需的滤波器类型,即低通滤波器、高通滤波器、带通滤波器或带阻滤波器等。

各种类型的滤波器的特点及应用范围不同,需要根据具体需求进行选择。

2.设计滤波器参数确定了滤波器类型之后,需要根据要求的滤波器截止频率、带宽、通带衰减等参数来确定滤波器的系数。

一般可以采用Butterworth滤波器设计方法、Chebyshev滤波器设计方法或Elliptic滤波器设计方法等常见方法来进行设计。

3.验证设计结果设计出的IIR数字滤波器需要进行验证,可以采用MATLAB等数字信号处理软件进行仿真测试,进行频率响应、相位响应、群延迟等分析,以确保设计结果满足要求。

IIR数字滤波器的实现可以采用MATLAB、Python等数字信号处理工具,也可以使用C 语言来进行程序设计。

下面以MATLAB为例,介绍IIR数字滤波器的实现。

(整理)实验四IIR数字滤波器的设计.

(整理)实验四IIR数字滤波器的设计.

实验四 IIR 数字滤波器的设计一:实验目的1. 掌握双线性变换法及脉冲响应不变法设计IIR 数字滤波器的具体设计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR 数字滤波器的MATLAB 编程。

2. 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。

3. 熟悉Butterworth 滤波器、Chebyshev 滤波器和椭圆滤波器的频率特性。

二:实验原理:1. 脉冲响应不变法用数字滤波器的单位脉冲响应序列)(n h 模仿模拟滤波器的冲激响应)(t h a ,让)(n h 正好等于)(t h a 的采样值,即)()(nT h n h a =,其中T 为采样间隔,如果以)(s H a 及)(z H 分别表示)(t h a 的拉式变换及)(n h 的Z 变换,则)2(1)(m Tj s H T z H m a e z sT ∑∞-∞==+=π2.双线性变换法S 平面与z 平面之间满足以下映射关系:);(,2121,11211ωωσj re z j s sT s T z z z T s =+=-+=+-⋅=-- s 平面的虚轴单值地映射于z 平面的单位圆上,s 平面的左半平面完全映射到z 平面的单位圆内。

双线性变换不存在混叠问题。

双线性变换是一种非线性变换,这种非线性引起的幅频特性畸变可通过预畸而得到校正。

IIR 低通、高通、带通数字滤波器设计采用双线性原型变换公式::以低通数字滤波器为例,将设计步骤归纳如下:1. 确定数字滤波器的性能指标:通带临界频率c f 、阻带临界频率r f 、通带波动δ、阻带内的最小衰减At 、采样周期T 、采样频率s f ;2. 确定相应的数字角频率 T f c c πω2=;T f r r πω2=;3. 计算经过预畸的相应模拟低通原型的频率)2(2c c tg T ω=Ω,)2(2r r tg T ω=Ω; 4. 根据Ωc 和Ωr 计算模拟低通原型滤波器的阶数N ,并求得低通原型的传递函数)(s H a ; 5. 用上面的双线性变换公式代入)(s H a ,求出所设计的传递函数)(z H ; 6. 分析滤波器特性,检查其指标是否满足要求。

IIR数字滤波器设计及软件实现

IIR数字滤波器设计及软件实现

IIR数字滤波器设计及软件实现实验一:IIR数字滤波器设计及软件实现一、实验指导1.实验目的(1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法;(2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。

(3)掌握IIR数字滤波器的MATLAB实现方法。

(3)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。

2.实验原理设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。

基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。

MATLAB 信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。

第六章介绍的滤波器设计函数butter、cheby1 、cheby2 和ellip 可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。

本实验要求读者调用如上函数直接设计IIR数字滤波器。

本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。

3. 实验内容及步骤(1)调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线,如图1所示。

由图可见,三路信号时域混叠无法在时域分离。

但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。

图1 三路调幅信号st的时域波形和幅频特性曲线(2)要求将st中三路调幅信号分离,通过观察st 的幅频特性曲线,分别确定可以分离st 中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。

实验四 IIR数字滤波器的设计

实验四  IIR数字滤波器的设计

电气与信息工程学院数字信号处理实验报告学生姓名班级电子信息工程学号指导教师2019.12实验四 IIR 数字滤波器的设计一、实验目的:1. 掌握双线性变换法及脉冲响应不变法设计IIR 数字滤波器的具体设计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR 数字滤波器的MATLAB 编程。

2. 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。

3. 熟悉巴特沃思滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。

二、实验原理:1. 脉冲响应不变法用数字滤波器的单位脉冲响应序列 模仿模拟滤波器的冲激响应 ,让 正好等于 的采样值,即 ,其中 为采样间隔,如果以 及 分别表示 的拉式变换及 的Z 变换,则)2(1)(m T j s H T z H m a e z sT ∑∞-∞==+=π2.双线性变换法S 平面与z 平面之间满足以下映射关系:);(,2121,11211ωωσj re z j s s T s T z z z T s =+=-+=+-⋅=-- s 平面的虚轴单值地映射于z 平面的单位圆上,s 平面的左半平面完全映射到z 平面的单位圆内。

双线性变换不存在混叠问题。

双线性变换是一种非线性变换,这种非线性引起的幅频特性畸变可通过预畸而得到校正。

三、实验内容及步骤:实验中有关变量的定义:fc 通带边界频率;fr阻带边界频率;δ通带波动;At 最小阻带衰减;fs采样频率;T采样周期上机实验内容:(1)fc=0.3KHz,δ=0.8dB,fr=0.2KHz, At=20dB,T=1ms;设计一个切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。

MATLAB源程序:wp=2*1000*tan(2*pi*300/(2*1000));ws=2*1000*tan(2*pi*200/(2*1000));[N,wn]=cheb1ord(wp,ws,0.8,20,'s'); %给定通带(wp)和阻带(ws)边界角频率,通带波动波动0.8,阻带最小衰减20dB,求出最低阶数和通带滤波器的通带边界频率Wn[B,A]=cheby1(N,0.5,wn,'high','s');%给定通带(wp)和阻带(ws)边界角频率,通带波动[num,den]=bilinear(B,A,1000);[h,w]=freqz(num,den);f=w/(2*pi)*1000;plot(f,20*log10(abs(h)));axis([0,500,-80,10]);grid;xlabel('频率');ylabel('幅度/dB')程序结果num = 0.0304 -0.1218 0.1827 -0.1218 0.0304 den = 1 1.3834 1.4721 0.8012 0.2286系统函数:123412340.0304 -0.1218z 0.1827z-0.1218z0.0304z H(z)=1.0000+1.3834z+1.4721z+ 0.8012z+0.2286z--------++幅频响应图:分析:由图可知,切比雪夫滤波器幅频响应是通带波纹,阻带单调衰减的。

实验四IIR数字滤波器的设计实验报告

实验四IIR数字滤波器的设计实验报告

数字信号处理实验报告实验四 IIR数字滤波器的设计学生姓名张志翔班级电子信息工程1203班学号指导教师实验四 IIR数字滤波器的设计一、实验目的:1. 掌握双线性变换法及脉冲响应不变法设计IIR数字滤波器的具体设计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR数字滤波器的MATLAB编程。

2. 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。

3. 熟悉Butterworth滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。

二、实验原理:1.脉冲响应不变法用数字滤波器的单位脉冲响应序列模仿模拟滤波器的冲激响应 ,让正好等于的采样值,即,其中为采样间隔,如果以及分别表示的拉式变换及的Z变换,则2.双线性变换法S平面与z平面之间满足以下映射关系:s平面的虚轴单值地映射于z平面的单位圆上,s平面的左半平面完全映射到z平面的单位圆内。

双线性变换不存在混叠问题。

双线性变换是一种非线性变换,这种非线性引起的幅频特性畸变可通过预畸而得到校正。

三、实验内容及步骤:实验中有关变量的定义:fc 通带边界频率; fr阻带边界频率;δ通带波动;At 最小阻带衰减;fs采样频率; T采样周期(1) =0.3KHz, δ=0.8Db, =0.2KHz, At =20Db,T=1ms;设计一个切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。

MATLAB源程序:wp=2*1000*tan(2*pi*300/(2*1000));ws=2*1000*tan(2*pi*200/(2*1000));[N,wn]=cheb1ord(wp,ws,0.8,20,'s'); %给定通带(wp)和阻带(ws)边界角频率,通带波动波动0.8,阻带最小衰减20dB,求出最低阶数和通带滤波器的通带边界频率Wn[B,A]=cheby1(N,0.5,wn,'high','s');%给定通带(wp)和阻带(ws)边界角频率,通带波动[num,den]=bilinear(B,A,1000);[h,w]=freqz(num,den);f=w/(2*pi)*1000;plot(f,20*log10(abs(h)));axis([0,500,-80,10]);grid;xlabel('频率');ylabel('幅度/dB')程序结果num = 0.0304 -0.1218 0.1827 -0.1218 0.0304 den = 1 1.3834 1.4721 0.8012 0.2286系统函数:123412340.0304 -0.1218z 0.1827z-0.1218z0.0304z H(z)=1.0000+1.3834z+1.4721z+ 0.8012z+0.2286z--------++幅频响应图:分析:由图可知,切比雪夫滤波器幅频响应是通带波纹,阻带单调衰减的。

实验四IIR数字滤波器设计及软件实现

实验四IIR数字滤波器设计及软件实现

实验四IIR数字滤波器设计及软件实现IIR数字滤波器是一种重要的信号处理工具,常用于音频处理、图像处理、通信系统等领域。

本实验旨在通过软件实现IIR数字滤波器的设计和使用。

实验目标:1.了解IIR数字滤波器的基本原理和结构。

2. 学会使用Matlab等软件工具进行IIR数字滤波器设计和模拟。

实验步骤:1.确定滤波器的要求:包括滤波器的类型(低通、高通、带通、带阻)、通带和阻带的频率范围、通带和阻带的衰减要求等。

2.根据滤波器的要求选择适合的设计方法:常见的设计方法包括脉冲响应、巴特沃斯、切比雪夫、椭圆等。

3. 使用Matlab等软件工具进行滤波器设计:根据选择的设计方法,使用相应的函数或工具箱进行滤波器的设计。

4.评估滤波器性能:通过频率响应曲线、幅频特性、相频特性等评估滤波器的性能,比如阻带衰减、通带波动等。

5.应用滤波器:将设计好的滤波器应用到实际信号中,观察滤波效果。

6.优化滤波器性能(可选):根据实际应用需求,对滤波器的设计进行调整和优化。

实验注意事项:1.在进行滤波器设计时,要根据实际应用需求选择合适的滤波器类型和设计方法。

2.在评估滤波器性能时,要对设计结果进行全面的分析,包括滤波器的频率响应、幅频特性、相频特性等。

3.在实际应用过程中,可以根据实际需求对设计结果进行优化和调整,以达到更好的滤波效果。

参考资料:1.陈志骏等编著,《信号与系统实验指导书》。

2. Proakis, J. G., & Manolakis, D. G. (1996). Digital signal processing: principles, algorithms, and applications. Pearson Education India.。

实验四IIR数字滤波器设计及软件实现实验报告

实验四IIR数字滤波器设计及软件实现实验报告

实验四IIR数字滤波器设计及软件实现实验报告一、实验目的(1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法;(2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。

(3)掌握IIR数字滤波器的MATLAB实现方法。

(3)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。

二、实验原理设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。

基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。

MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。

第六章介绍的滤波器设计函数butter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。

本实验要求读者调用如上函数直接设计IIR数字滤波器。

本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。

三、实验内容及步骤(1)调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线,如图10.4.1所示。

由图可见,三路信号时域混叠无法在时域分离。

但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。

图10.4.1三路调幅信号st的时域波形和幅频特性曲线(2)要求将st中三路调幅信号分离,通过观察st的幅频特性曲线,分别确定可以分离st中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。

要求滤波器的通带最大衰减为0.1dB,阻带最小衰减为60dB。

实验四IIR数字滤波器设计及软件实现实验报告

实验四IIR数字滤波器设计及软件实现实验报告

实验四IIR数字滤波器设计及软件实现实验报告
摘要
本报告介绍了有关IIR数字滤波器设计的实验,以及使用MATLAB进
行的软件实施验证实验。

实验结果表明,IIR滤波器的设计和实施过程中,模糊C不做任何处理,也能实现意料之外的良好滤波效果。

1.介绍
本文介绍了实验四的IIR数字滤波器设计与软件实现实验。

在完成本
实验之前,学生完成了实验一,实验二和实验三,分别设计了低通滤波器、带通滤波器和高通滤波器。

在本实验中,学生将总结前三个实验的知识,
设计和实施一个二阶高通滤波器,以及一个四阶带阻滤波器。

2.实验方法
本实验使用了MATLAB编程语言,用于设计和实施IIR滤波器,包括
一个二阶的高通滤波器和一个四阶的带阻滤波器。

首先,选择预定义的滤
波器系统函数,并调整其参数,以实现特定的滤波器性能。

然后,针对调
整好的滤波器,编写MATLAB代码,实施设计的滤波器。

3.实验结果
(1)二阶高通滤波器
二阶高通滤波器的设计参数如下:
参数,值
-----------------,----------
截止频率,0.25Hz
最小插入损耗,0dB 最大衰减率,40dB。

实验四-IIR数字滤波器的设计实验报告

实验四-IIR数字滤波器的设计实验报告

实验四-IIR数字滤波器的设计实验报告数字信号处理实验报告实验四 IIR数字滤波器的设计学生姓名张志翔班级电子信息工程1203班学号12401720522指导教师2015.4.29实验四 IIR 数字滤波器的设计一、实验目的:1. 掌握双线性变换法及脉冲响应不变法设计IIR 数字滤波器的具体设计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR 数字滤波器的MATLAB 编程。

2. 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。

3. 熟悉Butterworth 滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。

二、实验原理: 1. 脉冲响应不变法用数字滤波器的单位脉冲响应序列 模仿模拟滤波器的冲激响应 ,让 正好等于 的采样值,即 ,其中 为采样间隔,如果以 及 分别表示 的拉式变换及 的Z 变换,则)2(1)(m T j s H T z H m a e z sT ∑∞-∞==+=π2.双线性变换法S 平面与z 平面之间满足以下映射关系:);(,2121,11211ωωσj re z j s sT s T z z z T s =+=-+=+-⋅=--s 平面的虚轴单值地映射于z 平面的单位圆上,s 平面的左半平面完全映射到z 平面的单位圆内。

双线性变换不存在混叠问题。

双线性变换是一种非线性变换,这种非线性引起的幅频特性畸变可通过预畸而得到校正。

三、实验内容及步骤:实验中有关变量的定义:fc 通带边界频率; fr阻带边界频率;δ通带波动;At 最小阻带衰减; fs采样频率; T采样周期(1) =0.3KHz, δ=0.8Db, =0.2KHz, At =20Db,T=1ms;设计一个切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。

MATLAB源程序:wp=2*1000*tan(2*pi*300/(2*1000));ws=2*1000*tan(2*pi*200/(2*1000));[N,wn]=cheb1ord(wp,ws,0.8,20,'s'); %给定通带(wp)和阻带(ws)边界角频率,通带波动波动0.8,阻带最小衰减20dB,求出最低阶数和通带滤波器的通带边界频率Wn[B,A]=cheby1(N,0.5,wn,'high','s');%给定通带(wp)和阻带(ws)边界角频率,通带波动[num,den]=bilinear(B,A,1000);[h,w]=freqz(num,den);f=w/(2*pi)*1000;plot(f,20*log10(abs(h)));axis([0,500,-80,10]);grid;xlabel('频率');ylabel('幅度/dB')程序结果num = 0.0304 -0.1218 0.1827 -0.1218 0.0304 den = 1 1.3834 1.4721 0.8012 0.2286系统函数:123412340.0304 -0.1218z 0.1827z-0.1218z0.0304z H(z)=1.0000+1.3834z+1.4721z+ 0.8012z+0.2286z--------++幅频响应图:分析:由图可知,切比雪夫滤波器幅频响应是通带波纹,阻带单调衰减的。

实验四IIR数字滤波器的设计

实验四IIR数字滤波器的设计

实验四IIR数字滤波器的设计实验四IIR数字滤波器的设计⼀.实验⽬的(1)掌握双线性变换法及脉冲相应不变法设计IIR数字滤波器的具体设计⽅法及其原理,熟悉⽤双线性变换法及脉冲响应不变法设计低通、⾼通和带通IIR数字滤波器的计算机编程。

(2)观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。

(3)熟悉巴特沃思滤波器、切⽐雪夫滤波器和椭圆滤波器的频率特性。

⼆.实验内容(1)f c=0.3kHz,δ=0.8dB,f r=0.2kHz,At=20dB,T=1ms;设计⼀切⽐雪夫⾼通滤波器,观察其通带损耗和阻带衰减是否满⾜要求。

clear all;wc=2*pi*300;wr=2*pi*200;rp=0.8;rs=20;[N,wn]=cheb1ord(wc,wr,rp,rs,'s');[num,den]=cheby1(N,rp,wn,'high','s');omega=[0:200:2000*pi];h=freqs(num,den,omega);gain=20*log10(abs(h));plot(omega/(2*pi),gain);axis([0,800,-80,10]);grid;xlabel('Frequency in Hz');ylabel('Gain in dB');title('切⽐雪夫模拟⾼通滤波器');分析:(2)f c=0.2kHz,δ=1dB,f r=0.3kHz,At=25dB,T=1ms;分别⽤脉冲响应不变法及双线性变换法设计⼀巴特沃思数字低通滤波器,观察所设计数字滤波器的幅频特性曲线,记录带宽和衰减量,检查是否满⾜要求。

⽐较这两种⽅法的优缺点。

clear all;wc=2*pi*200;wr=2*pi*300;rp=1;rs=25;fs=1000;[N,wn]=buttord(wc,wr,rp,rs,'s');[B,A]=butter(N,wn,'s');[num1,den1]=impinvar(B,A,fs);%脉冲相应不变法[h1,w]=freqz(num1,den1);w1=2*fs*tan(wc/(2*fs));w2=2*fs*tan(wr/(2*fs));[N,wn]=buttord(w1,w2,rp,rs,'s')[B,A]=butter(N,wn,'s');[num2,den2]=bilinear(B,A,fs);%双线性变换法[h2,w]=freqz(num2,den2);f=w/pi*500;plot(f,20*log10(abs(h1)),'-.',f,20*log10(abs(h2)),'-');axis([0,500,-80,10]);grid;xlabel('Frequency in Hz');ylabel('Gain in dB');title('巴特沃思数字低通滤波器');legend('脉冲相应不变法','双线性变换法',1);分析:(3)利⽤双线性变换法分别设计满⾜下列指标的巴特沃思型、切⽐雪夫型和椭圆型数字低通滤波器,并作图验证设计结果:f c=1.2kHz,δ≤0.5dB,f r=2kHz,,At≥40dB,f s=8kHz。

IIR数字滤波器设计及软件实现

IIR数字滤波器设计及软件实现

IIR数字滤波器设计及软件实现学号:姓名:实验时间:月日实验地点:指导老师:一.实验目的(1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法;(2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。

(3)掌握IIR数字滤波器的MATLAB实现方法.(4)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。

二.实验原理设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。

基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。

MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。

第六章介绍的滤波器设计函数butter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器.本实验要求读者调用如上函数直接设计IIR数字滤波器。

本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。

实验程序框图:三。

实验内容及步骤(1)调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线,如图1所示.由图可见,三路信号时域混叠无法在时域分离.但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。

主要程序:信号发生函数mstg清单:function st=mstgN=800;Fs=10000;T=1/Fs;Tp=N*T;t=0:T:(N—1)*T;k=0:N—1;f=k/Tp;fc1=Fs/10;fm1=fc1/10;fc2=Fs/20;fm2=fc2/10;fc3=Fs/40;fm3=fc3/10;xt1=cos(2*pi*fm1*t)。

IIR数字滤波器设计及软件实现之欧阳家百创编

IIR数字滤波器设计及软件实现之欧阳家百创编

实验四:IIR数字滤波器设计及软件实现一、欧阳家百(2021.03.07)二、实验原理与方法1、设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法,其基本设计过程是:(1)将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;(2)设计过渡模拟滤波器;(3)将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。

本实验的数字滤波器的MATLAB实现是指调用MATLAB 信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。

三、实验内容1、调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线,如图4.1所示。

由图可见,三路信号时域混叠无法在时域分离。

但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。

图4.1 三路调幅信号st (即s (t ))的时域波形和幅频特性曲线2、要求将st 中三路调幅信号分离,通过观察st 的幅频特性曲线,分别确定可以分离st 中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。

要求滤波器的通带最大衰减为0.1dB,阻带最小衰减为60dB 。

实验结果如图4.2,程序见附录4.2。

提示:抑制载波单频调幅信号的数学表示式为其中,cos(2)c f t π称为载波,fc 为载波频率,0cos(2)f t π称为单频调制信号,f0为调制正弦波信号频率,且满足0c f f >。

由上式可见,所谓抑制载波单频调幅信号,就是2个正弦信号相乘,它有2个频率成分:和频0c f f +和差频0c f f -,这2个频率成分关于载波频率fc 对称。

所以,1路抑制载波单频调幅信号的频谱图是关于载波频率fc 对称的2根谱线,其中没有载频成分,故取名为抑制载波单频调幅信号。

容易看出,图 4.1中三路调幅信号的载波频率分别为250Hz 、500Hz 、1000Hz 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字信号处理实验四 IIR数字滤波器设计及软件实现
(2009-05-31 07:53:29)
转载
分类:学习
标签:
教育
4.信号产生函数mstg清单
function st=mstg
%产生信号序列向量st,并显示st的时域波形和频谱
%st=mstg 返回三路调幅信号相加形成的混合信号,长度N=1600
N=1600 %N为信号st的长度。

Fs=10000;T=1/Fs;Tp=N*T; %采样频率Fs=10kHz,Tp为采样时间
t=0:T:(N-1)*T;k=0:N-1;f=k/Tp;
fc1=Fs/10; %第1路调幅信号的载波频率fc1=1000Hz,
fm1=fc1/10; %第1路调幅信号的调制信号频率fm1=100Hz
fc2=Fs/20; %第2路调幅信号的载波频率fc2=500Hz
fm2=fc2/10; %第2路调幅信号的调制信号频率fm2=50Hz
fc3=Fs/40; %第3路调幅信号的载波频率fc3=250Hz,
fm3=fc3/10; %第3路调幅信号的调制信号频率fm3=25Hz
xt1=cos(2*pi*fm1*t).*cos(2*pi*fc1*t); %产生第1路调幅信号
xt2=cos(2*pi*fm2*t).*cos(2*pi*fc2*t); %产生第2路调幅信号
xt3=cos(2*pi*fm3*t).*cos(2*pi*fc3*t); %产生第3路调幅信号
st=xt1+xt2+xt3; %三路调幅信号相加
fxt=fft(st,N); %计算信号st的频谱
%====以下为绘图部分,绘制st的时域波形和幅频特性曲线
====================
subplot(3,1,1)
plot(t,st);grid;xlabel('t/s');ylabel('s(t)');
axis([0,Tp/8,min(st),max(st)]);title('(a) s(t)的波形')
subplot(3,1,2)
stem(f,abs(fxt)/max(abs(fxt)),'.');grid;title('(b) s(t)的频谱')
axis([0,Fs/5,0,1.2]);
xlabel('f/Hz');ylabel('幅度')
(1)请阅读信号产生函数mstg,确定三路调幅信号的载波频率和调制信号频率。

(2)信号产生函数mstg中采样点数N=800,对st进行N点FFT可以得到6根理想谱线。

如果取N=1000,可否得到6根理想谱线?为什么?N=2000呢?请改变函数mstg中采样点数N的值,观察频谱图验证您的判断是否正确。

(3)修改信号产生函数mstg,给每路调幅信号加入载波成分,产生调幅(AM)信号,重复本实验,观察AM信号与抑制载波调幅信号的时域波形及其频谱的差别。

提示:AM信号表示式:。

相关文档
最新文档