2017年河北省邯郸市中考数学一模试卷
河北省邯郸市中考数学一模试卷
河北省邯郸市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列数,3.14159,-0.15,0.9999…,1.010010001…,π,,其中无理数有()A . 2B . 3C . 4D . 52. (2分)(2017·诸城模拟) 如图是五个相同的正方体组成的一个几何体,它的左视图是()A .B .C .D .3. (2分)若关于x的一元一次不等式组有解,则m的取值范围为()A . m>B . m≤C . m>﹣D . m≤﹣4. (2分) (2018·兰州) 如图,已知二次函数的图象如图所示,有下列5个结论;;;;的实数其中正确结论的有()A .B .C .D .5. (2分)(2018·宁波) 若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为()A . 7B . 5C . 4D . 36. (2分)在△ABC中,已知AC=3,BC=4,AB=5,那么下列结论正确的是()A . sinA=B . cosA=C . tanA=D . cosB=7. (2分)如图,AC是⊙O的直径,AB,CD是⊙O的两条弦,且AB∥CD,若∠BAC=44°,则∠AOD等于()A . 22°B . 44°C . 66°D . 88°8. (2分)一元二次方程x2﹣3x﹣5=0的根的情况是()A . 有两个相等的实数根B . 没有实数根C . 无法确定是否有实数根D . 有两个不相等的实数根9. (2分)小亮早晨从家骑车到学校,先上坡后下坡,行程情况如图所示,若返回时上坡、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是()A . 37.2分钟B . 48分钟C . 30分钟D . 33分钟10. (2分)(2020·许昌模拟) 在平面直角坐标系中,将一块含有角的直角三角板如图放置,直角顶点的坐标为,顶点的坐标为,顶点恰好落在第一象限的双曲线上,现将直角三角板沿轴正方向平移,当顶点恰好落在该双曲线上时停止运动,则此时点的对应点的坐标为()A .B .C .D .二、填空题 (共6题;共6分)11. (1分)(2018·昆山模拟) 已知a2﹣4b2=12,且a﹣2b=﹣3,则a+2b=________.12. (1分)如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为4,则a的值是________13. (1分) (2018·亭湖模拟) 如图,在中,.如果将该三角形绕点按顺时针方向旋转到的位置,点恰好落在边的中点处.那么旋转的角度等于________.14. (1分)(2016·贵阳模拟) 如图,在正方形ABCD中,点E,F分别在边BC,CD上,如果AE=4,EF=3,AF=5,那么正方形ABCD的面积等于________.15. (1分)(2018·黄冈模拟) “国十条”等楼市新政的出台,使得房地产市场交易量和楼市房价都一味呈现止涨观望的态势.若某一商人在新政的出台前进货价便宜8%,而现售价保持不变,那么他的利润率(按进货价而定)可由目前的x%增加到(x+10)%,x等于________.16. (1分)(2017·松江模拟) 如图,在△A BC中,∠ACB=90°,AB=9,cosB= ,把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E,则点A,E之间的距离为________.三、解答题 (共8题;共86分)17. (5分)计算:(﹣)﹣2﹣(π﹣3)0+sin30°﹣()()18. (10分) (2013八下·茂名竞赛) 如图,图中的小方格都是边长为1的正方形,的顶点坐标分别为,,.(1)请在图中画出绕点顺时针旋转后的图形;(2)请直接写出以为顶点的平行四边形的第四个顶点的坐标.19. (10分)如图,△ABC内接于⊙O,AB=AC,过点A作AD⊥AB交⊙O于点D,交BC于点E,点F在DA的延长线上,且∠ABF=∠C.(1)求证:BF是⊙O的切线;(2)若AD=4,cos∠ABF= ,求BC的长.20. (15分)(2012·茂名) 在4张完全相同的卡片正面分别写上数字1,2,3,3,现将它们的背面朝上洗均匀.(1)随机抽出一张卡片,求抽到数字“3”的概率;(2)若随机抽出一张卡片记下数字后放回并洗均匀,再随机抽出一张卡片,求两次都是抽到数字“3”的概率;(要求画树状图或列表求解)(3)如果再增加若干张写有数字“3”的同样卡片,洗均匀后,使得随机抽出一张卡片是数字“3”的概率为,问增加了多少张卡片?21. (15分) (2017八下·萧山期中) 将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边与含45°角的三角尺(△ACD)的斜边恰好重合.已知AB= ,P是AC上的一个动点.(1)当点P运动到∠ABC的平分线上时,连接DP,求DP的长;(2)当点P在运动过程中出现PD=BC时,求此时∠PDA的度数;(3)当点P运动到什么位置时,以D,P,B,Q为顶点的平行四边形的顶点Q恰好在边BC上?求出此时▱DPBQ 的面积.22. (10分)某景点的门票价格如表:购票人数/人1~5051~100100以上每人门票价/元12108某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?23. (10分) (2018九上·萧山开学考) 如图,在正方形ABCD 中,点F是BC延长线上一点,过点B作BE⊥DF 于点E,交CD于点G,连接CE.(1)若正方形ABCD边长为3,DF=4,求CG的长;(2)求证:EF+EG= CE.24. (11分) (2018九下·绍兴模拟) 阅读:圆是最完美的图形,它具有一些特殊的性质:同弧或等弧所对的圆周角相等,一条弧所对的圆周角等于这条弧所对的圆心角的一半……先构造“辅助圆”,再利用圆的性质将问题进行转化,往往能化隐为显、化难为易。
河北省邯郸市中考数学一模试卷#(精选.)
2017年河北省邯郸市中考数学一模试卷一、选择题(本题共16个小题,共42分)1.(3分)下列各数中,是无理数的是()A.﹣1 B.πC.0 D.2.(3分)下列四个图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.3.(3分)下列算式中,结果等于x6的是()A.x2•x2•x2B.x2+x2+x2C.x2•x3D.x4+x24.(3分)如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60°,则下列结论错误的是()A.∠2=60° B.∠3=60°C.∠4=120°D.∠5=40°5.(3分)在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的2=1.2,S乙2=1.6,则关于甲、乙两人在这次射平均数均是9.1环,方差分别是S甲击训练中成绩稳定的描述正确的是()A.甲比乙稳定B.乙比甲稳定C.甲和乙一样稳定 D.甲、乙稳定性没法对比6.(3分)如图,济南大约位于石家庄的南偏东56°方向上,则石家庄大约位于济南的()A.北偏西56°方向上B.北偏西34°方向上C.南偏西34°方向上D.南偏东56°方向上7.(3分)一元二次方程x2+4x+c=0中,c<0,该方程根的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相等的实数根D.不能确定8.(3分)如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,△ABC的面积为4,则△DEF的面积为()A.2 B.8 C.16 D.249.(3分)当a,b互为相反数时,代数式a2+ab﹣2的值为()A.2 B.0 C.﹣2 D.﹣110.(3分)数轴上点A、B表示的数分别是a,b,则点A,B之间的距离为()A.a+b B.a﹣b C.|a+b|D.|a﹣b|11.(2分)某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km,求提速前列车的平均速度.设列车提速前的平均速度是xkm/h,下面所列出的四个方程中,正确的是()A.B.C.D.12.(2分)图中的正三角形和正六边形有公共的外接圆⊙O.则这个正三角形和正六边形边长的比为()A.:2 B.:2 C.:1 D.2:113.(2分)若实数a是不等式2x﹣1>5的解,但实数b不是不等式2x﹣1>5的解,则下列选项中,正确的是()A.a<b B.a>b C.a≤b D.a≥b14.(2分)如图,在平面直角坐标系中,依下列步骤尺规作图,并保留作图痕迹:步骤1:以点O为圆心,任意长为半径画弧,与x轴负半轴交于点A,与直线y=x 交于点B(点B在第三象限):步骤2:分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点C.则直线OC的函数解析式为()A.y=x B.y=﹣x C.y=x D.y=﹣x15.(2分)如图,⊙O的半径为2,AB,CD是两条互相垂直的直径,点P是⊙O上任意一点(点P与点A,B,C,D均不重合),过点P作PM⊥AB于点M.PN ⊥CD于点N,点Q是线段MN的中点.若点P以点O为旋转中心.沿着圆周顺时针旋转45°.则点Q经过的路径长为()A.B.C.D.16.(2分)如图,在平面直角坐标系中,四边形OABC为矩形,其中A(2,0)C(0,4),反比例函数y=(x>0,k>0)的图象与矩形的对角线AC有公共点,并且交AB边于点E,交BC边于点F,以下结论:①直线AC的解析式为y=﹣2x+4;②EF∥AC;③当反比例函数图象与线段AC只有一个公共点时,k值最大,最大值为2;④△BEF面积的最小值为2.则下列选项中,正确的是()A.②③④B.①③④C.①②④D.①②③二、填空题(本大题共3小题,共10分)17.(3分)计算:(3﹣π)0﹣sin30°=.18.(3分)化简的结果为.19.(4分)如图中的虚线网格为菱形网格,每一个小菱形的面积均为1,网格中虚线的交点称为格点,顶点都在格点的多边形称为格点多边形,如:格点▱ABCD 的面积是6.(1)格点△PMN的面积是.(2)格点四边形EFGH的面积是.三、解答题(本大题共7小题,共68分)20.(9分)请你参考黑板中老师的讲解,运用平方差公式简便计算:(1)×;(2)(2017+2017)(﹣).21.(9分)已知:如图,△ABC和△EFC都是等腰直角三角形,∠ACB=∠ECF=90°,点E在AB边上.(1)求证:△ACE≌△BCF;(2)若∠BFE=60°,求∠AEC的度数.22.(9分)已知n边形的对角线共有条(n是不小于3的整数);(1)五边形的对角线共有条;(2)若n边形的对角线共有35条,求边数n;(3)若n边形的边数增加1,对角线总数增加9,求边数n.23.(9分)为了解七年级学生上学期参加社会实践活动的情况,随机抽查了某市七年级200名学生参加社会实践活动的天数,并根据抽查结果制作了如下不完整的条形统计图:根据以上信息,解答下列问题:(1)求条形统计图中参加社会实践活动天数为6天所对应的人数,及被调查的200名学生参加社会实践活动天数的平均数;(2)被调查的学生参加社会实践活动天数的众数为,中位数为.(3)在此次调查活动中,A、B、C、D四位同学说他们中有两人被抽查了,请你用列表法或画树状图,求出恰好抽到A与B两位同学的概率;(4)某市有七年级学生10万人,请你估计该市七年级学生参加社会实践活动不少于5天的人数.24.(10分)嘉淇同学家的饮水机中原有水的温度为20℃,其工作过程如图所示,在一个由20℃加热到100℃再降温到20℃的过程中,水温记作y(℃),从开始加热起时间变化了x(分钟),加热过程中,y与x满足一次函数关系,水温下降过程中,y与x成反比例,当x=20时,y=40.(1)写出饮水机水温的下降过程中y与x的函数关系,并求出x为何值时,y=100;(2)求加热过程中y与x之间的函数关系;(3)求当x为何值时,y=80.问题解决若嘉淇同学上午八点将饮水机通电开机后即外出散步,预计九点前回到家中,若嘉淇想喝到不低于50℃的水,直接写出外出时间m(分钟)的取值范围.25.(10分)如图,已知以AE为直径的半圆圆心为O,半径为5,矩形ABCD的顶点B在直径AE上,顶点C在半圆上,AB=8,点P为半圆上一点.(1)矩形ABCD的边BC的长为;(2)将矩形沿直线AP折叠,点B落在点B′.①点B′到直线AE的最大距离是;②当点P与点C重合时,如图所示,AB′交DC于点M.求证:四边形AOCM是菱形,并通过证明判断CB′与半圆的位置关系;③当EB′∥BD时,直接写出EB′的长.26.(12分)如图,在平面直角坐标系中,点A,B的坐标分别为A(1,0),B (3,0).探究:抛物线y=x2﹣2mx+m2﹣4(m为常数)交x轴于点M,N两点;(1)当m=2时,求出抛物线的顶点坐标及线段MN的长;(2)对于抛物线y=x2﹣2mx+m2﹣4(m为常数).①线段MN的长度是否发生改变,请说明理由;②若该抛物线与线段AB有公共点,请直接写出m的取值范围;拓展:对于抛物线y=a2(x﹣b)2﹣4(a,b为常数,且满足a=).(1)请直接写出该抛物线与y轴的交点坐标;(2)若该抛物线与线段AB有公共点,请直接写出a的取值范围.2017年河北省邯郸市中考数学一模试卷参考答案与试题解析一、选择题(本题共16个小题,共42分)1.(3分)(2017•邯郸一模)下列各数中,是无理数的是()A.﹣1 B.πC.0 D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:π是无理数,故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(3分)(2017•邯郸一模)下列四个图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项不合题意;B、是轴对称图形,也是中心对称图形,故此选项不合题意;C、是轴对称图形,也是中心对称图形,故此选项不合题意;D、是轴对称图形,不是中心对称图形,故此选项符合题意.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(2017•邯郸一模)下列算式中,结果等于x6的是()A.x2•x2•x2B.x2+x2+x2C.x2•x3D.x4+x2【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项分析判断后利用排除法求解.【解答】解:A、x2•x2•x2=x6,故选项A符合题意;B、x2+x2+x2=3x2,故选项B不符合题意;C、x2•x3=x5,故选项C不符合题意;D、x4+x2,无法计算,故选项D不符合题意.故选:A.【点评】本题考查合并同类项、同底数幂的乘法、单项式乘以单项式等知识,熟练掌握运算性质和法则是解题的关键.4.(3分)(2016•深圳)如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60°,则下列结论错误的是()A.∠2=60° B.∠3=60°C.∠4=120°D.∠5=40°【分析】根据平行线的性质:两直线平行,同位角相等,以及对顶角相等等知识分别求出∠2,∠3,∠4,∠5的度数,然后选出错误的选项.【解答】解:∵a∥b,∠1=60°,∴∠3=∠1=60°,∠2=∠1=60°,∠4=180°﹣∠3=180°﹣60°=120°,∵三角板为直角三角板,∴∠5=90°﹣∠3=90°﹣60°=30°.故选D.【点评】本题考查了平行线的性质,解答本题的关键上掌握平行线的性质:两直线平行,同位角相等.5.(3分)(2017•邯郸一模)在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是9.1环,方差分别是S甲2=1.2,S乙2=1.6,则关于甲、乙两人在这次射击训练中成绩稳定的描述正确的是()A.甲比乙稳定B.乙比甲稳定C.甲和乙一样稳定 D.甲、乙稳定性没法对比【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=1.2,S乙2=1.6,∴S甲2<S乙2,∴甲、乙两人在这次射击训练中成绩稳定的是甲,∴甲比乙稳定;故选A.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.(3分)(2017•邯郸一模)如图,济南大约位于石家庄的南偏东56°方向上,则石家庄大约位于济南的()A.北偏西56°方向上B.北偏西34°方向上C.南偏西34°方向上D.南偏东56°方向上【分析】根据方向的相对性,可得答案.【解答】解:由方向的相对性,得石家庄大约位于济南的北偏西56°方向上,故选:A.【点评】本题考查了方向角,利用物体的相对性是解题关键.7.(3分)(2007•湘潭)一元二次方程x2+4x+c=0中,c<0,该方程根的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相等的实数根D.不能确定【分析】求出方程的判别式△的值后,和0比较大小就可以判断根的情况.【解答】解:∵c<0,∴﹣c>0,∴△=16﹣4c>0,所以方程有两个不相等的实数根.故选B.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8.(3分)(2017•邯郸一模)如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,△ABC的面积为4,则△DEF的面积为()A.2 B.8 C.16 D.24【分析】利用位似图形的性质首先得出位似比,进而得出面积比.【解答】解:∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4,∵△ABC的面积为4,∴△DEF的面积为:16.故选:C.【点评】此题主要考查了位似图形的性质,得出位似比是解题关键.9.(3分)(2017•邯郸一模)当a,b互为相反数时,代数式a2+ab﹣2的值为()A.2 B.0 C.﹣2 D.﹣1【分析】由互为相反数两数之和为0得到a+b=0,原式变形后代入计算即可求出值.【解答】解:由题意得到a+b=0,则原式=a(a+b)﹣2=0﹣2=﹣2,故选C【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.10.(3分)(2017•邯郸一模)数轴上点A、B表示的数分别是a,b,则点A,B 之间的距离为()A.a+b B.a﹣b C.|a+b|D.|a﹣b|【分析】根据数轴上两点间的距离是大数减小数,可得答案.【解答】解:∵点A、B在数轴上分别表示有理数a、b,∴A、B两点之间的距离可以表示为:|a﹣b|.故选:D.【点评】本题考查了数轴,熟记数轴上两点间的距离公式是解题关键.11.(2分)(2017•邯郸一模)某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km,求提速前列车的平均速度.设列车提速前的平均速度是xkm/h,下面所列出的四个方程中,正确的是()A.B.C.D.【分析】设列车提速前的平均速度是xkm/h,则提速后的速度为(x+v)km/h,根据用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km,列方程即可.【解答】解:设列车提速前的平均速度是xkm/h,则提速后的速度为(x+v)km/h,由题意得,=.故选A.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.12.(2分)(2017•邯郸一模)图中的正三角形和正六边形有公共的外接圆⊙O.则这个正三角形和正六边形边长的比为()A.:2 B.:2 C.:1 D.2:1【分析】根据题意画出图形,通过解直角三角形用R分别表示出它们的边长,进而可得出结论.【解答】解:设外接圆的半径为R,如图所示:连接O2 A,O2 B,则O2 B⊥AC,∵O2 A=R,∠O2 AF=30°,∠AO2 B=60°,∴△AO2 B是等边三角形,AF=O2A•cos30°=R,∴AB=R,AC=2AF=R;∴外接圆的半径相等的正三角形、正六边形的边长之比为R:R=:1.故选C.【点评】本题考查的是正多边形和圆、解直角三角形;熟知正三角形、正方形和正六边形的性质是解答此题的关键.13.(2分)(2017•邯郸一模)若实数a是不等式2x﹣1>5的解,但实数b不是不等式2x﹣1>5的解,则下列选项中,正确的是()A.a<b B.a>b C.a≤b D.a≥b【分析】首先解不等式2x﹣1>5,求得不等式的解集,则a和b的范围即可确定,从而比较a和b的大小.【解答】解:解2x﹣1>5得x>3,a是不等式2x﹣1>5的解,则a>3,b不是不等式2x﹣1>5的解,则b≤3,故a>b.故选B.【点评】本题考查了一元一次不等式的解法,根据不等式的解集确定a和b的范围是解决问题的关键.14.(2分)(2017•邯郸一模)如图,在平面直角坐标系中,依下列步骤尺规作图,并保留作图痕迹:步骤1:以点O为圆心,任意长为半径画弧,与x轴负半轴交于点A,与直线y=x 交于点B(点B在第三象限):步骤2:分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点C.则直线OC的函数解析式为()A.y=x B.y=﹣x C.y=x D.y=﹣x【分析】作BD⊥x轴于D,作CE⊥x轴于E,如图,设B(m,m),利用正切的定义得到tan∠BOD=,则∠BOD=60°,再利用基本作图得到OC平分∠AOB,则∠AOC=30°,设CE=t,则OE=3t,所以C(﹣3t,﹣t),然后利用待定系数法求直线OC的解析式.【解答】解:作BD⊥x轴于D,作CE⊥x轴于E,如图,设B(m,m),∴tan∠BOD==,∴∠BOD=60°,由作法得OC平分∠AOB,∴∠AOC=30°,在Rt△CEO中,tan∠COE=tan30°==,设CE=t,则OE=3t,则C(﹣3t,﹣t),设直线OC的解析式为y=kx,把C(﹣3t,﹣t)代入得﹣t=﹣3tk,解得k=,∴直线OC的解析式为y=x.故选C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了一次函数图象上点的坐标特征.15.(2分)(2017•邯郸一模)如图,⊙O的半径为2,AB,CD是两条互相垂直的直径,点P是⊙O上任意一点(点P与点A,B,C,D均不重合),过点P作PM⊥AB于点M.PN⊥CD于点N,点Q是线段MN的中点.若点P以点O为旋转中心.沿着圆周顺时针旋转45°.则点Q经过的路径长为()A.B.C.D.【分析】根据OP的长度不变,始终等于半径,则根据矩形的性质可得OQ=1,再由走过的角度代入弧长公式即可.【解答】解:∵PM⊥AB于点M,PN⊥CD于点N,∴四边形ONPM是矩形,又∵点Q为MN的中点,∴点Q为OP的中点,又OP=2,则OQ=1,点Q走过的路径长==.故选A.【点评】本题考查了弧长的计算及矩形的性质,解答本题的关键是根据矩形的性质得出点Q运动轨迹的半径,要求同学们熟练掌握弧长的计算公式.16.(2分)(2017•邯郸一模)如图,在平面直角坐标系中,四边形OABC为矩形,其中A(2,0)C(0,4),反比例函数y=(x>0,k>0)的图象与矩形的对角线AC有公共点,并且交AB边于点E,交BC边于点F,以下结论:①直线AC的解析式为y=﹣2x+4;②EF∥AC;③当反比例函数图象与线段AC只有一个公共点时,k值最大,最大值为2;④△BEF面积的最小值为2.则下列选项中,正确的是()A.②③④B.①③④C.①②④D.①②③【分析】①由点A、B的坐标利用待定系数法即可求出直线AC的解析式,①成立;②由反比例函数图象上点的坐标特征求出点E、F的坐标,根据==,即可得出EF∥AC,②成立;③设反比例函数图象与AC的交点为D,过D作DM ⊥x轴于点M,过点D作DN⊥y轴于点N,设OM=x(0<x<2),则ON=4﹣2x,根据反比例函数图象上点的坐标特征即可得出k=﹣2(x﹣1)2+2≥2,由此可得出k的最小值,再将直线AC解析式代入反比例函数解析式整理出一元二次方程,通过解方程组即可得出此时反比例函数图象与线段AC只有一个公共点,③成立;≥,④不成立.综上④根据三角形的面积公式结合k的取值范围即可得出S△BEF即可得出结论.【解答】解:①设直线AC的解析式为y=ax+b,将A(2,0)、B(0,4)代入y=ax+b,,解得:,∴直线AC的解析式为y=﹣2x+4,①成立;②当x=2时,y==,∴点E(2,);当y==4时,x=,∴点F(,4).∵四边形OABC为矩形,其中A(2,0)C(0,4),∴点B(2,4),∴BC=2,BA=4,BF=2﹣=,BE=4﹣=,∴==,∴EF∥AC,②成立;③设反比例函数图象与AC的交点为D,过D作DM⊥x轴于点M,过点D作DN ⊥y轴于点N,如图所示.设OM=x(0<x<2),则ON=4﹣2x,∴k=x(4﹣2x)=﹣2(x﹣1)2+2,当x=1时,k取最大值,最大值为2.将y=﹣2x+4代入y=中,整理得:x2﹣2x+1=(x﹣1)2=0,∴当反比例函数图象与线段AC只有一个公共点时,k值最大,最大值为2,③成立;④∵S=BE•BF=≥,△BEF∴△BEF面积的最小值为,④不成立.故选D.【点评】本题考查了矩形的性质、反比例函数图象上点的坐标特征以及三角形的面积,逐一分析四条结论的正确与否是解题的关键.二、填空题(本大题共3小题,共10分)17.(3分)(2017•邯郸一模)计算:(3﹣π)0﹣sin30°=.【分析】原式利用零指数幂法则,特殊角的三角函数值计算即可得到结果.【解答】解:原式=1﹣=,故答案为:【点评】此题考查了实数的运算,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.18.(3分)(2017•邯郸一模)化简的结果为x+1.【分析】原式变形后,约分即可得到结果.【解答】解:原式=•=x+1,故答案为:x+1【点评】此题考查了分式的乘除法,分式乘除法的关键是约分,约分的关键是找出分子分母的公因式.19.(4分)(2017•邯郸一模)如图中的虚线网格为菱形网格,每一个小菱形的面积均为1,网格中虚线的交点称为格点,顶点都在格点的多边形称为格点多边形,如:格点▱ABCD的面积是6.(1)格点△PMN 的面积是 6 . (2)格点四边形EFGH 的面积是 28 .【分析】(1)根据S △PMN =•S 平行四边形MNEF 计算即可;(2)根据S 四边形EFGH =S 平行四边形LJKT ﹣S △LEH ﹣S △HTG ﹣S △FKG ﹣S △EFJ 计算即可. 【解答】解:(1)如图,S △PMN =•S 平行四边形MNEF =×12=6, 故答案为6.(2)S 四边形EFGH =S 平行四边形LJKT ﹣S △LEH ﹣S △HTG ﹣S △FKG ﹣S △EFJ =60﹣2﹣9﹣6﹣15=28, 故答案为28【点评】本题考查菱形的性质、平行四边形的性质等知识,解题的关键是学会用分割法求面积,属于中考常考题型.三、解答题(本大题共7小题,共68分) 20.(9分)(2017•邯郸一模)请你参考黑板中老师的讲解,运用平方差公式简便计算:(1)×;(2)(2017+2017)(﹣).【分析】(1)把19化为20﹣1,把21化为20+1,然后利用平方差公式计算;(2)把第1个括号内提2017,然后利用平方差公式计算.【解答】解:(1)原式===;(2)原式=2017()(﹣)=2017×(3﹣2)=2017.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.也考查了平方差公式的熟练运用.21.(9分)(2017•邯郸一模)已知:如图,△ABC和△EFC都是等腰直角三角形,∠ACB=∠ECF=90°,点E在AB边上.(1)求证:△ACE≌△BCF;(2)若∠BFE=60°,求∠AEC的度数.【分析】(1)根据同角的余角相等求出∠ACE=∠BCF,再利用“边角边”证明即可;(2)根据等腰直角三角形的性质可得∠EFC=45°,然后求出∠BFC=105°,再根据全等三角形对应角相等解答.【解答】(1)证明:∵∠ACB=∠ECF=90°,∴∠ACE=∠BCF,∵CA=CB,CE=CF,∴△AEC≌△BFC(SAS);(2)解:∵△EFC是等腰直角三角形,∴∠EFC=45°.∵∠BFE=60°,∴∠BFC=105°,又∵△AEC≌△BFC,∴∠AEC=∠BFC=105°.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,熟练掌握三角形全等的判定方法是解题的关键.22.(9分)(2017•邯郸一模)已知n边形的对角线共有条(n是不小于3的整数);(1)五边形的对角线共有5条;(2)若n边形的对角线共有35条,求边数n;(3)若n边形的边数增加1,对角线总数增加9,求边数n.【分析】(1)把n=5代入即可求得五边形的对角线的条数;(2)根据题意得=35求得n值即可;(3)﹣=9,求得n的值即可.【解答】解:(1)当n=5时,==5,故答案为:5.(2)=35,整理得:n2﹣3n﹣70=0,解得:n=10或n=﹣7(舍去),所以边数n=10.(3)根据题意得:﹣=9,解得:n=10.所以边数n=10.【点评】本题考查了多边形的对角线的知识,了解多边形的对角线的计算方法是解答本题的关键,难度不大.23.(9分)(2017•邯郸一模)为了解七年级学生上学期参加社会实践活动的情况,随机抽查了某市七年级200名学生参加社会实践活动的天数,并根据抽查结果制作了如下不完整的条形统计图:根据以上信息,解答下列问题:(1)求条形统计图中参加社会实践活动天数为6天所对应的人数,及被调查的200名学生参加社会实践活动天数的平均数;(2)被调查的学生参加社会实践活动天数的众数为5,中位数为5.(3)在此次调查活动中,A、B、C、D四位同学说他们中有两人被抽查了,请你用列表法或画树状图,求出恰好抽到A与B两位同学的概率;(4)某市有七年级学生10万人,请你估计该市七年级学生参加社会实践活动不少于5天的人数.【分析】(1)用样本容量分别减去其它天数的人数可得到实践活动天数为6天所对应的人数;然后利用加权平均数的计算方法计算200名学生参加社会实践活动天数的平均数;(2)利用众数和中位数的定义求解;(3)利用列表法展示所有有12种等可能的结果数,找出恰好抽到A与B的结果数,然后根据概率公式求解;(4)利用样本估计总体,用10×可估计该市七年级学生参加社会实践活动不少于5天的人数【解答】解:(1)参加社会实践活动天数为6天所对应的人数为200﹣20﹣30﹣60﹣40=50(人),200名学生参加社会实践活动天数的平均数==53;(2)被调查的学生参加社会实践活动天数的众数为5,中位数为5;故答案为5,5;(3)A B C DA﹣﹣(A,B)(A,C)(A,D)B(B,A)﹣﹣(B,C)(B,D)C(C,A)(C,B)﹣﹣(C,D)D(D,A)(D,B)(D,C)﹣﹣一共有12种情况,其中恰好抽到A与B有两种情况:(A,B)与(B,A)所以P(恰好抽到A与B)==;(4)10×=7.5(万)答:该市七年级学生参加社会实践活动不少于5天的人数为7.5万人.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了中位数和众数、统计图.24.(10分)(2017•邯郸一模)嘉淇同学家的饮水机中原有水的温度为20℃,其工作过程如图所示,在一个由20℃加热到100℃再降温到20℃的过程中,水温记作y(℃),从开始加热起时间变化了x(分钟),加热过程中,y与x满足一次函数关系,水温下降过程中,y与x成反比例,当x=20时,y=40.(1)写出饮水机水温的下降过程中y与x的函数关系,并求出x为何值时,y=100;(2)求加热过程中y与x之间的函数关系;(3)求当x为何值时,y=80.问题解决若嘉淇同学上午八点将饮水机通电开机后即外出散步,预计九点前回到家中,若嘉淇想喝到不低于50℃的水,直接写出外出时间m(分钟)的取值范围.【分析】(1)根据待定系数法可求饮水机水温的下降过程中y与x的函数关系式,再求出y=100时x的值即可求解;(2)根据待定系数法可求加热过程中y与x之间的函数关系;(3)分两种情况:加热过程中;降温过程中;y=80时x的值即可求解;问题解决:根据一次函数和反比例函数的增减性即可求解.【解答】解:(1)在水温下降过程中,设水温y(℃)与开机时间x(分)的函数关系式为:y=,依据题意,得:100=,即m=800,故y=,当y=100时,100=,解得:x=8;(2)设水温y(℃)与开机时间x(分)的函数关系为:y=kx+b,依据题意,得,解得:.故此函数解析式为:y=10x+20;(3)当y=80时:加热过程中:10x+20=80,解得x=6;降温过程中:=80,解得x=10;综上所述,x=6或10时,y=80;问题解决:外出时间m(分钟)的取值范围为3≤m≤16或43≤m≤56.【点评】此题考查了一次函数和反比例函数的应用,现实生活中存在大量一次函数和成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.25.(10分)(2017•邯郸一模)如图,已知以AE为直径的半圆圆心为O,半径为5,矩形ABCD的顶点B在直径AE上,顶点C在半圆上,AB=8,点P为半圆上一点.(1)矩形ABCD的边BC的长为4;(2)将矩形沿直线AP折叠,点B落在点B′.①点B′到直线AE的最大距离是8;②当点P与点C重合时,如图所示,AB′交DC于点M.求证:四边形AOCM是菱形,并通过证明判断CB′与半圆的位置关系;③当EB′∥BD时,直接写出EB′的长.【分析】(1)如图1中,在Rt△OBC中,求出BC即可.(2)①如图1中,当点B′在直线AD上时,点B'到AE的距离最大,最大距离为8.②首先证明四边形AOCM是平行四边形,由OA=OC即可判定四边形AOCM是菱形.只要证明∠OCB′=90°即可判定CB′与半圆相切.③如图3中,当EB′∥BD时,作AF⊥EB′于F.由△AEF∽△DBA,可得==,推出EF=4,AF=2,在Rt△AFB′中,FB′==2,即可推出EB′=4+2.如图4中,当EB′∥BD时,作AF⊥EB′于F,同法可求EB′.【解答】解:(1)如图1中,连接OC.在Rt△BOC中,∵∠OBC=90°,OC=5,OB=3,∴BC===4,故答案为4.(2)①如图1中,当点B′在直线AD上时,点B'到AE的距离最大,最大距离为8.故答案为8.②证明:如图2中,由折叠可知:∠OAC=∠MAC.∵OA=OC,。
2017年河北中考数学一模考试
2017年河北中考数学一模考试————————————————————————————————作者:————————————————————————————————日期:2017年河北省中考数学一模试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共16小题,共42.0分)1.下列所给图形是中心对称图形但不是轴对称图形的是()A. B. C. D.2.下列计算正确的是()A.-2+|-2|=0B.20÷3=0C.42=8D.2÷3×13=23.有一种圆柱体茶叶筒如图所示,则它的主视图是()A. B. C. D.4.已知点P(x+3,x-4)在x轴上,则x的值为()A.3B.-3C.-4D.45.如图,DE是△ABC的中位线,若BC=8,则DE的长为()A.2B.4C.6D.86.2016年4月6日22:20某市某个观察站测得:空气中PM2.5含量为每立方米23μg,1g=1000000μg,则将23μg用科学记数法表示为()A.2.3×10-7gB.23×10-6gC.2.3×10-5gD.2.3×10-4g7.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的()A.中位数B.众数C.平均数D.方差8.如果代数式-2a+3b+8的值为18,那么代数式9b-6a+2的值等于()A.28B.-28C.32D.-329.父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的13,儿子露出水面的高度是他自身身高的17,父子二人的身高之和为3.2米.若设爸爸的身高为x米,儿子的身高为y米,则可列方程组为()A.{x+y=3.2(1+17)x=(1+13)y B.{x+y=3.2(1−17)x=(1−13)y C.{x+y=3.213x=17y D.{x+y=3.2(1−13)x=(1−17)y10.已知a=√2,b=√3,则√18=()A.2aB.abC.a2bD.ab2则图中阴影部分的周长为()A.11B.16C.19D.2212.数学课上,老师让学生尺规作图画R t△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径13.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰R t△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A. B. C. D.14.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=()A.12B.8C.4D.315.如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果AEEC =35,那么ACAB等于()A.3 5B.53C.85D.3216.如图,在平面直角坐标系中,直线y=-3x+3与x轴、y 轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线y=kx(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1B.2C.3D.417.函数y=√1−2x的自变量x的取值范围是______ .1+x18.如图,m∥n,直角三角板ABC的直角顶点C在两直线之间,两直角边与两直线相交所形成的锐角分别为α、β,则α+β=______ .19.如图,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜边AB上中线CD,得到第1个三角形ACD;DE⊥BC于点E,作R t△BDE斜边DB上中线EF,得到第2个三角形DEF;依次作下去…则第1个三角形的面积等于______ ,第n个三角形的面积等于______ .三、计算题(本大题共1小题,共8.0分)20.在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2-(9-1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.四、解答题(本大题共6小题,共60.0分)21.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AB=CD,请你再添加个条件,使得AE=DF,并说明理.22.如图,在平面直角坐标系中,一次函数y=kx+b(m≠0)的图象交于点A(3,与反比例函数y=mx1),且过点B(0,-2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.23.阅读对话,解答问题:(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;(2)求在(a,b)中使关于x的一元二次方程x2-ax+2b=0有实数根的概率.24.如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2√2,求BC的长.25.某手机店销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元.(1)求每部A型手机和B型手机的销售利润分别为多少元?(2)该商店计划一次购进两种型号的手机共110部,其中A型手机的进货量不超过B 型手机的2倍.设购进B型手机n部,这110部手机的销售总利润为y元.①求y关于n的函数关系式;②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.26.如图,已知抛物线的方程C1:y=-1(x+2)(x-m)m(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.。
邯郸市中考数学一模试卷
邯郸市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2017八上·钦州期末) 下列各数中,最小的实数是()A . ﹣3B . ﹣1C . 0D .2. (2分)(2016·南京模拟) 计算(﹣ab2)3的结果是()A . a3b5B . ﹣a3b5C . ﹣a3b6D . a3b63. (2分)一个多边形的内角和是720°,这个多边形的边数是()A . 4B . 5C . 6D . 74. (2分) (2018八下·灵石期中) 如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则()A . 乙比甲先到B . 甲和乙同时到 B.C . 甲比乙先到D . 无法确定5. (2分)若一个等腰三角形的两边长分别是2和5,则它的周长为()A . 12B . 9C . 12或9D . 9或76. (2分)(2013·嘉兴) 如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A . 2B . 8C . 2D . 27. (2分)(2020·玉林模拟) 如图,沿AE折叠矩形纸片ABCD,使点D落在BC边的点F处已知AB=8,BC=10,则tan∠EFC的值为()A .B .C .D .8. (2分)(2019·双柏模拟) 在一次数学测试中,某学校小组6名同学的成绩(单位:分)分别为65,82,86,82,76,95,关于这组数据,下列说法错误的是()A . 众数是82B . 中位数是82C . 方差8.4D . 平均数是819. (2分) (2018九上·渝中开学考) 如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3 ,且∠ECF=45°,则CF长为()A . 2B . 3C .D .10. (2分)如图,AC是电杆AB的一根拉线,测得BC=6米,∠ACB=52°,则拉线AC的长为()A . 米B . 米C . 6·cos52°米D . 米11. (2分)某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A . 200(1+x)2=1000B . 200+200×2x=1000C . 200+200×3x=1000D . 200[1+(1+x)+(1+x)2]=100012. (2分) (2017八下·宣城期末) 已知:如图,在菱形ABCD中,F为边AB的中点,DF与对角线AC交于点G,过G作GE⊥AD于点E,若AB=2,且∠1=∠2,则下列结论正确个数有()①DF⊥AB;②CG=2GA;③CG=DF+GE;④S四边形BFGC= ﹣1.A . 1B . 2C . 3D . 4二、填空题 (共6题;共6分)13. (1分)若二次函数的图象经过点(-1,0),(1,-2),当随的增大而增大时,的取值范围是________。
河北省邯郸市九年级数学下学期毕业生升学模拟试题(一)
河北省邯郸市2017届九年级数学下学期毕业生升学模拟试题(一)2017 年邯郸市初中毕业生升学模拟考试(一)数学参考答案及评分标准一.选择题(本大题共16个小题,共42分.1~10小题各3分;11~16小题各2分.)二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.)17.2118.1+x 19.(1)6 (2)28 三、解答题(本大题有7个小题,共68分.) 20.解:(1)解法1:221219⨯()()22120120⨯+-=…………………………………… 2分 41202-= ………………………………………… 4分4399=………………………………………… 5分 解法2:2110219221219⨯=⨯⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-=21102110 ………………………………………… 2分 222110⎪⎭⎫⎝⎛-= ………………………………………… 4分41100-=4399= ………………………………………… 5分【注:结果为43994399或者均给分】 (2)()()232-32017+=原式 ………………………………………… 7分()2-32017⨯= ………………………………………… 8分2017= ………………………………………… 9分21.(1)证明:∵∠ACB =∠ECF =90°,∴∠ACE =∠BCF . ………………………………………… 2分∵CA=CB ,CE =CF ,∴△AEC ≌△BFC (SAS ). ………………………………………… 5分 (2)解:∵△EFC 是等腰直角三角形,∴∠EFC =45°. ∵∠BFE =60°,∴∠BFC =105°. ………………………………………… 7分 又∵△AEC ≌△BFC ,∴∠AEC =∠BFC =105°. ………………………………………… 9分22.解:(1)5 ………………………………………… 2分 (2)()3523=-n n ,整理得: 07032=--n n ………………………………………… 4分 解得:()舍去,71021-==n n所以边数n =10. ………………………………………… 6分 (3)()()()9232311=---++n n n n ………………………………………… 8分解得:10=n .所以边数n =10 . ………………………………………… 9分23.解:(1)200-20-30-60-40=50 ………………………………………… 1分 平均数:3.5200407506605304203=⨯+⨯+⨯+⨯+⨯ …………………………… 2分(2)众数:5, ………………………………………… 3分中位数:5; ………………………………………… 4分 (3)∴P(恰好抽到A 与B )=61122= ………………………………………… 7分 (4)605040107.5200++⨯= ………………………………………… 8分答:该市七年级学生参加社会实践活动不少于5天的人数为7.5万人. …………… 9分24.解:(1)xy 800=; ………………………………………… 1分 当100=y 时,x800100=,8=x ; ………………………………………… 2分(2)设加热过程中x y 与之间的函数关系式为b kx y +=,由题意:1008200====y x y x 时,;当时,当,得:⎩⎨⎧=+=100820b k b解得:⎩⎨⎧==2010b k∴加热过程中 y 与 x 之间的函数关系为2010+=x y . ………………………… 5分 (3)当y =80时加热过程中:802010=+x ,解得6=x ;降温过程中:80800=x,解得10=x ; 综上所述,x =6或10时,y =80; ………………………………………… 8分 问题解决:5643163≤≤≤≤m m 或. ………………………………………… 10分【注:问题解决中的取值范围写对一个给1分】25.解:(1)BC =4; ………………………………………… 1分 (2)①点B '到 AE 的最大距离是8; ………………………………………… 2分②证明:由折叠可知:∠OAC =∠MAC . ∵OA =OC ,∴∠OAC =∠OCA . ∴∠OCA =∠MAC . ∴OC ∥AM . 又∵CM ∥OA ,∴四边形AOCM 是平行四边形. 又∵OA =OC ,∴□AOCM 是菱形. ………………………………………… 5分 CBˊ与半圆相切.证明:由折叠可知:∠ABˊC=∠ABC =90°.∵OC ∥AM∴∠ABˊC+∠BˊCO =180°. ∴∠BˊCO =90°. ∴CBˊ⊥OC .∴CBˊ与半圆相切. ………………………………………… 8分③ ………………………………………… 10分 【注:②如果用其他的证明方法,正确的均相应给分;③两种情况写对一个给1分】 26.探究:解:(1)当m =2时,()42422--=-=x x x y .∴抛物线的顶点坐标为(2,- 4); ………………………………………… 2分当0=y 时,042=-x x , 解得:4,021==x x .∴线段MN 的长为4. ………………………………………… 4分 (2)①线段MN 的长度不发生改变,理由:当0=y 时,04222=-+-m mx x . 解得:2221-=+=m x m x ,.∴线段MN 的长为4. ………………………………………… 7分 ②m 的取值范围是:11≤≤-m ,53≤≤m .……………………………… 9分【注:m 的取值范围写对一个给1分】 拓展:(1)该抛物线与y 轴的交点坐标为(0,-3), ……………………………… 10分 (2)a 的取值范围是:311-≤≤-a ,31≤≤a . …………………………12分【注:a 的取值范围写对一个给1分】。
河北省2017年中考数学模拟试卷(含解析)
2017年河北省中考数学一模试卷一、选择题:本大题共16小题,1-10小题,每小题3分,11-16小题,每题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列所给图形是中心对称图形但不是轴对称图形的是()A.B. C. D.2.下列计算正确的是()A.﹣2+|﹣2|=0 B.20÷3=0 C.42=8 D.2÷3×=23.有一种圆柱体茶叶筒如图所示,则它的主视图是()A.B.C.D.4.已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3 B.﹣3 C.﹣4 D.45.如图,DE是△ABC的中位线,若BC=8,则DE的长为()A.2 B.4 C.6 D.86.2016年4月6日22:20某市某个观察站测得:空气中PM2.5含量为每立方米23μg,1g=1000000μg,则将23μg用科学记数法表示为()A.2.3×10﹣7g B.23×10﹣6g C.2.3×10﹣5g D.2.3×10﹣4g7.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的()A.中位数B.众数C.平均数D.方差8.如果代数式﹣2a+3b+8的值为18,那么代数式9b﹣6a+2的值等于()A.28 B.﹣28 C.32 D.﹣329.父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.2米.若设爸爸的身高为x米,儿子的身高为y米,则可列方程组为()A.B.C. D.10.已知a=,b=,则=()A.2a B.ab C.a2b D.ab211.如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A.11 B.16 C.19 D.2212.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径13.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.14.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=()A.12 B.8 C.4 D.315.如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果=,那么等于()A.B.C.D.16.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.4二、填空题:本大题共3小题,共10分,17-18题各3分,19小题有2个空,每空2分.17.函数y=的自变量x的取值范围是.18.如图,m∥n,直角三角板ABC的直角顶点C在两直线之间,两直角边与两直线相交所形成的锐角分别为α、β,则α+β=.19.如图,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜边AB上中线CD,得到第1个三角形ACD;DE ⊥BC于点E,作Rt△BDE斜边DB上中线EF,得到第2个三角形DEF;依次作下去…则第1个三角形的面积等于,第n个三角形的面积等于.三、解答题:本大题共7小题,共68分,解答应写出文字说明、证明过程或演算步骤.20.在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.21.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AB=CD,请你再添加个条件,使得AE=DF,并说明理.22.如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.23.阅读对话,解答问题:(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;(2)求在(a,b)中使关于x的一元二次方程x2﹣ax+2b=0有实数根的概率.24.如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.25.某手机店销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元.(1)求每部A型手机和B型手机的销售利润分别为多少元?(2)该商店计划一次购进两种型号的手机共110部,其中A型手机的进货量不超过B型手机的2倍.设购进B型手机n部,这110部手机的销售总利润为y元.①求y关于n的函数关系式;②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.26.如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.2017年河北省中考数学一模试卷参考答案与试题解析一、选择题:本大题共16小题,1-10小题,每小题3分,11-16小题,每题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列所给图形是中心对称图形但不是轴对称图形的是()A.B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.【解答】解:A、此图形不是中心对称图形,不是轴对称图形,故A选项错误;B、此图形是中心对称图形,也是轴对称图形,故B选项错误;C、此图形是中心对称图形,不是轴对称图形,故C选项正确;D、此图形不是中心对称图形,是轴对称图形,故D选项错误.故选:C.2.下列计算正确的是()A.﹣2+|﹣2|=0 B.20÷3=0 C.42=8 D.2÷3×=2【考点】零指数幂.【分析】根据绝对值的规律,及实数的四则运算、乘法运算.【解答】解:A、﹣2+|﹣2|=﹣2+2=0,故A正确;B、20÷3=,故B错误;C、42=16,故C错误;D、2÷3×=,故D错误.故选A.3.有一种圆柱体茶叶筒如图所示,则它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:主视图是从正面看,茶叶盒可以看作是一个圆柱体,圆柱从正面看是长方形.故选:D.4.已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3 B.﹣3 C.﹣4 D.4【考点】点的坐标.【分析】直接利用x轴上点的纵坐标为0,进而得出答案.【解答】解:∵点P(x+3,x﹣4)在x轴上,∴x﹣4=0,解得:x=4,故选:D.5.如图,DE是△ABC的中位线,若BC=8,则DE的长为()A.2 B.4 C.6 D.8【考点】三角形中位线定理.【分析】已知DE是△ABC的中位线,BC=8,根据中位线定理即可求得DE的长.【解答】解:∵DE是△ABC的中位线,BC=8,∴DE=BC=4,故选B.6.2016年4月6日22:20某市某个观察站测得:空气中PM2.5含量为每立方米23μg,1g=1000000μg,则将23μg用科学记数法表示为()A.2.3×10﹣7g B.23×10﹣6g C.2.3×10﹣5g D.2.3×10﹣4g【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:23μg=23÷1000000g=0.000 023g=2.3×10﹣5g.故选:C.7.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的()A.中位数B.众数C.平均数D.方差【考点】统计量的选择.【分析】由于比赛取前3名进入决赛,共有5名选手参加,故应根据中位数的意义分析.【解答】解:因为5位进入决赛者的分数肯定是5名参赛选手中最高的,而且5个不同的分数按从小到大排序后,中位数及中位数之前的共有3个数,故只要知道自己的分数和中位数就可以知道是否进入决赛了,故选:A.8.如果代数式﹣2a+3b+8的值为18,那么代数式9b﹣6a+2的值等于()A.28 B.﹣28 C.32 D.﹣32【考点】代数式求值.【分析】先求得代数式﹣2a+3b的值,然后将所求代数式变形为3(﹣2a+3b)+2,最后将﹣2a+3b的值整体代入求解即可.【解答】解:∵﹣2a+3b+8=18,∴﹣2a+3b=10.原式=3(﹣2a+3b)+2=3×10+2=32.故选:C.9.父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.2米.若设爸爸的身高为x米,儿子的身高为y米,则可列方程组为()A.B.C. D.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可得两个等量关系:①爸爸的身高+儿子的身高=3.2米;②父亲在水中的身高(1﹣)x=儿子在水中的身高(1﹣)y,根据等量关系可列出方程组.【解答】解:设爸爸的身高为x米,儿子的身高为y米,由题意得:,故选:D.10.已知a=,b=,则=()A.2a B.ab C.a2b D.ab2【考点】算术平方根.【分析】将18写成2×3×3,然后根据算术平方根的定义解答即可.【解答】解: ==××=a•b•b=ab2.故选D.11.如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A.11 B.16 C.19 D.22【考点】矩形的性质;翻折变换(折叠问题).【分析】首先由四边形ABCD为矩形及折叠的特性,得到B′C=BC=AD,∠B′=∠B=∠D=90°,∠B′EC=∠DEA,得到△AED≌△CEB′,得出EA=EC,再由阴影部分的周长为AD+DE+EA+EB′+B′C+EC,即矩形的周长解答即可.【解答】解:∵四边形ABCD为矩形,∴B′C=BC=AD,∠B′=∠B=∠D=90°∵∠B′EC=∠DEA,在△AED和△CEB′中,,∴△AED≌△CEB′(AAS);∴EA=EC,∴阴影部分的周长为AD+DE+EA+EB′+B′C+EC,=AD+DE+EC+EA+EB′+B′C,=AD+DC+AB′+B′C,=3+8+8+3,=22,故选D.12.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径【考点】作图—复杂作图;勾股定理的逆定理;圆周角定理.【分析】由作图痕迹可以看出AB是直径,∠ACB是直径所对的圆周角,即可作出判断.【解答】解:由作图痕迹可以看出O为AB的中点,以O为圆心,AB为直径作圆,然后以B为圆心BC=a为半径画弧与圆O交于一点C,故∠ACB是直径所对的圆周角,所以这种作法中判断∠ACB是直角的依据是:直径所对的圆周角是直角.故选:B.13.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.【解答】解:作AD∥x轴,作CD⊥AD于点D,若右图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选A.14.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=()A.12 B.8 C.4 D.3【考点】等边三角形的性质.【分析】过点P作平行四边形PGBD,EPHC,进而利用平行四边形的性质及等边三角形的性质即可.【解答】解:延长EP、FP分别交AB、BC于G、H,则由PD∥AB,PE∥BC,PF∥AC,可得,四边形PGBD,EPHC是平行四边形,∴PG=BD,PE=HC,又△ABC是等边三角形,又有PF∥AC,PD∥AB可得△PFG,△PDH是等边三角形,∴PF=PG=BD,PD=DH,又△ABC的周长为12,∴PD+PE+PF=DH+HC+BD=BC=×12=4,故选:C.15.如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果=,那么等于()A.B.C.D.【考点】平行线分线段成比例.【分析】由平行线分线段成比例定理得出=,再由角平分线性质即可得出结论.【解答】解:∵DE∥AB,∴=,∵AD为△ABC的角平分线,∴=;故选:B.16.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.4【考点】反比例函数综合题.【分析】作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F,易证△OAB≌△FDA≌△BEC,求得A、B 的坐标,根据全等三角形的性质可以求得C、D的坐标,从而利用待定系数法求得反比例函数的解析式,进而求得G的坐标,则a的值即可求解.【解答】解:作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,∵在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△BEC,∴AF=OB=EC=3,DF=OA=BE=1,故D的坐标是(4,1),C的坐标是(3,4).代入y=得:k=4,则函数的解析式是:y=.∴OE=4,则C的纵坐标是4,把y=4代入y=得:x=1.即G的坐标是(1,4),∴CG=2.故选:B.二、填空题:本大题共3小题,共10分,17-18题各3分,19小题有2个空,每空2分.17.函数y=的自变量x的取值范围是x≤0.5且x≠﹣1 .【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,让被开方数大于等于0,分母不等于0,就可以求解.【解答】解:由题意得:1﹣2x≥0,1+x≠0,解得:x≤0.5且x≠﹣1.故答案为:x≤0.5且x≠﹣1.18.如图,m∥n,直角三角板ABC的直角顶点C在两直线之间,两直角边与两直线相交所形成的锐角分别为α、β,则α+β=90°.【考点】平行线的性质.【分析】根据平行线的性质即可得到结论.【解答】解:过C作CE∥m,∵m∥n,∴CE∥n,∴∠1=∠α,∠2=∠β,∵∠1+∠2=90°,∴∠α+∠β=90°,故答案为:90°.19.如图,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜边AB上中线CD,得到第1个三角形ACD;DE ⊥BC于点E,作Rt△BDE斜边DB上中线EF,得到第2个三角形DEF;依次作下去…则第1个三角形的面积等于a2,第n个三角形的面积等于.【考点】相似三角形的判定与性质.【分析】根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,然后判定出△ACD是等边三角形,同理可得被分成的第二个、第三个…第n个三角形都是等边三角形,再根据后一个等边三角形的边长是前一个等边三角形的边长的一半求出第n个三角形的边长,然后根据等边三角形的面积公式求解即可.【解答】解:∵∠ACB=90°,CD是斜边AB上的中线,∴CD=AD,∵∠A=60°,∴△ACD是等边三角形,同理可得,被分成的第二个、第三个…第n个三角形都是等边三角形,∵CD是AB的中线,EF是DB的中线,…,∴第一个等边三角形的边长CD=DB=AB=AC=a,∴第一个三角形的面积为a2,第二个等边三角形的边长EF=DB=a,…第n个等边三角形的边长为a,所以,第n个三角形的面积=×a×(•a)=.故答案为a2,.三、解答题:本大题共7小题,共68分,解答应写出文字说明、证明过程或演算步骤.20.在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.【考点】整式的混合运算.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)根据题意列出关系式,化简得到结果,验证即可.【解答】解:(1)[(9+1)2﹣(9﹣1)2]×25÷9=18×2×25÷9=100;(2)[(a+1)2﹣(a﹣1)2]×25÷a=4a×25÷a=100.21.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AB=CD,请你再添加个条件,使得AE=DF,并说明理.【考点】全等三角形的判定与性质.【分析】根据AB∥CD,得到∠B=∠C,推出△ABE≌△CDF,根据全等三角形的性质即可得到结论.【解答】解:添加条件为:∠A=∠D,理由:∵AB∥CD,∴∠B=∠C,在△ABE与△CDF中,,∴△ABE≌△CDF,∴AE=DF.22.如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)利用待定系数法即可求得函数的解析式;(2)首先求得AB与x轴的交点,设交点是C,然后根据S△ABP=S△ACP+S△BCP即可列方程求得P的横坐标.【解答】解:(1)∵反比例函数y=(m≠0)的图象过点A(3,1),∴3=∴m=3.∴反比例函数的表达式为y=.∵一次函数y=kx+b的图象过点A(3,1)和B(0,﹣2).∴,解得:,∴一次函数的表达式为y=x﹣2;(2)令y=0,∴x﹣2=0,x=2,∴一次函数y=x﹣2的图象与x轴的交点C的坐标为(2,0).∵S△ABP=3,PC×1+PC×2=3.∴PC=2,∴点P的坐标为(0,0)、(4,0).23.阅读对话,解答问题:(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;(2)求在(a,b)中使关于x的一元二次方程x2﹣ax+2b=0有实数根的概率.【考点】列表法与树状图法;根的判别式.【分析】(1)用列表法易得(a,b)所有情况;(2)看使关于x的一元二次方程x2﹣ax+2b=0有实数根的情况占总情况的多少即可.【解答】解:(1)(a,b)对应的表格为:1 2 3ab1 (1,1)(1,2)(1,3)2 (2,1)(2,2)(2,3)3 (3,1)(3,2)(3,3)4 (4,1)(4,2)(4,3)(2)∵方程x2﹣ax+2b=0有实数根,∴△=a2﹣8b≥0.∴使a2﹣8b≥0的(a,b)有(3,1),(4,1),(4,2),∴.24.如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.【考点】切线的判定.【分析】(1)连接OB,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,证出∠PBA+∠OBA=90°,即可得出结论;(2)证明△ABC∽△PBO,得出对应边成比例,即可求出BC的长.【解答】(1)证明:连接OB,如图所示:∵AC是⊙O的直径,∴∠ABC=90°,∴∠C+∠BAC=90°,∵OA=OB,∴∠BAC=∠OBA,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;(2)解:∵⊙O的半径为2,∴OB=2,AC=4,∵OP∥BC,∴∠C=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴,即,∴BC=2.25.某手机店销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元.(1)求每部A型手机和B型手机的销售利润分别为多少元?(2)该商店计划一次购进两种型号的手机共110部,其中A型手机的进货量不超过B型手机的2倍.设购进B型手机n部,这110部手机的销售总利润为y元.①求y关于n的函数关系式;②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设每部A型手机的销售利润为x元,每部B型手机的销售利润为y元,根据题意列出方程组求解;(2)①据题意得,y=﹣50n+16500,②利用不等式求出n的范围,又因为y=﹣50x+16500是减函数,所以n取37,y取最大值;(3)据题意得,y=150+n,即y=(m﹣50)n+16500,分三种情况讨论,①当30<m<50时,y随n的增大而减小,②m=50时,m﹣50=0,y=16500,③当50<m<100时,m﹣50>0,y随x的增大而增大,分别进行求解.【解答】解:(1)设每部A型手机的销售利润为x元,每部B型手机的销售利润为y元,根据题意,得:,解得:,答:每部A型手机的销售利润为150元,每部B型手机的销售利润为100元;(2)①设购进B型手机n部,则购进A型手机部,则y=150+100n=﹣50n+16500,其中,110﹣n≤2n,即n≥36,∴y关于n的函数关系式为y=﹣50n+16500 (n≥36);②∵﹣50<0,∴y随n的增大而减小,∵n≥36,且n为整数,∴当n=37时,y取得最大值,最大值为﹣50×37+16500=14650(元),答:购进A型手机73部、B型手机37部时,才能使销售总利润最大;(3)根据题意,得:y=150+n=(m﹣50)n+16500,其中,36≤n≤80,①当30<m<50时,y随n的增大而减小,∴当n=37时,y取得最大值,即购进A型手机73部、B型手机37部时销售总利润最大;②当m=50时,m﹣50=0,y=16500,即商店购进B型电脑数量满足36≤n≤80的整数时,均获得最大利润;③当50<m<100时,y随n的增大而增大,∴当n=80时,y取得最大值,即购进A型手机30部、B型手机80部时销售总利润最大.26.如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)将点(2,2)的坐标代入抛物线解析式,即可求得m的值;(2)求出B、C、E点的坐标,进而求得△BCE的面积;(3)根据轴对称以及两点之间线段最短的性质,可知点B、C关于对称轴x=1对称,连接EC与对称轴的交点即为所求的H点,如答图1所示;(4)本问需分两种情况进行讨论:①当△BEC∽△BCF时,如答图2所示.此时可求得m=+2;②当△BEC∽△FCB时,如答图3所示.此时可以得到矛盾的等式,故此种情形不存在.【解答】解:(1)依题意,将M(2,2)代入抛物线解析式得:2=﹣(2+2)(2﹣m),解得m=4.(2)令y=0,即(x+2)(x﹣4)=0,解得x1=﹣2,x2=4,∴B(﹣2,0),C(4,0)在C1中,令x=0,得y=2,∴E(0,2).∴S△BCE=BC•OE=6.(3)当m=4时,易得对称轴为x=1,又点B、C关于x=1对称.如解答图1,连接EC,交x=1于H点,此时BH+EH最小(最小值为线段CE的长度).设直线EC:y=kx+b,将E(0,2)、C(4,0)代入得:y=x+2,当x=1时,y=,∴H(1,).(4)分两种情形讨论:①当△BEC∽△BCF时,如解答图2所示.则,∴BC2=BE•BF.由函数解析式可得:B(﹣2,0),E(0,2),即OB=OE,∴∠EBC=45°,∴∠CBF=45°,作FT⊥x轴于点T,则∠BFT=∠TBF=45°,∴BT=TF.∴可令F(x,﹣x﹣2)(x>0),又点F在抛物线上,∴﹣x﹣2=﹣(x+2)(x﹣m),∵x+2>0,∵x>0,∴x=2m,F(2m,﹣2m﹣2).此时BF==2(m+1),BE=,BC=m+2,又∵BC2=BE•BF,∴(m+2)2=•(m+1),∴m=2±,。
河北省邯郸市2017年中考第1次模拟考试数学试卷附答案
初三第一次模拟考试数学试题一、选择题(本大题共16题,1-8小题,9-16小题,每题3分,共40分) 1.如图,数轴上表示-2的相反数的点是( ) A.点P B.点Q C.点M D.点N 2.下列运算正确的是( ) A.9=±3B. 532)(m m =C. 532a a a =⋅D.222)(y x y x +=+3.如图,AD 与BC 相交于点O,AB//CD,如果∠B =20°,∠D =40° ,那么∠BOD 为( ) A. 40° B.50° C.60° D.70°4.估计18-的值在( )A. 0到1之间B. 1到2之间C.2到3之间D. 3至4之间 5.用配方法解一元二次方程0542=-+x x ,此方程可变形( ) A. 9)2(2=+xB. 9)2(2=-xC. 1)2(2=+xD. 1)2(2=-x6.下列各因式分解正确的是( ) A.22)1(12-=-+x x xB.)2)(2()2(22+-=-+-x x xC.)2)(2(43-+=-x x x x xD.22)1(22++=+x x x7.若a>b,则下列式子一定成立的是( )A.0>+b aB. 0>-b aC.0>abD.0>ba8.△ABC 中,已知AB=8,∠C=90°,∠A=30°,DE 是中位线,则DE 的长是( )A. 4B. 5C.32D. 29.若关于x 的一元一次不等式组⎩⎨⎧>-<-001a x x 无解,则a 的取值范围是( )A.1≥aB.1>aC. 1≤aD.1-<a 10.已知点A ),(11y x ,B ),(22y x 是反比例函数xy 2=图像上的点,若210x x >>,则一定成立的是( ) A.021>>y y B.210y y >>C.210y y >>D.120y y >>离y (千米)与时间t (分钟)之间的函数图像,根据图像信息,下列说法正确的是( )A. 王老师去时所用时间少于回家的时间B. B. 王老师在公园锻炼了40分钟C. 王老师去时走上坡路,回家时走下坡路D. D.王老师去时速度比回家时的速度慢12.如图,CD 是Rt △ABC 斜边AB 边上的高,将△BCD 沿CD 折叠,B 点恰好落在AB 的中点E 处,则∠A 等于( ) A. 60° B.45° C. 30° D.25° 13.如图,在Rt △ABC 中,∠C =90°,AC=4cm ,BC=6cm ,动点P 从点C 沿CA,以1cm/s 的速度向点A 运动,同时动点O 从点C 沿CB,以2cm/s 的速度向点B 运动,其中一个动点运动到终点时,另一个动点也停止运动。
河北省邯郸市2017年中考第1次模拟考试数学试卷(含答案)
初三第一次模拟考试数学试题一、选择题(本大题共16题,1-8小题,9-16小题,每题3分,共40分) 1.如图,数轴上表示-2的相反数的点是( ) A.点P B.点Q C.点M D.点N 2.下列运算正确的是( ) A.9=±3B. 532)(m m =C. 532a a a =⋅D.222)(y x y x +=+3.如图,AD 与BC 相交于点O,AB//CD,如果∠B =20°,∠D =40° ,那么∠BOD 为( ) A. 40° B.50° C.60° D.70° 4.估计18-的值在( )A. 0到1之间B. 1到2之间C.2到3之间D. 3至4之间 5.用配方法解一元二次方程0542=-+x x ,此方程可变形( ) A. 9)2(2=+xB. 9)2(2=-xC. 1)2(2=+xD. 1)2(2=-x6.下列各因式分解正确的是( ) A.22)1(12-=-+x x xB.)2)(2()2(22+-=-+-x x xC.)2)(2(43-+=-x x x x xD.22)1(22++=+x x x7.若a>b,则下列式子一定成立的是( )A.0>+b aB. 0>-b aC.0>abD.0>ba8.△ABC 中,已知AB=8,∠C=90°,∠A=30°,DE 是中位线,则DE 的长是( ) A. 4B. 5C.32D. 29.若关于x 的一元一次不等式组⎩⎨⎧>-<-001a x x 无解,则a 的取值范围是( )A.1≥aB.1>aC. 1≤aD.1-<a10.已知点A ),(11y x ,B ),(22y x 是反比例函数xy 2=图像上的点,若210x x >>,则一定成立的是( ) A.021>>y y B.210y y >>C.210y y >>D.120y y >>11.如图是王老师去公园锻炼及原路返回家的距离y (千米)与时间t (分钟)之间的函数图像,根据图像信息,下列说法正确的是( )A. 王老师去时所用时间少于回家的时间B. B. 王老师在公园锻炼了40分钟D. D.王老师去时速度比回家时的速度慢12.如图,CD 是Rt △ABC 斜边AB 边上的高,将△BCD 沿CD 折叠,B 点恰好落在AB 的中点E 处,则∠A 等于( ) A. 60° B.45° C. 30° D.25° 13.如图,在Rt △ABC 中,∠C =90°,AC=4cm ,BC=6cm ,动点P 从点C 沿CA,以1cm/s 的速度向点A 运动,同时动点O 从点C 沿CB,以2cm/s 的速度向点B 运动,其中一个动点运动到终点时,另一个动点也停止运动。
2017年河北省数学中考模拟试题(2)有答案
2017年河北省初中毕业生升学文化课模拟考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷I 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上. 考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑. 答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果+30 m 表示向东走30 m ,那么向西走40 m 表示为( ▲ )A . +30 mB .-30 mC . +40 mD .-40 m2.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为( ▲ ) A .6.75×103吨 B . 6.75×104吨C .6.75×105吨D .6.75×10-4吨3. 已知点A (a ,2013)与点A ′(-2014,b )是关于原点O 的对称点,则b a +的值为( ▲ ) A . 1 B . 5 C . 6 D .4 4.如图,已知一商场自动扶梯的长l 为13米,高度h 为5米,自动扶梯与地面所成的夹角为θ,则tan θ的值等于( ▲ ) A .125 B .512 C .135D .1312 5.一组数据2,4,x ,2,4,7的众数是2,则这组数据的平均数、中位数分别为( ▲ ) A .3,4 B .3,3.5 C . 3.5,3 D .4,3 6.反比例函数xm y 3-=(m ≠3)在图象所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是( ▲ )A .3m <-B . 3m >-C .3m <D . 3m >7.已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2的取值范围在数轴上表示正确的是( ▲ )8.用棋子按下列方式摆图形,依此规律,第n 个图形比第(n-1)个图形多(▲ )枚棋子.A.4nB . 5n -4C .4n -3D . 3n -29. 如图,平行四边形ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC =54°,连接AE ,则∠AEB 的度数为( ▲ ) A .27° B .36° C . 46° D .63°ABCD10.如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止,设点P 运动的路程为x ,△ABP 的面积为y ,y 关于x 的函数图象如图2所示, 则△ABC 的面积是( ▲ )A .4B .3C .2D .111.下列图形中,既是轴对称图形又是中心对称图形的是( ) A.菱形、正方形、平行四边形 B.矩形、等腰三角形、圆 C.矩形、正方形、等腰梯形 D.菱形、正方形、圆12.有下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④两个锐角的和是锐角;⑤同角或等角的补角相等. 正确命题的个数是( ) A.2个 B.3个 C.4个 D.5个 13.若不等式组211x a x a >-⎧⎨<+⎩无解,则a 的取值范围是( )A.2a < B.2a = C.2a > D.2a ≥14.已知,△ABC 中,∠A =90°,∠ABC =30°.将△ABC 沿直线BC 平移得到△111C B A ,1B 为BC 的中点,连结1BA ,则tan BC A 1∠的值为( ) A .43 B .53C .63 D .73 15.一个几何体是由若干个相同的立方体组成,其主视图和左视图如图所示,则组成这个几何体的立方体个数不可能的是( ) A .15个 B .13个 C .11个 D .5个 16.给出以下命题:①已知8215-可以被在60~70之间的两个整数整除,则这两个数是63、65;②若,2=x a ,3=y a 则yx a -2=34; ③已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为6-≠->m m 或; ④若方程x 2-2(m +1)x +m 2=0有两个整数根,且12<m <60, 则m 的整数值有2个. 其中正确的是( )A .①②B .①②④C .①③④ D.②③④ 2015年河北省初中毕业生升学文化课模拟考试数 学 试 卷卷II (非选择题,共78分)注意事项:1.答卷II 前,将密封线左侧的项目填写清楚.(第14题)(第15题)A B CD 图12.答卷II 时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.一个不透明的袋中装有除颜色外其他均相同的2个红球和3个黄球,从中随机摸出一个黄球的概率是 ▲ .18.若实数a 、b 满足a +b =5,a 2b +ab 2=-10,则ab 的值是 ▲ .19.如图,矩形ABCD 中,AB =8,AD=3.点E 从D 向C 以每秒1个单位的速度运动,以AE 为一边在AE 的右下方作正方形AEFG ,同时垂直于CD 的直线MN 也从C 向D 以每秒2个单位的速度运动,当经过 ▲ 秒时,直线MN 和正方形AEFG 开始有公共点?20.如图,Rt △ABC 的斜边AB 在x 轴上,OA =OB =6,点C 在第一象限,∠A =30°, P (m ,n )是线段BC 上的动点,过点P 作BC 的垂线a ,以直线a 为对称轴,将线段OB 轴对称变换后得线段O ′B ′, (1)当点B ′ 与点C 重合时,m 的值为 ▲ ;(2)当线段O ′B ′与线段AC 没有公共点时,m 的取值范围是 ▲ . 三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分9分)如图,用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为(217x +)cm ,正六边形的边长为(22x x +)cm (0)x >其中.求这两段铁丝的总长. 22.(本小题满分10分)已知:图1为一锐角是30°的直角三角尺,其边框为透明塑料制成(内、外直角三角形对应边互相平行且三处所示宽度相等).操作:将三角尺移向直径为6cm 的⊙O ,它的内Rt △ABC 的斜边AB 恰好等于⊙O 的直径,它的外Rt △A ′B ′C ′的直角边A ′C ′ 恰好与⊙O 相切(如图2)。
河北省2017年中考数学真题试题(含扫描答案)
2017年河北中考数学试卷第Ⅰ卷(共42分)一、选择题:本大题共16个小题,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列运算结果为正数的是( ) A .2(3)−B .32−÷C .0(2017)⨯−D .23−2.把0.0813写成10na ⨯(110a ≤<,n 为整数)的形式,则a 为( ) A .1B .2−C .0.813D .8.133.用量角器测量MON ∠的度数,操作正确的是( )4.23222333m n ⨯⨯⨯=+++个个……( )A .23n mB .23m nC .32m nD .23m n5.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是( )A .①B .②C .③D .④6.如图为张小亮的答卷,他的得分应是( )A .100分B .80分C .60分D .40分7.若ABC ∆的每条边长增加各自的10%得'''A B C ∆,则'B ∠的度数与其对应角B ∠的度数相比( ) A .增加了10%B .减少了10%C .增加了(110%)+D .没有改变8.如图是由相同的小正方体木块粘在一起的几何体,它的主视图是( )9.求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O . 求证:AC BD ⊥.以下是排乱的证明过程:①又BO DO =,②∴AO BD ⊥,即AC BD ⊥. ③∵四边形ABCD 是菱形,④∴AB AD =.证明步骤正确的顺序是( )A .③→②→①→④B .③→④→①→②C .①→②→④→③D .①→④→③→②10.如图,码头A 在码头B 的正西方向,甲、乙两船分别从A 、B 同时出发,并以等速驶向某海域,甲的航向是北偏东35︒,为避免行进中甲、乙相撞,则乙的航向不能是( ) A .北偏东55︒B .北偏西55︒C .北偏东35︒D .北偏西35︒11.如图是边长为10cm 的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm )不正确的( )12.如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是( )A .4446+−=B .004446++= C .34446++= D .14446−÷+=13.若321x x −=−( )11x +−,则( )中的数是( ) A .1−B .2−C .3−D .任意实数14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,比较5月份两组家庭用水量的中位数,下列说法正确的是( )A .甲组比乙组大B .甲、乙两组相同C .乙组比甲组大D .无法判断15.如图,若抛物线23y x =−+与x 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数ky x=(0x >)的图象是( )16.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示.按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4 B.1.1 C.0.8 D.0.5第Ⅱ卷(共78分)二、填空题(本题共有3个小题,满分10分,将答案填在答题纸上)17.如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长到点M ,N ,使AM AC =,BN BC =,测得200MN m =,则A ,B 间的距离为m .18.如图,依据尺规作图的痕迹,计算α∠= .19.对于实数p ,q ,我们用符号{}min ,p q 表示p ,q 两数中较小的数,如{}min 1,21=,因此{}min 2,3−−= ;若{}22min (1),1x x −=,则x = .三、解答题 (本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤.)20.在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示.设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .21.编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记0分.如图是根据他们各自的累积得分绘制的条形统计图,之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.(1)求第6号学生的积分,并将图增补为这6名学生积分的条形统计图; (2)在这6名学生中,随机选一名学生,求选上命中率高于50%的学生的概率;(3)最后,又来了第7号学生,也按同样记分规定投了5次.这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分. 22.发现 任意五个连续整数的平方和是5的倍数. 验证 (1)22222(1)0123−++++的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数.23.如图,16AB =,O 为AB 中点,点C 在线段OB 上(不与点O ,B 重合),将OC 绕点O 逆时针旋转270︒后得到扇形COD ,AP ,BQ 分别切优弧CD 于点P ,Q ,且点P ,Q 在AB 异侧,连接OP .(1)求证:AP BQ =;(2)当43BQ =时,求QD 的长(结果保留π);(3)若APO ∆的外心在扇形COD 的内部,求OC 的取值范围.24.如图,直角坐标系xOy 中,(0,5)A ,直线5x =−与x 轴交于点D ,直线33988y x =−−与x 轴及直线5x =−分别交于点C ,E .点B ,E 关于x 轴对称,连接AB .(1)求点C ,E 的坐标及直线AB 的解析式; (2)设面积的和CDE ABDO S S S ∆=+,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将CDE ∆沿x 轴翻折到CDB ∆的位置,而CDB ∆与四边形ABDO 拼接后可看成AOC ∆,这样求S 便转化为直接求AOC ∆的面积不更快捷吗?”但大家经反复验算,发现AOC S S ∆≠,请通过计算解释他的想法错在哪里.25.平面内,如图,在ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90︒得到线段PQ .(1)当10DPQ ∠=︒时,求APB ∠的大小;(2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号);(3)若点Q 恰好落在ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π). 26.某厂按用户的月需求量x (件)完成一种产品的生产,其中0x >.每件的售价为18万元,每件的成本y (万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x (件)成反比.经市场调研发现,月需求量x 与月份n (n 为整数,112n ≤≤)符合关系式2229(3)x n kn k =−++(k 为常数),且得到了表中的数据.(1)求y 与x 满足的关系式,请说明一件产品的利润能否是12万元; (2)求k ,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m 个月和第(1)m +个月的利润相差最大,求m .。
2017年河北省邯郸市中考数学一模试卷-(27547)
2017年河北省邯郸市中考数学一模试卷一、选择题(本题共16个小题,共42分)1.(3分)下列各数中,是无理数的是()A.﹣1 B.πC.0 D.2.(3分)下列四个图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.3.(3分)下列算式中,结果等于x6的是()A.x2•x2•x2B.x2+x2+x2C.x2•x3D.x4+x2 4.(3分)如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60°,则下列结论错误的是()A.∠2=60° B.∠3=60° C.∠4=120°D.∠5=40°5.(3分)在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是9.1环,方差分别是S甲2=1.2,S乙2=1.6,则关于甲、乙两人在这次射击训练中成绩稳定的描述正确的是()A.甲比乙稳定 B.乙比甲稳定C.甲和乙一样稳定 D.甲、乙稳定性没法对比6.(3分)如图,济南大约位于石家庄的南偏东56°方向上,则石家庄大约位于济南的()A.北偏西56°方向上 B.北偏西34°方向上C.南偏西34°方向上 D.南偏东56°方向上7.(3分)一元二次方程x2+4x+c=0中,c<0,该方程根的情况是()A.没有实数根 B.有两个不相等的实数根C.有两个相等的实数根 D.不能确定8.(3分)如图,以点O为位似中心,将△ABC 放大得到△DEF,若AD=OA,△ABC的面积为4,则△DEF的面积为()A.2 B.8 C.16 D.249.(3分)当a,b互为相反数时,代数式a2+ab ﹣2的值为()A.2 B.0 C.﹣2 D.﹣110.(3分)数轴上点A、B表示的数分别是a,b,则点A,B之间的距离为()A.a+b B.a﹣b C.|a+b| D.|a﹣b| 11.(2分)某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km,求提速前列车的平均速度.设列车提速前的平均速度是xkm/h,下面所列出的四个方程中,正确的是()A. B. C. D.12.(2分)图中的正三角形和正六边形有公共的外接圆⊙O.则这个正三角形和正六边形边长的比为()A.:2 B.:2 C.:1 D.2:1 13.(2分)若实数a是不等式2x﹣1>5的解,但实数b不是不等式2x﹣1>5的解,则下列选项中,正确的是()A.a<b B.a>b C.a≤b D.a≥b 14.(2分)如图,在平面直角坐标系中,依下列步骤尺规作图,并保留作图痕迹:步骤1:以点O为圆心,任意长为半径画弧,与x轴负半轴交于点A,与直线y=x交于点B(点B在第三象限):步骤2:分别以点A,B为圆心,以大于AB 长为半径画弧,两弧交于点C.则直线OC的函数解析式为()A.y=x B.y=﹣x C.y=xD.y=﹣x15.(2分)如图,⊙O的半径为2,AB,CD 是两条互相垂直的直径,点P是⊙O上任意一点(点P与点A,B,C,D均不重合),过点P作PM⊥AB于点M.PN⊥CD于点N,点Q 是线段MN的中点.若点P以点O为旋转中心.沿着圆周顺时针旋转45°.则点Q经过的路径长为()A.B.C.D.16.(2分)如图,在平面直角坐标系中,四边形OABC为矩形,其中A(2,0)C(0,4),反比例函数y=(x>0,k>0)的图象与矩形的对角线AC有公共点,并且交AB边于点E,交BC边于点F,以下结论:①直线AC的解析式为y=﹣2x+4;②EF∥AC;③当反比例函数图象与线段AC只有一个公共点时,k值最大,最大值为2;④△BEF面积的最小值为2.则下列选项中,正确的是()A.②③④ B.①③④C.①②④ D.①②③二、填空题(本大题共3小题,共10分)17.(3分)计算:(3﹣π)0﹣sin30°=.18.(3分)化简的结果为.19.(4分)如图中的虚线网格为菱形网格,每一个小菱形的面积均为1,网格中虚线的交点称为格点,顶点都在格点的多边形称为格点多边形,如:格点▱ABCD的面积是6.(1)格点△PMN的面积是.(2)格点四边形EFGH的面积是.三、解答题(本大题共7小题,共68分)20.(9分)请你参考黑板中老师的讲解,运用平方差公式简便计算:(1)×;(2)(2017+2017)(﹣).21.(9分)已知:如图,△ABC和△EFC都是等腰直角三角形,∠ACB=∠ECF=90°,点E在AB边上.(1)求证:△ACE≌△BCF;(2)若∠BFE=60°,求∠AEC的度数.22.(9分)已知n边形的对角线共有条(n 是不小于3的整数);(1)五边形的对角线共有条;(2)若n边形的对角线共有35条,求边数n;(3)若n边形的边数增加1,对角线总数增加9,求边数n.23.(9分)为了解七年级学生上学期参加社会实践活动的情况,随机抽查了某市七年级200名学生参加社会实践活动的天数,并根据抽查结果制作了如下不完整的条形统计图:根据以上信息,解答下列问题:(1)求条形统计图中参加社会实践活动天数为6天所对应的人数,及被调查的200名学生参加社会实践活动天数的平均数;(2)被调查的学生参加社会实践活动天数的众数为,中位数为.(3)在此次调查活动中,A、B、C、D四位同学说他们中有两人被抽查了,请你用列表法或画树状图,求出恰好抽到A与B两位同学的概率;(4)某市有七年级学生10万人,请你估计该市七年级学生参加社会实践活动不少于5天的人数.24.(10分)嘉淇同学家的饮水机中原有水的温度为20℃,其工作过程如图所示,在一个由20℃加热到100℃再降温到20℃的过程中,水温记作y(℃),从开始加热起时间变化了x(分钟),加热过程中,y与x满足一次函数关系,水温下降过程中,y与x成反比例,当x=20时,y=40.(1)写出饮水机水温的下降过程中y与x的函数关系,并求出x为何值时,y=100;(2)求加热过程中y与x之间的函数关系;(3)求当x为何值时,y=80.问题解决若嘉淇同学上午八点将饮水机通电开机后即外出散步,预计九点前回到家中,若嘉淇想喝到不低于50℃的水,直接写出外出时间m(分钟)的取值范围.25.(10分)如图,已知以AE为直径的半圆圆心为O,半径为5,矩形ABCD的顶点B在直径AE上,顶点C在半圆上,AB=8,点P 为半圆上一点.(1)矩形ABCD的边BC的长为;(2)将矩形沿直线AP折叠,点B落在点B′.①点B′到直线AE的最大距离是;②当点P与点C重合时,如图所示,AB′交DC于点M.求证:四边形AOCM是菱形,并通过证明判断CB′与半圆的位置关系;③当EB′∥BD时,直接写出EB′的长.26.(12分)如图,在平面直角坐标系中,点A,B的坐标分别为A(1,0),B(3,0).探究:抛物线y=x2﹣2mx+m2﹣4(m为常数)交x轴于点M,N两点;(1)当m=2时,求出抛物线的顶点坐标及线段MN的长;(2)对于抛物线y=x2﹣2mx+m2﹣4(m为常数).①线段MN的长度是否发生改变,请说明理由;②若该抛物线与线段AB有公共点,请直接写出m的取值范围;拓展:对于抛物线y=a2(x﹣b)2﹣4(a,b为常数,且满足a=).(1)请直接写出该抛物线与y轴的交点坐标;(2)若该抛物线与线段AB有公共点,请直接写出a的取值范围.2017年河北省邯郸市中考数学一模试卷参考答案与试题解析一、选择题(本题共16个小题,共42分)1.(3分)(2017•邯郸一模)下列各数中,是无理数的是()A.﹣1 B.πC.0 D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:π是无理数,故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(3分)(2017•邯郸一模)下列四个图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项不合题意;B、是轴对称图形,也是中心对称图形,故此选项不合题意;C、是轴对称图形,也是中心对称图形,故此选项不合题意;D、是轴对称图形,不是中心对称图形,故此选项符合题意.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(2017•邯郸一模)下列算式中,结果等于x6的是()A.x2•x2•x2B.x2+x2+x2C.x2•x3D.x4+x2【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项分析判断后利用排除法求解.【解答】解:A、x2•x2•x2=x6,故选项A符合题意;B、x2+x2+x2=3x2,故选项B不符合题意;C、x2•x3=x5,故选项C不符合题意;D、x4+x2,无法计算,故选项D不符合题意.故选:A.【点评】本题考查合并同类项、同底数幂的乘法、单项式乘以单项式等知识,熟练掌握运算性质和法则是解题的关键.4.(3分)(2016•深圳)如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60°,则下列结论错误的是()A.∠2=60° B.∠3=60° C.∠4=120°D.∠5=40°【分析】根据平行线的性质:两直线平行,同位角相等,以及对顶角相等等知识分别求出∠2,∠3,∠4,∠5的度数,然后选出错误的选项.【解答】解:∵a∥b,∠1=60°,∴∠3=∠1=60°,∠2=∠1=60°,∠4=180°﹣∠3=180°﹣60°=120°,∵三角板为直角三角板,∴∠5=90°﹣∠3=90°﹣60°=30°.故选D.【点评】本题考查了平行线的性质,解答本题的关键上掌握平行线的性质:两直线平行,同位角相等.5.(3分)(2017•邯郸一模)在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是9.1环,方差分别是S甲2=1.6,则关于甲、乙两人在这次射2=1.2,S乙击训练中成绩稳定的描述正确的是()A.甲比乙稳定 B.乙比甲稳定C.甲和乙一样稳定 D.甲、乙稳定性没法对比【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=1.2,S乙2=1.6,∴S甲2<S乙2,∴甲、乙两人在这次射击训练中成绩稳定的是甲,∴甲比乙稳定;故选A.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.(3分)(2017•邯郸一模)如图,济南大约位于石家庄的南偏东56°方向上,则石家庄大约位于济南的()A.北偏西56°方向上 B.北偏西34°方向上C.南偏西34°方向上 D.南偏东56°方向上【分析】根据方向的相对性,可得答案.【解答】解:由方向的相对性,得石家庄大约位于济南的北偏西56°方向上,故选:A.【点评】本题考查了方向角,利用物体的相对性是解题关键.7.(3分)(2007•湘潭)一元二次方程x2+4x+c=0中,c<0,该方程根的情况是()A.没有实数根 B.有两个不相等的实数根C.有两个相等的实数根 D.不能确定【分析】求出方程的判别式△的值后,和0比较大小就可以判断根的情况.【解答】解:∵c<0,∴﹣c>0,∴△=16﹣4c>0,所以方程有两个不相等的实数根.故选B.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8.(3分)(2017•邯郸一模)如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,△ABC的面积为4,则△DEF的面积为()A.2 B.8 C.16 D.24【分析】利用位似图形的性质首先得出位似比,进而得出面积比.【解答】解:∵以点O为位似中心,将△ABC 放大得到△DEF,AD=OA,∴OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4,∵△ABC的面积为4,∴△DEF的面积为:16.故选:C.【点评】此题主要考查了位似图形的性质,得出位似比是解题关键.9.(3分)(2017•邯郸一模)当a,b互为相反数时,代数式a2+ab﹣2的值为()A.2 B.0 C.﹣2 D.﹣1【分析】由互为相反数两数之和为0得到a+b=0,原式变形后代入计算即可求出值.【解答】解:由题意得到a+b=0,则原式=a(a+b)﹣2=0﹣2=﹣2,故选C【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.10.(3分)(2017•邯郸一模)数轴上点A、B 表示的数分别是a,b,则点A,B之间的距离为()A.a+b B.a﹣b C.|a+b| D.|a﹣b| 【分析】根据数轴上两点间的距离是大数减小数,可得答案.【解答】解:∵点A、B在数轴上分别表示有理数a、b,∴A、B两点之间的距离可以表示为:|a﹣b|.故选:D.【点评】本题考查了数轴,熟记数轴上两点间的距离公式是解题关键.11.(2分)(2017•邯郸一模)某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km,求提速前列车的平均速度.设列车提速前的平均速度是xkm/h,下面所列出的四个方程中,正确的是()A. B. C. D.【分析】设列车提速前的平均速度是xkm/h,则提速后的速度为(x+v)km/h,根据用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km,列方程即可.【解答】解:设列车提速前的平均速度是xkm/h,则提速后的速度为(x+v)km/h,由题意得,=.故选A.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.12.(2分)(2017•邯郸一模)图中的正三角形和正六边形有公共的外接圆⊙O.则这个正三角形和正六边形边长的比为()A.:2 B.:2 C.:1 D.2:1【分析】根据题意画出图形,通过解直角三角形用R分别表示出它们的边长,进而可得出结论.【解答】解:设外接圆的半径为R,如图所示:连接O2 A,O2 B,则O2 B⊥AC,∵O2 A=R,∠O2AF=30°,∠AO2B=60°,∴△AO2B是等边三角形,A•cos30°=R,AF=O∴AB=R,AC=2AF=R;∴外接圆的半径相等的正三角形、正六边形的边长之比为R:R=:1.故选C.【点评】本题考查的是正多边形和圆、解直角三角形;熟知正三角形、正方形和正六边形的性质是解答此题的关键.13.(2分)(2017•邯郸一模)若实数a是不等式2x﹣1>5的解,但实数b不是不等式2x﹣1>5的解,则下列选项中,正确的是()A.a<b B.a>b C.a≤b D.a≥b【分析】首先解不等式2x﹣1>5,求得不等式的解集,则a和b的范围即可确定,从而比较a和b的大小.【解答】解:解2x﹣1>5得x>3,a是不等式2x﹣1>5的解,则a>3,b不是不等式2x﹣1>5的解,则b≤3,故a>b.故选B.【点评】本题考查了一元一次不等式的解法,根据不等式的解集确定a和b的范围是解决问题的关键.14.(2分)(2017•邯郸一模)如图,在平面直角坐标系中,依下列步骤尺规作图,并保留作图痕迹:步骤1:以点O为圆心,任意长为半径画弧,与x轴负半轴交于点A,与直线y=x交于点B(点B在第三象限):步骤2:分别以点A,B为圆心,以大于AB 长为半径画弧,两弧交于点C.则直线OC的函数解析式为()A.y=x B.y=﹣x C.y=xD.y=﹣x【分析】作BD⊥x轴于D,作CE⊥x轴于E,如图,设B(m,m),利用正切的定义得到tan∠BOD=,则∠BOD=60°,再利用基本作图得到OC平分∠AOB,则∠AOC=30°,设CE=t,则OE=3t,所以C(﹣3t,﹣t),然后利用待定系数法求直线OC的解析式.【解答】解:作BD⊥x轴于D,作CE⊥x轴于E,如图,设B(m,m),∴tan∠BOD==,∴∠BOD=60°,由作法得OC平分∠AOB,∴∠AOC=30°,在Rt△CEO中,tan∠COE=tan30°==,设CE=t,则OE=3t,则C(﹣3t,﹣t),设直线OC的解析式为y=kx,把C(﹣3t,﹣t)代入得﹣t=﹣3tk,解得k=,∴直线OC的解析式为y=x.故选C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了一次函数图象上点的坐标特征.15.(2分)(2017•邯郸一模)如图,⊙O的半径为2,AB,CD是两条互相垂直的直径,点P是⊙O上任意一点(点P与点A,B,C,D 均不重合),过点P作PM⊥AB于点M.PN ⊥CD于点N,点Q是线段MN的中点.若点P以点O为旋转中心.沿着圆周顺时针旋转45°.则点Q经过的路径长为()A.B.C.D.【分析】根据OP的长度不变,始终等于半径,则根据矩形的性质可得OQ=1,再由走过的角度代入弧长公式即可.【解答】解:∵PM⊥AB于点M,PN⊥CD于点N,∴四边形ONPM是矩形,又∵点Q为MN的中点,∴点Q为OP的中点,又OP=2,则OQ=1,点Q走过的路径长==.故选A.【点评】本题考查了弧长的计算及矩形的性质,解答本题的关键是根据矩形的性质得出点Q运动轨迹的半径,要求同学们熟练掌握弧长的计算公式.16.(2分)(2017•邯郸一模)如图,在平面直角坐标系中,四边形OABC为矩形,其中A (2,0)C(0,4),反比例函数y=(x>0,k >0)的图象与矩形的对角线AC有公共点,并且交AB边于点E,交BC边于点F,以下结论:①直线AC的解析式为y=﹣2x+4;②EF ∥AC;③当反比例函数图象与线段AC只有一个公共点时,k值最大,最大值为2;④△BEF 面积的最小值为2.则下列选项中,正确的是()A.②③④ B.①③④C.①②④ D.①②③【分析】①由点A、B的坐标利用待定系数法即可求出直线AC的解析式,①成立;②由反比例函数图象上点的坐标特征求出点E、F的坐标,根据==,即可得出EF∥AC,②成立;③设反比例函数图象与AC的交点为D,过D作DM⊥x轴于点M,过点D作DN⊥y 轴于点N,设OM=x(0<x<2),则ON=4﹣2x,根据反比例函数图象上点的坐标特征即可得出k=﹣2(x﹣1)2+2≥2,由此可得出k的最小值,再将直线AC解析式代入反比例函数解析式整理出一元二次方程,通过解方程组即可得出此时反比例函数图象与线段AC只有一个公共点,③成立;④根据三角形的面积公式结合k的取值范围即可得出S △BEF≥,④不成立.综上即可得出结论.【解答】解:①设直线AC的解析式为y=ax+b,将A(2,0)、B(0,4)代入y=ax+b,,解得:,∴直线AC的解析式为y=﹣2x+4,①成立;②当x=2时,y==,∴点E(2,);当y==4时,x=,∴点F(,4).∵四边形OABC为矩形,其中A(2,0)C(0,4),∴点B(2,4),∴BC=2,BA=4,BF=2﹣=,BE=4﹣=,∴==,∴EF∥AC,②成立;③设反比例函数图象与AC的交点为D,过D 作DM⊥x轴于点M,过点D作DN⊥y轴于点N,如图所示.设OM=x(0<x<2),则ON=4﹣2x,∴k=x(4﹣2x)=﹣2(x﹣1)2+2,当x=1时,k取最大值,最大值为2.将y=﹣2x+4代入y=中,整理得:x2﹣2x+1=(x﹣1)2=0,∴当反比例函数图象与线段AC只有一个公共点时,k值最大,最大值为2,③成立;④∵S △BEF=BE•BF=≥,∴△BEF面积的最小值为,④不成立.故选D.【点评】本题考查了矩形的性质、反比例函数图象上点的坐标特征以及三角形的面积,逐一分析四条结论的正确与否是解题的关键.二、填空题(本大题共3小题,共10分)17.(3分)(2017•邯郸一模)计算:(3﹣π)0﹣sin30°=.【分析】原式利用零指数幂法则,特殊角的三角函数值计算即可得到结果.【解答】解:原式=1﹣=,故答案为:【点评】此题考查了实数的运算,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.18.(3分)(2017•邯郸一模)化简的结果为x+1 .【分析】原式变形后,约分即可得到结果.【解答】解:原式=•=x+1,故答案为:x+1【点评】此题考查了分式的乘除法,分式乘除法的关键是约分,约分的关键是找出分子分母的公因式.19.(4分)(2017•邯郸一模)如图中的虚线网格为菱形网格,每一个小菱形的面积均为1,网格中虚线的交点称为格点,顶点都在格点的多边形称为格点多边形,如:格点▱ABCD的面积是6.(1)格点△PMN的面积是 6 .(2)格点四边形EFGH的面积是28 .【分析】(1)根据S △PMN=•S平行四边形MNEF计算即可;(2)根据S四边形EFGH=S平行四边形LJKT﹣S△LEH﹣S ﹣S△FKG﹣S△EFJ计算即可.△HTG【解答】解:(1)如图,S=•S平行四边形MNEF=×12=6,故答案为6.(2)S四边形EFGH=S平行四边形LJKT﹣S△LEH﹣S△HTG ﹣S△FKG﹣S△EFJ=60﹣2﹣9﹣6﹣15=28,故答案为28【点评】本题考查菱形的性质、平行四边形的性质等知识,解题的关键是学会用分割法求面积,属于中考常考题型.三、解答题(本大题共7小题,共68分)20.(9分)(2017•邯郸一模)请你参考黑板中老师的讲解,运用平方差公式简便计算:(1)×;(2)(2017+2017)(﹣).【分析】(1)把19化为20﹣1,把21化为20+1,然后利用平方差公式计算;(2)把第1个括号内提2017,然后利用平方差公式计算.【解答】解:(1)原式===;(2)原式=2017()(﹣)=2017×(3﹣2)=2017.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.也考查了平方差公式的熟练运用.21.(9分)(2017•邯郸一模)已知:如图,△ABC和△EFC都是等腰直角三角形,∠ACB=∠ECF=90°,点E在AB边上.(1)求证:△ACE≌△BCF;(2)若∠BFE=60°,求∠AEC的度数.【分析】(1)根据同角的余角相等求出∠ACE=∠BCF,再利用“边角边”证明即可;(2)根据等腰直角三角形的性质可得∠EFC=45°,然后求出∠BFC=105°,再根据全等三角形对应角相等解答.【解答】(1)证明:∵∠ACB=∠ECF=90°,∴∠ACE=∠BCF,∵CA=CB,CE=CF,∴△AEC≌△BFC(SAS);(2)解:∵△EFC是等腰直角三角形,∴∠EF C=45°.∵∠BFE=60°,∴∠BFC=105°,又∵△AEC≌△BFC,∴∠AEC=∠BFC=105°.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,熟练掌握三角形全等的判定方法是解题的关键.22.(9分)(2017•邯郸一模)已知n边形的对角线共有条(n是不小于3的整数);(1)五边形的对角线共有 5 条;(2)若n边形的对角线共有35条,求边数n;(3)若n边形的边数增加1,对角线总数增加9,求边数n.【分析】(1)把n=5代入即可求得五边形的对角线的条数;(2)根据题意得=35求得n值即可;(3)﹣=9,求得n的值即可.【解答】解:(1)当n=5时,==5,故答案为:5.(2)=35,整理得:n2﹣3n﹣70=0,解得:n=10或n=﹣7(舍去),所以边数n=10.(3)根据题意得:﹣=9,解得:n=10.所以边数n=10.【点评】本题考查了多边形的对角线的知识,了解多边形的对角线的计算方法是解答本题的关键,难度不大.23.(9分)(2017•邯郸一模)为了解七年级学生上学期参加社会实践活动的情况,随机抽查了某市七年级200名学生参加社会实践活动的天数,并根据抽查结果制作了如下不完整的条形统计图:根据以上信息,解答下列问题:(1)求条形统计图中参加社会实践活动天数为6天所对应的人数,及被调查的200名学生参加社会实践活动天数的平均数;(2)被调查的学生参加社会实践活动天数的众数为 5 ,中位数为 5 .(3)在此次调查活动中,A、B、C、D四位同学说他们中有两人被抽查了,请你用列表法或画树状图,求出恰好抽到A与B两位同学的概率;(4)某市有七年级学生10万人,请你估计该市七年级学生参加社会实践活动不少于5天的人数.【分析】(1)用样本容量分别减去其它天数的人数可得到实践活动天数为6天所对应的人数;然后利用加权平均数的计算方法计算200名学生参加社会实践活动天数的平均数;(2)利用众数和中位数的定义求解;。
邯郸市数学中考一模试卷
邯郸市数学中考一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)某天上海科技股票开盘价为20元,上午10:00上涨2.5元,下收盘时又下跌1.2元,则上海科技这天的收盘价为()A . 22.5元B . 3.7元C . 21.3元D . 23.7元2. (2分)(2018·集美期中) 如图,在数轴上表示到原点的距离为个单位的点有()A . D点B . B点和C点C . A点D . A点和D点3. (2分)下列各组中的两项,属于同类项的是()A . ﹣2x2y与xy2B . 与2πyC . 3mn与﹣4nmD . ﹣0.5ab与abc4. (2分) (2019八下·赵县期末) 把直线y=-x+3向上平移m个单位长度后,与直线y=2x+4的交点在第一象限,则m的取值范围是()A . 1<m<7B . 3<m<4C . m>1D . m<45. (2分)(2017·扬州) 下列统计量中,反映一组数据波动情况的是()A . 平均数B . 众数C . 频率D . 方差6. (2分)(2018·聊城) 如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A . (﹣)B . (﹣)C . (﹣)D . (﹣)7. (2分)下面说法中错误的是()A . 各边相等,各角也相等的多边形是正多边形B . 单项式-2xy的系数是-2C . 数轴是一条特殊的直线D . 多项式ab2-3a2+1次数是5次8. (2分)(2018·江油模拟) 为了得到函数y=3x2的图象,可以将函数y=﹣3x2﹣6x﹣1的图象()A . 先关于x轴对称,再向右平移1个单位,最后向上平移2个单位B . 先关于x轴对称,再向右平移1个单位,最后向下平移2个单位C . 先关于y轴对称,再向右平移1个单位,最后向上平移2个单位D . 先关于y轴对称,再向右平移1个单位,最后向下平移2个单位9. (2分) (2011七下·广东竞赛) △ABC中,已知BD和CE分别是两边上的中线,并且BD⊥CE,BD=4,CE=6,那么ABC的面积等于()A . 12B . 14C . 16D . 1810. (2分) (2019八下·哈尔滨期中) 周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位m)与他所用的时间t(单位min)之间的函数关系如图所示,下列说法正确有()个.①小涛家离报亭的距离是1200m;②小涛从家去报亭的平均速度是60m/min;③小涛在报亭看报用了15min;④从家到报亭行走的速度比报亭返回家的速度快;⑤小涛从家出发到返回到家的过程中的平均速度是48m/min.A . 1B . 2C . 3D . 4二、填空题 (共6题;共6分)11. (1分) (2017九上·深圳期中) 一元二次方程x2=﹣3x的解是________.12. (1分) (2017七下·红河期末) 在平面直角坐标系中,点P的坐标是(﹣3,2),则点P在第________象限.13. (1分) (2020九上·三门期末) 如图,一人口的弧形台阶,从上往下看是一组同心圆被一条直线所截得的一组圆弧.已知每个台阶宽度为32cm(即相邻两弧半径相差32cm),测得AB=200cm,AC=BD=40cm,则弧AB所在的圆的半径为________cm14. (1分)平面直角坐标系中,点A的坐标为(2,3),把OA绕点O逆时针旋转90°,那么A点旋转后所到点的横坐标是________15. (1分)(2019·信阳模拟) 如图①,在正方形中,点是的中点,点是对角线上一动点,设的长度为与的长度和为,图②是关于的函数图象,则图象上最低点的坐标为________.16. (1分)(2018·长宁模拟) 已知⊙O1的半径为4,⊙O2的半径为R,若⊙O1与⊙O2相切,且O1O2=10,则R的值为________.三、解答题 (共8题;共93分)17. (10分)解下列方程组:(1);(2).18. (11分) (2016八上·南宁期中) 某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:请根据以上统计图提供的信息,解答下列问题:(1)共抽取________名学生进行问卷调查;(2)补全条形统计图,求出扇形统计图中“篮球”所对应的圆心角的度数;(3)该校共有2500名学生,请估计全校学生喜欢足球运动的人数.19. (11分) (2019七上·惠山期中)(1)先化简再求值:,其中a、b满足(2)已知a+b=4,ab=-2,求代数式(5a-4b-4ab)-3(a-2b-ab)的值.20. (10分)如图,在大地电影院,高240cm的银幕AB挂在距离地面OM160cm的墙上,观众的座位设置在离银幕水平距离OC=300cm且坡度i=1:4的斜坡CN上,每排座位之间的水平距离CD=60cm(点D处为第1排座位),假如观看电影时,保持座位靠前,且观看银幕中心的仰角∠FPQ不大于10°为最佳位置(此时假设眼睛距离座位底端EF=120cm).(1)银幕中心距离地面________cm.(2)试问该影院第几排是最佳位置?请通过计算说明理由.(参考数据:sin10°≈0.174,cos10°≈0.985,tan10°≈0.176)21. (10分) (2017九上·乐清期中) 如图,将△ABC放在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(1)计算AB边的长是多少;(2)请在如图所示的网格中,用无刻度的直尺作出一个以AB为边的矩形,使矩形的面积等于△ABC的面积2.5倍.(不要求证明)22. (11分)由垂径定理可知:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧;平分弧的直径垂直平分这条弧所对的弦.请利用这一结论解决问题:如图,点P在以MN为直径的⊙O上,MN=8,PQ⊥MN交⊙O于点Q,垂足为H,PQ≠MN,PQ=4 .(1)连结OP,证明△OPH为等腰直角三角形;(2)若点C,D在⊙O上,且 = ,连结CD,求证:OP∥CD.23. (15分)(2017·营口模拟) 如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q 从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥A B交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H 为顶点的四边形为菱形?请直接写出t的值.24. (15分)(2017·石景山模拟) 在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+4a﹣3(a≠0)的顶点为A.(1)求顶点A的坐标;(2)过点(0,5)且平行于x轴的直线l,与抛物线y=ax2﹣4ax+4a﹣3(a≠0)交于B,C两点.①当a=2时,求线段BC的长;②当线段BC的长不小于6时,直接写出a的取值范围.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共93分)17-1、17-2、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、。
2017河北中考数学试卷及答案
2017年河北中考数学试卷第Ⅰ卷(共42分)一、选择题:本大题共16个小题,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列运算结果为正数的是( ) A .2(3)-B .32-÷C .0(2017)⨯-D .23-2.把0.0813写成10na ⨯(110a ≤<,n 为整数)的形式,则a 为( ) A .1B .2-C .0.813D .8.133.用量角器测量MON ∠的度数,操作正确的是( )4.23222333m n ⨯⨯⨯=+++个个……( ) A .23n mB .23m nC .32m nD .23m n5.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是( )A .①B .②C .③D .④6.如图为张小亮的答卷,他的得分应是( )A .100分B .80分C .60分D .40分7.若ABC ∆的每条边长增加各自的10%得'''A B C ∆,则'B ∠的度数与其对应角B ∠的度数相比( ) A .增加了10%B .减少了10%C .增加了(110%)+D .没有改变8.如图是由相同的小正方体木块粘在一起的几何体,它的主视图是( )9.求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O . 求证:AC BD ⊥.以下是排乱的证明过程:①又BO DO =, ②∴AO BD ⊥,即AC BD ⊥. ③∵四边形ABCD 是菱形,④∴AB AD =.证明步骤正确的顺序是( )A.③→②→①→④B.③→④→①→②C.①→②→④→③ D.①→④→③→②10.如图,码头A在码头B的正西方向,甲、乙两船分别从A、B同时出发,并以等速驶向某海域,甲的航向是北偏东35︒,为避免行进中甲、乙相撞,则乙的航向不能是()A.北偏东55︒B.北偏西55︒C.北偏东35︒D.北偏西35︒11.如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确的()12.如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是()A .446+=B .04446++= C .46= D .1446-=13.若321x x -=-( )11x +-,则( )中的数是( ) A .1-B .2-C .3-D .任意实数14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,比较5月份两组家庭用水量的中位数,下列说法正确的是( )A .甲组比乙组大B .甲、乙两组相同C .乙组比甲组大D .无法判断15.如图,若抛物线23y x =-+与x 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数ky x=(0x >)的图象是( )16.已知正方形MNOK 和正六边形ABCDEF 边长均为1,把正方形放在正六边形中,使OK 边与AB 边重合,如图所示.按下列步骤操作:将正方形在正六边形中绕点B 顺时针旋转,使KM 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使MN 边与CD 边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B ,M 间的距离可能是( )A .1.4B .1.1C .0.8D .0.5第Ⅱ卷(共78分)二、填空题(本题共有3个小题,满分10分,将答案填在答题纸上)17.如图,A ,B 两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C ,连接CA ,CB ,分别延长到点M ,N ,使AM AC =,BN BC =,测得200MN m =,则A ,B 间的距离为m .18.如图,依据尺规作图的痕迹,计算α∠= .19.对于实数p ,q ,我们用符号{}min ,p q 表示p ,q 两数中较小的数,如{}min 1,21=,因此{min = ;若{}22min (1),1x x -=,则x = .三、解答题 (本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤.)20.在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示.设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少? (2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .21.编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记0分.如图是根据他们各自的累积得分绘制的条形统计图,之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.(1)求第6号学生的积分,并将图增补为这6名学生积分的条形统计图; (2)在这6名学生中,随机选一名学生,求选上命中率高于50%的学生的概率;(3)最后,又来了第7号学生,也按同样记分规定投了5次.这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分. 22.发现 任意五个连续整数的平方和是5的倍数. 验证 (1)22222(1)0123-++++的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数.23.如图,16AB =,O 为AB 中点,点C 在线段OB 上(不与点O ,B 重合),将OC 绕点O 逆时针旋转270︒后得到扇形COD ,AP ,BQ 分别切优弧 CD于点P ,Q ,且点P ,Q 在AB 异侧,连接OP .(1)求证:AP BQ =;(2)当BQ = QD 的长(结果保留π);(3)若APO ∆的外心在扇形COD 的内部,求OC 的取值范围.24.如图,直角坐标系xOy 中,(0,5)A ,直线5x =-与x 轴交于点D ,直线33988y x =--与x 轴及直线5x =-分别交于点C ,E .点B ,E 关于x 轴对称,连接AB .(1)求点C ,E 的坐标及直线AB 的解析式; (2)设面积的和CDE ABDO S S S ∆=+,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将CDE ∆沿x 轴翻折到CDB ∆的位置,而CDB ∆与四边形ABDO 拼接后可看成AOC ∆,这样求S 便转化为直接求AOC ∆的面积不更快捷吗?”但大家经反复验算,发现AOC S S ∆≠,请通过计算解释他的想法错在哪里.25.平面内,如图,在ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90︒得到线段PQ .(1)当10DPQ ∠=︒时,求APB ∠的大小;(2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号);(3)若点Q 恰好落在ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π). 26.某厂按用户的月需求量x (件)完成一种产品的生产,其中0x >.每件的售价为18万元,每件的成本y (万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x (件)成反比.经市场调研发现,月需求量x 与月份n (n 为整数,112n ≤≤)符合关系式2229(3)x n kn k =-++(k 为常数),且得到了表中的数据.(1)求y与x满足的关系式,请说明一件产品的利润能否是12万元;(2)求k,并推断是否存在某个月既无盈利也不亏损;m 个月的利润相差最大,求m.(3)在这一年12个月中,若第m个月和第(1)。
河北省2017年中考数学真题试题(含扫描答案)
2017年河北中考数学试卷第Ⅰ卷(共42分)一、选择题:本大题共16个小题,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列运算结果为正数的是( ) A .2(3)−B .32−÷C .0(2017)⨯−D .23−2.把0.0813写成10na ⨯(110a ≤<,n 为整数)的形式,则a 为( ) A .1B .2−C .0.813D .8.133.用量角器测量MON ∠的度数,操作正确的是( )4.23222333m n ⨯⨯⨯=+++个个……( )A .23n mB .23m nC .32m nD .23m n5.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是( )A .①B .②C .③D .④6.如图为张小亮的答卷,他的得分应是( )A .100分B .80分C .60分D .40分7.若ABC ∆的每条边长增加各自的10%得'''A B C ∆,则'B ∠的度数与其对应角B ∠的度数相比( ) A .增加了10%B .减少了10%C .增加了(110%)+D .没有改变8.如图是由相同的小正方体木块粘在一起的几何体,它的主视图是( )9.求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O . 求证:AC BD ⊥.以下是排乱的证明过程:①又BO DO =,②∴AO BD ⊥,即AC BD ⊥. ③∵四边形ABCD 是菱形,④∴AB AD =.证明步骤正确的顺序是( )A .③→②→①→④B .③→④→①→②C .①→②→④→③D .①→④→③→②10.如图,码头A 在码头B 的正西方向,甲、乙两船分别从A 、B 同时出发,并以等速驶向某海域,甲的航向是北偏东35︒,为避免行进中甲、乙相撞,则乙的航向不能是( ) A .北偏东55︒B .北偏西55︒C .北偏东35︒D .北偏西35︒11.如图是边长为10cm 的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm )不正确的( )12.如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是( )A .4446+−=B .004446++= C .34446++= D .14446−÷+=13.若321x x −=−( )11x +−,则( )中的数是( ) A .1−B .2−C .3−D .任意实数14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,比较5月份两组家庭用水量的中位数,下列说法正确的是( )A .甲组比乙组大B .甲、乙两组相同C .乙组比甲组大D .无法判断15.如图,若抛物线23y x =−+与x 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数ky x=(0x >)的图象是( )16.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示.按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4 B.1.1 C.0.8 D.0.5第Ⅱ卷(共78分)二、填空题(本题共有3个小题,满分10分,将答案填在答题纸上)17.如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长到点M ,N ,使AM AC =,BN BC =,测得200MN m =,则A ,B 间的距离为m .18.如图,依据尺规作图的痕迹,计算α∠= .19.对于实数p ,q ,我们用符号{}min ,p q 表示p ,q 两数中较小的数,如{}min 1,21=,因此{}min 2,3−−= ;若{}22min (1),1x x −=,则x = .三、解答题 (本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤.)20.在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示.设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .21.编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记0分.如图是根据他们各自的累积得分绘制的条形统计图,之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.(1)求第6号学生的积分,并将图增补为这6名学生积分的条形统计图; (2)在这6名学生中,随机选一名学生,求选上命中率高于50%的学生的概率;(3)最后,又来了第7号学生,也按同样记分规定投了5次.这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分. 22.发现 任意五个连续整数的平方和是5的倍数. 验证 (1)22222(1)0123−++++的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数.23.如图,16AB =,O 为AB 中点,点C 在线段OB 上(不与点O ,B 重合),将OC 绕点O 逆时针旋转270︒后得到扇形COD ,AP ,BQ 分别切优弧CD 于点P ,Q ,且点P ,Q 在AB 异侧,连接OP .(1)求证:AP BQ =;(2)当43BQ =时,求QD 的长(结果保留π);(3)若APO ∆的外心在扇形COD 的内部,求OC 的取值范围.24.如图,直角坐标系xOy 中,(0,5)A ,直线5x =−与x 轴交于点D ,直线33988y x =−−与x 轴及直线5x =−分别交于点C ,E .点B ,E 关于x 轴对称,连接AB .(1)求点C ,E 的坐标及直线AB 的解析式; (2)设面积的和CDE ABDO S S S ∆=+,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将CDE ∆沿x 轴翻折到CDB ∆的位置,而CDB ∆与四边形ABDO 拼接后可看成AOC ∆,这样求S 便转化为直接求AOC ∆的面积不更快捷吗?”但大家经反复验算,发现AOC S S ∆≠,请通过计算解释他的想法错在哪里.25.平面内,如图,在ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90︒得到线段PQ .(1)当10DPQ ∠=︒时,求APB ∠的大小;(2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号);(3)若点Q 恰好落在ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π). 26.某厂按用户的月需求量x (件)完成一种产品的生产,其中0x >.每件的售价为18万元,每件的成本y (万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x (件)成反比.经市场调研发现,月需求量x 与月份n (n 为整数,112n ≤≤)符合关系式2229(3)x n kn k =−++(k 为常数),且得到了表中的数据.(1)求y 与x 满足的关系式,请说明一件产品的利润能否是12万元; (2)求k ,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m 个月和第(1)m +个月的利润相差最大,求m .。
河北省邯郸市2017年中考第6次模拟考试数学试卷(含答案)
初三第六次模拟考试数学试卷一、 选择题(本大题共16小题,1~10小题每题3分;11~16小题每题2分,共42分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. 4的平方根是( )A.2B. 2C. ±2D. ±22. 函数11+=x y 的自变量x 的取值范围是( ) A. 1->x B. 1-<x C. 1-≠xD. 1≠x3. 一个几何体的主视图、左视图、俯视图的图形完全相同,它可能是( )A. 三棱锥B. 长方体C. 球体D. 三棱柱4. H7N9病毒直径为30纳米(1纳米=10﹣9米),用科学记数法表示这个病毒直径的大小,正确的是( )A. 91030-⨯米B. 8100.3-⨯米C. 10100.3-⨯米D. 9103.0-⨯米5. 下列计算正确的是( )A. 4222a a a =+ B. a a 4)2(2=C.333=⨯D.2312=÷6. 如图,点A 的坐标为(﹣1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为( )A.(0,0)B.(22,22) C.(21-,21-)D. (22-,22-) 7. 如图,在⊙O 中,AC ∥OB ,∠BAO =25°,则∠BOC 的度数为( ) A. 25° B. 50° C. 60° D. 80°8. 如图所示,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 点处,已知AB =6,AD =10,则tan ∠EFC =( )A.43B.34 C.53 D.54 9. 如图,小东用长为3.2m 的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶点的影子恰好落在地面的同一点。
此时,竹竿与这一点相距8m 、与旗杆相距22m ,则旗杆的高为( )A. 12mB. 10mC. 8mD. 7m10.用直尺和圆规作一个以线段AB 为边的菱形,作图痕迹如图所示,能得到四边形ABCD 是菱形的依据是( ) A.一组邻边相等的四边形是菱形 B.四边相等的四边形是菱形 C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形 11.如图,已知直线AB ∥CD ,∠GEB 的平分线EF 交CD 于点F ,∠1=42°,则∠2=( ) A. 138° B. 142° C. 148° D. 159° 12.如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,∠CDB =20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E =( ) A. 70° B. 50° C. 40° D. 20°13.已知点P (a -1,a +2)在平面直角坐标系的第二象限内,则a 的取值范围在数轴上可表示为( )A.B.C.D.14. 化简:444)2(22+--⋅-a a a a 的结果是( )A. a -2B. a +2C.22-+a a D.22+-a a 15. 如图,圆O 与直线m 相切于点A ,P 、Q 两点同时从A 点以相同的速度出发,点P 沿直线向右运动,点Q 沿圆O 逆时针方向运动,连结OP 、OQ ,图中阴影部分面积分别为S 1,S 2,则S 1,S 2之间的关系是( ) A. S 1> S 2 B. S 1< S 2 C. S 1= S 2 D. 不能确定16. 平面直角坐标系中,有线段MN ,M (1,1),N (2,2),若抛物线2ax y =与线段MN 没有公共点,则a 的取值范围是( ) A.0<aB.1>a 或210<<a C. 0<a 或1>a 或210<<a D.121<<a二、 填空题(本大题共4小题,每小题3分,共12分)17. 计算=-+0)12(9___________。
河北省邯郸市2017年中考第3次模拟考试数学试卷(含答案)
初三第三次模拟考试数学试题一、 选择题(本大题共16小题,1~10小题每题3分;11~16小题每题2分,共42分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2014-等于( ) A. ﹣2014B.2014C.±2014D.201412. 下面的计算正确的是( )A. 156=-a aB.3232a a a =+C.b a b a +-=--)(D. b a b a +=+2)(23. 一个几何体的三视图如图所示,则这个几何体是( )A.B.C.D.4. 下面四条直线,其中直线上每个点的坐标都是二元一次方程22=-y x 的解的是( )A. B. C. D.5. 一组数据:10,5,15,5,20,则这组数据的平均数和中位数分别是( )A. 10,10B.10,12.5C.11,12.5D. 11,10 6. 估计18-的值在( )A.0到1之间B. 1到2之间C. 2到3之间D.3到4之间7. 用配方法解一元二次方程0542=-+x x ,此方程可变形为( )A.9)2(2=+xB. 9)2(2=-xC. 1)2(2=+xD. 1)2(2=-x8. 如图,在△ABC 中,AB =AC ,∠ABC =70°,以B为圆心,任意长为半径画弧交AB ,BC 于点E ,F ,再分别以点E ,F 为圆心、以大于EF 21长为半径画弧,两弧交于点P ,作射线BP交AC 于点D ,则∠BDC 为( )度 A.65 B.75 C.80 D.859. 如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB 的面积为( ) A.6 B.7 C.8 D.910. 不等式组⎩⎨⎧-≥->+203x x 的整数解有( )A.0个B.5个C.6个D.无数个11. 如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心在格点上,则∠AED 的余弦值等于( )A.55 B.552 C.2 D.21 12. 如图,圆P 的半径为2,圆心P 在函数)0(6>=x xy 的图象上运动,当圆P与x 轴相切时,点P 的坐标为( ) A.(2,3) B.(3,2) C.(6,1) D.(4,1.5) 13. 如图是王老师去公园锻炼及原路返回时离家的距离y (千米)与时间t (分钟)之间的函数图象,根据图象信息,下列说法正确的是( )A.王老师去时所用的时间少于回家的时间B.王老师在公园锻炼了40分钟C.王老师去时走上坡路,回家时走下坡路D.王老师去时速度比回家时的速度慢14. 如图,从点A (0,2)发出的一束光,经x 轴反射,过点B (5,3),则这束光从点A 到点B 所经过的路径的长为( )A.4B.25C.35D.515. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB =4,∠BED=120°,则图中阴影部分的面积之和为( )A.3B.32C.23D.116. 如图,已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论: ①0<abc ;②c a b +<;③024>++c b a ;④b c 32<;⑤)1()(的实数≠+<+n b an n b a 其中正确的结论有( )A. ①②③B. ①③④C.③④⑤D. ①③⑤二、 填空题(本大题共4小题,每小题3分,共12分) 17. PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为_________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年河北省邯郸市中考数学一模试卷一、选择题(本题共16个小题,共42分)1.(3分)下列各数中,是无理数的是()A.﹣1 B.πC.0 D.2.(3分)下列四个图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.3.(3分)下列算式中,结果等于x6的是()A.x2•x2•x2B.x2+x2+x2C.x2•x3D.x4+x24.(3分)如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60°,则下列结论错误的是()A.∠2=60° B.∠3=60°C.∠4=120°D.∠5=40°5.(3分)在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的2=1.2,S乙2=1.6,则关于甲、乙两人在这次射平均数均是9.1环,方差分别是S甲击训练中成绩稳定的描述正确的是()A.甲比乙稳定B.乙比甲稳定C.甲和乙一样稳定 D.甲、乙稳定性没法对比6.(3分)如图,济南大约位于石家庄的南偏东56°方向上,则石家庄大约位于济南的()A.北偏西56°方向上B.北偏西34°方向上C.南偏西34°方向上D.南偏东56°方向上7.(3分)一元二次方程x2+4x+c=0中,c<0,该方程根的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相等的实数根D.不能确定8.(3分)如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,△ABC的面积为4,则△DEF的面积为()A.2 B.8 C.16 D.249.(3分)当a,b互为相反数时,代数式a2+ab﹣2的值为()A.2 B.0 C.﹣2 D.﹣110.(3分)数轴上点A、B表示的数分别是a,b,则点A,B之间的距离为()A.a+b B.a﹣b C.|a+b|D.|a﹣b|11.(2分)某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km,求提速前列车的平均速度.设列车提速前的平均速度是xkm/h,下面所列出的四个方程中,正确的是()A.B.C.D.12.(2分)图中的正三角形和正六边形有公共的外接圆⊙O.则这个正三角形和正六边形边长的比为()A.:2 B.:2 C.:1 D.2:113.(2分)若实数a是不等式2x﹣1>5的解,但实数b不是不等式2x﹣1>5的解,则下列选项中,正确的是()A.a<b B.a>b C.a≤b D.a≥b14.(2分)如图,在平面直角坐标系中,依下列步骤尺规作图,并保留作图痕迹:步骤1:以点O为圆心,任意长为半径画弧,与x轴负半轴交于点A,与直线y=x 交于点B(点B在第三象限):步骤2:分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点C.则直线OC的函数解析式为()A.y=x B.y=﹣x C.y=x D.y=﹣x15.(2分)如图,⊙O的半径为2,AB,CD是两条互相垂直的直径,点P是⊙O上任意一点(点P与点A,B,C,D均不重合),过点P作PM⊥AB于点M.PN ⊥CD于点N,点Q是线段MN的中点.若点P以点O为旋转中心.沿着圆周顺时针旋转45°.则点Q经过的路径长为()A.B.C.D.16.(2分)如图,在平面直角坐标系中,四边形OABC为矩形,其中A(2,0)C(0,4),反比例函数y=(x>0,k>0)的图象与矩形的对角线AC有公共点,并且交AB边于点E,交BC边于点F,以下结论:①直线AC的解析式为y=﹣2x+4;②EF∥AC;③当反比例函数图象与线段AC只有一个公共点时,k值最大,最大值为2;④△BEF面积的最小值为2.则下列选项中,正确的是()A.②③④B.①③④C.①②④D.①②③二、填空题(本大题共3小题,共10分)17.(3分)计算:(3﹣π)0﹣sin30°=.18.(3分)化简的结果为.19.(4分)如图中的虚线网格为菱形网格,每一个小菱形的面积均为1,网格中虚线的交点称为格点,顶点都在格点的多边形称为格点多边形,如:格点▱ABCD 的面积是6.(1)格点△PMN的面积是.(2)格点四边形EFGH的面积是.三、解答题(本大题共7小题,共68分)20.(9分)请你参考黑板中老师的讲解,运用平方差公式简便计算:(1)×;(2)(2017+2017)(﹣).21.(9分)已知:如图,△ABC和△EFC都是等腰直角三角形,∠ACB=∠ECF=90°,点E在AB边上.(1)求证:△ACE≌△BCF;(2)若∠BFE=60°,求∠AEC的度数.22.(9分)已知n边形的对角线共有条(n是不小于3的整数);(1)五边形的对角线共有条;(2)若n边形的对角线共有35条,求边数n;(3)若n边形的边数增加1,对角线总数增加9,求边数n.23.(9分)为了解七年级学生上学期参加社会实践活动的情况,随机抽查了某市七年级200名学生参加社会实践活动的天数,并根据抽查结果制作了如下不完整的条形统计图:根据以上信息,解答下列问题:(1)求条形统计图中参加社会实践活动天数为6天所对应的人数,及被调查的200名学生参加社会实践活动天数的平均数;(2)被调查的学生参加社会实践活动天数的众数为,中位数为.(3)在此次调查活动中,A、B、C、D四位同学说他们中有两人被抽查了,请你用列表法或画树状图,求出恰好抽到A与B两位同学的概率;(4)某市有七年级学生10万人,请你估计该市七年级学生参加社会实践活动不少于5天的人数.24.(10分)嘉淇同学家的饮水机中原有水的温度为20℃,其工作过程如图所示,在一个由20℃加热到100℃再降温到20℃的过程中,水温记作y(℃),从开始加热起时间变化了x(分钟),加热过程中,y与x满足一次函数关系,水温下降过程中,y与x成反比例,当x=20时,y=40.(1)写出饮水机水温的下降过程中y与x的函数关系,并求出x为何值时,y=100;(2)求加热过程中y与x之间的函数关系;(3)求当x为何值时,y=80.问题解决若嘉淇同学上午八点将饮水机通电开机后即外出散步,预计九点前回到家中,若嘉淇想喝到不低于50℃的水,直接写出外出时间m(分钟)的取值范围.25.(10分)如图,已知以AE为直径的半圆圆心为O,半径为5,矩形ABCD的顶点B在直径AE上,顶点C在半圆上,AB=8,点P为半圆上一点.(1)矩形ABCD的边BC的长为;(2)将矩形沿直线AP折叠,点B落在点B′.①点B′到直线AE的最大距离是;②当点P与点C重合时,如图所示,AB′交DC于点M.求证:四边形AOCM是菱形,并通过证明判断CB′与半圆的位置关系;③当EB′∥BD时,直接写出EB′的长.26.(12分)如图,在平面直角坐标系中,点A,B的坐标分别为A(1,0),B (3,0).探究:抛物线y=x2﹣2mx+m2﹣4(m为常数)交x轴于点M,N两点;(1)当m=2时,求出抛物线的顶点坐标及线段MN的长;(2)对于抛物线y=x2﹣2mx+m2﹣4(m为常数).①线段MN的长度是否发生改变,请说明理由;②若该抛物线与线段AB有公共点,请直接写出m的取值范围;拓展:对于抛物线y=a2(x﹣b)2﹣4(a,b为常数,且满足a=).(1)请直接写出该抛物线与y轴的交点坐标;(2)若该抛物线与线段AB有公共点,请直接写出a的取值范围.2017年河北省邯郸市中考数学一模试卷参考答案与试题解析一、选择题(本题共16个小题,共42分)1.(3分)(2017•邯郸一模)下列各数中,是无理数的是()A.﹣1 B.πC.0 D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:π是无理数,故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(3分)(2017•邯郸一模)下列四个图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项不合题意;B、是轴对称图形,也是中心对称图形,故此选项不合题意;C、是轴对称图形,也是中心对称图形,故此选项不合题意;D、是轴对称图形,不是中心对称图形,故此选项符合题意.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(2017•邯郸一模)下列算式中,结果等于x6的是()A.x2•x2•x2B.x2+x2+x2C.x2•x3D.x4+x2【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项分析判断后利用排除法求解.【解答】解:A、x2•x2•x2=x6,故选项A符合题意;B、x2+x2+x2=3x2,故选项B不符合题意;C、x2•x3=x5,故选项C不符合题意;D、x4+x2,无法计算,故选项D不符合题意.故选:A.【点评】本题考查合并同类项、同底数幂的乘法、单项式乘以单项式等知识,熟练掌握运算性质和法则是解题的关键.4.(3分)(2016•深圳)如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60°,则下列结论错误的是()A.∠2=60° B.∠3=60°C.∠4=120°D.∠5=40°【分析】根据平行线的性质:两直线平行,同位角相等,以及对顶角相等等知识分别求出∠2,∠3,∠4,∠5的度数,然后选出错误的选项.【解答】解:∵a∥b,∠1=60°,∴∠3=∠1=60°,∠2=∠1=60°,∠4=180°﹣∠3=180°﹣60°=120°,∵三角板为直角三角板,∴∠5=90°﹣∠3=90°﹣60°=30°.故选D.【点评】本题考查了平行线的性质,解答本题的关键上掌握平行线的性质:两直线平行,同位角相等.5.(3分)(2017•邯郸一模)在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是9.1环,方差分别是S甲2=1.2,S乙2=1.6,则关于甲、乙两人在这次射击训练中成绩稳定的描述正确的是()A.甲比乙稳定B.乙比甲稳定C.甲和乙一样稳定 D.甲、乙稳定性没法对比【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=1.2,S乙2=1.6,∴S甲2<S乙2,∴甲、乙两人在这次射击训练中成绩稳定的是甲,∴甲比乙稳定;故选A.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.(3分)(2017•邯郸一模)如图,济南大约位于石家庄的南偏东56°方向上,则石家庄大约位于济南的()A.北偏西56°方向上B.北偏西34°方向上C.南偏西34°方向上D.南偏东56°方向上【分析】根据方向的相对性,可得答案.【解答】解:由方向的相对性,得石家庄大约位于济南的北偏西56°方向上,故选:A.【点评】本题考查了方向角,利用物体的相对性是解题关键.7.(3分)(2007•湘潭)一元二次方程x2+4x+c=0中,c<0,该方程根的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相等的实数根D.不能确定【分析】求出方程的判别式△的值后,和0比较大小就可以判断根的情况.【解答】解:∵c<0,∴﹣c>0,∴△=16﹣4c>0,所以方程有两个不相等的实数根.故选B.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8.(3分)(2017•邯郸一模)如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,△ABC的面积为4,则△DEF的面积为()A.2 B.8 C.16 D.24【分析】利用位似图形的性质首先得出位似比,进而得出面积比.【解答】解:∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4,∵△ABC的面积为4,∴△DEF的面积为:16.故选:C.【点评】此题主要考查了位似图形的性质,得出位似比是解题关键.9.(3分)(2017•邯郸一模)当a,b互为相反数时,代数式a2+ab﹣2的值为()A.2 B.0 C.﹣2 D.﹣1【分析】由互为相反数两数之和为0得到a+b=0,原式变形后代入计算即可求出值.【解答】解:由题意得到a+b=0,则原式=a(a+b)﹣2=0﹣2=﹣2,故选C【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.10.(3分)(2017•邯郸一模)数轴上点A、B表示的数分别是a,b,则点A,B 之间的距离为()A.a+b B.a﹣b C.|a+b|D.|a﹣b|【分析】根据数轴上两点间的距离是大数减小数,可得答案.【解答】解:∵点A、B在数轴上分别表示有理数a、b,∴A、B两点之间的距离可以表示为:|a﹣b|.故选:D.【点评】本题考查了数轴,熟记数轴上两点间的距离公式是解题关键.11.(2分)(2017•邯郸一模)某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km,求提速前列车的平均速度.设列车提速前的平均速度是xkm/h,下面所列出的四个方程中,正确的是()A.B.C.D.【分析】设列车提速前的平均速度是xkm/h,则提速后的速度为(x+v)km/h,根据用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km,列方程即可.【解答】解:设列车提速前的平均速度是xkm/h,则提速后的速度为(x+v)km/h,由题意得,=.故选A.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.12.(2分)(2017•邯郸一模)图中的正三角形和正六边形有公共的外接圆⊙O.则这个正三角形和正六边形边长的比为()A.:2 B.:2 C.:1 D.2:1【分析】根据题意画出图形,通过解直角三角形用R分别表示出它们的边长,进而可得出结论.【解答】解:设外接圆的半径为R,如图所示:连接O2 A,O2 B,则O2 B⊥AC,∵O2 A=R,∠O2 AF=30°,∠AO2 B=60°,∴△AO2 B是等边三角形,AF=O2A•cos30°=R,∴AB=R,AC=2AF=R;∴外接圆的半径相等的正三角形、正六边形的边长之比为R:R=:1.故选C.【点评】本题考查的是正多边形和圆、解直角三角形;熟知正三角形、正方形和正六边形的性质是解答此题的关键.13.(2分)(2017•邯郸一模)若实数a是不等式2x﹣1>5的解,但实数b不是不等式2x﹣1>5的解,则下列选项中,正确的是()A.a<b B.a>b C.a≤b D.a≥b【分析】首先解不等式2x﹣1>5,求得不等式的解集,则a和b的范围即可确定,从而比较a和b的大小.【解答】解:解2x﹣1>5得x>3,a是不等式2x﹣1>5的解,则a>3,b不是不等式2x﹣1>5的解,则b≤3,故a>b.故选B.【点评】本题考查了一元一次不等式的解法,根据不等式的解集确定a和b的范围是解决问题的关键.14.(2分)(2017•邯郸一模)如图,在平面直角坐标系中,依下列步骤尺规作图,并保留作图痕迹:步骤1:以点O为圆心,任意长为半径画弧,与x轴负半轴交于点A,与直线y=x 交于点B(点B在第三象限):步骤2:分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点C.则直线OC的函数解析式为()A.y=x B.y=﹣x C.y=x D.y=﹣x【分析】作BD⊥x轴于D,作CE⊥x轴于E,如图,设B(m,m),利用正切的定义得到tan∠BOD=,则∠BOD=60°,再利用基本作图得到OC平分∠AOB,则∠AOC=30°,设CE=t,则OE=3t,所以C(﹣3t,﹣t),然后利用待定系数法求直线OC的解析式.【解答】解:作BD⊥x轴于D,作CE⊥x轴于E,如图,设B(m,m),∴tan∠BOD==,∴∠BOD=60°,由作法得OC平分∠AOB,∴∠AOC=30°,在Rt△CEO中,tan∠COE=tan30°==,设CE=t,则OE=3t,则C(﹣3t,﹣t),设直线OC的解析式为y=kx,把C(﹣3t,﹣t)代入得﹣t=﹣3tk,解得k=,∴直线OC的解析式为y=x.故选C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了一次函数图象上点的坐标特征.15.(2分)(2017•邯郸一模)如图,⊙O的半径为2,AB,CD是两条互相垂直的直径,点P是⊙O上任意一点(点P与点A,B,C,D均不重合),过点P作PM⊥AB于点M.PN⊥CD于点N,点Q是线段MN的中点.若点P以点O为旋转中心.沿着圆周顺时针旋转45°.则点Q经过的路径长为()A.B.C.D.【分析】根据OP的长度不变,始终等于半径,则根据矩形的性质可得OQ=1,再由走过的角度代入弧长公式即可.【解答】解:∵PM⊥AB于点M,PN⊥CD于点N,∴四边形ONPM是矩形,又∵点Q为MN的中点,∴点Q为OP的中点,又OP=2,则OQ=1,点Q走过的路径长==.故选A.【点评】本题考查了弧长的计算及矩形的性质,解答本题的关键是根据矩形的性质得出点Q运动轨迹的半径,要求同学们熟练掌握弧长的计算公式.16.(2分)(2017•邯郸一模)如图,在平面直角坐标系中,四边形OABC为矩形,其中A(2,0)C(0,4),反比例函数y=(x>0,k>0)的图象与矩形的对角线AC有公共点,并且交AB边于点E,交BC边于点F,以下结论:①直线AC的解析式为y=﹣2x+4;②EF∥AC;③当反比例函数图象与线段AC只有一个公共点时,k值最大,最大值为2;④△BEF面积的最小值为2.则下列选项中,正确的是()A.②③④B.①③④C.①②④D.①②③【分析】①由点A、B的坐标利用待定系数法即可求出直线AC的解析式,①成立;②由反比例函数图象上点的坐标特征求出点E、F的坐标,根据==,即可得出EF∥AC,②成立;③设反比例函数图象与AC的交点为D,过D作DM ⊥x轴于点M,过点D作DN⊥y轴于点N,设OM=x(0<x<2),则ON=4﹣2x,根据反比例函数图象上点的坐标特征即可得出k=﹣2(x﹣1)2+2≥2,由此可得出k的最小值,再将直线AC解析式代入反比例函数解析式整理出一元二次方程,通过解方程组即可得出此时反比例函数图象与线段AC只有一个公共点,③成立;≥,④不成立.综上④根据三角形的面积公式结合k的取值范围即可得出S△BEF即可得出结论.【解答】解:①设直线AC的解析式为y=ax+b,将A(2,0)、B(0,4)代入y=ax+b,,解得:,∴直线AC的解析式为y=﹣2x+4,①成立;②当x=2时,y==,∴点E(2,);当y==4时,x=,∴点F(,4).∵四边形OABC为矩形,其中A(2,0)C(0,4),∴点B(2,4),∴BC=2,BA=4,BF=2﹣=,BE=4﹣=,∴==,∴EF∥AC,②成立;③设反比例函数图象与AC的交点为D,过D作DM⊥x轴于点M,过点D作DN ⊥y轴于点N,如图所示.设OM=x(0<x<2),则ON=4﹣2x,∴k=x(4﹣2x)=﹣2(x﹣1)2+2,当x=1时,k取最大值,最大值为2.将y=﹣2x+4代入y=中,整理得:x2﹣2x+1=(x﹣1)2=0,∴当反比例函数图象与线段AC只有一个公共点时,k值最大,最大值为2,③成立;④∵S=BE•BF=≥,△BEF∴△BEF面积的最小值为,④不成立.故选D.【点评】本题考查了矩形的性质、反比例函数图象上点的坐标特征以及三角形的面积,逐一分析四条结论的正确与否是解题的关键.二、填空题(本大题共3小题,共10分)17.(3分)(2017•邯郸一模)计算:(3﹣π)0﹣sin30°=.【分析】原式利用零指数幂法则,特殊角的三角函数值计算即可得到结果.【解答】解:原式=1﹣=,故答案为:【点评】此题考查了实数的运算,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.18.(3分)(2017•邯郸一模)化简的结果为x+1.【分析】原式变形后,约分即可得到结果.【解答】解:原式=•=x+1,故答案为:x+1【点评】此题考查了分式的乘除法,分式乘除法的关键是约分,约分的关键是找出分子分母的公因式.19.(4分)(2017•邯郸一模)如图中的虚线网格为菱形网格,每一个小菱形的面积均为1,网格中虚线的交点称为格点,顶点都在格点的多边形称为格点多边形,如:格点▱ABCD的面积是6.(1)格点△PMN 的面积是 6 . (2)格点四边形EFGH 的面积是 28 .【分析】(1)根据S △PMN =•S 平行四边形MNEF 计算即可;(2)根据S 四边形EFGH =S 平行四边形LJKT ﹣S △LEH ﹣S △HTG ﹣S △FKG ﹣S △EFJ 计算即可. 【解答】解:(1)如图,S △PMN =•S 平行四边形MNEF =×12=6, 故答案为6.(2)S 四边形EFGH =S 平行四边形LJKT ﹣S △LEH ﹣S △HTG ﹣S △FKG ﹣S △EFJ =60﹣2﹣9﹣6﹣15=28, 故答案为28【点评】本题考查菱形的性质、平行四边形的性质等知识,解题的关键是学会用分割法求面积,属于中考常考题型.三、解答题(本大题共7小题,共68分) 20.(9分)(2017•邯郸一模)请你参考黑板中老师的讲解,运用平方差公式简便计算:(1)×;(2)(2017+2017)(﹣).【分析】(1)把19化为20﹣1,把21化为20+1,然后利用平方差公式计算;(2)把第1个括号内提2017,然后利用平方差公式计算.【解答】解:(1)原式===;(2)原式=2017()(﹣)=2017×(3﹣2)=2017.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.也考查了平方差公式的熟练运用.21.(9分)(2017•邯郸一模)已知:如图,△ABC和△EFC都是等腰直角三角形,∠ACB=∠ECF=90°,点E在AB边上.(1)求证:△ACE≌△BCF;(2)若∠BFE=60°,求∠AEC的度数.【分析】(1)根据同角的余角相等求出∠ACE=∠BCF,再利用“边角边”证明即可;(2)根据等腰直角三角形的性质可得∠EFC=45°,然后求出∠BFC=105°,再根据全等三角形对应角相等解答.【解答】(1)证明:∵∠ACB=∠ECF=90°,∴∠ACE=∠BCF,∵CA=CB,CE=CF,∴△AEC≌△BFC(SAS);(2)解:∵△EFC是等腰直角三角形,∴∠EFC=45°.∵∠BFE=60°,∴∠BFC=105°,又∵△AEC≌△BFC,∴∠AEC=∠BFC=105°.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,熟练掌握三角形全等的判定方法是解题的关键.22.(9分)(2017•邯郸一模)已知n边形的对角线共有条(n是不小于3的整数);(1)五边形的对角线共有5条;(2)若n边形的对角线共有35条,求边数n;(3)若n边形的边数增加1,对角线总数增加9,求边数n.【分析】(1)把n=5代入即可求得五边形的对角线的条数;(2)根据题意得=35求得n值即可;(3)﹣=9,求得n的值即可.【解答】解:(1)当n=5时,==5,故答案为:5.(2)=35,整理得:n2﹣3n﹣70=0,解得:n=10或n=﹣7(舍去),所以边数n=10.(3)根据题意得:﹣=9,解得:n=10.所以边数n=10.【点评】本题考查了多边形的对角线的知识,了解多边形的对角线的计算方法是解答本题的关键,难度不大.23.(9分)(2017•邯郸一模)为了解七年级学生上学期参加社会实践活动的情况,随机抽查了某市七年级200名学生参加社会实践活动的天数,并根据抽查结果制作了如下不完整的条形统计图:根据以上信息,解答下列问题:(1)求条形统计图中参加社会实践活动天数为6天所对应的人数,及被调查的200名学生参加社会实践活动天数的平均数;(2)被调查的学生参加社会实践活动天数的众数为5,中位数为5.(3)在此次调查活动中,A、B、C、D四位同学说他们中有两人被抽查了,请你用列表法或画树状图,求出恰好抽到A与B两位同学的概率;(4)某市有七年级学生10万人,请你估计该市七年级学生参加社会实践活动不少于5天的人数.【分析】(1)用样本容量分别减去其它天数的人数可得到实践活动天数为6天所对应的人数;然后利用加权平均数的计算方法计算200名学生参加社会实践活动天数的平均数;(2)利用众数和中位数的定义求解;(3)利用列表法展示所有有12种等可能的结果数,找出恰好抽到A与B的结果数,然后根据概率公式求解;(4)利用样本估计总体,用10×可估计该市七年级学生参加社会实践活动不少于5天的人数【解答】解:(1)参加社会实践活动天数为6天所对应的人数为200﹣20﹣30﹣60﹣40=50(人),200名学生参加社会实践活动天数的平均数==53;(2)被调查的学生参加社会实践活动天数的众数为5,中位数为5;故答案为5,5;(3)A B C DA﹣﹣(A,B)(A,C)(A,D)B(B,A)﹣﹣(B,C)(B,D)C(C,A)(C,B)﹣﹣(C,D)D(D,A)(D,B)(D,C)﹣﹣一共有12种情况,其中恰好抽到A与B有两种情况:(A,B)与(B,A)所以P(恰好抽到A与B)==;(4)10×=7.5(万)答:该市七年级学生参加社会实践活动不少于5天的人数为7.5万人.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了中位数和众数、统计图.24.(10分)(2017•邯郸一模)嘉淇同学家的饮水机中原有水的温度为20℃,其工作过程如图所示,在一个由20℃加热到100℃再降温到20℃的过程中,水温记作y(℃),从开始加热起时间变化了x(分钟),加热过程中,y与x满足一次函数关系,水温下降过程中,y与x成反比例,当x=20时,y=40.(1)写出饮水机水温的下降过程中y与x的函数关系,并求出x为何值时,y=100;(2)求加热过程中y与x之间的函数关系;(3)求当x为何值时,y=80.问题解决若嘉淇同学上午八点将饮水机通电开机后即外出散步,预计九点前回到家中,若嘉淇想喝到不低于50℃的水,直接写出外出时间m(分钟)的取值范围.【分析】(1)根据待定系数法可求饮水机水温的下降过程中y与x的函数关系式,再求出y=100时x的值即可求解;(2)根据待定系数法可求加热过程中y与x之间的函数关系;(3)分两种情况:加热过程中;降温过程中;y=80时x的值即可求解;问题解决:根据一次函数和反比例函数的增减性即可求解.【解答】解:(1)在水温下降过程中,设水温y(℃)与开机时间x(分)的函数关系式为:y=,依据题意,得:100=,即m=800,故y=,当y=100时,100=,解得:x=8;(2)设水温y(℃)与开机时间x(分)的函数关系为:y=kx+b,依据题意,得,解得:.故此函数解析式为:y=10x+20;(3)当y=80时:加热过程中:10x+20=80,解得x=6;降温过程中:=80,解得x=10;综上所述,x=6或10时,y=80;问题解决:外出时间m(分钟)的取值范围为3≤m≤16或43≤m≤56.【点评】此题考查了一次函数和反比例函数的应用,现实生活中存在大量一次函数和成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.25.(10分)(2017•邯郸一模)如图,已知以AE为直径的半圆圆心为O,半径为5,矩形ABCD的顶点B在直径AE上,顶点C在半圆上,AB=8,点P为半圆上一点.(1)矩形ABCD的边BC的长为4;(2)将矩形沿直线AP折叠,点B落在点B′.①点B′到直线AE的最大距离是8;②当点P与点C重合时,如图所示,AB′交DC于点M.求证:四边形AOCM是菱形,并通过证明判断CB′与半圆的位置关系;③当EB′∥BD时,直接写出EB′的长.【分析】(1)如图1中,在Rt△OBC中,求出BC即可.(2)①如图1中,当点B′在直线AD上时,点B'到AE的距离最大,最大距离为8.②首先证明四边形AOCM是平行四边形,由OA=OC即可判定四边形AOCM是菱形.只要证明∠OCB′=90°即可判定CB′与半圆相切.③如图3中,当EB′∥BD时,作AF⊥EB′于F.由△AEF∽△DBA,可得==,推出EF=4,AF=2,在Rt△AFB′中,FB′==2,即可推出EB′=4+2.如图4中,当EB′∥BD时,作AF⊥EB′于F,同法可求EB′.【解答】解:(1)如图1中,连接OC.在Rt△BOC中,∵∠OBC=90°,OC=5,OB=3,∴BC===4,故答案为4.(2)①如图1中,当点B′在直线AD上时,点B'到AE的距离最大,最大距离为8.故答案为8.②证明:如图2中,由折叠可知:∠OAC=∠MAC.∵OA=OC,。