数学建模美赛参考文献

合集下载

美国大学生数学建模竞赛优秀论文

美国大学生数学建模竞赛优秀论文

For office use onlyT1________________ T2________________ T3________________ T4________________Team Control Number7018Problem ChosencFor office use onlyF1________________F2________________F3________________F4________________ SummaryThe article is aimed to research the potential impact of the marine garbage debris on marine ecosystem and human beings,and how we can deal with the substantial problems caused by the aggregation of marine wastes.In task one,we give a definition of the potential long-term and short-term impact of marine plastic garbage. Regard the toxin concentration effect caused by marine garbage as long-term impact and to track and monitor it. We etablish the composite indicator model on density of plastic toxin,and the content of toxin absorbed by plastic fragment in the ocean to express the impact of marine garbage on ecosystem. Take Japan sea as example to examine our model.In ask two, we designe an algorithm, using the density value of marine plastic of each year in discrete measure point given by reference,and we plot plastic density of the whole area in varies locations. Based on the changes in marine plastic density in different years, we determine generally that the center of the plastic vortex is East—West140°W—150°W, South—North30°N—40°N. According to our algorithm, we can monitor a sea area reasonably only by regular observation of part of the specified measuring pointIn task three,we classify the plastic into three types,which is surface layer plastic,deep layer plastic and interlayer between the two. Then we analysis the the degradation mechanism of plastic in each layer. Finally,we get the reason why those plastic fragments come to a similar size.In task four, we classify the source of the marine plastic into three types,the land accounting for 80%,fishing gears accounting for 10%,boating accounting for 10%,and estimate the optimization model according to the duel-target principle of emissions reduction and management. Finally, we arrive at a more reasonable optimization strategy.In task five,we first analyze the mechanism of the formation of the Pacific ocean trash vortex, and thus conclude that the marine garbage swirl will also emerge in south Pacific,south Atlantic and the India ocean. According to the Concentration of diffusion theory, we establish the differential prediction model of the future marine garbage density,and predict the density of the garbage in south Atlantic ocean. Then we get the stable density in eight measuring point .In task six, we get the results by the data of the annual national consumption ofpolypropylene plastic packaging and the data fitting method, and predict the environmental benefit generated by the prohibition of polypropylene take-away food packaging in the next decade. By means of this model and our prediction,each nation will reduce releasing 1.31 million tons of plastic garbage in next decade.Finally, we submit a report to expediction leader,summarize our work and make some feasible suggestions to the policy- makers.Task 1:Definition:●Potential short-term effects of the plastic: the hazardeffects will be shown in the short term.●Potential long-term effects of the plastic: thepotential effects, of which hazards are great, willappear after a long time.The short- and long-term effects of the plastic on the ocean environment:In our definition, the short-term and long-term effects of the plastic on the ocean environment are as follows.Short-term effects:1)The plastic is eaten by marine animals or birds.2) Animals are wrapped by plastics, such as fishing nets, which hurt or even kill them.3)Deaden the way of the passing vessels.Long-term effects:1)Enrichment of toxins through the food chain: the waste plastic in the ocean has no natural degradation in theshort-term, which will first be broken down into tinyfragments through the role of light, waves,micro-organisms, while the molecular structure has notchanged. These "plastic sands", easy to be eaten byplankton, fish and other, are Seemingly very similar tomarine life’s food,causing the enrichment and delivery of toxins.2)Accelerate the greenhouse effect: after a long-term accumulation and pollution of plastics, the waterbecame turbid, which will seriously affect the marineplants (such as phytoplankton and algae) inphotosynthesis. A large number of plankton’s deathswould also lower the ability of the ocean to absorbcarbon dioxide, intensifying the greenhouse effect tosome extent.To monitor the impact of plastic rubbish on the marine ecosystem:According to the relevant literature, we know that plastic resin pellets accumulate toxic chemicals , such as PCBs、DDE , and nonylphenols , and may serve as a transport medium and soure of toxins to marine organisms that ingest them[]2. As it is difficult for the plastic garbage in the ocean to complete degradation in the short term, the plastic resin pellets in the water will increase over time and thus absorb more toxins, resulting in the enrichment of toxins and causing serious impact on the marine ecosystem.Therefore, we track the monitoring of the concentration of PCBs, DDE, and nonylphenols containing in the plastic resin pellets in the sea water, as an indicator to compare the extent of pollution in different regions of the sea, thus reflecting the impact of plastic rubbish on ecosystem.To establish pollution index evaluation model: For purposes of comparison, we unify the concentration indexes of PCBs, DDE, and nonylphenols in a comprehensive index.Preparations:1)Data Standardization2)Determination of the index weightBecause Japan has done researches on the contents of PCBs,DDE, and nonylphenols in the plastic resin pellets, we illustrate the survey conducted in Japanese waters by the University of Tokyo between 1997 and 1998.To standardize the concentration indexes of PCBs, DDE,and nonylphenols. We assume Kasai Sesside Park, KeihinCanal, Kugenuma Beach, Shioda Beach in the survey arethe first, second, third, fourth region; PCBs, DDE, andnonylphenols are the first, second, third indicators.Then to establish the standardized model:j j jij ij V V V V V min max min --= (1,2,3,4;1,2,3i j ==)wherej V max is the maximum of the measurement of j indicator in the four regions.j V min is the minimum of the measurement of j indicatorstandardized value of j indicator in i region.According to the literature [2], Japanese observationaldata is shown in Table 1.Table 1. PCBs, DDE, and, nonylphenols Contents in Marine PolypropyleneTable 1 Using the established standardized model to standardize, we have Table 2.In Table 2,the three indicators of Shioda Beach area are all 0, because the contents of PCBs, DDE, and nonylphenols in Polypropylene Plastic Resin Pellets in this area are the least, while 0 only relatively represents the smallest. Similarly, 1 indicates that in some area the value of a indicator is the largest.To determine the index weight of PCBs, DDE, and nonylphenolsWe use Analytic Hierarchy Process (AHP) to determine the weight of the three indicators in the general pollution indicator. AHP is an effective method which transforms semi-qualitative and semi-quantitative problems into quantitative calculation. It uses ideas of analysis and synthesis in decision-making, ideally suited for multi-index comprehensive evaluation.Hierarchy are shown in figure 1.Fig.1 Hierarchy of index factorsThen we determine the weight of each concentrationindicator in the generall pollution indicator, and the process are described as follows:To analyze the role of each concentration indicator, we haveestablished a matrix P to study the relative proportion.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111323123211312P P P P P P P Where mn P represents the relative importance of theconcentration indicators m B and n B . Usually we use 1,2,…,9 and their reciprocals to represent different importance. The greater the number is, the more important it is. Similarly, the relative importance of m B and n B is mn P /1(3,2,1,=n m ).Suppose the maximum eigenvalue of P is m ax λ, then theconsistency index is1max --=n nCI λThe average consistency index is RI , then the consistencyratio isRICI CR = For the matrix P of 3≥n , if 1.0<CR the consistency isthougt to be better, of which eigenvector can be used as the weight vector.We get the comparison matrix accoding to the harmful levelsof PCBs, DDE, and nonylphenols and the requirments ofEPA on the maximum concentration of the three toxins inseawater as follows:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=165416131431P We get the maximum eigenvalue of P by MATLAB calculation0012.3max =λand the corresponding eigenvector of it is()2393.02975.09243.0,,=W1.0042.012.1047.0<===RI CI CR Therefore,we determine the degree of inconsistency formatrix P within the permissible range. With the eigenvectors of p as weights vector, we get thefinal weight vector by normalization ()1638.02036.06326.0',,=W . Defining the overall target of pollution for the No i oceanis i Q , among other things the standardized value of threeindicators for the No i ocean is ()321,,i i i i V V V V = and the weightvector is 'W ,Then we form the model for the overall target of marine pollution assessment, (3,2,1=i )By the model above, we obtained the Value of the totalpollution index for four regions in Japanese ocean in Table 3T B W Q '=In Table3, the value of the total pollution index is the hightest that means the concentration of toxins in Polypropylene Plastic Resin Pellets is the hightest, whereas the value of the total pollution index in Shioda Beach is the lowest(we point up 0 is only a relative value that’s not in the name of free of plastics pollution)Getting through the assessment method above, we can monitor the concentration of PCBs, DDE and nonylphenols in the plastic debris for the sake of reflecting the influence to ocean ecosystem.The highter the the concentration of toxins,the bigger influence of the marine organism which lead to the inrichment of food chain is more and more dramatic.Above all, the variation of toxins’ concentration simultaneously reflects the distribution and time-varying of marine litter. We can predict the future development of marine litter by regularly monitoring the content of these substances, to provide data for the sea expedition of the detection of marine litter and reference for government departments to make the policies for ocean governance.Task 2:In the North Pacific, the clockwise flow formed a never-ending maelstrom which rotates the plastic garbage. Over the years, the subtropical eddy current in North Pacific gathered together the garbage from the coast or the fleet, entrapped them in the whirlpool, and brought them to the center under the action of the centripetal force, forming an area of 3.43 million square kilometers (more than one-third of Europe) .As time goes by, the garbage in the whirlpool has the trend of increasing year by year in terms of breadth, density, and distribution. In order to clearly describe the variability of the increases over time and space, according to “Count Densities of Plastic Debris from Ocean Surface Samples North Pacific Gyre 1999—2008”, we analyze the data, exclude them with a great dispersion, and retain them with concentrated distribution, while the longitude values of the garbage locations in sampled regions of years serve as the x-coordinate value of a three-dimensional coordinates, latitude values as the y-coordinate value, the Plastic Count per cubic Meter of water of the position as the z-coordinate value. Further, we establish an irregular grid in the yx plane according to obtained data, and draw a grid line through all the data points. Using the inverse distance squared method with a factor, which can not only estimate the Plastic Count per cubic Meter of water of any position, but also calculate the trends of the Plastic Counts per cubic Meter of water between two original data points, we can obtain the unknown grid points approximately. When the data of all the irregular grid points are known (or approximately known, or obtained from the original data), we can draw the three-dimensional image with the Matlab software, which can fully reflect the variability of the increases in the garbage density over time and space.Preparations:First, to determine the coordinates of each year’s sampled garbage.The distribution range of garbage is about the East - West 120W-170W, South - North 18N-41N shown in the “Count Densities of Plastic Debris from Ocean Surface Samples North Pacific Gyre 1999--2008”, we divide a square in the picture into 100 grids in Figure (1) as follows:According to the position of the grid where the measuring point’s center is, we can identify the latitude and longitude for each point, which respectively serve as the x- and y- coordinate value of the three-dimensional coordinates.To determine the Plastic Count per cubic Meter of water. As the “Plastic Count per cubic Meter of water” provided by “Count Densities of P lastic Debris from Ocean Surface Samples North Pacific Gyre 1999--2008”are 5 density interval, to identify the exact values of the garbage density of one year’s different measuring points, we assume that the density is a random variable which obeys uniform distribution in each interval.Uniform distribution can be described as below:()⎪⎩⎪⎨⎧-=01a b x f ()others b a x ,∈We use the uniform function in Matlab to generatecontinuous uniformly distributed random numbers in each interval, which approximately serve as the exact values of the garbage density andz-coordinate values of the three-dimensional coordinates of the year’s measuring points.Assumptions(1)The data we get is accurate and reasonable.(2)Plastic Count per cubic Meter of waterIn the oceanarea isa continuous change.(3)Density of the plastic in the gyre is a variable by region.Density of the plastic in the gyre and its surrounding area is interdependent , However, this dependence decreases with increasing distance . For our discussion issue, Each data point influences the point of each unknown around and the point of each unknown around is influenced by a given data point. The nearer a given data point from the unknown point, the larger the role.Establishing the modelFor the method described by the previous,we serve the distributions of garbage density in the “Count Pensities of Plastic Debris from Ocean Surface Samples North Pacific Gyre 1999--2008”as coordinates ()z y,, As Table 1:x,Through analysis and comparison, We excluded a number of data which has very large dispersion and retained the data that is under the more concentrated the distribution which, can be seen on Table 2.In this way, this is conducive for us to get more accurate density distribution map.Then we have a segmentation that is according to the arrangement of the composition of X direction and Y direction from small to large by using x co-ordinate value and y co-ordinate value of known data points n, in order to form a non-equidistant Segmentation which has n nodes. For the Segmentation we get above,we only know the density of the plastic known n nodes, therefore, we must find other density of the plastic garbage of n nodes.We only do the sampling survey of garbage density of the north pacificvortex,so only understand logically each known data point has a certain extent effect on the unknown node and the close-known points of density of the plastic garbage has high-impact than distant known point.In this respect,we use the weighted average format, that means using the adverse which with distance squared to express more important effects in close known points. There're two known points Q1 and Q2 in a line ,that is to say we have already known the plastic litter density in Q1 and Q2, then speculate the plastic litter density's affects between Q1、Q2 and the point G which in the connection of Q1 and Q2. It can be shown by a weighted average algorithm22212221111121GQ GQ GQ Z GQ Z Z Q Q G +*+*=in this formula GQ expresses the distance between the pointG and Q.We know that only use a weighted average close to the unknown point can not reflect the trend of the known points, we assume that any two given point of plastic garbage between the changes in the density of plastic impact the plastic garbage density of the unknown point and reflecting the density of plastic garbage changes in linear trend. So in the weighted average formula what is in order to presume an unknown point of plastic garbage density, we introduce the trend items. And because the greater impact at close range point, and thus the density of plastic wastes trends close points stronger. For the one-dimensional case, the calculation formula G Z in the previous example modify in the following format:2212122212212122211111112121Q Q GQ GQ GQ Q Q GQ Z GQ Z GQ Z Z Q Q Q Q G ++++*+*+*=Among them, 21Q Q known as the separation distance of the known point, 21Q Q Z is the density of plastic garbage which is the plastic waste density of 1Q and 2Q for the linear trend of point G . For the two-dimensional area, point G is not on the line 21Q Q , so we make a vertical from the point G and cross the line connect the point 1Q and 2Q , and get point P , the impact of point P to 1Q and 2Q just like one-dimensional, and the one-dimensional closer of G to P , the distant of G to P become farther, the smaller of the impact, so the weighting factor should also reflect the GP in inversely proportional to a certain way, then we adopt following format:221212222122121222211111112121Q Q GQ GP GQ GQ Q Q GQ GP Z GQ Z GQ Z Z P Q Q Q Q G ++++++*+*+*=Taken together, we speculated following roles:(1) Each known point data are influence the density of plastic garbage of each unknown point in the inversely proportional to the square of the distance;(2) the change of density of plastic garbage between any two known points data, for each unknown point are affected, and the influence to each particular point of their plastic garbage diffuse the straight line along the two known particular point; (3) the change of the density of plastic garbage between any two known data points impact a specific unknown points of the density of plastic litter depends on the three distances: a. the vertical distance to a straight line which is a specific point link to a known point;b. the distance between the latest known point to a specific unknown point;c. the separation distance between two known data points.If we mark 1Q ,2Q ,…,N Q as the location of known data points,G as an unknown node, ijG P is the intersection of the connection of i Q ,j Q and the vertical line from G to i Q ,j Q()G Q Q Z j i ,,is the density trend of i Q ,j Q in the of plasticgarbage points and prescribe ()G Q Q Z j i ,,is the testing point i Q ’ s density of plastic garbage ,so there are calculation formula:()()∑∑∑∑==-==++++*=Ni N ij ji i ijGji i ijG N i Nj j i G Q Q GQ GPQ Q GQ GP G Q Q Z Z 11222222111,,Here we plug each year’s observational data in schedule 1 into our model, and draw the three-dimensional images of the spatial distribution of the marine garbage ’s density with Matlab in Figure (2) as follows:199920002002200520062007-2008(1)It’s observed and analyzed that, from 1999 to 2008, the density of plastic garbage is increasing year by year and significantly in the region of East – West 140W-150W, south - north 30N-40N. Therefore, we can make sure that this region is probably the center of the marine litter whirlpool. Gathering process should be such that the dispersed garbage floating in the ocean move with the ocean currents and gradually close to the whirlpool region. At the beginning, the area close to the vortex will have obviously increasable about plastic litter density, because of this centripetal they keeping move to the center of the vortex ,then with the time accumulates ,the garbage density in the center of the vortex become much bigger and bigger , at last it becomes the Pacific rubbish island we have seen today.It can be seen that through our algorithm, as long as the reference to be able to detect the density in an area which has a number of discrete measuring points,Through tracking these density changes ,we Will be able to value out all the waters of the density measurement through our models to determine,This will reduce the workload of the marine expedition team monitoring marine pollution significantly, and also saving costs .Task 3:The degradation mechanism of marine plasticsWe know that light, mechanical force, heat, oxygen, water, microbes, chemicals, etc. can result in the degradation of plastics . In mechanism ,Factors result in the degradation can be summarized as optical ,biological,and chemical。

数学建模参考文献

数学建模参考文献

一、竞赛参考书l、中国大学生数学建模竞赛,李大潜主编,高等教育出版社(1998).2、大学生数学建模竞赛辅导教材,(一)(二)(三),叶其孝主编,湖南教育出版社(1993,1997,1998).3、数学建模教育与国际数学建模竞赛《工科数学》专辑,叶其孝主编,《工科数学》杂志社,1994).二、国内教材、丛书:1、数学模型,姜启源编,高等教育出版社(1987年第一版,1993年第二版,2003年第三版;第一版在1992年国家教委举办的第二届全国优秀教材评选中获"全国优秀教材奖").2、数学模型与计算机模拟,江裕钊、辛培情编,电子科技大学出版社,(1989).3、数学模型选谈(走向数学从书),华罗庚,王元著,王克译,湖南教育出版社;(1991).4、数学建模--方法与范例,寿纪麟等编,西安交通大学出版社(1993).5、数学模型,濮定国、田蔚文主编,东南大学出版社(1994).6..数学模型,朱思铭、李尚廉编,中山大学出版社,(1995)7、数学模型,陈义华编著,重庆大学出版社,(1995)8、数学模型建模分析,蔡常丰编著,科学出版社,(1995).9、数学建模竞赛教程,李尚志主编,江苏教育出版社,(1996).10、数学建模入门,徐全智、杨晋浩编,成都电子科大出版社,(1996).11、数学建模,沈继红、施久玉、高振滨、张晓威编,哈尔滨工程大学出版社,(1996).12、数学模型基础,王树禾编著,中国科学技术大学出版社,(1996).13、数学模型方法,齐欢编著,华中理工大学出版社,(1996).14、数学建模与实验,南京地区工科院校数学建模与工业数学讨论班编,河海大学出版社,(1996).15、数学模型与数学建模,刘来福、曾文艺编,北京师范大学出版杜(1997).16. 数学建模,袁震东、洪渊、林武忠、蒋鲁敏编,华东师范大学出版社.17、数学模型,谭永基,俞文吡编,复旦大学出版社,(1997).18、数学模型实用教程,费培之、程中瑗层主编,四川大学出版社,(1998).19、数学建模优秀案例选编(工科数学基地建设丛书),汪国强主编,华南理工大学出版社,(1998).20、经济数学模型(第二版)(工科数学基地建设丛书),洪毅、贺德化、昌志华编著,华南理工大学出版社,(1999).21、数学模型讲义,雷功炎编,北京大学出版社(1999).22、数学建模精品案例,朱道元编著,东南大学出版社,(1999),23、问题解决的数学模型方法,刘来福,曾文艺编著、北京师范大学出版社,(1999).24、数学建模的理论与实践,吴翔,吴孟达,成礼智编著,国防科技大学出版社,(1999).25、数学建模案例分析,白其岭主编,海洋出版社,(2000年,北京).26、数学实验(高等院校选用教材系列),谢云荪、张志让主编,科学出版社,(2000).27、数学实验,傅鹏、龚肋、刘琼荪,何中市编,科学出版社,(2000).28、数学建模与数学实验,赵静、但琦编,高等教育出版社,(2000).三、国外参考书(中译本):1、数学模型引论,E.A。

美国大学生数学建模竞赛题解析与研究

美国大学生数学建模竞赛题解析与研究

推荐
《美国大学生数学建模竞赛题解析与研究(第5辑)》内容新颖、实用性强,可作为指导学生参加美国大学生 数学建模竞赛的主讲教材,也可作为本科生、研究生学习和准备全国大学生、研究生数学建模竞赛的参考书,同 时也可供研究相关问题的科研人员orward by Sol Garfunkel ICM竞赛主席序 Forward by Chris Arney 丛书简介 前言 I Mathematical Modeling for MCM/ICM 2013 Chapter 1 Introduction Chapter 2 General Methodology 2.1 Before the Contest 2.2 Reading the Problem
谢谢观看
图书目录
第1章棒球“最佳击球点”问题 1.1问题分析 1.1.1棒球?球棒 1.1.2分析问题与提出假设 1.2定位球棒的最佳击球点 1.2.1一个初步的想法:定位最佳击球点 1.2.2布罗迪功效模型 1.2.3考虑击球手的舒适度 1.3不同材质球棒的特性分析 1.3.1“软木化”的球棒与普通木质球棒的对比 1.3.2铝制球棒与普通木质球棒的对比
美国大学生数学建模竞赛题解析与研 究
2014年高等教育出版社出版的图书
01 内容简介
03 推荐
目录
02 图书目录 04 目录
《美国大学生数学建模竞赛题解析与研究》是2014年高等教育出版社出版的图书,作者是赵仲孟、王嘉寅。
内容简介
《美国大学生数学建模竞赛题解析与研究(第3辑)》内容简介:本系列丛书是以美国大学生数学建模竞赛 (MCM/ICM)题为主要研究对象,结合竞赛特等奖的论文,对相关的问题进行深入细致的解析与研究。《美国大 学生数学建模竞赛题解析与研究(第3辑)》的主要内容包括:棒球“最佳击球点”问题、重新平衡受人类影响的 生态系统问题、泛太平洋垃圾带问题、犯罪情报分析的建模问题、交通环岛的优化设计问题和能源与移动问题。 《美国大学生数学建模竞赛题解析与研究(第3辑)》可作为指导大学生学习和准备美国大学生数学建模竞赛的主 讲教材,也可作为大学生、研究生学习和准备全国大学生、研究生数学建模竞赛的参考书,同时可供研究相关问 题的人员参考使用。

2023美赛d题参考文献

2023美赛d题参考文献

2023美赛d题参考文献参考文献:1. Liu, Y., Wang, H., & Xia, F. (2019). Time Series Clustering and Classification Based on Shapelet Transformation and Deep Learning. IEEE Transactions on Knowledge and Data Engineering, 32(12), 2260–2273.2. Zhang, X., Xing, X., Liu, S., & Han, J. (2018). Time Series Classification Using Multi-Channels Deep Convolutional Neural Networks. Proceedings of the ACM on Conference on Information and Knowledge Management, 2(2), 1–10.3. Barua, S., Islam, R., Yao, X., Murase, K., & Chiong, R. (2020). Time Series Forecasting Using a Novel Residual Generative Adversarial Network. Soft Computing, 24(12), 9441–9458.4. Wang, Y., Yan, Y., & Oates, T. (2019). Time Series Classification from Scratch with Deep Neural Networks: A Strong Baseline. Data Mining and Knowledge Discovery, 33(6), 1–45.5. Wei, J., Wang, G., & Ye, X. (2017). Supervised Time Series Feature Extraction for Classification. IEEE Transactions on Systems, Man, and Cybernetics: Systems,47(10), 2720–2732.6. Bagnall, A., Lines, J., Hills, J., & Bostrom, A. (2017). Time Series Classification with HIVE-COTE: The Hierarchical Vote Collective of Transformation-Based Ensembles. ACM Transactions on Intelligent Systems and Technology, 8(5), 1–41.7. Lin, Y., Sun, S., Zheng, J., & Lu, J. (2019). Large-Scale Time Series Classification Using Randomized Matrix Kernels and Deep Neural Network. IEEE Transactions on Big Data, 5(3), 355–369.8. Salama, M., El-Khozondar, H., & Karray, F. (2021). Deep Long Short-Term Memory Network for Time Series Classification. Pattern Analysis and Applications,24(3), 1577–1593.9. Wang, Z., Yan, Y., & Oates, T. (2017). Time Series Classification From Scratch with Deep Neural Networks: A Strong Baseline. arXiv Preprint arXiv:1611.06455.10. Zha, S., Xing, X., & Pan, S. (2020). Time Series Classification with Data Augmentation from Deep Synthetic Data. Proceedings of the ACM on Symposium on Applied Computing, 2(2), 1–15.2023美赛D题参考文献随着信息技术的快速发展和数据的爆发式增长,对时间序列数据进行分类的需求日益增加。

美赛文献引用格式

美赛文献引用格式

美赛文献引用格式
数模美赛参考文献引用格式如下:
引用别人的成果或其他公开的资料(包括网上查到的资料)必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。

正文引用处用方括号标示参考文献的编号,如[1][3] 等;引用书籍还必须指出页码。

参考文献按正文中的引用次序列出:
书籍的表述方式为:
[编号]作者,书名,出版地:出版社,出版年。

期刊杂志论文的表述方式为:
[编号]作者,论文名,杂志名,卷期号:起止页码,出版年。

网上资源的表述方式为:
[编号]作者,资源标题,网址,访问时间(年月日)。

标注参考文献的原因
1、体现研究价值与立项依据是否充分。

通过参考文献的层次与水平,可以反映出作者文章或申请书研究的广度与深度、是否具有研究价值。

2、体现研究的前瞻性与作者的研究态度。

参考文献绝大多数时候都是文章立意的来源,引用近几年内有具有代表性的参考文献(3-5年最好),保持选题的新颖性与前瞻性,可以体现自己的研究能力,也让文章更具有创新性与研究意义。

3、尊重他人研究成果,体现严谨、科学的学术态度。

一篇好的文章不是“空穴来风”,而是“站在巨人的肩膀上看世界”,文章的论点一定是成立的、有理论支持、有权威性的。

MCM美赛论文集

MCM美赛论文集

高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):A我们的参赛报名号为(如果赛区设置报名号的话):99999所属学校(请填写完整的全名):西安交通大学参赛队员(打印并签名):1.一作者2.二作者3.三作者指导教师或指导教师组负责人(打印并签名):导师日期:2011年8月1日赛区评阅编号(由赛区组委会评阅前进行编号):2011高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):全国大学生数学建模竞赛L A T E X2ε模板摘要这是数学建模论文模板mcmthesis的示例文件。

特别地,这篇文档是“全国大学生数学建模竞赛(CUMCM)”模板的示例文件。

这个模板使用于参加高教社杯全国大学生数学竞赛的同学准备他们的建模论文,帮助他们更多的关注于论文内容而非论文的排版。

这个模板的设计是根据2010年修订的《全国大学生数学建模竞赛论文格式规范》[1]制作,完全符合该论文格式规范,但是该模板未得到官方认可,请使用者自己斟酌使用。

这个示例文档逐条展示其对[1]的实现效果,并对所有自定义命令进行说明。

这个示例文件还包含了一些对公示、插图、表格、交叉引用、参考文献、代码等的测试部分,以展示其效果,并作简要的使用说明。

美国大学生数学建模竞赛美赛--论文

美国大学生数学建模竞赛美赛--论文

Each team member must sign the statement below: (Failure to obtain signatures from each team member will result in disqualification of the entire team.)
2015 Mathematical Contest in Modeling (MCM/ICM) Control Sheet Please review this page before submitting your solution to ensure that all of the information is correct Do not make changes by hand to the information on this control sheet. If you need to change any of the information on this sheet, login via the Advisor Login link on the MCM web site, make the changes online, and print a new sheet. You may NOT photocopy this control sheet to give to a new team, nor may you assign any team a control number. Each team must have its own control number, obtained by registering via the MCM web site. Advisor Jinpeng Yu Name: Department: Control Engineering Institution: Qingdao University Address: 308 Ningxia Road,Shinan District,Qingdao,Shandong,China Qingdao, Shandong 266000 Phone: 18653250086 Fax: 053285953064 Email: zhanghaoran06@ Home Phone: 053285953064 The names of the team members will appear on your team's certificate exactly as they appear on this page, including all capitalization and punctuation, if any. Gender data is optional and will be used for statistical purposes only; it will not appear on the certificate. Team Member Haoran Zhang Yu Ma Guiying Dong Gender M M F Your team's control number is: 40906 (Place this control number on all pages of your solution paper and on any support material.) Problem Chosen: B

数学建模 美赛特等奖论文(中文版)分析溃坝:针对南卡罗来纳州大坝坍塌建立模型

数学建模 美赛特等奖论文(中文版)分析溃坝:针对南卡罗来纳州大坝坍塌建立模型

分析溃坝:针对南卡罗来纳州大坝坍塌建立模型 摘要萨鲁达大坝建立在卡罗莱纳州的墨累湖与萨鲁达河之间,如果发生地震大坝就会坍塌。

本文通过建立模型来分析以下四种大坝决口时水的流量以及洪水泛滥时水的流量:● 大坝的绝大部分被瞬间侵蚀看成是大坝瞬间彻底坍塌;● 大坝的绝大部分被缓慢侵蚀看成是大坝延期彻底坍塌;● 管涌就是先形成一个小孔,最终形成一个裂口;● 溢出就是大坝被侵蚀后,形成一个梯形的裂口。

本文建立了两个模型来描述下游洪水的泛滥情况。

两个模型都采用离散网格的方法,将一个地区看成是一个网格,每个网格都包含洪水的深度和体积。

复力模型运用了网格的速度、重力以及邻近网格的压力来模拟水流。

下坡模型假定水流速度与邻近网格间水位高度的成正比例。

下坡模型是高效率的、直观的、灵活的,可以适用于已知海拔的任何地区。

它的两个参数稳定并限制了水流,但该模型的预测很少依赖于它们的静态值。

对于萨鲁达溃坝,洪水总面积为25.106km ;它还没有到达国会大厦。

罗威克里克的洪水向上游延伸了km 4.4,覆盖面积达24.26.1km -变量及假设表1说明了用来描述和模拟模型的变量,表2列出了模拟程序中的参数。

表 1模型中的变量.变量 定义溃坝时的水流量速率1TF Q 瞬间彻底坍塌2TF Q 延期彻底坍塌PIPE Q 管涌OT Q 溢出peak Q 最大流速溃坝时水流出到停止所用时间1TF t 瞬间彻底坍塌2TF t 延期彻底坍塌PIPE t 管涌OT t 溢出V ∆ 溃坝后从墨累湖里流出的水的总体积Lm Vol 墨累湖的原来体积LM Area 墨累湖的原来面积breach d 从裂口到坝顶距离breach t 从裂口开始到溃坝形成的时间 近似圆锥的墨累湖的侧面一般假设● 正常水位是在溃坝前的湖水位置。

● 河道中的水流不随季节变化而变动。

● 墨累湖里的水的容积可以看作为一个正圆锥(图1 )。

表2 模拟程序中的参数 参数 所取值 意义BREACH_TYPE 变量 瞬间彻底坍塌,延期彻底坍,管涌,溢出模型中的一种 T ∆ 0.10 时间不长的长度(s)MIN_DEPTH 0001.0 网格空时的水的深度(m) FINAT T 100000 大坝彻底决口所用时间 b T 3600 溃坝达最大值的时间(s) peak Q 25000 溃坝的最大流速(m 3/s) breach d 30 蓄水池的最初深度(m) LM Volume 910714.2⨯ 墨累湖的总体积(m 3) LM Area 610202⨯ 墨累湖的总面积(m 2)k 504.0 扩散因素 (控制两网格间交换的水的数量) MAX_LOSS_FRAC 25.0 单位网格中水的最大流失量图 1. 水库近似一个正圆锥.大坝假设● 萨鲁达大坝在以下四种方式之一坍塌:-瞬间彻底坍塌,-延期彻底坍塌,-管涌,-溢出。

美国大学生数学建模大赛优秀论文一等奖摘要

美国大学生数学建模大赛优秀论文一等奖摘要

SummaryChina is the biggest developing country. Whether water is sufficient or not will have a direct impact on the economic development of our country. China's water resources are unevenly distributed. Water resource will critically restrict the sustainable development of China if it can not be properly solved.First, we consider a greater number of Chinese cities so that China is divided into 6 areas. The first model is to predict through division and classification. We predict the total amount of available water resources and actual water usage for each area. And we conclude that risk of water shortage will exist in North China, Northwest China, East China, Northeast China, whereas Southwest China, South China region will be abundant in water resources in 2025.Secondly, we take four measures to solve water scarcity: cross-regional water transfer, desalination, storage, and recycling. The second model mainly uses the multi-objective planning strategy. For inter-regional water strategy, we have made reference to the the strategy of South-to-North Water Transfer[5]and other related strategies, and estimate that the lowest cost of laying the pipeline is about 33.14 billion yuan. The program can transport about 69.723 billion cubic meters water to the North China from the Southwest China region per year. South China to East China water transfer is about 31 billion cubic meters. In addition, we can also build desalination mechanism program in East China and Northeast China, and the program cost about 700 million and can provide 10 billion cubic meters a year.Finally, we enumerate the east China as an example to show model to improve. Other area also can use the same method for water resources management, and deployment. So all regions in the whole China can realize the water resources allocation.In a word, the strong theoretical basis and suitable assumption make our model estimable for further study of China's water resources. Combining this model with more information from the China Statistical Yearbook will maximize the accuracy of our model.。

数学建模参考文献

数学建模参考文献

参考文献
[1]陈东彦,李冬梅,王树忠:数学建模,科学出版社2007年版
[2]曹喜望:管理科学中的数学模型,北京大学出版社2006年版
[3]方道元,韦明俊:数学建模:方法导引与案例分析,浙江大学出版社2011年版
[4]姜启源,谢金星:数学建模案例选集,高等教育出版社2006年版
[5]姜启源,谢金星,叶俊:数学模型(第4版),高等教育出版社2011年版
[6]李大潜:中国大学生数学建模竞赛,高等教育出版社1998年版
[7]马莉:MATLAB数学实验与建模,清华大学出版社2010年版
[8]束金龙、闻人凯,柴俊:线性规划理论与模型应用,科学出版社2007年版
[9]谭勇基,朱晓明:经济管理数学模型案例教程,高等教育出版社2006年版
[10]杨启帆,方道元:数学建模,浙江大学出版社1999年版
[11]姚恩瑜,何勇,陈仕平:数学规划与组合优化,浙江大学出版社2001版。

美国大学生数学建模竞赛 二等奖论文

美国大学生数学建模竞赛 二等奖论文

The P roblem of R epeater C oordination SummaryThis paper mainly focuses on exploring an optimization scheme to serve all the users in a certain area with the least repeaters.The model is optimized better through changing the power of a repeater and distributing PL tones,frequency pairs ing symmetry principle of Graph Theory and maximum coverage principle,we get the most reasonable scheme.This scheme can help us solve the problem that where we should put the repeaters in general cases.It can be suitable for the problem of irrigation,the location of lights in a square and so on.We construct two mathematical models(a basic model and an improve model)to get the scheme based on the relationship between variables.In the basic model,we set a function model to solve the problem under a condition that assumed.There are two variables:‘p’(standing for the power of the signals that a repeater transmits)and‘μ’(standing for the density of users of the area)in the function model.Assume‘p’fixed in the basic one.And in this situation,we change the function model to a geometric one to solve this problem.Based on the basic model,considering the two variables in the improve model is more reasonable to most situations.Then the conclusion can be drawn through calculation and MATLAB programming.We analysis and discuss what we can do if we build repeaters in mountainous areas further.Finally,we discuss strengths and weaknesses of our models and make necessary recommendations.Key words:repeater maximum coverage density PL tones MATLABContents1.Introduction (3)2.The Description of the Problem (3)2.1What problems we are confronting (3)2.2What we do to solve these problems (3)3.Models (4)3.1Basic model (4)3.1.1Terms,Definitions,and Symbols (4)3.1.2Assumptions (4)3.1.3The Foundation of Model (4)3.1.4Solution and Result (5)3.1.5Analysis of the Result (8)3.1.6Strength and Weakness (8)3.1.7Some Improvement (9)3.2Improve Model (9)3.2.1Extra Symbols (10)Assumptions (10)3.2.2AdditionalAdditionalAssumptions3.2.3The Foundation of Model (10)3.2.4Solution and Result (10)3.2.5Analysis of the Result (13)3.2.6Strength and Weakness (14)4.Conclusions (14)4.1Conclusions of the problem (14)4.2Methods used in our models (14)4.3Application of our models (14)5.Future Work (14)6.References (17)7.Appendix (17)Ⅰ.IntroductionIn order to indicate the origin of the repeater coordination problem,the following background is worth mentioning.With the development of technology and society,communications technology has become much more important,more and more people are involved in this.In order to ensure the quality of the signals of communication,we need to build repeaters which pick up weak signals,amplify them,and retransmit them on a different frequency.But the price of a repeater is very high.And the unnecessary repeaters will cause not only the waste of money and resources,but also the difficulty of maintenance.So there comes a problem that how to reduce the number of unnecessary repeaters in a region.We try to explore an optimized model in this paper.Ⅱ.The Description of the Problem2.1What problems we are confrontingThe signals transmit in the way of line-of-sight as a result of reducing the loss of the energy. As a result of the obstacles they meet and the natural attenuation itself,the signals will become unavailable.So a repeater which just picks up weak signals,amplifies them,and retransmits them on a different frequency is needed.However,repeaters can interfere with one another unless they are far enough apart or transmit on sufficiently separated frequencies.In addition to geographical separation,the“continuous tone-coded squelch system”(CTCSS),sometimes nicknamed“private line”(PL),technology can be used to mitigate interference.This system associates to each repeater a separate PL tone that is transmitted by all users who wish to communicate through that repeater. The PL tone is like a kind of password.Then determine a user according to the so called password and the specific frequency,in other words a user corresponds a PL tone(password)and a specific frequency.Defects in line-of-sight propagation caused by mountainous areas can also influence the radius.2.2What we do to solve these problemsConsidering the problem we are confronting,the spectrum available is145to148MHz,the transmitter frequency in a repeater is either600kHz above or600kHz below the receiver frequency.That is only5users can communicate with others without interferences when there’s noPL.The situation will be much better once we have PL.However the number of users that a repeater can serve is limited.In addition,in a flat area ,the obstacles such as mountains ,buildings don’t need to be taken into account.Taking the natural attenuation itself is reasonable.Now the most important is the radius that the signals transmit.Reducing the radius is a good way once there are more users.With MATLAB and the method of the coverage in Graph Theory,we solve this problem as follows in this paper.Ⅲ.Models3.1Basic model3.1.1Terms,Definitions,and Symbols3.1.2Assumptions●A user corresponds a PLz tone (password)and a specific frequency.●The users in the area are fixed and they are uniform distribution.●The area that a repeater covers is a regular hexagon.The repeater is in the center of the regular hexagon.●In a flat area ,the obstacles such as mountains ,buildings don’t need to be taken into account.We just take the natural attenuation itself into account.●The power of a repeater is fixed.3.1.3The Foundation of ModelAs the number of PLz tones (password)and frequencies is fixed,and a user corresponds a PLz tone (password)and a specific frequency,we can draw the conclusion that a repeater can serve the limited number of users.Thus it is clear that the number of repeaters we need relates to the density symboldescriptionLfsdfminrpμloss of transmission the distance of transmission operating frequency the number of repeaters that we need the power of the signals that a repeater transmits the density of users of the areaof users of the area.The radius of the area that a repeater covers is also related to the ratio of d and the radius of the circular area.And d is related to the power of a repeater.So we get the model of function()min ,r f p µ=If we ignore the density of users,we can get a Geometric model as follows:In a plane which is extended by regular hexagons whose side length are determined,we move a circle until it covers the least regular hexagons.3.1.4Solution and ResultCalculating the relationship between the radius of the circle and the side length of the regular hexagon.[]()()32.4420lg ()20lg Lfs dB d km f MHz =++In the above formula the unit of ’’is .Lfs dB The unit of ’’is .d Km The unit of ‘‘is .f MHz We can conclude that the loss of transmission of radio is decided by operating frequency and the distance of transmission.When or is as times as its former data,will increase f d 2[]Lfs .6dB Then we will solve the problem by using the formula mentioned above.We have already known the operating frequency is to .According to the 145MHz 148MHz actual situation and some authority material ,we assume a system whose transmit power is and receiver sensitivity is .Thus we can conclude that ()1010dBm mW +106.85dBm −=.Substituting and to the above formula,we can get the Lfs 106.85dBm −145MHz 148MHz average distance of transmission .()6.4d km =4mile We can learn the radius of the circle is 40mile .So we can conclude the relationship between the circle and the side length of regular hexagon isR=10d.1)The solution of the modelIn order to cover a certain plane with the least regular hexagons,we connect each regular hexagon as the honeycomb.We use A(standing for a figure)covers B(standing for another figure), only when As don’t overlap each other,the number of As we use is the smallest.Figure1According to the Principle of maximum flow of Graph Theory,the better of the symmetry ofthe honeycomb,the bigger area that it covers(Fig1).When the geometric centers of the circle andthe honeycomb which can extend are at one point,extend the honeycomb.Then we can get Fig2,Fig4:Figure2Fig3demos the evenly distribution of users.Figure4Now prove the circle covers the least regular hexagons.Look at Fig5.If we move the circle slightly as the picture,you can see three more regularhexagons are needed.Figure 52)ResultsThe average distance of transmission of the signals that a repeater transmit is 4miles.1000users can be satisfied with 37repeaters founded.3.1.5Analysis of the Result1)The largest number of users that a repeater can serveA user corresponds a PL and a specific frequency.There are 5wave bands and 54different PL tones available.If we call a code include a PL and a specific frequency,there are 54*5=270codes.However each code in two adjacent regular hexagons shouldn’t be the same in case of interfering with each other.In order to have more code available ,we can distribute every 3adjacent regular hexagons 90codes each.And that’s the most optimized,because once any of the three regular hexagons have more codes,it will interfere another one in other regular hexagon.2)Identify the rationality of the basic modelNow we considering the influence of the density of users,according to 1),90*37=3330>1000,so here the number of users have no influence on our model.Our model is rationality.3.1.6Strength and Weakness●Strength:In this paper,we use the model of honeycomb-hexagon structure can maximize the use of resources,avoiding some unnecessary interference effectively.It is much more intuitive once we change the function model to the geometric model.●Weakness:Since each hexagon get too close to another one.Once there are somebuildingsor terrain fluctuations between two repeaters,it can lead to the phenomenon that certain areas will have no signals.In addition,users are distributed evenly is not reasonable.The users are moving,for example some people may get a party.3.1.7Some ImprovementAs we all know,the absolute evenly distribution is not exist.So it is necessary to say something about the normal distribution model.The maximum accommodate number of a repeater is 5*54=270.As for the first model,it is impossible that 270users are communicating in a same repeater.Look at Fig 6.If there are N people in the area 1,the maximum number of the area 2to area 7is 3*(270-N).As 37*90=3330is much larger than 1000,our solution is still reasonable to this model.Figure 63.2Improve Model3.2.1Extra SymbolsSigns and definitions indicated above are still valid.Here are some extra signs and definitions.symboldescription Ra the radius of the circular flat area the side length of a regular hexagon3.2.2Additional AdditionalAssumptionsAssumptions ●The radius that of a repeater covers is adjustable here.●In some limited situations,curved shape is equal to straight line.●Assumptions concerning the anterior process are the same as the Basic Model3.2.3The Foundation of ModelThe same as the Basic Model except that:We only consider one variable(p)in the function model of the basic model ;In this model,we consider two varibles(p and μ)of the function model.3.2.4Solution and Result1)SolutionIf there are 10,000users,the number of regular hexagons that we need is at least ,thus according to the the Principle of maximum flow of Graph Theory,the 10000111.1190=result that we draw needed to be extended further.When the side length of the figure is equal to 7Figure 7regular hexagons,there are 127regular hexagons (Fig 7).Assuming the side length of a regular hexagon is ,then the area of a regular hexagon is a .The area of regular hexagons is equal to a circlewhose radiusis 22a =1000090R.Then according to the formula below:.221000090a R π=We can get.9.5858R a =Mapping with MATLAB as below (Fig 8):Figure 82)Improve the model appropriatelyEnlarge two part of the figure above,we can get two figures below (Fig 9and Fig 10):Figure 9AREAFigure 10Look at the figure above,approximatingAREA a rectangle,then obtaining its area to getthe number of users..The length of the rectangle is approximately equal to the side length of the regular hexagon ,athe width of the rectangle is ,thus the area of AREA is ,then R −*R a ⎛⎞−⎜⎟⎜⎟⎝⎠we can get the number of users in AREA is(),2**10000 2.06R a R π⎡⎤⎛⎞−⎢⎥⎜⎟⎢⎥⎝⎠=⎢⎥⎢⎥⎢⎥⎣⎦9.5858R a =As 2.06<<10,000,2.06can be ignored ,so there is no need to set up a repeater in.There are 6such areas(92,98,104,110,116,122)that can be ignored.At last,the number of repeaters we should set up is,1276121−=2)Get the side length of the regular hexagon of the improved modelThus we can getmile=km 40 4.1729.5858a == 1.6* 6.675a =3)Calculate the power of a repeaterAccording to the formula[]()()32.4420lg ()20lg Lfs dB d km f MHz =++We get32.4420lg 6.67520lg14592.156Los =++=32.4420lg 6.67520lg14892.334Los =++=So we get106.85-92.156=14.694106.85-92.334=14.516As the result in the basic model,we can get the conclusion the power of a repeater is from 14.694mW to 14.516mW.3.2.5Analysis of the ResultAs 10,000users are much more than 1000users,the distribution of the users is more close toevenly distribution.Thus the model is more reasonable than the basic one.More repeaters are built,the utilization of the outside regular hexagon are higher than the former one.3.2.6Strength and Weakness●Strength:The model is more reasonable than the basic one.●Weakness:Repeaters don’t cover all the area,some places may not receive signals.And thefoundation of this model is based on the evenly distribution of the users in the area,if the situation couldn’t be satisfied,the interference of signals will come out.Ⅳ.Conclusions4.1Conclusions of the problem●Generally speaking,the radius of the area that a repeater covers is4miles in our basic model.●Using the model of honeycomb-hexagon structure can maximize the use of resources,avoiding some unnecessary interference effectively.●The minimum number of repeaters necessary to accommodate1,000simultaneous users is37.The minimum number of repeaters necessary to accommodate10,000simultaneoususers is121.●A repeater's coverage radius relates to external environment such as the density of users andobstacles,and it is also determined by the power of the repeater.4.2Methods used in our models●Analysis the problem with MATLAB●the method of the coverage in Graph Theory4.3Application of our models●Choose the ideal address where we set repeater of the mobile phones.●How to irrigate reasonably in agriculture.●How to distribute the lights and the speakers in squares more reasonably.Ⅴ.Future WorkHow we will do if the area is mountainous?5.1The best position of a repeater is the top of the mountain.As the signals are line-of-sight transmission and reception.We must find a place where the signals can transmit from the repeater to users directly.So the top of the mountain is a good place.5.2In mountainous areas,we must increase the number of repeaters.There are three reasons for this problem.One reason is that there will be more obstacles in the mountainous areas. The signals will be attenuated much more quickly than they transmit in flat area.Another reason is that the signals are line-of-sight transmission and reception,we need more repeaters to satisfy this condition.Then look at Fig11and Fig12,and you will know the third reason.It can be clearly seen that hypotenuse is larger than right-angleFig11edge(R>r).Thus the radius will become smaller.In this case more repeaters are needed.Fig125.3In mountainous areas,people may mainly settle in the flat area,so the distribution of users isn’t uniform.5.4There are different altitudes in the mountainous areas.So in order to increase the rate of resources utilization,we can set up the repeaters in different altitudes.5.5However,if there are more repeaters,and some of them are on mountains,more money will be munication companies will need a lot of money to build them,repair them when they don’t work well and so on.As a result,the communication costs will be high.What’s worse,there are places where there are many mountains but few persons. Communication companies reluctant to build repeaters there.But unexpected things often happen in these places.When people are in trouble,they couldn’t communicate well with the outside.So in my opinion,the government should take some measures to solve this problem.5.6Another new method is described as follows(Fig13):since the repeater on high mountains can beFig13Seen easily by people,so the tower which used to transmit and receive signals can be shorter.That is to say,the tower on flat areas can be a little taller..Ⅵ.References[1]YU Fei,YANG Lv-xi,"Effective cooperative scheme based on relay selection",SoutheastUniversity,Nanjing,210096,China[2]YANG Ming,ZHAO Xiao-bo,DI Wei-guo,NAN Bing-xin,"Call Admission Control Policy based on Microcellular",College of Electical and Electronic Engineering,Shijiazhuang Railway Institute,Shijiazhuang Heibei050043,China[3]TIAN Zhisheng,"Analysis of Mechanism of CTCSS Modulation",Shenzhen HYT Co,Shenzhen,518057,China[4]SHANGGUAN Shi-qing,XIN Hao-ran,"Mathematical Modeling in Bass Station Site Selectionwith Lingo Software",China University of Mining And Technology SRES,Xuzhou;Shandong Finance Institute,Jinan Shandon,250014[5]Leif J.Harcke,Kenneth S.Dueker,and David B.Leeson,"Frequency Coordination in the AmateurRadio Emergency ServiceⅦ.AppendixWe use MATLAB to get these pictures,the code is as follows:1-clc;clear all;2-r=1;3-rc=0.7;4-figure;5-axis square6-hold on;7-A=pi/3*[0:6];8-aa=linspace(0,pi*2,80);9-plot(r*exp(i*A),'k','linewidth',2);10-g1=fill(real(r*exp(i*A)),imag(r*exp(i*A)),'k');11-set(g1,'FaceColor',[1,0.5,0])12-g2=fill(real(rc*exp(i*aa)),imag(rc*exp(i*aa)),'k');13-set(g2,'FaceColor',[1,0.5,0],'edgecolor',[1,0.5,0],'EraseMode','x0r')14-text(0,0,'1','fontsize',10);15-Z=0;16-At=pi/6;17-RA=-pi/2;18-N=1;At=-pi/2-pi/3*[0:6];19-for k=1:2;20-Z=Z+sqrt(3)*r*exp(i*pi/6);21-for pp=1:6;22-for p=1:k;23-N=N+1;24-zp=Z+r*exp(i*A);25-zr=Z+rc*exp(i*aa);26-g1=fill(real(zp),imag(zp),'k');27-set(g1,'FaceColor',[1,0.5,0],'edgecolor',[1,0,0]);28-g2=fill(real(zr),imag(zr),'k');29-set(g2,'FaceColor',[1,0.5,0],'edgecolor',[1,0.5,0],'EraseMode',xor';30-text(real(Z),imag(Z),num2str(N),'fontsize',10);31-Z=Z+sqrt(3)*r*exp(i*At(pp));32-end33-end34-end35-ezplot('x^2+y^2=25',[-5,5]);%This is the circular flat area of radius40miles radius 36-xlim([-6,6]*r)37-ylim([-6.1,6.1]*r)38-axis off;Then change number19”for k=1:2;”to“for k=1:3;”,then we get another picture:Change the original programme number19“for k=1:2;”to“for k=1:4;”,then we get another picture:Change the original programme number19“for k=1:2;”to“for k=1:1;”,and delete number 35“ezplot('x^2+y^2=25',[-5,5]);”then we get another picture:Change the original programme number19“for k=1:2;”to“for k=1:6;”,and change number 35“ezplot('x^2+y^2=25',[-5,5]);”to”ezplot('x^2+y^2=6*sqrt(3)*10000/360/pi',[-20,20]);”Change number36,37“36-xlim([-6,6]*r)37-ylim([-6.1,6.1]*r)”To“xlim([-20,20]*r)ylim([-20.1,20.1]*r)”,then we getTeam#8921Page21of21Delete“36-xlim([-6,6]*r)37-ylim([-6.1,6.1]*r)”We get。

参考文献可以自动生成技巧 数学建模美赛必备之二

参考文献可以自动生成技巧 数学建模美赛必备之二

今天刚知道原来参考文献可以自动生成……真丢脸!分享给为论文奋斗的同学来源:阎羽的日志毕业论文不同于一般的小论文,特别是硕士毕业论文或者博士毕业论文。

一般的小论文就四五页,而硕士论文动辄五六十页,有的甚至七八十页。

所以有些东西如果要人工的去修改,将是一件非常痛苦的事情。

痛苦的事情至少有两个:目录自动生成和编号、参考文献引用的上标。

本文将从这两个方面说说小技巧,自动生成,非常方便。

先说两种痛苦情况。

设定好文章的目录结构后,突然发现中间要添加或者删除一个章节,添加删除容易,可是其后遗症就是后面的编号都要跟着变动。

比如要删除第二章,那么原理的第三章就要改为第二章,后面的要跟着动,添加也一样,很麻烦。

第二个情况就是参考文献的上标问题。

硕士论文参考文献都有好几十个,一般论文会要求按照论文的引用顺序列出参考文献。

如果需要添加新的参考文献,那么这些参考文献的上标号又会跟着变动。

目录自动生成简单说下,将文档切换到大纲视图,然后设置你要设定成目录的文字的大纲级别。

如果将大纲级别设定为1级,那么就是1级目录,一般我们会设置到3级,这样会生成1、2、3级目录。

设定好后,在要插入目录的地方,点击“插入”--&gt;“引用”--&gt;“索引和目录”就可以了。

格式在另外设置下就行了。

现在来说说这两个的简单解决办法。

首先都要设置成段落编号。

将你要设定的一级目录设定成一级编号,二级目录设定成二级编号等等。

参考文献一样,设置成段落编号。

设定成段落编号有一个非常大的好处,就是插入或者删除其中的某个项目时,其后面的变好会跟着变动,所以这就解决了因添加删除中间的项目,而要同时修改后面的编号问题了。

目录的更新,只需要在“大纲视图”下点击更新目录,或者在页面视图的目录上,点击右键,选择“更新域”即可。

将参考文献设置成段落编号后,在需要插入参考文献引用的地方,点击“插入”--&gt;“引用”--&gt;“交叉引用”,找到相应参考文献的编号就可以了。

数学建模美赛参考文献

数学建模美赛参考文献

数学建模美赛参考文献Since 1982, the official publication of the teaching of mathematical modeling contest, translations and guidance materials, and related with the mathematical modeling of mathematics experiment teaching material ( only according to statistics all told ):E. A. Bender, an introduction to mathematical model, Zhu Yaochen, Xu Weixuan translation, popular science press, 1982Kondo Jiro, Miya Eiaki, et al, mathematical model, mechanical industry press, 1985C. L. Daimler, E. S. Ai Wei, mathematical modeling principle, Ocean Press, 1985Jiang Qiyuan, mathematical model, higher education press, 1987Ren Shanqiang, mathematical model, Chongqing University press, 1987M. Braun, C. S. Coleman, D. A. Drew, the differential equation model, Zhu Yumin, Zhou yu-hun translation, National University of Defense Technology press, ( the book for the W. F.Lucas editor of the Modules in Applied Mathematics a book first volume ), 1988Chen Anqi, mathematical model of scientific and technical engineering, China Railway Publishing House, 1988Jiang Yuzhao, Xin Peiqing, mathematical model and computer simulation, University of Electronic Science and Technology Press, 1989Yang Qifan, Bian Fu Ping, mathematical model, Zhejiang University press, 1990Dong Jiali, Cao Xudong, Shim Hito, mathematical model, Beijing University of Technology press, 1990Tang Huanwen, Feng Enmin, sun Yuxian, Sun Lihua, an introduction to the mathematics model, Dalian University of Technology press, 1990Jiang Qiyuan, the mathematical model (the Second Edition ), higher education press, 1991H. P. Williams, the mathematical model and computer application, National Defence Industry Press, 1991Li Wen, the application of mathematical model, Huazhong University of science and Technology Press, 1993Ye Qixiao, Undergraduate Mathematical Contest in modeling tutorial, Hunan Education Press, 1993Life Jilin, mathematical modeling method and examples, Xi'an Jiao Tong University press, 1993Ye Qixiao editor, mathematical modeling education and International Mathematical Contest in modeling, " Engineering Mathematics " magazine, 1994In the country, Da Wen editor, mathematical model, Southeast University press, 1994Ouyang Liang, mathematical model, system science, Shandong University press, 1995Chen Yihua, mathematical model, Chongqing University press, 1995Zhu Siming, Li Shanglian, mathematical model, Zhongshan University press, 1995Cai Changfeng, mathematical modeling analysis, Science Press, 1995Xu Quanzhi, Yang Jinhao, introduction to mathematical modeling, University of Electronic Science and Technology Press, 1996Shen Jihong, Shi Jiuyu, Zhang Xiaowei, high Zhenbin, mathematical modeling, Harbin Engineering University press, 1996Ren Shanqiang, Lei Ming, mathematical model, Chongqing University press, 1996Qi Huan, mathematical model method, Huazhong University of science and Technology Press, 1996Wang Shuhe, the mathematical model foundation, University of Science & Technology China press, 1996Li Shangzhi editor, mathematical contest in modeling tutorial, Jiangsu Education Press, 1996Nanjing Engineering College Mathematical Modeling and Industrial Mathematics seminar series, modeling and experiment, mathematics, Hohai University press, 1996Tan Yongji, Yu Wen Ci, mathematical model, Fudan University press, 1997D. Burghes, four case studies of industry in the UK from mathematical modeling, leaves its filial, translated by Wu Qingbao, World Book Inc, 1997Ye Qixiao, Undergraduate Mathematical Contest in modeling tutorial ( two ), Hunan Education Press, 1997Liu Laifu, Zeng literature, mathematical model and mathematical modeling, Beijing Normal University press, 1997, S.J.Brams, W.F.Lucas, P.D.Straffin, Jr., political and related models, National University of Defense Technology press, ( the book for the W. F. Lucas editor of the Modules in Applied Mathematics a book in second volumes ) 1997W.F.Lucas, F.S.Roberts, R.M.Thrall, discrete model and system, National University of Defense Technology press, ( W. book F. Lucas Modules in Applied Mathematics, editor of a book in third volumes ), 1997H.Marcus-Roberts, M. Thompson, life sciences, National University of Defense Technology press, ( W. book F. Lucas Modules in Applied Mathematics, editor of a book in fourth volumes ), 1997Ye Qixiao, Undergraduate Mathematical Contest in modeling tutorial ( three ), Hunan Education Press, 1998Yuan Zhendong, mathematical modeling, East China Normal University press, 1997He Changzheng, an introduction to mathematical modelling, Chengdu University of Science and Technology press, 1998Fei Peizhi, a practical mathematical model of tutorials, Sichuan University press, 1998Cai Suozhang, the principle and method of mathematics modeling, Ocean Press.White qi-zheng, case analysis, mathematical modeling, Ocean Press.Zhu Daoyuan, mathematical modeling cases, Southeast University press, 1999 Ray Gongyan, mathematical model of lectures, Peking University Press, 1999Wu Yi, theory and practice, the mathematical modeling of the National University of Defense Technology press, 1999Zhou Yicang, mathematical modeling experiment, Xi'an Jiao Tong University press, 1999Xiao Shutie, mathematics experiment, higher education press, 1999Li Shangzhi, mathematics experiment, higher education press, 1999Le Jingliang, mathematics experiment, higher education press, 1999Xie Yunsun, mathematics experiment, Science Press, 1999Bian Fuping, the basic engineering mathematics experiment, Tianjin University press, 1999Jia Xiaofeng, calculus and mathematical model, higher education press, 1999 Fu Li, mathematics experiment, Science Press, 2000Yang Xuezhen, mathematical modeling method, Hebei University press, 2000 Zhao Jing, mathematical modeling and mathematical experiments, higher education press, Springer press, 2000Ye Qixiao, Undergraduate Mathematical Contest in modeling tutorial ( four ), Hunan Education Press, 2001He Wansheng, mathematics model and modeling, Gansu Education Press, 2001Liu Chengping, mathematical modeling method, higher education press, 2002。

【最新文档】数学建模论文参考文献-word范文模板 (7页)

【最新文档】数学建模论文参考文献-word范文模板 (7页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==数学建模论文参考文献篇一:数学建模优秀论文模板(经典中的经典)承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.指导教师或指导教师组负责人 (打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):201X高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):题目(黑体不加粗三号居中)摘要(黑体不加粗四号居中)(摘要正文小4号,写法如下)内容要点:1、研究目的:本文研究……问题。

2、建立模型思路、:首先,本文……。

然后针对第一问……问题,本文建立……模型:在第一个……模型中,本文对哪些问题进行简化,利用什么知识建立了什么模型在第二个……模型中,本文对哪些问题进行简化,利用什么知识建立了什么模型 3、求解思路,使用的方法、程序针对模型的求解,本文使用什么方法,计算出,并只用什么工具求解出什么问题,进一步求解出什么结果。

4、建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验等)5、在模型的检验模型中,本文分别讨论了以上模型的精度和稳定性6、最后,本文通过改变,得出什么模型。

数学建模论文必备参考文献

数学建模论文必备参考文献

数学建模论文必备参考文献数学建模论文必备参考文献篇一符号计算系统Mathematica教程张韵华编著北京:科学出版社,2001SPSS实用教程阮桂海主编;蔡建平等编著北京:电子工业出版社,2000数学建模实验周义仓,赫孝良编西安:西安交通大学出版社,1999数学建模竞赛赛题简析与论文点评:西安交大近年参赛论文选编赫孝良等[选编] 西安:西安交通大学出版社,2002数学建模案例分析白其峥主编北京:海洋出版社,2000数学建模案例精选朱道元等编著北京:科学出版社,2003数学建模导论陈理荣主编北京:北京邮电大学出版社,1999数学建模:原理与方法蔡锁章主编北京:海洋出版社,2000数学建模的理论与实践吴翊,吴孟达,成礼智编著长沙:国防科技大学出版社,1999数学建模沈继红等编著哈尔滨:哈尔滨工程大学出版社,1998☆数学模型与数学建模作者: 刘来福曾文艺出版社: 出版日期:1997年8月第1版页数:385☆数学建模作者: 沈继红施久玉高振滨张晓威出版社: 出版日期:1996年5月第1版页数:351☆数学建模——方法与范例作者: 寿纪麟出版社: 出版日期:1993年12月第1版页数:345☆数学建模竞赛教程作者: 李尚志出版社: 出版日期:1996年6月第1版页数:443☆数学建模 (修订本)作者: 沈继红施久玉等出版社: 出版日期:1996年5月第1版页数:353☆数学建模:来自英国四个行业中的案例研究作者: [英]伯格斯等出版社: 出版日期:1997年7月第1版页数:273☆数学建模的理论与实践作者: 吴孟达成礼智等出版社: 出版日期:1999年8月第1版页数:370☆数学建模实验作者: 周义仓赫孝良出版社: 出版日期:1999年10月第1版页数:380☆数学建模案例分析作者: 白其峥出版社: 出版日期:2000年1月第1版页数:376☆数学建模原理与方法作者: 蔡锁章出版社: 出版日期:2000年6月第1版页数:361☆数学建模与数学实验作者: 贾敬桂占吉等出版社: 出版日期:1998年7月第1版页数:193☆数学建模导论作者: 陈理荣出版社: 出版日期:1999年2月第1版页数:272☆高等学校教学用书数学模型与数学建模作者: 刘来福曾文艺出版社: 出版日期:1997年8月第1版页数:385☆工科数学基地建设丛书数学建模优秀案例选编作者: 汪国强主编出版社: 出版日期:1998年8月第1版页数:325☆数学建模的理论与实践作者: 吴孟达成礼智等出版社: 出版日期:1999年8月第1版页数:370☆数学建模实验作者: 周义仓赫孝良出版社: 出版日期:1999年10月第1版页数:380☆数学建模案例分析作者: 白其峥出版社: 出版日期:2000年1月第1版页数:376☆数学建模原理与方法作者: 蔡锁章出版社: 出版日期:2000年6月第1版页数:361☆数学建模导论作者: 陈理荣出版社: 出版日期:1999年2月第1版页数:272当然多多益善!不过这下面几本更好。

数学建模参考文献

数学建模参考文献

一、参考文献【1】王炜. 城市交通管理规划指南. 北京:人民交通出版社,2003【2】杨晓光. 城市道路交通设计指南. 北京:人民交通出版社,2003【3】王炜,高海龙,李文权,公路交叉口通行能力. 北京:科学出版社,2000【4】裴玉龙,王炜. 道路交通事故成因及预测对策. 北京:科学出版社,2000【5】过秀成. 道路交通运行分析基础. 南京:东南大学出版社,2009【6】过秀成. 道路交通安全学. 南京:东南大学出版社,2004【7】过秀成,裴玉刚. 公路交通事故黑点分析技术. 南京:东南大学出版社,2009【8】杨桂元,李天胜,徐军. 数学建模应用实例. 安徽:合肥工业大学出版社,2007 【9】任福田. 新编交通工程学导论. 北京:中国建筑工业出版社,2011【10】国家技术监督局. 道路交通标志标线GB5768-1999. 北京:中国标准出版社,1999 【11】国家技术监督局. 道路交通信号灯设置安装规范GB-14886-2006. 北京:中国标准出版社,2006【12】严宝杰. 交通调查与分析. 北京:人民交通出版社,1994【13】吴兵,李哗. 交通管理与控制. 北京:人民交通出版社,2005【14】任福田,刘小明. 论道路交通安全. 北京:人民交通出版社,2000【15】郭忠印,方守恩等. 道路交通安全. 北京:人民交通出版社,2002【16】吴娇蓉,辛飞飞. 交通系统仿真与应用. 上海:同济大学出版社,2012【17】曹守华. 城市轨道交通乘客交通特性分析及建模【D】. 北京:北京交通大学,2009 【18】贾斌. 基于CA的交通系统模拟【R】. 北京:北京交通大学系统科学研究所,2005 【19】张琦,韩宝明. 交通枢纽乘客交互作用建模与仿真【J】. 系统仿真学报,2008,20(20):5442-5445.【20】陈怀琛,龚杰民. 线性代数实践及MATLAB入门. 北京:电子工业出版社,2009 【21】掌绍辉. 数学建模. 北京:科学出版社,2010【22】姚泽清,郑旭东,赵颖. 全国大学生数学建模竞赛题与优秀论文评析. 北京:国防工业出版社,2012二、模型的优点和缺点:我们的模型优点有:第一、我们的模型具有明显的整体性和可观性,易于理解,变量已被控制到最小的计算量,做到简单,便于分析与得出结果。

2023年mathorcup数学建模a题参考文献

2023年mathorcup数学建模a题参考文献

2023年mathorcup数学建模a题参考文献在2023年mathorcup数学建模竞赛的A题中,参考文献是进行研究和分析的重要因素。

在这篇文章中,我们将介绍一些可能对A题有帮助的参考文献。

1.《The Elements of Statistical Learning》这是一本经典的机器学习书籍,对于探讨数学建模问题的学生来说非常有用。

该书详细介绍了最新的机器学习方法和算法,包括回归、分类、聚类、特征选择、模型选择和模型评估等,涵盖了很多与A题相关的数学知识。

2.《Operations Research: An Introduction》这本书是由一个美国大学教授编写的,针对运筹学进行全面介绍,由于A题是一道优化问题,因此对于提高竞赛成绩非常有帮助。

该书不仅可以学习运筹学的基本概念和技术,还将运筹学应用于各种不同的领域和问题。

3.《数学建模全攻略》这是一本专注于数学建模竞赛的图书,被广泛认为是入门学习和参考资料。

特别是对于初学者而言,可以帮助他们了解数学建模的基础,如问题的建立和解决方案的设计。

此外,该书提供了很多相关工具和建议,以最大程度地帮助竞赛选手实现优秀的表现。

4.《数学建模与仿真基础》这本书引导读者从各种数学模型基础知识的角度去学习模型的应用,是学习模型的基础教材。

该书不仅能够帮助读者掌握数学建模基础,理解模型的产生、应用和认知方法,而且还教授仿真技术、实验方法、优化算法、数据统计分析等所有与A题相关的数学与工程学科。

5.《数学建模方法与应用》这本书是以数学建模为基础介绍运筹学、计算机科学及应用数学等方面的知识。

它在讲解模型的选择与建模过程中穿插运筹学的基本概念、定理和算法,并介绍了优化算法、数据挖掘等领域的知识。

参考文献包括了数学建模的基础、理论和具体实践方案。

希望可以帮助你在A题中获得更高的分数。

数学建模美国赛——文献查阅

数学建模美国赛——文献查阅

以上红色字体便是我们查阅资料时的关键字了,我们用 EBSCO查阅关键字“geographical profile” of a suspected serial criminal。然后得到了这样一个结果:
• 其中A论文为: A comparison of the efficacy of different decay functions in geographical profiling for a sample of US serial killers。 即:通过比较不同的衰减函数的功效在地理分析的样本连环 杀手。 这和我们的题目就很接近了,可以参考思路。 • B论文为: Spatial patterns of Indian serial burglars with relevance to geographical profiling。 即:印度串行窃贼的空间模式与地理分析。 我们的问题是预测下一次的犯罪地点,也是基于地理分析 与空间分析的,所以本论文也具有参考价值。 还有剩下十几篇论文同样是通过地理空间的分析来预 测罪犯的行动的,同样具有参考价值,再次不在多提。
查文献的几种模式
• A. 书
• B.书+中外文期刊数据库 • C.书+中外文期刊数据库+学位论文 • D.书+中外文期刊数据库+学位论文+搜索引擎
美赛文献的查阅
对于美赛我们主要需要查阅外文期刊数据库和利用搜 索引擎。 以下是一些常用外文数据库:EBSCO (/),Elserive (),Proquest (),Springerlink(), ISI() 三大外文索引:EI(), SCI(),ISTP()
美赛例题
MCM 2010 A:Criminology n 1981 Peter Sutcliffe was convicted of thirteen murders and subjecting a number of other people to vicious attacks. One of the methods used to narrow the search for Mr. Sutcliffe was to find a “center of mass” of the locations of the attacks. In the end, the suspect happened to live in the same town predicted by this technique. Since that time, a number of more sophisticated techniques have been developed to determine the “geographical profile” of a suspected serial criminal based on the locations of the crimes. Your team has been asked by a local police agency to develop a method to aid in their investigations of serial criminals. The approach that you develop should make use of at least two different schemes to generate a geographical profile. You should develop a technique to combine the results of the different schemes and generate a useful prediction for law enforcement officers. The prediction should provide some kind of estimate or guidance about possible locations of the next crime based on the time and locations of the past crime scenes. If you make use of any other evidence in your estimate, you must provide specific details about how you incorporate the extra information. Your method should also provide some kind of estimate about how reliable the estimate will be in a given situation, including appropriate warnings. In addition to the required one-page summary, your report should include an additional two-page executive summary. The executive summary should provide a broad overview of the potential issues. It should provide an overview of your approach and describe situations when it is an appropriate tool and situations in which it is not an appropriate tool. The executive summary will be read by a chief of police and should include technical details appropriate to the intended audience.

数模美国赛相关论文9

数模美国赛相关论文9
(h1')2 r12 r21 (h2')2 R'= . . . . rp1 rp2 … r1p … r2p … . … . … (hp')2
R'的前 个特征根及其对应的单位化特征 的前m个特征根及其对应的单位化特征 的前 向量就是主因子解. 向量就是主因子解.
迭代主因子法(iterated principal factor) )
Heywood现象
残差矩阵
五,因子旋转
目的:使因子负荷两极分化,要么 目的:使因子负荷两极分化, 接近于0,要么接近于1. 接近于 ,要么接近于 . 常用的旋转方法: 常用的旋转方法:
(1)方差最大正交旋转
(varimax
orthogonal rotation)
基本思想:使公共因子的相对负荷 基本思想: 的方差之和最大, (lij/hi2)的方差之和最大,且保持原公 共因子的正交性和公共方差总和不变. 共因子的正交性和公共方差总和不变. 可使每个因子上的具有最大载荷的变量 数最小,因此可以简化对因子的解释. 数最小,因此可以简化对因子的解释.
谢谢! 谢谢!

六,因子得分
Thomson法,即回归法 回归法得分是由Bayes思想导出的,得 思想导出的, 回归法得分是由 思想导出的 到的因子得分是有偏的, 到的因子得分是有偏的,但计算结果 误差较小. 误差较小.
Bartlett法 Bartlett因子得分是极大似然估计,也 因子得分是极大似然估计, 因子得分是极大似然估计 是加权最小二乘回归, 是加权最小二乘回归,得到的因子得 分是无偏的,但计算结果误差较大. 分是无偏的,但计算结果误差较大. 因子得分可用于模型诊断,也可用作 因子得分可用于模型诊断, 进一步分析的原始资料. 进一步分析的原始资料.

数学建模参考文献格式

数学建模参考文献格式

数学建模参考文献格式参考文献是指在研究和论文撰写过程中所引用的文献资料。

对于数学建模,参考文献可以包括相关的数学理论、模型建立与求解方法、实例研究等方面的文献。

下面是一个有关数学建模参考文献的示例,其中包含了一些重要的参考内容。

1. Brown, M. K., & Stephens, M. A. (2020). Exploratory data analysis (Vol. 31). CRC Press.这本书是关于探索性数据分析的经典著作,通过统计方法和可视化工具,提供了一种基于数据挖掘和数据可视化的分析方法。

在数学建模中,数据分析是非常重要的一环,这本书可以帮助研究者更好地理解和挖掘数据的潜在信息。

2. Luenberger, D. G., & Ye, Y. (2008). Linear and nonlinear programming (Vol. 116). Springer Science & Business Media.这本书是关于线性和非线性规划的经典教材,涵盖了线性规划、凸优化、非线性规划等方面的内容。

在数学建模中,线性规划和非线性规划是常用的建模工具,这本书可以帮助研究者理解和运用这些方法。

3. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN'95-International Conference on Neural Networks (Vol. 4, pp. 1942-1948). IEEE.这篇论文提出了粒子群优化算法,是一种基于群体智能的全局优化方法。

在数学建模中,优化问题是常见的研究对象,粒子群优化算法是一种十分有效的优化方法,这篇论文介绍了其原理和应用。

4. Mahadevan, S. (2012). Probability, statistics and reliability for engineers and scientists. CRC Press.这本书是关于概率论、统计学和可靠性理论在工程和科学领域的应用的教材。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模美赛参考文献Since 1982, the official publication of the teaching of mathematical modeling contest, translations and guidance materials, and related with the mathematical modeling of mathematics experiment teaching material ( only according to statistics all told ):E. A. Bender, an introduction to mathematical model, Zhu Yaochen, Xu Weixuan translation, popular science press, 1982Kondo Jiro, Miya Eiaki, et al, mathematical model, mechanical industry press, 1985C. L. Daimler, E. S. Ai Wei, mathematical modeling principle, Ocean Press, 1985Jiang Qiyuan, mathematical model, higher education press, 1987Ren Shanqiang, mathematical model, Chongqing University press, 1987M. Braun, C. S. Coleman, D. A. Drew, the differential equation model, Zhu Yumin, Zhou yu-hun translation, National University of Defense Technology press, ( the book for the W. F.Lucas editor of the Modules in Applied Mathematics a book first volume ), 1988Chen Anqi, mathematical model of scientific and technical engineering, China Railway Publishing House, 1988Jiang Yuzhao, Xin Peiqing, mathematical model and computer simulation, University of Electronic Science and Technology Press, 1989Yang Qifan, Bian Fu Ping, mathematical model, Zhejiang University press, 1990Dong Jiali, Cao Xudong, Shim Hito, mathematical model, Beijing University of Technology press, 1990Tang Huanwen, Feng Enmin, sun Yuxian, Sun Lihua, an introduction to the mathematics model, Dalian University of Technology press, 1990Jiang Qiyuan, the mathematical model (the Second Edition ), higher education press, 1991H. P. Williams, the mathematical model and computer application, National Defence Industry Press, 1991Li Wen, the application of mathematical model, Huazhong University of science and Technology Press, 1993Ye Qixiao, Undergraduate Mathematical Contest in modeling tutorial, Hunan Education Press, 1993Life Jilin, mathematical modeling method and examples, Xi'an Jiao Tong University press, 1993Ye Qixiao editor, mathematical modeling education and International Mathematical Contest in modeling, " Engineering Mathematics " magazine, 1994In the country, Da Wen editor, mathematical model, Southeast University press, 1994Ouyang Liang, mathematical model, system science, Shandong University press, 1995Chen Yihua, mathematical model, Chongqing University press, 1995Zhu Siming, Li Shanglian, mathematical model, Zhongshan University press, 1995Cai Changfeng, mathematical modeling analysis, Science Press, 1995Xu Quanzhi, Yang Jinhao, introduction to mathematical modeling, University of Electronic Science and Technology Press, 1996Shen Jihong, Shi Jiuyu, Zhang Xiaowei, high Zhenbin, mathematical modeling, Harbin Engineering University press, 1996Ren Shanqiang, Lei Ming, mathematical model, Chongqing University press, 1996Qi Huan, mathematical model method, Huazhong University of science and Technology Press, 1996Wang Shuhe, the mathematical model foundation, University of Science & Technology China press, 1996Li Shangzhi editor, mathematical contest in modeling tutorial, Jiangsu Education Press, 1996Nanjing Engineering College Mathematical Modeling and Industrial Mathematics seminar series, modeling and experiment, mathematics, Hohai University press, 1996Tan Yongji, Yu Wen Ci, mathematical model, Fudan University press, 1997D. Burghes, four case studies of industry in the UK from mathematical modeling, leaves its filial, translated by Wu Qingbao, World Book Inc, 1997Ye Qixiao, Undergraduate Mathematical Contest in modeling tutorial ( two ), Hunan Education Press, 1997Liu Laifu, Zeng literature, mathematical model and mathematical modeling, Beijing Normal University press, 1997, S.J.Brams, W.F.Lucas, P.D.Straffin, Jr., political and related models, National University of Defense Technology press, ( the book for the W. F. Lucas editor of the Modules in Applied Mathematics a book in second volumes ) 1997W.F.Lucas, F.S.Roberts, R.M.Thrall, discrete model and system, National University of Defense Technology press, ( W. book F. Lucas Modules in Applied Mathematics, editor of a book in third volumes ), 1997H.Marcus-Roberts, M. Thompson, life sciences, National University of Defense Technology press, ( W. book F. Lucas Modules in Applied Mathematics, editor of a book in fourth volumes ), 1997Ye Qixiao, Undergraduate Mathematical Contest in modeling tutorial ( three ), Hunan Education Press, 1998Yuan Zhendong, mathematical modeling, East China Normal University press, 1997He Changzheng, an introduction to mathematical modelling, Chengdu University of Science and Technology press, 1998Fei Peizhi, a practical mathematical model of tutorials, Sichuan University press, 1998Cai Suozhang, the principle and method of mathematics modeling, Ocean Press.White qi-zheng, case analysis, mathematical modeling, Ocean Press.Zhu Daoyuan, mathematical modeling cases, Southeast University press, 1999 Ray Gongyan, mathematical model of lectures, Peking University Press, 1999Wu Yi, theory and practice, the mathematical modeling of the National University of Defense Technology press, 1999Zhou Yicang, mathematical modeling experiment, Xi'an Jiao Tong University press, 1999Xiao Shutie, mathematics experiment, higher education press, 1999Li Shangzhi, mathematics experiment, higher education press, 1999Le Jingliang, mathematics experiment, higher education press, 1999Xie Yunsun, mathematics experiment, Science Press, 1999Bian Fuping, the basic engineering mathematics experiment, Tianjin University press, 1999Jia Xiaofeng, calculus and mathematical model, higher education press, 1999 Fu Li, mathematics experiment, Science Press, 2000Yang Xuezhen, mathematical modeling method, Hebei University press, 2000 Zhao Jing, mathematical modeling and mathematical experiments, higher education press, Springer press, 2000Ye Qixiao, Undergraduate Mathematical Contest in modeling tutorial ( four ), Hunan Education Press, 2001He Wansheng, mathematics model and modeling, Gansu Education Press, 2001Liu Chengping, mathematical modeling method, higher education press, 2002。

相关文档
最新文档