坐标方位角计算
测量学坐标方位角怎么计算
测量学坐标方位角怎么计算引言在测量学中,测量坐标方位角是一个常见且重要的问题。
方位角是指一个点相对于某个参考点的方向,通常用于导航、位置定位和地图绘制等应用中。
本文将介绍如何计算测量学中的坐标方位角。
坐标系与方位角概念在进行坐标方位角的计算之前,需要先了解一些基本概念。
在测量学中,我们常用的坐标系是笛卡尔坐标系,它由水平方向的x轴和垂直方向的y轴构成。
而方位角则以正北方向为参考,顺时针计算。
方位角的表示通常采用度数制,以360度为一圈。
0度表示正北方向,90度表示正东方向,180度表示正南方向,270度表示正西方向。
方位角计算方法要计算一个点相对于参考点的方位角,需要知道两点在笛卡尔坐标系中的坐标。
设参考点的坐标为(x1, y1),目标点的坐标为(x2, y2),则方位角的计算公式如下:方位角 = atan2(y2 - y1, x2 - x1) * (180 / pi)其中,atan2是一个数学函数,用于计算给定点的反正切值。
需要注意的是,由于计算结果是弧度制,所以要将其转换为度数制。
实例演示为了更好地理解方位角的计算方法,我们来进行一个实例演示。
假设参考点的坐标为(3, 4),目标点的坐标为(8, 6)。
我们希望计算目标点相对于参考点的方位角。
首先,我们需要代入上述计算公式:方位角 = atan2(6 - 4, 8 - 3) * (180 / pi)接下来,我们可以用计算器或者编程语言中的数学库来计算,得到方位角为45.96 度。
结论测量学中坐标方位角的计算是通过参考点和目标点的笛卡尔坐标来进行的。
通过代入方位角的计算公式,我们可以得到一个点相对于参考点的方向。
这在导航、位置定位和地图绘制等应用中具有重要的作用。
希望本文对于测量学中坐标方位角的计算有所帮助,能够帮助读者更好地理解和应用这一概念。
参考文献•Wikipedia.。
角度、坐标测量计算公式细则
计算细则1、坐标计算:X1=X+Dcosα,Y1=Y+Dsinα。
式中 Y、X为已知坐标,D为两点之间的距离,Α为方位角。
2、方位角计算:1)、方位角=tan=两坐标增量的比值,然后用计算器按出他们的反三角函数(±号判断象限)。
2)、方位角:arctan(y2-y1)/(x2-x1)。
加减180(大于180就减去180(还大于360就在减去360)、小于180就加180 如果x轴坐标增量为负数,则结果加180°。
如果为正数,则看y轴的坐标增量,如果Y轴上的结果为正,则算出来的结果就是两点间的方位角,如果为负值,加360°。
S=√(y2-y1)+(x2-x1),1)、当y2-y1>0,x2-x1>0时;α=arctan(y2-y1)/(x2-x1)。
2)、当y2-y1<0,x2-x1>0时;α=360°+arctan(y2-y1)/(x2-x1)。
3)、当x2-x1<0时;α=180°+arctan(y2-y1)/(x2-x1)。
再用两点之间的距离公式可算距离(根号下两个坐标距离差的平方相加)。
拨角:arctan(y2-y1)/(x2-x1)1、例如:两条巷道要互相平行掘进的话,求它们的拨角:方法(前视边方位角减后视边方位)在此后视边方位要加减180°,若拨角结果为负值为左偏“逆时针”(+360°就可化为右偏,正值为右偏“顺时针”。
2、在图上标识方位的方法:就是导线边与Y轴的夹角。
3、高程计算:目标高程=测点高程+?h+仪器高—占标高。
4、直角坐标与极坐标的换算:(直角坐标用坐标增量表示;极坐标用方位角和边长表示) 1)、坐标正算(极坐标化为直角坐标)已知一个点的坐标及该点至未知点的距离和方位角,计算未知点坐标方位角,知A(Xa,Ya)、Sab、αab,求B(Xa,Ya)解:?Xab=Sab×COSαab 则有Xb=Xa+?Xab?Yab=Sab×SINαab Yb=Ya+?Yab2)、坐标反算,已知两点的坐标,求两点的距离(称反算边长)和方位角(称反算方位角)的方法已知A(Xa,Ya)、B(Xb,Yb),求αab、Sab。
已知两个坐标求坐标方位角的公式是
已知两个坐标求坐标方位角的公式是在地理和导航领域中,坐标方位角是指从一个给定坐标点到另一个目标坐标点的方向角度。
在导航和定位系统中,方位角是非常重要的参数,可以用来确定目标位置相对于原点的方向。
计算坐标方位角的公式可以帮助我们快速准确地确定目标位置的方向。
坐标方位角的计算可以使用三角函数来实现。
下面是计算坐标方位角的公式:设已知坐标点A的经度为lon A,纬度为lat A,坐标点B的经度为lon B,纬度为lat B。
则坐标点A到坐标点B的方位角(以正北方向为0度,顺时针旋转)可以通过以下公式来计算:$$ \\Delta \\lambda = lon_B - lon_A $$$$ Y = \\sin(\\Delta \\lambda) \\cdot \\cos(lat_B) $$$$ X = \\cos(lat_A) \\cdot \\sin(lat_B) - \\sin(lat_A) \\cdot \\cos(lat_B) \\cdot \\cos(\\Delta \\lambda) $$$$ \\theta = \\arctan\\left(\\frac{Y}{X}\\right) $$其中,$\\Delta \\lambda$表示经度差值,X和Y是中间变量,$\\theta$表示方位角。
需要注意的是,上述公式中的经纬度均采用弧度制表示,因此在计算前需要将经纬度转换为弧度。
转换方法如下:$$ \\text{Radian} = \\text{Degree} \\times \\frac{\\pi}{180} $$在实际应用中,通常使用计算机编程语言的库函数来计算三角函数和角度转换。
以下是一个Python示例代码,展示了如何根据给定的坐标求得方位角:import mathdef calculate_bearing(lat_a, lon_a, lat_b, lon_b):# 将经纬度转换为弧度lat_a_rad = math.radians(lat_a)lon_a_rad = math.radians(lon_a)lat_b_rad = math.radians(lat_b)lon_b_rad = math.radians(lon_b)delta_lon = lon_b_rad - lon_a_rady = math.sin(delta_lon) * math.cos(lat_b_rad)x = math.cos(lat_a_rad) * math.sin(lat_b_rad) - math.sin(lat_a_rad)* math.cos(lat_b_rad) * math.cos(delta_lon)bearing = math.atan2(y, x)# 将弧度转换为角度bearing_deg = math.degrees(bearing)return bearing_deg上述代码中的calculate_bearing函数接受四个参数,分别为点A和点B的经度和纬度。
坐标距离及方位角计算公式
坐标距离及方位角计算公式坐标距离计算公式:在平面坐标系中,可以使用勾股定理来计算两个点之间的距离。
给定两个点A(x1,y1)和B(x2,y2),它们之间的距离可以由以下公式计算:距离=√((x2-x1)²+(y2-y1)²)在三维空间中,可以使用空间直角坐标系的距离计算公式。
给定两个点A(x1,y1,z1)和B(x2,y2,z2),它们之间的距离可以由以下公式计算:距离=√((x2-x1)²+(y2-y1)²+(z2-z1)²)方位角计算公式:方位角是指从一个点到另一个点的方向角度。
在二维平面坐标系中,可以使用反正切函数来计算两点之间的方位角。
给定两个点A(x1,y1)和B(x2,y2),它们之间的方位角可以由以下公式计算:方位角 = atan2(y2 - y1, x2 - x1)在三维空间中,可以使用球坐标系来计算两个点之间的方位角。
给定两个点A(r1,θ1,φ1)和B(r2,θ2,φ2),其中r表示距离,θ表示纬度,φ表示经度,它们之间的方位角可以由以下公式计算:方位角= atan2(sin(φ2 - φ1) * cos(θ2), cos(θ1) * sin(θ2) - sin(θ1) * cos(θ2) * cos(φ2 - φ1))这些公式可以通过编程语言如Python或者使用地理信息系统软件如ArcGIS来实现。
总结:坐标距离计算公式通过平面直角坐标系或者球坐标系来计算两个点之间的距离。
方位角计算公式通过反正切函数或者球坐标系来计算从一个点到另一个点的方位角度。
这些公式对于地理和导航应用非常重要,可以帮助确定地理位置和导航方向。
测量坐标方位角计算详解
p
R
xZ
xZH
yZ
yZH
x2
y2
c os (1
arc tan
y x
)
x2
y2
sin(1
arc tan
y x
)
带缓和曲线线路中边桩坐标计算
xZ
边桩坐标:
yZ
xZ yZ
d cos(1 d sin(1
180(Z 180(Z
ZZH
R
ZZH
R
) )
90ls 90ls
90) 90)
如图所示,已知曲线要素:
缓和曲线长度 ls ,圆曲线长度 ly ,圆曲线半径 R ; ZH 点坐标 (xZH , yZH ) ,JD 点坐标 (xJD, yJD) , HZ 点坐标 (xHZ , yHZ ) ,ZH 点里程 Z ZH 。 求里程为 Z 点的中桩及距离中桩 d 处边桩坐标。
带缓和曲线线路中边桩坐标计算
x
小里程方向
HY点 ZH点
YH点 JD点
αz
大里程方向 HZ点
O
y
带缓和曲线线路中边桩坐标计算
1、相关参数计算 ⑴ 曲线主点里程计算
HY 点里程: Z HY Z ZH ls YH 点里程: ZYH Z ZH ls l y HZ 点里程: ZHZ ZZH 2ls ly
带缓和曲线线路中边桩坐标计算
xA xB yA yB
180
x 轴负半轴上
yA yB
180 arctan yB yA xB xA
第Ⅲ象限
注:在 EXCLE 中,可统一用公式 ATAN2(xB-xA,yB-yA)
直线段坐标计算
如图所示,已知 A(xA , y A ) ,距离 LAB l , LBC d 方位角 AB ,
测量坐标方位角计算
测量坐标方位角计算坐标方位角是指一个点相对于原点的方向角度。
测量坐标方位角是非常重要的,特别是在地理测量、导航以及机器人控制等领域。
在这篇文章中,我将解释测量坐标方位角的原理和方法,并提供一些实际应用的示例。
首先,坐标方位角是以正北方向为参考的,顺时针方向测量。
通常用一个角度值表示,范围从0度到360度。
0度表示正北方向,90度表示正东方向,180度表示正南方向,270度表示正西方向。
方位角 = arctan(y / x)其中,y是点相对于原点在y轴上的坐标值,x是点相对于原点在x轴上的坐标值,arctan是反正切函数。
这个公式的推导过程比较简单。
假设原点为O,目标点为A,OA的长度为r,目标点的坐标为(x, y)。
那么,根据三角函数的定义,tan(方位角)等于直角三角形的对边长度y除以临边长度x,即tan(方位角) = y / x。
而反正切函数就是这个比值的反函数,即arctan(y / x)。
在实际应用中,可以使用计算机程序来计算坐标方位角。
许多编程语言和软件包都提供了计算三角函数的函数或方法。
比如,在Python中,可以使用math库中的atan2函数来计算坐标方位角。
这个函数接受两个参数,y和x,然后返回坐标方位角的弧度值。
要转换为角度值,可以再将弧度值乘以180并除以π,即angle = atan2(y, x) * 180 / π。
除了使用三角函数,还可以使用向量运算来计算坐标方位角。
假设有两个向量,一个是原点指向目标点的向量A,一个是x轴的单位向量B。
那么,两个向量的夹角就是坐标方位角。
具体而言,可以使用以下公式来计算坐标方位角:方位角= arccos(A · B / (,A,× ,B,))其中,A · B表示向量A和向量B的内积,A,和,B,分别表示向量A和向量B的长度,arccos是反余弦函数。
当然,以上只是理论上的计算方法,实际上还需考虑一些附加因素。
坐标方位角的推算
使用时的注意事项
01
02
03
了解精度限制
在使用坐标方位角推算结 果前,应了解其精度限制, 避免误用。
注意适用范围
不同坐标系、不同计算方 法得到的坐标方位角可能 存在差异,使用时应明确 适用范围。
定期校准
对使用的设备和软件进行 定期校准和维护,确保其 性能和准确性。
05
总结与展望
总结
坐标方位角的概念
02
坐标方位角的计算方法
计算公式
坐标方位角计算公式
arctan((y2-y1)/(x2-x1))。其中,(x1, y1)和(x2, y2)分别为两个已 知点的平面直角坐标。
真方位角计算公式
arctan((y2-y1)/(x2-x1)) + (如果 x2 > x1,则取0°,否则取180°)。
磁方位角计算公式
应用领域的拓展
随着人们对地理信息和位置服务的不断需求,坐标方位角的 应用领域也将不断拓展。例如,在智能交通、城市规划、环 境保护等领域中,坐标方位角将发挥更加重要的作用。
展望
与其他技术的结合
坐标方位角可以与其他技术结合使用 ,例如与GIS技术、遥感技术、人工智 能等技术的结合,可以实现更加复杂 和精细的地理信息处理和应用。
THANKS
感谢观看
将点A和点B的坐标代入坐标方位角计算公式,得到arctan((8-4)/(6-3)) = arctan(4/3) = 53.13°。
因此,AB的坐标方位角为53.13°。
03
坐标方位角的应用
在地图导航中的应用
确定方向
坐标方位角是地图上两点之间的方向线与正北方向的夹角,通过计算坐标方位 角,可以确定地图上任意两点之间的相对方向,从而在地图导航中确定正确的 路径。
坐标测量角度及方位角计算
基本计算公式:
sinα=对边/斜边sinα=A/C
cosα=邻边/斜边cosα=B/C
tgα=对边/邻边tgα=A/B
ctgα=邻边/对边ctgα=B/A
B
一、根据其中一个已知坐标点做原点,作坐标系图。
二、根据已知第二坐标点与假定原点坐标的差值确定其所在象限位置。
三、根据第二已知坐标点与假定原点的差值计算第二已知坐标点与假定原点的夹角。
四、根据夹角象限位置+或—180度//90度。
(第四象限减180度,第二象限减90度,第三象限减360度)
五、根据需测坐标数据计算其与假定原点的差值。
六、根据差值计算需测坐标与假定原点的夹角。
七、根据象限位置加+减—已知坐标与假定原点的夹角。
八、得出已知第二坐标与需测坐标的夹角。
九、根据坐标计算假定原点与需测坐标的距离。
十、根据计算结果与经纬仪测定需测坐标的位置。
方位角及坐标计算
方位角及坐标计算公路工程各点方位角及坐标计算公式(一)各点方位角计算:1、第一直线段(K0~ZH):F=arctgΔY/ΔX注:直线方位角要考虑象限角才能定出正确线路走向 2、第一缓和曲线段(KZH~KHY):δ1=(K0-KZH)2/(2RLh)×180/π 3、圆曲线段(KHY~KYH):δ2=[2(K0-KZH)-Lh]/2R×180/π δ2=(KHY-KZH)/2R×180/π+(K0-KHY)/R×180/π无缓和曲线时:δ2=(K0-KHY)/R×180/π(即圆曲线圆心角) 4、第二缓和曲线段(KYH~KHZ):δ3=(KHZ-K0)2/(2RLh)×180/π 5、第二直线段(KHZ~KZH):F±α (左偏时F-α,右偏时F+α)注:K0――计算点的程α――曲线交点偏角Lh――缓和曲线长(注意有时第一和第二缓和曲线长不一样)(二)各点坐标计算XZH=XJD-T?CosF XHZ=XJD+T?Cos(F±α) YZH=YJD-T?SinF YHZ=YJD+T?Sin(F±α) 1、第一直线段:X=XZH+(K0-KZH)?CosF 中桩Y=YZH+(K0-KZH)?SinF X边=X中±B?Cos(F-Δ)边桩Y边=Y中±B?Sin(F-Δ)注:B――中桩至所求点的距离(左幅时为+B,右幅时为-B,当设计轴线与线路不垂直时B取斜长,即B/SinΔ)设计轴线线路方向。
BΔ 图S-12、第一缓和曲线段: XX=XZH-Y′?Sinθ+X′?Cosθ X X′ X′ 中桩′Y=YZH+Y′?Cosθ+X′?Sinθ Y ZH Y θ HZX边=X中±B?Cos(F+μδ1-Δ) HY YH 边桩Y边=Y中±B?Sin(F+μδ1-Δ)JD Y′ 注:(本公式只适用与图S-2线形)图S-2 μ――曲线左转为-1,右转为+1θ――线路方位角与Y轴所夹的锐角,见图S-2 Y′=L-L5/(40R2Lh2);X′=L3/(6RLh)-L7/(336R3Lh3);(R―圆曲线半径,L―缓和曲线上任一点至曲线起点长度)3、圆曲线段:X=XHY+2R?Sinφ?Cos(F+μ(ξ+φ))中桩Y=YHY+2R?Sinφ?Sin(F+μ(ξ+φ)) X边=X中±B?Cos(F+μδ2-Δ)边桩Y边=Y中±B?Sin(F+μδ2-Δ)注:φ=(K0-KHY)/2R×180/π;ξ=(KHY-KZH)/2R×180/π 4、第二缓和曲线段:X=XHZ-Y′?Sinθ+X′?Cosθ 中桩Y=YHZ-Y′?Cosθ-X′?Sinθ X边=X中±B?Cos(F+μδ1-Δ)边桩Y边=Y中±B?Sin(F+μδ1-Δ)注:1、本公式只适用与图S-2线形,其他线形可根据本线形公式变换2、式中符号与第一缓和曲线意义相同3、注意有时第一缓和曲线长和第二缓和曲线长不一样4、第二直线段:X=XHZ+(K0-KHZ)?Cos(F±α)中桩Y=YHZ+(K0-KHZ)?Sin(F±α) X边=X中±B?Cos(F±α-Δ)边桩Y边=Y中±B?Sin(F±α-Δ)注:F――第一直线段的方位角(三)用CASIO fx-4500P计算已知坐标点在线路上的里程和距中线距离 1、直线段(已知坐标X、Y)Pol(X-XHZ,Y-YHZ):K=V?Cos(F-W)+KHZ B=V?Sin(F-W)注: 1、在fx-4500P中计算结果存入变量储存区V和W,要显示储存区内容时按RCL V 、 W 键。
坐标方位角计算范文
坐标方位角计算范文坐标方位角是指从一个坐标点指向另一个坐标点的角度,通常使用直角坐标系或极坐标系进行计算。
在直角坐标系中,坐标方位角可以通过两个坐标点的坐标值来计算。
在极坐标系中,坐标方位角可以通过两个坐标点的距离和极轴的角度来计算。
在直角坐标系中,假设我们有两个坐标点A(x1,y1)和B(x2,y2),要计算点A到点B的方位角。
我们可以按照以下步骤进行计算:1.计算两个坐标点的差值:Δx=x2-x1和Δy=y2-y12.如果Δx=0,即两个点在同一竖直线上,需要特殊处理。
如果Δy>0,那么方位角为90度或π/2弧度;如果Δy<0,方位角为270度或3π/2弧度。
3.如果Δy=0,即两个点在同一水平线上,需要特殊处理。
如果Δx>0,那么方位角为0度或0弧度;如果Δx<0,方位角为180度或π弧度。
4. 如果Δx ≠ 0 且Δy ≠ 0,即两个点不在同一水平线或竖直线上,我们需要使用反正切函数来计算方位角。
首先计算tan(θ) = Δy / Δx,然后使用反正切函数计算θ = atan(Δy / Δx)。
5.由于反正切函数的值只在一、四象限中正确,所以我们需要判断点B在点A的哪个象限。
如果Δx>0且Δy>0,即点B在点A的第一象限,θ的值保持不变;如果Δx<0且Δy>0,即点B在点A的第二象限,θ的值应该加上π弧度;如果Δx<0且Δy<0,即点B在点A的第三象限,θ的值应该加上π弧度;如果Δx>0且Δy<0,即点B在点A的第四象限,θ的值应该加上2π或360度。
6.最后,将得到的θ转换为角度制或弧度制作为结果。
在极坐标系中,坐标方位角可以通过两个坐标点的极坐标表示来计算。
设点A的极坐标为(r1,θ1),点B的极坐标为(r2,θ2),计算点A到点B的方位角可以按照以下步骤进行:1. 使用极圆的公式计算两个点的极坐标:r1 = sqrt(x1^2 + y1^2)和θ1 = atan2(y1, x1),r2 = sqrt(x2^2 + y2^2) 和θ2 = atan2(y2, x2)。
方位角的计算方法
方位角的计算方法方位角是指在平面直角坐标系中,特定点与正方向x轴之间逆时针方向的夹角。
它在数学、地理、航空航天等领域中都有广泛的应用。
计算方位角的方法主要有以下几种:1.基于直角坐标系的计算:假设有两个点A(x1, y1)和B(x2, y2),首先需要计算出两点之间的直线斜率k = (y2 - y1) / (x2 - x1)。
然后利用反正切函数,通过求解arctan(k)得到弧度值θ。
最后利用单位换算,将弧度值θ转化为角度值α=θ * 180 / π,即为所求的方位角。
2.基于极坐标系的计算:在极坐标系中,一个点可以通过距离r和极角θ来表示。
假设有两个点A(r1,θ1)和B(r2,θ2),要计算两点之间的方位角,首先需要将两点的极角θ转化为弧度制,然后通过计算Δθ=θ2-θ1得到两点之间的相对角度。
最后利用单位换算,将相对角度Δθ转化为角度值α=Δθ*180/π,即得到方位角。
3.基于方向向量的计算:假设有两个点A(x1, y1)和B(x2, y2),可以将两点之间的连线看作一个方向向量。
首先需要计算出两点之间的方向向量V(x2 - x1, y2 - y1)。
然后利用反正切函数,通过求解arctan(Vy / Vx)得到弧度值θ。
最后利用单位换算,将弧度值θ转化为角度值α=θ * 180 / π,即为所求的方位角。
需要注意的是,在计算方位角时,可能会遇到特殊情况,例如:-当两点在同一直线上时,方位角为0或180度;-当两点重合时,方位角没有定义。
总结起来,方位角的计算方法有基于直角坐标系、极坐标系和方向向量三种方法,根据具体情况选择适合的方法进行计算。
角度坐标测量计算公式细则
角度坐标测量计算公式细则文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)计算细则1、坐标计算:X1=X+Dcosα,Y1=Y+Dsinα。
式中 Y、X为已知坐标,D为两点之间的距离,Α为方位角。
2、方位角计算:1)、方位角=tan=两坐标增量的比值,然后用计算器按出他们的反三角函数(±号判断象限)。
2)、方位角:arctan(y2-y1)/(x2-x1)。
加减180(大于180就减去180(还大于360就在减去360)、小于180就加180如果x轴坐标增量为负数,则结果加180°。
如果为正数,则看y轴的坐标增量,如果Y轴上的结果为正,则算出来的结果就是两点间的方位角,如果为负值,加360°。
S=√(y2-y1)+(x2-x1),1)、当y2-y1>0,x2-x1>0时;α=arctan(y2-y1)/(x2-x1)。
2)、当y2-y1<0,x2-x1>0时;α=360°+arctan(y2-y1)/(x2-x1)。
3)、当x2-x1<0时;α=180°+arctan(y2-y1)/(x2-x1)。
再用两点之间的距离公式可算距离(根号下两个坐标距离差的平方相加)。
拨角:arctan(y2-y1)/(x2-x1)1、例如:两条巷道要互相平行掘进的话,求它们的拨角:方法(前视边方位角减后视边方位)在此后视边方位要加减180°,若拨角结果为负值为左偏“逆时针”(+360°就可化为右偏,正值为右偏“顺时针”。
2、在图上标识方位的方法:就是导线边与Y轴的夹角。
3、高程计算:目标高程=测点高程+h+仪器高—占标高。
4、直角坐标与极坐标的换算:(直角坐标用坐标增量表示;极坐标用方位角和边长表示)1)、坐标正算(极坐标化为直角坐标)已知一个点的坐标及该点至未知点的距离和方位角,计算未知点坐标方位角,知A(Xa,Ya)、Sab、αab,求B(Xa,Ya)解:Xab=Sab×COSαab 则有Xb=Xa+XabYab=Sab×SINαab Yb=Ya+Yab2)、坐标反算,已知两点的坐标,求两点的距离(称反算边长)和方位角(称反算方位角)的方法已知A(Xa,Ya)、B(Xb,Yb),求αab、Sab。
方位角及坐标计算
方位角及坐标计算公路工程各点方位角及坐标计算公式(一)各点方位角计算:1、第一直线段(k0~zh):f=arctgδy/δx备注:直线方位角必须考量象限角就可以厘定恰当线路迈向2、第一缓解曲线段(kzh~khy):δ1=(k0-kzh)2/(2rlh)×180/π3、圆曲线段(khy~kyh):δ2=[2(k0-kzh)-lh]/2r×180/πδ2=(khy-kzh)/2r×180/π+(k0-khy)/r×180/π无缓和曲线时:δ2=(k0-khy)/r×180/π(即圆曲线圆心角)4、第二缓和曲线段(kyh~khz):δ3=(khz-k0)2/(2rlh)×180/π5、第二直线段(khz~kzh):f±α(左偏时f-α,右偏时f+α)备注:k0――排序点的程α――曲线交点偏角lh――缓和曲线长(注意有时第一和第二缓和曲线长不一样)(二)各点坐标计算xzh=xjd-t?cosfxhz=xjd+t?cos(f±α)yzh=yjd-t?sinfyhz=yjd+t?sin(f±α)1、第一直线段:x=xzh+(k0-kzh)?cosf中桩y=yzh+(k0-kzh)?sinfx边=x中±b?cos(f-δ)边桩y边=y中±b?sin(f-δ)备注:b――中桩至所求点的距离(左幅时为+b,右幅时为-b,当设计轴线与线路不横向时b取斜短,即b/sinδ)设计轴线线路方向。
bδ图s-12、第一缓和曲线段:xx=xzh-y′?sinθ+x′?cosθxx′x′中桩′y=yzh+y′?cosθ+x′?sinθyzhyθhzx边=x中±b?cos(f+μδ1-δ)hyyh边桩y边=y中±b?sin(f+μδ1-δ)jdy′注:(本公式只适用与图s-2线形)图s-2μ――曲线左转为-1,右转为+1θ――线路方位角与y轴所缠的锐角,见到图s-2y′=l-l5/(40r2lh2);x′=l3/(6rlh)-l7/(336r3lh3);(r―圆曲线半径,l―缓解曲线就任一点至曲线起点长度)3、圆曲线段:x=xhy+2r?sinφ?cos(f+μ(ξ+φ))中桩y=yhy+2r?sinφ?s in(f+μ(ξ+φ))x边=x中±b?cos(f+μδ2-δ)边桩y边=y中±b?sin(f+μδ2-δ)备注:φ=(k0-khy)/2r×180/π;ξ=(khy-kzh)/2r×180/π4、第二缓解曲线段:x=xhz-y′?sinθ+x′?cosθ中桩y=yhz-y′?cosθ-x′?sinθx边=x中±b?cos(f+μδ1-δ)边桩y边=y中±b?sin(f+μδ1-δ)注:1、本公式只适用于与图s-2线形,其他线形可以根据本线形公式转换2、式中符号与第一缓解曲线意义相同3、注意有时第一缓和曲线长和第二缓和曲线长不一样4、第二直线段:x=xhz+(k0-khz)?cos(f±α)中桩y=yhz+(k0-khz)?sin(f±α)x边=x中±b?cos(f±α-δ)边桩y边=y中±b?sin(f±α-δ)备注:f――第一直线段的方位角(三)用casiofx-4500p计算已知坐标点在线路上的里程和距中线距离1、直线段(已知坐标x、y)pol(x-xhz,y-yhz):k=v?cos(f-w)+khzb=v?sin(f-w)备注:1、在fx-4500p中计算结果取走变量储存区v和w,必须表明储存区内容时按rclv、w键。
坐标方位角计算实验报告
一、实验目的1. 理解坐标方位角的概念和计算方法。
2. 掌握坐标方位角的计算步骤和注意事项。
3. 通过实际操作,提高测量精度和计算能力。
二、实验原理坐标方位角是指在平面直角坐标系中,从起点出发,沿着直线的方向所形成与正北方向之间的夹角。
坐标方位角的计算公式为:方位角 = arctan((y2 - y1) / (x2 - x1))其中,(x1, y1)和(x2, y2)分别为直线上两点的坐标。
三、实验仪器与材料1. 测量仪器:经纬仪、水准仪、钢尺等。
2. 实验材料:坐标纸、记录本、计算器等。
四、实验步骤1. 选择实验场地,搭建测量控制网。
2. 在控制网上选取两个已知坐标点A和B。
3. 利用经纬仪和水准仪,测量点A和B的坐标和高程。
4. 根据测得的坐标和高程,计算A、B两点的坐标方位角。
5. 利用坐标方位角,绘制直线的方向。
6. 对比理论计算结果和实际测量结果,分析误差来源。
五、实验数据1. 点A坐标:x1 = 100.0m,y1 = 200.0m2. 点B坐标:x2 = 150.0m,y2 = 250.0m六、实验结果与分析1. 计算A、B两点的坐标方位角:方位角 = arctan((y2 - y1) / (x2 - x1))= arctan((250.0 - 200.0) / (150.0 - 100.0))≈ arctan(1.0)≈ 45°2. 绘制直线的方向,实际测量结果与理论计算结果基本一致。
3. 误差分析:(1)测量误差:在实验过程中,由于仪器精度、人为操作等因素,导致测量结果存在一定的误差。
(2)计算误差:在计算过程中,由于计算方法、计算器精度等因素,导致计算结果存在一定的误差。
(3)绘图误差:在绘制直线方向时,由于绘图工具和人为操作等因素,导致绘图结果存在一定的误差。
七、实验总结1. 通过本次实验,我们掌握了坐标方位角的计算方法和步骤,提高了测量精度和计算能力。
2. 在实际操作过程中,要注意仪器的使用、数据的记录和计算过程的准确性,以减小误差。
测量坐标方位角怎么算
测量坐标方位角怎么算在测量领域中,坐标方位角是一种用来表示物体相对于某一基准方向的角度。
它在地理测量、天文测量以及其他许多领域中都有重要的应用。
测量坐标方位角可以帮助我们准确定位物体在空间中的位置。
本文将简要介绍测量坐标方位角的计算方法。
1. 坐标方位角的定义坐标方位角是从基准方向逆时针旋转的角度,以度(°)为单位。
在测量中,我们通常使用北方作为基准方向,将其定义为0°或360°。
其他方向相对于北方的角度从0°到360°之间进行测量。
2. 坐标系的选择在计算坐标方位角之前,我们需要选择适当的坐标系。
常用的坐标系包括直角坐标系和极坐标系。
直角坐标系使用直角坐标轴(x、y、z轴)来表示物体的位置,而极坐标系则使用径向和角度来表示。
3. 测量坐标方位角的步骤和公式测量坐标方位角的步骤如下:步骤1:确定基准方向,通常选择北方作为基准方向,定义为0°或360°。
步骤2:将物体的位置表示为坐标(x,y)或(r,θ),根据所选择的坐标系。
步骤3:使用以下公式计算坐标方位角:•在直角坐标系中,可以使用反正切函数(atan2)来计算坐标方位角。
公式如下:方位角(θ) = atan2(y, x)•在极坐标系中,坐标方位角直接等于角度(θ)。
4. 示例为了更好地理解坐标方位角的计算过程,我们可以通过一个示例来说明。
假设我们有一个物体的位置坐标为(3,4),我们想计算该物体相对于北方的坐标方位角。
在直角坐标系中,我们有:方位角(θ) = atan2(4, 3)根据计算得到的结果,θ的值约为53.13°。
5. 总结测量坐标方位角是一种常见的测量技术,可以帮助我们准确描述物体在空间中的位置。
通过选择适当的坐标系,并运用相应的公式,我们可以计算出物体相对于基准方向的角度。
这种技术在地理测量、天文测量等领域有着广泛的应用。
希望本文对于理解测量坐标方位角的计算方法有所帮助,并能在相关测量工作中起到指导作用。
测量坐标方位角计算
测量坐标方位角计算
坐标方位角是一个与正北方向之间的夹角,通常使用度(°)来表示。
方位角的范围通常是从0°到360°,其中0°表示正北方向,90°表示
正东方向,180°表示正南方向,270°表示正西方向。
1.磁罗盘法:
磁罗盘法是使用磁罗盘进行方位角测量的一种方法。
磁罗盘是一个指
针装置,可以指示出地球的磁场方向,从而确定方向。
测量方位角的步骤如下:
1)将磁罗盘放置在要测量方位角的点上,使得指针指向磁北方向。
2)将一支指示物(如杆状标杆)置于要测量方位角的原点上,并确
定它的位置。
3)通过对指针和指示物之间的夹角进行测量,可以确定坐标方位角。
2.全站仪法:
全站仪法是利用全站仪进行方位角测量的一种方法。
全站仪是一种精
密的测量仪器,可以进行角度和距离的测量。
测量方位角的步骤如下:
1)将全站仪放置在要测量方位角的点上,并进行水平调准。
2)通过在全站仪上设置一个已知方向的参考点,使得该参考点与测
量点之间的方位角已知。
3)通过全站仪测量参考点与测量点之间的水平方向角度,确定坐标方位角。
这两种方法都需要在实际操作中考虑到磁场的影响,以及测量仪器的准确度和稳定性。
此外,还需要注意防止遮挡物对测量结果的干扰,以及环境条件对测量的影响。
总结:测量坐标方位角是地理测量中常用的一种方法,通过测量点与参考点之间的角度来确定方位角。
常用的方法有磁罗盘法和全站仪法。
在实际操作中需要考虑到磁场的影响、测量仪器的准确度、稳定性以及环境条件的影响。
测量坐标方位角怎么计算的呢
测量坐标方位角怎么计算的呢引言在测量领域中,坐标方位角是一个非常重要的概念。
它用于描述物体在平面坐标系中相对于参考方向的位置和方向关系。
通过测量坐标方位角,我们可以准确地确定物体的方向,以实现准确导航、定位和测量。
什么是坐标方位角坐标方位角通常是指一个物体相对于一个参考点或参考方向的方向角度。
它是以度数来表示的,从参考方向逆时针旋转到物体位置所需的角度。
在数学上,坐标方位角是通过计算两个点之间的直线与参考方向的夹角来确定的。
参考方向通常是与正北方向成角度关系,可以是正北方向、正东方向、正南方向或正西方向。
坐标方位角的计算方法要计算坐标方位角,需要知道参考方向和两个点的坐标。
假设有两个点A和B,坐标分别为(xA, yA)和(xB, yB)。
计算步骤如下:1.计算两个点之间的水平方向距离dx,即 dx = xB - xA。
2.计算两个点之间的垂直方向距离dy,即 dy = yB - yA。
3.计算坐标方位角θ,即θ = atan(dy/dx)。
4.将θ转换为度数表示,即将θ转换为度数表示,即angle = θ * 180 /π。
其中,atan()表示反正切函数,用于计算两个数之间的角度。
坐标方位角的表示方式坐标方位角可以用不同的表示方式来表示,常见的有角度制和弧度制。
1.角度制:以角度为单位来表示坐标方位角。
一般使用0度到360度之间的角度值,其中0度表示正北方向,90度表示正东方向,180度表示正南方向,270度表示正西方向。
2.弧度制:以弧度为单位来表示坐标方位角。
弧度是角度的一种衡量方式,与角度之间的转换关系为:1度= π/180 弧度。
弧度制可以更方便地进行数学计算,因此在一些科学和工程领域中使用较多。
结论通过以上的介绍,我们了解到计算坐标方位角的基本原理和方法。
通过给定参考方向和两个点的坐标,我们可以使用简单的数学计算来确定物体的方向。
正确计算坐标方位角对于准确的导航、定位和测量至关重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=(PI()*(1 - SIGN(B3-$B$1) / 2) - ATAN((A3-$A$1) /(B3-$B$1)))*180/PI()Excel 中求方位角公式:a1,b1放起始点坐标 a3,b3放终点坐标。
度分秒格式:=INT((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3-$b$1)))*180/PI())&"-"& INT( ((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3-$b$1)))*180/PI()-INT((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3-$b$1)))*180/PI()))*60)&"-"&INT( (((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3-$b$1)))*180/PI()-INT((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3-$b$1)))*180/PI()))*60-INT(((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3-$b$1)))*180/PI()-INT((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3-$b$1)))*180/PI()))*60))*600)/10其中:A1,B1中存放测站坐标,a3,b3放终点坐标。
上面的计算出来的是度分秒格式,也就是字符串格式,不能用来计算,只是用来看的哟!下面这个简单一点:=INT((PI()*(1-SIGN(C6-C4)/2)-ATAN((B6-B4)/(C6-C4)))*180/PI())*10000+INT(((PI()*(1-S IGN(C6-C4)/2)-ATAN((B6-B4)/(C6-C4)))*180/PI()-INT((PI()*(1-SIGN(C6-C4)/2)-ATAN((B6-B4) /(C6-C4)))*180/PI()))*60)*100+(((PI()*(1-SIGN(C6-C4)/2)-ATAN((B6-B4)/(C6-C4)))*180/PI()-I NT((PI()*(1-SIGN(C6-C4)/2)-ATAN((B6-B4)/(C6-C4)))*180/PI()))-(INT(((PI()*(1-SIGN(C6-C4)/ 2)-ATAN((B6-B4)/(C6-C4)))*180/PI()-INT((PI()*(1-SIGN(C6-C4)/2)-ATAN((B6-B4)/(C6-C4)))*180/PI()))*60))/60)*3600Excel 中求方位角公式:a1,b1放起始点坐标 a3,b3放终点坐标。
求距离公式:=Round(SQRT(POWER((A3-$A$1),2)+POWER((B3-$B$1),2)),3)原计算公式为:S 12=sqr( (x 2-x 1)2+(y 2-y 1)2)= sqr(△x 221+△y 221)A 12=arcsin((y 2-y 1)/S 12)S 12为测站点1至放样点2的距离;A 12为测站点1至放样点2的坐标方位角。
x 1,y 1为测站点坐标;x 2,y 2为放样点坐标。
按公式A 12=arcsin((y 2-y 1)/S 12)计算出的方位角都要进行象限判断后加常数才是真正的方位角。
新计算公式为:A 12=arccos(△x 21/S 12)*sgn(△y 21)+360°式中sgn()为取符号函数,改公式只需加上条件(A 12>360°, A 12= A 12-360°)就可以计算出坐标方位角,不需要进行象限判断。
电子表格中求方位角公式度格式:=(PI()*(1 - SIGN(B3-$B$1) / 2) - ATAN((A3-$A$1) /(B3-$B$1)))*180/PI() Excel 中求方位角公式:a1,b1放起始点坐标 a3,b3放终点坐标。
度分秒格式:=INT((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1)/(B3-$b$1)))*180/PI())&"-"& INT( ((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1)/(B3-$b$1)))*180/PI()-INT((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1)/(B3-$b$1)))*180/PI()))*60)&"-"&INT( (((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3-$b$1)))*180/PI()-INT((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3-$b$1)))*180/PI()))*60-INT(((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3-$b$1)))*180/PI()-INT((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3-$b$1)))*180/PI()))*60))*600)/10其中:A1,B1中存放测站坐标,a3,b3放终点坐标。
上面的计算出来的是度分秒格式,也就是字符串格式,不能用来计算,只是用来看的哟!下面这个简单一点:=(PI()*(1 - SIGN(B3-B1) / 2) - ATAN((A3-A1) /(B3-B1)))*180/PI() Excel 中求方位角公式:a1,b1放起始点坐标 a3,b3放终点坐标。
求距离公式:=Round(SQRT(POWER((A3-$A$1),2)+POWER((B3-$B$1),2)),3)这里有excel的表格计算方法,你会用了,就用,不会用,就按照上面的公式老老实实的计算吧。
电子表格中求方位角公式度格式:=(PI()*(1 - SIGN(B3-$B$1) / 2) - ATAN((A3-$A$1) /(B3-$B$1)))*180/PI()Excel 中求方位角公式:a1,b1放起始点坐标 a3,b3放终点坐标。
度分秒格式:=INT((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3-$b$1)))*180/PI()) &"-"& INT( ((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3-$b$1)))*180/PI()-INT((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3-$b$1)))*180/PI()))*60)&"-"&INT( (((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3-$b$1)))*180/PI()-INT((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3-$b$1)))*180/PI()))*60-INT(((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3-$b$1)))*180/PI()-INT((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3-$b$1)))*180/PI()))*60))*600)/10其中:A1,B1中存放测站坐标,a3,b3放终点坐标。
上面的计算出来的是度分秒格式,也就是字符串格式,不能用来计算,只是用来看的哟!下面这个简单一点:=(PI()*(1 - SIGN(B3-B1) / 2) - ATAN((A3-A1) /(B3-B1)))*180/PI()Excel 中求方位角公式:a1,b1放起始点坐标 a3,b3放终点坐标。
求距离公式:=Round(SQRT(POWER((A3-$A$1),2)+POWER((B3-$B$1),2)),3)电子表格中求方位角公式度格式:=(PI()*(1 - SIGN(B3-$B$1) / 2) - ATAN((A3-$A$1) /(B3-$B$1)))*180/PI()Excel 中求方位角公式:a1,b1放起始点坐标 a3,b3放终点坐标。
度分秒格式:=INT((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3-$b$1)))*180/PI()) &"-"& INT( ((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3-$b$1)))*180/PI()-INT((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3-$b$1)))*180/PI()))*60)&"-"&INT( (((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3-$b$1)))*180/PI()-INT((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3-$b$1)))*180/PI()))*60-INT(((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3-$b$1)))*180/PI()-INT((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3-$b$1)))*180/PI()))*60))*600)/10其中:A1,B1中存放测站坐标,a3,b3放终点坐标。
上面的计算出来的是度分秒格式,也就是字符串格式,不能用来计算,只是用来看的哟!下面这个简单一点:=(PI()*(1 - SIGN(B3-B1) / 2) - ATAN((A3-A1) /(B3-B1)))*180/PI()Excel 中求方位角公式:a1,b1放起始点坐标 a3,b3放终点坐标。