直线与椭圆-弦长公式

合集下载

直线和椭圆位置关系总结大全

直线和椭圆位置关系总结大全

1.直线和椭圆位置关系判定方法概述1直线斜率存在时221y kx bmx ny =+⎧⎨+=⎩⇒222()210m k n x kbnx b +++-=当0∆>时直线和椭圆相交当0∆=时直线和椭圆相切当0∆<时直线和椭圆相离2直线斜率不存在时22221x x y ab =⎧⎪⎨+=⎪⎩判断y 有几个解注:01无论直线斜率存在与否,关键是看联立后的方程组有几组解,而不是看""∆。

02直线和椭圆位置关系的判断只有这种“坐标法”,无几何法。

2.直线和椭圆相交时1弦长问题弦长公式22121221111AB k x x k y y a k∆=+-=+=+-注:2121212()4x x x x x x -=+-而12x x +和12x x 可用韦达定理解决,不必求出1x 和2x 的精确值,“设而不求”思想初现。

2三角形面积1过x 轴上一定点H 的直线l 与椭圆22221x y a b +=交于A 、B 两点,求AOB S ∆1212AOB S OH y y ∆=- 02过y 轴上一定点H 的直线l 与椭圆22221x y b a+=交于A 、B 两点,求AOB S ∆1212AOB S OH x x ∆=- 03弦任意,点任意12S ∆=弦长×点线距注:仍然蕴含“设而不求”思想。

3弦的中点问题01中点弦所在直线方程问题02平行弦中点轨迹03共点弦中点轨迹04其他问题类型题一:直线与椭圆位置1.已知直线2+=kx y 和椭圆12322=+y x ,当k 取何值时,此直线与椭圆:(1)相交;(2)相切;(3)相离。

2.已知直线2+=kx y 与椭圆2222=+y x 相交于不同的两点,求k 的取值范围。

3.点P 在椭圆284722=+y x 上,则点P 到直线01623=--y x 的距离的最大值为_____,最小值为________.类型题二:弦长公式1.已知椭圆:1922=+y x ,过左焦点1F 作倾斜角为6 的直线交椭圆于B A ,两点,求弦AB 的长。

直线与圆的弦长

直线与圆的弦长

直线与圆的弦长【整理】
直线与圆的弦长公式是:弦长=│x1-x2│√(k^2+1)=│y1-y2│√[(1/k^2)+1],其中k为直线斜率,(x1,y1),(x2,y2)为直线与曲线的两交点,“││”为绝对值符号,“√”为根号。

弦长公式,指直线与圆锥曲线相交所得弦长d的公式。

圆锥曲线,是数学、几何学中通过平切圆锥(严格为一个正圆锥面和一个平面完整相切)得到的一些曲线,如:椭圆,双曲线,抛物线等。

弦长公式:
抛物线y2=2px,过焦点直线交抛物。

线于A(x1,y1)和B(x2,y2)两点,则AB弦长:d=p+x1+x2
y2=-2px,过焦点直线交抛物线于A。

﹙x1,y1﹚和B﹙x2,y2﹚两点,则AB弦长:d=p-﹙x1+x2﹚。

x2=2py,过焦点直线交抛物线于A﹙x1,y1﹚和B﹙x2,y2﹚两点,则AB弦长:d=p+y1+y2。

x2=-2py,过焦点直线交抛物线于A﹙x1,y1﹚和B﹙x2,y2﹚两点,则AB弦长:d=p-﹙y1+y2﹚。

高二数学椭圆与相交直线的弦长公式

高二数学椭圆与相交直线的弦长公式

高二数学椭圆与相交直线的弦长公式?解:假如需要,推一个便是.设椭圆和直线的方程分别为X^2/a^2+Y^2/b^2=1和X/A+Y/B=0即b^2?X^2+a^2?Y^2=a^2?b^2┅┅┅①和BX+AY=0┅┅┅②由②得Y=-BX/A代入①且整理可得[(Ab)^2+(Ab)^2]?X^2=(ab)^2∴X=±ab/√[(Ab)^2+(aB)^2]从而Y=-{±abB/A√[(Ab)^2+(aB)^2]记弦为PQ,则P(ab/√[(Ab)^2+(aB)^2],-abB/{A√[(Ab)^2+(aB)^2]})Q(-ab/√[(Ab)^2+(aB)^2],abB/{A√[(Ab)^2+(aB)^2]})因此|PQ|^2=(2ab)^2/[(Ab)^2+(aB)^2]+(2abB)^2/abB/{A^2[(Ab)^2+(aB)^ 2]}∴弦长|PQ|=(2ab/A)√{[A^2+B^2]/[(Ab)^2+(aB)^2]}那个工作可让学生分组负责收集整理,登在小黑板上,每周一换。

要求学生抽空抄录同时阅读成诵。

其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,因此内容要尽量广泛一些,能够分为人一辈子、价值、理想、学习、成长、责任、友谊、爱心、探究、环保等多方面。

如此下去,除假期外,一年便能够积存40多则材料。

假如学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?我国古代的读书人,从上学之日起,就日诵不辍,一样在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。

什么缘故在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在19 78年就尖锐地提出:“中小学语文教学成效差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时刻,二千七百多课时,用来学本国语文,却是大多数只是关,岂非咄咄怪事!”寻根究底,其要紧缘故确实是腹中无物。

直线与椭圆的弦长公式 (2) ppt课件

直线与椭圆的弦长公式 (2)  ppt课件

1 k2
·(y1

y2)
4 y1
y2
(适用于任何曲线)
2、弦中点问题的两种处理方法: (1)联立方程组,消去一个未知数,利用韦达定理; (2)点差法:设两端点坐标,代入曲线方程相减可求出弦的 斜率。
ppt课件
13
课后作业
1、已知椭圆 x2 +y2 =1,过左焦点F作倾斜角为 的直线
9
6
交椭圆于A,B两点,求弦AB的长
点差法:利用端点在曲线上,坐标满足方程,作差构造
出中点坐标和斜率.ppt课件
11
练习
如果椭圆被 x2 y2 1的弦被点(4,2)平分,
36 9
求这条弦所在直线方程。
ppt课件
12
小结
1、弦长的计算方法: 弦长公式:
|AB|= 1 k 2 ·(x1 x2)2 4x1 x2
=
1
通法
>0
方程组有两解
=0
方程组有一解
两个交点 一个交点
<0
方程组无解 ppt课件
无交点
相交 相切 相离
3
练习
当m为何值时,直线y=x+m与椭圆 x2 + y2 =1相交? 16 9
相切?相离?
ppt课件
4
教学目标
通过本节课的教学,要求掌握直线和 椭圆相交的弦长公式,以及能够用点差法 解决弦中点问题。
2
ppt课件
9
知识点2:弦中点问题
例 :已知椭圆
过点P(2,1)引一弦,使弦在这点被
平分,求此弦所在直线的方程. 解法一:
韦达定理→中点坐标→斜率ppt课件
10
例 :已知椭圆

直线与椭圆的位置关系、弦长公式

直线与椭圆的位置关系、弦长公式

解:
3、弦中点问题
例 :已知椭圆
过点P(2,1)引一弦,使弦在这点被
平分,求此弦所在直线的方程. 解:
韦达定理→斜率
韦达定理法:利用韦达定理及中点坐标公式来构造
3、弦中点问题
例 :已知椭圆
过点P(2,1)引一弦,使弦在这点被
平分,求此弦所在直线的方程.

作差
点差法:利用端点在曲线上,坐标满足方程,作差构造 出中点坐标和斜率.
2.2.2 椭圆的简单几何性质
1-----直线与椭圆的位置关系 2-----弦长公式
高二数学 熊超进
直线与椭圆的位置关系
种类: 相离(没有交点) 相切(一个交点) 相交(二个交点)
相离(没有交点) 相切(一个交点) 相交(二个交点)
1直线与椭圆的位置关系
1.位置关系:相交、相切、相离 2.判别方法(代数法)
例:已知斜率为1的直线L过椭圆 交椭圆于A,B两点,求弦AB之长.
的右焦点,
练习:已知椭C x2 y2 1斜率为1的 直线 l 与椭圆交
3
于 A, B 两点,且 AB 3 2求直线 l 的方程
2
3.若P(x,y)满足 x2 y2 1( y 0) ,求 y 3 的
4
x4
最大值、最小值.
( x1
x2 )2
4 x1
x2
6 5
2
2、弦长公式
设直线与椭圆交于P1(x1,y1),P2(x2,y2)两点,直线P1P2的斜率为k.
弦长公式:
弦长的计算方法: 弦长公式:
|AB|= 1 k 2 ·(x1 x2)2 4x1 x2
=
1
1 k2
·(y1
y2)
4 y1

高中数学:四大类弦长公式

高中数学:四大类弦长公式

高中数学中的四大类弦长公式一、平面直角坐标中的全场通用弦长公式1、已知两点坐标:()11,y x A ,()22,y x B ,则()()221221y y x x AB -+-=2、已知直线上两点:若()11,y x A ,()22,y x B 两点在直线b kx y +=(直线的斜率存在并且不为0)上,则ak x x k AB ∆+=-+=221211(∆,,21x x 是02=++c bx ax 的两根和判别式) ak y y k AB ∆+=-+=22121111(∆,,21y y 是02=++c by ay 的两根和判别式)注:以上公式适用于直线与曲线相交,将直线与曲线联立但不易求出交点坐标 时,采用设而不求思想的解决弦长问题,以上公式的证明会用到韦达定理)二、平面直角坐标中特殊曲线(例如:圆,抛物线,椭圆)中的弦长公式1、直线0:=++C By Ax l 与圆()()222:r b y a x M =-+-相交于B A ,,则222d r AB -=(其中22BA C Bb Aa d +++=为圆心),(b a M 到直线l 的距离)注:此公式证明需用垂径定理2、抛物线中的焦点弦弦长公式,过抛物线交点F 直线l 与抛物线相交的弦长,BF AF AB += ①α221sin 2px x p AB =++=(其中抛物线开口向右,方程为px y 22=)②)(21x x p AB +-=(其中抛物线开口向左,方程为px y 22-=) ③21y y p AB ++=(其中抛物线开口向上,方程为py x 22=) ④)(21y y p AB +-=(其中抛物线开口向下,方程为py x 22-=) 注:此公式的证明需用到抛物线的定义和焦半径公式.3、椭圆中的焦点弦的弦长公式,BF AF AB +=①过椭圆)0(12222>>=+b a b y a x 的左焦点)0,(1c F -的直线l 与椭圆相交于()11,y x A ,()22,y x B 两点,则()212x x e a AB ++=.②过椭圆)0(12222>>=+b a b y a x 的左焦点)0,(2c F 的直线l 与椭圆相交于()11,y x A ,()22,y x B 两点,则()212x x e a AB +-=.③过椭圆)0(12222>>=+b a b x a y 的左焦点)0(1c F -,的直线l 与椭圆相交于 ()11,y x A ,()22,y x B 两点,则()212y y e a AB ++=.④过椭圆)0(12222>>=+b a b y a x 的左焦点),0(2c F 的直线l 与椭圆相交于()11,y x A ,()22,y x B 两点,则()212y y e a AB +-=.注:此公式的证明需用到椭圆的第二定义和焦半径公式.三、直线标准参数方程下的弦长公式过定点),(00y x P ,倾斜角为α的直线l 的参数方程⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数). 参数t 的几何意义为: t 为直线上任一点(,)x y 到定点00(,)x y 的数量;即:直线l 上的动点()()ααsin ,cos ,00t y t x M y x M ++=到点),(00y x P 的距离等于t .设点B A 、对应的参数分别为,,21t t 则有: ①2121,,t t AB t PB t PA -=== ②AB 中点M 对应的参数为221t t +,则.221t t PM += 证明:∵A 对应的参数分别为1t ∴()ααsin ,cos 1010t y t x A ++, ∴ ()()()()1212120102010sin cos sin cos t t t y t y x t x PA =+=-++-+=αααα同理2t PB =,21t t AB -=还有一些可能会用到的公式,他们都可通过以上两个结论+绝对值的运算而得:例如:③⎩⎨⎧<->+=+=+0,,2121212121t t t t t t t t t t PB PA ;⎩⎨⎧<+>-=-=-0,,2121212121t t t t t t t t t t PB PA④ 若AB 的中点为P ,则021=+t t .(∵AB 中点对应的参数为221t t +,P 对应的参数为0)过定点),(00y x P 的直线l 的参数方程也可表示为:⎩⎨⎧+=+=bt y y atx x 00(b a ,是常数,t 为参数).设点N M 、对应的参数分别为21,t t ,即()()20201010,,,bt y at x N bt y at x M ++++则有:①122t b a PM +=,222t b a PN +=,()2122t t b a PN PM +=⋅②Aba t tb a MN ∆+=-+=222122(其中21,t t 是方程02=++C Bt At 的两根)③⎩⎨⎧<->+=+=+0,,2121212121t t t t t t t t t t PN PM ; ⎪⎩⎪⎨⎧<++>-+=-+=-0,0,2121222121222122t t t t b a t t t t b a t t b a PN PM④ 若MN 的中点为P ,则021=+t t .(∵MN 中点对应的参数为221t t +,P 对应的参数为0)四、极坐标系中的弦长公式:()()2211,,,θρθρB A①若21θθ=,则21ρρ-=AB②若21θθ≠,则()21212221cos 2θθρρρρ--+=AB ,()2121sin 21θθρρ-=∆OAB S。

椭圆的简单几何性质第4课时直线与椭圆的弦长公式.ppt

椭圆的简单几何性质第4课时直线与椭圆的弦长公式.ppt
椭圆的简单几何性质
(第四课时)
弦长公式
一.直线复习
1. 倾斜角、斜率: k tan y2 y1
2. 直线方程的五种形式.
x2 x1
(1)点斜式: y y k(x x )
(2)斜截式: y kx b
(3)两点式:
y y1 y2 y1
x x1 x2 x1
(4)截距式: x y 1 ab
(5)一般式: Ax By C 0
3. 两条直线的平行与垂直
平行: l1 / /l2 k1 k2 垂直: l1 l2 k1k2 1
4.两条平行线l1:Ax+By+C1=0,l2:Ax+By+C2=0的距离 为:d C1 C2
A2 B2
一、直线与椭圆的位置关系
种类:
相离(没有交点) 相切(一个交点) 相交(二个交点)
的右焦点,
方法与过程:
(1)联立方程组;
(2)消去其中一个未 知数,得到二元一 次方程;(Βιβλιοθήκη )韦达定理;(4)弦长公式.
练习:
1、课本P48第7题 2、《风向标》P38基础训练 3
弦中点问题
例 :已知椭圆
过点P(2,1)引一弦,使弦在这点被
平分,求此弦所在直线的方程. 解法一:
韦达定理→中点坐标→斜率
课后探讨第二种解法
练习:
1、如果椭圆被 x2 y2 1的弦被点(4,2)平分,
36 9
求这条弦所在直线方程。
作业布置
一、书面作业:课本
要求:书写具体解题过程
二、课后练习: 《风向标》P 三、课后探究:
课后练习
1、过椭圆 x2 2 y2 4的左焦点作倾斜角为 30 的直
线,求弦长AB.

椭圆与直线相交的弦长公式推导

椭圆与直线相交的弦长公式推导

椭圆与直线相交的弦长公式推导椭圆与直线相交的弦长公式推导引言概述椭圆与直线相交的弦长公式推导具有繁多的种类和巨大的数量,如果不能够科学处置,将会严重污染到水、大气以及土壤环境。

近些年来,椭圆与直线相交的弦长公式推导产生量呈现出不断增长的态势,迫切需要深入治理。

因此,椭圆与直线相交的弦长公式推导要依据生态文明建设要求,结合椭圆与直线相交的弦长公式推导的产生原因以及处置利用中暴露的问题,及时采取针对性的优化措施,减少椭圆与直线相交的弦长公式推导产生量的基础上,高效利用椭圆与直线相交的弦长公式推导。

1椭圆与直线相交的弦长公式推导的概念1.1椭圆与直线相交的弦长公式推导种类通常情况下,可从三个方面划分椭圆与直线相交的弦长公式推导的种类。

第一,工业椭圆与直线相交的弦长公式推导。

工业生产过程中,难免会有气体、固体、液体等诸多形式的污染物产生。

工业椭圆与直线相交的弦长公式推导涵盖一般废物与危险废物两种,前者的危害较小,后者的腐蚀性,毒性较强,会在较大程度上危害到人体健康与环境。

第二,城市椭圆与直线相交的弦长公式推导。

城市运行过程中,将会有建筑垃圾、商业垃圾等大量的椭圆与直线相交的弦长公式推导产生。

特别是近些年来,随着城市规模的扩大,椭圆与直线相交的弦长公式推导量也显著增加。

第三,农业椭圆与直线相交的弦长公式推导。

植物秸秆、动物粪便等为农业椭圆与直线相交的弦长公式推导的主要类型,如果不能够科学处置,也会污染到生态环境。

1.2椭圆与直线相交的弦长公式推导的影响椭圆与直线相交的弦长公式推导往往经过一段时间的积累后,方才会逐渐体现出对椭圆与直线相交的弦长公式推导的污染。

第一,椭圆与直线相交的弦长公式推导污染水体。

在雨水、重力沉降等作用下,椭圆与直线相交的弦长公式推导地表水系内容易进入空中漂浮的椭圆与直线相交的弦长公式推导细小颗粒,颗粒溶解后,有害成分将会在水中产生。

椭圆与直线相交的弦长公式推导如果向河流中排放大量的椭圆与直线相交的弦长公式推导,河道将会遭到堵塞,出现不同程度的淤积现象。

直线与椭圆的弦长公式

直线与椭圆的弦长公式

4 y1
y2
(适用于任何曲线)
2、弦中点问题的两种处理方法: (1)联立方程组,消去一个未知数,利用韦达定理; (2)点差法:设两端点坐标,代入曲线方程相减可求出弦的 斜率。
课后作业
1、已知椭圆 x2 +y2 =1,过左焦点F作倾斜角为 的直线
9
6
交椭圆于A,B两点,求弦AB的长
2、已知椭圆 x2 +y2 =1及点B(0, 2),过椭圆的左焦 2
(2)消去其中一个未 知数,得到二元一 次方程;
(3)韦达定理;
(4)弦长公式.
变式1:已知椭圆 x2 y2 1,过椭圆右焦点的直线l交 4
椭圆于A, B两点,且 AB = 8,求直线l方程。 5
练习
已知椭圆ax2 by2 1于直线x y 1 0交于A, B两点, 且 AB 2 2,若AB的中点M与椭圆中心连线的斜率 为 2 ,求a,b的值。
Ax By C 0
由方程组:

x2
y2
a2
b2
1
消去y
mx2+nx+p=0(m≠ 0) = n2-4mp
通法
>0
方程组有两解
两个交点
相交
=0
方程组有一解
一个交点
相切
<0
方程组无解
无交点
相离
练习
当m为何值时,直线y=x+m与椭圆 x2 + y2 =1相交? 16 9
相切?相离?
教学目标
通过本节课的教学,要求掌握直线和 椭圆相交的弦长公式,以及能够用点差法 解决弦中点问题。
知识点1:弦长问题
若直线 l
:

椭圆与直线位置关系-精心制作!

椭圆与直线位置关系-精心制作!
y x 1 由 x2 消去 y 并化简整理得 2 y 1 2
2
2
y 2 1 的两个焦点坐标 F1 (1, 0), F2 (1, 0)
3x 4x 0
4 ∴ AB ( x1 x2 )2 ( y1 y2 )2 2( x1 x2 )2 2 ( x1 x2 )2 4 x1 x2 = 3 2
2
= 2
例2:当m取何值时,直线l: y x m 与椭圆 2x 2 3y2 6 相交、相切、相离? 解:联立方程组
2
{ 2x 3y 6
2 2
yxm
2
消y得:
5x 6mx 3m 6 0
6m 4 5 3m 6
2 2


24m 2 120 相离 0, 则m 5或m 5
中点弦问题
关于中点的问题一般可采用两种方法解决:
(1)联立方程组,消元,利用根与系数的关系进行
设而不解,从而简化运算解题;
(2)利用“点差法”,求出与中点、斜率有关的式
子,进而求解.
= 2[x1+x22-4x1x2]= 2 = 10-8m2, 5 所以当 m=0 时,d 最大,此时直线方程为 y=x. 4m2 4 2 2[ - m -1] 25 5
题型:中点弦问题
例4 :已知椭圆 过点P(2,1)引一弦,使弦在这点被 平分,求此弦所在直线的方程. 解:
韦达定理→斜率
韦达定理法:利用韦达定理及中点坐标公式来构造
解得k1 =25,k 2 =-25
由图可知k 25.
解:∵椭圆
x2 y2 1 的左、右 例7 例 2:已知点 F1 、F2 分别是椭圆 2 1 焦点,过 F2 作倾斜角为 的直线,求 △F1 AB 的面积. 4 x2

直线与椭圆的位置关系、弦长公式

直线与椭圆的位置关系、弦长公式

D
A.没有公共点 C.两个公共点
B.一个公共点 D.有公共点
x2 y2 变式二.若直线y=kx+1与焦点在x轴上的椭圆 1 5 m
总有公共点,则实数m的取值范围
1,5 。
2.椭圆上的点到直线的距离的最值
2 2
x y 例3:已知椭圆 1,直线l: 4 x - 5 y 40 0.椭圆上 25 9 y 是否存在一点,它到直线l的距离最小? 最小距离是多少?
消去y,得25x 8kx k - 225 0
2 2
由 0,得64k - 4 25 (k - 225) 0
2 2
3直线与椭圆相交弦长的求法
练习:已知直线y=x- 1 与椭圆x2+4y2=2 ,判断它们的位置关系。
2
解:联立方程组
1 y x 2
消去y
x2+4y2=2
因为
5 x 2 4 x 1 0 ----- (1)
直线与椭圆的位置关系
位置关系: 相交 相切 ( 一个交点 相离 (( 二个交点 没有交点 )))
相离(没有交点)
相切(一个交点) 相交(二个交点)
(代数法) 联立直线与椭圆的方程 消元得到二元一次方程组 (1)△>0有两个公共点直线与椭圆相交; (2)△=0 有且只有一个公共点直线与椭圆相切; (3)△<0 无公共点直线与椭圆相离.
2 2 2 2
设而不求
两点P1(x1,y1),P2(x2,y2),直线P1P2的斜率为k.
直线与椭圆交于两点P1(x1,y1),P2(x2,y2),直线P1P2的斜率为k,则
弦长公式:
|AB|=
1 k (x1 x2) 4 x1 x2 1 k |a |

高二数学椭圆与相交直线的弦长公式

高二数学椭圆与相交直线的弦长公式
于是|PQ|^2=(2ab)^2/[(Ab)^2+(aB)^2]+(2abB)^2/abB/{A^2[(Ab)^2+(aB)^2]}
∴弦长|PQ|=(2ab/A)√{[A^2+B^2]/[(Ab)^2+(aB)^2]}
这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。要求学生抽空抄录并且阅读成诵。其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。如此下去,除假期外,一年便可以积累40多则材料。如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?
∴X=±ab/√[(Ab)^2+(aB)^2]
从而Y=-{±abB/A√[(Ab)^2+(aB)^2]
记弦为PQ,则P(ab/√[(Ab)^2+(aB)^2],-abB/{A√[(Ab)^2+(aB)^2]})
Hale Waihona Puke Q(-ab/√[(Ab)^2+(aB)^2],abB/{A√[(Ab)^2+(aB)^2]})
高二数学椭圆与相交直线的弦长公式
?解:如果需要,推一个便是.设椭圆和直线的方程分别为
X^2/a^2+Y^2/b^2=1和X/A+Y/B=0
即b^2?X^2+a^2?Y^2=a^2?b^2┅┅┅①
和BX+AY=0┅┅┅②
由②得Y=-BX/A
代入①且整理可得[(Ab)^2+(Ab)^2]?X^2=(ab)^2
我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。知道“是这样”,就是讲不出“为什么”。根本原因还是无“米”下“锅”。于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。注意:这是对于以原点为中心,长轴在横轴上的椭圆被直线截得的弦长公式,其中a,b分别为椭圆的半长轴和半短轴,A,B分别为直线在X轴上和Y轴上的截距.(其它情况,自行同样推导)

直线和椭圆的位置关系

直线和椭圆的位置关系

直线和椭圆的位置关系一、要点精讲1.直线和椭圆的位置关系有三种:相交、相切、相离. 判定方法——代数法。

将直线方程与椭圆方程联立消去一个未知数,得到一个一元二次方程,判断方程解的情况:△>0,方程有两个不同的解,则直线与椭圆相交; △=0,方程有两个相等的解,则直线与椭圆相切; △<0,方程无解,则直线与椭圆相离.2.直线与椭圆相交所得的弦长公式:设直线b kx y +=交椭圆于()111,y x P ,()222,y x P, 则()()()()()2221221212212212212111k x x x x y y x x y y x x P P +-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--+-=-+-=所以221211k x x P P +-=,或()01122121≠+-=k ky y P P . 4.研究直线与椭圆位置关系的通性通法解决直线与椭圆位置关系时,一般通过直线与椭圆交点个数进行研究,用一元二次方程的判别式,根与系数的关系,求根公式等来处理问题,还要注意数形结合思想的运用,通过图形的直观性帮助分析、解决间题. 三、基础自测1. 椭圆13422=+y x 的右焦点到直线x y 3=的距离是 A.21 B. 23 C. 1 D.32. 直线032:=++by x l 过椭圆1010:22=+y x C 的一个焦点,则b 的值为( ) A. 1- B.21 C. 1-或1 D. 21-或21 3. 方程221y x -=表示的是椭圆的(A )上半部分 (B )下半部分 (C )左半部分 (D )右半部分4.(2012四川)椭圆22143x y +=的左焦点为F ,直线x m =与椭圆相交于点A 、B ,当FAB ∆的周长最大时,FAB ∆的面积是____________。

解: 当x m =过右焦点时FAB ∆的周长最大,1m ∴=;将1x =带入解得32y =±;132322FAB S ∆=⨯⨯=.5. 直线0=--m y x 与椭圆1922=+y x 只有一个公共点,则=m . 6. 已知椭圆12122=+y x 和椭圆外一点()2,0,过这点任意引直线与椭圆交于A,B 两点,求弦AB 的中点P 的轨迹方程.四、典例精析题型一:直线与椭圆的交点问题1. 已知椭圆1422=+y x 及直线m x y +=.⑴ 当直线和椭圆有公共点时,求实数m 的取值范围; ⑵ 求被椭圆截得的最长弦所在的直线的方程.2. 已知定点A(-2, -1),B(1, 2),线段AB 与椭圆222x y a +=有公共点,求a 的取值范围.题型二:求椭圆方程问题3.(2010辽宁)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o,2AF FB =.(Ⅰ)求椭圆C 的离心率;(Ⅱ)如果|AB|=154,求椭圆C 的方程.4.(2011天津)已知椭圆22221x y a b+=()0a b >>的离心率e =得到的菱形的 面积为4.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l 与椭圆相交于不同的两点,A B .已知点A 的坐标为(),0a -.若5AB =,求直线l 的倾斜角;5.(2012陕西)已知椭圆221:14x C y +=,椭圆2C 以1C 的长轴为短轴,且与1C 有相同的离心率。

椭圆和直线的弦长公式

椭圆和直线的弦长公式

椭圆和直线的弦长公式
椭圆和直线弦长公式:
I、椭圆弦长公式
1. 直线弦长公式
(1) 直线弦长:L=∣x2-x1∣
(2) 水平线弦长:L=纵坐标差值;
(3) 竖线弦长:L=横坐标差值;
II、椭圆弦长公式
(1) 椭圆弦长公式:L=2√ (a*E-b*F)
其中:a=∣x2-x1∣/2 ;E=(x2-x1)^2 / (x2-x1)^2
b=∣y2-y1∣/2 ;F=(y2-y1)^2 / (y2-y1)^2
(2) 椭圆周长公式:C=4aE(1-b²/(a²))^1/2
其中:a=∣x2-x1∣/2 ;
b=∣y2-y1∣/2 ;
E=(x2-x1)^2 / (x2-x1)^2
F=(y2-y1)^2 / (y2-y1)^2
III、注意事项
(1) 弦长公式只适用于有起点和终点坐标的圆或者椭圆;
(2) 直线两点坐标不同,求直线弦长时可以使用上述公式;
(3) 椭圆起点和终点坐标如果相等,无论对弦长还是周长的求解公式均不适用;
(4) 由于公式中有按quadrature计算,所以计算结果可能会存在误差,应留有余量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、三角形面积
(1)过 轴上一定点 的直线 与椭圆 交于 、 两点,求
(2)过 轴上一定点 的直线 与椭圆 交于 、 两点,求
(3)弦任意,点任意 弦长×点线距
三、弦的中点问题
(1)中点弦所在直线方程问题(2)平行弦中点轨迹
(3)共点弦中点轨迹(4)其他问题
【例题解析】例1:设 是过椭圆 的右焦点的弦,且 的倾斜角为 ,求 所在的直线方程及 的弦长
课题:《直线与椭圆——弦长》日期:11月26日(编号)姓名班级导来自学设计
学习目标:
1.理解直线和椭圆位置关系并能求相交时弦长。
2.会求椭圆的切线方程和弦长及三角形有关问题
3.理解点差法在解决与弦中点和斜率有关问题中所表现出的“设而不求”思想
问题探究:
一、直线和椭圆相交时的弦长问题
弦长公式
注: 而 和 可用韦达定理解决,不必求出 和 的精确值,“设而不求”思想初现。




例2:已知椭圆方程为 ,内有一条以点 为中点的弦 ,求 所在的直线 的方程及 的弦长。
例3:点 是椭圆 上一点,以点 及焦点 为顶点的三角形的面积为8,求点 的坐标.
相关文档
最新文档