第二章动力学系统的微分方程模型
第二章:动力学系统的微分方程模型
第二章:动力学系统的微分方程模型利用计算机进行仿真时,一般情况下要给出系统的数学模型,因此有必要掌握一定的建立数学模型的方法。
在动力学系统中,大多数情况下可以使用微分方程来表示系统的动态特性,也可以通过微分方程可以将原来的系统简化为状态方程或者差分方程模型等。
在这一章中,重点介绍建系统动态问题的微分方程的基本理论和方法。
在实际工程中,一般把系统分为两种类型,一是连续系统;其数学模型一般是高阶微分方程;另一种是离散系统,它的数学模型是差分方程。
§2.1 动力学系统统基本元件任何机械系统都是由机械元件组成的,在机械系统中有3种类型的基本机械元件:惯性元件、弹性元件和阻尼元件。
1 惯性元件:惯性元件是指具有质量或转动惯量的元件,惯量可以定义为使加速度(或角加速度)产生单位变化所需要的力(或力矩)。
惯量(质量)=)加速度(力(2/)s m N 惯量(转动惯量)=)角加速度(力矩(2/)s rad m N ⋅2 弹性元件:它在外力或外力偶作用下可以产生变形的元件,这种元件可以通过外力做功来储存能量。
按变形性质可以分为线性元件和非线性元件,通常等效成一弹簧来表示。
对于线性弹簧元件,弹簧中所受到的力与位移成正比,比例常数为弹簧刚度k 。
x k F ∆=这里k 称为弹簧刚度,x ∆是弹簧相对于原长的变形量,弹性力的方向总是指向弹簧的原长位移,出了弹簧和受力之间是线性关系以外,还有所谓硬弹簧和软弹簧,它们的受力和弹簧变形之间的关系是一非线性关系。
3 阻尼元件:这种元件是以吸收能量以其它形式消耗能量,而不储存能量,可以形象的表示为一个活塞在一个充满流体介质的油缸中运动。
阻尼力通常表示为:αxc R = 阻尼力的方向总是速度方向相反。
当1=α,为线性阻尼模型。
否则为非线性阻尼模型。
应注意当α等于偶数情况时,要将阻尼力表示为:||1--=αx xc R 这里的“-”表示与速度方向相反§2.2 动力学建模基本定理1 动力学普遍定理对于大多数力学问题,可以使用我们熟知的牛顿动力学基本定理来解决,动力学普遍定理包括动量定理、动量矩定理和动能定理,以及其他变形形式,普遍定理的特点是比较直观,针对不同的问题可以选择不同的力学定理,在一般情况下利用普遍定理可以得到大多数动力学系统的数学模型。
机械工程控制基础--第二章
,
Cm
Tm J
得
TaTm
d2
dt 2
Tm
d
dt
Cdua
CmTa
dM L dt
CmM L
TaTm
d2
dt 2
Tm
d
dt
Cdua
CmTa
dM L dt
CmM L
设电动机处于平衡态,导数为零,静态模型
Cdua CmML 设平衡点 (ua0,ML0, )
L
R
即有 Cdua0 CmML0 ua
i2R2
1 C2
i2dt
1 C1
(i1 i2 )dt
1
C2 i2dt u2
i1 C1
3. 消除中间变量 i1、i2,并整理:
R1C1R2C2
d2u2 dt 2
(R1C1
R2C2
R1C2
)
du2 dt
u2
u1
R2 i2 C2 u2
例5 直流电动机 1. 明确输入与输出:
输入ua 和ML,输出
注意:负载效应,非线性项的线性化。
3. 消除中间变量,得到只包含输入量和输出量的微分方程。
4. 整理微分方程。输出有关项放在方程左侧,输入有关项 放在方程右侧,各阶导数项降阶排列。
an
x(n) o
(t
)
a x(n1) n1 o
(t
)
a1xo (t) a0xo (t)
bm
x(m) i
(t
)
bm1xi(
...
a1 s
a0
(n m) 传递函数
传递函数定义:
零初始条件下,线性定常系统输出的拉氏变换与输入的拉
氏变换之比。
第二章(多自由度系统的运动微分方程)详解
k11 k 21 kN1
k1 j k2 j k Nj
k1N k2 N k NN
刚度影响系数 kij :第 j 个自由度产生单位位移,其他自由度位移为零时, 需要在第i 自由度处沿着位移方向施加的力。
用影响系数法建立系统的运动微分方程
【例】用影响系数法写出图示系统的刚度矩阵。
多自由度振动系统
Piezoelectric actuator
基于压电作动器的垂尾抖振主动抑制 (此系统有一、两千个自由度(3D实体单元) )
Z Y
X
第二章: 多自由度系统的运动 微分方程
第二章:多自由度系统的运动微分方程
第一讲:
1.建立多自由度系统运动微分方程的 各种方法的概述 2.用牛顿第二定律列写系统的运动微 分方程 3.用影响系数法建立系统的运动微分 方程
F1 1
k3
m2
k2 (d11 d21 )
m1
k2 (d11 d21 ) k1d11 1
d 21 k2 (d11 d21 )
F2 0
d11
k3d21
k2 k3 k1k2 k1k3 k2 k3 k2 k1k2 k1k3 k2 k3
m2
d 21
k2 (d11 d21 ) k3d21 0
上次课内容回顾
3.刚度影响系数
刚度影响系数 kij :第 j 个自由度产生单位位移,其他自由度位移为零时, 需要在第 i 自由度处沿着位移方向施加的力。
4.柔度影响系数
柔度影响系数 dij :第 j 个自由度上作用单位力,其他自由度作用力为零时,
在第 自由度上产生的位移。 i
5.刚度矩阵和柔度矩阵的关系
电动力学第二章
R r
y
r R l 2 Rl cos
2 2 2
2l
x -Q
求近似值:
r R 1 2l cos / R 1 2l cos R (1 ) R l cos 2 R
(l R)
同理
r R l cos
1 1 r r 2l cos 2l cos 2 2 2 2 r r r r R l cos R
1 R 2 / M 2 1 1 R 2 / M 2 1 0 P P0 lim ln 1 R 2 / M 2 1 1 R 2 / M 2 1 M 4 0 0
R2 1 R2 1 2 1 2 M 2M R02 R P P0 ln 2 ln 4 0 R 2 0 R0
2Ql cos 2QlR cos PR ( P) 2 3 3 4 0 R 4 0 R 4 0 R
x- y
平面为等势面(Z = 0的平面)。
若电偶极子放在均匀介质 中(无限大介质):
均匀介质中点电荷产生的束缚电荷分布在自由点电 荷附近,介质中电偶极子产生的势为自由偶极子与 束缚偶极子产生的势的迭加,设 Q p 为束缚电荷, 0 0 0 Q p (1 )Q Pp 2QP l ez 2Ql ez ( 1) ( 1) P
(4) W
1 dV中的 是由电荷分布 激发的电势; 2
(5)在静电场中,电场决定于电荷分布。在场内没有
独立的运动。因而场的能量就由电荷分布所决定。 (6)若全空间充满了介电常数为ε的介质,可得到电荷 分布ρ所激发的电场总能量
1 ( x) 1 ( x ) ( x) W ( x )dV dV dV r dV 2 4 r 8 与 点的距离。 式中r为 x x
系统动力学建模
方框图
• 系统框图是一种极其简单的系统描述方法 方框图中只有方框和带箭头的实线两种符 号方框表示系统的元素、子系统或功能块 方框中填上相应的名称、功能或说明带箭 头的实线表示各元素、各子块之间的相互 作用关系、因果关系或逻辑关系也可以表 示流量的运动方向流量写在实线旁
公司模型方框图
国民经济流转模型方框图
因果关系图法
• 在因果关系图中各变量彼此之间的因果关系是用 因果链来连接的因果链是一个带箭头的实线直线 或弧线箭头方向表示因果关系的作用方向箭头旁 标有+或-号分别表示两种极性的因果链
• a.正向因果链 A→+B:表示原因A 的变化增或减 引起结果B 在同一方向上发生变化增或减
• b.负向因果链A→-B:表示原因A 的变化增或减 引起结果B 在相反方向上发生变化减或增
微分方程表达
根据动态守恒原理状态变量的变化速率等 于其输入率与输出率之差即设状态变量的 输入率与输出率分别是IR 和OR有
差分方程表达
• 系统的状态变化遵循着过去决定现在过去 和现在决定将来的时间因果律
• 系统目前的状态是在其一时刻状态的基础 上加上一个从旧状态向新状态过渡的转化 值即设时间间隔为△t有
• 在系统动力学构模过程中是相当关键的一环需要 经过理论分析、逻辑判断、历史经验参考再结合 各种技术方法上的技巧综合求得
辅助变量、外生变量
• 辅助变量的流图符号是一个圆圈内部填辅助变量 的名字由于速率方程函数关系的确定是一个比较 困难的过程因此有必要引入辅助变量对速率方程 进行分解以使得构模的思路更加清晰辅助变量是 为了构模方便而人为引入的信息反馈变量它是状 态信息变量的函数
重要性
• 流图法的特点是将系统中各变量按其不同的特征以及在系 统中所起的不同作用划分成不同的种类并用物质流线和信 息流线按照其特有的作用方式将它们联结起来组成系统的 结构所以流图法比因果关系图法更加详细地反映出系统内 部的反馈作用机制使人们对系统的构成有一个更加直观、 更加透彻的理解
机械工程控制基础 华中科大第7版 第2章系统的数学模型
2.2 系统的微分方程
三、非线性微分方程的线性化
1. 非线性方程线性化的条件 1) 非线性函数是连续函数(即非线性不是本质非线性) 2) 系统在预定工作点附近作小偏差运动,即变量的变化
范围很小。 2. 非线性方程线性化的方法 1) 确定预定工作点; 2) 在工作点附近将非线性方程展开成泰勒级数形式; 3) 忽略高于一阶项; 4) 表示成增量方程的形式。
第二章 系统的数学模型
2.2 系统的微分方程
二、系统微分方程的列写
1. 机械系统
F ma
F ma 0
遵循的定律:牛顿第二定律或达朗贝尔原理
(1)直线运动
元素:质量m、弹簧k、粘性阻尼器c
质量元件:
F ma mx
阻尼元件: c Fc cv cx,c—粘性阻尼系数
4. 整理所得到的微分方程,将与输出有关的项放在方程
的左侧,与输入有关的项放在方程的右侧,各阶导数项
按降幂方式排列。 如: an x0(n) (t) an1x0(n1) (t) a1x0 (t) a0 x0 (t)
bm xi(m) (t) bm1x0(m1) (t) b1xi (t) b0 xi (t)
L
R
解:根据克希荷夫电压定律,得
u
i
C
u(t)
L
di(t dt
)
Ri
(t
)
1 C
i(t)dt
∵ i(t) dq(t)
dt
消去中间变量i(t),并整理得,
LCq(t) RCq(t) q(t) Cu(t)
第二章 系统的数学模型
2.2 系统的微分方程
2.4第二章 系统的数学模型--第四节 系统的微分方程及线性化
四、电气系统中的元件复阻抗
2、电容
i(t)
C
u(t)
u (t )
1 C
i(t
)dt
u(t)
1 C
i(t)
sU (s) 1 I (s) U (s) 1 I (s)
C
Cs
零初始状态下
四、电气系统中的元件复阻抗 3、电感 i(t) L
u(t)
u(t) L di(t) dt
U (s) Ls I (s) 零初始状态下
R
ui
C
uo
3、列出如图电气系统的微分方程。
解:物理规律: 基尔霍夫原理 输 入: 电压 ui(t) 输 出: 电压 uo(t)
设:电路电流为 i(t)
i
ui
R
C
uo
ui (t)
uo (t)
R i
1 C
(t) 1 C
i(t)d t
i(t
)d
t
iu(it()t
五、微分方程建立示例
2、列出如图机械系统的微分方程。
解:物理规律: 达朗贝尔原理 输 入: 力矩 τ(t) 输 出: 位移 θ(t)
τ
ห้องสมุดไป่ตู้
kJ
θ(t)
J
t kJ t cJ wt J t t kJ t cJt Jt Jt cJt kJ t t
线性系统的特点:可以运用叠加原理。
2、非线性系统 必须用非线性微分方程描述
的系统。 不能使用叠加原理
y(t) x2 (t) 对于非线性问题通常采用如下的处理途径 线 性 化 处 理:在工作点附近将非线性函数用泰勒级
系统动力学及Vensim建模与模拟技术
R1 实际库存 发货 满足顾客订货时间 结存订单 发货2
顾客订货速率
20
变量与方程建立
Page 21
变量
状态变量
Level或积分量 是单位时间变化量 是单位时间变化量
速率变量
辅助变量
21
应用例举(库存与劳动力模型)
Page 22
确定问题
问题的定义 参考模式 构模目的与使用模型的用户持点(关注两者的变化关系) 系统的界限 (库存、劳动力) 系统的反馈结构 (以库存和劳动力为主的因果反馈回路分析)
Vensim软件的界面
Page 9
标题栏:Titel Bar 菜单栏: Menu 工具栏 :Tools Bar
Main Tools Simulation Tools Analysis Tools Sketch Tools
状态栏 :Status Bar 流图区
9
Vensim软件的界面
订货增加
库存减少
订货 -
减少交 货延迟
库存增加
16
因果回路图分析(分析的基本技巧)
Page 17
因果链极性
因果链A→+ B:连接A与B的因果链取正号,
– (1)若增加A使B也增加,或 – (2)若A的变化使B在同一方向上发生变化。
因果链A→- B:连接A与B的因果链取负号,
– (1)若A的增加使B减少,或 – (2)若A的变化使B在相反方向上发生变化。
水位差 + 决定添水
18
流图构建(模型的实质性)
Page 19
系统动力学认为反馈系统中包含连续的,类似流体流动与积累过程。 速率或称变化率,随着时间的推移,使状态变量的值增或减。
第二章 (2.1,2.2)控制系统的微分方程、传递函数
拉氏变换的重要应用——解线性定常微分方程
求微分方程的拉氏变换,注意初值!!
求出 C ( s ) 的表达式 拉氏反变换,求得 c (t )
例1 已知系统的微分方程式,求系统的输出响应。
d 2c(t ) dc(t ) 2 2c(t ) r(t ) 2 dt dt d2 解: 在零初态下应用微分定理: 2 s 2
+
i (t )
R
–
u (t )
+
i (t )
u (t ) i (t ) R
du ( t ) 1 i (t ) dt C
di (t ) u (t ) L dt
电容
C
–
u (t )
+
ቤተ መጻሕፍቲ ባይዱi (t )
电感
u (t )
–
L
机械系统三要素的微分方程
设系统输入量为外力,输出量为位移
d 2 x (t) m f (t) 2 dt
d uc (t ) duc (t ) LC RC uc (t ) ur (t ) 2 dt dt
2
3.机械位移系统
输入量为外力: F (t ) 输出量为位移: y (t )
dy 2 (t ) 依据牛顿定律: F m dt 2
dy (t ) d y (t ) F (t ) ky (t ) f m 2 dt dt
d 2 y (t ) dy (t ) m f ky (t ) F (t ) 2 dt dt
微分方程结构一致 二阶线性定常微分方程
不同形式的物理环节和系统可以建立相同形式的数学模型。
系统微分方程由输出量各阶导数和输 入量各阶导数以及系统的一些参数构成。 n阶线性定常系统的微分方程可描述为:
哈工大 第二章 机电系统的数学模型 彭高亮9-2
但 是y1 ( t )+y2 ( t ) x1 ( t )+x 2 ( t ) 2 〔 〕
为解决非线性带来的问题通常采用局部线性化
哈尔滨工业大学 机电工程学院
2.2 系统的微分方程
二、系统微分方程的建立步骤
a)建立物理模型(包括力学模型、电学模型等),确 定系统或元件的输入量和输出量; b)按照信号的传递顺序,根据各元件或环节所遵循的 有关定律建立各元件或环节的微分方程; c)消去中间变量,得到描述系统输入量和输出量之间 关系的微分方程; d)整理为标准式,将与输出量有关的各项放在方程的 左侧,与输入量有关的各项放在方程的右侧,各阶导 数项按降幂排列。
哈尔滨工业大学 机电工程学院
?
2.2.2 机械系统的微分方程
机械系统中基本物理量的折算
实例: 图(a)为丝杠螺母传动机构,(b)为齿轮齿条传动机构,(c) 为同步齿形带传动机构,求三种传动方式下,负载m折算到 驱动电机轴上的等效转动惯量J
电机输入
m m
电机输入 电机输入
m
(a)
(b)
(c)
电机驱动进给装置
线性定常系统 线性系统 系统 非线性系统
哈尔滨工业大学 机电工程学院
线性时变系统
2.2 系统的微分方程
线性系统
系统的数学模型能用线性微分方程描述。
线性定常系统: 微分方程的系数为常数
k2 y(t ) k1 y(t ) y(t ) x(t )
线性时变系统:微分方程的某一(些)系数随时间的变化。
2.2.2 机械系统的微分方程
质量—弹簧—阻尼系统各部分基本物理规律: • 质量(块)
y
v(t )
f m (t )
0
m
系统动力学9种模型
系统动力学9种模型引言系统动力学是一种研究动态系统行为的方法论,它通过构建系统模型来分析系统的各种因果关系和变化规律。
在系统动力学中,有9种基本模型被广泛应用于各种领域的问题分析和解决。
本文将对这9种模型进行全面、详细、完整且深入地探讨。
1. 积累模型积累模型是系统动力学中最基本的模型之一,它描述了一个变量或者一组变量的积累过程。
例如,当我们考虑人口增长的问题时,可以使用积累模型来描述人口数量随时间的变化。
积累模型通常使用微分方程表示。
1.1. 特点 - 变量之间存在流入和流出的关系; - 变量之间的积累是连续的; - 流入量和流出量可以是恒定的或者变化的。
1.2. 应用示例积累模型在生态学、经济学、工程管理等领域得到了广泛的应用。
例如,在生态学中,可以使用积累模型来研究物种数量的变化;在经济学中,可以使用积累模型来研究货币的流通和储蓄;在工程管理中,可以使用积累模型来研究项目进展和资源分配。
1.3. 示例方程dP/dt = b*P - d*P其中,P表示人口数量,t表示时间,b表示出生率,d表示死亡率。
2. 流动模型流动模型描述了一个变量或者一组变量之间的流动过程。
它通常用来研究物质、能量、信息等在系统中的传递和传播。
例如,在物流管理中,可以使用流动模型来研究物料的流动和分配。
2.1. 特点 - 变量之间存在流动的关系; - 流动可以是单向的或者双向的; -流动可以是连续的或者离散的。
2.2. 应用示例流动模型在供应链管理、信息传输、能量传递等领域具有广泛的应用。
例如,在供应链管理中,可以使用流动模型来优化物料的流动和库存的控制;在信息传输中,可以使用流动模型来研究信息的传播和处理;在能量传递中,可以使用流动模型来分析能量的转化和利用。
2.3. 示例方程dQ/dt = f - k*Q其中,Q表示物料的数量,t表示时间,f表示流入量,k表示流失率。
3. 动力平衡模型动力平衡模型描述了一个变量或者一组变量在达到平衡状态时的行为。
机械工程控制基础复习
机械工程控制基础复习第一章 绪论1.控制理论在工程技术领域中体现为工程控制论,在机械工程领域则体现为机械工程控制论。
2.工程控制论实质上是研究工程技术中广义系统的动力学问题。
具体地说,它研究的是工程技术中的广义系统在一定的外界条件(即输入或激励,包括外加控制与外加干扰)作用下,从系统的一定的初始状态出发,所经历的由其内部的固有特性(即由系统的结构与参数所决定的特性)所决定的整个动态历程;研究这一系统及其输入、输出三者之间的动态关系。
3。
y(t )称为系统的输出,显然,y(t )(它就是微分方程的解)是由系统的初始状态、系统的固有特性、系统与输入之间的关系以及输入所决定的。
4.工程控制论(包括机械工程控制论)的内容大致可归纳为如下五个方面:⑴当系统已定、输入(或激励)已知时,求出系统的输出(或响应),并通过输出来研究系统本身的有关问题,此即系统分析问题;⑵当系统已定,确定输入,且所确定的输入应使得输出尽可能符合给定的最佳要求,此即最优控制问题;⑶当输入已知时,确定系统,且所确定的系统应使得输出尽可能符合给定的最佳要求,此即最优设计问题;⑷当输出已知时,确定系统,以识别输入或输入中的有关信息,此即滤波与预测问题;⑸当输入与输出均已知时,求出系统的结构与参数,即建立系统的数学模型,此即系统识别或系统辨识问题。
5。
反馈:系统的输出不断地、直接或间接地、全部或部分地返回,并作用于系统。
负反馈:输出(被控量)偏离设定值(目标值)时,反馈作用使输出偏离程度减小,并力图达到设定值.反馈的作用:消除偏离正反馈: 输出偏离初始值(或稳定值)时,反馈作用使输出偏离程度加剧。
反馈的作用:加剧偏离。
6.开环控制:只有输入量对输出量产生控制作用,输出量不参与对系统的控制。
特点是 结构简单、维护容易、成本低、不存在稳定性问题;输入控制输出;输出不参与控制; 系统没有抗干扰能力。
适用范围:输入量已知、控制精度要求不高、扰动作用不大。
王振发版分析力学第2章动力学普遍方程和拉格朗日方程
二、质点系的达朗伯原理
设质点系由n个质点组成, 第i个质点质量为mi,受力有主动力 Fi ,约束反力FNi ,加速度为ai ,假想地加上其惯性力Fgi=-miai ,则根据质点的达朗伯原理,Fi 、 FNi与Fgi应组成形式上的平衡 力系,即
Fi + FNi +Fgi=0 (i =1,2,…,n )
解得
a((22m m11m m22))rr22si2nJ g
(a) (b)
2. 拉格朗日方程
将动力学普遍方程用广义坐标表示,即可推导出第二类拉 格朗日方程。
m
j &x&j x j
m
j &y&j
Fyj
k i1
i
fi y j
m j &z&j
Fzj
N i1
ri qk
δqk
n
n
动力学普遍方程可写成
Fiδri miaiδri 0
其中
i1
i1
i n1miaiδri i n1mi r ikN 1qrikδqk
Nn
k1 i1
mi ri qrik
δqk
根据虚位移原理中广义力与广义虚位移的表示形式,有
n
N
Fi δri Qkδqk
设质点系由n个质点组成,第i个质点质量为mi,
受主动力Fi,约束反力FNi,加速度为ai,虚加上 M
Fgi
其惯性力Fgi=-miai
则根据达朗伯原理, Fi 、FNi 与Fgi, 应组成形式上的平衡力系,即
FNi
ai Fi
Fi + FNi +Fgi= 0
若质点系受理想约束作用,应用虚位移原理,有
第二章:动力学系统的微分方程模型
第二章:动力学系统的微分方程模型利用计算机进行仿真时,一般情况下要给出系统的数学模型,因此有必要掌 握一定的建立数学模型的方法。
在动力学系统中,大多数情况下可以使用微分方程 来表示系统的动态特性,也可以通过微分方程可以将原来的系统简化为状态方程或 者差分方程模型等。
在这一章中,重点介绍建系统动态问题的微分方程的基本理论 和方法。
在实际工程中,一般把系统分为两种类型,一是连续系统;其数学模型一般 是高阶微分方程;另一种是离散系统,它的数学模型是差分方程。
§ 2.1动力学系统统基本元件任何机械系统都是由机械元件组成的,在机械系统中有 3种类型的基本机械元件:惯性元件、弹性元件和阻尼元件。
1惯性元件:惯性元件是指具有质量或转动惯量的元件,惯量可以定义为使加速度(或角加速度)产生单位变化所需要的力(或力矩)。
2弹性元件:它在外力或外力偶作用下可以产生变形的元件,力做功来储存能量。
按变形性质可以分为线性元件和非线性元件,通常等效成一弹 簧来表示。
对于线性弹簧元件,弹簧中所受到的力与位移成正比,比例常数为弹簧刚度 k 。
F Wx这里k 称为弹簧刚度,级是弹簧相对于原长的变形量,弹性力的方向总是指向弹簧的原长位移,出了弹簧和受力之间是线性关系以外,还有所谓硬弹簧和软弹簧, 它们的受力和弹簧变形之间的关系是一非线性关系。
3阻尼元件:这种元件是以吸收能量以其它形式消耗能量,而不储存能量,可以形象的表示为一个活塞在一个充满流体介质的油缸中运动。
阻尼力通常表示为:D aR = ex阻尼力的方向总是速度方向相反。
当1,为线性阻尼模型。
否则为非线性阻尼模型。
应注意当:等于偶数情况时,要将阻尼力表示为:R - -ex | x 4 | 这里的"-”表示与速度方向相反惯量(质量)力(N ) 加速度(m/ s 2)惯量(转动惯量)力矩(N m ) 角加速度(rad / s 2)这种元件可以通过外§ 22 动力学建模基本定理1动力学普遍定理对于大多数力学问题,可以使用我们熟知的牛顿动力学基本定理来解决, 动力学普遍定理包括动量定理、动量矩定理和动能定理,以及其他变形形式,普遍 定理的特点是比较直观,针对不同的问题可以选择不同的力学定理,在一般情况下 利用普遍定理可以得到大多数动力学系统的数学模型。
系统的动力学方程
04
数值解法与模拟
欧拉方法
基本思想
通过递推的方式求解微分方程,将连续的时间离散化,用已知的 函数值来近似代替未知的函数值。
公式
(y_{n+1} = y_n + h f(t_n, y_n))
特点
简单易行,但精度较低,步长不易选择。
龙格-库塔方法
基本思想
通过已知的函数值和导数值来逼近微分方程 的解。
解法
通过递推关系和积分求解,得 到y(t)的解
应用
描述高阶物理系统,如控制系 统、多自由度振荡等
线性系统的稳定性分析
方法
通过分析系统在平衡点的稳定性,判断系统是否能够 保持稳定状态
分类
根据系统响应的不同特性,可以分为稳定、不稳定和 临界稳定三种情况
应用
在控制系统、网络等领域中,稳定性分析是至关重要 的。
特点
适用于不规则区域和复杂边界条件,但精度较低。
模拟软件与应用实例
MATLAB/Simulink
广泛应用于控制系统、信号处理等领域,如飞机起飞过程的动力 学模拟。
COMSOL Multiphysics
多物理场仿真软件,适用于流体动力学、电磁学等领域,如电磁波 传播过程的模拟。
ABAQUS
有限元分析软件,适用于结构力学、流体动力学等领域,如桥梁结 构的动力学分析。
应用
描述简单物理系统,如弹簧振荡、电路等
二阶线性微分方程
80%
形式
d²y/dt² + p*dy/dt + q*y = 0, 其中p、q为常数
100%
解法
通过求解二次方程,得到y(t)的 通解和特解
80%
应用
描述复杂物理系统,如振荡器、 电磁波等
系统动力学的9种模型解析
系统动力学的9种模型解析标题:系统动力学的9种模型解析引言:系统动力学是一种研究动态复杂系统行为的数学方法,广泛应用于经济学、生态学、管理学等领域。
本文将深入探讨系统动力学的9种常见模型,并分析其理论基础和应用领域。
通过对这些模型的解析,旨在帮助读者更深入地理解系统动力学及其在实践中的作用。
第一部分:系统动力学概述在介绍具体的模型之前,有必要先了解系统动力学的基本概念和原理。
系统动力学着重于分析系统内部各个组成部分之间的相互关系,通过建立微分方程等数学模型来描述系统的演化过程。
这一方法注重动态演化和非线性特性,在解决复杂问题时具有独特的优势。
第二部分:9种系统动力学模型1. 常微分方程模型:系统动力学的基础,用于描述动态系统的变化过程。
2. 资源流模型:关注系统内资源的流动和变化,适用于生态学、能源管理等领域的研究。
3. 增长模型:研究系统中因子的增长和衰减,可应用于经济学、人口学等领域。
4. 循环模型:探讨系统中的循环过程,如经济周期的波动,可应用于宏观经济研究。
5. 积聚模型:研究系统中积聚和堆积的过程,如资本积累,适用于经济学和企业管理等领域。
6. 信息流模型:研究系统中信息传递和决策的影响,可用于管理学和组织行为学的研究。
7. 优化模型:优化系统中某些指标的值,如最大化效益或最小化成本,适用于运筹学等领域。
8. 非线性模型:考虑系统中的非线性效应,如混沌和复杂性的产生,广泛应用于自然科学和社会科学。
9. 策略模型:研究系统中不同决策对结果的影响,适用于战略管理和政策制定等领域。
第三部分:系统动力学的理论与实践系统动力学的理论基础包括建模、仿真和分析等方法。
通过系统动力学模型,我们可以深入研究系统的行为、寻找潜在问题,并基于模型结果做出合理的决策。
在实践中,系统动力学可应用于企业管理、政策制定、环境保护等领域,为问题解决提供了一种全面和系统的方法。
第四部分:总结与回顾通过对系统动力学的9种模型的解析,我们可以看到系统动力学对于复杂问题的分析和理解具有重要意义。
常微分方程与动力系统
常微分方程与动力系统的研究进展
05
数值计算方法的发展
早期方法:有限差分法和有限元法
01
02
现代方法:谱方法、有限体积法和无网格法
数值软件:MATLAB、COMSOL和FEniCS等
03
04
应用领域:科学计算、工程技术和物理模拟等
理论分析的进展
数值解法:从有限差分法到有限元法、谱方法等
分岔与混沌理论:研究复杂系统的动态行为
预测未来状态
单击此处输入(你的)智能图形项正文,文字是您思想的提炼,请尽量言简意赅的阐述观点
设计实验方案
在化学中的应用
描述化学反应的动力学行为
预测化学反应的进程和结果
研究化学反应的稳定性和平衡态
分析化学反应的复杂性和非线性行为
在生物中的应用
描述种群增长模型
描述生理周期模型
描述神经传导模型
描述生态平衡模型
实际应用的研究:将常微分方程与动力系统的理论应用于实际问题中,如物理、生物、经济等领域的问题
常微分方程与动力系统的实际案例分析
06
人口动态模型
人口动态模型是一类常微分方程模型,用于描述人口随时间变化的规律。
该模型基于生物学和统计学原理,考虑出生率、死亡率、迁移率等因素对人口数量的影响。
通过求解人口动态模型,可以预测未来人口数量和结构的变化趋势,为政策制定和资源分配提供科学依据。
神经网络模型
简介:神经网络模型是一种模拟人类神经系统的计算模型,通过模拟神经元之间的连接和信号传递过程,实现机器学习和人工智能应用。
原理:神经网络模型由多个神经元组成,每个神经元接收输入信号并产生输出信号,通过调整神经元之间的连接权重,使得神经网络能够自适应地学习和识别各种数据模式。
微分方程与动力系统的数值解法
优点:精度高,稳 定性好,计算速度 快
线性多步法
定义:线性多步法是一类数值求解微分方程的方法,通过多次迭代逐步逼近微分方程的解。
特点:线性多步法具有较高的计算精度和稳定性,适用于求解初值问题和边值问题。
常见方法:常见的线性多步法包括Adams-Bashforth方法、Adams-Moulton方法和预测-校 正方法等。
微分方程数值解 法的基本原理
数值逼近的基本概念
定义:用离散 的数值近似表 示连续的数学
函数
目的:解决微 分方程等连续
问题
方法:有限差 分法、有限元
法等
误差控制:保 证数值解的精
度和稳定性
欧拉方法
定义:欧拉方法是一种 常用的数值求解微分方 程的方法
原理:通过离散化微分方 程,将连续的时间变量离 散为离散的时间点,从而 将微分方程转化为差分方 程进行求解
导数或偏导数
分类:根据微分 方程的形式和性 质,可以分为线 性微分方程和非
线性微分方程
动力系统的基本概念
定义:动力系统是由微分方程描述的一组动态变化的数学模型
分类:根据微分方程的性质,动力系统可以分为线性与非线性、常微分方程与偏微分 方程等类型
状态空间:动力系统的状态由状态空间中的点表示,状态随时间的变化规律由微分方 程描述
添加项标题
数值解法:采用数值方法求解高阶常微分方程初值问题,常用的 方法包括欧拉法、龙格-库塔法等。
添加项标题
稳定性分析:在数值求解过程中,需要分析数值解的稳定性,以 确保计算结果的精度和可靠性。
添加项标题
应用领域:高阶常微分方程初值问题在物理学、化学、生物学等 领域有广泛应用,如振荡器设计、化学反应动力学等。
偏微分方程定义: 描述物理现象中变 量之间依赖关系的 数学方程
第2章 系统的数学模型(拉普拉斯变换)
lim f t 的值
1 lim f t lim sF s lim s 0 t 0 s s s s 1
1 lim f t lim sF s lim s 1 t s 0 s 0 s s 1
3 拉普拉斯反变换 对于任何时间连续的时间函数来 说,它与拉普拉斯变换之间保持唯 一的对应关系。 一一对应
1 定义与基本变换
例5 脉冲函数 0, t ,
t 0 t 0
0
dt 1
单位脉冲函数的拉氏变换为 1
L t 1
2 拉普拉斯变换性质
1.线性定理:
Lk1 f1 t k 2 f 2 t k1 L f1 t k 2 L f 2 t
k13
2
s s1 l 1
k1l
kn k2 s s1 s s 2 s sn
k1
1 d l 1 k1l l 1 F s s s1 s s1 l 1! ds
k11 F s s s1 | s s1
4 求解线性微分方程
解:1、对微分方程进行拉氏变换 利用微分定理: 2 ( s 5s 6)Y ( s) s 7 s
2
4、查表求各分式的拉氏反变换 1 1 L 1(t ) 3s 3 1 4 2 t L 4 e s 2
1
2、求系统输出变量表达式 s 7s 2 Y ( s) s( s 2)( s 3)
1 定义与基本变换
例3 斜坡函数
f(t) A t 0 1
At (t 0) f t 0(t 0)
A L f t s2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章:动力学系统的微分方程模型利用计算机进行仿真时,一般情况下要给出系统的数学模型,因此有必要掌握一定的建立数学模型的方法。
在动力学系统中,大多数情况下可以使用微分方程来表示系统的动态特性,也可以通过微分方程可以将原来的系统简化为状态方程或者差分方程模型等。
在这一章中,重点介绍建系统动态问题的微分方程的基本理论和方法。
在实际工程中,一般把系统分为两种类型,一是连续系统;其数学模型一般是高阶微分方程;另一种是离散系统,它的数学模型是差分方程。
§2.1 动力学系统统基本元件任何机械系统都是由机械元件组成的,在机械系统中有3种类型的基本机械元件:惯性元件、弹性元件和阻尼元件。
1 惯性元件:惯性元件是指具有质量或转动惯量的元件,惯量可以定义为使加速度(或角加速度)产生单位变化所需要的力(或力矩)。
惯量(质量)=)加速度(力(2/)s m N 惯量(转动惯量)=)角加速度(力矩(2/)s rad m N ⋅2 弹性元件:它在外力或外力偶作用下可以产生变形的元件,这种元件可以通过外力做功来储存能量。
按变形性质可以分为线性元件和非线性元件,通常等效成一弹簧来表示。
对于线性弹簧元件,弹簧中所受到的力与位移成正比,比例常数为弹簧刚度k 。
x k F ∆=这里k 称为弹簧刚度,x ∆是弹簧相对于原长的变形量,弹性力的方向总是指向弹簧的原长位移,出了弹簧和受力之间是线性关系以外,还有所谓硬弹簧和软弹簧,它们的受力和弹簧变形之间的关系是一非线性关系。
3 阻尼元件:这种元件是以吸收能量以其它形式消耗能量,而不储存能量,可以形象的表示为一个活塞在一个充满流体介质的油缸中运动。
阻尼力通常表示为:αxc R = 阻尼力的方向总是速度方向相反。
当1=α,为线性阻尼模型。
否则为非线性阻尼模型。
应注意当α等于偶数情况时,要将阻尼力表示为:||1--=αx xc R 这里的“-”表示与速度方向相反§2.2 动力学建模基本定理1 动力学普遍定理对于大多数力学问题,可以使用我们熟知的牛顿动力学基本定理来解决,动力学普遍定理包括动量定理、动量矩定理和动能定理,以及其他变形形式,普遍定理的特点是比较直观,针对不同的问题可以选择不同的力学定理,在一般情况下利用普遍定理可以得到大多数动力学系统的数学模型。
1)动量定理与质心运动定理:设系统在任意瞬时的动量矢为K,作用在系统上的外力矢量和为∑i F ,则任意瞬时的动量对时间的导数等于作用在系统中所有外力的矢量和构成了动量定理。
∑=F dtdK(2-1)通常将该式投影到直接坐标轴系、自然坐标轴系等,(更详细的情况请参阅理论力学有关知识)利用质心坐标的计算表达式,可以将动量定理转化为质心运动定理,即:i c F a M ∑= 或: i ci i F a m∑∑= (2-2)其中:M 是系统的总质量,c a 是系统的质心;i m 是分刚体是质心,ci a 是分刚体的质心。
2) 动量矩定理 : 系统在任意瞬时的动量矩对时间的导数等于作用在系统中所有外力矩的矢量和。
∑=)(00F M dtdH (2-3) 其中,0H 是系统对固定点o 的动量矩, )(F M O 力F 对O 点的矩.除了对固定点的动量矩定理外,还有对质心的动量矩定理,对速度瞬心的动量矩定理和对加速度瞬心的动量矩定理。
3) 动能定理 : 动能定理的导数形式:系统在任意瞬时的动能对时间的导数等于作用在系统中所有力的功率的代数和。
∑=N dtdT(2-4) 动能定理的积分形式:系统在任意两瞬时的动能的变化等于作用在系统中所有力的功的代数和。
∑=-W T T 122 动力学普遍方程将达朗伯原理与虚位移原理相结合,得到了建立动力学模型的另一种方法。
1) 达朗伯原理 达朗伯原理提供了研究动力学问题的一个新的方法,即借助于惯性力( a m Q-=)的概念,可用研究静力学平衡的方法来研究动力学问题,这种方法常称为动静法。
即:在任意时刻,质点在主动力、约束力和惯性力的主矢作用下处于平衡;0=++∑∑∑i i i Q N F(2-5)以及主动力、约束力和惯性力对某点的矩矢等于零,即:0)()()(=++∑∑∑i O i O i O Q M N M F M通常先计算惯性力的主矢和主矩,从而得到质点系的达朗伯原理。
2) 虚位移原理虚位移原理本身是通过虚功的引入,提出了求解静力学问题的一种方法,它与达朗伯原理相结合得到了建立动力学模型的另一种方法。
对于理想约束的完整系统,质点(质点系)在其给定位置上处于平衡的必要充分条件是作用在该质点(质点系)上的所有主动力i F 在其作用点的虚位移i r δ上所做的虚功和等于零,即:0=⋅∑i i r Fδ或0)(=⋅+⋅+⋅∑i iz i iy i ix z F y F x F δδδ3) 动力学的普遍方程受理想约束的系统,作用在质点系上的所以主动力和惯性力在各自的虚位移上所做的虚功和等于零,即:0)(1=-∑=r a m F i i i niδ或0])()()[(1=-+-+-∑=i i i zi i i i yi i i i xi ni z zm F y y m F x x m F δδδ 在具体应用这个方程的时候,可以先引入广义坐标,使得问题处理简单。
例2-1 质量为m 均质的杆可以绕O 轴定动,试求系统做微幅振动时的微分方程。
解:杆绕O 轴做定轴转动,水平位置为系统的平衡状态,取杆绕O 轴转动的角度ϕ为坐标,可以方便的使用动量矩定理来建立动力学方程。
(假定在微小转动情况下)a a k a c a t f J 3)33()(ϕϕϕ+-= 这里J 是杆绕O 轴转动的转动惯量。
这是关于ϕ的二阶线性微分方程。
如果不计杆的质量,则微分方程为:)(99t f ka ca =+ϕϕ这个方程是关于ϕ的一阶线性微分方程,称该系统模型为一阶系统。
例2-2 悬浮摆的动力学建模 下图所示为小型起重机简图,21,m m 是吊车和吊重的质量,吊绳长为l 且不计质量,吊车的驱动力为F ,考虑轨道的阻力为xc ,试以θ,x 为广义坐标,建立系统的动力学控制方程。
利用水平方向的质心运动定理,即:(1) )sin (2221x c F l x dtd m xm -=++θ 或: x c - )sin cos (221F l l x m x m =-++θθθθ 重物做平面曲线运动,则可以直接利用牛顿定律得到切线方向的动力学方程:(2) sin )cos (22θθθg m xl m -=+ (1),(2)两式是耦合的非线性动力学方程。
当系统被限制在0=θ附近运动时,可将其在0=θ处线性化处理,则可以得到系统的方程为:))(221F l m x c x m m =-++θ )(221F l l x m x m =-++θθθ当给定)(t F F =时,可以建立仿真模型。
请读者考虑,如果要考虑摆杆的质量,则动力学方程如何?例2-3: 车辆悬架系统的动力学模型考虑图2.2所示的汽车悬架系统示意图。
设计悬架缓冲系统的2211,;,c k c k 的目的是减小车辆在崎岖道路上行驶时产生的震动,因为道路表面的不平坦会引起悬架沿垂直方向的移动和绕某个轴的转动。
图2.2悬架系统示意图 图2.3架系统的受力分析示意图我们将整个系统的质量中心作为坐标的原点,因此系统在不平道路上的振动运动可以看作是质心的沿垂直方向的平移运动以及绕质心的旋转运动。
车架质量为m,转动惯量为J 。
输入车轮的位置信息1y 、2y 表明路况信息。
假设每个车轴的缓冲系统由具有阻尼特性的弹簧构成。
忽略轮胎的质量,每个车轮受到的外力为弹簧弹力与阻尼力之和,即)()()(1111A A A A y k yc s y k dt dc F +=+= )()()(2222B B B B y k yc s y k dtdc F +=+= 其中:1y a y y A -+=ϕ 2y b y y B --=ϕA y 和B y 分别表示每个弹簧距离参考位置的瞬时距离。
代入上式后))((111y a y k dt dc F A -++=ϕ))((222y b y k dt dc F B --+=ϕ根据质心运动与相对于质心的动量矩定理得:B A F F dty d M --=22或者:)()()()(22221111y b y k y b y c y a y k y a y c ym -------+--+-=ϕϕϕϕ 整理后得到:2211221121212121)()()()(y k y k y c yc b k a k b c a cy k k y c c ym +++=-+-+++++ ϕϕ用)(t y 和)(t ϕ分别表示系统质心的平移位移和沿质心的旋转角度。
上式中假定在很小的角度位置条件下满足ϕϕ≈sin ,并且ϕ取顺时针的旋转方向为正方向。
再根据系统相对于质心的动量矩定理可得:a y +12ϕb -a Fb F a F b F dtd J ab A B -≈-=ϕϕϕcos cos 22 其中J 是车驾相对于质心的转动惯量,将上式整理后可得: a y a y k dt dc b y b y k dtd c dtd J ))(())((11122222-++---+=ϕϕϕ或:221122112121222112)()()()(by k ay k y b c yca y b k a k a k b k y c c a c b c J -+-=-+++-+++ ϕϕϕ将系统的动力学方程写成矩阵形式:⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡21222112112122212112221121122211211 00y y F F F F y y E E E E y C C C C y B B B B y J m ϕϕϕ简写为:⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡2121][][][][][y y F y y E y C y B y A ϕϕϕ其中:⎥⎦⎤⎢⎣⎡=J m A 00 ][⎥⎦⎤⎢⎣⎡+--+=b c a c b c a c b c a c c c B 21212121 ][ ⎥⎦⎤⎢⎣⎡+--+=b k a b kk a k b k a k k k C 21212121][ ⎥⎦⎤⎢⎣⎡=b c a c c c E 2121- ][ ⎥⎦⎤⎢⎣⎡=b k a k k k F 2121-][ ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡----21121111][][][][][][][][y y F A y y E A y C A y B A y ϕϕϕ 当][A 为非奇异阵时,可以通过矢量信号我们可以得到系统的仿真模型如(图2-5)。