初一数学第二学期期末模拟试卷3
数学(完整版)人教版七年级数学下册期末模拟试卷及答案
数学(完整版)人教版七年级数学下册期末模拟试卷及答案一、选择题1.下列各式从左到右的变形中,是因式分解的是( ).A .x (a-b )=ax-bxB .x 2-1+y 2=(x-1)(x+1)+y 2C .y 2-1=(y+1)(y-1)D .ax+bx+c=x (a+b )+c 2.如果多项式x 2+mx +16是一个二项式的完全平方式,那么m 的值为( ) A .4B .8C .-8D .±8 3.把面值20元的纸币换成1元或5元的纸币,则换法共有 ( ) A .4种 B .5种 C .6种D .7种 4.a 5可以等于( ) A .(﹣a )2•(﹣a )3 B .(﹣a )•(﹣a )4C .(﹣a 2)•a 3D .(﹣a 3)•(﹣a 2) 5.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A .11B .12C .13D .146.下列计算中,正确的是( )A .(a 2)3=a 5B .a 8÷ a 2=a 4C .(2a )3=6a 3D .a 2+ a 2=2 a 2 7.如果多项式x 2+2x+k 是完全平方式,则常数k 的值为( )A .1B .-1C .4D .-4 8.下面图案中可以看作由图案自身的一部分经过平移后而得到的是( )A .B .C .D .9.如图,将四边形纸片ABCD 沿MN 折叠,若∠1+∠2=130°,则∠B +∠C =( )A .115°B .130°C .135°D .150° 10.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .0二、填空题11.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm .12.已知△ABC 中,∠A =60°,∠ACB =40°,D 为BC 边延长线上一点,BM 平分∠ABC ,E 为射线BM 上一点.若直线CE 垂直于△ABC 的一边,则∠BEC =____°.13.如果9-mx +x 2是一个完全平方式,则m 的值为__________.14.一副三角板按如图所示叠放在一起,其中点B 、D 重合,若固定三角形AOB ,改变三角板ACD 的位置(其中A 点位置始终不变),当∠BAD =_____时,CD ∥AB .15.如图,根据长方形中的数据,计算阴影部分的面积为______ .16.水由氢原子和氧原子组成,其中氢原子的直径约为0.000 000 000 1 m,这个数据用科学记数法表示为____.17.若2a x =,5b x =,那么2a b x +的值是_______ ;18.如图,//PQ MN ,A 、B 分别为直线MN 、PQ 上两点,且45BAN ∠=︒,若射线AM 绕点顺时针旋转至AN 后立即回转,射线BQ 绕点B 逆时针旋转至BP 后立即回转,两射线分别绕点A 、点B 不停地旋转,若射线AM 转动的速度是a ︒/秒,射线BQ 转动的速度是b ︒/秒,且a 、b 满足()2510a b -+-=.若射线AM 绕点A 顺时针先转动18秒,射线BQ 才开始绕点B 逆时针旋转,在射线BQ 到达BA 之前,问射线AM 再转动_______秒时,射线AM 与射线BQ 互相平行.19.计算:x (x ﹣2)=_____20.若方程4x ﹣1=3x +1和2m +x =1的解相同,则m 的值为_____.三、解答题21.先化简,再计算:(2a +b )(b -2a )-(a -b )2,其中a =-1,b =-222.如图,大圆的半径为r ,直径AB 上方两个半圆的直径均为r ,下方两个半圆的直径分别为a ,b .(1)求直径AB 上方阴影部分的面积S 1;(2)用含a ,b 的代数式表示直径AB 下方阴影部分的面积S 2= ;(3)设a =r +c ,b =r ﹣c (c >0),那么( )(A )S 2=S 1;(B )S 2>S 1;(C )S 2<S 1;(D )S 2与S 1的大小关系不确定;(4)请对你在第(3)小题中所作的判断说明理由.23.(1)解二元一次方程组3423x y x y -=⎧⎨-=⎩; (2)解不等式组29421333x x x x <-⎧⎪⎨+≥-⎪⎩. 24.当,m n 都是实数,且满足28m n =+,就称点21,2n P m +⎛⎫- ⎪⎝⎭为“爱心点”. (1)判断点()5,3A 、()4,8B 哪个点为“爱心点”,并说明理由;(2)若点(),4A a -、()4,B b 是“爱心点”,请判断A 、B 两点的中点C 在第几象限?并说明理由;(3)已知P 、Q 为有理数,且关于x 、y 的方程组333x y p q x y p q⎧+=+⎪⎨-=-⎪⎩解为坐标的点(),B x y 是“爱心点”,求p 、q 的值.25.在如图所示的正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的顶点都在正方形网格的格点(网格线的交点)上.(1)画出△ABC 先向右平移5个单位长度,再向上平移2个单位长度所得的△A 1B 1C 1; (2)画出△ABC 的中线AD ;(3)画出△ABC 的高CE 所在直线,标出垂足E :(4)在(1)的条件下,线段AA 1和CC 1的关系是26.计算:(1)203211(5)(5)36-⎛⎫⎛⎫-++-÷- ⎪ ⎪⎝⎭⎝⎭(2)()3242(3)2a a a -⋅+-27.(1)已知2(1)()2x x x y ---=,求222x y xy +-的值. (2)已知等腰△ABC 的三边长为,,a b c ,其中,a b 满足:a 2+b 2=6a+12b-45,求△ABC 的周长.28.如果a c = b ,那么我们规定(a ,b )=c ,例如:因为23= 8 ,所以(2,8)=3. (1)根据上述规定,填空:(3,27)= ,(4,1)= ,(2,14)= ; (2)若记(3,5)=a ,(3,6)=b ,(3,30)=c ,求证: a + b = c .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】A. 是整式的乘法,故A 错误;B. 没把一个多项式转化成几个整式积,故B 错误;C. 把一个多项式转化成几个整式积,故C 正确;D. 没把一个多项式转化成几个整式积,故D 错误;故选C.2.D解析:D【解析】试题分析:∵(x±4)2=x 2±8x+16,所以m=±2×4=±8.故选D .考点:完全平方式.3.B解析:B【分析】设1元和5元的纸币分别有x、y张,得到方程x+5y=20,然后根据x、y都是正整数即可确定x、y的值.【详解】解:设1元和5元的纸币分别有x、y张,则x+5y=20,∴x=20-5y,而x≥0,y≥0,且x、y是整数,∴y=0,x=20;y=1,x=15;y=2,x=10;y=3,x=5;y=4,x=0,共有5种换法.故选:B.【点睛】此题主要考查了二元一次方程的应用,列出方程并确定未知数的取值范围是解题的关键.4.D解析:D【分析】根据同底数幂的乘法底数不变指数相加,可得答案.【详解】A、(﹣a)2(﹣a)3=(﹣a)5,故A错误;B、(﹣a)(﹣a)4=(﹣a)5,故B错误;C、(﹣a2)a3=﹣a5,故C错误;D、(﹣a3)(﹣a2)=a5,故D正确;故选:D.【点睛】本题考查了同底数幂的乘法,利用了同底数幂的乘法法则.5.C解析:C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a,根据三角形的三边关系,得:4-3<a<4+3,即1<a<7,∵a为整数,∴a的最大值为6,则三角形的最大周长为3+4+6=13.故选:C.【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.6.D解析:D【分析】直接利用同底数幂的乘除运算法则,积的乘方运算法则以及合并同类项法则分别计算得出答案.【详解】解:A、(a2)3=a6,故此选项错误;B、a8÷a2=a6,故此选项错误;C、(2a)3=8a3,,故此选项错误;D、a2+ a2=2 a2,故此选项正确.故选:D【点睛】此题主要考查了同底数幂的乘除运算以及积的乘方运算等知识,正确掌握运算法则是解题关键.7.A解析:A【分析】根据完全平方公式的乘积二倍项和已知平方项先确定出另一个数是1,平方即可.【详解】解:∵2x=2×1•x,∴k=12=1,故选A.【点睛】本题考查了对完全平方公式的应用,由乘积二倍项确定做完全平方运算的两个数是解题的关键.8.C解析:C【解析】【分析】根据平移不改变图形的形状和大小,结合图案,对选项一一分析,排除错误答案.【详解】解:A、图案自身的一部分围绕中心经旋转而得到,故错误;B、图案自身的一部分沿对称轴折叠而得到,故错误;C 、图案自身的一部分沿着直线运动而得到,是平移,故正确;D 、图案自身的一部分经旋转而得到,故错误.故选C .【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.9.A解析:A【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒︒-=115°. ∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°,∴∠B +∠C =∠AMN +∠DNM =115°.故选:A .【点睛】本题考查了翻折变换和多边形的内角和,熟知图形翻折不变性的性质和四边形的内角和公式是解答此题的关键.10.D解析:D【分析】先将2变形为()31-,再根据平方差公式求出结果,根据规律得出答案即可.【详解】解:2416(31)(31)(31)(31)(31)-+++⋯+22416(31)(31)(31)(31)=-++⋯+4416(31)(31)(31)=-+⋯+3231=-133=,239=,3327=,4381=,53243=,63729=,732187=,836561=,⋯∴3n 的个位是以指数1到4为一个周期,幂的个位数字重复出现,3248÷=,故323与43的个位数字相同即为1,∴3231-的个位数字为0,∴248162(31)(31)(31)(31)(31)⨯+++++的个位数字是0.故选:D .【点睛】本题考查了平方差公式的应用,能根据规律得出答案是解此题的关键.二、填空题11.22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长. 【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm解析:22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=22cm.故填22.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答. 12.10°或50°或130°【分析】分三种情况讨论:①当CE⊥BC时;②当CE⊥AB时;③当CE⊥AC时;根据垂直的定义和三角形内角和计算即可得到结论.【详解】解:①如图1,当CE⊥BC时,解析:10°或50°或130°【分析】分三种情况讨论:①当CE⊥BC时;②当CE⊥AB时;③当CE⊥AC时;根据垂直的定义和三角形内角和计算即可得到结论.【详解】解:①如图1,当CE⊥BC时,∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,∴∠CBE=12∠ABC=40°,∴∠BEC=90°-40°=50°;②如图2,当CE⊥AB时,∵∠ABE=12∠ABC=40°,∴∠BEC=90°+40°=130°;③如图3,当CE⊥AC时,∵∠CBE=40°,∠ACB=40°,∴∠BEC=180°-90°-40°-40°=10°;综上所述:∠BEC的度数为10°,50°,130°,故答案为:10°,50°,130°.【点睛】本题考查了垂直的定义和三角形的内角和,考虑全情况是解题关键.13.±6【分析】如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.【详解】解:∵9-mx+x2是一个完全平方式,∴方程9-mx解析:±6【分析】如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.【详解】解:∵9-mx+x2是一个完全平方式,∴方程9-mx+x2=0对应的判别式△=0,因此得到:m2-36=0,解得:m=±6,故答案为:±6.【点睛】本题主要考查了完全平方式,正确理解一个二次三项式是完全平方式的条件是解题的关键.14.150°或30°.【分析】分两种情况,再利用平行线的性质,即可求出∠BAD的度数【详解】解:如图所示:当CD∥AB时,∠BAD=∠D=30°;如图所示,当AB∥CD时,∠C=∠BAC=6解析:150°或30°.【分析】分两种情况,再利用平行线的性质,即可求出∠BAD的度数【详解】解:如图所示:当CD∥AB时,∠BAD=∠D=30°;如图所示,当AB∥CD时,∠C=∠BAC=60°,∴∠BAD=60°+90°=150°;故答案为:150°或30°.【点睛】本题主要考查了平行线的判定,平行线的判掌握平行线的判定定理和全面思考并分类讨论是解答本题的关键.15.104【解析】两个阴影图形可以平移组成一个长方形,长为,宽为8,故阴影部分的面积13×8 =104,故答案为104.解析:104【解析】-=,宽为8,故阴影部分的面积两个阴影图形可以平移组成一个长方形,长为1521313×8=104,故答案为104.16.1×10-10.【解析】【分析】根据科学记数法的定义进行求解即可.【详解】根据题意得:0.0000000001m=1×10-10(m).故答案为:1×10-10.【点睛】本题考查科学解析:1×10-10.【解析】【分析】根据科学记数法的定义进行求解即可.【详解】根据题意得:0.0000000001m=1×10-10(m).故答案为:1×10-10.【点睛】本题考查科学记数法,其形式为:a ×10n (1≤a <10,n 为整数).17.【分析】可从入手,联想到同底数幂的乘法以及幂的乘方的逆用;逆用幂运算法则可得到(x a)2×xb,接下来将已知条件代入求值即可.【详解】对逆用同底数幂的乘法法则,得(xa)2×xb,逆用幂的解析:【分析】可从2a b x +入手,联想到同底数幂的乘法以及幂的乘方的逆用;逆用幂运算法则可得到(x a )2×x b ,接下来将已知条件代入求值即可.【详解】对2a b x +逆用同底数幂的乘法法则,得(x a )2×x b ,逆用幂的乘方法则,得(x a )2×x b ,将2a x =、5b x =代入(x a )2× x b 中,得22×5=20,故答案为:20.【点睛】此题考查同底数幂的乘法,解题关键在于掌握运算法则.18.15或22.5【分析】先由题意得出a ,b 的值,再推出射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM 的位置,∠MAM=18°×5=90°,然后分情况讨论即可.【详解】∵,∴a=5,b=1解析:15或22.5【分析】先由题意得出a ,b 的值,再推出射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM '的位置,∠MAM '=18°×5=90°,然后分情况讨论即可.【详解】 ∵()2510a b -+-=,∴a=5,b=1,设射线AM 再转动t 秒时,射线AM 、射线BQ 互相平行,如图,射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM '的位置,∠MAM '=18°×5=90°,分两种情况:①当9<t<18时,如图,∠QBQ'=t°,∠M'AM"=5t°,∵∠BAN=45°=∠ABQ,∴∠ABQ'=45°-t°,∠BAM"=5t-45°,当∠ABQ'=∠BAM"时,BQ'//AM",此时,45°-t°=5t-45°,解得t=15;②当18<t<27时,如图∠QBQ'=t°,∠NAM"=5t°-90°,∵∠BAN=45°=∠ABQ,∴∠ABQ'=45°-t°,∠BAM"=45°-(5t°-90°)=135°-5t°,当∠ABQ'=∠BAM"时,BQ'//AM",此时,45°-t°=135°-5t,解得t=22.5;综上所述,射线AM再转动15秒或22.5秒时,射线AM射线BQ互相平行.故答案为:15或22.5【点睛】本题考查了非负数的性质,平行线的判定,完全平方公式,掌握知识点是解题关键.19.x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x.【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.解析:x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x 2﹣2x故答案为:x 2﹣2x .【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.20.﹣【分析】先解方程4x ﹣1=3x+1,然后把x 的值代入2m+x =1,即可求出m 的值.【详解】解:4x ﹣1=3x+1解得x =2,把x =2代入2m+x =1,得2m+2=1,解得m =﹣.解析:﹣12 【分析】先解方程4x ﹣1=3x +1,然后把x 的值代入2m +x =1,即可求出m 的值.【详解】解:4x ﹣1=3x +1解得x =2,把x =2代入2m +x =1,得2m +2=1,解得m =﹣12. 故答案为:﹣12. 【点睛】 此题考查的是根据两个一元一次方程有相同的解,求方程中的参数,掌握一元一次方程的解法和方程解的定义是解决此题的关键.三、解答题21.-5a 2+2ab ,-1【分析】先利用平方差公式和完全平方公式进行计算,然和合并同类项,最后把a ,b 的值代入即可.【详解】()()()22222()=4222b a a a b b a ab b a b --++----2222=42b a a b ab ---+252a ab =-+,当a =-1,b =-2时,原式=-1.【点睛】本题考查了整式的化简求值,解题的关键是熟练掌握混合运算的顺序和整式的乘法公式.22.(1)214r π ;(2)14ab π ;(3)C ;(4)理由见解析【分析】(1)用半径为r 的半圆的面积减去直径为r 的圆的面积即可;(2)用直径为(a +b )的半圆的面积减去直径为a 的半圆的面积,再减去直径为b 的半圆的面积即可;(3)(4)将a =r +c ,b =r ﹣c ,代入S 2,然后与S 1比较即可.【详解】解:(1)S 1=222111244r r r πππ-=; (2)S 2=22211111()222424a b a b πππ+•-•-•, =18π(a +b )2﹣18πa 2﹣218b π =14ab π, 故答案为:14ab π;(3)选:C ;(4)将a =r +c ,b =r ﹣c ,代入S 2,得: S 2=14π(r +c )(r ﹣c )=14π(r 2﹣c 2), ∵c >0,∴r 2>r 2﹣c 2,即S 1>S 2.故选C .【点睛】 此题考查了列代数式表示图形的面积,解题的关键是:结合图形分清各个半圆的半径及熟记圆的面积公式.23.(1)11x y =⎧⎨=-⎩;(2)13x ≤< 【分析】(1)根据代入消元法解答即可;(2)先解不等式组中的每个不等式,再取其解集的公共部分即可.【详解】解:(1)3423x y x y -=⎧⎨-=⎩①②, 由①,得34y x =-③,把③代入②,得()2343x x --=,解得:x =1,把x =1代入③,得y =3-4=﹣1,所以方程组的解为11x y =⎧⎨=-⎩; (2)29421333x x x x <-⎧⎪⎨+≥-⎪⎩①②, 解不等式①,得3x <,解不等式②,得1x ≥,所以不等式组的解集为13x ≤<.【点睛】本题考查了二元一次方程组和一元一次不等式组的解法,属于基础题型,熟练掌握上述基本知识是解题关键.24.(1)()5,3A 为爱心点,理由见解析;(2)第四象限,理由见解析;(3)0p =,q =23- 【分析】(1)分别把A 、B 点坐标,代入(m ﹣1,22n +)中,求出m 和n 的值,然后代入2m =8+n 检验等号是否成立即可;(2)把点A (a ,﹣4)、B (4,b )各自代入(m ﹣1,22n +)中,分别用a 、b 表示出m 、n ,再代入2m =8+n 中可求出a 、b 的值,则可得A 和B 点的坐标,再根据中点坐标公式即可求出C 点坐标,然后即可判断点C 所在象限;(3)解方程组,用q 和p 表示x 和y ,然后代入2m =8+n 可得关于p 和q 的等式,再根据p ,q 为有理数,即可求出p 、q 的值.【详解】解:(1)A 点为“爱心点”,理由如下:当A (5,3)时,m ﹣1=5,22n +=3, 解得:m =6,n =4,则2m =12,8+n =12,所以2m =8+n ,所以A (5,3)是“爱心点”;当B(4,8)时,m﹣1=4,22n+=8,解得:m=5,n=14,显然2m≠8+n,所以B点不是“爱心点”;(2)A、B两点的中点C在第四象限,理由如下:∵点A(a,﹣4)是“爱心点”,∴m﹣1=a,22n+=﹣4,解得:m=a+1,n=﹣10.代入2m=8+n,得2(a+1)=8﹣10,解得:a=﹣2,所以A点坐标为(﹣2,﹣4);∵点B(4,b)是“爱心点”,同理可得m=5,n=2b﹣2,代入2m=8+n,得:10=8+2b﹣2,解得:b=2.所以点B坐标为(4,2).∴A、B两点的中点C坐标为(2442,22-+-+),即(1,﹣1),在第四象限.(3)解关于x,y的方程组3x y qx y q⎧+=+⎪⎨-=-⎪⎩,得:2x qy q⎧=-⎪⎨=⎪⎩.∵点B(x,y)是“爱心点”,∴m﹣1﹣q,22n+=2q,解得:m﹣q+1,n=4q﹣2.代入2m=8+n,得:﹣2q+2=8+4q﹣2,整理得﹣6q=4.∵p,q为有理数,若使p﹣6q结果为有理数4,则P=0,所以﹣6q=4,解得:q=﹣23.所以P=0,q=﹣23.【点睛】本题是新定义题型,以“爱心点”为载体,主要考查了解二元一次方程组、中点坐标公式等知识以及阅读理解能力和迁移运用能力,正确理解题意、熟练掌握二元一次方程组的解法是关键.25.(1)见解析;(2)见解析;(3)见解析;(4)平行且相等【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A1、B1、C1即可;(2)根据三角形中线的定义画出图形即可;(3)根据三角形高的定义画出图形即可;(4)根据平移的性质即可得出结论.【详解】解:(1)如图,△A 1B 1C 1即为所作图形;(2)如图,线段AD 即为所作图形;(3)如图,直线CE 即为所作图形;(4)∵△A 1B 1C 1是由△ABC 平移得到,∴A 和A 1,C 和C 1是对应点,∴AA 1和CC 1的关系是:平行且相等.【点睛】本题考查了平移作图,平移的性质,三角形的高和中线的画法,熟练掌握平移的性质是解题的关键.26.(1)5;(2)6a【分析】(1)先算负整数指数幂,乘法和同底数幂的除法,最后进行加法运算即可; (2)先算积的乘方和同底数幂的乘法,再合并同类项即可.【详解】解:(1)233211(5)(5)36-⎛⎫⎛⎫-++-÷- ⎪ ⎪⎝⎭⎝⎭232(3)1(5)-=-++-91(5)=++-105=-5=(2)()3242(3)2a a a-⋅+-()24698a a a =⋅+- 6698a a =- 6a =【点睛】此题主要考查了实数的运算和积的乘方运算,整式的加法等,正确掌握相关计算法则是解题关键.27.(1)2;(2)15.【分析】(1)先化简条件,再把求值的代数式变形,整体代入即可,(2)利用两个非负数之和为0的性质得到等腰三角形的两边长,后分类讨论即可得到答案.【详解】解:(1) 2(1)()2x x x y ---=,222,x x x y ∴--+=2,y x ∴-=2222222()2 2.2222x y x xy y y x xy +-+-∴-==== (2) a 2+b 2=6a+12b-45,226912360,a a b b ∴-++-+=22(3)(6)0,a b ∴-+-=3,6,a b ∴==当3a =为腰时,三角形不存在,当6b =为腰时,三角形三边分别为:6,6,3,∴ △ABC 的周长为:15.【点睛】本题考查的是代数式的求值,熟练整体代入的方法,同时考查非负数之和为零的性质,三角形三边的关系,等腰三角形的性质,掌握以上知识是解题的关键.28.(1)3;0; -2;(2)证明见解析.【分析】(1)根据已知和同底数的幂法则得出即可;(2)根据已知得出3a =5,3b =6,3c =30,求出3a ×3b =30,即可得出答案.【详解】(1)(3,27)=3,(4,1)=0,(2,14)=-2, 故答案为3;0;-2;(2)证明:由题意得:3a = 5,3b = 6,3c = 30,∵ 5⨯ 6=30,∴ 3a ⨯ 3b = 3c ,∴ 3a +b = 3c ,∴ a + b = c .【点睛】本题考查了同底数幂的乘法,有理数的混合运算等知识点,能灵活运用同底数幂的乘法法则进行变形是解此题的关键.。
七年级下学期数学期末模拟试卷及答案-百度文库
(2)如果点 P 在 A 、 B 两点外侧运动时(点 P 与点 A 、 B 、 O 三点不重合),请你直接 写出 CPD 、 、 之间有何数量关系.
26.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知 3 辆大货车与
2 辆小货车可以一次运货 17 吨,5 辆大货车与 4 辆小货车可以一次运货 29 吨,则 2 辆大货
司为亚运会设计手工礼品,投入W 元钱,若以 2 条领带和 1 条丝巾为一份礼品,则刚好可
制作 600 份礼品;若以 1 条领带和 3 条丝巾为一份礼品,则刚好可制作 400 份礼品. (1)若W 24 万元,求领带及丝巾的制作成本是多少?
(2)若用W 元钱全部用于制作领带,总共可以制作几条? (3)若用W 元钱恰好能制作 300 份其他的礼品,可以选择 a 条领带和 b 条丝巾作为一份 礼品(两种都要有),请求出所有可能的 a 、 b 的值.
15. 7y x( ________ ) 49 y2 x2 .
16.如图,在△ABC 中,已知点 D,E,F 分别为边 BC,AD,CE 的中点,且△ABC 的面积 等于 4cm2,则阴影部分图形面积等于_____cm2
17.如果 a2﹣b2=﹣1,a+b= 1 ,则 a﹣b=_______. 2
2
2. 22.阅读理解并解答: 为了求 1+2+22+23+24+…+22009 的值. 可令 S=1+2+22+23+24+…+22009 则 2S=2+22+23+24+…+22009+22010 因此 2S﹣S=(2+22+23+24+…+22009+22010)﹣(1+22+23+24+…+22009)=22010﹣1 所以 S=22010﹣1 即 1+2+22+23+24+…+22009=22010﹣1 请依照此法,求:1+5+52+53+54+…+52020 的值. 23.第 19 届亚运会将于 2022 年在杭州举行,“丝绸细节”助力杭州打动世界.杭州丝绸公
人教版初中数学七年级下学期期末考试模拟卷三(附带答案及详细解析)
人教版初中数学七年级下学期期末考试模拟卷三数学考试姓名:__________ 班级:__________考号:__________一、填空题1.9的算术平方根为________.2.如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.请将解题过程填写完整。
解:∵EF∥AD(已知)∴∠2= ________ (________)又∵∠1=∠2(已知)∴∠1=∠3(________)∴AB∥________ (________)∴∠BAC+ ________=180°(________)∵∠BAC=70°(已知)∴∠AGD=________3.若m与3的和小于m的2倍,则可列出不等式:________.4.为了解某工厂10月份生产的10000个灯泡的使用寿命情况,从中抽取了100个灯泡进行调查,则这次调查中的样本容量是________.5.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=3x﹣3与x轴、y轴分别交于4点A,B,点M是直线AB上的一个动点,则PM长的最小值为________6.平面直角坐标系中的点P(5,﹣12)到x的距离是________,到原点的距离是________.二、选择题7.下列各数中,无理数是()D. 3.1415926534A. √36B. √7C. 2278.如图,线段AB两个端点的坐标分别为A(1,3)、B(3,0),以原点为位似中心,将线段AB放大得到线段CD,若点C的坐标为(6,0),则点D的坐标为()A. (3,6)B. (2,4.5)C. (2,6)D. (1.5,4.5)9.已知直线l1∥l2,将一块含30°角的直角三角板ABC按如图所示方式放置,若∠1=85°,则∠2等于()A. 35°B. 45°C. 55°D. 65°10.﹣3的相反数是( )A. 3B. ﹣3C. ±3D. 13 11.若代数式2a+7的值不大于3,则a 的取值范围是( )A. a≤4B. a≤-2C. a≥4D. a≥-2 12.估计√56的大小应在( )A. 5~6之间B. 6~7之间C. 8~9之间D. 7~8之间 13.如图:将一个矩形纸片ABCD ,沿着BE 折叠,使C 、D 点分别落在点C 1 , D 1处.若∠C 1BA=50°,则∠ABE 的度数为( )A. 15°B. 20°C. 25°D. 30° 14.某果园现有桃树和杏树共500棵,计划一年后桃树增加3%,杏树增加4%,这样果园里这两种果树将增加3.6%,如果设该果园现有桃树和杏树分别为 x 棵, y 棵,可列方程组为( )A. {x +y =500(1+3%)x +(1+4%)y =500×3.6% B. {x +y =5003%x +4%y =500×3.6%C. {x +y =500(1−3%)x +(1−4%)y =500×3.6%D. {x +y =5003%x +4%y =500(1+3.6%)三、解答题 15.计算: (−1)2020−|√3−2|+(12)−1−(2019−π)016.解下列二元一次方程组(1){x −y =33x −8y =14(2){2x +y =5x −y =4(3){4x +5y =185x +4y =9(4){7x +3y =100y =20−2x17. (1)计算: |√3−2|+20190−(−12)−2+3tan 30° ; (2)解不等式组: {2x +5≤3(x +2)x−12<x 3并将其解集表示在如图所示的数轴上.18.如图,已知AD ∥BC ,AE 是∠BAD 的角平分线,CD 与AE 相交于F ,∠AFD=∠2.求证:AB ∥CD.19.某校为了解该校九年级学生2016年适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A,B,C,D四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图,请根据统计图中的信息解答下列问题:(说明:A等级:102分﹣120分B等级:72分﹣90分,C等级:50分﹣72分,D等级:0分﹣50分)(1)此次抽查的学生人数为________;(2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生950人,请估计在这次适应性考试中数学成绩达到72分(包含72分)以上的学生人数.20.七年级某班的一个综合实践活动小组去A、B两个超市调查去年和今年“春节”期间的销售情况,下图是调查后小敏与其它两位同学进行交流的情景.根据他们的对话,请你分别求出A、B两个超市今年“春节”期间的销售额.21.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3).(1)△ABC的面积是________.(2)①将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;②请画出与△ABC关于y轴对称的△A2B2C2.22.分别画出满足下列条件的点:(尺规作图,请保留作图痕迹,不写作法.作图痕迹请加粗加黑!)(1)在边BC上找一点P,使P到AB和AC的距离相等;(2)在射线AP上找一点Q,使QA=QC.23.端午节放假期间,某学校计划租用6辆客车送240名师生参加研学活动,现有甲、乙两种客车,它们的载客量和租金如下表,设租用甲种客车x辆,租车总费用为y元.(1)求出y(元)与x(辆)之间函数关系式;(2)求出自变量的取值范围;(3)选择怎样的租车方案所需的费用最低?最低费用多少元?答案解析部分一、填空题1.【答案】3【考点】算术平方根【解析】【解答】解:∵32=9 ∴√9=3,故答案为:3.【分析】根据算数平方根的意义,一个正数的平方等于9,则这个正数就是9的算数平方根,即可得出答案。
人教版七年级数学第二学期期末模拟卷(3)试题及答案解析
期末模拟卷(3)(时间:90分钟满分:100分)一、选择题(每小题2分,共20分.请将符合题意选项的字母代号,填写在下面方格内)1.9的平方根是()A.3B.±3C.3D.3±2.下列四个数中,是无理数的是()4 B.3.1415926 C.22723.如图,在一张半透明的纸上画一条直线l,在直线l外任取一点A,折出过点A且与直线l垂直的直线.这样的直线只能折出一条,理由是()A.连接直线外一点与直线上各点的所有线段中,垂线段最短B.两点之间线段最短C.在平面内,过一点有且只有一条直线与已知直线垂直D.经过直线外一点有且只有一条直线与已知直线平行4.如图,直线AB∥CD,直线MN交AB于点E,交CD于点F,若∠CFE=115°,则∠BEM的度数为()A.65°B.55°C.115°D.125°5.下列调查中,调查方式选择合理的是()A.了解灯泡的寿命,选择全面调查B.了解某品牌袋装食品添加剂情况,选择全面调查C.了解神舟飞船的设备零件的质量情况,选择抽样调查D.了解介休绵山旅游风景区全年游客流量,选择抽样调查6.若m>n,则下列选项不正确的是()A.m+2>n+2B.3m>3nC.–m<-nD.5-2m>5-2n7.为了了解某校七年级800名学生的跳绳情况(60秒跳绳的次数),随机对该年级50名学生进行了调查.根据收集的数据绘制了如图所示的频数分布直方图(每组数据包括左端值不包括右端值,如最左边第一组的次数x为:60≤x<80),则以下说法正确的是()A.跳绳次数最多的是160次B.大多数学生跳绳次数在140~160范围内C.跳绳次数不少于100次的占80%D.由样本可以估计全年级800人中跳绳次数在60~80次的大约有70人8.如图,在平面直角坐标系中,点A,B,C 的坐标分别是(-3,1),(-2,0),(-1,3),将三角形ABC 沿一确定方向平移得三角形A 1B 1C 1,点B 的对应点B 1的坐标是(1,-2),则点A 1, C 1坐标分别是( )A.A 1(0, 1) C 1 (2,2)B.A 1(0,-1) C 1 (2,1)C.A 1(0,-1) C 1 (2,-1)D.A 1(-1,0) C 1 (3,1)9.若点A (m,1-2m )在第二象限,则m 的取值范围是( )A.m <0B.m <12C. 0<m <12D.m >1210.《九章算术》卷第八有一道题,原文是“今有牛五、羊二,直金十两.牛二、羊五,直金八两.问牛羊各直金几何?”译文是“今有牛5头,羊2头,共值金10两.牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?”设每头牛值金x 两,每头羊值金y 两.则依据题意可列方程( )A. 5282510x y x y +=⎧⎨+=⎩B. 2510528x y x y +=⎧⎨+=⎩C. 5210258x y x y +=⎧⎨+=⎩D. 2210558x y x y +=⎧⎨+=⎩二、填空题(每小题3分,共15分)11.已知2x-y 是25的算术平方根,3x+4y 是8的立方根,则x-2y 的值为 .12.如图是某市区的部分平面示意图,为准确表示地理位置,可以建立平面直角坐标系用坐标表示地理位置,若交警大队的坐标是(5,3),中国银行的坐标是(4,1),则实验中学的坐标为 .13.商家用1520元进回160kg 苹果,销售中有5%的苹果正常损耗,将这批苹果全部售出,要使不亏本,售价至少定为 元.14.如图,数轴上点A 表示的实数是-1,半径为1个单位长度的圆从点A 沿数轴向右滚动一周,圆上的点A 达到A ’,则点A ’表示的数是 .15.一副三角板如图摆放,过点D 作DE ∥AB ,则∠CDE 的度数为 .三、解答题(本大题共7个小题,共55分.解答题应写出文字说明、证明过程或演算步骤)16.计算(每小题5分,共10分)(1)2(22)(132)-+; (23273264-17.(5分)解不等式组,并把解集表示到数轴上.205121123x x x -⎧⎪+-⎨+⎪⎩>≥18.(4分)实践操作:如图,平移三角形ABC ,使点A 平移到点A ′,画出平移后的三角形A ′B ′C ′(点B 平移到B ′,点C 平移到C ′,保留作图痕迹,在图中标明相应字母,不写作法);猜想结论:猜想∠A ′AB ,∠ABC ,∠BC C ′的数量关系 (直接写出答案,不需证明).19.(6分)如图,三角形A ′B ′C ′是三角形ABC 经过某种变换后得到的图形.(1)分别写出点A 和点A ′,点B 和点B ′,点C 和点C ′的坐标;(2)观察点A 和点A ′,点B 和点B ′,点C 和点C ′的坐标,用文字语言描述它们的坐标之间的关系 ;(3)三角形ABC 内任意一点M 的坐标为(x,y ),点M 经过这种变换后得到点M ′,则点M ′的坐标为 .20.(11分)阅读下列资料,并解决问题.地球上的水包括大气水、地表水和地下水三大类.地表水可以分为海洋水和陆地水.陆地水又可分为冰川、河流、湖泊等.地球上的水总体积是14.2亿km 3.其中,海洋水约占96.53%以上,淡水约占2.53%.而在淡水中,大部分在两极的冰川、冰盖和地下水的形式存在,其中冰川、冰盖占77.2%,地下水占22.4%,而人类可以利用的水还不到1%.我国是世界上严重缺水的国家之一,年水资源总量居世界第六位,人均占有水量仅为2400m3左右,只相当于世界人均的14,居世界第110位,中国已被联合国列为13个贫水国之一.图1是我国2006年至2015年水资源总量变动趋势图.全国用水量由农业用水、工业用水、生活用水和生态补水四部分组成.表1是2015年我国四类用水量统计表.解决问题:(1)根据国外的经验,一个国家的用水量超过其水资源总量20%,就有可能发生“水危机”.依据这个标准,请你计算2015年我国是否属于可能发生“水危机”行列?(2)第四十七届联合国大会作出决议,确定每年3月22日为“世界水日”.我国水利部确定每年的3月22日至28日是“中国水周”.我国纪念“世界水日”和“中国水周”宣传活动的主题是“实施国家节水行动,建设节水型社会”.小亮作为学校的节水行动宣传志愿者,对他所在学校部分学生进行了“节水在行动”的随机调查,表2是问卷调查表,并将调查结果绘制成图2和图3所示的统计图(均不完整),请根据统计图提供的信息,解答下列问题:①参与本次调查的学生人数有人(直接写出答案);②补全条形统计图;在扇形统计图中,观点A的百分比是(直接写出答案);③若该学校共有800名学生,请估计其中“知道节水的重要性,并有节水的好习惯”的有多少人?④谈一谈你对节约用水的看法.21.(10分)综合与实践——折纸中的数学我们在七年级上册第四章《几何图形初步》中探究了简单图形折叠问题,并进行了简单的计算与推理.七年级下册第五章学习了平行线的性质与判定后,我们进行了长方形纸条的折叠与平行线的探究,今天我们继续探究——折纸与平行线.如图1,长方形纸条ABMN中,AB∥MN,AN∥BM.第一步,将长方形纸条折叠,使折痕经过点A,得到折痕AC,再将纸片展平;第二步,如图2,将折痕AC折到AE处,点B落在B′处;第三步,如图3,将∠NED对折,使点M落在M′处,点N落在N′处,EN′与D B′共线,得到折痕EF.(1)AC和DE有怎样的位置关系,并说明理由.(2)折痕AD和EF有怎样的位置关系,并说明理由.22.(9分)核桃和枣是我省著名的农特产,它们营养丰富,有益人体健康,深受老百姓喜爱.某超市从农贸批发市场批发核桃和枣进行零售,批发价和零售价格如下表所示:请解答下列问题.(1)第一天,该超市从批发市场批发核桃和枣共350kg,用去了3600元钱,求当天核桃和枣各批发多少kg?(2)第二天,该超市用3600元钱仍然批发核桃和枣(批发价和零售价不变),要想将第二天批发的核桃和枣全部售完后,所获利润率不低于40%,则该超市第二天至少批发核桃多少kg?期末模拟卷(3)参考答案一、选择题(每小题2分,共20分)二、填空题(每小题3分,共15分)11. 4 12.(-2,1) 13. 10 14. 2π-1 15. 15°三、解答题(本大题共7个小题,共55分)16.(1)2)(1-+= 21+-………………………………………………………3分= 1-…………………………………………………………………………5分(22= 3(28---+………………………………………………………………3分= 328--+………………………………………………………………4分……………………………………………………………………………5分17. 解:解不等式①,得x<2. …………………………………………………1分解不等式②,得x≥-1. ………………………………………………………2分则不等式的解集为-1≤x<2. …………………………………………………3分解集在数轴上的表示如图所示.…………………………………………5分18. 实践操作:△A'B'C'即为所求.C'C……………………………………………………3分猜想结论:∠A′AB +∠BC C′=∠ABC. ……………………………………4分19. 解:(1)A(-2,4)A′(2,4),B(-4,2) B′(4,2),C(-1,-1)C′(1,-1);……………………………………………………………3分(2)横坐标互为相反数,纵坐标相等;…………………………………………5分(3)(-x,y)…………………………………………………………………………6分20. 解:(1)2015年的用水量为:3903.9+1380.6+790.5+105.0=6180(亿立方米)………………………………………………………2分由水资源总量变动趋势图可得2015年的水资源总量为28306(亿立方米)……3分6180100%21.8%28306⨯≈…………………………………………………………4分21. 8%>20%答:2015年我国属于可能发生“水危机”行列. …………………………………5分(2)①50……………………………………………………………………………6分②4% ……………………………………………………………………………7分③解:800×16%=128(人)……………………………………………………8分答:估计其中有128人知道节水的重要性并有节水的好习惯. …………………9分④答:通过调查可以看出“节水意识薄弱,认为水资源充足”和“缺乏社会责任意识,节水与我无关”占多数,仅有16%是同学有节水的好习惯.在全球水资源短缺,尤其我国水资源危机日益严重的情况下,节约用水应该是我们每位公民的义务与责任,同时我们要做好节水的宣传工作,只有我们13亿人民从我做起从现在做起,把节水落到实处,才能保护蓝天碧海,共创美好家园. …………………11分(答案不唯一,参照给分)21.(1)解:AC∥DE………………………………………………………………1分理由如下:由折叠可得∠CAD=∠EAD,∠CDA=∠EDA,……………………………………3分∵ AN∥BM∴∠CAD=∠EDA……………………………………………………………………4分∴AC∥DE …………………………………………………………………………5分(2)解:AD∥EF…………………………………………………………………6分理由如下:由折叠可得,∠DAE=∠DAC=12∠CAE,∠FEN=∠DEF=12∠DEN, …………………………7分∵AC∥DE,∴∠CAE=∠DEN,…………………………………………………………………8分∴∠DAE=∠FEN……………………………………………………………………9分∴AD∥EF…………………………………………………………………………10分22.解:(1)设第一天核桃批发了x千克,枣批发了y千克. …………………1分根据题意,得3501293600x yx y+=⎧⎨+=⎩…………………………………………………3分解得150200xy=⎧⎨=⎩……………………………………………………………………4分答:第一天核桃批发了150kg,枣批发了200kg. ………………………………5分(2)设第二天批发核桃xkg,则(18-12)x+3600129x-×(12-9)≥3600×40%……………………………7分解得x≥120 ………………………………………………………………………8分答:第二天该超市当天至少批发核桃120kg. …………………………………9分。
新人教版七年级(下)期末数学模拟试卷(三)(含答案)
新人教版七年级(下)期末数学模拟试卷(三)一、选择题(每小题3分,共24分)的立方根是3.(3分)(2011•常州)某地区有8所高中和22所初中.要了解该地区中学生的视力情况,4.(3分)如图,若CD∥AB,则下列说法错误的是()5.(3分)如图,△ABC沿BC方向平移得到△DEF,CE=2,CF=5,则平移的距离为()6.(3分)(2014秋•郑州期末)点M在x轴的上侧,距离x轴5个单位长度,距离y轴37.(3分)我市某学校有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住7人,则有一间宿舍不空但所住的人数不足5人.若设宿舍间数为x,根.8.(3分)若关于x,y的二元一次方程组的解满足x﹣y<2,则a的取值范围二、填空题(每小题3分,共21分)9.(3分)若和都有意义,则a的值为.10.(3分)计算:﹣+=.11.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,则∠A的余角是和,∠ACD=,理由是.12.(3分)点M(3,2)向右平移个单位,向下平移个单位后得点N,则点N的坐标是.13.(3分)若kx|k﹣1|+(k+1)y=k是关于x,y的二元一次方程,则k=.14.(3分)(2014春•增城市校级期中)若点B(a,b)在第三象限,则点C(﹣a+1,3b﹣5)在第象限.15.(3分)(2011•襄阳)我国从2011年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记﹣5分.小明参加本次竞赛得分要超过100分,他至少要答对道题.三、解答题(本大题共7小题,满分55分)16.(6分)解方程组.17.(6分)解不等式组.18.(7分)已知:如图,∠BAC与∠GCA互补,∠1=∠2,若∠E=46°,求∠F的度数.19.(8分)(2012•永州)某公司计划2012年在甲、乙两个电视台播放总时长为300分钟的广告,已知甲、乙两电视台的广告收费标准分别为500元/分钟和200元/分钟.该公司的广告总费用为9万元,预计甲、乙两个电视台播放该公司的广告能给该公司分别带来0.3万元/分钟和0.2万元/分钟的收益,问该公司在甲、乙两个电视台播放广告的时长应分别为多少分钟?预计甲、乙两电视台2012年为此公司所播放的广告将给该公司带来多少万元的总收益?20.(9分)(2014春•中山期末)如图,已知∠1+∠2=180°,∠3=∠B,试猜想∠AED和∠C的关系,并证明你的结论.21.(8分)(2011•东莞)李老师为了解班里学生的作息时间,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么?(2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?22.(11分)(2013•云南)某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.2013-2014学年新人教版七年级(下)期末数学模拟试卷(三)参考答案与试题解析一、选择题(每小题3分,共24分).﹣4没有立方根B的立方根是的立方根是:的立方根是:3.(3分)(2011•常州)某地区有8所高中和22所初中.要了解该地区中学生的视力情况,4.(3分)如图,若CD∥AB,则下列说法错误的是()5.(3分)如图,△ABC沿BC方向平移得到△DEF,CE=2,CF=5,则平移的距离为()6.(3分)(2014秋•郑州期末)点M在x轴的上侧,距离x轴5个单位长度,距离y轴37.(3分)我市某学校有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住7人,则有一间宿舍不空但所住的人数不足5人.若设宿舍间数为x,根.由题意得:8.(3分)若关于x,y的二元一次方程组的解满足x﹣y<2,则a的取值范围,y=代入得:二、填空题(每小题3分,共21分)9.(3分)若和都有意义,则a的值为0.解:∵和10.(3分)计算:﹣+=15.11.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,则∠A的余角是∠ACD 和∠B,∠ACD=∠B,理由是同角的余角相等.12.(3分)点M(3,2)向右平移个单位,向下平移个单位后得点N,则点N的坐标是(3+,2﹣).个单位,向下平移,﹣,)13.(3分)若kx|k﹣1|+(k+1)y=k是关于x,y的二元一次方程,则k=2.14.(3分)(2014春•增城市校级期中)若点B(a,b)在第三象限,则点C(﹣a+1,3b﹣5)在第四象限.15.(3分)(2011•襄阳)我国从2011年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记﹣5分.小明参加本次竞赛得分要超过100分,他至少要答对14道题.>三、解答题(本大题共7小题,满分55分)16.(6分)解方程组.,﹣.17.(6分)解不等式组.18.(7分)已知:如图,∠BAC与∠GCA互补,∠1=∠2,若∠E=46°,求∠F的度数.19.(8分)(2012•永州)某公司计划2012年在甲、乙两个电视台播放总时长为300分钟的广告,已知甲、乙两电视台的广告收费标准分别为500元/分钟和200元/分钟.该公司的广告总费用为9万元,预计甲、乙两个电视台播放该公司的广告能给该公司分别带来0.3万元/分钟和0.2万元/分钟的收益,问该公司在甲、乙两个电视台播放广告的时长应分别为多少分钟?预计甲、乙两电视台2012年为此公司所播放的广告将给该公司带来多少万元的总收益?由题意得,,20.(9分)(2014春•中山期末)如图,已知∠1+∠2=180°,∠3=∠B,试猜想∠AED和∠C的关系,并证明你的结论.21.(8分)(2011•东莞)李老师为了解班里学生的作息时间,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么?(2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?22.(11分)(2013•云南)某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.,,,参与本试卷答题和审题的老师有:wkd;gbl210;bjf;sks;星期八;CJX;zhjh;bjy;qingli;HJJ;ZJX;caicl;Liuzhx(排名不分先后)菁优网2015年5月28日。
七年级下册数学期末模拟试卷(带答案)-百度文库
七年级下册数学期末模拟试卷(带答案)-百度文库一、选择题1.以下列各组线段为边,能组成三角形的是( ) A .2cm 、2cm 、4cm B .2cm 、6cm 、3cm C .8cm 、6cm 、3cmD .11cm 、4cm 、6cm2.不等式3x+2≥5的解集是( ) A .x≥1B .x≥73C .x≤1D .x≤﹣13.已知()22316x m x --+是一个完全平方式,则m 的值可能是( ) A .7-B .1C .7-或1D .7或1-4.已知方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,则k 的值是( )A .k=-5B .k=5C .k=-10D .k=105.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x 元,馒头每个y 元,则下列能表示题目中的数量关系的二元一次方程组是( ) A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩C .53502115900.9x y x y +=-⎧⎨+=⨯⎩D .53502115900.9x y x y +=+⎧⎨+=⨯⎩6.下列计算中,正确的是( ) A .(a 2)3=a 5B .a 8÷ a 2=a 4C .(2a )3=6a 3D .a 2+ a 2=2 a 27.端午节前夕,某超市用1440元购进A 、B 两种商品共50件,其中A 种商品每件24元,B 品件36元,若设购进A 种商品x 件、B 种商品y 件,依题意可列方程组( )A .5036241440x y x y +=⎧⎨+=⎩B .5024361440x y x y +=⎧⎨+=⎩C .144036241440x y x y +=⎧⎨+=⎩D .144024361440x y x y +=⎧⎨+=⎩8.科学家发现2019﹣nCoV 冠状肺炎病毒颗粒的平均直径约为0.00000012m .数据0.00000012用科学记数法表示为( ) A .1.2×107 B .0.12×10﹣6C .1.2×10﹣7D .1.2×10﹣89.下列说法中,正确的个数有( )①同位角相等②三角形的高在三角形内部③一个多边形的边数每增加一条,这个多边形的内角和就增加180°, ④两个角的两边分别平行,则这两个角相等 A .1个B .2个C .3 个D .4个10.若多项式224a kab b ++是完全平方式,则k 的值为( ) A .4B .2±C .4±D .8±二、填空题11.根据不等式有基本性质,将()23m x -<变形为32x m >-,则m 的取值范围是__________.12.已知()4432234464a b a a b a b ab b +=++++,则()4a b -=__________.13.计算:32(2)xy -=___________.14.二元一次方程7x+y =15的正整数解为_____. 15.计算:5-2=(____________)16.每个生物携带自身基因的载体是生物细胞的DNA ,DNA 分子的直径只有0.0000002cm ,将0.0000002用科学记数法表示为_________. 17.已知关于x ,y 的方程22146m n m n xy --+++=是二元一次方程,那么点(),M m n 位于平面直角坐标系中的第______象限.18.已知m 为正整数,且关于x ,y 的二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解,则m 的值为_______.19.某红外线波长为0.00000094米,数字0.00000094用科学记数法表示为_____. 20.已知:如图,△ABC 的周长为21cm ,AB =6cm ,BC 边上中线AD =5cm ,△ACD 周长为16cm ,则AC 的长为__________cm .三、解答题21.(数学经验)三角形的中线的性质:三角形的中线等分三角形的面积. (经验发展)面积比和线段比的联系:(1)如图1,M 为△ABC 的AB 上一点,且BM =2AM .若△ABC 的面积为a ,若△CBM 的面积为S ,则S =_______(用含a 的代数式表示). (结论应用)(2)如图2,已知△CDE 的面积为1,14CD AC =,13CE CB =,求△ABC 的面积.(迁移应用)(3)如图3.在△ABC 中,M 是AB 的三等分点(13AM AB =),N 是BC 的中点,若△ABC 的面积是1,请直接写出四边形BMDN 的面积为________.22.先化简,再求值:(3x +2)(3x -2)-5x (x +1)-(x -1)2,其中x 2-x -10=0. 23.如图1,在△ABC 的AB 边的异侧作△ABD ,并使∠C =∠D ,点E 在射线CA 上. (1)如图,若AC ∥BD ,求证:AD ∥BC ; (2)若BD ⊥BC ,试解决下面两个问题: ①如图2,∠DAE =20°,求∠C 的度数;②如图3,若∠BAC =∠BAD ,过点B 作BF ∥AD 交射线CA 于点F ,当∠EFB =7∠DBF 时,求∠BAD 的度数.24.计算: (1)()()1202001113π-⎛⎫--+- ⎪⎝⎭; (2)(x +1)(2x ﹣3).25.阅读下列各式:(a•b )2=a 2b 2,(a•b )3=a 3b 3,(a•b )4=a 4b 4… 回答下列三个问题: (1)验证:(2×12)100= ,2100×(12)100= ; (2)通过上述验证,归纳得出:(a•b )n = ; (abc )n = . (3)请应用上述性质计算:(﹣0.125)2017×22016×42015. 26.解下列方程组(1)29321x y x y +=⎧⎨-=-⎩.(2)34332(1)11x y x y ⎧+=⎪⎨⎪--=⎩.27.先化简,再求值:(2a +b )2﹣(2a +3b )(2a ﹣3b ),其中a =12,b =﹣2. 28.A 市准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的提示牌和垃圾箱,若购买2个提示牌和3个垃圾箱共需550元,且垃圾箱的单价是提示牌单价的3倍.(1)求提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边. 【详解】A. ∵2+2=4,∴ 2cm 、2cm 、4cm 不能组成三角形,故不符合题意;B. ∵2+3<6,∴2cm 、6cm 、3cm 不能组成三角形,故不符合题意;C. ∵3+6>8,∴8cm 、6cm 、3cm 能组成三角形,故符合题意;D. ∵4+6<11,∴11cm 、4cm 、6cm 不能组成三角形,故不符合题意; 故选C. 【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.2.A解析:A 【解析】分析:根据一元一次不等式的解法即可求出答案. 详解:3x+2≥5, 3x≥3, ∴x≥1. 故选A .点睛:本题考查了一元一次不等式的解法,解题的关键是熟练运用一元一次不等式的解法,本题属于基础题型.3.D解析:D 【分析】利用完全平方公式的特征判断即可得到结果. 【详解】 解:()22316x m x --+是一个完全平方式,∴()22316x m x --+=2816x x -+或者()22316x m x --+=2+816x x +∴-2(m-3)=8或-2(m-3)=-8 解得:m =-1或7 故选:D 【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.4.A解析:A 【分析】 根据方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,可得方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值,再代入4x-3y+k=0即可求得k 的值. 【详解】 ∵方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,∴5320x y x y -=⎧⎨-=⎩ ,解得,1015x y =-⎧⎨=-⎩;把1015x y =-⎧⎨=-⎩代入4x-3y+k=0得, -40+45+k=0, ∴k=-5. 故选A. 【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值是解决问题的关键.5.B解析:B 【解析】 【分析】设馒头每个x 元,包子每个y 元,分别利用买5个馒头,3个包子,老板少收2元,只要5元以及11个馒头,5个包子,老板以售价的九折优惠,只要9元,得出方程组. 【详解】设馒头每个x 元,包子每个y 元,根据题意可得:53502115900.9x y x y +=+⎧⎨+=÷⎩, 故选B . 【点睛】本题考查了由实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.6.D解析:D 【分析】直接利用同底数幂的乘除运算法则,积的乘方运算法则以及合并同类项法则分别计算得出答案. 【详解】解:A 、(a 2)3=a 6,故此选项错误; B 、a 8÷ a 2=a 6,故此选项错误; C 、(2a )3=8a 3,,故此选项错误; D 、a 2+ a 2=2 a 2,故此选项正确. 故选:D 【点睛】此题主要考查了同底数幂的乘除运算以及积的乘方运算等知识,正确掌握运算法则是解题关键.7.B解析:B 【分析】本题有2个相等关系:购进A 种商品件数+购进B 种商品件数=50,购进A 种商品x 件的费用+购进B 种商品y 件的费用=1440元,据此解答即可. 【详解】解:设购进A 种商品x 件、B 种商品y 件,依题意可列方程组5024361440x y x y +=⎧⎨+=⎩.故选:B . 【点睛】本题考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.8.C解析:C 【分析】用科学计数法将0.00000012表示为a×10-n 即可. 【详解】解:0.00000012=1.2×10﹣7,故选:C . 【点睛】本题考查用科学计数法表示较小的数,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.9.A解析:A 【分析】根据同位角的定义、三角形垂心的定义及多边形内角和公式、平行线的性质逐一判断可得. 【详解】解:①只有两平行直线被第三条直线所截时,同位角才相等,故此结论错误; ②只有锐角三角形的三条高在三角形的内部,故此结论错误;③一个多边形的边数每增加一条,这个多边形的内角和就增加180°,此结论正确; ④两个角的两边分别平行,则这两个角可能相等,也可能互补,故此结论错误. 故选A . 【点睛】本题主要考查同位角、三角形垂心及多边形内角和、平行线的性质,熟练掌握基本定义和性质是解题的关键.10.C解析:C 【分析】根据完全平方式的特征解答即可. 【详解】∵224a kab b ++是一个完全平方式, ∴224a kab b ++=(a ±2b )2, 而(a ±2b )2=a 2±4ab+24b , ∴k=±4, 故选C . 【点睛】本题考查了完全平方式,根据完全平方式的特点得到k=±4是解决问题的关键.二、填空题11.m <2 【分析】根据不等式的性质即可求解. 【详解】 依题意得m-2<0解得m<2故答案为:m<2.【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.解析:m<2【分析】根据不等式的性质即可求解.【详解】依题意得m-2<0解得m<2故答案为:m<2.【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.12.a4-4a3b+6a2b2-4ab3+b4【分析】原式变形后,利用(a+b)4=a4+4a3b+6a2b2+4ab3+b4,即可得到(a-b)4的结果.【详解】解:根据题意得:(a-b)4=解析:a4-4a3b+6a2b2-4ab3+b4【分析】原式变形后,利用(a+b)4=a4+4a3b+6a2b2+4ab3+b4,即可得到(a-b)4的结果.【详解】解:根据题意得:(a-b)4=[a+(-b)]4=a4-4a3b+6a2b2-4ab3+b4,故答案为:a4-4a3b+6a2b2-4ab3+b4【点睛】此题考查了完全平方公式,熟练掌握公式是解本题的关键.13.【分析】根据积的乘方进行计算即可.【详解】解:,故答案为:.【点睛】此题考查积的乘方.积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘.4x y解析:26【分析】根据积的乘方进行计算即可. 【详解】解:3226(2)4xy x y -=, 故答案为:264x y . 【点睛】此题考查积的乘方.积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘.14.或 【分析】将x 看做已知数求出y ,即可确定出正整数解. 【详解】解:方程7x+y =15, 解得:y =﹣7x+15, x =1,y =8;x =2,y =1, 则方程的正整数解为或. 故答案为:或. 【点解析:18x y =⎧⎨=⎩或21x y =⎧⎨=⎩【分析】将x 看做已知数求出y ,即可确定出正整数解. 【详解】解:方程7x+y =15, 解得:y =﹣7x+15, x =1,y =8;x =2,y =1,则方程的正整数解为18x y =⎧⎨=⎩或21x y =⎧⎨=⎩.故答案为:18x y =⎧⎨=⎩或21x y =⎧⎨=⎩.【点睛】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.15.【分析】直接根据负整数指数幂的运算法则求解即可. 【详解】 ,故答案为:. 【点睛】本题考查了负整数指数幂的运算法则,比较简单. 解析:125【分析】直接根据负整数指数幂的运算法则求解即可. 【详解】22115525-==, 故答案为:125. 【点睛】本题考查了负整数指数幂的运算法则,比较简单.16.210-7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决解析:2⨯10-7 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.000 0002=2×10-7, 故答案为:2⨯10-7. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.17.四 【分析】根据题意得到关于m 、n 的二元一次方程组,确定点M 坐标,判断M 所在象限即可. 【详解】 解:由题意得, 解得,∴点M 坐标为, ∴点M 在第四象限.故答案为:四【点睛】本题考查了二元解析:四【分析】根据题意得到关于m 、n 的二元一次方程组,确定点M 坐标,判断M 所在象限即可.【详解】解:由题意得22111m n m n --=⎧⎨++=⎩, 解得11m n =⎧⎨=-⎩, ∴点M 坐标为()1,1-,∴点M 在第四象限.故答案为:四【点睛】本题考查了二元一次方程定义,二元一次方程组解法,点的坐标等知识,综合性较强,根据题意列出方程组是解题关键.18.【分析】先把二元一次方程组求解出来,用m 表示,再根据有整数解求解m 的值即可得到答案;【详解】解:,把①②式相加得到:,即: ,要二元一次方程组有整数解,即为整数,又∵为正整数,故解析:2【分析】先把二元一次方程组210320mx y x y +=⎧⎨-=⎩求解出来,用m 表示,再根据有整数解求解m 的值即可得到答案;【详解】解:210320mx y x y +=⎧⎨-=⎩①②, 把①②式相加得到:310+=mx x , 即:103x m =+ , 要二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解, 即103x m =+为整数, 又∵m 为正整数,故m=2, 此时10223x ==+,3y = , 故,x y 均为整数,故答案为:2;【点睛】 本题主要考查了二元一次方程组的求解,掌握二元一次方程组的求解步骤是解题的关键; 19.4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00 000 094=9.4×10﹣8,故答案是:9.4×10﹣8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.20.7【解析】先根据△ABD 周长为15cm ,AB=6cm ,AD=5cm ,由周长的定义可求BC 的长,再根据中线的定义可求BC 的长,由△ABC 的周长为21cm ,即可求出AC 长.解:∵AB=6cm,AD解析:7【解析】先根据△ABD周长为15cm,AB=6cm,AD=5cm,由周长的定义可求BC的长,再根据中线的定义可求BC的长,由△ABC的周长为21cm,即可求出AC长.解:∵AB=6cm,AD=5cm,△ABD周长为15cm,∴BD=15-6-5=4cm,∵AD是BC边上的中线,∴BC=8cm,∵△ABC的周长为21cm,∴AC=21-6-8=7cm.故AC长为7cm.“点睛”此题考查了三角形的周长和中线,本题的关键是由周长和中线的定义得到BC的长,题目难度中等.三、解答题21.(1)23a(2)12(3)512【分析】(1)根据三角形的面积公式及比例特点即可求解;(2)连接AE,先求出△ACE的面积,再得到△ABC的面积即可;(3)连接BD,设△ADM的面积为a,则△BDM的面积为2a,设△CDN的面积为b,则△BDN的面积为b,根据图形的特点列出方程组求出a,b,故可求解.【详解】(1)设△ABC中BC边长的高为h,∵BM=2AM.∴BM=23 AB∴S=12BM×h=12×23AB×h=23S△ABC=23a故答案为:23 a;(2)如图2,连接AE,∵14 CD AC∴CD=14 AC∴S△DCE=14S△ACE=1∴S △ACE =4, ∵13CE CB = ∴CE=13CB ∴S △ACE =13S △ABC =4 ∴S △ABC =12; (3)如图3,连接BD ,设△ADM 的面积为a ,∵13AM AB = ∴BM=2AM,BM=23AB , ∴S △BDM =2S △ABM =2a, S △BCM =23S △ABC =23 设△CDN 的面积为b ,∵N 是BC 的中点,∴S △CDN =S △BDN =b ,S △ABN =12S △ABC =12∴122223a a b b b a ⎧++=⎪⎪⎨⎪++=⎪⎩,解得11214a b ⎧=⎪⎪⎨⎪=⎪⎩ ∴四边形BMDN 的面积为2a+b=512 故答案为512.【点睛】此题主要考查三角形面积公式的应用,解题的关键是根据题意找到面积的之间的关系. 22.3x 2-3x -5,25【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项利用完全平方公式展开,去括号合并得到最简结果,将已知的方程变形后代入即可求值.【详解】原式=()222945521x x x x x -----+=222945521x x x x x ----+-=2335x x --,当2100x x =--,即210x x =-时,原式=()235310525x x -=⨯-=-【点睛】本题考查整式的混合运算-化简求值,涉及的知识点有:完全平方公式、平方差公式、去括号法则及合并同类项法则,熟练掌握以上公式及法则是解题的关键.23.(1)见解析;(2)35°;(3)117°【分析】(1)由AC ∥BD 得∠D =∠DAE ,角的等量关系证明∠DAE 与∠C 相等,根据同位角得AD ∥BC ;(2)由BD ⊥BC 得∠HBC =90°,余角的性质和三角形外角性质解得∠C 的度数为35°; (3)由BF ∥AD 得∠D =∠DBF ,垂直的定义得∠DBC =90°,三角形的内角和定理,角的和差求得∠DBA =∠CBA =45°,由已知条件∠EFB =7∠DBF ,角的和差得出∠BAD 的度数为117°.【详解】解:(1)如图1所示:∵AC ∥BD ,∴∠D =∠DAE ,又∵∠C =∠D ,∴∠DAE =∠C ,∴AD ∥BC ;(2)①如图2所示:∵BD ⊥BC ,∴∠HBC =90°,∴∠C+∠BHC =90°,又∵∠BHC =∠DAE+∠D ,∠C =∠D ,∠DAE =20°,∴20°+2∠C =90°,∴∠C =35°;②如图3所示:∵BF ∥AD ,∴∠D =∠DBF ,又∵∠C =∠D ,∴∠C =∠D =∠DBF ,又∵BD ⊥BC ,∴∠DBC =90°,又∵∠D+∠DBA+∠BAD =180°,∠C+∠CBA+∠BAC =180°.∠BAC =∠BAD ,∴∠DBA =∠CBA =45°,又∵∠EFB =7∠DBF ,∠EFB =∠FBC+∠C ,∴7∠DBF =2∠DBF+∠DBC ,解得:∠DBF =18°,∴∠BAD =180°﹣45°﹣18°=117°.【点睛】本题考查了平行线的判定与性质,余角的性质,三角形的内角和性质,三角形的外角性质,角的和差等相关知识点,掌握平行线的判定与性质,三角形内角和和外角的性质是解题的关键.24.(1)﹣1;(2)223x x --【分析】(1)分别根据﹣1的偶次幂、负整数指数幂的运算法则和0指数幂的意义计算每一项,再合并即可;(2)根据多项式乘以多项式的法则解答即可.【详解】解:(1)()()1202001113π-⎛⎫--+- ⎪⎝⎭=131-+=﹣1;(2)(x +1)(2x ﹣3)=22232323x x x x x -+-=--.【点睛】本题考查了负整数指数幂的运算法则和0指数幂的意义以及多项式的乘法法则等知识,属于基本题型,熟练掌握上述基础知识是解题关键.25.(1)1, 1, (2)a n b n , a n b n c n ,(3)132-. 【解析】【分析】(1)先算括号内的乘法,再算乘方;先乘方,再算乘法;(2)根据有理数乘方的定义求出即可;(3)根据同底数幂的乘法计算,再根据积的乘方计算,即可得出答案.【详解】 解:(1)(2×12)100=1,2100×(12)100=1; (2)(a•b )n =a n b n ,(abc )n =a n b n c n , (3)原式=(﹣0.125)2015×22015×42015×[(﹣0.125)×(﹣0.125)×2]=(﹣0.125×2×4)2015×132 =(﹣1)2015×132 =﹣1×132 =﹣132. 【点睛】本题主要考查了同底数幂的乘法和积的乘方,掌握运算法则是解答此题的关键.26.(1)272x y =⎧⎪⎨=⎪⎩;(2)692x y =⎧⎪⎨=⎪⎩【分析】(1)根据加减消元法,即可求解;(2)先去分母,去括号,移项,合并同类项,再通过加减消元法,即可求解.【详解】(1)29321x y x y +=⎧⎨-=-⎩①②, +①②得:48x =.解得:2x =,把2x =代入①得:229y +=,解得:72y =,∴方程组的解为272x y =⎧⎪⎨=⎪⎩; (2)原方程可化为3436329x y x y +=⎧⎨-=⎩①②, ①-②得:627y =,解得:92y =, 把92y =代入②得:399x -=,解得:6x =, ∴方程组的解为692x y =⎧⎪⎨=⎪⎩. 【点睛】本题主要考查解二元一次方程组,掌握加减消元法,是解题的关键.27.4ab+10b 2;36.【解析】【分析】先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可化简原式,继而将a ,b 的值代入计算可得.【详解】原式=4a 2+4ab +b 2﹣(4a 2﹣9b 2)=4a 2+4ab +b 2﹣4a 2+9b 2=4ab +10b 2当a 12=,b =﹣2时,原式=412⨯⨯(﹣2)+10×(﹣2)2=﹣4+10×4=﹣4+40=36. 【点睛】 本题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握运算法则是解答本题的关键.28.(1)50元,150元;(2)提示牌50个,垃圾箱50个;提示牌51个,垃圾箱49个;提示牌52个,垃圾箱48个;【分析】1)根据“购买2个提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论; (2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论.【详解】解:(1)设提示牌的单价为x 元,则垃圾箱的单价为3x 元,根据题意得,233550x x +⨯=,50x ∴=,3150x∴=,即:提示牌和垃圾箱的单价各是50元和150元;(2)设购买提示牌y个(y为正整数),则垃圾箱为(100)y-个,根据题意得,1004850150(100)10000yy y,5052y ,y为正整数,y∴为50,51,52,共3种方案;即:温馨提示牌50个,垃圾箱50个;温馨提示牌51个,垃圾箱49个;温馨提示牌52个,垃圾箱48个,【点睛】此题主要考查了一元一次不等式组,一元一次方程的应用,正确找出相等关系是解本题的关键.。
初中数学人教七年级下册期末试卷(3)(附答案)
期末数学试卷一、选择题1.9的算术平方根是()A.±3 B.3 C.D.2.坐标平面内下列各点中,在x轴上的点是()A.(0,3) B.(﹣3,0)C.(﹣1,2)D.(﹣2,﹣3)3.已知是方程kx﹣y=3的解,那么k的值是()A.2 B.﹣2 C.1 D.﹣14.若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.>5.在图中,∠1和∠2是对顶角的是()A.B.C.D.6.如图,点E在AD的延长线上,下列条件中能判断BC∥AD的是()A.∠3=∠4 B.∠A+∠ADC=180°C.∠1=∠2 D.∠A=∠57.下列调查中,适宜采用全面调查(普查)方式的是()A.对一批圆珠笔使用寿命的调查B.对全国九年级学生身高现状的调查C.对某品牌烟花爆竹燃放安全的调查D.对一枚用于发射卫星的运载火箭各零部件的检查8.方程组的解为,则a、b分别为()A.a=8,b=﹣2 B.a=8,b=2 C.a=12,b=2 D.a=18,b=89.若不等式组的解集为0<x<1,则a、b的值分别为()A.a=2,b=1 B.a=2,b=3 C.a=﹣2,b=3 D.a=﹣2,b=110.下列说法:①带根号的数是无理数;②不含根号的数一定是有理数;③无理数是开方开不尽的数;④无限小数是无理数;⑤π是无理数,其中正确的有()A.4个 B.3个 C.2个 D.1个二、填空题11.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为.12.如图所示,由三角形ABC平移得到的三角形有个.13.已知(a﹣2)2+|b+3|=0,则点P(﹣a,﹣b)在第象限.14.满足不等式的非正整数x共有个.15.如果的平方根是±3,则=.16.已知点A(﹣1,b+2)不在任何象限,则b=.17.不等式的解集是.18.已知x满足(x+3)3=27,则x等于.19.已知y=kx+b,当x=1时,y=﹣1;当x=3时,y=﹣5,则k=,b=.20.如图,AB∥CD,BC∥DE,若∠B=50°,则∠D的度数是.三、解答题21.解方程组:.22.计算:﹣|﹣3|+.23.解不等式组:并把解集在数轴上表示出来.24.已知2m﹣3与4m﹣5是一个正数的平方根,求这个正数.25.如图所示,把三角板的直角顶点放在直尺的一边上,若∠1=30°,求∠2的度数.26.如图是根据某乡2009年第一季度“家电下乡”产品的购买情况绘制成的两幅不完整的统计图,请根据统计图提供的信息解答下列问题:(1)第一季度购买的“家电下乡”产品的总台数为;(2)把两幅统计图补充完整.27.去年某市空气质量良好(二级以上)的天数与全年天数(365)之比达到60%,如果今年(365天)这样的比值要超过70%,那么今年空气质量良好的天数比去年至少要增加多少天?28.如图,把一张长方形ABCD的纸片,沿EF折叠后,ED与BC的交点为G,点D、C分别落在D′、C′的位置上,若∠EFG=55°,求∠1、∠2的度数.29.某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?参考答案与试题解析一、选择题(每小题3分,共30分)1.9的算术平方根是()A.±3 B.3 C.D.【考点】22:算术平方根.【分析】根据开方运算,可得算术平方根.【解答】解:9的算术平方根是3,故选:B.【点评】本题考查了算术平方根,注意一个正数只有一个算术平方根.2.坐标平面内下列各点中,在x轴上的点是()A.(0,3) B.(﹣3,0)C.(﹣1,2)D.(﹣2,﹣3)【考点】D1:点的坐标.【分析】根据点在x轴上的坐标特点解答即可.【解答】解:∵在x轴上的点的纵坐标是0,∴结合各选项在x轴上的点是(﹣3,0).故选B.【点评】本题主要考查了点在x轴上的点的坐标特点:纵坐标为0.3.已知是方程kx﹣y=3的解,那么k的值是()A.2 B.﹣2 C.1 D.﹣1【考点】92:二元一次方程的解.【专题】11 :计算题;521:一次方程(组)及应用.【分析】把x与y的值代入方程计算即可求出k的值.【解答】解:把代入方程得:2k﹣1=3,解得:k=2,故选A【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.>【考点】C2:不等式的性质.【分析】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案.【解答】解:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确.故选B.【点评】此题考查了不等式的性质,掌握不等式的性质是解题的关键,不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.在图中,∠1和∠2是对顶角的是()A.B.C.D.【考点】J2:对顶角、邻补角.【分析】根据对顶角的定义对各图形判断即可.【解答】解:A、∠1和∠2不是对顶角;B、∠1和∠2是对顶角;C、∠1和∠2不是对顶角;D、∠1和∠2不是对顶角.故选:B.【点评】本题考查了对顶角相等,是基础题,熟记概念并准确识图是解题的关键.6.如图,点E在AD的延长线上,下列条件中能判断BC∥AD的是()A.∠3=∠4 B.∠A+∠ADC=180°C.∠1=∠2 D.∠A=∠5【考点】J9:平行线的判定.【专题】121:几何图形问题.【分析】结合图形分析两角的位置关系,根据平行线的判定方法判断.【解答】解:∵∠1=∠2,∴BC∥AD(内错角相等,两直线平行).故选C.【点评】解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放型题目,能有效地培养“执果索因”的思维方式与能力.7.下列调查中,适宜采用全面调查(普查)方式的是()A.对一批圆珠笔使用寿命的调查B.对全国九年级学生身高现状的调查C.对某品牌烟花爆竹燃放安全的调查D.对一枚用于发射卫星的运载火箭各零部件的检查【考点】V2:全面调查与抽样调查.【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、对一批圆珠笔使用寿命的调查,由于具有破坏性,应当使用抽样调查,故本选项错误;B、对全国九年级学生身高现状的调查,人数太多,不便于测量,应当采用抽样调查,故本选项错误;C、对某品牌烟花爆竹燃放安全的调查,由于具有破坏性,应当使用抽样调查,故本选项错误;D、对一枚用于发射卫星的运载火箭各零部件的检查,只有做到全面调查才能做到准确无误,故必须全面调查,故此选项正确.故选:D.【点评】此题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.8.方程组的解为,则a、b分别为()A.a=8,b=﹣2 B.a=8,b=2 C.a=12,b=2 D.a=18,b=8【考点】97:二元一次方程组的解.【专题】11 :计算题.【分析】将x与y的值代入方程组即可求出a与b的值.【解答】解:将x=5,y=b代入方程组得:,解得:a=12,b=2,故选C【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.9.若不等式组的解集为0<x<1,则a、b的值分别为()A.a=2,b=1 B.a=2,b=3 C.a=﹣2,b=3 D.a=﹣2,b=1【考点】CB:解一元一次不等式组.【分析】先把a、b当作已知条件求出不等式组的解集,再与已知解集相比较即可求出a、b的值.【解答】解:,由①得,x>2﹣a,由②得,x<,故不等式组的解集为;2﹣a<x<,∵原不等式组的解集为0<x<1,∴2﹣a=0,=1,解得a=2,b=1.故选A.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.下列说法:①带根号的数是无理数;②不含根号的数一定是有理数;③无理数是开方开不尽的数;④无限小数是无理数;⑤π是无理数,其中正确的有()A.4个 B.3个 C.2个 D.1个【考点】26:无理数.【分析】根据无理数的三种形式求解.【解答】解:①带根号的数不一定是无理数,如;②不含根号的数不一定是有理数,如无限不循环小数;③开方开不尽的数是无理数;④无限不循环小数是无理数;⑤π是无理数,该说法正确.故选D.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.二、填空题(每小题3分,共30分)11.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为4.【考点】C6:解一元一次不等式.【分析】先根据不等式的基本性质把不等式去分母、去括号、再移项、合并同类项求出x的取值范围,再与已知解集相比较即可求出m的取值范围.【解答】解:去分母得,x﹣m>3(3﹣m),去括号得,x﹣m>9﹣3m,移项,合并同类项得,x>9﹣2m,∵此不等式的解集为x>1,∴9﹣2m=1,解得m=4.故答案为:4.【点评】考查了解一元一次不等式,解答此题的关键是掌握不等式的性质,(1)不等式两边同加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边同乘(或同除以)同一个正数,不等号的方向不变;(2)不等式两边同乘(或同除以)同一个负数,不等号的方向改变.12.如图所示,由三角形ABC平移得到的三角形有5个.【考点】Q2:平移的性质.【分析】平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,据此判断出由三角形ABC平移得到的三角形有哪些即可.【解答】解:如图1,,由三角形ABC平移得到的三角形有5个:△DBE、△BHI、△EFG、△EIM、△IPN.故答案为:5.【点评】此题主要考查了平移的性质和应用,要熟练掌握,解答此题的关键是要明确:①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.13.已知(a﹣2)2+|b+3|=0,则点P(﹣a,﹣b)在第二象限.【考点】D1:点的坐标;16:非负数的性质:绝对值;1F:非负数的性质:偶次方.【分析】根据非负数的性质求出a、b,再根据各象限内点的坐标特征解答.【解答】解:由题意得,a﹣2=0,b+3=0,解得a=2,b=﹣3,所以,点P(﹣a,﹣b)即(﹣2,3)在第二象限.故答案为:二.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).14.满足不等式的非正整数x共有3个.【考点】2B:估算无理数的大小.【分析】根据﹣3<<﹣2和3<<4求出符合条件的非正整数,即可得出答案.【解答】解:不等式的非正整数有﹣2,﹣1,0,共3个,故答案为:3.【点评】本题考查了估算无理数大小,实数的大小比较的应用,关键是确定﹣和的范围.15.如果的平方根是±3,则=4.【考点】24:立方根;21:平方根;22:算术平方根.【分析】求出a的值,代入求出即可.【解答】解:∵的平方根是±3,∴=9,∴a=81,∴==4,故答案为:4.【点评】本题考查了平方根、算术平方根,立方根定义的应用,关键是求出a 的值.16.已知点A(﹣1,b+2)不在任何象限,则b=﹣2.【考点】D1:点的坐标.【分析】根据坐标轴上的点的坐标特征方程求解即可.【解答】解:∵点A(﹣1,b+2)不在任何象限,∴b+2=0,解得b=﹣2.故答案为:﹣2.【点评】本题考查了点的坐标,熟记坐标轴上点的坐标特征是解题的关键.17.不等式的解集是x<6.【考点】C6:解一元一次不等式.【分析】利用不等式的基本性质,先去分母,然后把不等号右边的x移到左边,合并同类项即可求得原不等式的解集.【解答】解:去分母得:2x﹣2﹣3x﹣4>﹣12,移项得:﹣x>﹣6,系数化为1得:x<6.故答案为:x<6.【点评】本题考查了解一元一次不等式,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.18.已知x满足(x+3)3=27,则x等于0.【考点】24:立方根.【分析】首先根据立方根的定义可求出27的立方根,即可求得x的值.【解答】解:∵27的立方根为3,∴x+3=3,∴x=0.故答案为0.【点评】此题主要考查了立方根的定义和性质,注意本题答案不唯一.求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.19.已知y=kx+b,当x=1时,y=﹣1;当x=3时,y=﹣5,则k=﹣2,b=1.【考点】98:解二元一次方程组.【专题】11 :计算题.【分析】把x与y的两对值代入y=kx+b,列出方程组,求出方程组的解得到k与b的值即可.【解答】解:把x=1,y=﹣1;x=3,y=﹣5代入y=kx+b中,得:,解得:k=﹣2,b=1.故答案为:﹣2;1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.如图,AB∥CD,BC∥DE,若∠B=50°,则∠D的度数是130°.【考点】JA:平行线的性质.【分析】首先根据平行线的性质可得∠B=∠C=50°,再根据BC∥DE可根据两直线平行,同旁内角互补可得答案.【解答】解:∵AB∥CD,∴∠B=∠C=50°,∵BC∥DE,∴∠C+∠D=180°,∴∠D=180°﹣50°=130°,故答案为:130°.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.两直线平行,内错角相等.三、解答题(60分)21.解方程组:.【考点】98:解二元一次方程组.【专题】11 :计算题.【分析】解此题时先找出某个未知数系数的最小公倍数,用加减消元法进行解答.【解答】解:原方程组变形为:,(1)﹣(2)得:y=﹣,代入(1)得:x=6.所以原方程组的解为.【点评】此题较简单,只要明白二元一次方程及方程组的解法就可.22.计算:﹣|﹣3|+.【考点】2C:实数的运算.【分析】根据立方根、绝对值,算术平方根进行计算即可.【解答】解:原式=4+﹣3+6=7+.【点评】本题考查了实数的运算,用到的知识点为立方根、绝对值,算术平方根.23.(6分)解不等式组:并把解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:∵由①得:x>﹣2.5,由②得x≤4,∴不等式组的解集为﹣2.5<x≤4,在数轴表示为:.【点评】本题考查解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集求出不等式组的解集.24.(6分)已知2m﹣3与4m﹣5是一个正数的平方根,求这个正数.【考点】21:平方根.【分析】根据一个正数的两个平方根互为相反数,可知2m﹣3=4m﹣5或2m﹣3=﹣(4m﹣5),解得m的值,继而得出答案.【解答】解:当2m﹣3=4m﹣5时,m=1,∴这个正数为(2m﹣3)2=(2×1﹣3)2=1;当2m﹣3=﹣(4m﹣5)时,m=∴这个正数为(2m﹣3)2=[2×﹣3]2=故这个正数是1或.【点评】本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.25.(6分)如图所示,把三角板的直角顶点放在直尺的一边上,若∠1=30°,求∠2的度数.【考点】JA:平行线的性质.【分析】先根据补角的定义求出∠BAD的度数,再由平行线的性质即可得出结论.【解答】解:∵∠1=30°,∠BAC=90°,∴∠BAD=180°﹣90°﹣∠1=180°﹣90°﹣30°=60°,∵EF∥AD,∴∠2=∠BAD=60°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.26.(7分)如图是根据某乡2009年第一季度“家电下乡”产品的购买情况绘制成的两幅不完整的统计图,请根据统计图提供的信息解答下列问题:(1)第一季度购买的“家电下乡”产品的总台数为500;(2)把两幅统计图补充完整.【考点】VC:条形统计图;VB:扇形统计图.【专题】27 :图表型.【分析】由统计图可知:(1)根据条形统计图可知电视机是175台,根据扇形图可知电视占总产品的35%,即可求得产品的总数;(2)冰箱的台数为500×10%=50台;电脑的台数为500×5%=25台;则热水器的台数为500﹣50﹣25﹣175﹣150=100台,占的百分比为100÷500=20%;洗衣机占百分比为150÷500=30%.据此即可把两幅统计图补充完整.【解答】解:(1)175÷35%=500(个);(2)图如下面.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.27.(8分)去年某市空气质量良好(二级以上)的天数与全年天数(365)之比达到60%,如果今年(365天)这样的比值要超过70%,那么今年空气质量良好的天数比去年至少要增加多少天?【考点】C9:一元一次不等式的应用.【分析】设今年比去年空气质量良好的天数增加了x天,根据“今年(365天)这样的比值要超过70%,”列出不等式解答即可.【解答】解:设今年比去年空气质量良好的天数增加了x天,依题意,得x+365×60%>365×70%解这个不等式,得x>36.56.由x应为正整数,得x≥37答:今年空气质量良好的天数比去年至少要增加37,才能使这一年空气质量良好的天数超过全年天数的70%.【点评】此题考查一元一次不等式的实际运用,找出题目蕴含的不等关系是解决问题的关键.28.(9分)如图,把一张长方形ABCD的纸片,沿EF折叠后,ED与BC的交点为G,点D、C分别落在D′、C′的位置上,若∠EFG=55°,求∠1、∠2的度数.【考点】PB:翻折变换(折叠问题).【分析】由平行线的性质知∠DEF=∠EFB=55°,由题意知∠GEF=∠DEF=55°,则可求得∠2=∠GED=110°.由邻补角的性质可求得∠1的值.【解答】解:∵AD∥BC∴∠DEF=∠EFB=55°(2分)由对称性知∠GEF=∠DEF∴∠GEF=55°∴∠GED=110°∴∠1=180°﹣110°=70°(4分)∴∠2=∠GED=110°(5分)【点评】本题考查了翻折的性质,对应角相等及平行线的性质、邻补角的性质.29.(12分)某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?【考点】9A:二元一次方程组的应用.【分析】(1)设购买一个足球需要x元,购买一个篮球需要y元,根据购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元,列方程组求解;(2)设购买a个篮球,则购买(96﹣a)个足球,根据总费用不超过5720元,列不等式求出最大整数解.【解答】解:(1)设购买一个足球需要x元,购买一个篮球需要y元,根据题意得:,解得:,答:购买一个足球需要50元,购买一个篮球需要80元;(2)设购买a个篮球,则购买(96﹣a)个足球,根据题意得:80a+50(96﹣a)≤5720,解得:a≤,∵a是整数,∴a≤30,答:最多可以购买30个篮球.【点评】本题考查了二元一次方程组的应用和一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的等量关系和不等关系,列方程和不等式求解.。
(完整版)人教版七年级数学下册期末模拟试卷及答案
(完整版)人教版七年级数学下册期末模拟试卷及答案一、选择题1.小红问老师的年龄有多大时,老师说:“我像你这么大时,你才4岁,等你像我这么大时,我就49岁了,设老师今年x 岁,小红今年y 岁”,根据题意可列方程为( )A .449x y y x y x -=+⎧⎨-=+⎩B .449x y y x y x -=+⎧⎨-=-⎩C .449x y y x y x -=-⎧⎨-=+⎩D .449x y y x y x -=-⎧⎨-=-⎩2.下列方程中,是二元一次方程的是( ) A .x ﹣y 2=1B .2x ﹣y =1C .11y x+= D .xy ﹣1=03.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150°4.将图甲中阴影部分的小长方形变换到图乙位置,能根据图形的面积关系得到的关系式是( )A .22()()a b a b a b +-=-B .222()a b a b -=-C .2()b a b ab b -=-D .2()ab b b a b -=- 5.将下列三条线段首尾相连,能构成三角形的是( )A .1,2,3B .2,3,6C .3,4,5D .4,5,96.已知关于x ,y 的方程x 2m ﹣n ﹣2+4y m+n +1=6是二元一次方程,则m ,n 的值为( ) A .m =1,n =-1B .m =-1,n =1C .14m ,n 33==- D .14,33m n =-=7.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( ) A .2a +2b -2c B .2a +2bC .2cD .08.如图,△ABC 的面积是12,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,则△AFG 的面积是( )A .4.5B .5C .5.5D .6 9.七边形的内角和是( )A .360°B .540°C .720°D .900°10.下列调查中,适宜采用全面调查方式的是( ) A .考察南通市民的环保意识 B .了解全国七年级学生的实力情况 C .检查一批灯泡的使用寿命 D .检查一枚用于发射卫星的运载火箭的各零部件二、填空题11.分解因式:29a -=__________.12.若二次三项式x 2+kx+81是一个完全平方式,则k 的值是 ________. 13.已知一个多边形的每个外角都是24°,此多边形是_________边形. 14.已知23x y +=,用含x 的代数式表示y =________.15.计算:23()a =____________.16.小明在将一个多边形的内角逐个相加时,把其中一个内角多加了一次,错误地得到内角和为840°,则这个多边形的边数是___________. 17.()a b -+(__________) =22a b -.18.如图,1∠、2∠、3∠、4∠是五边形ABCDE 的4个外角,若120A ∠=︒,则1234∠+∠+∠+∠=_______°.19.如果关于x 的方程4232x m x -=+和23x x =-的解相同,那么m=________. 20.若a +b =4,a ﹣b =1,则(a +1)2﹣(b ﹣1)2的值为_____.三、解答题21.计算:(1)2201(2)3()3----÷- (2)22(21)(21)x x -+22.计算: (1)(y 3)3÷y 6; (2)2021()(3)2π--+-.23.解方程组:41 325 x yx y+=⎧⎨-=⎩.24.若规定acbd=a﹣b+c﹣3d,计算:223223xy xx---2574xy xxy-+-+的值,其中x=2,y=﹣1.25.(问题背景)(1)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B=∠C+∠D(简单应用)(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=28°,∠ADC=20°,求∠P的度数(可直接使用问题(1)中的结论)(问题探究)(3)如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,若∠A=30°,∠C=18°,则∠P的度数为(拓展延伸)(4)在图4中,若设∠C =x ,∠B =y ,∠CAP =14∠CAB ,∠CDP =14∠CDB ,试问∠P 与∠C 、∠B 之间的数量关系为 (用x 、y 表示∠P )(5)在图5中,BP 平分∠ABC ,DP 平分∠ADC 的外角∠ADE ,猜想∠P 与∠A 、∠C 的关系,直接写出结论 .26.如图,△ABC 中,AE 是△ABC 的角平分线,AD 是BC 边上的高. (1)若∠B =35°,∠C =75°,求∠DAE 的度数;(2)若∠B =m °,∠C =n °,(m <n ),则∠DAE = °(直接用m 、n 表示).27.如图,已知ABC 中,,AD AE 分别是ABC 的高和角平分线.若44B ∠=︒,12DAE ∠=︒,求C ∠的度数.28.计算:(1)0201711(2)(1)()2--+--;(2)()()()3243652a a a +-•-【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题设老师今年x 岁,小红今年y 岁,根据题意列出方程组解答即可. 【详解】解:老师今年x 岁,小红今年y 岁,可得:449x y y xyx,故选:D . 【点睛】此题考查了二元一次方程组的应用和理解题意能力,关键是知道年龄差是不变的量从而可列方程求解.2.B解析:B 【解析】 【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.据此逐一判断即可得. 【详解】解:A .x-y 2=1不是二元一次方程; B .2x-y=1是二元一次方程;C .1x+y =1不是二元一次方程; D .xy-1=0不是二元一次方程; 故选B . 【点睛】本题考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.3.B解析:B 【详解】解:根据题意得:∠1=180°-60°=120°.【点睛】本题考查直角三角板中的角度的计算,难度不大.4.A解析:A 【分析】根据长方形的面积=长⨯宽,分别表示出甲乙两个图形的面积,即可得到答案. 【详解】解:()()=S a b a b +-甲,()()2222==S a a b b a b a ab ab b a b -+-=-+--乙.所以()()a b a b +-22=a b - 故选A . 【点睛】本题考查平方差公式,难度不大,通过计算两个图形的面积即可顺利解题.5.C解析:C 【分析】构成三角形的三边应满足:任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形,根据该定则,就可判断选项正误. 【详解】解:A 选项:1+2=3,两边之和没有大于第三边,∴无法组成三角形; B 选项:2+3<6,两边之和没有大于第三边,∴无法组成三角形;C 选项:3+4>5,两边之和大于第三边,且满足两边之差小于第三边,∴可以组成三角形;D 选项:4+5=9,两边之和没有大于第三边,∴无法组成三角形, 故选:C . 【点睛】本题主要考察了三角形的三边关系定则:在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形.6.A解析:A 【分析】根据二元一次方程的概念列出关于m 、n 的方程组,解之即可. 【详解】∵关于x ,y 的方程x 2m ﹣n ﹣2+4y m +n +1=6是二元一次方程, ∴22111m n m n --=⎧⎨++=⎩即230m n m n -=⎧⎨+=⎩,解得:11m n =⎧⎨=-⎩, 故选:A .本题考查了二元一次方程的定义、解二元一次方程组,理解二元一次方程的定义,熟练掌握二元一次方程组的解法是解答的关键.7.D解析:D【解析】试题解析:∵a、b、c为△ABC的三条边长,∴a+b-c>0,c-a-b<0,∴原式=a+b-c+(c-a-b)=0.故选D.考点:三角形三边关系.8.A解析:A【解析】试题分析:∵点D,E,F,G分别是BC,AD,BE,CE的中点,∴AD是△ABC的中线,BE是△ABD的中线,CF是△ACD的中线,AF是△ABE的中线,AG 是△ACE的中线,∴△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=,同理可得△AEG的面积=,△BCE的面积=×△ABC的面积=6,又∵FG是△BCE的中位线,∴△EFG的面积=×△BCE的面积=,∴△AFG的面积是×3=,故选A.考点:三角形中位线定理;三角形的面积.9.D解析:D【分析】n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【详解】(7﹣2)×180°=900°.故选D.【点睛】本题考查了多边形的内角和与外角和定理,解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容.10.D解析:D 【分析】调查方式的选择需要将全面调查的局限性和抽样调查的必要性结合起来,具体问题具体分析,全面调查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择全面调查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,全面调查就受到限制,这时就应选择抽样调查. 【详解】解:A 、考察南通市民的环保意识,人数较多,不适合全面调查; B 、了解全国七年级学生的实力情况,人数较多,不适合全面调查; C 、检查一批灯泡的使用寿命,数量较多,且具有破坏性,不适合全面调查; D 、检查一枚用于发射卫星的运载火箭的各零部件,较为严格,必须采用全面调查, 故选D. 【点睛】此题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果和普查得到的调查结果比较近似.二、填空题11.【解析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a2-32,符合平方差公式的特点 解析:()()33a a +-【解析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a 2-32,符合平方差公式的特点,再利用平方差公式分解因式. a 2-9=a 2-32=(a+3)(a-3). 故答案为(a+3)(a-3). 考点:因式分解-运用公式法.12.【分析】由是完全平方式,得到从而可得答案. 【详解】 解:方法一、方法二、 由是完全平方式, 则有两个相等的实数根, ,故答案为: 【点睛】本题考查的是完全平方式 解析:18±【分析】由281x kx ++是完全平方式,得到()22819,x kx x ++=±从而可得答案. 【详解】 解:方法一、()2222281991881,x kx x kx x x x ++=++=±=±+ 18,kx x ∴=±18.k ∴=± 方法二、由281x kx ++是完全平方式,则2810x kx ++=有两个相等的实数根,240,b ac ∴=-=1,,81,a b k c ===241810,k ∴-⨯⨯=2481k ∴=⨯,18.k ∴=±故答案为:18.± 【点睛】本题考查的是完全平方式的特点,掌握完全平方式的特点,特别是积的二倍项的特点是解题的关键.13.十五 【分析】任何多边形的外角和是360°,用外角和除以每个外角的度数即可得到边数.【详解】多边形的外角和是360°,每个外角的度数是24°360°24=15故答案:十五【点睛】此题主解析:十五【分析】任何多边形的外角和是360°,用外角和除以每个外角的度数即可得到边数.【详解】多边形的外角和是360°,每个外角的度数是24°360°÷24=15故答案:十五【点睛】此题主要考查了多边形的外角和,关键是掌握任何多边形的外角和都是360°,已知每个外角度数就可以求出多边形边数.14.y=3-2x【解析】移项得:y=3-2x.故答案是:y=3-2x.解析:y=3-2x【解析】+=23x y移项得:y=3-2x.故答案是:y=3-2x.15..【分析】直接根据积的乘方运算法则进行计算即可.【详解】.故答案为:.【点睛】此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.-.解析:6a【分析】直接根据积的乘方运算法则进行计算即可.【详解】233236a a a.()=(1)()-.故答案为:6a【点睛】此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.16.6【分析】设这个多边形的边数是n,重复计算的内角的度数是x,根据多边形的内角和公式(n﹣2)•180°可知,多边形的内角度数是180°的倍数,然后利用数的整除性进行求解【详解】解:设这个多边解析:6【分析】设这个多边形的边数是n,重复计算的内角的度数是x,根据多边形的内角和公式(n﹣2)•180°可知,多边形的内角度数是180°的倍数,然后利用数的整除性进行求解【详解】解:设这个多边形的边数是n,重复计算的内角的度数是x,则(n﹣2)•180°=840°﹣x,n=6…120°,∴这个多边形的边数是6,故答案为:6.【点睛】本题考查了多边形的内角和公式,正确理解多边形角的大小的特点,以及多边形的内角和定理是解决本题的关键.17.【分析】根据平方差公式即可求出答案.【详解】解:,故答案为:.【点睛】本题考查了平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.解析:a b--【分析】根据平方差公式即可求出答案.【详解】解:()2222()()a b a b a b a b -+--==---,故答案为:a b --.【点睛】本题考查了平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型. 18.【详解】解:由题意得,∠A 的外角=180°-∠A=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°-∠A 的外角=300°.故答案为:300.【点睛】本题考查多边解析:300【详解】解:由题意得,∠A 的外角=180°-∠A=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°-∠A 的外角=300°.故答案为:300.【点睛】本题考查多边形外角性质,补角定义.19.【分析】首先求得方程的解,然后将代入到方程中,即可求得.【详解】解:,移项,得,合并同类项,得,系数化为1,得,∵两方程同解,那么将代入方程,得,移项,得,系数化为1,得.故 解析:12【分析】首先求得方程23x x =-的解x ,然后将x 代入到方程4232x m x -=+中,即可求得m .【详解】解:23x x =-,移项,得23x x -=-,合并同类项,得3x -=-,系数化为1,得=3x ,∵两方程同解,那么将=3x 代入方程4232x m x -=+,得12211m -=,移项,得21m -=-,系数化为1,得12m =. 故12m =. 【点睛】 本题考查含有参数的一元一次方程同解问题,难度不大,真正理解方程的解的含义是顺利解题的关键.20.12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a +b =4,a ﹣b =1,∴(a+1)2﹣(b ﹣1)2=(a+1+b ﹣1)(a+1﹣b+1)=(a+b解析:12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a+b =4,a ﹣b =1,∴(a+1)2﹣(b ﹣1)2=(a+1+b ﹣1)(a+1﹣b+1)=(a+b )(a ﹣b+2)=4×(1+2)=12.故答案是:12.【点睛】本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构特征即可解答.三、解答题21.(1)374-.(2)16x 4−8x 2+1. 【分析】(1)原式利用负整数指数幂,零指数幂、平方的计算法则得到1914--÷,再计算即可得到结果;(2)原式逆用积的乘方运算法则变形,再利用平方差公式及完全平方公式化简即可得到结果.【详解】(1)2201(2)3()3----÷-= 1914--÷=374-. (2)原式=[(2x−1)(2x +1)]2=(4x 2−1)2=16x 4−8x 2+1.【点睛】本题考查零指数幂、负整数指数幂 、平方差公式及完全平方公式,熟练掌握运算法则是解本题的关键.22.(1)y 3;(2)12.【分析】(1)先计算幂的乘方,然后计算同底数幂除法;(2)分别利用负整数指数幂、零次幂、乘方计算,然后合并.【详解】解:(1)原式=y 9÷y 6=y 3;(2)原式=4﹣1+9=12.【点睛】本题考查了整式的运算与实数的运算,熟练运用公式是解题的关键.23.11717x y ⎧=⎪⎪⎨⎪=-⎪⎩【分析】直接利用加减消元法解方程组即可.【详解】41325x y x y +=⎧⎨-=⎩①②由+2⨯①②得:7x=11, 解得117x =,把117x=代入方程①得:17y=-,故原方程组的解为:11717 xy⎧=⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查了解二元一次方程组,熟练掌握加减消元法解二元一次方程组是解本题的关键. 24.﹣5x2﹣4xy+18,6.【分析】将原式利用题中的新定义化简得到最简结果,把x与y的值代入计算即可求值.【详解】原式=(3xy﹣2x2)﹣(﹣5xy+x2)+(﹣2x2﹣3)﹣3(﹣7+4xy)=3xy﹣2x2+5xy﹣x2﹣2x2﹣3+21﹣12xy=﹣5x2﹣4xy+18,当x=2,y=﹣1时,原式=﹣20+8+18=6.【点睛】本题考查了整式的混合运算—化简求值,熟练掌握运算法则是解题的关键.25.(1)证明见解析;(2)24°;(3)24°;(4)∠P=34x+14y;(5)∠P=180()2A C︒-∠+∠【分析】(1)根据三角形内角和为180°,对顶角相等,即可证得∠A+∠B=∠C+∠D(2)由(1)的结论得:∠BCP+∠P=∠BAP+∠ABC①,∠PAD+∠P=∠PCD+∠ADC②,将两个式子相加,已知AP、CP分别平分∠BAD、∠BCD,可得∠BAP=∠PAD,∠BCP=∠PCD,可证得∠P=12(∠ABC+∠ADC),即可求出∠P度数.(3)已知直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,可得∠1=∠2,∠3=∠4,由(1)的结论得:∠C+180°-∠3=∠P+180°-∠1,∠A+∠4=∠P+∠2,两式相加即可求出∠P的度数.(4)由(1)的结论得:14∠CAB+∠C=∠P+14∠CDB,34∠CAB+∠P=∠B+34∠CDB,第一个式子乘以3,得到的式子减去第二个式子即可得出用x、y表示∠P(5)延长AB交DP于点F,标注出∠1,∠2,∠3,∠4,由(1)的结论得:∠A+2∠1=∠C+180°-2∠3,其中根据对顶角相等,三角形内角和,以及外角的性质即可得到∠1=∠PBF=180°-∠BFP-∠P=180°-(∠A+∠3)-∠P,代入∠A+2∠1=∠C+180°-2∠3,即可得出∠P与∠A、∠C的关系.【详解】(1)如图1,∠A+∠B+∠AOB=∠C+∠D+∠COD=180°∵∠AOB=∠COD∴∠A+∠B=∠C+∠D(2)∵AP、CP分别平分∠BAD、∠BCD∴∠BAP=∠PAD,∠BCP=∠PCD,由(1)的结论得:∠BCP+∠P=∠BAP+∠ABC①,∠PAD+∠P=∠PCD+∠ADC②①+②,得2∠P+∠PAD+∠BCP=∠BAP+∠ABC +∠PCD+∠ADC∴∠P=12(∠ABC+∠ADC)∴∠ABC=28°,∠ADC=20°∴∠P=12(28°+20°)∴∠P=24°故答案为:24°(3)∵如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,∴∠1=∠2,∠3=∠4由(1)的结论得:∠C+180°-∠3=∠P+180°-∠1①,∠A+∠4=∠P+∠2②①+②,得∠C+180°-∠3+∠A+∠4=∠P+180°-∠1+∠P+∠2∴30°+18°=2∠P∴∠P=24°故答案为:24°(4)由(1)的结论得:14∠CAB+∠C=∠P+14∠CDB①,34∠CAB+∠P=∠B+34∠CDB②①×3,得34∠CAB+3∠C=3∠P+34∠CDB③②-③,得∠P-3x=y-3∠P∴∠P=34x+14y故答案为:∠P=34x+14y(5)如图5所示,延长AB交DP于点F由(1)的结论得:∠A+2∠1=∠C+180°-2∠3∵∠1=∠PBF=180°-∠BFP-∠P=180°-(∠A+∠3)-∠P ∴∠A+360°-2∠A-2∠3-2∠P=∠C+180°-2∠3解得:∠P=180()2A C︒-∠+∠故答案为:∠P=180()2A C︒-∠+∠【点睛】本题是考查了角平分线性质及三角形内角和定理,对顶角相等,三角形任一外角等于不相邻的两个内角和等知识点,本题是典型的拓展延伸题,一般第一问得出基本结论,后面的问题将基本结论作为解题基础,进行拓展延伸.26.(1)20°;(2)11 22 n m-【分析】(1)根据∠DAE=∠EAC﹣∠DAC,求出∠EAC,∠DAC即可.(2)计算方法与(1)相同.【详解】解:(1)∵∠B=35°,∠C=75°,∴∠BAC=180°﹣35°﹣75°=70°,∵AE平分∠BAC,∴∠CAE=12∠CAB=35°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°﹣75°=15°,∴∠DAE=∠EAC﹣∠DAC=35°﹣15°=20°.(2)∵∠B=m°,∠C=n°,∴∠BAC=180°﹣m°﹣n°,∵AE平分∠BAC,∴∠CAE=12∠CAB=90°﹣(12m)°﹣(12n)°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°﹣n°,∴∠DAE=∠EAC﹣∠DAC=(12n﹣12m)°,故答案为:(12n﹣12m).【点睛】本题考查三角形内角和定理角平分线的定义,三角形的高的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.27.68︒【分析】根据已知首先求得∠BAD的度数,进而可以求得∠BAE,而∠CAE=∠BAE,在△ACD中利用内角和为180°,即可求得∠C.【详解】解:∵AD是△ABC的高,∠B=44︒,∴∠ADB=∠ADC =90︒,在△ABD 中,∠BAD=180︒-90︒-44︒=46︒,又∵ AE 平分∠BAC ,∠DAE=12︒,∴∠CAE=∠BAE=46︒-12︒=34︒,而∠CAD=∠CAE-∠DAE=34︒-12︒=22︒,在△ACD 中,∠C=180︒-90︒-22︒=68︒.故答案为68︒.【点睛】本题考查三角形中角度的计算,难度一般,熟记三角形内角和为180°是解题的关键.28.(1)-2(2)12a【分析】(1)根据零指数幂和负指数幂的运算法则进行化简即可求解;(2)根据幂的运算法则即可求解.【详解】(1)0201711(2)(1)()2--+-- =1-1-2=-2(2)()()()3243652a a a +-•- =()126654a a a+•-=121254a a -=12a .【点睛】 此题主要考查实数与幂的运算,解题的关键是熟知其运算法则.。
数学七年级下册数学期末模拟试卷(带答案)-百度文库
数学七年级下册数学期末模拟试卷(带答案)-百度文库一、选择题1.下列运算中,正确的是( )A .(ab 2)2=a 2b 4B .a 2+a 2=2a 4C .a 2•a 3=a 6D .a 6÷a 3=a 22.在下列各图的△ABC 中,正确画出AC 边上的高的图形是( )A .B .C .D .3.将一张长方形纸片按如图所示折叠后,再展开.如果∠1=56°,那么∠2等于( )A .56°B .62°C .66°D .68° 4.下列运算正确的是( ) A .()3253a b a b = B .a 6÷a 2=a 3C .5y 3•3y 2=15y 5D .a +a 2=a 35.下列计算错误的是( ) A .2a 3•3a =6a 4 B .(﹣2y 3)2=4y 6C .3a 2+a =3a 3D .a 5÷a 3=a 2(a≠0)6.以下列各组线段为边,能组成三角形的是( )A .1cm ,2cm ,4cmB .2cm ,3cm ,5cmC .5cm ,6cm ,12cmD .4cm ,6cm ,8cm7.下列运算正确的是( ) A .a 2+a 2=a 4 B .(﹣b 2)3=﹣b 6C .2x •2x 2=2x 3D .(m ﹣n )2=m 2﹣n 2 8.如图,在△ABC 中,BC =6,∠A =90°,∠B =70°.把△ABC 沿BC 方向平移到△DEF 的位置,若CF =2,则下列结论中错误的是( )A .BE =2B .∠F =20°C .AB ∥DED .DF =69.下列运算正确的是( )A .236x x x ⋅=B .224(2)4x x -=-C .326()x x =D .55x x x ÷= 10.平面直角坐标系中,点A 到x 轴的距离为1,到y 轴的距离为3,且在第二象限,则点A 的坐标为( )A .()1,3-B .()3,1-C .()1,3-D .()3,1-二、填空题11.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是_______.12.20192018512125⎛⎫-⨯ ⎪⎝⎭⎭⎛⎫ ⎪⎝ =______.13.实数x ,y 满足方程组2728x y x y +=⎧⎨+=⎩,则x +y =_____. 14.科学家发现2019nCoV -冠状肺炎病毒颗粒平均直径约为0.00000012m ,数据0.00000012用科学记数法表示_______.15.分解因式:x 2﹣4x=__.16.若关于x ,y 的方程组316215x ay x by -=⎧⎨+=⎩的解是71x y =⎧⎨=⎩,则方程组()32162(2)15x y ay x y by ⎧--=⎨-+=⎩的解是________.17.如图,将边长为6cm 的正方形ABCD 先向上平移3cm ,再向右平移1cm ,得到正方形A ′B ′C ′D ′,此时阴影部分的面积为______cm 2.18.如果a 2﹣b 2=﹣1,a+b=12,则a ﹣b=_______. 19.比较大小:π0_____2﹣1.(填“>”“<”或“=”)20.已知(x ﹣4)(x +6)=x 2+mx ﹣24,则m 的值为_____.三、解答题21.如图 1,直线GH 分别交,AB CD 于点 ,E F (点F 在点E 的右侧),若12180︒∠+∠= (1)求证://AB CD ;(2)如图2所示,点M N 、在,AB CD 之间,且位于,E F 的异侧,连MN , 若23M N ∠=∠,则,,AEM NFD N ∠∠∠三个角之间存在何种数量关系,并说明理由.(3)如图 3 所示,点M 在线段EF 上,点N 在直线CD 的下方,点P 是直线AB 上一点(在E 的左侧),连接,,MP PN NF ,若2,2MPN MPB NFH HFD ∠=∠∠=∠,则请直接写出PMH ∠与N ∠之间的数量22.己知关于,x y 的方程组4325x y a x y a -=-⎧⎨+=-⎩, (1)请用a 的代数式表示y ;(2)若,x y 互为相反数,求a 的值.23.阅读下列材料,学习完“代入消元法”和“加减消元法“解二元一次方程组后,善于思考的小铭在解方程组2534115x y x y +=⎧⎨+=⎩时,采用了一种“整体代换”的解法: 解:将方程②变形:4x +10y +y =5,即2(2x +5y )+y =5③.把方程①代入③得:2×3+y =5,∴y =﹣1①得x =4,所以,方程组的解为41x y =⎧⎨=-⎩. 请你解决以下问题: (1)模仿小铭的“整体代换”法解方程组3259419x y x y -=⎧⎨-=⎩. (2)已知x ,y 满足方程组22223212472836x xy y x xy y ⎧-+=⎨++=⎩,求x 2+4y 2﹣xy 的值. 24.在如图所示的正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的顶点都在正方形网格的格点(网格线的交点)上.(1)画出△ABC 先向右平移5个单位长度,再向上平移2个单位长度所得的△A 1B 1C 1; (2)画出△ABC 的中线AD ;(3)画出△ABC 的高CE 所在直线,标出垂足E :(4)在(1)的条件下,线段AA 1和CC 1的关系是25.如图,有一块长为(3)a b +米,宽为(2)a b +米的长方形空地,计划修筑东西、南北走向的两条道路,其余进行绿化(阴影部分),已知道路宽为a 米,东西走向的道路与空地北边界相距1米,则绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.26.先化简,再求值:(2a +b )2﹣(2a +3b )(2a ﹣3b ),其中a =12,b =﹣2. 27.计算:(1)0201711(2)(1)()2--+--;(2)()()()3243652a a a +-•-28.已知关于x 的方程3m x +=的解满足325x y a x y a-=-⎧⎨+=⎩,若15y -<<,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】直接利用积的乘方运算法则以及合并同类项法则和同底数幂的乘除运算法则分别分析得出答案.【详解】解:A 、(ab 2)2=a 2b 4,故此选项正确;B 、a 2+a 2=2a 2,故此选项错误;C 、a 2•a 3=a 5,故此选项错误;D 、a 6÷a 3=a 3,故此选项错误;故选:A.【点睛】此题主要考查了积的乘方运算以及合并同类项和同底数幂的乘除运算,正确掌握运算法则是解题关键.2.C解析:C【分析】根据三角形的高的概念判断.【详解】解:AC 边上的高就是过B 作垂线垂直AC 交AC 的延长线于D 点,因此只有C 符合条件, 故选:C .【点睛】本题考查了三角形的高线,熟练掌握三角形高线的定义是解答本题的关键.三角形的一个顶点到它的对边所在直线的垂线段叫做这个三角形的高.3.D解析:D【解析】【分析】两直线平行,同旁内角互补;另外折叠前后两个角相等.根据这两条性质即可解答.【详解】根据题意知:折叠所重合的两个角相等.再根据两条直线平行,同旁内角互补,得:2∠1+∠2=180°,解得:∠2=180°﹣2∠1=68°.故选D.【点睛】注意此类折叠题,所重合的两个角相等,再根据平行线的性质得到∠1和∠2的关系,即可求解.4.C解析:C【分析】根据积的乘方、同底数幂的除法、单项式乘以单项式、合并同类项法则进行计算即可.【详解】解:A、(a2b)3=a6b3,故A错误;B、a6÷a2=a4,故B错误;C、5y3•3y2=15y5,故C正确;D、a和a2不是同类项,不能合并,故D错误;故选:C.【点睛】此题主要考查了单项式乘以单项式、同底数幂的除法、积的乘方、合并同类项,关键是掌握各计算法则.5.C解析:C【分析】A.根据同底数幂乘法运算法则进行计算,底数不变指数相加,系数相乘.即可对A进行判断B.根据幂的乘方运算法则对B进行判断C.根据同类项的性质,判断是否是同类项,如果不是,不能进行相加减,据此对C进行判断D.根据同底数幂除法运算法则对D进行判断【详解】A.2a3•3a=6a4,故A正确,不符合题意B.(﹣2y3)2=4y6,故B正确,不符合题意C.3a2+a,不能合并同类项,无法计算,故C错误,符合题意D.a5÷a3=a2(a≠0),故D正确,不符合题意故选:C【点睛】本题考查了同底数幂乘法和除法运算法则,底数不变指数相加减.幂的乘方运算法则,底数不变指数相乘.以及同类项合并的问题,如果不是同类项不能合并.6.D解析:D【分析】根据三角形任意两边之和大于第三边进行分析即可.【详解】解:A、1+2<4,不能组成三角形;B、2+3=5,不能组成三角形;C、5+6<12,不能组成三角形;D、4+6>8,能组成三角形.故选:D.【点睛】本题考查了能够组成三角形三边的条件.用两条较短的线段相加,如果大于最长那条就能够组成三角形.7.B解析:B【分析】根据合并同类项法则、幂的乘方法则、单项式乘单项式法则和完全平方公式法则解答即可.【详解】A、a2+a2=2a2,故本选项错误;B、(﹣b2)3=﹣b6,故本选项正确;C、2x•2x2=4x3,故本选项错误;D、(m﹣n)2=m2﹣2mn+n2,故本选项错误.故选:B.【点睛】本题考查了整式的运算,合并同类项、幂的乘方、单项式乘单项式和完全平方公式,熟练掌握运算法则是解题的关键.8.D解析:D【分析】根据平移的性质可得BC=EF,然后求出BE=CF.【详解】∵△ABC沿BC方向平移得到△DEF,∴BC=EF,∴BC-EC=EF-EC,即BE=CF,∵CF=2cm,∴BE=2cm.∵BC=6,∠A=90°,∠B=70°,∴∠ACB=20°,根据平移的性质可得AB∥DE,∴∠F=20°;故选:D.【点睛】本题考查了平移的性质,主要利用了平移对应点所连的线段平行且相等.9.C解析:C【解析】解:A.x2⋅x3=x5,故A错误;B.(-2x2)2 =4 x4,故B错误;C.( x3 )2=x6,正确;D.x5÷x =x4,故D错误.故选C.10.B解析:B【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【详解】解:∵P在第二象限,且点P到x轴、y轴的距离分别是1,3,∴点P的横坐标为-3,纵坐标为1,∴P点的坐标为(-3,1).故选:B.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.二、填空题11.30°【解析】【分析】设较小的锐角是,然后根据直角三角形两锐角互余列出方程求解即可.【详解】设较小的锐角是x,则另一个锐角是2x,由题意得,x+2x=90°,解得x=30°,即此三角解析:30°【解析】【分析】设较小的锐角是x,然后根据直角三角形两锐角互余列出方程求解即可.【详解】设较小的锐角是x,则另一个锐角是2x,由题意得,x+2x=90°,解得x=30°,即此三角形中最小的角是30°.故答案为:30°.【点睛】本题考查了直角三角形的性质,熟练掌握该知识点是本题解题的关键.12.【分析】根据同底数的幂的乘法运算的逆运算,先将分成,再根据积的乘方的逆运算,把指数相同的数相乘即可.【详解】解:故答案为:.【点睛】本题考查幂的乘方和积的乘方,将不同底数解析:5-12【分析】根据同底数的幂的乘法运算的逆运算,先将2019512⎛⎫-⎪⎝⎭分成2018551212⎛⎫⎛⎫-⨯-⎪ ⎪⎝⎭⎝⎭,再根据积的乘方的逆运算,把指数相同的数相乘即可.【详解】解:20192018512125⎛⎫-⨯ ⎪⎝⎭⎭⎛⎫⎪⎝20182018 5512 12125⎛⎫⎛⎫⎛⎫=-⨯-⨯⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭20182018512512512⎛⎫⎛⎫⎛⎫=-⨯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 2018512512512⎛⎫⎛⎫=-⨯⨯- ⎪ ⎪⎝⎭⎝⎭ ()20185112⎛⎫=-⨯- ⎪⎝⎭ 512=- 故答案为:512-. 【点睛】 本题考查幂的乘方和积的乘方,将不同底数且不同指数的幂转化为底数相同或者指数相同的幂是解题关键.13.5【分析】方程组两方程左右两边相加即可求出所求.【详解】解:,①②得:,则,故答案为:5.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法解析:5【分析】方程组两方程左右两边相加即可求出所求.【详解】解:2728x y x y +=⎧⎨+=⎩①②, ①+②得:3315x y +=,则5x y +=,故答案为:5.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.14.【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是解析:71.210-⨯【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:根据科学记数法的定义:0.00000012=71.210-⨯故答案为:71.210-⨯.【点睛】此题考查的是科学记数法,掌握科学记数法的定义是解决此题的关键.15.x (x ﹣4)【详解】解:x2﹣4x=x (x ﹣4).故答案为:x (x ﹣4).解析:x (x ﹣4)【详解】解:x 2﹣4x=x (x ﹣4).故答案为:x (x ﹣4).16.【分析】已知是方程组的解,将代入到方程组中可求得a ,b 的值,即可得到关于x ,y 的方程组,利用加减消元法解方程即可.【详解】∵是方程组的解∴∴a=5,b=1将a=5,b=1代入得①×解析:91x y =⎧⎨=⎩【分析】已知71xy=⎧⎨=⎩是方程组316215x ayx by-=⎧⎨+=⎩的解,将71xy=⎧⎨=⎩代入到方程组316215x ayx by-=⎧⎨+=⎩中可求得a,b的值,即可得到关于x,y的方程组()32162(2)15x y ayx y by⎧--=⎨-+=⎩,利用加减消元法解方程即可.【详解】∵71xy=⎧⎨=⎩是方程组316215x ayx by-=⎧⎨+=⎩的解∴2116 1415ab-=⎧⎨+=⎩∴a=5,b=1将a=5,b=1代入()3216 2(2)15x y ayx y by⎧--=⎨-+=⎩得31116 2315x yx y-=⎧⎨-=⎩①②①×2,得6x-22y=32③②×3,得6x-9y=45④④-③,得13y=13解得y=1将y=1代入①,得3x=27解得x=9∴方程组的解为91 xy=⎧⎨=⎩故答案为:91 xy=⎧⎨=⎩【点睛】本题考查了方程组的解的概念,已知一组解是方程组的解,那么这组解满足方程组中每个方程,同时也考查了利用加减消元法解方程组,解题的关键是如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等.17.15【分析】由题意可知,阴影部分为长方形,根据平移的性质求出阴影部分长方形的长和宽,即可求得阴影部分的面积.【详解】∵边长为6cm的正方形ABCD先向上平移3cm,∴阴影部分的宽为6-3=解析:15【分析】由题意可知,阴影部分为长方形,根据平移的性质求出阴影部分长方形的长和宽,即可求得阴影部分的面积.【详解】∵边长为6cm的正方形ABCD先向上平移3cm,∴阴影部分的宽为6-3=3cm,∵向右平移1cm,∴阴影部分的长为6-1=5cm,∴阴影部分的面积为3×5=15cm2.故答案为15.【点睛】本题主要考查了平移的性质及长方形的面积公式,解决本题的关键是利用平移的性质得到阴影部分的长和宽.18.-2【分析】根据平方差公式进行解题即可【详解】∵a2-b2=(a+b)(a-b),a2﹣b2=﹣1,a+b=,∴a-b=-1÷=-2,故答案为-2.解析:-2【分析】根据平方差公式进行解题即可【详解】,∵a2-b2=(a+b)(a-b),a2﹣b2=﹣1,a+b=12∴a-b=-1÷1=-2,2故答案为-2.19.>【分析】先求出π0=1,2-1=,再根据求出的结果比较即可.【详解】解:∵π0=1,2-1=,1>,∴π0>2-1,故答案为:>.【点睛】本题考查零指数幂和负指数幂,实数的大小比较解析:>【分析】先求出π0=1,2-1=12,再根据求出的结果比较即可.【详解】解:∵π0=1,2-1=12,1>12,∴π0>2-1,故答案为:>.【点睛】本题考查零指数幂和负指数幂,实数的大小比较.理解任意非零数的零次方等于1和熟记负指数幂的计算公式是解题关键.20.2【分析】利用多项式乘以多项式法则计算(x﹣4)(x+6)=x2+2x﹣24,从而得出m =2.【详解】解:∵(x﹣4)(x+6)=x2+2x﹣24=x2+mx﹣24,∴m=2,故答案为2解析:2【分析】利用多项式乘以多项式法则计算(x﹣4)(x+6)=x2+2x﹣24,从而得出m=2.【详解】解:∵(x﹣4)(x+6)=x2+2x﹣24=x2+mx﹣24,∴m=2,故答案为2.【点睛】本题主要考查了整式乘法的运算,准确分析题目中的式子是解题的关键.三、解答题21.(1)证明过程见解析;(2)12N AEM NFD∠=∠-∠,理由见解析;(3)13∠N+∠PMH=180°.【分析】(1)根据同旁内角互补,两直线平行即可判定AB∥CD;(2)设∠N=2α,∠M=3α,∠AEM=x,∠NFD=y,过M作MP∥AB,过N作NQ∥AB 可得∠PMN=3α-x,∠QNM=2α-y,根据平行线性质得到3α-x=2α-y,化简即可得到1 2N AEM NFD ∠=∠-∠;(3)过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R,根据平行线的性质可得∠BPM=∠PMI,由已知得到∠MON=∠MPN+∠PMI=3∠PMI及∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD,根据对顶角相等得到∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM,化简得到∠FNP+2∠PMI-2∠RFM=180°-∠PMH,根据平行线的性质得到3∠PMI+∠FNP+∠FNH=180°及3∠RFM+∠FNH=180°,两个等式相减即可得到∠RFM-∠PMI=13∠FNP,将该等式代入∠FNP+2∠PMI-2∠RFM=180°-∠PMH,即得到1 3∠FNP=180°-∠PMH,即13∠N+∠PMH=180°.【详解】(1)证明:∵∠1=∠BEF,12180︒∠+∠=∴∠BEF+∠2=180°∴AB∥CD.(2)解:12N AEM NFD ∠=∠-∠设∠N=2α,∠M=3α,∠AEM=x,∠NFD=y 过M作MP∥AB,过N作NQ∥AB∵//AB CD,MP∥AB,NQ∥AB∴MP∥NQ∥AB∥CD∴∠EMP=x,∠FNQ=y∴∠PMN=3α-x,∠QNM=2α-y∴3α-x=2α-y即α=x-y∴12N AEM NFD ∠=∠-∠故答案为12N AEM NFD ∠=∠-∠(3)解:13∠N+∠PMH=180°过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R.∵//AB CD,MI∥AB,NQ∥CD∴AB∥MI∥NQ∥CD∴∠BPM=∠PMI∵∠MPN=2∠MPB∴∠MPN=2∠PMI∴∠MON=∠MPN+∠PMI=3∠PMI∵∠NFH=2∠HFD∴∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD∵∠RFN=∠HFD∴∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM∴∠MON+∠PRF+∠RFM=360°-∠OMF即3∠PMI+∠FNP+180°-3∠RFM+∠RFM=360°-∠OMF∴∠FNP+2∠PMI-2∠RFM=180°-∠PMH∵3∠PMI+∠PNH=180°∴3∠PMI+∠FNP+∠FNH=180°∵3∠RFM+∠FNH=180°∴3∠PMI-3∠RFM+∠FNP=0°即∠RFM-∠PMI=13∠FNP∴∠FNP+2∠PMI-2∠RFM=∠FNP-2(∠RFM-∠PMI)=180°-∠PMH∠FNP-2×13∠FNP=180°-∠PMH13∠FNP=180°-∠PMH 即13∠N+∠PMH=180° 故答案为13∠N+∠PMH=180° 【点睛】 本题主要考查了平行线的判定与性质.解题的关键是正确作出辅助线,通过运用平行线性质得到角之间的关系.22.(1)31y a =-+;(2)12a =-. 【分析】(1)通过消元的方法,消去x ,即可用a 的代数式表示y ;(2)令y x =-,再将x 、x -代入方程组,即可求解.【详解】解:(1)由43x y a -=-得:43x a y =-+,将其代入25x y a +=-得:4325a y y a -++=-,整理得:393y a =-+,即31y a =-+.故答案为31y a =-+.(2)若x 、y 互为相反数,则y x =-再将x 、y 代入方程组:4325x x a x x a+=-⎧⎨-=-⎩ , 解得12a =-. 故答案为12a =-. 【点睛】 本题考查次二元一次方程组的运用,难度一般,熟练掌握消元法是顺利解题的关键.23.(1)32x y =⎧⎨=⎩;(2)15 【分析】(1)把9x ﹣4y =19变形为3x +2(3x ﹣2y )=19,再用整体代换的方法解题; (2)将原方程组变形为22223(4)2472(4)36x y xy x y xy ⎧+-=⎨++=⎩①②这样的形式,再利用整体代换的方法解决.【详解】解:(1)解方程组325 9419 x yx y-=⎧⎨-=⎩①②把②变形为3x+2(3x﹣2y)=19,∵3x﹣2y=5,∴3x+10=19,∴x=3,把x=3代入3x﹣2y=5得y=2,即方程组的解为32 xy=⎧⎨=⎩;(2)原方程组变形为22223(4)247 2(4)36x y xyx y xy⎧+-=⎨++=⎩①②①+②×2得,7(x2+4y2)=119,∴x2+4y2=17,把x2+4y2=17代入②得xy=2∴x2+4y2﹣xy=17﹣2=15答:x2+4y2﹣xy的值是15.【点睛】本题考查了二元一次方程组的解法,属延伸拓展题,正确掌握整体代换的求解方法是解题的关键.24.(1)见解析;(2)见解析;(3)见解析;(4)平行且相等【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A1、B1、C1即可;(2)根据三角形中线的定义画出图形即可;(3)根据三角形高的定义画出图形即可;(4)根据平移的性质即可得出结论.【详解】解:(1)如图,△A1B1C1即为所作图形;(2)如图,线段AD即为所作图形;(3)如图,直线CE即为所作图形;(4)∵△A1B1C1是由△ABC平移得到,∴A和A1,C和C1是对应点,∴AA1和CC1的关系是:平行且相等.【点睛】本题考查了平移作图,平移的性质,三角形的高和中线的画法,熟练掌握平移的性质是解题的关键.25.()2223a ab b ++平方米;40平方米. 【分析】(1)根据平移的原理,四块绿化面积可拼成一个长方形,其边长为原边长减去再减去道路宽为a 米,由此即可求绿化的面积的代数式;然后利用多项式乘多项式法则计算,去括号合并得到最简结果,将a 与b 的值代入计算即可求出值.【详解】解:根据题意得:22(3)(2)(2)()23a b a a b a a b a b a ab b +-+-=++=++(平方米).则绿化的面积是()2223a ab b ++平方米; 当3a =,2b =时,原式2223233240=⨯+⨯⨯+=(平方米).故当a =3,b =2时,绿化面积为40平方米.答:绿化的面积是()2223a ab b ++平方米;当a =3,b =2时,绿化面积为40平方米. 【点睛】此题考查整式的混合运算与代数式求值,掌握长方形的面积计算方法是解决问题的关键. 26.4ab+10b 2;36.【解析】【分析】先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可化简原式,继而将a ,b 的值代入计算可得.【详解】原式=4a 2+4ab +b 2﹣(4a 2﹣9b 2)=4a 2+4ab +b 2﹣4a 2+9b 2=4ab +10b 2当a 12=,b =﹣2时,原式=412⨯⨯(﹣2)+10×(﹣2)2=﹣4+10×4=﹣4+40=36. 【点睛】 本题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握运算法则是解答本题的关键.27.(1)-2(2)12a【分析】(1)根据零指数幂和负指数幂的运算法则进行化简即可求解;(2)根据幂的运算法则即可求解.【详解】(1)0201711(2)(1)()2--+-- =1-1-2=-2(2)()()()3243652a a a +-•- =()126654a a a +•- =121254a a -=12a .【点睛】此题主要考查实数与幂的运算,解题的关键是熟知其运算法则.28.21m -<<【分析】先解方程组325x y a x y a-=-⎧⎨+=⎩,消去a 用含x 的式子表示y,再将x=3-m 代入y 中,从而得到用含m 的式子表示y,在根据15y -<<,解关于m 的不等式组,求出m 的取值范围.【详解】解:325x y a x y a -=-⎧⎨+=⎩①②,①5⨯+②得6315x y -=即25y x =-③ 由3m x +=得3x m =-,代入③得,12y m =-又因为15y -<<,则1125m -<-<,解得21m -<<【点睛】本题主要考查了分式方程的解以及二元一次方程组的解,解题时需要掌握解二元一次方程和一元一次不等式的方法.。
湖南省2023年七年级下学期期末测试数学试卷3
湖南省七年级下学期期末测试数学试卷一、选择题(每小题3分,共30分)1.(3分)下列各式从左边到右边的变形中,是因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣4+2x=(x+2)(x﹣2)+2xC.2a(b﹣c)=2ab﹣2ac D.m2﹣n2=(m+n)(m﹣n)2.(3分)下列计算中正确的是()A.x2•x4=x8B.(2a)(3a)=6aC.(m2)5=m10D.(2×102)(4×102)=8×1023.(3分)下列多项式中,能用公式法分解因式的是()A.x2﹣xy B.x2+xy C.x2﹣y2D.x2+y24.(3分)下列图形中不一定是轴对称图形的是()A.线段B.角C.三角形D.圆5.(3分)下列现象中属于旋转的是()A.摩托车在急刹车时向前滑动B.拧开水龙头C.雪橇在雪地里滑动D.电梯的上升与下降6.(3分)如图,图中∠1与∠2是同位角的是()A.(2)(3)B.(1)(2)(3)C.(2)(3)(4)D.(3)(4)7.(3分)若∠1与∠2是同旁内角,∠1=40°,则∠2的度数是()A.40°B.140°C.40°或140°D.不能确定8.(3分)某校四个绿化小组某天的植树棵树如下:10,10,x,8.若这组数据的众数与平均数相等,那么这组数据的中位数是()A.9B.10 C.11 D.129.(3分)同一平面内,三条不同直线的交点个数可能是()个.A.1或3 B.0、1或3 C.0、1或2 D.0、1、2或310.(3分)若点P是直线m外一点,点A、B、C分别是直线m上不同的三点,且PA=5,PB=6,PC=7,则点P到直线m的距离不可能是()A.3B.4C.5D.6二、填空题(共8小题,每小题3分,满分24分)11.(3分)请写出一个二元一次方程组,使它的解是.12.(3分)如果x=3,y=2是二元一次方程ax﹣by﹣5=0的一个解,则3a﹣2b﹣1=.13.(3分)若x3=﹣2,则2x6=.14.(3分)已知:m+n=5,mn=4,则:m2n+mn2=.15.(3分)吸管吸易拉罐内的饮料时,如图,∠1=100°,则∠2=度.16.(3分)如图,AB∥CD,∠1=110°,∠2=40°,则∠3=.17.(3分)若x2m﹣1+5y3n﹣2m=2是关于x、y的二元一次方程,则m=,n.18.(3分)如果x2+(m﹣1)x+16是完全平方式,那么m的值为.三、解答题19.(12分)因式分解①x(x﹣2)﹣3(2﹣x)②9x2﹣36y2③xy+x﹣y﹣1 ④4x2﹣(y2﹣2y+1)20.(6分)先化简再求值:﹣2xy[3xy2﹣x(4y2﹣x)],(其中x=﹣2,y=1)21.(6分)已知:x+y=﹣3,x﹣y=7.求:①xy的值;②x2+y2的值.22.(8分)解方程组①;②.23.(6分)作图题请作出图中四边形ABCD关于直线a的轴对称图形,要求:不写作法,但必须保留作图痕迹.24.(8分)如图,已知点E在AB上,且CE平分∠BCD,DE平分∠ADC,且∠DEC=90°,试判断AD与BC的位置关系,并说明理由.25.(10分)已知:如图∠1=∠2,∠C=∠D,求证:∠A=∠F.26.(10分)某种饮料有大箱和小箱两种包装,已知3大箱、2小箱共92瓶;5大箱、3小箱共150瓶.求:①2大箱、5小箱分别有饮料多少瓶?②若一大箱、一小箱饮料分别标价48元、25元,且两种包装的饮料质量完全相同,请问购买哪种包装的饮料更合算?七年级下学期期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列各式从左边到右边的变形中,是因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣4+2x=(x+2)(x﹣2)+2xC.2a(b﹣c)=2ab﹣2ac D.m2﹣n2=(m+n)(m﹣n)考点:因式分解的意义.分析:根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解答:解:A、是整式的乘法,故A错误;B、没把把一个多项式转化成几个整式积的形式,故B错误;C、是整式的乘法,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选:D.点评:本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.2.(3分)下列计算中正确的是()A.x2•x4=x8B.(2a)(3a)=6aC.(m2)5=m10D.(2×102)(4×102)=8×102考点:幂的乘方与积的乘方;同底数幂的乘法;单项式乘单项式.分析:根据同底数幂的乘法、单项式的乘法、幂的乘方和积的乘方判断即可.解答:解:A、x2•x4=x6,错误;B、(2a)(3a)=6a2,错误;C、(m2)5=m10,正确;D、(2×102)(4×102)=8×104,错误;故选C点评:此题考查同底数幂的乘法、单项式的乘法、幂的乘方和积的乘方,关键是根据法则进行计算.3.(3分)下列多项式中,能用公式法分解因式的是()A.x2﹣xy B.x2+xy C.x2﹣y2D.x2+y2考点:因式分解-运用公式法.分析:能用平方差公式进行因式分解的式子的特点是:两个平方项,符号相反;能用完全平方公式法进行因式分解的式子的特点是:两个平方项的符号相同,另一项是两底数积的2倍.解答:解:A、x2﹣xy只能提公因式分解因式,故A选项错误;B、x2+xy只能提公因式分解因式,故B选项错误;C、x2﹣y2能用平方差公式进行因式分解,故C选项正确;D、x2+y2不能继续分解因式,故D选项错误.故选C.点评:本题考查用公式法进行因式分解.能用公式法进行因式分解的式子的特点需识记.4.(3分)下列图形中不一定是轴对称图形的是()A.线段B.角C.三角形D.圆考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A、B、D都是轴对称图形,C、不一定是轴对称图形,若三角形不是等腰三角形就不是轴对称图形.故选:C.点评:本题考查了轴对称图形的知识,注意掌握轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.5.(3分)下列现象中属于旋转的是()A.摩托车在急刹车时向前滑动B.拧开水龙头C.雪橇在雪地里滑动D.电梯的上升与下降考点:生活中的旋转现象.分析:根据旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转可得答案.解答:解:A、摩托车在急刹车时向前滑动不是旋转,故此选项错误;B、拧开水龙头属于旋转,故此选项正确;C、雪橇在雪地里滑动不是旋转,故此选项错误;D、电梯的上升与下降不是旋转,故此选项错误;故选:B.点评:此题主要考查了生活的旋转现象,关键是掌握旋转的定义.6.(3分)如图,图中∠1与∠2是同位角的是()A.(2)(3)B.(1)(2)(3)C.(2)(3)(4)D.(3)(4)考点:同位角、内错角、同旁内角.分析:根据同位角的概念:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角进行解答即可.解答:解:根据同位角的概念可知,(1)中∠1与∠2是同位角,(2)中∠1与∠2是同位角,(3)中∠1与∠2是同位角,(4)中∠1与∠2不是同位角,故选:B.点评:本题考查的是同位角、内错角和同旁内角的概念,掌握两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角是同位角是解题的关键.7.(3分)若∠1与∠2是同旁内角,∠1=40°,则∠2的度数是()A.40°B.140°C.40°或140°D.不能确定考点:同位角、内错角、同旁内角.分析:根据如果两直线平行时同旁内角互补,不平行时无法确定同旁内角的大小关系进行解答.解答:解:∵没有说明两直线是否平行,∴无法判断∠1与∠2的大小关系,故选:D.点评:本题考查的是同位角、内错角和同旁内角的概念和平行线的性质,理解同旁内角互补的条件是两直线平行是解题的关键.8.(3分)某校四个绿化小组某天的植树棵树如下:10,10,x,8.若这组数据的众数与平均数相等,那么这组数据的中位数是()A.9B.10 C.11 D.12考点:众数;算术平均数.分析:根据题意先确定x的值,再根据定义求解.解答:解:当x=8时,有两个众数,而平均数只有一个,不合题意舍去.当众数为10,根据题意得=10,解得x=12,将这组数据从小到大的顺序排列8,10,10,12,处于中间位置的是10,10,所以这组数据的中位数是(10+10)÷2=10.故选B.点评:本题为统计题,考查平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.9.(3分)同一平面内,三条不同直线的交点个数可能是()个.A.1或3 B.0、1或3 C.0、1或2 D.0、1、2或3考点:相交线.专题:规律型.分析:根据两直线平行和相交的定义作出图形即可得解.解答:解:如图,三条直线的交点个数可能是0或1或2或3.故选D.点评:本题考查了直线相交的问题,难点在于考虑到直线的所有位置关系和交点的分布情况,作出图形是解答此题的关键.10.(3分)若点P是直线m外一点,点A、B、C分别是直线m上不同的三点,且PA=5,PB=6,PC=7,则点P到直线m的距离不可能是()A.3B.4C.5D.6考点:点到直线的距离.分析:根据“直线外一点到直线上各点的所有线中,垂线段最短”进行解答.解答:解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,∴点P到直线a的距离≤PA,即点P到直线a的距离不大于5.故选:D.点评:本题考查的是点到直线的距离,熟知直线外一点到直线的垂线段的长度,叫做点到直线的距离是解答此题的关键.二、填空题(共8小题,每小题3分,满分24分)11.(3分)请写出一个二元一次方程组此题答案不唯一,如:,使它的解是.考点:二元一次方程组的解.专题:开放型.分析:根据二元一次方程解的定义,可知在求解时,应先围绕x=2,y=﹣1列一组算式,然后用x,y代换即可列不同的方程组.答案不唯一,符合题意即可.解答:解:此题答案不唯一,如:,,①+②得:2x=4,解得:x=2,将x=2代入①得:y=﹣1,∴一个二元一次方程组的解为:.故答案为:此题答案不唯一,如:.点评:本题主要考查了二元一次方程组的解的定义.此题属于开放题,注意正确理解定义是解题的关键.12.(3分)如果x=3,y=2是二元一次方程ax﹣by﹣5=0的一个解,则3a﹣2b﹣1=4.考点:二元一次方程的解.分析:把x、y的值代入可得到3a﹣2b﹣5=0,可求得3a﹣2b的值,再代入可求得答案.解答:解:∵x=3,y=2是二元一次方程ax﹣by﹣5=0的一个解,∴代入方程可得3a﹣2b﹣5=0,∴3a﹣2b=5,∴3a﹣2b﹣1=5﹣1=4,故答案为:4.点评:本题主要考查二元一次方程的解,掌握方程的解使方程成立是解题的关键,注意整体思想的应用.13.(3分)若x3=﹣2,则2x6=8.考点:幂的乘方与积的乘方.分析:根据幂的乘方计算即可.解答:解:2x6=2(x3)2=8,故答案为:8点评:此题考查幂的乘方,关键是根据幂的乘方法则计算.14.(3分)已知:m+n=5,mn=4,则:m2n+mn2=20.考点:因式分解-提公因式法.分析:将原式提取公因式分解因式,进而代入求出即可.解答:解:∵m+n=5,mn=4,∴m2n+mn2=mn(m+n)=4×5=20.故答案为:20.点评:此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.15.(3分)吸管吸易拉罐内的饮料时,如图,∠1=100°,则∠2=80度.考点:平行线的性质;对顶角、邻补角.专题:应用题.分析:根据易拉罐的上下底平行,利用邻补角互补和平行线的性质解答.解答:解:如图所示,∵∠1+∠3=180°,∠1=100°,∴∠3=180°﹣100°=80°,∵AB∥CD,∴∠2=∠3,∴∠2=80°.故填80.点评:本题重点考查了平行线的性质及邻补角的性质,是一道较为简单的题目.16.(3分)如图,AB∥CD,∠1=110°,∠2=40°,则∠3=110°.考点:平行线的性质.分析:如图设∠2顶点为E,延长AE交DC的延长线于点F,由平行线的性质可求得∠F,在△CEF中利用三角形外角可求得∠3.解答:解:设∠2顶点为E,延长AE交DC的延长线于点F,如图,∵AB∥CD,∴∠F+∠1=180°,∴∠F=180°﹣∠1=180°﹣110°=70°,∵∠3是△CEF的一个外角,∴∠3=∠2+∠F=40°+70°=110°,故答案为:110°.点评:本题主要考查平行线的性质,掌握平行线的性质是解题的关键,即①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.17.(3分)若x2m﹣1+5y3n﹣2m=2是关于x、y的二元一次方程,则m=1,n1.考点:二元一次方程的定义.分析:根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面考虑求常数a、b的值.解答:解:由x2m﹣1+5y3n﹣2m=2是关于x、y的二元一次方程,得,解得,故答案为:1,1.点评:本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程.18.(3分)如果x2+(m﹣1)x+16是完全平方式,那么m的值为9或﹣7.考点:完全平方式.分析:根据完全平方公式得出m﹣1=±2ab,代入求出即可.解答:解:∵x2+(m﹣1)x+16是完全平方式,∴x2+(m﹣1)x+42=x2±2×x×4+42,∴m﹣1=±2×1×4=±8,∴m=9或﹣7,故答案为:9或﹣7.点评:本题主要考查对完全平方公式的理解和掌握,能根据已知得出m﹣1=±2×1×4是解此题的关键.三、解答题19.(12分)因式分解①x(x﹣2)﹣3(2﹣x)②9x2﹣36y2③xy+x﹣y﹣1 ④4x2﹣(y2﹣2y+1)考点:因式分解-运用公式法;因式分解-提公因式法;因式分解-分组分解法.专题:计算题.分析:①原式变形后,提取公因式即可得到结果;②原式利用平方差公式分解即可;③原式两项两项结合,提取公因式即可得到结果;④原式利用完全平方公式变形,再利用平方差公式分解即可.解答:解:①原式=x(x﹣2)+3(x﹣2)=(x﹣2)(x+3);②原式=(3x+6y)(3x﹣6y);③原式=x(y+1)﹣(y+1)=(x﹣1)(y+1);④原式=4x2﹣(y﹣1)2=(2x+y﹣1)(2x﹣y+1).点评:此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.20.(6分)先化简再求值:﹣2xy[3xy2﹣x(4y2﹣x)],(其中x=﹣2,y=1)考点:整式的混合运算—化简求值.分析:首先利用整式的混合运算化的方法简原式,然后将x=﹣2,y=1代入,继而可求得答案.解答:解:原式=﹣2xy[3xy2﹣4xy2+x2]=2x2y3﹣2x3y当x=﹣2,y=1时,原式=2×4×1﹣2×(﹣2)3×1=8+16=24.点评:本题考查了整式的化简求值.注意先化简,再进一步代入求得数值即可.21.(6分)已知:x+y=﹣3,x﹣y=7.求:①xy的值;②x2+y2的值.考点:完全平方公式.分析:求得(x+y)2、(x﹣y)2的值;①根据xy=[(x+y)2﹣(x﹣y)2]进行解答;②根据x2+y2=(x+y)2﹣2xy进行解答.解答:解:①∵x+y=﹣3,x﹣y=7.∴(x+y)2=9,(x﹣y)2=49,∴xy=[(x+y)2﹣(x﹣y)2]=(9﹣49)=﹣10;②x2+y2=(x+y)2﹣2xy=9+20=29.点评:本题主要考查完全平方公式,熟记公式的几个变形公式对解题大有帮助.22.(8分)解方程组①;②.考点:解二元一次方程组.专题:计算题.分析:两方程组利用加减消元法求出解即可.解答:解:①,①×5+②得:13x=26,即x=2,把x=2代入①得:y=﹣1,则方程组的解为;②,①×2+②得:7x=14,即x=2,把x=2代入①得:y=﹣4,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.(6分)作图题请作出图中四边形ABCD关于直线a的轴对称图形,要求:不写作法,但必须保留作图痕迹.考点:作图-轴对称变换.分析:利用轴对称图形的性质分别得出A,B,C,D关于直线a的对称点,进而得出答案.解答:解:如图所示:四边形A′B′C′D′即为所求.点评:此题主要考查了轴对称变换,根据题意得出对应点位置是解题关键.24.(8分)如图,已知点E在AB上,且CE平分∠BCD,DE平分∠ADC,且∠DEC=90°,试判断AD与BC的位置关系,并说明理由.考点:平行线的判定.分析:先根据三角形内角和定理得出∠EDC+∠ECD+∠DEC=180°,再由∠DEC=90°得出∠EDC+∠ECD=90°,由CE平分∠BCD,DE平分∠ADC可知∠ADC+∠BCD=2(∠EDC+∠ECD)=180°,由此可得出结论.解答:解:∵∠EDC+∠ECD+∠DEC=180°,∠DEC=90°,∴∠EDC+∠ECD=90°.∵由CE平分∠BCD,DE平分∠ADC,∴∠ADC+∠BCD=2(∠EDC+∠ECD)=180°,∴AD∥BC.点评:本题考查的是平行线的判定,熟知同旁内角互补,两直线平行是解答此题的关键.25.(10分)已知:如图∠1=∠2,∠C=∠D,求证:∠A=∠F.考点:平行线的判定与性质.专题:证明题.分析:推出∠1=∠3,根据平行线判定推出BD∥CE,推出∠D=∠DBA,推出DF∥AC,即可得出答案.解答:证明:∵∠1=∠2,∠2=∠3,∴∠1=∠3,∴BD∥CE,∴∠C=∠DBA,∵∠C=∠D,∴∠D=∠DBA,∴DF∥AC,∴∠A=∠F.点评:本题考查了平行线的性质和判定,关键是掌握平行线的判定定理和性质定理.26.(10分)某种饮料有大箱和小箱两种包装,已知3大箱、2小箱共92瓶;5大箱、3小箱共150瓶.求:①2大箱、5小箱分别有饮料多少瓶?②若一大箱、一小箱饮料分别标价48元、25元,且两种包装的饮料质量完全相同,请问购买哪种包装的饮料更合算?考点:二元一次方程组的应用.分析:①设大箱一共有x瓶,小箱有y瓶,根据3大箱、2小箱共92瓶;5大箱、3小箱共150瓶即可列出二元一次方程组求出即可;②利用①中所求分别求出平均每瓶的价格进而得出答案.解答:解:①设大箱一共有x瓶,小箱有y瓶,根据题意可知3大箱、2小箱共92瓶,可列式为3x+2y=92,又知5大箱、3小箱共150瓶,故可列式为5x+3y=150,即列方程组为,解得:,故2大箱有24×2=48(瓶)、5小箱有饮料:10×5=50(瓶),答:2大箱有48瓶、5小箱有饮料50瓶;②∵一大箱、一小箱饮料分别标价48元、25元,∴大箱平均每瓶:48÷24=2(元),小箱平均每瓶:25÷10=2.5(元),所以买大箱合算.点评:本题主要考查了二元一次方程组的应用,解答本题的关键是要读懂题意,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.教师的职务是‘千教万教,教人求真’;学生的职务是‘千学万学,学做真人’。
2022-2023学年人教版七年级数学下册期末模拟试卷(含答案)
2023年人教版七年级数学下册期末模拟试卷温馨提示:数学试卷共七大题23小题,满分150分。
考试时间共150分钟。
一、单选题(共10题;共40分)1.如图,已知直线a ,b 被直线c 所截,若,,则的度数为( )A .B .C .D .2.下列各数中没有平方根的是( )A .(-3)2B .0C.D .-633.小明去电影院观看《长津湖》,如果用(5,7)表示5排7座,那么小明坐在7排8座可表示为( )A .(5,7)B .(7,8)C .(8,7)D .(7,5)4.已知x 、y 满足方程组,则( )A .-3B .3C .2D .05.不等式组{x ―2≥12x >4x ―10的解集在数轴上表示正确的是( )A .B .C .D .6.如果点在轴上,那么点的坐标是( )A .B .C .D .7.工厂需要用铁皮制作包装盒,每张铁皮可制作盒身15个,或制作盒底20个,一个盒身与两个盒底配成一套包装盒,现有40张铁皮,设用张制作盒身,张制作盒底,恰好配套制成包装盒,则下列方程组中符合题意的是( )a b 169∠=︒2∠59︒111︒21︒69︒182623x y x y +=⎧⎨+=⎩x y -=()324P m m ++,x P ()02-,()30,()10,()20,x yA .B .C .D .8.不等式组的解集为( )A .B .C .D .9.已知不等式组的解集是,则的值是的( )A .-2B .4C .2D .-410.如图,是九(1)班45名同学每周课外阅读时间的频数分布直方图每组含前一个边界值,不含后一个边界值,由图可知,每周课外阅读时间不小于6小时的人数是( )A .6人B .8人C .14人D .36人二、填空题(共4题;共20分)11.如图,直线相交于点O ,,O 为垂足,如果,则 .12.若二元一次方程组的解为,则的值 .13.统计某天7:00~9:00经过某高速公路某测速点的汽车速度,得到如右图所示的频数直方图(每一组不含前一个边界值,含后一个边界值).若该路段汽车限速为x y 40y 2x +=⎧⎨=⎩x y 4015x 220y+=⎧⎨=⨯⎩x y 40215x 20y+=⎧⎨⨯=⎩x y 402x y1520+=⎧⎪⎨=⎪⎩1026x x +>⎧⎨-≤⎩1x <-31x -≤<-1x >-3x ≥-2123x a x b -<⎧⎨->⎩11x -<<(1)(1)a b ++()AB CD ,OE AB ⊥39EOD ∠=︒COB ∠=︒ax by 3bx ay 2+=⎧⎨+=⎩x 3y 2=⎧⎨=⎩a b +120km/h (含),则超速行驶的汽车占全部汽车的 %.14.“输入一个数,然后经过如图的运算,到判断结果是否大于为止”叫做一次操作,若经过两次操作就停止,则的取值范围是 .三、(共2题;共16分)15.解方程 16.解不等式组:.四、(共2题;共18分)17.已知的算术平方根为5,立方根为,求的平方根.18.若方程组和方程组有相同的解,求a ,b 的值.五、(共2题;共20分)19.解不等式组请按下列步骤完成解答:( 1 )解不等式①,得_ _;( 2 )解不等式②,得__;( 3 )把不等式①和②的解集在数轴上表示出来;( 4 )原不等式组的解集为__.20.巴川河是铜梁的母亲河,为打造巴川河风光带,现有一段长为米的河道整治xx 7212311x y x y -=-⎧⎨+=⎩38221x x x-⎧<⎪⎨⎪->⎩21a -21a b +-2-3a b +37x y ax y b -=⎧⎨+=⎩28x by ax y +=⎧⎨+=⎩534311x x x x ≤+⎧⎨->+⎩①②,360任务由A 、B 两个工程队先后接力完成A 工程队每天整治米,B 工程队每天整治米,共用时天.(1)求A 、B 两工程队分别整治河道多少天?(用二元一次方程组解答)(2)若A 工程队整改一米的工费为元,B 工程队整改一米的工费为元,求完成整治河道时,这两工程队的工费共是多少?六、(共2题;共24分)21.某电子购物平台销售A 、B 两种型号的电子手环,购买1个A 种型号的电子手环和1个B 种型号的电子手环共需600元,购买3个A 种型号的电子手环和5个B 种型号的电子手环共需2500元.(1)求A 、B 两种型号的电子手环的单价;(2)某单位准备购进这两种型号的电子手环共50个,且总费用不超过14000元,求最多购买多少个B 种型号的电子手环?22.已知m ,n 与代数式的值的对应关系如下表:m …234…n…31-1……-4412…(1)根据表中信息,求a ,b 的值;(2)若关于x 的不等式组有且只有一个整数解,求t 的取值范围.七、(共题;共14分)23.孔子说“知之者不如好之者,好之者不如乐之者.”兴趣是最好的老师,阅读、书法、绘画、手工、烹饪、运动、音乐……各种兴趣爱好是打开创新之门的金钥匙.某校为了解学生兴趣爱好情况,组织了问卷调查活动,从全校名学生中随机抽取了人进行调查,其中一项调查内容是学生每周自主发展兴趣爱好的时长,对这项调查结果使用画“正”字的方法进行初步统计,绘制了学生每周自主发展兴趣爱好的时长的频数分布表和频数分布直方图如下:学生每周自主发展兴趣爱好时长频数分布表组别时长t (单位:)人数累计人数A 正正正正正正正正40B 正正正正正正正正正正50C正正正正正正正正正正正正正正正正801am bn -+2416202001501am bn -+()()38321ax b x a b x t -⋅-<⎧⎪⎨-⋅-+<⎪⎩1500200h 12t ≤<23t ≤<34t ≤<D正正正正正正30根据以上信息,解答下列问题:(1)补全频数分布直方图;(2)这名学生每周自主发展兴趣爱好时长的中位数落在 组;(3)若将上述调查结果绘制成扇形统计图,则B 组的学生人数占调查总人数的百分比为 ,对应的扇形圆心角的度数为 ;(4)学校倡议学生每周自主发展兴趣爱好时长应不少于,请你估计,该校学生中有多少人需要增加自主发展兴趣爱好时间?20045t ≤<2h答案解析部分1.【答案】D 2.【答案】D 3.【答案】B 4.【答案】B 5.【答案】A 6.【答案】C 7.【答案】C 8.【答案】C 9.【答案】A 10.【答案】C 11.【答案】12.【答案】113.【答案】814.【答案】4<x≤515.【答案】解:,,得,解得,将代入①,得,解得,∴方程组的解为.16.【答案】解: 由①得:x <19,由②得:x >1,所以这个不等式组的解集为1<x <19.17.【答案】解:∵的算术平方根是5,∴,∴,∵的立方根是,3y =21a -21a b +-2-129212311x y x y -=-⎧⎨+=⎩①②-②①412y =3y =231x -=-1x =13x y =⎧⎨=⎩38221x x x -⎧<⎪⎨⎪->⎩①②2125a -=13a =∴,∴,∴,∴,∴的平方根为.18.【答案】解:将3x−y =7和2x +y =8组成方程组得, ,解得, ,将 分别代入ax +y =b 和x +by =a 得, ,解得 .∴a 、b 的值分别为,.19.【答案】解:( 1 )( 2 )( 3 )把不等式①和②的解集在数轴上表示出来,如下:( 4 )20.【答案】(1)解:设A 工程队整治河道x 天,B 工程队整治河道y 天,根据题意得:,解得:.答:A 工程队整治河道天,B 工程队整治河道天;(2)解:根据题意得:元.3a b +32x y ⎧⎨⎩=,=)218a b +-=-21318b ⨯+-=-33b =-3313336a b +=⨯-=3728x y x y -⎧⎨⎩=,+=32x y ⎧⎨⎩=,=3232a b b a ⎧⎨⎩+=,+=75115a b ⎧-⎪⎪⎨⎪-⎪⎩=,=75-115-2x ≤1x >12x <≤202416360x y x y +=⎧⎨+=⎩515x y =⎧⎨=⎩5152002451501615⨯⨯+⨯⨯2400036000=+60000(=答:完成整治河道时,这两工程队的工费共是元.21.【答案】(1)解:设一个A 型手环的单价为x 元,一个B 型手环的单价为y 元,由题意,得:解得:答:一个A 型手环的单价为250元,一个B 型手环的单价为350元.(2)解:设购买B 型手环m 个,则购买A 型手环个,由题意,得:答:最多购买B 种型号电子手环15个.22.【答案】(1)解:依据表中数据可得:,解得:,即:,(2)解:由(1)得:,解不等式得:,解不等式得:,由不等式组有且只有一个整数解,得,解得:23.【答案】(1)解:补全统计图如下所示:60000600352500x y x y +=⎧⎨+=⎩250350x y =⎧⎨=⎩()50m -()2505035014000m m -+≤15m ∴≤3144112a b a b -+=⎧⎨++=⎩23a b =⎧⎨=⎩2a =3b =()()233832321x x x t --<⎧⎪⎨⨯-⨯-+<⎪⎩()2338x x --<>1x ()32321x t ⨯-⨯-+<76t x -<7236t -<≤1925t <≤(2)C(3);(4)解: 人, ∴该校学生中有人需要增加自主发展兴趣爱好时间25%90︒401500300200⨯=300。
2022-2023学年度第二学期七年级期末数学模拟试卷(解答卷)
2022-2023学年度第二学期七年级期末数学模拟试卷(解答卷)一、选择题(本大题共12个小题,每小题4分,共48分)1. 如图,七巧板起源于我国先秦时期,古算书《周髀算经》中有关于正方形的分割术,经历代演变而成七巧板.下列由七巧板拼成的表情图中,是轴对称图形的为( )A .B .C .D .【答案】C2. N95型口罩可阻隔直径为0.0000003米的飞沫,用科学记数法可将数0.0000003表示为()A .B .C .D .【答案】B3. 不透明袋子中有除颜色外完全相同的4个黑球和2个白球,从袋子中随机摸出3个球,下列事件是必然事件的是( )A .3个都是黑球B .2个黑球1个白球C .2个白球1个黑球D .至少有1个黑球【答案】D4. 下列运算正确的是( )A. (﹣2a 3)2=4a 6B. a 2•a 3=a 6C. 3a+a 2=3a 3D. (a ﹣b )2=a 2﹣b 2【答案】A5.如图,一棵大树在一次强台风中于离地面处折断倒下,树干顶部落在距根部处,这棵大树在折断前的高度为( )A .5米B .7米C .8米D .12米【答案】C 83010-⨯7310-⨯60.310-⨯6310-⨯3m 4m6. 如图,直线,将含有45°角的三角板EFP 的直角顶点F 放在直线CD 上,顶点E 放在直线AB 上,若∠2=20°,则∠1的度数为( )A .45°B .28°C .25°D .30°【答案】C 7. 如图,为估计南开中学桃李湖岸边两点之间的距离,小华在湖的一侧选取一点,测到米,米,则间的距离可能是( )A .5 米B .15 米C .25 米D .30 米【答案】B 7. 小明做“用频率估计概率”的实验时,根据统计结果,绘制了如图所示的折线统计图,则符合这一结果的实验最有可能的是( )A. 抛掷一枚硬币,落地后硬币正面朝上B. 一副去掉大小王的扑克牌,洗匀后,从中任抽一张牌的花色是红桃C. 抛一个质地均匀的正方体骰子,朝上的面点数是3D. 在“石头、剪刀、布”的游戏中,小刚随机出的是“石头”【答案】C9. 如图,在△ABC 中,∠C=90°,按以下步骤作图:①以点A为圆心、适当长为半径作圆弧,AB CD ∥AB 、O 15OA =10OB =AB分别交边AC 、AB 于点M 、N ;②分别以点M 和点N为圆心、大于MN 的长为半径作圆弧,在∠BAC 内,两弧交于点P ;③作射线AP 交边BC 于点D ,若CD=4,AB=15,则△ABD 的面积是( )A .15B .30C .45D .60【答案】B10. 小强所在学校离家距离为2千米,某天他放学后骑自行车回家,先骑了5分钟后,因故停留10分钟,再继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离s (千米)与所用时间t (分)之间的关系( )A. B.C. D.【答案】D11.如图,在中, ,边、的垂直平分线分别交于、,则等于( )A .20°B .25°C .30°D .35°【答案】A11. 如图1,将正方形纸片ABCD 对折,使AB 与CD 重合,折痕为EF如图2,展开后再折叠一次,使点C 与点E 重合,折痕为GH ,点B 的对应点为点M ,EM 交AB 于N ,AD =4,则CH 的长为( )12ABC 100BAC ∠︒=AB AC BC M N MAN ∠A. B. C. D. 【答案】A .二、填空题(本大题共6个小题,每小题4分,共24分,把答案填在题中的横线上)13.计算__________.【答案】14. 正方形地板由9块边长均相等的小正方形组成,米粒随机地撒在如图所示的正方形地板上,那么米粒最终停留在黑色区域的概率是___________【答案】15某汽车生产厂对其生产的A 型汽车进行油耗试验,试验中汽车为匀速行驶,在行驶过程中,油箱的余油量y (升)与行驶时间t (小时)之间的关系如下表:t (小时)0123y (升)100928476写出油箱的余油量y (升)与行驶时间t (小时)之间的关系式__________________.【答案】16. 如图,三角形纸片,,,,沿过点B 的直线折叠这个三角形,使顶点C 落在边上的点E 处,折痕为,则的周长为___________52653454()3a a ⋅+=2a 3a+291008y t=-ABC 10cm AB =6cm AC =7cm BC =AB BD AED △【答案】17. 如图,∠E =∠F =90°,∠B =∠C ,AE =AF .给出下列结论:①∠1=∠2;②BE =CF ;③ACN ≌ABM ;④CD =DN .其中符合题意结论的序号是_______________.【答案】①②③18.如图,在△ABC 中,AB =AC ,分别以点A 、B 为圆心,以适当的长为半径作弧,两弧分别交于E ,F 作直线EF ,D 为BC 的中点,M 为直线EF 上任意一点.若BC =4,△ABC 面积为10,则BM+MD 长度的最小值为______【答案】 5三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤)19. 计算:(1) 2 a b • 3 a 2 b +(﹣2 a )(2)( m + 1 )2 ﹣(m + 1 )( m ﹣ 1 )(3) 2 0 1 8 × 2 0 2 0﹣2 0 1 9 2解:(1)原式9cm2362a b a=-(2)原式(3)原式20. 先化简,再求值:[(2x ﹣y )2﹣(2x+y )(2x ﹣y )]÷y ,其中x =1,y =2.解:[(2x ﹣y )2﹣(2x+y )(2x ﹣y )]÷y=[4x 2﹣4xy+y 2﹣4x 2+y 2]÷y=[﹣4xy+2y 2]÷y=﹣4x+2y ,当x =1,y =2时,原式=﹣4+4=0.21. 如图,在边长为1的小正方形所组成的网格上,每个小正方形的顶点都称为“格点”,△ABC 的顶点都在格点上,用直尺完成下列作图:(1)作出△ABC 关于直线MN 的对称图形;(2)求△ABC 的面积;(3)在直线MN 上取一点P ,使得AP +CP 最小(保留作图痕迹)解:(1)如图,△DEF 即为所求,(2),∴△ABC 的面积为7.(3)如图,点P即为所求,2221(1)22m m m m =++--=+22220(2019191)2(20190191)112019=-⨯+-=--=-111535131427222∆=⨯-⨯⨯-⨯⨯-⨯⨯=ABC S22. 已知:如图,,,.求证:且.证明:,,即,,,在与中,,,,.23. 小亮和小芳都想参加学校杜团组织的暑假实践活动,但只有一个名额,小亮提议用如下的办法决定谁去参加活动;将一个转盘9等分,分别标上1至9九个号码,随意转动转盘,若转到2的倍数,小亮去参加活动;转到3的倍数,小芳去参加活动;转到其它号码则重新转动转盘.//AB CD AB CD =BF CE =AE DF =//A E D F BF CE = BF EF CE EF ∴+=+BE CF =//AB CD Q B C ∴∠=∠ABE CDF AB CD B C BE CF =⎧⎪∠=∠⎨⎪=⎩()ABE CDF SAS ∴△≌△AEB DFC ∴∠=∠AE DF=//AE DF ∴(1)转盘转到2的倍数的概率是多少?(2)你认为这个游戏公平吗?请说明理由.(1)解:∵共有1、2、3、4、5、6、7、8、9这9种等可能的结果,其中2的倍数有4个,分别是2、4、6、8,∴P (转到2的倍数);(2)解:游戏不公平,理由如下:∵共有9种等可能的结果,其中2的倍数有2、4、6、8共4种可能,∴P (转到2的倍数),∴小亮去参加活动的概率为:,又∵3的倍数有3、6、9共3种可能,∴P (转到3的倍数),∴小芳去参加活动的概率为:,∵,∴游戏不公平.24. 小明从家出发骑自行车去上学,当他以往常的速度骑了一段路后,突然想起要买文具,于是又折回到刚经过的某文具店,买到文具后继续骑车去学校,如图是他本次上学所用的时间与离家的距离之间的关系图,根据图中提供的信息回答下列问题:(1)小明家到学校的距离是 米,文具店到学校的距离是 米;49=49=493193==134193≠(2)小明在文具店停留了 分钟,本次上学途中,小明一共行驶了 米;(3)在整个上学途中,哪个时间段小明骑车速度最快?最快的速度是多少?(4)如图小明不买文具,以往常的速度去学校,需要花费多长时间?解(1)由题意可知,小明家到学校的距离是1500米,1500-600=900(米).即文具店到学校的距离是900米.故答案为:1500;900;(2)12-8=4(分钟).故小明在文具店停留了4分钟.1200+(1200-600)+(1500-600)=2700(米).故本次上学途中,小明一共行驶了2700米,故答案为:4;2700;(3)根据题中图象,可知第12分钟至第14分钟这一时间段的线段最陡,所以小明在第12分钟至第14分钟这一时间段的骑车速度最快,此时速度为(米/分);(4)小明往常的速度为1200÷6=200(米/分),去学校需要花费的时间为1500÷200=7.5(分钟).25. 某校七年级(1)班的小明和小亮学习了“勾股定理”之后,为了测得风筝的垂直高度CE ,他们进行了如下操作:①测得水平距离BD 的长为15米;②根据手中剩余线的长度计算出风筝线BC 的长为25米;③牵线放风筝的小明的身高为1.6米.(1)求风筝的垂直高度CE ;(2)如果小明想风筝沿CD 方向下降12米,则他应该往回收线多少米?15006004501412-=-解:(1)在Rt △CDB 中,由勾股定理得,CD 2=BC 2-BD 2=252-152=400,所以,CD=20(负值舍去),所以,CE=CD+DE=20+1.6=21.6(米),答:风筝的高度CE 为21.6米;(2)由题意得,CM=12米,∴DM=8米,∴(米),∴BC-BM=25-17=8(米),∴他应该往回收线8米.26. 如图甲是一个大长方形剪去一个小长方形后形成的图形,已知动点P 以每秒2cm 的速度沿图甲的边框按B -C -D -E -F -A 的路径运动,相应△ABP 的面积S 与时间t 之间的关系如图乙中的图象所示,若AB =6cm ,试回答下列问题(1)图中中的BC 长是________cm ;(2)图乙中的,a 是________cm 2;(3)图乙中的b 是多少?(4)点P 出发后几秒,△ABP 的面积S 是图甲面积的四分之一?解:(1)由图乙知,当t=4时P 到达C 点,17==∴BC=2×4=8(cm ),故答案为:8;(2)由(1)知BC=8cm ,此时三角形面积为:S △ABP=AB•BC=24(cm 2),∴a 为24cm 2,故答案为:24;(3)由图甲知,BC+DE=AF ,CD+FE=AB ,由图乙知,CD=(6-4)×2=4(cm ),∴EF=AB-CD=6-4=2(cm ),∴EF 段的时间为:2÷2=1(s ),∴FA 段的时间为:4+(9-6)=7(s ),∴b=9+1+7=17(s ),即b 的值为17;(4)由已知数据可知,图甲的面积=BC•AB+DE•EF=8×6+(9-6)×2×2=60(cm 2),∴图甲面积的四分之一=60×=15(cm 2),由图知当P 在BC 上或AF 上时,△ABP 的面积S 是图甲面积的四分之一,①当点P 在BC 上时,S △ABP=AB•BP=15(cm 2),∴BP=6(cm ),此时t=6÷2=3(s );②当点P 在AF 上时,S △ABP=AB•AP=15(cm 2),∴AP=6(cm ),即还剩6÷2=3(s )P 点运动到A 点,∴此时t=17-3=14(s ),综上,当点P 出发后3秒或14秒,△ABP 的面积S 是图甲面积的四分之一.27 . 如图1,在△ABC 中,∠ACB 为说角,点D 为射线BC 上一动点,连接AD .以AD 为一边且在AD 的右侧作等腰直角三角形ADE ,AD =AE ,∠DAE =90°.解答下列问题12141212(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,求证:BD=CE,BD⊥CE.②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,请说明理由.(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CE⊥BD(点C、E重合除外).先画出相应图形,再说明理由.解:(1)①证明:CE与BD位置关系是CE⊥BD,数量关系是CE=BD.理由:如图2中,∵∠BAD=90°-∠DAC,∠CAE=90°-∠DAC,∴∠BAD=∠CAE,又 BA=CA,AD=AE,∴△ABD≌△ACE(SAS),∴∠ACE=∠B=45°且 CE=BD,∵∠ACB=∠B=45°,∴∠ECB=45°+45°=90°,即 CE⊥BD.故答案为:CE⊥BD;CE=BD.②当点D在BC的延长线上时,①的结论仍成立.如图3中,∵∠DAE=90°,∠BAC=90°,∴∠DAE=∠BAC,∴∠DAB=∠EAC,又AB=AC,AD=AE,∴△DAB≌△EAC(SAS),∴CE=BD,且∠ACE=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACE=45°,∴∠BCE=∠ACB+∠ACE=90°,即 CE⊥BD;(2)如图4中,当∠BCA=45°时,CE⊥BD.理由:过点A作AG⊥AC交BC于点G,∴AC=AG,∠AGC=45°,即△ACG是等腰直角三角形,∵∠GAD+∠DAC=90°=∠CAE+∠DAC,∴∠GAD=∠CAE,又∵DA=EA,∴△GAD≌△CAE(SAS),∴∠ACE=∠AGD=45°,∴∠BCE=∠ACB+∠ACE=90°,即CE⊥BD.。
2023年人教版七年级数学(下册)期末模拟试卷及答案
2023年人教版七年级数学(下册)期末模拟试卷及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.黄金分割数512-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5﹣1的值( )A .在1.1和1.2之间B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间2.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有( )A .20人B .40人C .60人D .80人3.下列说法正确的是( )A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .最小的正整数是14.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元5.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <6.如图,要把河中的水引到水池A 中,应在河岸B 处(AB ⊥CD )开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是( )A .两点之间线段最短B .点到直线的距离C .两点确定一条直线D .垂线段最短7.下列图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D .8.若0ab <且a b >,则函数y ax b =+的图象可能是( )A .B .C .D .9.运行程序如图所示,规定:从“输入一个值x ”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( )A .x ≥11B .11≤x <23C .11<x ≤23D .x ≤2310.实数a 、b 、c 在数轴上的位置如图所示,则代数式|c ﹣a |﹣|a +b |的值等于( )A .c +bB .b ﹣cC .c ﹣2a +bD .c ﹣2a ﹣b二、填空题(本大题共6小题,每小题3分,共18分)1.若多项式2x 2+3x+7的值为10,则多项式6x 2+9x ﹣7的值为________.2.如图,点O 是直线AD 上一点,射线OC ,OE 分别平分∠AOB 、∠BOD .若∠AOC =28°,则∠BOE =________.3.在关于x 、y 的方程组2728x y m x y m+=+⎧⎨+=-⎩中,未知数满足x ≥0,y >0,那么m 的取值范围是_________________.4.如果一个数的平方根是a +6和2a ﹣15,则这个数为________.5.一只小蚂蚁停在数轴上表示﹣3的点上,后来它沿数轴爬行5个单位长度,则此时小蚂蚁所处的点表示的数为________.6.如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC ∆≌△DCB ∆的是________(只填序号).三、解答题(本大题共6小题,共72分)1.解一元一次方程(1)5262x x -= (2)32142x x +=- (3)()()371323x x x --=-+ (4)341125x x -+-=2.在解方程组2628mx y x ny +=⎧⎨+=⎩时,由于粗心,小军看错了方程组中的n ,得解为7323x y ⎧=⎪⎪⎨⎪=⎪⎩,小红看错了方程组中的m ,得解为24x y =-⎧⎨=⎩(1)则m,n的值分别是多少?(2)正确的解应该是怎样的?3.将一幅三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F,(1)求证:CF∥AB,(2)求∠DFC的度数.4.尺规作图:校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P.(不写画图过程,保留作图痕迹)5.某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图 1 和图 2 所示的不完整统计图.(1)被调查员工的人数为人:(2)把条形统计图补充完整;(3)若该企业有员工 10000 人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?6.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件) 1200 1000售价(元/件) 1380 1200(注:获利=售价-进价)(1) 该商场购进A、B两种商品各多少件?(2) 商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、C5、C6、D7、D8、A9、C10、A二、填空题(本大题共6小题,每小题3分,共18分) 1、22、62°3、-2≤m <34、815、2或﹣8.6、②.三、解答题(本大题共6小题,共72分)1、(1)12x =- ;(2)67x =;(3)5x =;(4)9x =-2、(1) m =2;n =3;(2)方程组正确的解为12.x y =⎧⎨=⎩3、(1)证明见解析;(2)105°4、略.5、(1)800;(2)答案见解析;(3)3500.6、(1)该商场购进A 、B 两种商品分别为200件和120件.(2)B 种商品最低售价为每件1080元.。
数学(完整版)人教版七年级数学下册期末模拟试卷及答案
数学(完整版)人教版七年级数学下册期末模拟试卷及答案一、选择题1.下列计算正确的是( )A .a 3.a 2=a 6B .a 2+a 4=2a 2C .(a 3)2=a 6D .224(3)6a a = 2.计算(﹣2a 2)•3a 的结果是( ) A .﹣6a 2 B .﹣6a 3C .12a 3D .6a 3 3.下列运算正确的是( ) A .()3253a b a b = B .a 6÷a 2=a 3C .5y 3•3y 2=15y 5D .a +a 2=a 3 4.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150° 5.点M 位于平面直角坐标系第四象限,且到x 轴的距离是5,到y 轴的距离是2,则点M 的坐标是( )A .(2,﹣5)B .(﹣2,5)C .(5,﹣2)D .(﹣5,2) 6.计算28+(-2)8所得的结果是( )A .0B .216C .48D .29 7.如图,A ,B ,C ,D 中的哪幅图案可以通过图案①平移得到( )A .B .C .D .8.将一副三角板如图放置,作CF //AB ,则∠EFC 的度数是( )A .90°B .100°C .105°D .110°9.甲、乙二人同时同地出发,都以不变的速度在环形路上奔跑.若反向而行,每隔3min 相遇一次,若同向而行,则每隔6min 相遇一次,已知甲比乙跑得快,设甲每分钟跑x 圈,乙每分钟跑y圈,则可列方程为()A.36x yx y-=⎧⎨+=⎩B.36x yx y+=⎧⎨-=⎩C.331661x yx y+=⎧⎨-=⎩D.331661x yx y-=⎧⎨+=⎩10.下列说法:2a-没有算术平方根;若一个数的平方根等于它本身,则这个数是0或1;有理数和数轴上的点一一对应;负数没有立方根,其中正确的是()A.0个B.1个C.2个D.3个二、填空题11.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多acm,则正方形的面积与长方形的面积的差为_____(用含有字母a的代数式表示).12.三角形的周长为10cm,其中有两边的长相等且长为整数,则第三边长为______cm.13.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.14.若(3x+2y)2=(3x﹣2y)2+A,则代数式A为______.15.一种微粒的半径是0.00004米,这个数据用科学记数法表示为____.16.内角和等于外角和2倍的多边形是__________边形.17.小明在拼图时,发现8个样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm的小正方形,则每个小长方形的面积为__________2mm.18.若x ay b=⎧⎨=⎩是二元一次方程2x﹣3y﹣5=0的一组解,则4a﹣6b=_____.19.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.20.已知12x y =⎧⎨=-⎩是关于x ,y 的二元一次方程ax+y=4的一个解,则a 的值为_____. 三、解答题21.先化简,再求值:(2a ﹣b )2﹣(a +1﹣b )(a +1+b )+(a +1)2,其中a =12,b =﹣2.22.(类比学习)小明同学类比除法240÷16=15的竖式计算,想到对二次三项式x 2+3x +2进行因式分解的方法: 15162401 6 8080 0 2221322222 0x x x x x x x x +++++++ 即(x 2+3x +2)÷(x +1)=x +2,所以x 2+3x +2=(x +1)(x +2).(初步应用)小明看到了这样一道被墨水污染的因式分解题:x 2+□x +6=(x +2)(x +☆),(其中□、☆代表两个被污染的系数),他列出了下列竖式:22262 (2)62 0x x x x x x x x +++++-++☆☆☆ 得出□=___________,☆=_________.(深入研究)小明用这种方法对多项式x 2+2x 2-x -2进行因式分解,进行到了:x 3+2x 2-x -2=(x +2)(*).(*代表一个多项式),请你利用前面的方法,列出竖式,将多项式x 3+2x 2-x -2因式分解.23.因式分解:(1)x 4﹣16;(2)2ax 2﹣4axy +2ay 2.24.先化简后求值:224(2)(2)(2)x x y x y y x --+---,其中1x =-,2y =-. 25.(1)解二元一次方程组3423x y x y -=⎧⎨-=⎩; (2)解不等式组29421333x x x x <-⎧⎪⎨+≥-⎪⎩.(1)()20202011 3.142π-⎛⎫-+-+ ⎪⎝⎭ (2)()2462322x y x xy -- (3)()()22342a b a a b --- (4)()()2323m n m n -++- 27.解方程组:(1)2531y x x y =-⎧⎨+=-⎩; (2)3000.050.530.25300x y x y +=⎧⎨+=⨯⎩. 28.已知:如图EF ∥CD ,∠1+∠2=180°.(1)试说明GD ∥CA ;(2)若CD 平分∠ACB ,DG 平分∠CDB ,且∠A =40°,求∠ACB 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据同底幂的运算法则依次判断各选项.【详解】A 中,a 3.a 2=a 5,错误;B 中,不是同类项,不能合并,错误;C 中,(a 3)2=a 6,正确;D 中,224(3)9a a =,错误故选:C .【点睛】本题考查同底幂的运算,注意在加减运算中,不是同类项是不能合并的.2.B解析:B用单项式乘单项式的法则进行计算.【详解】解:(-2a2)·3a=(-2×3)×(a2·a)=-6a3故选:B.【点睛】本题考查单项式乘单项式,掌握运算法则正确计算是解题关键.3.C解析:C【分析】根据积的乘方、同底数幂的除法、单项式乘以单项式、合并同类项法则进行计算即可.【详解】解:A、(a2b)3=a6b3,故A错误;B、a6÷a2=a4,故B错误;C、5y3•3y2=15y5,故C正确;D、a和a2不是同类项,不能合并,故D错误;故选:C.【点睛】此题主要考查了单项式乘以单项式、同底数幂的除法、积的乘方、合并同类项,关键是掌握各计算法则.4.B解析:B【详解】解:根据题意得:∠1=180°-60°=120°.故选:B【点睛】本题考查直角三角板中的角度的计算,难度不大.5.A解析:A【分析】先根据到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,进而判断出点的符号,得到具体坐标即可.【详解】∵M到x轴的距离为5,到y轴的距离为2,∴M纵坐标可能为±5,横坐标可能为±2.∵点M在第四象限,∴M坐标为(2,﹣5).故选:A.【点睛】本题考查点的坐标的确定;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.解析:D【分析】利用同底数幂的乘法与合并同类项的知识求解即可求得答案.【详解】解:28+(-2)8=28+28=2×28=29.故选:D.【点睛】此题考查了同底数幂的乘法的知识.此题比较简单,注意掌握指数与符号的变化是解此题的关键.7.D解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】通过图案①平移得到必须与图案①完全相同,角度也必须相同,观察图形可知D可以通过图案①平移得到.故答案选:D.【点睛】本题考查的知识点是生活中的平移现象,解题的关键是熟练的掌握生活中的平移现象. 8.C解析:C【分析】根据等腰直角三角形求出∠BAC,根据平行线求出∠ACF,根据三角形内角和定理求出即可.【详解】解:∵△ACB是等腰直角三角形,∴∠BAC=45°,∵CF//AB,∴∠ACF=∠BAC=45°,∵∠E=30°,∴∠EFC=180°﹣∠E﹣∠ACF=105°,故选:C.【点睛】本题考查了三角形的内角和定理和平行线的性质,能求出各个角的度数是解此题的关键.解析:C【分析】根据“反向而行,当甲、乙相遇时,甲、乙跑的路程之和等于一圈;同向而行,当甲、乙相遇时,甲跑的路程比乙跑的路程多一圈”建立方程组即可.【详解】设甲每分钟跑x 圈,乙每分钟跑y 圈则可列方组为:331661x y x y +=⎧⎨-=⎩故选:C .【点睛】本题考查了二元一次方程组的实际应用,读懂题意,依次正确建立反向和同向情况下的方程是解题关键. 10.A解析:A【分析】根据负数没有算术平方根判断第一句,由1的平方根是1,± 判断第二句,数轴上的点也可以表示无理数判断第三句,任意实数都有立方根判断第四句.【详解】解:当20a -=有算术平方根,所以第一句错误,1的平方根是1,±所以第二句错误,数轴上的点与实数一一对应,所以第三句错误,任意实数都有立方根,所以第四句错误,故选A .【点睛】本题考查算术平方根、平方根、立方根以及实数与数轴的关系.理解相关定理是解题关键.二、填空题11.【分析】设长方形的宽为xcm ,根据“图(1)的正方形的周长与图(2)的长方形的周长相等”求得正方形的边长,最后由长方形与正方形的面积公式计算正方形的面积与长方形的面积的差.【详解】解:设长方 解析:24a 【分析】设长方形的宽为xcm ,根据“图(1)的正方形的周长与图(2)的长方形的周长相等”求得正方形的边长,最后由长方形与正方形的面积公式计算正方形的面积与长方形的面积的差.【详解】解:设长方形的宽为xcm ,则长方形的长为(x +a )cm ,∵图(1)的正方形的周长与图(2)的长方形的周长相等,∴正方形的边长为:2()242x a x x a +++=, ∴正方形的面积与长方形的面积的差为:22()2x a x x a +⎛⎫-+ ⎪⎝⎭ 222444x ax a x ax ++=-- =24a . 故答案为:24a . 【点睛】本题主要考查了列代数式,整式的混合运算,关键是读懂题意,正确列出代数式.12.或 2【分析】可分相等的两边的长为1cm ,2cm ,3cm ,4cm ,依此讨论,根据三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边)即可求解.【详解】解:相等的两边的长为1cm ,则解析:或 2【分析】可分相等的两边的长为1cm ,2cm ,3cm ,4cm ,依此讨论,根据三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边)即可求解.【详解】解:相等的两边的长为1cm ,则第三边为:10-1×2=8(cm ),1+1<8,不符合题意; 相等的两边的长为2cm ,则第三边为:10-2×2=6(cm ),2+2<6,不符合题意; 相等的两边的长为3cm ,则第三边为:10-3×2=4(cm ),3+3>4,符合题意; 相等的两边的长为4cm ,则第三边为:10-4×2=2(cm ),2+4>4,符合题意. 故第三边长为4或2cm .故答案为:4或2.【点睛】此题考查了三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边),等腰三角形的性质和周长计算,分类思想的运用是解题的关键.13.22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长. 【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm解析:22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=22cm.故填22.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.14.24xy【解析】∵(3x+2y)2=(3x﹣2y)2+A,∴(3x)2+2×3x×2y+(2y)2=(3x)2-2×3x×2y+(2y)2+A,即9x2+12xy+4y2=9x2-12xy+解析:24xy【解析】∵(3x+2y)2=(3x﹣2y)2+A,∴(3x)2+2×3x×2y+(2y)2=(3x)2-2×3x×2y+(2y)2+A,即9x2+12xy+4y2=9x2-12xy+4y2+A∴A=24xy,故答案为24xy.【点睛】本题考查了完全平方公式,熟记完全平方公式是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.15.4×10-5【解析】试题分析:科学计数法是指a×10n,且1≤|a|<10,小数点向右移动几位,则n的相反数就是几.考点:科学计数法解析:【解析】试题分析:科学计数法是指a×,且1≤<10,小数点向右移动几位,则n的相反数就是几.考点:科学计数法16.六【解析】【分析】设多边形有n条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.【详解】解:设多边形有n条边,由题意得:1解析:六【解析】【分析】设多边形有n条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.【详解】解:设多边形有n条边,由题意得:180(n-2)=360×2,解得:n=6,故答案为:六.【点睛】本题考查多边形的内角和和外角和,关键是掌握内角和为180°(n-2).17.【分析】设小长方形的长是xmm,宽是ymm.根据图(1),知长的3倍=宽的5倍,即3x=5y;根据图(2),知宽的2倍-长=5,即2y+x=5,建立方程组.【详解】设小长方形的长是xmm,宽375mm解析:2【分析】设小长方形的长是xmm,宽是ymm.根据图(1),知长的3倍=宽的5倍,即3x=5y;根据图(2),知宽的2倍-长=5,即2y+x=5,建立方程组.【详解】设小长方形的长是xmm,宽是ymm,根据题意得:3525x y y x =⎧⎨-=⎩ ,解得2515x y =⎧⎨=⎩∴小长方形的面积为:22515375xy mm【点睛】此题的关键是能够分别从每个图形中获得信息,建立方程. 18.10【分析】已知是二元一次方程2x ﹣3y ﹣5=0的一组解,将代入二元一次方程2x ﹣3y ﹣5=0中,即可求解.【详解】∵是二元一次方程2x ﹣3y ﹣5=0的一组解∴2a -3b=5∴4a -6b解析:10【分析】已知x a y b =⎧⎨=⎩是二元一次方程2x ﹣3y ﹣5=0的一组解,将x a y b=⎧⎨=⎩代入二元一次方程2x ﹣3y ﹣5=0中,即可求解.【详解】∵x a y b =⎧⎨=⎩是二元一次方程2x ﹣3y ﹣5=0的一组解 ∴2a-3b=5∴4a-6b=10故答案为:10【点睛】本题考查了二元一次方程组解的定义,能使二元一次方程左右两边的值相等的两个未知数的值,叫做二元一次方程的解.由于使二元一次方程的左右两边的值相等的未知数的值不止一组,故每个二元一次方程都有无数组解.19.65【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【详解】解:如图,由题意可知,AB∥CD,∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解解析:65【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【详解】解:如图,由题意可知,AB∥CD,∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解得∠1=65°.故答案为:65.【点睛】本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.20.6【分析】把代入已知方程可得关于a的方程,解方程即得答案.【详解】解:把代入方程ax+y=4,得a-2=4,解得:a=6.故答案为:6.【点睛】本题考查了二元一次方程的解的定义,属于基解析:6【分析】把12xy=⎧⎨=-⎩代入已知方程可得关于a的方程,解方程即得答案.【详解】解:把12xy=⎧⎨=-⎩代入方程ax+y=4,得a-2=4,解得:a=6.故答案为:6.【点睛】本题考查了二元一次方程的解的定义,属于基础题型,熟知二元一次方程的解的概念是关键.三、解答题21.22442a ab b -+;13【分析】原式利用平方差公式及完全平方公式展开,去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【详解】解:原式=4a 2﹣4ab+b 2﹣(a 2+2a+1﹣b 2)+a 2+2a+1=4a 2﹣4ab+b 2﹣a 2﹣2a ﹣1+b 2+a 2+2a+1=4a 2﹣4ab+2b 2,当a =12,b =﹣2时,原式=1+4+8=13. 【点睛】 此题考查了整式的混合运算−化简求值,熟练掌握运算法则是解本题的关键.22.[初步应用]5,3;[深入研究]x 3+2x 2-x -2=(x +2)(x +1)(x -1);详见解析;【分析】[初步应用]列出竖式结合已知可得:2☆-6=0,2-=☆,求出□与☆即可.[深入研究]列出竖式可得x 3+2x 2-x -2÷(x +2),即可将多项式x 3+2x 2-x -2因式分解.【详解】[初步应用]∵多项式x 2+□x +6能被x +2整除,∴2☆-6=0,2-=☆,∴☆= 3,□=5,故答案为:5,3;[深入研究]∵2323212222 22 0x x x x x x x x x -++--+----, ∴()()()()()3222221211x x x x x x x x +--=+-=++-. 【点睛】本题考查整式的除法;理解题意,仿照整数的除法列出竖式进行运算是解题的关键.23.(1)2(4)(2)(2)x x x ++- (2)22()a x y -【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【详解】解:(1)原式=(x 2+4)(x 2﹣4)=(x 2+4)(x +2)(x ﹣2);(2)原式=2a (x 2﹣2xy +y 2)=2a (x ﹣y )2.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.24.2243x xy y -++,19【分析】根据整式的乘法运算法则,将多项式乘积展开,再合并同类项,即可化简,再代入x ,y 即可求值.【详解】解:原式2222222=44424243x x xy y xy x y xy x xy y -+---++=-++,将1x =-,2y =-代入,则原代数式的值为: 2243=x xy y -++()()()()22141232=1812=19--+⋅-⋅-+⋅--++.【点睛】本题考查整式的乘法,难度一般,是中考的常考点,熟练掌握多项式与多项式相乘的法则,即可顺利解题. 25.(1)11x y =⎧⎨=-⎩;(2)13x ≤< 【分析】(1)根据代入消元法解答即可;(2)先解不等式组中的每个不等式,再取其解集的公共部分即可.【详解】解:(1)3423x y x y -=⎧⎨-=⎩①②, 由①,得34y x =-③,把③代入②,得()2343x x --=,解得:x =1,把x =1代入③,得y =3-4=﹣1,所以方程组的解为11x y =⎧⎨=-⎩; (2)29421333x x x x <-⎧⎪⎨+≥-⎪⎩①②,解不等式①,得3x <,解不等式②,得1x ≥,所以不等式组的解集为13x ≤<.【点睛】本题考查了二元一次方程组和一元一次不等式组的解法,属于基础题型,熟练掌握上述基本知识是解题关键.26.(1)4;(2)462x y -;(3)-4ab+9b 2;(4)m 2-4n 2+12n-9.【分析】(1)原式第一项利用乘方的意义化简,第二项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果;(2)原式利用积的乘方运算法则计算,合并即可得到结果;(3)原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算,去括号合并即可得到结果;(4)原式利用平方差公式化简,再利用完全平方公式展开,计算即可得到结果.【详解】解:(1)原式=-1+1+4=4;(2)原式=464646242x y x y x y -=-;(3)原式=4a 2-12ab+9b 2-4a 2+8ab=-4ab+9b 2;(4)原式=m 2-(2n-3)2=m 2-4n 2+12n-9.【点睛】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.27.(1)21x y =⎧⎨=-⎩;(2)175125x y =⎧⎨=⎩. 【分析】(1)利用代入消元法解二元一次方程组即可;(2)方程组整理后,利用加减消元法解二元一次方程组即可.【详解】解:(1)2531y x x y =-⎧⎨+=-⎩①②, 把①代入②得:x +6x ﹣15=﹣1,解得:x =2,把x =2代入①得:y =﹣1,则方程组的解为21x y =⎧⎨=-⎩; (2)方程组整理得:3005537500x y x y +=⎧⎨+=⎩①②, ①×53﹣②得:48x =8400,解得:x=175,把x=175代入①得:y=125,则方程组的解为175125 xy=⎧⎨=⎩.【点睛】此题考查的是解二元一次方程组,掌握利用代入消元法和加减消元法解二元一次方程组是解决此题的关键.28.(1)见解析;(2)∠ACB=80°【分析】(1)利用同旁内角互补,说明GD∥CA;(2)由GD∥CA,得∠A=∠GDB=∠2=40°=∠ACD,由角平分线的性质可求得∠ACB 的度数.【详解】解:(1)∵EF∥CD∴∠1+∠ECD=180°又∵∠1+∠2=180°∴∠2=∠ECD∴GD∥CA;(2)由(1)得:GD∥CA,∴∠BDG=∠A=40°,∠ACD=∠2,∵DG平分∠CDB,∴∠2=∠BDG=40°,∴∠ACD=∠2=40°,∵CD平分∠ACB,∴∠ACB=2∠ACD=80°.【点睛】本题考查了角平分线的性质和平行线的性质.解决本题的关键熟练利用所学的性质进行解题.。
七年级下学期数学期末模拟试卷及答案-百度文库
七年级下学期数学期末模拟试卷及答案-百度文库一、选择题1.如图1的8张长为a ,宽为b (a <b )的小长方形纸片,按如图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .b =5aB .b =4aC .b =3aD .b =a2.如图,P 1是一块半径为1的半圆形纸板,在P 1的右上端剪去一个直径为1的半圆后得到图形P 2,然后依次剪去一个更小的半圆(其直径为前一个被剪去的半圆的半径)得到图形P 3、P 4…P n …,记纸板P n 的面积为S n ,则S n -S n +1的值为( )A .12n π⎛⎫ ⎪⎝⎭B .14n π⎛⎫ ⎪⎝⎭C .2112n π+⎛⎫ ⎪⎝⎭D .2112n π-⎛⎫ ⎪⎝⎭ 3.下列等式从左到右的变形,属于因式分解的是( ) A .8x 2 y 3=2x 2⋅4 y 3B .( x +1)( x ﹣1)=x 2﹣1C .3x ﹣3y ﹣1=3( x ﹣y )﹣1D .x 2﹣8x +16=( x ﹣4)2 4.把面值20元的纸币换成1元或5元的纸币,则换法共有 ( ) A .4种B .5种C .6种D .7种 5.一直尺与一缺了一角的等腰直角三角板如图摆放,若∠1=115°,则∠2的度数为( )A .65°B .70°C .75°D .80°6.一元一次不等式312x -->的解集在数轴上表示为( )A .B .C .D .7.足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x 负的场数为y ,则可列方程组为( ) A .8312x y x y +=⎧⎨-=⎩ B .8312x y x y -=⎧⎨-=⎩ C .18312x y x y +=⎧⎨+=⎩ D .8312x y x y -=⎧⎨+=⎩8.一个三角形的两边长分别是2和4,则第三边的长可能是( )A .1B .2C .4D .79.如图,有以下四个条件:其中不能判定//AB CD 的是( )①180B BCD ∠+∠=︒;②12∠=∠;③34∠=∠;④5B ∠=∠;A .①B .②C .③D .④ 10.已知x a y b =⎧⎨=⎩是方程组24213x y x y -=⎧⎨+=⎩的解,则32a b -的算术平方根为( ) A .4± B .4 C .2 D .2±二、填空题11.分解因式:29a -=__________.12.若(3x+2y )2=(3x ﹣2y )2+A ,则代数式A 为______.13.若29x kx -+是完全平方式,则k =_____.14.二元一次方程7x+y =15的正整数解为_____.15.已知()223420x y x y -+--=,则x=__________,y=__________.16.已知x 2+2kx +9是完全平方式,则常数k 的值是____________.17.若等式0(2)1x -=成立,则x 的取值范围是_________. 18.已知关于x ,y 的方程22146m n m n x y --+++=是二元一次方程,那么点(),M m n 位于平面直角坐标系中的第______象限.19.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为6、7、8,四边形DHOG 面积为( )A .6B .7C .8D .9 20.如图,已知AE 是△ABC 的边BC 上的中线,若AB=8cm,△ACE 的周长比△AEB 的周长多2cm,则AC=_____.三、解答题21.计算:(1)2201(2)3()3----÷- (2)22(21)(21)x x -+ 22.如图,网格中每个小正方形边长为1,△ABC 的顶点都在格点上.将△ABC 向左平移2格,再向上平移3格,得到△A ′B ′C ′.(1)请在图中画出平移后的△A ′B ′C ′;(2)画出平移后的△A ′B ′C ′的中线B ′D ′(3)若连接BB ′,CC ′,则这两条线段的关系是________(4)△ABC 在整个平移过程中线段AB 扫过的面积为________(5)若△ABC 与△ABE 面积相等,则图中满足条件且异于点C 的格点E 共有______个 (注:格点指网格线的交点)23.已知关于x,y 的方程组260250x y x y mx +-=⎧⎨-++=⎩(1)请直接写出方程260x y +-=的所有正整数解(2)若方程组的解满足x+y=0,求m 的值(3)无论实数m 取何值,方程x -2y+mx+5=0总有一个固定的解,请直接写出这个解?24.(问题背景)(1)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B=∠C+∠D(简单应用)(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=28°,∠ADC=20°,求∠P的度数(可直接使用问题(1)中的结论)(问题探究)(3)如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,若∠A=30°,∠C=18°,则∠P的度数为(拓展延伸)(4)在图4中,若设∠C=x,∠B=y,∠CAP=14∠CAB,∠CDP=14∠CDB,试问∠P与∠C、∠B之间的数量关系为(用x、y表示∠P)(5)在图5中,BP 平分∠ABC ,DP 平分∠ADC 的外角∠ADE ,猜想∠P 与∠A 、∠C 的关系,直接写出结论 .25.水果商贩老徐上水果批发市场进货,他了解到草莓的批发价格是每箱60元,苹果的批发价格是每箱40元.老徐购得草莓和苹果共60箱,刚好花费3100元.(1)问草莓、苹果各购买了多少箱?(2)老徐有甲、乙两家店铺,每出售一箱草莓或苹果,甲店分别获利15元和20元,乙店分别获利12元和16元.设老徐将购进的60箱水果分配给甲店草莓a 箱,苹果b 箱,其余均分配给乙店,由于他口碑良好,两家店都很快卖完了这批水果.①若老徐在甲店获利600元,则他在乙店获利多少元?②若老徐希望获得总利润为1000元,则a b +=?26.解下列二元一次方程组:(1)70231x y x y +=⎧⎨-=-⎩①②; (2)239345x y x y -=⎧⎨+=⎩①②. 27.因式分解:(1)2()4()a x y x y ---(2)2242x x -+-(3)2616a a --28.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论.②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】分别表示出左上角阴影部分的面积S 1和右下角的阴影部分的面积S 2,两者求差,根据当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,即可求得a 与b 的数量关系.【详解】解:设左上角阴影部分的面积为1S ,右下角的阴影部分的面积为2S ,12S S S =-225315[()]AD AB a AD a AB a BC AB b BC AB b 225315()BC AB a BCa AB a BC ABb BC AB b 22(5)(3)15a b BC b a AB a b . AB 为定值,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,50a b, 5b a .故选:A .【点睛】本题考查了整式的混合运算在几何图形问题中的应用,数形结合并根据题意正确表示出两部分阴影的面积之差是解题的关键.2.C解析:C【分析】首先分析题意,找到规律,并进行推导得出答案.【详解】根据题意得,n≥2,S1=12π×12=12π,S2=12π﹣12π×(12)2,…S n=12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n﹣1]2,S n+1=12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n﹣1]2﹣12π×[(12)n]2,∴S n﹣S n+1=12π×(12)2n=(12)2n+1π.故选C.【点睛】考查学生通过观察、归纳、抽象出数列的规律的能力.3.D解析:D【解析】【分析】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解.【详解】①是单项式的变形,不是因式分解;②是多项式乘以多项式的形式,不是因式分解;③左侧是多项式加减,右侧也是多项式加减,不是因式分解;④符合因式分解的定义,结果是整式的积,因此D正确;故选D.【点睛】本题考查因式分解的定义.正确理解因式分解的结果是“整式的积”的形式,是解题的关键.4.B解析:B【分析】设1元和5元的纸币分别有x、y张,得到方程x+5y=20,然后根据x、y都是正整数即可确定x、y的值.【详解】解:设1元和5元的纸币分别有x、y张,则x+5y=20,∴x=20-5y,而x≥0,y≥0,且x、y是整数,∴y=0,x=20;y=1,x=15;y=2,x=10;y=3,x=5;y=4,x=0,共有5种换法.故选:B.【点睛】此题主要考查了二元一次方程的应用,列出方程并确定未知数的取值范围是解题的关键.5.B解析:B【分析】先将一缺了一角的等腰直角三角板补全,再由直尺为矩形,则两组对边分别平行,即可根据∠1求∠4的度数,即可求出∠4的对顶角的度数,再利用等角直角三角形的性质及三角形内角和求出∠2的对顶角,即可求∠2.【详解】解:如图,延BA,CD交于点E.∵直尺为矩形,两组对边分别平行∴∠1+∠4=180°,∠1=115°∴∠4=180°-∠1=180°-115°=65°∵∠EDA与∠4互为对顶角∴∠EDA=∠4=65°∵△EBC为等腰直角三角形∴∠E=45°∴在△EAD中,∠EAD=180°-∠E-∠EDA=180°-45°-65°=70°∵∠2与∠EAD互为对顶角∴∠2=∠EAD =70°故选:B.【点睛】此题主要考查平行线的性质,等腰直角三角形的性质,挖掘三角板条件中的隐含条件是解题关键.6.B解析:B【解析】【分析】先求出不等式的解集,再在数轴上表示出不等式的解集即可.【详解】-3x-1>2,-3x>2+1,-3x>3,x<-1,在数轴上表示为:,故选B.【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.7.A解析:A【分析】设这个队胜x场,负y场,根据在8场比赛中得到12分,列方程组即可.【详解】解:设这个队胜x场,负y场,根据题意,得8 312 x yx y+=⎧⎨-=⎩.故选:A.【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.8.C解析:C【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出第三边的取值范围,即可求解..【详解】设第三边为x,由三角形三条边的关系得4-2<x<4+2,∴2<x<6,∴第三边的长可能是4.故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.9.B解析:B【分析】根据平行线的判定定理求解,即可求得答案.【详解】解:①∵∠B+∠BCD=180°,∴AB ∥CD ;②∵∠1=∠2,∴AD ∥BC ;③∵∠3=∠4,∴AB ∥CD ;④∵∠B=∠5,∴AB ∥CD ;∴不能得到AB ∥CD 的条件是②.故选:B .【点睛】此题考查了平行线的判定.此题难度不大,注意掌握数形结合思想的应用,弄清截线与被截线.10.B解析:B【分析】把方程组24213x y x y -=⎧⎨+=⎩的解求解出来即可得到a 、b 的值,再计算32a b -的算术平方根即可得到答案;【详解】解:24213x y x y -=⎧⎨+=⎩①② 把①式×5得:248x y -= ③,用②式-③式得:55y = ,解得:y=1,把1y = 代入①式得到:24x -= ,即:6x = ,又x a y b =⎧⎨=⎩是方程组24213x y x y -=⎧⎨+=⎩的解, 所以61a b =⎧⎨=⎩, 故3216a b -=,所以32a b -的算术平方根=16的算术平方根,4== ,故答案为:4;【点睛】本题主要考查了二元一次方程组的求解以及算术平方根的定义,掌握用消元法求解二元一次方程组的解是解题的关键;二、填空题11.【解析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a2-32,符合平方差公式的特点解析:()()33a a +-【解析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a 2-32,符合平方差公式的特点,再利用平方差公式分解因式.a 2-9=a 2-32=(a+3)(a-3).故答案为(a+3)(a-3).考点:因式分解-运用公式法.12.24xy【解析】∵(3x+2y )2=(3x ﹣2y )2+A ,∴(3x )2+2×3x×2y+(2y)2=(3x )2-2×3x×2y+(2y)2+A,即9x2+12xy+4y2=9x2-12xy+解析:24xy【解析】∵(3x+2y )2=(3x ﹣2y )2+A ,∴(3x )2+2×3x×2y+(2y)2=(3x )2-2×3x×2y+(2y)2+A,即9x 2+12xy+4y 2=9x 2-12xy+4y 2+A∴A=24xy,故答案为24xy.【点睛】本题考查了完全平方公式,熟记完全平方公式是解题的关键.完全平方公式:(a±b)2=a 2±2ab+b 2. 13.【分析】根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出的值 .【详解】解:∵是完全平方式,即.故答案为:.【点睛】此题考查了完全平方式, 熟练掌握完全平方公式解析:6±【分析】根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出k 的值 .【详解】解:∵29x kx -+是完全平方式,即()2293x kx x -+=± 236k ∴=±⨯=±.故答案为:6±.【点睛】此题考查了完全平方式, 熟练掌握完全平方公式的结构特点是解本题的关键14.或【分析】将x 看做已知数求出y ,即可确定出正整数解.【详解】解:方程7x+y =15,解得:y =﹣7x+15,x =1,y =8;x =2,y =1,则方程的正整数解为或.故答案为:或.【点解析:18x y =⎧⎨=⎩或21x y =⎧⎨=⎩【分析】将x 看做已知数求出y ,即可确定出正整数解.【详解】解:方程7x+y =15,解得:y =﹣7x+15,x =1,y =8;x =2,y =1,则方程的正整数解为18x y =⎧⎨=⎩或21x y =⎧⎨=⎩.故答案为:18x y =⎧⎨=⎩或21x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.15..【解析】试题分析:因,所以,解得.考点:和的非负性;二元一次方程组的解法.解析:⎩⎨⎧==12y x .【解析】 试题分析:因()223420x y x y -+--=,所以⎩⎨⎧=--=-024302y x y x ,解得⎩⎨⎧==12y x . 考点:a 和2a 的非负性;二元一次方程组的解法.16. 3【分析】利用完全平方公式的结构特征判断即可求出k 的值.【详解】∵关于字母x 的二次三项式x2+2kx+9是完全平方式,∴k=±3,故答案为:3.【点睛】此题考查了完全平方式,熟练解析:±3【分析】利用完全平方公式的结构特征判断即可求出k 的值.【详解】∵关于字母x 的二次三项式x 2+2kx+9是完全平方式,∴k=±3,故答案为:±3.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.17.【分析】根据非0数的0次幂等于1列出关于的不等式,求出的取值范围即可.【详解】解:成立,故答案为:.【点睛】本题考查了0指数幂的意义,即非0数的0次幂等于1,0的0次幂无意义 解析:2x ≠【分析】根据非0数的0次幂等于1列出关于x 的不等式,求出x 的取值范围即可.【详解】解:0(2)1x -=成立,20x ∴-≠,解得2x ≠.故答案为:2x ≠.【点睛】本题考查了0指数幂的意义,即非0数的0次幂等于1,0的0次幂无意义.18.四【分析】根据题意得到关于m 、n 的二元一次方程组,确定点M 坐标,判断M 所在象限即可.【详解】解:由题意得,解得,∴点M 坐标为,∴点M 在第四象限.故答案为:四【点睛】本题考查了二元解析:四【分析】根据题意得到关于m 、n 的二元一次方程组,确定点M 坐标,判断M 所在象限即可.【详解】解:由题意得22111m n m n --=⎧⎨++=⎩, 解得11m n =⎧⎨=-⎩, ∴点M 坐标为()1,1-,∴点M 在第四象限.故答案为:四本题考查了二元一次方程定义,二元一次方程组解法,点的坐标等知识,综合性较强,根据题意列出方程组是解题关键.19.B【解析】连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,所以S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,解析:B【解析】连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,所以S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,∴S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,∵S四边形AEOH=6,S四边形BFOE=7,S四边形CGOF=8,∴6+8=7+S四边形DHOG,解得S四边形DHOG=7.故答案为7.点睛:本题考查了三角形的面积.解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.20.10cm【分析】依据AE是△ABC的边BC上的中线,可得CE=BE,再根据AE=AE,△ACE的周长比△AEB的周长多2cm,即可得到AC的长.【详解】解:∵AE是△ABC的边BC上的中线,解析:10cm【分析】依据AE是△ABC的边BC上的中线,可得CE=BE,再根据AE=AE,△ACE的周长比△AEB 的周长多2cm,即可得到AC的长.解:∵AE 是△ABC 的边BC 上的中线,∴CE =BE ,又∵AE =AE ,△ACE 的周长比△AEB 的周长多2cm ,∴AC−AB =2cm ,即AC−8cm =2cm ,∴AC =10cm ,故答案为10cm.【点睛】本题考查了三角形中线的有关计算,分析得到两个三角形的周长的差等于两边的差是解题的关键.三、解答题21.(1)374-.(2)16x 4−8x 2+1. 【分析】(1)原式利用负整数指数幂,零指数幂、平方的计算法则得到1914--÷,再计算即可得到结果;(2)原式逆用积的乘方运算法则变形,再利用平方差公式及完全平方公式化简即可得到结果.【详解】(1)2201(2)3()3----÷-= 1914--÷=374-. (2)原式=[(2x−1)(2x +1)]2=(4x 2−1)2=16x 4−8x 2+1.【点睛】本题考查零指数幂、负整数指数幂 、平方差公式及完全平方公式,熟练掌握运算法则是解本题的关键.22.(1)画图见解析;(2)画图见解析;(3)平行且相等;(4)12;(5)9【分析】(1)利用网格特点和平移的性质分别画出点A 、B 、C 的对应点A′、B′、C′即可得到△A′B′C′;(2)找出线段A′C′的中点E′,连接B′E′;(3)根据平移的性质求解;(4)由于线段AB 扫过的部分为平行四边形,则根据平行四边形的面积公式可求解. (5)根据同底等高面积相等可知共有9个点.【详解】(1)△A ′B ′C ′如图所示;(2)B ′D ′如图所示;(3)BB′∥CC′,BB′=CC′;(4)线段AB扫过的面积=4×3=12;(5)有9个点.【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.(1)24,21x xy y==⎧⎧⎨⎨==⎩⎩(2)-136(3)2.5xy=⎧⎨=⎩【解析】分析:(1)先对方程变形为x=6-2y,然后可带入数值求解;(2)把已知的x+y=0和方程x+2y-6=0组合成方程组,求解方程组的解,然后代入方程x-2y+mx+5=0即可求m的值;(3)方程整理后,根据无论m如何变化,二元一次方程组总有一个固定的解,列出方程组,解方程组即可;详解:(1)∵x+2y-6=0∴x=6-2y当y=1时,x=4,当y=2时,x=2∴24,21 x xy y==⎧⎧⎨⎨==⎩⎩(2)根据题意,把x+y=6和x+2y-6=0构成方程组为:6260 x yx y+=⎧⎨+-=⎩和解得66 xy=-⎧⎨=⎩把66xy=-⎧⎨=⎩代入x-2y+mx+5=0,解得m=13 6 -(3)∵无论实数m取何值,方程x-2y+mx+5=0总有一个固定的解,∴x=0时,m的值与题目无关∴y=2.5∴2.5 xy=⎧⎨=⎩点睛:此题主要考查了二元一次方程组的应用,对方程组中的方程灵活变形,构成可解方程是解题关键,有一定的难度,合理选择加减消元法和代入消元法解题是关键.24.(1)证明见解析;(2)24°;(3)24°;(4)∠P=34x+14y;(5)∠P=180()2A C︒-∠+∠【分析】(1)根据三角形内角和为180°,对顶角相等,即可证得∠A+∠B=∠C+∠D(2)由(1)的结论得:∠BCP+∠P=∠BAP+∠ABC①,∠PAD+∠P=∠PCD+∠ADC②,将两个式子相加,已知AP、CP分别平分∠BAD、∠BCD,可得∠BAP=∠PAD,∠BCP=∠PCD,可证得∠P=12(∠ABC+∠ADC),即可求出∠P度数.(3)已知直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,可得∠1=∠2,∠3=∠4,由(1)的结论得:∠C+180°-∠3=∠P+180°-∠1,∠A+∠4=∠P+∠2,两式相加即可求出∠P的度数.(4)由(1)的结论得:14∠CAB+∠C=∠P+14∠CDB,34∠CAB+∠P=∠B+34∠CDB,第一个式子乘以3,得到的式子减去第二个式子即可得出用x、y表示∠P(5)延长AB交DP于点F,标注出∠1,∠2,∠3,∠4,由(1)的结论得:∠A+2∠1=∠C+180°-2∠3,其中根据对顶角相等,三角形内角和,以及外角的性质即可得到∠1=∠PBF=180°-∠BFP-∠P=180°-(∠A+∠3)-∠P,代入∠A+2∠1=∠C+180°-2∠3,即可得出∠P与∠A、∠C的关系.【详解】(1)如图1,∠A+∠B+∠AOB=∠C+∠D+∠COD=180°∵∠AOB=∠COD∴∠A+∠B=∠C+∠D(2)∵AP、CP分别平分∠BAD、∠BCD∴∠BAP=∠PAD,∠BCP=∠PCD,由(1)的结论得:∠BCP+∠P=∠BAP+∠ABC①,∠PAD+∠P=∠PCD+∠ADC②①+②,得2∠P+∠PAD+∠BCP=∠BAP+∠ABC +∠PCD+∠ADC∴∠P=12(∠ABC+∠ADC)∴∠ABC=28°,∠ADC=20°∴∠P=12(28°+20°)∴∠P=24°故答案为:24°(3)∵如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,∴∠1=∠2,∠3=∠4由(1)的结论得:∠C+180°-∠3=∠P+180°-∠1①,∠A+∠4=∠P+∠2②①+②,得∠C+180°-∠3+∠A+∠4=∠P+180°-∠1+∠P+∠2∴30°+18°=2∠P∴∠P=24°故答案为:24°(4)由(1)的结论得:14∠CAB+∠C=∠P+14∠CDB①,34∠CAB+∠P=∠B+34∠CDB②①×3,得34∠CAB+3∠C=3∠P+34∠CDB③②-③,得∠P-3x=y-3∠P∴∠P=34x+14y故答案为:∠P=34x+14y(5)如图5所示,延长AB交DP于点F由(1)的结论得:∠A+2∠1=∠C+180°-2∠3∵∠1=∠PBF=180°-∠BFP-∠P=180°-(∠A+∠3)-∠P ∴∠A+360°-2∠A-2∠3-2∠P=∠C+180°-2∠3解得:∠P=180()2A C︒-∠+∠故答案为:∠P=180()2A C︒-∠+∠【点睛】本题是考查了角平分线性质及三角形内角和定理,对顶角相等,三角形任一外角等于不相邻的两个内角和等知识点,本题是典型的拓展延伸题,一般第一问得出基本结论,后面的问题将基本结论作为解题基础,进行拓展延伸.25.(1)草莓35箱,苹果25箱;(2)①340元,②53或52【分析】(1)抓住题中关键的已知条件,老徐购得草莓和苹果共60箱,刚好花费3100元,设未知数列方程组,求解方程即可;(2)①由题意列二元一次方程,可得到34120a b +=,列式求出他在乙店获利;②根据老徐希望获得总利润为1000元,建立关于a 、b 的二元一次方程,整理可得18034a b -=,再根据a 、b 的取值范围及a 一定是4的整数倍,即可求出结果; 【详解】 (1)解:设草莓购买了x 箱,苹果购买了y 箱,根据题意得:6060403100x y x y ⎧+=⎨+=⎩, 解得3525x y ⎧=⎨=⎩. 答:草莓购买了35箱,苹果购买了25箱;(2)解:①若老徐在甲店获利600元,则1520600ab +=, 整理得:34120a b +=,他在乙店的获利为:()()12351625a b -+-, =()820434a b -+,=820-4120⨯,=340元;②根据题意得:()()1520123516251000a b a b ++-+-=, 整理得:34180ab +=, 得到18034ab -=,∵a、b 均为正整数,∴a 一定是4的倍数,∴a 可能是0,4,8…,∵035a ≤≤,025b ≤≤, ∴当且仅当a=32,b=21或a=25,b=24时34180a b +=成立, ∴322153a b +=+=或28+24=52.故答案为340元;53或52.【点睛】本题主要考查了二元一次方程组的应用,根据题意列式是解题的关键.26.(1)43x y =⎧⎨=⎩;(2)31x y =⎧⎨=-⎩ 【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【详解】解:(1)由①得:x =7﹣y ③,把③代入②得:2(7﹣y )﹣3y =﹣1,解得:y =3,把y =3代入③得:x =4,所以这个二元一次方程组的解为:43x y =⎧⎨=⎩; (2)①×4+②×3得:17x =51,解得:x =3,把x =3代入①得:y =﹣1,所以这个方程组的解为31x y =⎧⎨=-⎩. 【点睛】本题主要考查了方程组的解法,准确运用代入消元法和加减消元法解题是解题的关键.27.(1)()(2)(2)x y a a -+-;(2)22(1)x --;(3)(2)(8)a a +-【分析】(1)先提公因式再利用平方差因式分解;(2)先提公因式再利用完全平方公式因式分解;(3)直接利用2(x+p)(x+q)x +(p+q)x+pq =公式因式分解. 【详解】解:(1)2()4()a x y x y ---()2()4x y a =--()(2)(2)x y a a =-+-(2)2242x x -+-()2221x x =--+22(1)x =--(3)2616a a --(2)(8)a a =+-【点睛】此题考查因式分解的几种常见的方法,主要考查运算能力.28.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A ′=∠A=180°-(65°+70°)=45°,∴∠A ′ED+∠A ′DE =180°-∠A ′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A ′ED+∠A ′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A ′DE-∠AED-∠A ′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.。
数学人教版七年级下册数学期末模拟试卷及答案百度文库
数学人教版七年级下册数学期末模拟试卷及答案百度文库一、选择题1.下列计算正确的是( ) A .a 3.a 2=a 6B .a 2+a 4=2a 2C .(a 3)2=a 6D .224(3)6a a =2.如图,下列推理中正确的是( )A .∵∠1=∠4, ∴BC//ADB .∵∠2=∠3,∴AB//CDC .∵∠BCD+∠ADC=180°,∴AD//BCD .∵∠CBA+∠C=180°,∴BC//AD 3.已知∠1与∠2是同位角,则( ) A .∠1=∠2 B .∠1>∠2 C .∠1<∠2 D .以上都有可能 4.下列式子是完全平方式的是( )A .a 2+2ab ﹣b 2B .a 2+2a +1C .a 2+ab +b 2D .a 2+2a ﹣1 5.已知4m =a ,8n =b ,其中m ,n 为正整数,则22m +6n =( )A .ab 2B .a +b 2C .a 2b 3D .a 2+b 3 6.如果多项式x 2+2x+k 是完全平方式,则常数k 的值为( ) A .1 B .-1 C .4D .-47.能把一个三角形的面积分成相等的两部分的线是这个三角形的( ) A .一条高B .一条中线C .一条角平分线D .一边上的中垂线8.下列各组数中,是二元一次方程5x ﹣y =4的一个解的是( )A .31x y =⎧⎨=⎩B .11x y =⎧⎨=⎩C .04x y =⎧⎨=⎩D .13x y =⎧⎨=⎩9.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( ) A .2a +2b -2c B .2a +2b C .2c D .0 10.一个多边形的每个内角都等于140°,则这个多边形的边数是( )A .7B .8C .9D .10二、填空题11.已知5m a =,3n a =,则2m n a -的值是_________. 12.分解因式:29a -=__________. 13.若关于x 、的方程()2233b a axb y -+++=是二元一次方程,则b a =_______14.若把代数式245x x --化为()2x m k -+的形式,其中m 、k 为常数,则m k +=______.15.如图,将边长为6cm 的正方形ABCD 先向下平移2cm ,再向左平移1cm ,得到正方形A 'B 'C 'D ',则这两个正方形重叠部分的面积为______cm 2.16.a m=2,b m=3,则(ab)m=______.17.目前,世界上能制造出的最小晶体管的长度只有0.00000004m,将0.00000004用科学记数法表示为_____.18.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是_____.19.小明在将一个多边形的内角逐个相加时,把其中一个内角多加了一次,错误地得到内角和为840°,则这个多边形的边数是___________.20.如图,已知AE是△ABC的边BC上的中线,若AB=8cm,△ACE的周长比△AEB的周长多2cm,则AC=_____.三、解答题21.解方程组:41 325 x yx y+=⎧⎨-=⎩.22.(知识回顾):如图①,在△ABC中,根据三角形内角和定理,我们知道∠A+∠B+∠C=180°.如图②,在△ABC中,点D为BC延长线上一点,则∠ACD为△ABC的一个外角.请写出∠ACD与∠A、∠B的关系,直接填空:∠ACD=.(初步运用):如图③,点D 、E 分别是△ABC 的边AB 、AC 延长线上一点. (1)若∠A =70°,∠DBC =150°,则∠ACB = °.(直接写出答案) (2)若∠A =70°,则∠DBC +∠ECB = °.(直接写出答案)(拓展延伸):如图④,点D 、E 分别是四边形ABPC 的边AB 、AC 延长线上一点. (1)若∠A =70°,∠P =150°,则∠DBP +∠ECP = °.(请说明理由)(2)分别作∠DBP 和∠ECP 的平分线,交于点O ,如图⑤,若∠O =40°,求出∠A 和∠P 之间的数量关系,并说明理由.(3)分别作∠DBP 和∠ECP 的平分线BM 、CN ,如图⑥,若∠A =∠P ,求证:BM ∥CN . 23.计算(1)(π-3.14)0-|-3|+(12)1--(-1)2012 (2) (-2a 2)3+(a 2)3-4a .a 5 (3)x (x+7)-(x-3)(x+2) (4)(a-2b-c )(a+2b-c ) 24.(知识生成)通常情况下、用两种不同的方法计算同一图形的面积,可以得到一个恒等式. (1)如图 1,请你写出()()22,a b a b ab +-,之间的等量关系是 (知识应用)(2)根据(1)中的结论,若74,4x y xy +==,则x y -= (知识迁移)类似地,用两种不同的方法计算同一几何体的情况,也可以得到一个恒等式.如图 2 是边长为+a b 的正方体,被如图所示的分割成 8块.(3)用不同的方法计算这个正方体的体积,就可以得到一个等式,这个等式可以是 (4)已知4a b +=,1ab =,利用上面的规律求33+a b 的值.25.先化简,再求值:(1)()()()462a a a a --+-,其中12a =-; (2)2(x 2)(2x 1)(2x 1)4x(x 1)+++--+,其中13x =. 26.己知关于x 、y 的二元一次方程组221x y kx y +=⎧⎨+=-⎩的解互为相反数,求k 的值。
七年级数学第二学期期末模拟试卷3
初一数学期末模拟试卷亲爱的同学们:时间过得真快啊!升入中学已近一年了,你与新课程在一起成长了,相信你掌握了许多新的数学知识与能力,变得更加聪明了,更加懂得应用数学来解决实际问题了。
现在是展示你实力的时候,你可要尽情的发挥哦!祝你成功 !一.基本知识与基本技能(本题有16空,共32分).1. 用科学记数法表示:0.000000723=__________。
2. 等腰三角形两边长分别为3、6,则其周长为 . 3. 请写出一个以 ⎩⎨⎧=-=45y x 为解的二元一次方程组 4. 已知二元一次方程432-=-y x ,用含x 代数式表示y = 5.掷一枚均匀的正方体骰子,①得到点数为6的概率为 ,②得到点数为奇数的概率为 ,③得到点数小于7的概率为 。
6、若方程组⎩⎨⎧=+=+5231y x y x 的解也是方程3x+ky=10的一个解,则k=7、如图所示,是用一张长方形纸条折成的。
如果∠1=100°,那么∠2=______°8.进行下列调查:①调查全班学生的视力;②调查初一年级学生双休日是如何安排的;③调查学校大门两侧100米内有没有开电子游戏厅;④电视台调查某部电视剧的收视率;⑤联合国调查伊拉克是否还在继续生产大规模杀伤性武器;⑥调查一批炮弹的杀伤半径;⑦质量技术监督部门调查某种电子产品的质量.再这些调查中,适合作普查的是______,适合作抽样调查的是____________.(只填序号)9、若(x +P )与(x +2)的乘积中,不含x 的一次项,则P 的值是 10、若92++mx x 是一个完全平方式,则m 的值是11.在△ABC 中,若∠A=21∠B=31∠C,则该三角形的形状是 .12.如果一个多边形的内角和等于它的外角和,那么这个 多边形是 边形.13.在如图所示的4×4正方形网格中, ∠1+∠2+∠3+∠4+∠5+∠6+∠7=二.看谁的命中率高(本题有10小题,共30分).第13题A BEDF C11 A.树叶从树上落下 B.电梯由一楼升到顶楼 C. 碟片在光驱中运行 D.卫星绕地球运动 12. 下列运算中,正确的是( )A ()222a b a b +=+ B ()2222x y x xy y --=++C ()()2326x x x +-=-D ()()22a b a b a b --+=-13、下列四个图形中用两条线段不能分成四个全等图形的是( )AB C D14.下列事件:确定事件是 ( )A.掷一枚六个面分别标有1-6的数字的均匀骰子,骰子停止转动后偶数点朝上. B .从一副扑克牌中任意抽出一张牌,花色是红桃. C .任意选择电视的某一频道,正在播放动画片.D .在同一年出生的367名学生中,至少有两人的生日是同一天. 15.若2m =3,2n =4,则23m-2n 等于( )A .1B .89 C .827 D .1627 16.如图,D 在AB 上,E 在AC 上,且∠B=∠C ,则在下列条件中,无法判定△ABE ≌△ACD 的是A.AD =AEB.AB =ACC.BE =CDD.∠AEB =∠ADC17.图,在△ABC 中,AB =AC ,AD 是△ABC 的平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F.则下面结论中正确的有 ①DA 平分∠EDF; ②AE =AF ,DE =DF;③AD 上的点到B 、C 两点的距离相等;④图中共有3对全等三角形A. 1个B. 2个C. 3个D.4个18、 某粮食生产专业户去年计划生产水稻和小麦共15吨,实际生产17吨,其中水稻超产10%,小麦超产15%,设该专业户去年计划生产水稻x 吨,生产小麦y 吨,依据题意列出方程组是( )A ⎩⎨⎧=⨯+⨯=+17%15%10,15y x y x B⎩⎨⎧=⨯+⨯=+15%15%10,17y x y x A C E第16题C ⎩⎨⎧=+++=+17%)151(%)101(,15y x y x D⎩⎨⎧=+++=+15%)151(%)101(,17y x y x 19.一个三角形的3个外角的度数之比为2:3:4,则与之相应的3个内角度数之比为( ) A 4:3:2 B 3:2:4 C 5:3:1 D 3:1:55.20.中央电视台“幸运52”栏目“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是 ( ) A.41 B .51 C.61 D.203 三.看谁既快又准确.21.计算:(每小题5分,共15分)(1)102322334)()2()(2a a a a a +-⋅-+ (2) 4x (x -1)2+x (2x +5)(5-2x )(3)2)101(--+(—3)0+(—0.2)2005×(—5)2004. 22.因式分解:(每小题5分,共15分) (1)222y x xy ---(2)16(m —n)2—9(m+n)2(3) (1)4)x y ()y x (x 2-+-23.将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌面上.(8分) (1)随机地抽取一张,求P(奇数);(2)随机地抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?(列表表示)(3)恰好是“32”的概率为多少?OB24 .已知方程组⎩⎨⎧-=-=+)2(24)1(155by x y ax ,由于甲看错了方程(1)中的a 得到方程组的解为⎩⎨⎧=-=13y x ,乙看错了方程(2)中的b 得到方程组的解为⎩⎨⎧==41y x 若按正确的a 、b 计算,求原方程组的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学期末模拟试卷
亲爱的同学们:
时间过得真快啊!升入中学已近一年了,你与新课程在一起成长了,相信你掌握
了许多新的数学知识与能力,变得更加聪明了,更加懂得应用数学来解决实际问题了。
现在是展示你实力的时候,你可要尽情的发挥哦!祝你成功!
一.基本知识与基本技能(本题有16空,共32分).
1. 用科学记数法表示:0.000000723= ____________ 。
2. 等腰三角形两
边长分别为3、6,则其周长为.
3. 请写出一个以_________________________ = —5为解的二元一次方程组
y = 4
4. ________________________________________________________ 已知二元一次方程2x 「3y = -4,用含x代数式表示y = ______________________________
5•掷一枚均匀的正方体骰子,①得到点数为6的概率为_________ ,②得到点数为奇数的概率为________ ,③得到点数小于7的概率为__________ 。
------------ X + y —1
6、若方程组* 的解也是方程3x+ky=10的一个解,则k= ________
Qx + 2y =5
7、如图所示,是用一张长方形纸条折成的。
如果/ 仁100° ,那么/ 2= _______ °/
&进行下列调查:①调查全班学生的视力;②调查初一年级学生双休日是如何安排的;''
③调查学校大门两侧100米内有没有开电子游戏厅;④电视台调查某部电视剧的收视
率;⑤联合国调查伊拉克是否还在继续生产大规模杀伤性武器;⑥调查一批炮弹的杀伤半径;⑦质量技术监督部门调查某种电子产品的质量. 再这些调查中,适合作普查的是
______ ,适合作抽样调查的是 ______________ .(只填序号)
/
h Z
//
9、若(x+P)与(x+2)的乘积中,不含x的一次项,则P的值是
10、若x2 mx 9是一个完全平方式,则m的值是 __________
1 1
11. 在厶ABC中,若/ A=—/ B=—/ C,则该三角形的形状是.
2 3
12. 如果一个多边形的内角和等于它的外角和,那么这个
第13题
13、下列四个图形中用两条线段不能分成四个全等图形的是(
14.下列事件:确定事件是()
A.掷一枚六个面分别标有1-6的数字的均匀骰子,骰子停止转动后偶数点朝上.
B .从一副扑克牌中任意抽出一张牌,花色是红桃.
C •任意选择电视的某一频道,正在播放动画片.
D .在同一年出生的
15.若2m= 3,2n= 4,
367名学生中,至少有两人的生日是同一天.
则23m-2n等于()
9 27
8 8
E在AC上,且/ B=Z C,
16.如图,D在AB上,
则在下列条件中,无法判定△ABE^A ACD的是
A.AD= AE
B.AB = AC
C.BE= CD
D. / AEB=Z ADC
多边形是_______ 边形•
13. _________________________________________________________________________ 在如图所示的4X 4正方形网格中,/ 1 + /2 + /3+Z 4+Z 5+Z 6+Z 7 = ________________________
看谁的命中率高(本题有10小题,共30分).
C.碟片在光驱中运行
12.下列运算中,正确的是()
2
2
B -x _ y 二x 2xy y
题号11121314151617181920
答案
11 •下列现象是数学中的平移的是(
)
B.电梯由一楼升到顶楼
A.树叶从树上落下
D.卫星绕地球运动
2
C x 3 x-2 =x -6
2 2
D-a-b a b=a-b
)
D
B
A. 1 个
B. 2 个
C. 3 个
D.4 个
你一疋冃能
18、某粮食生产专业户去年计划生产水稻和小麦共
15吨,实际生产17吨,其中水稻超
产10%,小麦超产15%,设该专业户去年计划生产水稻 x 吨,生产小麦y 吨,依据
题意列出方程组是(
)
19.一个三角形的3个外角的度数之比为 2:3:4,则与之相应的3个内角度数之比为(
(3)(-丄)'+(— 3)°+(— 0.2)2005X (— 5)2004
10
22 .因式分解:(每小题5分,共15分)
2 2
(2) 16(m — n) — 9(m+n)
x y =15,
J0% xx+15%x y =17 x y = 17,
J0%況 x+15%x y = 15 x y = 15, x(1 10%)
y(1 15%) =17
x+ y =17,
x(1+10%) + y(1+15%)=15
A 4: 3: 2
B 3 : 2 : 4
C 5: 3: 1
D 3 : 1 : 55.
20•中央电视台“幸运 52”栏目“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下: 在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张 哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会 翻)•某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是
A
1 D
1 A.
B .-
4
5
三.看谁既快又准确.
21 .计算:(每小题5分,共15分)
C. D.
(翻过的牌不能
再 ()
20
(1) 2(a 4)3
(-2a 3)2 (-a 2)3 a 2a 10
4x ( x — 1)2+x (2x+5) (5- 2x )
2 2
(1) 「2xy -x -讨 做对!
(3) (1)4 x2(x —y) (y —X)
23.将分别标有数字1, 2, 3的三张卡片洗匀后,背面朝上放在桌面上. (8分)
(1)随机地抽取一张,求P(奇数);
(2)随机地抽取一张作为十位上的数字(不放回),再
抽取一张作为个位上的数字,能组
成哪些两位数?(列表表示)
(3)恰好是“ 32”的概率为多少?
ax +5y = 15 (1)
24 .已知方程组丿' ,由于甲看错了方程(1)中的a得到方程组的解
4x - by = -2 (2)
「X = -3 「X = 1
为』,乙看错了方程(2)中的b得到方程组的解为』若按正确的a、b计算, )=1$ = 4
求原方程组的解。
(10分)
25、为了了解学校开展“孝敬父母,从家务事做起”活动的实施情况,该校抽取初一年段
50名学生,调查他们一周(按七天计算)做家务所用时间(单位:小时),得到一组数据,并绘制成右表,根据该表完成下列各题:(10分)频率分布表
26、如图,已知 P 是乂 AOB 内一点且 PC 丄0A 于C, PD 丄0B 于D 且EC=FD EP=PF 猜想
27•某中学新建了一栋四层的教学楼, 每层楼有10间教室,进出这栋教学楼共有 4个门, 其中两个正门大小相同,两个侧门大小也相同
•安全检查中,对4个门进行了测试,当同
时开启一个正门和两个侧门时, 2分钟内可以通过 560名学生;当同时开启一个正门和 一个侧门时,4分钟内可以通过 800名学生.
(1) 求平均每分钟一个正门和一个侧门各可以通过多少名学生? (2)
检查中发现,出现紧急情况时,因学生拥挤,出门的效率将降低
20%安全检查规
定:在紧急情况下全楼的学生应在
5分钟内通过这4个门安全撤离,假设这栋教学大
楼每间教室最多有 45名学生,问:该教学楼建造的这 4个门是否符合安全规定?请
说明理由•( 8分)
分组 频数累计 频数 频率 0.55~1.05 14 0.28 1.05~1.55
15
0.30 1.55~2.05
2.05~2.55
4 0.08 2.55~3.05
5 0.10
3.05~3.55
3
3.55~
4.05
2 0.04 合计
50
1.00
(1) 填写频率分布表中未完成的部分; (2) 在这个问题中,总体是
(3)
由以上信息判断,每周做家务的时 间
不超过1.5小时的学生所占百分比是
_________ ;
(4) 针对以上情况,写一个20字以内倡导“孝 敬父母,热爱劳动”的句子。
(10 分)
三•操作与探究(12分)
28 .如图,等腰直角△ ABC的直角顶点C在直线m上,AD丄m, BE± m垂足分别为D E. ⑴试探索AD BE DE的大小关系
(2)若直线m与线段BC相交,你所得(1)的结论成立吗?若不成立,请画出图形,写出正确结论,并加以证明
E
C。