八年级(下)学期3月份月考数学试卷及答案

合集下载

八年级(下)月考数学试卷(3月份)

八年级(下)月考数学试卷(3月份)

八年级(下)月考数学试卷(3月份)一、选择题(每题3分,共30分)1.(3分)若在实数范围内有意义,则x的取值范围为()A.x≥0B.x≤0C.x=0D.x为任意实数2.(3分)△ABC三边为a、b、C,下列条件不能判定△ABC是直角三角形的是()A.a=,b=2,c=B.a=3,b=4,c=5C.b2=a2﹣c2D.∠A:∠B:∠C=1:2:33.(3分)下列二次根式中,化简后不能与进行合并的是()A.B.C.D.4.(3分)若平行四边形中两个内角的度数比为1:2,则其中较小的内角是()A.60°B.90°C.120°D.45°5.(3分)下列各命题的逆命题成立的是()A.两条直线平行,同位角相等B.如果两个实数相等,那么它们的绝对值相等C.等边三角形是锐角三角形D.全等三角形的对应角相等6.(3分)点D、E、F分别为△ABC三边的中点,若△DEF的周长为3,则△ABC的周长为()A.12B.9C.6D.1.57.(3分)甲、乙两艘客轮同时离开港口,航行的速度都是40m/min,甲客轮用15min到达点A,乙客轮用20min到达点B,若A,B两点的直线距离为1000m,甲客轮沿着北偏东30°的方向航行,则乙客轮的航行方向可能是()A.北偏西30°B.南偏西30°C.南偏东60°D.南偏西60°8.(3分)如图,Rt△ABC中,∠C=90°,D为AB中点,E为BC上一点,且CE=2BE =2DE=6.则AB的长为()A.12B.6C.6D.39.(3分)如图,长方体的长宽高分别是3、4、2,一只蚂蚁要沿着长方体的外表面从A点爬到B点,最短路径长为()A.5B.C.3D.10.(3分)如图,△ABC为等腰直角三角形,∠ACB=90°.若∠AOB=45°,则OA、OB、OC之间满足()A.OA2+OB2=OC2B.OA2+OB2=2OC2C.OA2+OB2+OA•OB=2OC2D.OA2+OB2+OA•OB=2OC2二、填空题(每题3分,共18分)11.(3分)=;(3)2=;=.12.(3分)一个三角形的三边长为5、、,则该三角形的面积为.13.(3分)如图,E、F是▱ABCD对角线BD上的两点,请你添加一个适当的条件:,使四边形AECF是平行四边形.14.(3分)E为▱ABCD边AD上一点,将△ABE沿BE翻折得到△FBE,点F在BD上,且EF=DF.若∠C=52°,那么∠ABE=.15.(3分)A(3,4)是平面直角坐标系第一象限内一点,B为x轴正半轴上一点,若△AOB 为等腰三角形,则B点坐标为.16.(3分)如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=4.P为BC边上一点,以AP为边在右侧构造等边△APD.连接BD,Q为BD中点,则P点从C点运动到B点的过程中,Q点的运动路径长为.三、解答题(共72分)17.(8分)(1)计算(﹣)﹣(+);(2)(﹣)×.18.(8分)先化简再求值:,其中x=.19.(8分)如图,Rt△ABC中,∠C=90°(1)若AB=,AC=,求BC2(2)若AB=4,AC=1,求AB边上高.20.(8分)▱ABCD中,BD是对角线,CE⊥CD交BD于E点,AF⊥AB交BD于F点,连接AE、CF.求证:四边形AECF是平行四边形.21.(8分)按要求仅用无刻度的直尺作图,不要求写作法,但要保留作图痕迹.(1)如图1,正方形网格中的每个小正方形边长都为1,以格点A为顶点画一个△ABC,使其三边长分别为AB=,AC=,BC=;(2)在▱ABCD中,点E在BC边上,AB=BE,BF平分∠ABC交AD于点F.①在图2中,过点A画出△ABF的BF边上的高AG;②在图3中,过点C画出C到BF的垂线段CH.22.(10分)如图,在平行四边形ABCD中,AC、BD相交于O,OE⊥AC交CD于E点.(1)求证:OA平分∠BAE;(2)若平行四边形ABCD的周长为20,求△ADE的周长.23.(10分)如图,等腰Rt△ABD中,AB=AD,点M为边AD上一动点,点E在DA的延长线上,且AM=AE,以BE为直角边,向外作等腰Rt△BEG,MG交AB于N,连NE、DN.(1)求证:∠BEN=∠BGN.(2)求的值.(3)当M在AD上运动时,探究四边形BDNG的形状,并证明之.24.(12分)如图所示,在平面直角坐标系中A(a,0),B(b,0),D(0,d),以AB,AD 为邻边作平行四边形ABCD,其中a,b,d满足.(1)直接写出C点坐标;(2)如图2,线段BC的垂直平分线交y轴于点E,F为AD的中点,试判断∠EFB的大小,并说明理由;(3)如图3,点E(,0),F为x轴上的一点,∠ECF=45°,求F点的坐标.。

2022-2023学年山东省菏泽市开发区多校联考八年级(下)月考数学试卷(3月份)+答案解析(附后)

2022-2023学年山东省菏泽市开发区多校联考八年级(下)月考数学试卷(3月份)+答案解析(附后)

2022-2023学年山东省菏泽市开发区多校联考八年级(下)月考数学试卷(3月份)1. 下列不等式中,是一元一次不等式的是( )A.B.C.D.2. 下列判断不正确的是( )A. 若,则 B. 若,则 C. 若,则D. 若,则3. 若等腰三角形中有两边长分别为3和7,则这个三角形的周长为( )A. 13B. 13或17C. 10D. 174.用反证法证明命题“在中,若,则”,首先应假设( )A. B.C. D.5. 如图,,,,要根据“HL ”证明,则还需要添加一个条件是( )A. B.C.D.6. 有一个角是的直角三角形,斜边为1cm ,则斜边上的高为( )A.B.C. D.7. 如图,在中,,,BD 、CE 分别是、的角平分线,则图中的等腰三角形有( )A. 5个B. 4个C. 3个D. 2个8. 如图,,OE平分,交OA于点D,,垂足为若,则OD的长为 ( )A. 2B.C. 4D.9. 下面是教师出示的作图题.已知:线段a,h,小明用如图所示的方法作,使,AB上的高作法:①作射线AM,以点A为圆心、※为半径画弧,交射线AM于点B;②分别以点A,B为圆心、为半径画弧,两弧交于点D,E;③作直线DE,交AB于点P;④以点P为圆心、⊕为半径在AM上方画弧,交直线DE于点C,连接AC,对于横线上符号代表的内容,下列说法不正确的是( )A.※代表“线段a的长” B. 代表“任意长”C. 代表“大于的长”D. ⊕代表“线段h的长”10. 已知点C在线段BE上,分别以BC、CE为边作等边三角形ABC和等边三角形DCE,连接AE与CD相交于点N,连接BD与AC相交于点M,连接OC、MN,则①;②≌;③;④是等边三角形;⑤OC平分;⑥;以上结论正确的个数是( )A. 3个B. 4个C. 5个D. 6个11. 若的解集是,则a的取值范围是______.12. 在实数范围内定义一种新运算“⊕”,其运算规则为:如:则不等式的解集是______ .13. 如图,在中,,,则的度数为______ .14.如图,已知的周长是21,OB,OC分别平分和,于D,且,的面积是______.15. 如图,在中,AC的垂直平分线DE交AC于点D,交BC于点E,,则的度数为______ .16. 如图,等腰三角形ABC的底边BC长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则的周长的最小值为______.17. 解下列不等式,并把解集在数轴上表示出来.18. 一次数学竞赛中,共有20道题,规定答对一道题得6分,答错或不答一道题扣2分;80分以上含80分可以获奖,问若要获奖,至少要答对几道题?19. 在等边的三条边AB,BC,CA上,分别取点D,E,F,使得,连接DE,EF,FD,求证:是等边三角形.20. 如图,点C在线段AB上,,,,于点求证:≌;求证:CF平分21. 已知:如图中,,BD平分,CD平分,过D作直线平行于BC,交AB,AC于E,求证:是等腰三角形;求的周长.22. 如图1,在中,,,直线m经过点A,直线m,直线m,垂足分别为点D、求证:≌;如图2,将中的条件改为:在中,,D、A、E三点都在直线m上,并且有,其中为任意锐角或钝角.请问结论≌是否成立?如成立,请给出证明;若不成立,请说明理由.拓展应用:如图3,D,E是D,A,E三点所在直线m上的两动点三点互不重合,点F为平分线上的一点,且和均为等边三角形,连接BD,CE,若,求证:是等边三角形.答案和解析1.【答案】D【解析】【分析】本题考查一元一次不等式的识别.主要依据一元一次不等式的定义进行辨别.含有一个未知数并且未知数的次数是一次的不等式叫一元一次不等式.【解答】解:A分母中含有未知数,所以不是一元一次不等式,不符合题意;B是一元二次不等式,不符合题意;C是二元一次不等式,不符合题意;D是一元一次不等式,符合题意.故选2.【答案】D【解析】解:A、在不等式的两边同时加2,不等式仍成立,即,正确,不符合题意;B、在不等式的两边同时乘以,不等号方向改变,即,正确,不符合题意;C、在不等式的两边同时乘以2,不等式仍成立,即,正确,不符合题意;D、当时,,原变形错误,符合题意.故选:根据不等式的基本性质进行判断.本题考查的是不等式的基本性质:不等式两边加或减同一个数或式子,不等号的方向不变;不等式两边乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以同一个负数,不等号的方向改变.3.【答案】D【解析】解:若3为腰长,7为底边长,由于,则三角形不存在;若7为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为故选:求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和7,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.4.【答案】A【解析】解:反证法证明命题“在中,若,则”时,首先假设,故选:根据反证法的步骤中,第一步是假设结论不成立,反面成立解答即可.本题考查的是反证法的应用,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.5.【答案】D【解析】【分析】本题考查了全等三角形的判定定理的应用,能灵活运用全等三角形的判定定理进行推理是解此题的关键.根据垂直定义求出,再根据全等三角形的判定定理推出即可.【解答】解:条件是,理由是:,,,在和中,,,故选6.【答案】C【解析】解:如下图所示:,于点D,,,,,,,,故选项A错误,选项B错误,选项C正确,选项D错误.故选:根据题目画出相应的图形,由题意可以求得BC、AC的长,由,,可以求得CD 的长,从而可以解答本题.本题考查角的直角三角形,解题的关键是画出合适的三角形,灵活变化,找出所求问题需要的条件.7.【答案】A【解析】解:共有5个.,是等腰三角形;、CE分别是、的角平分线,,,是等腰三角形,,是等腰三角形;,,,又BD是的角平分线,,是等腰三角形;、CE分别平分,,,,,,,,,即是等腰三角形由可得,即是等腰三角形.综上所述,共有5个等腰三角形.故选:根据已知条件和等腰三角形的判定定理,对图中的三角形进行一一分析,即可得出答案.此题主要考查学生对角的平分线,等腰三角形判定和三角形内角和定理的理解和掌握,属于中档题.8.【答案】C【解析】解:过点E作于点H,如图所示:平分,,,,OE平分,,,,,,,,,,,,故选:过点E作于点H,根据角平分线的性质可得,再根据平行线的性质可得的度数,再根据含角的直角三角形的性质可得DE的长度,再证明,即可求出OD的长.本题考查了角平分线的性质,含角的直角三角形的性质,平行线的性质等,熟练掌握这些性质是解题的关键.9.【答案】B【解析】解:作法:①作射线AM,以点A为圆心、“线段a的长”为半径画弧,交射线AM于点B;②分别以点A,B为圆心、“大于二分之一AB的长”为半径画弧,两弧交于点D,E;③作直线DE,交AB于点P;④以点P为圆心、“线段h的长”为半径在AM上方画弧,交直线DE于点C,连接AC,所以说法不正确的是故选:根据基本作图方法即可完成填空.本题考查作图-复杂作图,解题的关键是理解题意,灵活运用所学知识解决问题.10.【答案】D【解析】解:三角形ABC和三角形DCE都是等边三角形,,,,,≌,,故①正确;,又,,,故③正确;,,,≌,故②正确;,又,是等边三角形,故④正确;如图,过C作,,≌,中BD边上的高与中AE边上的高对应相等,即,点C在的角平分线上,即CO平分,故⑤正确;如图,在BO上截取,则是等边三角形,,,又,,≌,,,故⑥正确;故选:依据等边三角形的性质,判定≌,≌,≌,再分别依据全等三角形的对应边相等,对应角相等,对应边上的高相等,即可得到正确的结论.本题主要考查了全等三角形的判定与性质,等边三角形的性质与判断的综合运用,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.11.【答案】【解析】解:,且不等式的解集是,,解得:故答案为:根据不等式的基本性质3,结合题意可得,解之即可.本题主要考查解一元一次不等式,解题的关键是掌握不等式的基本性质和解一元一次不等式的能力.12.【答案】【解析】解:,,不等式即为:,解得,故答案为:根据新定义运算,列出不等式,然后解不等式即可.本题考查了新定义运算,解一元一次不等式,根据新定义得出不等式是解题的关键.13.【答案】【解析】解:,,,,为的外角,,,,,即,故答案为:先根据等腰三角形的性质,得出,,根据三角形的外角得出,根据三角形内角和,结合,求出的度数即可.本题主要考查了等腰三角形的性质,三角形外角的性质,解题的关键是熟练掌握等边对等角.14.【答案】42【解析】【分析】本题考查了角平分线性质,三角形的面积,主要考查学生运用定理进行推理的能力.过O作于E,于F,连接OA,根据角平分线性质求出,根据的面积等于的面积、的面积以及的面积之和,即可求出答案.【解答】解:如图,过O作于E,于F,连接OA,,OC分别平分和,,,,即,的面积是:故答案为:15.【答案】【解析】解:垂直平分线段AC,,,,,,故答案为:证明,利用三角形内角和定理求解即可.本题考查直角三角形的性质,线段的垂直平分线的性质等知识,解题关键是灵活运用所学知识解决问题,属于中考常考题型.16.【答案】9【解析】解:连接AD,是等腰三角形,点D是BC边的中点,,,解得,是线段AC的垂直平分线,点A关于直线EF的对称点为点C,,,的长为的最小值,的周长最短故答案为:连接AD,AM,由于是等腰三角形,点D是BC边的中点,故,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,,推出,故AD的长为的最小值,由此即可得出结论.本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.17.【答案】解:,,,,,,解集在数轴上表示为:去括号得,,移项得,,合并同类项得,,系数化为1得,,解集在数轴上表示为:,移项得,,合并同类项得,,系数化为1得,,解集在数轴上表示为:,去分母得,,去括号得,,移项得,,合并同类项得,,系数化为1得,解集在数轴上表示为:【解析】去分母,去括号,移项,合并同类项,系数化成1即可;去括号,移项,合并同类项,系数化成1即可;移项,合并同类项,系数化成1即可;去分母,去括号,移项,合并同类项,系数化成1即可.本题考查了解一元一次不等式,在数轴上表示不等式的解集,数形结合是解题的关键.在表示解集时“”,“”要用实心圆点表示;“<”,“>”要用空心圆点表示.18.【答案】解:设答对x题,那么答错或者不答的有题解得:答:至少要答对15题.【解析】根据题意,设答对x题,则答对获得的分数为6x,而答错损失的分数为,由这次竞赛获奖必须达到80分,列出不等式求解即可.此题主要考查了一元一次不等式的应用,根据题意得出正确的不等关系是解题关键.19.【答案】证明:是等边三角形,,,,,在和中,,≌,在和中,,≌,≌,,是等边三角形.【解析】根据等边三角形的性质得出,,,进一步证得,即可证得≌≌,根据全等三角形的性质得出,即可证得是等边三角形.此题考查了等边三角形性质,全等三角形的性质和判定的应用,熟练掌握全等三角形的判定与性质是解题的关键.20.【答案】证明:,,在和中,,≌,≌,,又,平分【解析】根据平行线性质求出,根据SAS推出≌;根据全等三角形性质推出,根据等腰三角形性质即可证明CF平分本题考查了平行线性质,全等三角形的性质和判定,等腰三角形性质的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.21.【答案】证明:,,平分,,,,是等腰三角形;,,平分,,,,,,的周长为:【解析】首先根据平行线的性质可得,再根据角平分线的定义可得,可得,据此即可证得;同理可得,根据的周长,求解即可.本题考查了等腰三角形的判定和性质,平行线的性质,角平分线的定义等,熟练掌握等腰三角形的判定和性质是解题的关键.22.【答案】证明:如图1,直线m,直线m,,,,在和中,,≌解:≌成立,证明:当为钝角时,如图2,,,,,在和中,,≌当为锐角时,如图,,,,,在和中,,≌证明:如图3,和均为等边三角形,,,,,由得≌,,,,,,在和中,,≌和,,,,是等边三角形.【解析】由,推导出,即可根据全等三角形的判定定理“AAS”证明≌;当为钝角时,由,推导出,即可根据全等三角形的判定定理“AAS”证明≌;当为锐角时,用同样的方法可证明≌;先由和均为等边三角形,得,,,则,而,由得≌,则,,可推导出,即可证明≌和,得,,则,即可证明是等边三角形.此题重点考查同角的余角相等、三角形内角和定理、全等三角形的判定与性质、等边三角形的判定与性质、数形结合与分类讨论数学思想的运用等知识与方法,此题综合性强,难度较大,属于考试压轴题.。

八年级(下)学期3月份月考数学试卷含答案

八年级(下)学期3月份月考数学试卷含答案

八年级(下)学期3月份月考数学试卷含答案一、选择题1.下列计算正确的是( ) A1 BCD±2.下列计算正确的是( ) A .()222a b a b -=- B .()322x x 8x ÷=+ C .1a a a a÷⋅= D4=-3.a 的值可能是( ) A .2-B .2C .32D .84.下列计算正确的是() A 2=± B3=-C .(25=D .(23=-5.在函数y=3x -中,自变量x 的取值范围是( ) A .x≥-2且x≠3 B .x≤2且x≠3C .x≠3D .x≤-26.当4x =-的值为( )A.1 BC .2D .37.有意义,则字母x 的取值范围是( ) A .x≥1B .x≠2C .x≥1且x =2D ..x≥-1且x ≠28.已知a ( ) A .0B .3C .D .99.已知实数x ,y满足(xy )=2008,则3x 2-2y 2+3x -3y -2007的值为( ) A .-2008 B .2008C .-1D .110.以下运算错误的是()A=B .2=CD2=a >0)11.是同类二次根式,那么a 的值是( ) A .﹣2B .﹣1C .1D .212.在实数范围内有意义,则x 的取值范围是( )A .x >0B .x >3C .x ≥3D .x ≤3二、填空题13.使函数21122y x x x=-++有意义的自变量x 的取值范围为_____________ 14.(1)已知实数a 、b 在数轴上的位置如图所示,化简()222144a a ab b +--+=_____________;(2)已知正整数p ,q 满足32016p q +=,则整数对()p q ,的个数是_______________;(3)△ABC 中,∠A=50°,高BE 、CF 所在的直线交于点O,∠BOC 的度数__________. 15.若613-的整数部分为x ,小数部分为y ,则(213)x y +的值是___.16.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(9,4)表示的两数之积是______.17.计算:652015·652016=________. 18.如果332y x x --,那么y x =_______________________. 19.3a ,小数部分是b 3a b -=______. 20.已知x 51-,y 51+,则x 2+xy +y 2的值为______. 三、解答题21.计算:(18322(2))((25225382+-+. 【答案】(1)52 【分析】(1)先化简二次根式,再合并同类二次根式即可; (2)根据平方差公式化简,再化简、合并同类二次根式即可.【详解】(1==(2))((222+-+=2223--+ =5-4-3+2 =022.(112=3==;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想.【答案】(12=55=6=;(2n=;(3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④=25,(2)如果n 为正整数,用含n (3)证明:∵n 是正整数,n .n.故答案为5=256;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.23.像2)=1=a (a ≥0)、﹣1)=b ﹣1(b ≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因+1﹣1,﹣因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题: (1);(2)+;(3)的大小,并说明理由.【答案】(1(2)(3)< 【解析】分析:(1=1,确定互为有理化因式,由此计算即可;(2)确定分母的有理化因式为2与2+然后分母有理化后计算即可;(3与,,然后比较即可.详解:(1) 原式;(2)原式=2+=2+ (3)根据题意,-==,><,>点睛:此题是一个阅读题,认证读题,了解互为有理化因式的实际意义,以及特点,然后根据特点变形解题是关键.24.阅读下面的解答过程,然后作答:m 和n ,使m 2+n 2=a 且,则a 可变为m 2+n 2+2mn ,即变成(m +n )2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可. 【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==25.-10 【分析】先根据二次根式的性质和平方差公式化简,然后再进行计算即可 【详解】=(22⎡⎤--⎢⎥⎣⎦=()212--10+.10. 【点睛】本题主要考查了二次根式的性质、平方差公式,灵活运用二次根式的性质化简是解答本题的关键.26.先化简,再求值:24224x x x x x x ⎛⎫÷- ⎪---⎝⎭,其中2x =. 【答案】22x x +-,1 【分析】先把分式化简,然后将x 、y 的值代入化简后的式子求值即可. 【详解】 原式(2)(2)22(2)2x x x x x x x x +-+=⋅=---,当2x =时,原式1==.【点睛】本题考查了分式的化简求值这一知识点,把分式化到最简是解题的关键.27.在一个边长为(cm 的正方形的内部挖去一个长为()cm ,cm 的矩形,求剩余部分图形的面积. 【答案】【解析】试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积. 试题解析:剩余部分的面积为:(2﹣() =()﹣(﹣) =(cm 2). 考点:二次根式的应用28.一样的式子,其实我====,1===;以上这种化简的步骤叫做分母有理化还可以用以下方法化简:221111===-=(12)化简:2n +++【答案】(1-2. 【解析】试题分析:(12看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)=====(2)原式=122n ++++=12. 考点:分母有理化.29.(1|5-+;(2)已知实数a 、b 、c 满足|3|a +=,求2(b a +的值.【答案】(1)5;(2)4 【分析】(1)先利用二次根式的乘法法则和绝对值的意义计算,再进行回头运算即可; (2)先根据二次根式有意义的条件确定b 的值,再根据非负数的和的意义确定a ,c 的值,然后再计算代数式的值即可. 【详解】解:(15-+5)=+5=+5=(2)由题意可知:5050b b -≥⎧⎨-≥⎩, 解得5b =由此可化简原式得,30a +=30a ∴+=,20c -=3a ∴=-,2c =22((534b a ∴+=--=【点睛】可不是考查了二次根式的混合运算以及二次根式的化简求值,熟练掌握运算法则和运算顺序是解答此题的关键.30.(1)计算)(2201113-⎛⎫--•- ⎪⎝⎭(2)已知,,a b c为实数且2c =2c ab-的值【答案】(1)13;(2)12-【分析】(1)利用完全平方公式、负整数指数幂、零指数幂分别计算再合并即可; (2)先依据二次根式有意义的条件,求得a 、b 、c 的值,然后再代入计算即可. 【详解】(1))(2201113-⎛⎫--•- ⎪⎝⎭31=+⨯=4+9 =13;(2)根据二次根式有意义的条件可得:∵()2303010a a b ⎧-≥⎪⎪-≥⎨⎪-+≥⎪⎩, ∴3a =,1b =-, ∴2c =∴(()2223112c ab -=-⨯-=-【点睛】本题主要考查了二次根式的混合运算,二次根式有意义的条件以及二次根式的化简求值,熟练掌握二次根式有意义的条件是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】2÷故选A.2.B解析:B 【分析】根据完全平方公式,整式的除法,分式的乘除法,二次根式的性质和化简运算法则逐一计算作出判断. 【详解】解: A .()222a b a 2ab b -=-+,选项错误; B .()3322x x 8x x 8x ÷=÷=,选项正确; C .111a a 1a a a÷⋅=⋅=,选项错误;D 44=-=,选项错误.故选:B .3.B解析:B 【分析】直接利用最简二次根式的定义分析得出答案. 【详解】∴a ≥0,且a故选项中-2,32,8都不合题意, ∴a 的值可能是2. 故选:B . 【点睛】此题主要考查了最简二次根式的定义,正确把握定义是解题关键.4.C解析:C 【分析】直接利用二次根式的性质分别求解,即可得出答案. 【详解】解:A,故A 选项错误; B,故B 选项错误; C选项:2=5,故C 选项正确; D选项:2=3,故D 选项错误, 故选:C . 【点睛】此题主要考查了二次根式的性质,正确求解二次根式是解题的关键.5.A解析:A 【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式组求解. 【详解】 解:根据题意,有2030x x +≥⎧⎨-≠⎩, 解得:x ≥-2且x ≠3; 故选:A . 【点睛】当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数为非负数.6.A解析:A 【分析】根据分式的运算法则以及二次根式的性质即可求出答案. 【详解】 解:原式2223232323x x x x112323x x将4x =代入得,原式1142342322 11 131331133331131=.故选:A.【点睛】本题考查分式的运算以及二次根式的性质,解题的关键是熟练运用分式的运算法则以及观察出分母可以开根号,本题属于较难题型.7.D解析:D【分析】直接利用二次根式的有意义的条件分析得出答案.【详解】有意义,则x+1≥0且x-2≠0,解得:x≥-1且x≠2.故选:D.【点睛】本题考查了二次根式有意义的条件,正确把握相关性质是解题关键.8.B解析:B【解析】=,可知当(a﹣3)2=0,即a=3故选B.9.D解析:D【解析】由(x y)=2008,可知将方程中的x,y对换位置,关系式不变,那么说明x=y是方程的一个解由此可以解得,或者则3x2-2y2+3x-3y-2007=1,故选D.10.C解析:C【分析】利用二次根式的乘法法则对A、B进行判断;利用二次根式的化简对C、D进行判断.【详解】A.原式=所以A选项的运算正确;B.原式=所以,B选项的运算正确;C.原式==5,所以C选项的运算错误;D.原式=2,所以D选项的运算正确.故选C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.11.D解析:D【分析】根据最简二次根式与同类二次根式的定义列方程组求解.【详解】由题意,得7-2a=3,解得a=2,故选D.【点睛】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.12.C解析:C【详解】解:根据题意得:x-3≥0解得:x≥3故选C.二、填空题13.【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,解得:①当时,解得:即:①当时,解得:即:故自变量x 的取值范围为【点睛】 解析:11,022x x -≤≤≠ 【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,220x x +≠解得:0,2x x ≠≠-12||0x -≥①当0x >时,120x -≥ 解得:12x ≤ 即:102x <≤ ①当0x <时,120x +≥ 解得:21x ≥-即:102x -≤< 故自变量x 的取值范围为11,022x x -≤≤≠ 【点睛】本题考查二次根式以及分式有意义的条件,熟练掌握分类讨论和解不等式组是解题关键. 14.(1)2a -2b +1;(2)3;(3)130°或50°. 【解析】(1)∵-1<a<0,b>1,∴=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)∵,∴,p=20解析:(1)2a -2b +1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1, ∴222(1)4a a ab b +--+=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)∵32016p q +=, ∴20163p q =-,p=2016-62016+9q,∴p=14x 3(其中x 为正整数), 同理可得:q=14y 2(其中y 为正整数),则x+3y=12(x 、y 为正整数)∴963,,123x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩, ∴整数对有(p,q )=(14⨯81,141⨯),或(1436,144)⨯⨯ ,或(149,149⨯⨯)。

潍坊市寿光市2021年3月初二下月考数学试卷含答案解析

潍坊市寿光市2021年3月初二下月考数学试卷含答案解析

潍坊市寿光市2021年3月初二下月考数学试卷含答案解析一.选择题(3分&#215;12=36分)1.下列各数中,无理数的个数有()﹣0.101001,,,,,0,.A.1个B.2个C.3个D.4个2.下列说法正确的是()A.﹣4是﹣16的平方根B.4是(﹣4)2的平方根C.(﹣6)2的平方根是﹣6 D.的平方根是±43.设的小数部分为b,那么(4+b)b的值是()A.1 B.是一个有理数 C.3 D.无法确定4.下列各式表示正确的是()A.B.C.D.5.已知x、y为正数,且|x2﹣4|+(y2﹣3)2=0,假如以x、y的长为直角边作一个直角三角形,那么以那个直角三角形的斜边为边长的正方形的面积为()A.5 B.25 C.7 D.156.若m>n,则下列不等式中成立的是()A.m+a<n+b B.ma<nb C.ma2>na2D.a﹣m<a﹣n7.不等式组的解集在数轴上表示为()A.B.C.D.8.假如不等式组无解,那么m的取值范畴是()A.m>8 B.m≥8 C.m<8 D.m≤89.如图,数轴上表示1、的对应点分别为点A、点B.若点A是BC的中点,则点C所表示的数为()A.B.C.D.10.有一个数值转换器,原理如下:当输入的x为64时,输出的y是()A.8 B.C.D.11.如图所示为一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②,…,依此类推,若正方形①的面积为64,则正方形⑤的面积为()A.2 B.4 C.8 D.1612.如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C.则矩形的一边AB的长度为()A.1 B.C.D.2二.填空题(4分&#215;6=24分)13.﹣27的立方根与的平方根的和是.14.某商品进价200元,标价300元,商场规定能够打折销售,但其利润不能低于5%,该商品最多能够折.15.已知a>5,不等式(5﹣a)x>a﹣5解集为.16.如图所示,折叠长方形的一边AD,使点D落在边BC的点F处,已知AB=8cm,BC=10cm,则EC的长为cm.17.若关于x的不等式组有解,则实数a的取值范畴是.18.若不等式组的解集为x>3,则a的取值范畴是.三.解答题(8+8+12+12=40分)19.分析探究题:细心观看如图,认真分析各式,然后解答问题.OA22=()2+1=2 S1=;OA32=()2+1=3 S2=;OA42=()2+1=4 S3=…(1)请用含有n(n为正整数)的等式S n=;(2)推算出OA10=.(3)求出S12+S22+S32+…+S102的值.20.解不等式组,把它的解集在数轴上表示出来,并求该不等式组所有整数解的和..21.某企业新增了一个化工项目,为了节约资源,爱护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情形如下表:A型B型价格(万元/台)12 10月污水处理能力(吨/月)200 160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由.22.问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求那个三角形的面积小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.如此不需求△ABC的高,而借用网格就能运算出它的面积.(1)请你将△ABC的面积直截了当填写在横线上.(2)画△DEF,DE、EF、DF三边的长分别为、、①判定三角形的形状,说明理由.②求那个三角形的面积.山东省潍坊市寿光市世纪学校2020~2021学年度八年级下学期月考数学试卷(3月份)参考答案与试题解析一.选择题(3分&#215;12=36分)1.下列各数中,无理数的个数有()﹣0.101001,,,,,0,.A.1个B.2个C.3个D.4个【考点】无理数.【专题】应用题.【分析】依照有理数包括整数和分数,无理数包括无限不循环小数和开方开不尽的数,找出其中无理数即可解答.【解答】解:∵﹣0.101001是有理数,是无理数,是有理数,是无理数,是无理数,0是有理数,﹣=﹣4是有理数;∴无理数的个数为:3.故选C.【点评】本题要紧考查了无理数,把握无理数包括无限不循环小数和开方开不尽的数,能快速准确的找出无理数.2.下列说法正确的是()A.﹣4是﹣16的平方根B.4是(﹣4)2的平方根C.(﹣6)2的平方根是﹣6 D.的平方根是±4【考点】平方根.【专题】存在型.【分析】依照平方根的定义进行解答即可.【解答】解:A、因为﹣16<0,因此﹣16没有平方根,故A选项错误;B、因为(﹣4)2,=16,42,=16,因此4是(﹣4)2的平方根,故B选项正确;C、因为(﹣6)2=36,因此(﹣6)2的平方根是±6,故C选项错误;D、因为=4,因此的平方根是±2,故D选项错误.故选:B.【点评】本题考查的是平方根的定义,即假如一个数的平方等于a,那个数就叫做a的平方根,也叫做a的二次方根.一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.3.设的小数部分为b,那么(4+b)b的值是()A.1 B.是一个有理数 C.3 D.无法确定【考点】估算无理数的大小.【分析】第一确定的整数部分,然后即可确定小数部分b,由题意可知b=﹣2,把它代入所求式子运算即可.【解答】解:∵的小数部分为b,∴b=﹣2,把b=﹣2代入式子(4+b)b中,原式=(4+b)b=(4+﹣2)×(﹣2)=3.故选C.【点评】本题既考查了代数式求值的方法,也考查了无理数的估算,同时还隐含了整体的数学思想和正确运算的能力.4.下列各式表示正确的是()A.B.C.D.【考点】平方根.【专题】运算题.【分析】利用平方根的定义化简各项,即可做出判定.【解答】解:A、=5,本选项错误;B、±=±5,本选项错误;C、±=±5,本选项正确;D、±=±5,本选项错误.故选C.【点评】此题考查了平方根,熟练把握平方根的定义是解本题的关键.5.已知x、y为正数,且|x2﹣4|+(y2﹣3)2=0,假如以x、y的长为直角边作一个直角三角形,那么以那个直角三角形的斜边为边长的正方形的面积为()A.5 B.25 C.7 D.15【考点】勾股定理;非负数的性质:绝对值;非负数的性质:偶次方.【分析】本题可依照“两个非负数相加和为0,则这两个非负数的值均为0”解出x、y的值,然后运用勾股定理求出斜边的长.斜边长的平方即为正方形的面积.【解答】解:依题意得:x2﹣4=0,y2﹣3=0,∴x=2,y=,斜边长==,因此正方形的面积=()2=7.故选C.【点评】本题综合考查了勾股定理与非负数,解这类题的关键是利用直角三角形,用勾股定理来寻求未知系数的等量关系.6.若m>n,则下列不等式中成立的是()A.m+a<n+b B.ma<nb C.ma2>na2D.a﹣m<a﹣n【考点】不等式的性质.【分析】看各不等式是加(减)什么数,或乘(除以)哪个数得到的,用不用变号.【解答】解:A、不等式两边加的数不同,错误;B、不等式两边乘的数不同,错误;C、当a=0时,错误;D、不等式两边都乘﹣1,不等号的方向改变,都加a,不等号的方向不变,正确;故选D.【点评】不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.7.不等式组的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】解不等式组,求出不等式组的解集,即可解答.【解答】解:不等式组的解集为:﹣3<x≤1,故选:A.【点评】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,假如数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段确实是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.假如不等式组无解,那么m的取值范畴是()A.m>8 B.m≥8 C.m<8 D.m≤8【考点】解一元一次不等式组.【专题】运算题.【分析】依照不等式取解集的方法,大大小小无解,可知m和8之间的大小关系,求出m的范畴即可.【解答】解:因为不等式组无解,即x<8与x>m无公共解集,利用数轴可知m≥8.故选:B.【点评】本题考查不等式解集的表示方法,依照大大小小无解,也确实是没有中间来确定m的范畴.做题时注意m=8时也满足不等式无解的情形.9.如图,数轴上表示1、的对应点分别为点A、点B.若点A是BC的中点,则点C所表示的数为()A.B.C.D.【考点】实数与数轴.【分析】设点C表示的数是x,再依照中点坐标公式即可得出x的值.【解答】解:设点C表示的数是x,∵数轴上表示1、的对应点分别为点A、点B,点A是BC的中点,∴=1,解得x=2﹣.故选D.【点评】本题考查的是实数与数轴,熟知数轴上的点与实数是一一对应关系是解答此题的关键.10.有一个数值转换器,原理如下:当输入的x为64时,输出的y是()A.8 B.C.D.【考点】算术平方根.【专题】图表型.【分析】把64按给出的程序逐步运算即可.【解答】解:由题中所给的程序可知:把64取算术平方根,结果为8,因为8是有理数,因此再取算术平方根,结果为为无理数,故y=.故选B.【点评】此类题目比较简单,解答此类题目的关键是弄清题目中所给的运算程序.11.如图所示为一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②,…,依此类推,若正方形①的面积为64,则正方形⑤的面积为()A.2 B.4 C.8 D.16【考点】勾股定理.【专题】规律型.【分析】依照题意可知第一个正方形的面积是64,则第二个正方形的面积是32,…,进而可找出规律得出第n个正方形的面积,即可得出结果.【解答】解:第一个正方形的面积是64;第二个正方形的面积是32;第三个正方形的面积是16;…第n个正方形的面积是,∴正方形⑤的面积是4.故选:B.【点评】本题考查了正方形的性质、等腰直角三角形的性质、勾股定理.解题的关键是找出第n个正方形的面积.12.如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C.则矩形的一边AB的长度为()A.1 B.C.D.2【考点】勾股定理;线段垂直平分线的性质;矩形的性质.【分析】本题要依靠辅助线的关心,连接CE,第一利用线段垂直平分线的性质证明BC=EC.求出EC后依照勾股定理即可求解.【解答】解:如图,连接EC.∵FC垂直平分BE,∴BC=EC(线段垂直平分线的性质)又∵点E是AD的中点,AE=1,AD=BC,故EC=2,利用勾股定理可得AB=CD==.故选:C.【点评】本题考查的是勾股定理、线段垂直平分线的性质以及矩形的性质,本题的关键是要画出辅助线,证明BC=EC后易求解.本题难度中等.二.填空题(4分&#215;6=24分)13.﹣27的立方根与的平方根的和是0或﹣6.【考点】立方根;平方根.【分析】分别利用平方根、立方根的定义求解即可.解题注意=9,因此求的算术平方根确实是求9的平方根.【解答】解:∵﹣27的立方根是﹣3,的平方根是±3,因此它们的和为0或﹣6.故答案:0或﹣6.【点评】此题要紧考查了立方根、算术平方根的定义,其中求一个数的立方根,应先找出所要求的那个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求那个数的立方根.注意一个数的立方根与原数的性质符号相同,一个正数的平方根有两个且互为相反数.14.某商品进价200元,标价300元,商场规定能够打折销售,但其利润不能低于5%,该商品最多能够7折.【考点】一元一次不等式的应用.【分析】利润率不能低于5%,意思是利润率大于或等于5%,相应的关系式为:(利润﹣进价)÷进价≥5%,把相关数值代入即可求解.【解答】解:售价为300×0.1x,那么利润为300×0.1x﹣200,因此相应的关系式为300×0.1x﹣200≥200×5%,解得:x≥7.答:该商品最多能够7折.故答案为:7.【点评】此题要紧考查了一元一次不等式的应用,解决本题的关键是得到利润率的相关关系式,注意“不能低于”用数学符号表示为“≥”;利润率是利润与进价的比值.15.已知a>5,不等式(5﹣a)x>a﹣5解集为x<﹣1.【考点】不等式的性质.【分析】先由a>5,得出5﹣a<0,由不等式的差不多性质得出答案.【解答】解:∵a>5,∴5﹣a<0,∴解不等式(5﹣a)x>a﹣5,得x<﹣1.故答案为:x<﹣1.【点评】本题要紧考查了不等式的性质,解题的关键是注意不等号的方向是否改变.16.如图所示,折叠长方形的一边AD,使点D落在边BC的点F处,已知AB=8cm,BC=10cm,则EC的长为3cm.【考点】勾股定理;翻折变换(折叠问题).【分析】能够依照轴对称的性质得到相关的线段之间的关系.再依照勾股定理进行运算.【解答】解:∵D,F关于AE对称,因此△AED和△AEF全等,∴AF=AD=BC=10,DE=EF,设EC=x,则DE=8﹣x.∴EF=8﹣x,在Rt△ABF中,BF==6,∴FC=BC﹣BF=4.在Rt△CEF中,由勾股定理得:CE2+FC2=EF2,即:x2+42=(8﹣x)2,解得x=3.∴EC的长为3cm.【点评】专门注意轴对称的性质以及熟练运用勾股定理.17.若关于x的不等式组有解,则实数a的取值范畴是a>﹣1.【考点】解一元一次不等式组;解一元一次不等式.【专题】运算题.【分析】求出不等式①的解集,依照题意得出a>﹣1,即得到答案.【解答】解:,解不等式①得:x>﹣1,∵不等式组有解,∴a>﹣1.故答案为:a>﹣1.【点评】本题要紧考查对解一元一次不等式(组)的明白得和把握,能依照题意和不等式的解集得出a>﹣1是解此题的关键.18.若不等式组的解集为x>3,则a的取值范畴是a≥3.【考点】不等式的解集.【分析】依照求不等式组的解集的方法:同大取较大可知a≥3.【解答】解:不等式组的解集为x>3,则a≥3.故答案为:a≥3.【点评】解答此题要依照不等式组解集的求法解答.求不等式组的解集,应注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.三.解答题(8+8+12+12=40分)19.分析探究题:细心观看如图,认真分析各式,然后解答问题.OA22=()2+1=2 S1=;OA32=()2+1=3 S2=;OA42=()2+1=4 S3=…(1)请用含有n(n为正整数)的等式S n=;(2)推算出OA10=.(3)求出S12+S22+S32+…+S102的值.【考点】勾股定理;算术平方根.【专题】规律型.【分析】(1)此题要利用直角三角形的面积公式,观看上述结论,会发觉,第n个图形的一直角边确实是,然后利用面积公式可得.(2)由同述OA2=,0A3=…可知OA10=.(3)S12+S22+S32+…+S102的值确实是把面积的平方相加就可.【解答】解:(1)+1=n+1Sn=(n是正整数);故答案是:;(2)∵OA12=1,OA22=()2+1=2,OA32=()2+1=3,OA42=()2+1=4,∴OA12=,OA2=,OA3=,…∴OA 10=;故答案是:;(3)S12+S22+S32+…+S102=()2+()2+()2+…+()2=(1+2+3+ (10)=.即:S12+S22+S32+…+S102=.【点评】此题考查了勾股定理、算术平方根.解题的关键是观看,观看题中给出的结论,由此结论找出规律进行运算.千万不可盲目运算.20.解不等式组,把它的解集在数轴上表示出来,并求该不等式组所有整数解的和..【考点】解一元一次不等式组;不等式的性质;在数轴上表示不等式的解集;解一元一次不等式;一元一次不等式组的整数解.【专题】运算题.【分析】求出每个不等式的解集,依照找不等式组解集的规律找出不等式组的解集,找出不等式组的整数解,相加即可.【解答】解:,∵解不等式①得:x≥﹣1,解不等式②得:x<2,∴不等式组的解集为:﹣1≤x<2,在数轴上表示不等式组的解集为:,∵不等式组的整数解为﹣1,0,1,∴不等式组所有整数解的和是:﹣1+0+1=0.【点评】本题考查了不等式的性质,解一元一次不等式(组),在数轴上表示不等式组的解集,不等式组的整数解等知识点的应用,关键是求出不等式组的解集,题目具有一定的代表性,是一道比较好的题目.21.某企业新增了一个化工项目,为了节约资源,爱护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情形如下表:A型B型价格(万元/台)12 10月污水处理能力(吨/月)200 160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由.【考点】一元一次不等式组的应用.【专题】应用题.【分析】(1)设购买污水处理设备A型号x台,则购买B型号(8﹣x)台,依照企业最多支出89万元购买设备,要求月处理污水能力不低于1380吨,列出不等式组,然后找出最合适的方案即可.(2)运算出每一方案的花费,通过比较即可得到答案.【解答】解:设购买污水处理设备A型号x台,则购买B型号(8﹣x)台,依照题意,得,解那个不等式组,得:2.5≤x≤4.5.∵x是整数,∴x=3或x=4.当x=3时,8﹣x=5;当x=4时,8﹣x=4.答:有2种购买方案:第一种是购买3台A型污水处理设备,5台B型污水处理设备;第二种是购买4台A型污水处理设备,4台B型污水处理设备;(2)当x=3时,购买资金为12×3+10×5=86(万元),当x=4时,购买资金为12×4+10×4=88(万元).因为88>86,因此为了节约资金,应购污水处理设备A型号3台,B型号5台.答:购买3台A型污水处理设备,5台B型污水处理设备更省钱.【点评】本题考查了一元一次不等式组的应用,本题是“方案设计”问题,一样可把它转化为求不等式组的整数解问题,通过表格猎取相关信息,在实际问题中抽象出不等式组是解决这类问题的关键.22.问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求那个三角形的面积小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.如此不需求△ABC的高,而借用网格就能运算出它的面积.(1)请你将△ABC的面积直截了当填写在横线上. 3.5(2)画△DEF,DE、EF、DF三边的长分别为、、①判定三角形的形状,说明理由.②求那个三角形的面积.【考点】勾股定理;三角形的面积.【专题】运算题;作图题.【分析】(1)利用恰好能覆盖△ABC的边长为3的小正方形的面积减去三个小直角三角形的面积即可解答;(2)①利用勾股定理的逆定理进行解答,②利用(1)方法解答就能够解决问题.【解答】解:(1)如图,S△ABC=3×3﹣×3×1﹣×2×1﹣×3×2=3.5;(2)①△DEF为直角三角形;因为+=,因此△DEF为直角三角形;②S△DEF=3×2﹣×3×1﹣×2×2﹣×1×1=2;答:△DEF的面积为2.【点评】此题考查勾股定理,勾股定理的逆定理以及三角形面积的运算.。

精品解析:重庆南开中学2020-2021学年下学期3月月考八年级数学试题(解析版)

精品解析:重庆南开中学2020-2021学年下学期3月月考八年级数学试题(解析版)

重庆南开中学2020-2021学年度下学期3月月考数学试题一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A ,B ,C ,D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1. 下列各式是分式的是( ) A. 2a b+ B. 219a bc C. xπ D. 22y x 【答案】D【解析】【分析】根据分式的定义对各选项分别进行判断,即可得出结论.【详解】解:A 、2a b+是整式,故此选项不符合题意;B 、219a bc 是整式,故此选项不符合题意;C 、xπ是整式,故此选项不符合题意;D 、22y x 是分式,故此选项符合题意.故选:D .【点睛】此题考查了分式的判断,熟练掌握分式的定义是解题的关键.2. 若分式211a -有意义,则a 的取值范围是( )A. 1a =且1a =-B. 1a ≠且1a ≠-C. 1a ≠D. 1a ≥【答案】B【解析】【分析】令分母不为0,得到关于a 的不等式,解不等式即可. 【详解】解:因为分式211a -有意义,所以210a -≠,所以21a ≠,则1a ≠且1a ≠-,故选B .【点睛】本题考查了分式有意义的条件,解题关键是令分母不为0,考查了学生对概念的理解与应用. 3. 下列各式从左到右的变形中,属于分解因式的是( )A. 22=(2)mn mn mn n ++B. 22(+)()x y x y x y -=-C. 2245=(2)1x x x ++++D. 3231(1)a a a a+=+ 【答案】A【解析】【分析】根据因式分解的概念分别进行判断,即可得出结论.【详解】解:A 、22=(2)mn mn mn n ++,是因式分解,故此选项符合题意; B 、22(+)()x y x y x y -=-,是整式乘法,故此选不项符合题意;C 、2245=(2)1x x x ++++,不是因式分解,故此选项不符合题意;D 、3231(1)a a a a+=+,不是因式分解,故此选项不符合题意. 故选:A .【点睛】此题考查了因式分解的判断,掌握因式分解的概念是解题的关键.4. 下列说法中不正确的是( )A. 平行四边形的对角相等B. 菱形的邻边相等C. 平行四边形的对角线互相平分D. 菱形的对角线互相垂直且相等 【答案】D【解析】【分析】根据平行四边形与菱形的性质分别进行判断,即可得出结论.【详解】解:A 、平行四边形的对角相等,此说法正确,故此选项不符合题意;B 、菱形的四条边都相等,故此选项说法正确,不符合题意;C 、平行四边形的对角线互相平分,此说法正确,故此选项不符合题意;D 、菱形的对角线互相垂直平分,故此选项说法错误,符合题意.故选:D .【点睛】此题考查了平行四边形与菱形的性质,熟练掌握平行四边形与菱形的性质是解题的关键.5. 多项式322+6+9x x y xy 与339x y xy -的公因式是( )A. 2(3)x x y +B. (3)x x y +C. (3)xy x y +D. (3)x x y -【答案】B【解析】 【分析】先把两个多项式进行因式分解,再根据公因式的概念进行判断,即可得出结论.【详解】解:∵322+6+9x x y xy ()2269x x xy y =++()23x x y =+,339x y xy - ()229xy x y =-()()33xy x y x y =+-,∴多项式322+6+9x x y xy 与339x y xy -的公因式是(3)x x y +. 故选:B .【点睛】本题主要考查了公因式的判断,掌握因式分解的方法及公因式的概念是解题的关键. 6. 若24(2)25xk x --+是一个完全平方式,则k 的值为( ) A. 18B. 8C. 18-或22D. 8-或12 【答案】C【解析】【分析】利用完全平方公式的结构特征判断即可求出k 的值.【详解】解:∵24(2)25xk x --+是一个完全平方式,∴k -2=±20, 解得:k =-18或k =22,故选:C .【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.7. 在3257x x x k +++中,若有一个因式为(2)x +,则k 的值为( )A. 2B. 2-C. 6D. 6- 【答案】A【解析】【分析】根据因式分解的意义可设()()322572x x x k x x mx n +++=+++,再利用整式乘法计算()()22x x mx n +++后得()()32222x m x n m x n +++++,即可根据因式分解与整式乘法的关系求解.【详解】解:设()()322572x x x k x x mx n +++=+++, ∵()()22x x mx n +++ 322222x mx nx x mx n =+++++()()32222x m x n m x n =+++++3257x x x k =+++,∴25m ,27n m +=, 2k n =,解得3m =,1n =,2k =.故选:A .【点睛】本题考查了因式分解的意义,掌握因式分解与整式乘法的关系是解题的关键.8. 如图,菱形ABCD 的对角线AC ,BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连接EF .若=23EF ,8BD =,则菱形ABCD 的周长为( )A. 27B. 16C. 7D. 32【答案】C【解析】 【分析】首先利用三角形的中位线定理得出AC ,再利用菱形的性质和勾股定理求出菱形的边长,即可计算出菱形ABCD 的周长.【详解】解:∵E ,F 分别是AB ,BC 边上的中点,EF =23, ∴AC =2EF =43,∵四边形ABCD 是菱形,8BD =,∴AC ⊥BD ,OA =12AC =23,OB =12BD =4, ∴AB =22OA OB +=27,∴菱形ABCD 的周长为:274⨯=87.故选:C .【点睛】此题考查了菱形的性质,三角形的中位线定理及勾股定理等知识,熟练掌握菱形的性质是解题的关键.9. 如图,菱形ABCD 的边长为9,面积为183,P 、E 分别为线段BD 、BC 上的动点,则PE PC +的最小值为( )3 B. 23 C. 33 D. 9【答案】B【解析】 【分析】过A 作AE BC ⊥于,E 交BD 于,P 由菱形在轴对称性质可得:,PC PA = 可得,PC PE PA PE AE +=+= 此时PE PC +最短,再利用菱形的面积公式可得答案.【详解】解:过A 作AE BC ⊥于,E 交BD 于,P由菱形在轴对称性质可得:,PC PA =,PC PE PA PE AE ∴+=+=∴ 此时PE PC +最短,菱形ABCD 的边长为9,面积为183,183,BC AE ∴=9183,AE ∴=23,AE ∴=所以PE PC +的最小值是2 3.故选:.B【点睛】本题考查的是勾股定理的应用,菱形的性质,利用轴对称求解线段和的最小值,掌握以上知识是解题的关键.10. 将若干个小菱形按如图的规律排列:第(1)个图形有1个小菱形,第(2)个图形有3个小菱形,第(3)个图形有6个小菱形,…,则第(20)个图形有( )个小菱形,A. 190B. 200C. 210D. 220【答案】C【解析】【分析】仔细观察图形知:第(1)个图形有1个小菱形,第(2)个图形有3=1+2个,第(3)个图形有6=1+2+3个,…由此得到规律求得第(20)个图形中小菱形的个数即可.【详解】解:第(1)个图形有1(个)菱形,第(2)个图形有3=1+2(个),第(3)个图形有6=1+2+3(个),第(4)个图形有10=1+2+3+4(个),…第n 个图形有1+2+3+4+…+n =(1)2n n + (个)小菱形, ∴第(20)个图形有20212102⨯=(个)小菱形. 故选:C .【点睛】本题考查了规律型问题,解题的关键是仔细观察图形并找到有关图形个数的规律.11. 甲、乙两车从A 地出发匀速驶向B 地.甲先出发1小时后,乙再沿相同路线出发.在整个行驶过程中,甲、乙两车之间的距离s (km )与甲车行驶的时间t (h )的函数关系如图所示,给出下列说法:①甲的速度为80km /h ;②乙的速度为100km /h ;③甲车从A 地到B 地,共用时14h ;④AB 两地相距1200km ;⑤当甲车出发经过10h 与3134h ,甲乙两车相距100km .其中说法正确的个数为( )A. 2个B. 3个C. 4个D. 5个【答案】C【解析】 【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【详解】解:①根据乙出发前两人相距80km 可得甲的速度为:80801=(km/h ),故①正确; ②∵()(51)80v v -⨯-=乙甲(km )∴(80)(51)80v -⨯-=乙(km )∴=100v 乙(km/h ),故②正确;③ 乙车到达B 地行驶的时间为:160(51)(10080)+-=-12小时, ∴A 、B 两地的距离为:S=12=1200v ⨯乙(km) ∴1200===1580S t v 甲甲(h),故③错误; ④由③知,AB 两地相距1200km ,故④正确;⑤甲车出发经过10h 时,甲乙两车相距:()(105)(10080)5100v v -⨯-=-⨯=乙甲(km ); 甲车出发经过3134h 时,甲乙两车相距:316080[13(58)]1004-⨯-+=(km ),故⑤正确, 所以,正确的说法有:①②④⑤共4个,故选:C【点睛】本题考查一次函数的应用,主要是以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.12. 已知关于x 的不等式组251333x x x a +⎧>+⎪⎨⎪≥-⎩有解,且关于y 的分式方程9433y a a y y +-=---有正整数解,则所有满足条件的整数a 的值的个数为( )A. 2B. 3C. 4D. 5 【答案】A【解析】【分析】根据分式方程的解为正整数即可得出a >32-,且a ≠3,根据不等式组有解,即可得a <9,找出所有符合条件的正整数,a 的个数为2. 【详解】解:解方程9433y a a y y +-=---得:233a y +=, ∵分式方程的解为正整数,∴2a +3>0,即a >-32, 又y ≠3, ∴233a +≠3,即a ≠3, 则a >32-,且a ≠3,251333x x x a +⎧>+⎪⎨⎪≥-⎩①②, 解不等式①,得x <2,解不等式②,得x ≥33a -, ∵此不等式组有解, ∴33a -<2, 解得a <9,综上,a 的取值范围是32-<a <9,且a ≠3, 则符合题意的整数a 的值有0,6共2个,故选:A .【点睛】本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为正整数结合不等式组有解,找出32-<a <9,且a ≠3是解题的关键. 二、填空题:(本大题共6个小题,每小题3分,共18分)请将每小题的答案直接填在答题卡中对应的横线上.13. 当x =___________时,分式211x x -+的值为0 【答案】12. 【解析】【分析】根据分式的值为0的条件求解即可. 【详解】解:∵分式211x x -+的值为0 ∴21010x x -=⎧⎨+≠⎩ 解得,12x =, ∴当12x =时,分式211x x -+的值为0 故答案为:12. 【点睛】此题主要考查了分式值为0的条件,正确把握相关性质是解答此题的关键.14. 若关于x 的分式方程2111a x x =+--有增根,则a =__________. 【答案】2【解析】 【分析】先将分式方程去分母转化为整式方程,根据分式方程有增根求出x 的值,代入整式方程计算即可求出a 的值. 【详解】解:2111a x x =+--, 去分母,得 a =2+x −1,∵分式方程有增根,∴x −1=0,解得x =1,将x =1代入整式方程,得a =2,故答案为:2.【点睛】此题考查了分式方程无解问题,解答此类问题可按如下步骤进行:①化分式方程为整式方程;②确定增根;③把增根代入整式方程,计算后即可求得相关字母的值.15. 多项式2222627a ab b b -+-+的最小值为________.【答案】18.【解析】【分析】利用公式法进行因式分解,根据非负性确定最小值.【详解】解:2222627a ab b b -+-+,=222)((269)18a ab b b b -+-+++,=22()(3)18a b b -+-+,∵22()(3)00a b b --≥≥,, ∴22()(3)18a b b -+-+的最小值为18;故答案为:18.【点睛】本题考查了因式分解和非负数的性质,解题关键是熟练运用乘法公式进行因式分解,根据非负数的性质确定最值.16. 2021年重庆“体考”预计在四月份进行,某班为了解同学们每周参加体育锻炼的时间,随机调查了10名同学,得到如下数据:锻炼时间(小时) 4 5 6 7人数 1 4 3 2则这10名同学每周参加体育锻炼时间的平均数是________小时.【答案】5.6【解析】【分析】根据平均数的计算方法列式计算,即可得出结果.【详解】解:这10名同学每周参加体育锻炼时间的平均数415463725.610x⨯+⨯+⨯+⨯==(小时),故答案为:5.6.【点睛】本题考查了平均数,掌握平均数的定义及计算方法是解题的关键.17. 如图,在平面直角坐标系中,四边形OABC为矩形,B点坐标为(10,4),将矩形沿直线EF翻折,使得点A正好与BC边上的点D(2,4)重合,则点B的对应点G的纵坐标为_______.【答案】6.4【解析】【分析】根据折叠得到的相等的线段及勾股定理可得OE,GE的长,进而做GM⊥OC于点M,可得GM的长,及OM的长,根据点G所在象限可得相应坐标.【详解】解:∵四边形OABC为矩形,B点坐标为(10,4),∴OC=AB=4,OA=BC=10,∠B=90°,∵D点坐标为(2,4),∴CD=2,∴DB=8由折叠可得GD=BA=4,BE=GE,∠DGE=∠B=90°,设DE为x,则GE=8-x,在Rt△GDE中,∵DE2=GD2+GE2,∴x2=(8-x)2+42,∴x =5,∴DE =5,GE =3,过G 点作GM ⊥DE 于M , ∵1122⨯=⨯GM DE DG EG ∴1154322⨯=⨯⨯GM ∴ 2.4=GM∴点B 的对应点G 的纵坐标为:4+2.4=6.4.故答案为:6.4.【点睛】本题考查了折叠问题的相关知识以及矩形的性质,根据折叠前后的对应线段相等及勾股定理得到GM 的值是解决本题的突破点.18. 为保障某贫困山区小学的学生有充足的学习文具,某小区向住户募集了2330支钢笔,1060本笔记本和若干套尺规套装,小区工作人员将这些物资分成了甲、乙丙三类包裹进行发放,一个甲类包裹里有25支钢笔,10本笔记本和4套尺规套装,一个乙类包裹里有16支钢笔,8本笔记本和7套尺规套装,一个丙类包裹里有20支钢笔,6本笔记本和3套尺规套装.已知甲、乙、丙三类包裹的数量都为正整数,并且甲类的个数低于28个,乙类个数低于106个,那么所有包裹里尺规套装的总套数为_________套.【答案】835【解析】【分析】设甲类包裹有x 个,乙类包裹有y 个,丙类包裹有z 个,根据题意列出x 、y 、z 的三元一次方程组,用z 表示x 、y ,进而由x 、y 的取值范围列出z 的不等式组求得z 的取值范围,再根据x 、y 与z 的关系式和x 、y 为整数求得z 的整数值,从而求出x 、y 的值,再进行计算即可.【详解】解:设甲类包裹有x 个,乙类包裹有y 个,丙类包裹有z 个,根据题意,得251620233010861060x y z x y z ++=⎧⎨++=⎩①② , ①-②×2,得5+8=210x z ,解得8=425z x -. 将8=425z x -代入②,得()21082861060y z z ++=-, 解得5=80+4z y . ∴8=4255=80+4z x z y ⎧-⎪⎪⎨⎪⎪⎩. ∵x <28,y <106, ∴842285580+1064z z ⎧-<⎪⎪⎨⎪<⎪⎩, 解得:708<z <1045. ∵z 为整数,∴z 的取值范围为:9≤z ≤20的整数.又∵x 、y 均为整数,∴8z 与5z 既为5的倍数,又为4的倍数,∴z =20.当z =20时,8=42105z x -=,5=80+1054z y =, ∴所有包裹里尺规套装的总套数为: 4107105320835⨯+⨯+⨯=(套).故答案:835.【点睛】本题主要考查了三元一次方程组及一元一次不等式组的应用,关键是正确列出方程组与不等式组,正确求不定方程的特殊解.三、计算题,(本大题共2个小题,19题12分,20题10分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19. 因式分解:(1)224m m -(2)2()9()a x y y x -+-(3)4268x x -+(4)22()(8)16x x x x ++-+【答案】(1)2(2)m m -;(2)()(3)(3)x y a a --+;(3)2(2)(2)(2)x x x --+; (4) 22(4)x x +-.【解析】【分析】(1)用提公因式法分解因式.(2)先提取公因式,然后用平方差公式分解因式.(3)先用十字相乘法,然后用平方差公式分解因式.(4)用换元法,把2x x +看做t ,原式写成2816t t -+的形式,用完全平方法分解因式,再把t 换成2x x +即可.【详解】(1)224m m -2(2)m m =-.(2)2()9()a x y y x -+-2()9()a x y x y =---2()(9)x y a =--()(3)(3)x y a a =--+.(3)4268x x -+22(2)(4)x x =--2(2)(2)(2)x x x =--+.(4)22()(8)16x x x x ++-+222()8()16x x x x =+-++22(4)x x =+-.【点睛】本题考查了提公因式法分解因式,综合提公因式和公式法分解因式,十字相乘法分解因式,换元法分解因式,运用适当的方法进行因式分解是解题关键.20. 解方程:(1)651(1)x x x x +=++(2)242211x x x x +=-+ 【答案】(1)1x =;(2)该方程无解.【解析】【分析】(1)先将方程两边同时乘以最简公分母,得到整式方程,解整式方程后检验即可;(2)先去分母,两边同时乘以()21x-,得到整式方程,解整式方程后检验,发现原分式方程的分母为0,因此得出该分式方程无解. 【详解】解:(1)()6511x x x x +=++ 方程两边同时乘以()1x x +,得:65x x =+移项得:65x x -=合并同类项得:55x =系数化为1得:1x =检验:当1x =时,()10x x +≠,所以 1x =是该方程的解.(2)242211x x x x +=-+ 方程两边同时乘以()21x -,得:()()242121x x x x +-=-去括号得:2242222x x x x +-=-移项,合并同类项得:22x =-解得1x =-检验:当1x =-时,210x -=,所以 1x =-不是该方程得解,所以该方程无解.【点睛】本题考查了分式方程的解法,解分式方程的第一步是将它化为整式方程,因此要先确定最简公分母,化为整式方程后再按照去括号、移项、合并同类项、系数化为1的步骤解整式方程,最后不要忘记检验,因此解题关键是将方程两边同时乘以最简公分母,化为整式方程求解,考查了学生对解分式方程步骤的掌握与应用.四、解答题:(本大题共5个小题,21题8分,21-24题每小题10分,25-26题每小题12分,共62分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21. 如图,在平行四边形ABCD 中,AD AB >.(1)用尺规作图的方法,作出AB 边的中垂线,交AB 边于点E 、BC 边于点F (要求:保留作图痕迹,不写作法,要下结论);(2)连接AF ,若140BAD ∠=︒,求DAF ∠的度数.【答案】(1)画图见解析,(2)100︒;【解析】【分析】(1)按照垂直平分线的作法作图即可;(2)根据平行四边形性质可求∠B ,根据垂直平分线性质可求∠F AB ,进而可求DAF ∠.【详解】解:(1)如图所示,直线EF 即所求.(2) ∵AD ∥BC ,∴∠B +BAD ∠=180°,∵140BAD ∠=︒,∴∠B =40°,∵EF 垂直平分AB ,∴BF=AF ,∴∠BAF =∠B =40°,14040100DAF ∠=︒-︒=︒;【点睛】本题考查了垂直平分线的作法和性质,平行四边形的性质,解题关键是准确画图,熟练运用它们的性质进行推理计算.22. 小融同学根据学习函数的经验,对函数|1|y m x x n =-++的图象与性质进行了探究.下表是小融探究过程中的部分信息: x … 3-2- 1- 0 1 2 3 … y … 2 1 0 1- 2- a 4 …请按要求完成下列各小题:(1)该函数的解析式为 ,a 的值为 ;(2)在如图所示的平面直角坐标系中,描全上表中以各对对应值为坐标的点,并画出该函数的图象; (3)结合函数的图象,解决下列问题:①写出该函数的一条性质: ;②如图,在同一坐标系中是一次函数1y x =-的图象,根据图象回答,当|1|1m x x n x -++<-时,自变量x 的取值范围为 .【答案】(1)213y x x =-+-,1a =(2)详见解析;(3)①当x >1时,y 随x 的增大而增大(答案不唯一);②x 的取值范围:0<x <2.【解析】【分析】(1)将x=-3,y=2,x=-2,y=1代入函数|1|y m x x n =-++求出m 、n 的值即可求得函数的解析式,将x=2代入所求函数解析式即可求得a ;(2)先描出各点,再顺次连接各点即可;(3)①根据图象即可求解(答案不唯一);②根据图象可知|1|1m x x n x -++<-时即为函数213y x x =-+-的图象在函数y=x -1图象下方部分x 的取值范围.【详解】(1)将x=-3,y=2,x=-2,y=1代入函数|1|y m x x n =-++可得:2=3131212m n m n ⎧---+⎪⎨=---+⎪⎩,整理得:5=433m n m n +⎧⎨=+⎩, 解得:=23m n ⎧⎨=-⎩ ∴函数的解析式为:213y x x =-+-将x=2代入213y x x =-+-可得:221231y =⨯-+-=,即1a =; (2)该函数的图象如图所示:(3)①由函数图象可知:当x >1时,y 随x 的增大而增大,故答案为:当x >1时,y 随x 的增大而增大(答案不唯一)②由(2可知:|1|1m x x n x -++<-时,即为函数213y x x =-+-的图象在函数y=x -1图象下方部分 ∴自变量x 的取值范围为:0<x <2.【点睛】本题考查一次函数图象图象及其性质,一次函数图象上点的坐标特征,利用数形结合的思想,正确画出函数图象是解题的关键.23. 若一个正整数a 可以表示为(1)(2)a b b =+-,其中b 为大于2的正整数,则称a 为“十字数”,b 为a 的“十字点”.例如28(61)(62)74=+⨯-=⨯.(1)“十字点”为7的“十字数”为 ;130的“十字点”为 ;(2)若b 是a 的“十字点”,且a 能被(1)b -整除,其中b 为大于2的正整数,求a 的值;(3)m 的“十字点”为p ,n 的“十字点”为q ,当18m n -=时,求p q +的值.【答案】(1)40,12;(2)4;(3)10【解析】【分析】(1)根据十字点的定义(1)(2)a b b =+-计算即可;(2)先根据(1)(2)a b b =+-得出()()2(12)(11)=b 1+b 12=-+-----a b b ,再根据a 能被(1)b -整除,得出b 的值,即可求出a 的值;(3)根据已知得出m (p 1)(p 2)=+-(p >2且为正整数),n (q 1)(q 2)=+-(q >2且为正整数),再根据18m n -=得出()()p q-1p q =18+-,从而得出163p q p q +-=⎧⎨-=⎩ 或192p q p q +-=⎧⎨-=⎩,解之即可得出a 、b ,继而得出答案.【详解】解:(1)“十字点”为7的“十字数”(71)(72)=85=40=+-⨯a ,∵130(121)(122)=1310=+-⨯,∴130的“十字点”为12;(2)∵b 是a 的“十字点”,∴(1)(2)a b b =+-(b >2且为正整数),∴()()2(12)(11)=b 1+b 12=-+-----a b b ,∵a 能被(1)b -整除,∴(1)b -能整除2,∴b -1=1或b -1=2,∵b >2,∴b =3,∴(31)(32)=4=+-a ;(3)∵m 的“十字点”为p ,∴m (p 1)(p 2)=+-(p >2且为正整数),∵n 的“十字点”为q ,∴n (q 1)(q 2)=+-(q >2且为正整数),∵18m n -=,∴(p 1)(p 2)(q 1)(q 2)=18+--+-,∴22p -p-2-q +q+2=18,∴(p q)(p q)(p-q)=18+--,∴()()p q-1p q =18+-,∵180>-=m n ,p >2,q >2且p 、q 为正整数;∴p >q ,p+q >4;∴p+q -1>3;∵18=3×6=2×9,∴163p q p q +-=⎧⎨-=⎩ 或192p q p q +-=⎧⎨-=⎩; 解得:52p q =⎧⎨=⎩(不合题意舍去),64p q =⎧⎨=⎩; ∴=10+p q【点睛】本题考查因式分解的应用;能够理解题意,根据题中所给条件将数进行正确的拆解是解题的关键. 24. 开学初,南开中学在某旗舰店购进一定数量的连通管与机械天平,购买连通管花费了1200元,购买机械天平花费了900元,且购买连通管数量是购买机械天平数量的2倍,已知购买一个机械天平比购买一个连通管多花10元.(1)求购买一个连通管、一个机械天平各需多少元?(请列分式方程作答)(2)学期末,为了补充实验器材的损耗,学校决定再次购进连通管与机械天平共50个,恰逢原旗舰店对两种商品的售价进行调整,其中连通管售价比第一次购买时提高了10%,机械天平按第一次购买时售价的9折出售,若此次购买连通管与机械天平的总费用不超过1262元,则此次最多可购买多少个机械天平?【答案】(1)购买连通管需20元,一个机械天平需30元;(2)南开中学此次最多可以购买32个机械天平.【解析】【分析】(1)设购买连通管需x 元,一个机械天平需(x +10)元,根据“购买连通管数量是购买机械天平数量的2倍”列出分式方程即可求出结论;(2)设南开中学此次最多购买a 个机械天平,则购买(50-a )个连通管,根据“连通管售价比第一次购买时提高了10%,机械天平按第一次购买时售价的9折出售,若此次购买连通管与机械天平的总费用不超过1262元”列出一元一次不等式即可求出结论.详解】解:(1)设购买连通管需x 元,一个机械天平需(x +10)元,根据题意得,1200900210x x =⨯+ 解得,x =20经检验,x =20是原方程的根,∴x +10=20+10=30答:购买连通管需20元,一个机械天平需30元;(2)设南开中学此次购买a 个机械天平,则购买(50-a )个连通管,根据题意得,20(1+10%)(50)+300.91262a a ⨯-⨯≤解得:2325a ≤ ∵a 是整数,∴a 的最大值为32,答:南开中学此次最多可以购买32个机械天平.【点睛】此题考查 的是分式方程的应用和一元一次不等式的应用,掌握实际问题中的等量关系和不等关系是解答此题的关键.25. 如图1,已知直线1:5l y x =-+与x 轴交于点A ,与y 轴交于点B ,直线l 2与y 轴交于点(0,1)C -,与直线l 1交于点D (2,t ).(1)求直线l 2的解析式;(2)如图2,若点P 在直线l 1上,过点P 作//PQ y 轴交l 2于点Q ,交x 轴于点G ,使2PCGQCG S S ∆∆=,求此时P 点的坐标;(3)将直线1:5l y x =-+向左平移10个单位得到直线l 3交x 轴于点E ,点F 是点C 关于原点的对称点,过点F 作直线4//l x 轴.在直线l 4上是否存在动点M ,使得MCE 为等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.【答案】(1)21y x =-,(2)(4,9)P -;(3)11(,1)5M -或M ,(M 或(0,1)M 【解析】【分析】(1)把点D 坐标代入直线1:5l y x =-+求出t 的值,运用待定系数法求出l 2即可;(2)根据三角形面积公式求解即可;(3)设(,1)M a 则MC ME CE ====分ME MC =,CE MC =,ME CE =三种情况列式求解即可.【详解】解:(1)∵D (2,t )在直线1:5l y x =-+∴:253t -+=,∴D (2,3)设直线2l 的解析式为y kx b =+,将点C ,D 代入得,123b k b =-⎧⎨+=⎩ 解得,21k b =⎧⎨=-⎩所以,线2l 的解析式为21y x =-(2)设(,5)P a a -∵PQ//x 轴,∴G(a,0),Q(a ,2a-1) ∵1||2PCG S PG a ∆=,1||2QCG S OQ a ∆=且2PCG QCG S S ∆∆= ∴2PG QG =∴5|21|a a -=-解得,4a =-,2a =(舍去)∴(4,9)P -(3)存在,理由如下:对于直线1:5l y x =-+当0x =时,5y =;当0y =时,5x =∴(5,0),(0,5)A B ,∴(5,0),(0,5)E N --如图,∵31//l l∴3:5l y x =--又∵(0,1)C -∴(0,1)F∴4l 的解析式为:1y =设(,1)M a 则222222222,(5)1,51MC MF FC a ME a CE =+=+=++=+当MCE ∆为等腰三角形,有:①ME MC =2222(5)12,a a ++=+ 解得,115a =-,即11(,1)5M - ②CE MC =2222251a ++解得:22a =或22a =-即(22,1)M ,(22,1)M -③ME CE =时,2222(5)151a ++=+解得,0a =或10a =-(舍去)即(0,1)M综上,点M 的坐标为:11(,1)5M -或(22,1)M ,(22,1)M -或(0,1)M . 【点睛】本题为一次函数综合运用题,解题的关键是熟练掌握待定系数法求函数解析式、等腰三角形的性质等知识,其中(3)要注意分类求解,避免遗漏.26. 在Rt △ABC 中,90ABC ∠=︒,以AB 为边作Rt ABD △,90ADB ∠=︒,30ABD ∠=︒,AC 与BD 于点E .(1)如图1,若30CAB ∠=︒,23AD =CE 的长度;(2)如图2,若45CAB ∠=︒,延长DA 至点F ,连接CF 交BD 于点H ,若点H 为CF 的中点,证明12DH AF =; (3)如图3,若60CAB ∠=︒,2AB =,将ADB △绕点A 逆时针旋转得到△AMN ,连接CN ,取CN 的中点G ,连接BG .在△AMN 旋转过程中,当12BG CN =最大时,直接写出△ANC 的面积. 【答案】(1)4;(2)见解析;(3)3【解析】【分析】(1)过点E 作EF ⊥AB ,垂足为F ,由∠EBA=∠EAB=30°,AD=3得EA=EB ,AF=FB ,AB=3设BC=x ,则AC=2x ,根据勾股定理,得2222(2)3AC BC x x x --=,解得x=4,证明△CBE 是等边三角形即可;(2)过点C 作CQ ∥FD ,交BD 于点Q ,证明△FDH ≌△CQH ,△BAD ≌△CBQ ,利用等式的性质证明即可; (3)当B 、A ,N 三点共线时,BG 是直角三角形斜边CN 上的中线,满足了12BG CN =,AN=AB=2,计算三角形的面积即可.【详解】(1)如图1,过点E 作EF ⊥AB ,垂足为F ,∵∠EBA=∠EAB=30°,AD=23,∴EA=EB ,AF=FB ,AB=43,设BC=x ,则AC=2x ,根据勾股定理,得AB=2222(2)3AC BC x x x -=-=,解得x=4即BC=4,∵∠EBA=∠EAB=30°,∴∠EBC=∠ECB=60°,∴△CBE 是等边三角形,∴EC=BC=4;(2)过点C 作CQ ∥FD ,交BD 于点Q ,∵BD ⊥AD ,∴CQ ⊥BD ,∴∠FDH=∠CQH ,∵∠FHD=∠CHQ ,CH=FH ,∴△FDH ≌△CQH ,∴DH=HQ ,FD=CQ ,∵∠ABD=30°,∴∠DAB=∠QBC=60°,∠QCB=30°,∴∠ABD=∠BCQ ,∵45CAB ∠=︒=∠BCA ,∴BA=CB ,∴△BAD≌△CBQ,∴AD=BQ,BD=CQ,∴BD=FD,∴BD-BQ=FD-AD,∴DQ=FA,∴DH+HQ=FA,∴2DH=FA,∴12DH AF=;(3)根据题意,得当B、A,N三点共线时,BG是直角三角形斜边CN上的中线,∴12BG CN=,∴AN=AB=2,∵∠BCA=30°,∴AC=4,根据勾股定理,得22224223AC BA-=-,∴△ANC 的面积为11222AN BC •=⨯⨯ 【点睛】本题考查了含有特殊角的直角三角形的性质,三角形的全等,勾股定理,平行线的性质,灵活构造平行线,运用三角形中点模型证明全等,是解题的关键点之一.。

八年级下第三次月考数学试卷(解析版)

八年级下第三次月考数学试卷(解析版)

八年级(下)第三次月考数学试卷一、选择题(每小题3分.共30分)1.下列长度的线段不能构成直角三角形的是()A.8.15.17 B.1.5.2.3 C.6.8.10 D.5.12.132.在△ABC中.AB=.BC=.AC=.则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=∠B 3.如图所示.AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.则AE=()A.1 B.C.D.24.如图.在▱ABCD中.AB=4.BC=6.∠B=30°.则此平行四边形的面积是()A.6 B.12 C.18 D.245.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形6.已知等腰梯形的两底之差等于腰长.则腰与下底的夹角为()A.15°B.30°C.45°D.60°7.如图.在△ABC中.D、E、F三点将BC分成四等分.XG:BX=1:3.H为AB中点.则△ABC的重心是()A.X B.Y C.Z D.W8.已知如图.在△ABC中.AB=AC=10.BD⊥AC于D.CD=2.则BD的长为()A.4 B.5 C.6 D.89.用配方法解方程:x2﹣2x﹣3=0时.原方程变形为()A.2=4 C.2=310.在下面图形中.每个大正方形网格都是由边长为1的小正方形组成.则图中阴影部分面积最大的是()A.B.C.D.二、填空(每小题4分.共24分)11.已知两条线段的长为3cm和4cm.当第三条线段的长为cm时.这三条线段能组成一个直角三角形.12.在Rt△ABC中.∠C=90°.若a=15.c=25.则b=.13.▱ABCD的周长是30.AC、BD相交于点O.△OAB的周长比△OBC的周长大3.则AB=.14.如图.矩形ABCD中.AB=8.BC=4.点E在边AB上.点F在边CD上.点G、H在对角线AC 上.若四边形EGFH是菱形.则AE的长是.15.梯形中位线长6cm.下底长8cm.则上底的长为cm.16.在一张三角形纸片中.剪去其中一个50°的角.得到如图所示的四边形.则图中∠1+∠2的度数为度.三、解答题(一)(本大题3小题.每小题6分.共18分)17.如图所示.四边形ABCD中.AB=3cm.AD=4cm.BC=13cm.CD=12cm.∠A=90°.求四边形ABCD的面积.18.如图.已知线段a和b.a>b.求作直角三角形ABC.使直角三角形的斜边AB=a.直角边AC=b.(用尺规作图.保留作图痕迹.不要求写作法)19.(6分)(2016丹东模拟)如图.在▱ABCD中.E是CD的中点.AE的延长线与BC的延长线相交于点F.求证:BC=CF.四、解答题(二)(本大题3小题.每小题7分.共21分)20.如图.在矩形ABCD中.对角线AC.BD相交于点O.点E.F分别在边AD.BC上.且DE=CF.连接OE.OF.求证:OE=OF.21.梯形ABCD中.AD∥BC.AB=DC=2.∠DBC=30°.∠BDC=90°.求:梯形ABCD的面积.22.已知:如图.在四边形ABCD中.AB∥CD.E.F为对角线AC上两点.且AE=CF.DF∥BE.求证:四边形ABCD为平行四边形.五、解答题(三)(本大题3小题.每小题9分.共27分)23.如图.在△ABC中.∠ACB=90°.∠B=30°.CD.CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2.求△CDE的周长.24.已知:如图.在▱ABCD中.O为对角线BD的中点.过点O的直线EF分别交AD.BC于E.F 两点.连结BE.DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时.四边形BFDE为菱形?请说明理由.25.已知:如图.在正方形ABCD中.G是CD上一点.延长BC到E.使CE=CG.连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′.判断四边形E′BGD是什么特殊四边形.并说明理由.2017-2018学年广东省东莞市中堂星晨学校八年级(下)第三次月考数学试卷参考答案与试题解析一、选择题(每小题3分.共30分)1.下列长度的线段不能构成直角三角形的是()A.8.15.17 B.1.5.2.3 C.6.8.10 D.5.12.13【分析】由勾股定理的逆定理.只要验证两小边的平方和是否等于最长边的平方.即可解答.【解答】解:A、82+152=172.能构成直角三角形.不符合题意;B、1.52+22≠32.不能构成直角三角形.符合题意;C、62+82=102.能构成直角三角形.不符合题意;D、52+122=132.能构成直角三角形.不符合题意;故选:B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形.已知三角形三边的长.只要利用勾股定理的逆定理加以判断即可.2.在△ABC中.AB=.BC=.AC=.则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=∠B【分析】根据题目提供的三角形的三边长.计算它们的平方.满足a2+b2=c2.哪一个是斜边.其所对的角就是直角.【解答】解:∵AB2=()2=2.BC2=()2=5.AC2=()2=3.∴AB2+AC2=BC2.∴BC边是斜边.∴∠A=90°.故选A.【点评】本题考查了利用勾股定理的逆定理判定直角三角形.本题没有让学生直接判定直角三角形.而是创新的求哪一个角是直角.是一道不错的好题.3.如图所示.AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.则AE=()A.1 B.C.D.2【分析】根据勾股定理进行逐一计算即可.【解答】解:∵AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.∴AC===;AD===;AE===2.故选D.【点评】本题考查了利用勾股定理解直角三角形的能力.即:直角三角形两直角边的平方和等于斜边的平方.4.如图.在▱ABCD中.AB=4.BC=6.∠B=30°.则此平行四边形的面积是()A.6 B.12 C.18 D.24【分析】过点A作AE⊥BC于E.根据含30度角的直角三角形的性质:在直角三角形中.30°角所对的直角边等于斜边的一半可求出AE的长.利用平行四边形的面积根据即可求出其面积.【解答】解:过点A作AE⊥BC于E.∵直角△ABE中.∠B=30°.∴AE=AB=×4=2∴平行四边形ABCD面积=BCAE=6×2=12.故选:B.【点评】本题考查了平行四边形的性质以及平行四边形的面积公式的运用和30度角的直角三角形的性质:在直角三角形中.30°角所对的直角边等于斜边的一半.5.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形【分析】根据矩形的判定对A、B进行判断;根据菱形的判定方法对C、D进行判断.【解答】解:A、四个角相等的四边形是矩形.为真命题.故A选项不符合题意;B、对角线相等的平行四边形是矩形.为真命题.故B选项不符合题意;C、对角线垂直的平行四边形是菱形.为假命题.故C选项符合题意;D、对角线垂直的平行四边形是菱形.为真命题.故D选项不符合题意.故选:C.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题.错误的命题称为假命题;经过推理论证的真命题称为定理.6.已知等腰梯形的两底之差等于腰长.则腰与下底的夹角为()A.15°B.30°C.45°D.60°【分析】过点D作DE∥BC.可知△ADE是等边三角形.从而得到∠C=60°.【解答】解:如图.过点D作DE∥BC.交AB于点E.∴DE=CB=AD.∵AD=AE.∴△ADE是等边三角形.所以∠A=60°.故选:D.【点评】此题考查等腰梯形的性质及梯形中常见的辅助线的作法.7.如图.在△ABC中.D、E、F三点将BC分成四等分.XG:BX=1:3.H为AB中点.则△ABC的重心是()A.X B.Y C.Z D.W【分析】根据重心的定义得出AE是△ABC边BC的中线.CH是△ABC边BA的中线.即可得出答案.【解答】解:∵D、E、F三点将BC分成四等分.∴BE=CE.∴AE是△ABC边BC的中线.∵H为AB中点.∴CH是△ABC边BA的中线.∴交点即是重心.故选:C.【点评】此题主要考查了重心的定义.掌握三角形的重心的定义找出AE是△ABC边BC的中线.CH是△ABC边BA的中线是解决问题的关键.8.已知如图.在△ABC中.AB=AC=10.BD⊥AC于D.CD=2.则BD的长为()A.4 B.5 C.6 D.8【分析】根据AB=AC=10.CD=2得出AD的长.再由BD⊥AC可知△ABD是直角三角形.根据勾股定理求出BD的长即可.【解答】解:∵AB=AC=10.CD=2.∴AD=10﹣2=8.∵BD⊥AC.∴BD===6.故选C.【点评】本题考查的是勾股定理.熟知在任何一个直角三角形中.两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.9.用配方法解方程:x2﹣2x﹣3=0时.原方程变形为()A.2=4 C.2=3【分析】将原方程的常数项﹣3变号后移项到方程右边.然后方程两边都加上1.方程左边利用完全平方公式变形后.即可得到结果.【解答】解:x2﹣2x﹣3=0.移项得:x2﹣2x=3.两边加上1得:x2﹣2x+1=4.变形得:(x﹣1)2=4.则原方程利用配方法变形为(x﹣1)2=4.故选B.【点评】此题考查了利用配方法解一元二次方程.利用此方法的步骤为:1、将二次项系数化为“1”;2、将常数项移项到方程右边;3、方程两边都加上一次项系数一半的平方.方程左边利用完全平方公式变形.方程右边为非负常数;4、开方转化为两个一元一次方程来求解.10.在下面图形中.每个大正方形网格都是由边长为1的小正方形组成.则图中阴影部分面积最大的是()A.B.C.D.【分析】根据正方形的性质把不规则图形的面积可以看成是规则图形的面积的和或差.从而可得到图中阴影部分面积最大的图形.【解答】解:不规则图形的面积可以看成是规则图形的面积的和或差.根据正方形的性质计算得.图中阴影部分面积最大的是第四选项.故选D.【点评】此题主要考查学生对正方形的性质的理解及运用.二、填空(每小题4分.共24分)11.已知两条线段的长为3cm和4cm.当第三条线段的长为5或cm时.这三条线段能组成一个直角三角形.【分析】本题从边的方面考查三角形形成的条件.涉及分类讨论的思考方法.即:由于“两边长分别为3和5.要使这个三角形是直角三角形.”指代不明.因此.要讨论第三边是直角边和斜边的情形.【解答】解:当第三边是直角边时.根据勾股定理.第三边的长==5.三角形的边长分别为3.4.5能构成三角形;当第三边是斜边时.根据勾股定理.第三边的长==.三角形的边长分别为3..亦能构成三角形;综合以上两种情况.第三边的长应为5或.故答案为5或.【点评】本题考查了勾股定理的逆定理.解题时注意三角形形成的条件:任意两边之和>第三边.任意两边之差<第三边.当题目指代不明时.一定要分情况讨论.把符合条件的保留下来.不符合的舍去.12.在Rt△ABC中.∠C=90°.若a=15.c=25.则b=20.【分析】依据勾股定理求解即可.【解答】解:∵Rt△ABC中.∠C=90°.∴b==20.故答案为:20.【点评】本题主要考查的是勾股定理的应用.掌握勾股定理是解题的关键.13.▱ABCD的周长是30.AC、BD相交于点O.△OAB的周长比△OBC的周长大3.则AB= 9.【分析】如图:由四边形ABCD是平行四边形.可得AB=CD.BC=AD.OA=OC.OB=OD;又由△OAB的周长比△OBC的周长大3.可得AB﹣BC=3.又因为▱ABCD的周长是30.所以AB+BC=10;解方程组即可求得.【解答】解:∵四边形ABCD是平行四边形.∴AB=CD.BC=AD.OA=OC.OB=OD;又∵△OAB的周长比△OBC的周长大3.∴AB+OA+OB﹣(BC+OB+OC)=3∴AB﹣BC=3.又∵▱ABCD的周长是30.∴AB+BC=15.∴AB=9.故答案为9.【点评】此题考查了平行四边形的性质:平行四边形的对边相等.对角线互相平分.解题时要注意利用方程思想与数形结合思想求解.14.如图.矩形ABCD中.AB=8.BC=4.点E在边AB上.点F在边CD上.点G、H在对角线AC 上.若四边形EGFH是菱形.则AE的长是5.【分析】首先连接EF交AC于O.由矩形ABCD中.四边形EGFH是菱形.易证得△CFO≌△AOE(AAS).即可得OA=OC.然后由勾股定理求得AC的长.继而求得OA的长.又由△AOE ∽△ABC.利用相似三角形的对应边成比例.即可求得答案.【解答】解:连接EF交AC于O.∵四边形EGFH是菱形.∴EF⊥AC.OE=OF.∵四边形ABCD是矩形.∴∠B=∠D=90°.AB∥CD.∴∠ACD=∠CAB.在△CFO与△AOE中..∴△CFO≌△AOE(AAS).∴AO=CO.∵AC==4.∴AO=AC=2.∵∠CAB=∠CAB.∠AOE=∠B=90°.∴△AOE∽△ABC.∴.∴.∴AE=5.故答案为5.【点评】此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.15.梯形中位线长6cm.下底长8cm.则上底的长为4cm.【分析】根据“梯形中位线的长等于上底与下底和的一半”可求得其上底.【解答】解:由已知得.下底=2×6﹣8=4(cm).故答案为:4.【点评】此题主要考查了梯形中位线定理的数量关系:梯形中位线的长等于上底与下底和的一半.16.在一张三角形纸片中.剪去其中一个50°的角.得到如图所示的四边形.则图中∠1+∠2的度数为230度.【分析】三角形纸片中.剪去其中一个50°的角后变成四边形.则根据多边形的内角和等于360度即可求得∠1+∠2的度数.【解答】解:根据三角形的内角和定理得:四边形除去∠1.∠2后的两角的度数为180°﹣50°=130°.则根据四边形的内角和定理得:∠1+∠2=360°﹣130°=230°.【点评】主要考查了四边形的内角和是360度的实际运用与三角形内角和180度之间的关系.三、解答题(一)(本大题3小题.每小题6分.共18分)17.如图所示.四边形ABCD中.AB=3cm.AD=4cm.BC=13cm.CD=12cm.∠A=90°.求四边形ABCD的面积.【分析】连接BD.根据已知分别求得△ABD的面积与△BDC的面积.即可求四边形ABCD的面积.【解答】解:连接BD.∵AB=3cm.AD=4cm.∠A=90°∴BD=5cm.S△ABD=×3×4=6cm2又∵BD=5cm.BC=13cm.CD=12cm∴BD2+CD2=BC2∴∠BDC=90°∴S△BDC=×5×12=30cm2∴S四边形ABCD=S△ABD+S△BDC=6+30=36cm2.【点评】此题主要考查勾股定理和逆定理的应用.还涉及了三角形的面积计算.连接BD.是关键的一步.18.如图.已知线段a和b.a>b.求作直角三角形ABC.使直角三角形的斜边AB=a.直角边AC=b.(用尺规作图.保留作图痕迹.不要求写作法)【分析】先作线段AC=b.再过点C作AC的垂线.接着以点A为圆心.a为半径画弧交此垂线于B.则△ABC为所求.【解答】解:如图.△ABC为所求作的直角三角形.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图.一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质.结合几何图形的基本性质把复杂作图拆解成基本作图.逐步操作.也19.(6分)(2016丹东模拟)如图.在▱ABCD中.E是CD的中点.AE的延长线与BC的延长线相交于点F.求证:BC=CF.【分析】先证明△ADE≌△FCE.得出AD=CF.再根据平行四边形的性质可知AD=BC.继而即可得出结论.【解答】解:∵四边形ABCD为平行四边形.∵AD∥BC.∴∠ADE=∠FCE.∵E是CD的中点.∴DE=CE.在△ADE和△FCE中.∵.∴△ADE≌△FCE.∴AD=CF.又∵AD=BC.∴BC=CF.【点评】本题考查平行四边形的性质及全等三角形的判定与性质.解题关键是找出△ADE与△FCE全等的条件.难度一般.四、解答题(二)(本大题3小题.每小题7分.共21分)20.如图.在矩形ABCD中.对角线AC.BD相交于点O.点E.F分别在边AD.BC上.且DE=CF.连接OE.OF.求证:OE=OF.【分析】欲证明OE=OF.只需证得△ODE≌△OCF即可.【解答】证明:如图.∵四边形ABCD是矩形.∴∠ADC=∠BCD=90°.AC=BD.OD=BD.OC=AC.∴OD=OC.∴∠ODC=∠OCD.∴∠ADC﹣∠ODC=∠BCD﹣∠OCD.即∠EDO=∠FCO.在△ODE与△OCF中..∴△ODE≌△OCF(SAS).∴OE=OF.【点评】本题考查了全等三角形的判定与性质.矩形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时.关键是选择恰当的判定条件.21.梯形ABCD中.AD∥BC.AB=DC=2.∠DBC=30°.∠BDC=90°.求:梯形ABCD的面积.【分析】作DE⊥BCTVE.则∠DEB=90°.由含30°角的直角三角形的性质得出DE=BD.BC=2DC=4.求出BD=DC=6.DE=3.由等腰梯形的性质得出∠ABD=∠ADB.得出AD=AB=2.即可求出梯形ABCD的面积.【解答】解:如图所示:作DE⊥BCTVE.则∠DEB=90°.∵∠DBC=30°.∠BDC=90°.∴∠C=60°.DE=BD.BC=2DC=4.BD=DC=6.∴DE=3.∵AD∥BC.AB=DC.∴∠ABC=∠C=60°.∠ADB=∠BDC=30°.∴∠ABD=30°=∠ADB.∴AD=AB=2.∴梯形ABCD的面积=(AD+BC)×DE=(2+4)×3=9.【点评】本题考查了等腰梯形的性质、含30°角的直角三角形的性质、梯形面积的计算;熟练掌握等腰梯形的性质.由含30°角的直角三角形的性质求出BC和DE是解决问题的关键.22.已知:如图.在四边形ABCD中.AB∥CD.E.F为对角线AC上两点.且AE=CF.DF∥BE.求证:四边形ABCD为平行四边形.【分析】首先证明△AEB≌△CFD可得AB=CD.再由条件AB∥CD可利用一组对边平行且相等的四边形是平行四边形证明四边形ABCD为平行四边形.【解答】证明:∵AB∥CD.∴∠DCA=∠BAC.∵DF∥BE.∴∠DFA=∠BEC.∴∠AEB=∠DFC.在△AEB和△CFD中.∴△AEB≌△CFD(ASA).∴AB=CD.∵AB∥CD.∴四边形ABCD为平行四边形.【点评】此题主要考查了平行四边形的判定.关键是掌握一组对边平行且相等的四边形是平行四边形.五、解答题(三)(本大题3小题.每小题9分.共27分)23.如图.在△ABC中.∠ACB=90°.∠B=30°.CD.CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2.求△CDE的周长.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半.得CD=AD.根据直角三角形的两个锐角互余.得∠A=60°.从而判定△ACD是等边三角形.再根据等腰三角形的三线合一的性质即可证明;(2)结合(1)中的结论.求得CD=2.DE=1.只需根据勾股定理求得CE的长即可.【解答】(1)证明:∵∠ACB=90°.CD是AB边上的中线.∴CD=AD=DB.∵∠B=30°.∴∠A=60°.∴△ACD是等边三角形.∵CE是斜边AB上的高.∴AE=ED.(2)解:由(1)得AC=CD=AD=2ED.又AC=2.∴CD=2.ED=1.∴.∴△CDE的周长=.【点评】此题综合运用了直角三角形的性质、等边三角形的判定和性质以及勾股定理.直角三角形斜边上的中线等于斜边的一半;直角三角形的两个锐角互余.有一个角是60°的等腰三角形是等边三角形.24.已知:如图.在▱ABCD中.O为对角线BD的中点.过点O的直线EF分别交AD.BC于E.F 两点.连结BE.DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时.四边形BFDE为菱形?请说明理由.【分析】(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF(ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形.进而利用垂直平分线的性质得出BE=ED.即可得出答案.【解答】(1)证明:∵在▱ABCD中.O为对角线BD的中点.∴BO=DO.∠EDB=∠FBO.在△EOD和△FOB中.∴△DOE≌△BOF(ASA);(2)解:当∠DOE=90°时.四边形BFDE为菱形.理由:∵△DOE≌△BOF.∴OE=OF.又∵OB=OD∴四边形EBFD是平行四边形.∵∠EOD=90°.∴EF⊥BD.∴四边形BFDE为菱形.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质和菱形的判定等知识.得出BE=DE是解题关键.25.已知:如图.在正方形ABCD中.G是CD上一点.延长BC到E.使CE=CG.连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′.判断四边形E′BGD是什么特殊四边形.并说明理由.(1)由正方形ABCD.得BC=CD.∠BCD=∠DCE=90°.又CG=CE.所以△BCG≌△DCE 【分析】(SAS).(2)由(1)得BG=DE.又由旋转的性质知AE′=CE=CG.所以BE′=DG.从而证得四边形E′BGD 为平行四边形.【解答】(1)证明:∵四边形ABCD是正方形.∴BC=CD.∠BCD=90°.∵∠BCD+∠DCE=180°.∴∠BCD=∠DCE=90°.又∵CG=CE.∴△BCG≌△DCE.(2)解:四边形E′BGD是平行四边形.理由如下:∵△DCE绕D顺时针旋转90°得到△DAE′.∴CE=AE′.∵CE=CG.∴CG=AE′.∵四边形ABCD是正方形.∴BE′∥DG.AB=CD.∴AB﹣AE′=CD﹣CG.即BE′=DG.∴四边形E′BGD是平行四边形.【点评】本题考查了正方形的性质、全等三角形的判定与性质及平行四边形的判定等知识的综合应用.以及考生观察、分析图形的能力.f;lf2-9;。

2022-2023学年江西省宜春市宜丰中学八年级(下)月考数学试卷(3月份)+答案解析(附后)

2022-2023学年江西省宜春市宜丰中学八年级(下)月考数学试卷(3月份)+答案解析(附后)

2022-2023学年江西省宜春市宜丰中学八年级(下)月考数学试卷(3月份)1. 某中学合唱团的17名成员的年龄情况如下表:年龄单位:岁1415161718人数35441则这些队员年龄的众数和中位数分别是( )A. 15,15B. 15,C. 15,16D. 16,152. 已知等腰的周长为10,若设腰长为x,则x的取值范围是( )A. B. C. D.3. 若一次函数的图象不经过第二象限,则m的取值范围是( )A. B. C. D.4.如图,在中,,,,,,都是等边三角形,下列结论中:①;②四边形AEFD是平行四边形;③;④正确的个数是( )A. 1个B. 2个C. 3个D. 4个5.如图,在中,BD平分交AC于点D,且,F在BC上,E为AF的中点,连接DE,AF,若,,,则AB的长为( )A.B.C.D. 96. 在直角坐标系中,横纵坐标都是整数的点称为整点,设k为整数,当直线与的交点为整数时,k的值可以取( )A. 2个B. 4个C. 6个D. 8个7. 某校规定学生的数学成绩由三部分组成,期末考试成绩占,期中成绩占,平时作业成绩占,某人上述三项成绩分别为85分,90分,80分,则他的数学成绩是______.8. 如图,直线与直线相交于点A,则关于x的不等式的解集为______.9. 当光线射到x轴进行反射,如果反射的路径经过点和点,则入射光线所在直线的解析式为______ .10. 设,则代数式的值为______.11. 如图,已知,于B,于A,,点E是CD的中点,则AE的长是______.12. 如图,在平面直角坐标系中,直线l分别交x轴、y轴于A、B两点,点A的坐标为,点B的坐标为直线l与直线交于点点P是直线上,的一点,点Q是坐标平面内任意一点.若使以A、C、P、Q为顶点的四边形是菱形,则Q点的坐标为______ .13. 已知,,且试求正整数14. 如图,在四边形ABCD中,,对角线BD的垂直平分线与边AD、BC分别相交于点M、N,连接BM、求证:四边形BNDM是菱形;若四边形BNDM的周长为52,,求BD的长.15. 如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.城是否受到这次台风的影响?为什么?若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?16. 某地计划从甲、乙两个蔬菜基地向A,B两市运送蔬菜.甲、乙两个基地分别可运出80吨和100吨蔬菜.A,B两市分别需要蔬菜110吨和70吨.从甲,乙两基地运往A,B两市的运费单价如下表:A市元/吨B市元/吨甲基地1520乙基地1025设从甲基地运往A市x吨蔬菜时,总运费为y元.求y关于x的函数表达式及自变量的取值范围;当甲基地运往A市多少吨蔬菜时,总运费最省?最省的总运费是多少元?17. 在中,D为AB的中点,分别延长CA,CB到点E,F,使;过E,F分别作CA,CB的垂线,相交于求证:18. 观察下列方程及解的特征:的解为:;的解为:,;的解为:,;…解答下列问题:请猜想,方程的解为______;请猜想,方程______的解为,;解关于x的分式方程19. 请你用学习“一次函数”中积累的经验和方法研究函数的图象和性质,并解决问题.①当时,;②当时,______;③当时,______;显然,②和③均为某个一次函数的一部分.在平面直角坐标系中,作出函数的图象.根据函数图象写出函数的一条性质:______.一次函数为常数,的图象过点,若无解,结合函数的图象,直接写出k的取值范围.20. 我们新定义一种三角形:两边平方和等于第三边平方的4倍的三角形叫做常态三角形.例如:某三角形三边长分别是5,6和8,因为,所以这个三角形是常态三角形.若三边长分别是2,和4,则此三角形__________常态三角形填“是”或“不是”;若是常态三角形,则此三角形的三边长之比为__________请按从小到大排列;如图,中,,,点D为AB的中点,连接CD,若是常态三角形,求的面积.21. 甲、乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,如图是两车距A市的路程千米与行驶时间小时之间的函数图象,请结合图象回答下列问题:、B两市的距离是______ 千米,甲到B市后,______ 小时乙到达B市;求甲车返回时的路程千米与时间小时之间的函数关系式;甲车从B市开始往回返后,再经过几小时两车相距15千米?22. 【模型建立】如图1,等腰中,,,直线ED经过点C,过点A作于点D,过点B作于点E,求证:≌;【模型应用】如图2,已知直线:与x轴交于点A,与y轴交于点B,将直线绕点A 逆时针旋转至直线;求直线的函数表达式;如图3,平面直角坐标系内有一点,过点B作轴于点A、轴于点C,点P是线段AB上的动点,点D是直线上的动点且在第四象限内.试探究能否成为等腰直角三角形?若能,求出点D的坐标,若不能,请说明理由.答案和解析1.【答案】C【解析】解:根据图表数据,同一年龄人数最多的是15岁,共5人,所以众数是15岁,17名队员中,按照年龄从大到小排列,第9名队员的年龄是16岁,所以,中位数是16岁.故选:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.本题考查了确定一组数据的中位数和众数的能力,众数是出现次数最多的数据,一组数据的众数可能有不止一个,找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数不一定是这组数据中的数.2.【答案】A【解析】解:依题意得:,解得故选:根据已知条件得出底边的长为:,再根据第三边的长度应是大于两边的差而小于两边的和,即可求出第三边长的范围.本题考查了等腰三角形的性质和三角形的三边关系及解一元一次不等式组等知识;根据三角形三边关系定理列出不等式,接着解不等式求解是正确解答本题的关键.3.【答案】D【解析】【分析】本题考查了一次函数图象与系数的关系以及一元一次不等式组的解法.根据题意得到关于m的不等式组,然后解不等式组即可.【解答】解:根据题意得,解得故选:4.【答案】D【解析】【分析】由,得出,故①正确;再由SAS证得≌,得,同理≌,得,则四边形AEFD 是平行四边形,故②正确;然后由平行四边形的性质得,则③正确;最后求出,故④正确;即可得出答案.本题考查了平行四边形的判定与性质、勾股定理的逆定理、全等三角形的判定与性质、等边三角形的性质、含角的直角三角形的性质等知识;熟练掌握平行四边形的判定与性质,证明≌是解题的关键.【解答】解:,,,,,是直角三角形,,,故①正确;,都是等边三角形,,,和都是等边三角形,,,,,在与中,,≌,,同理可证:≌,,四边形AEFD是平行四边形,故②正确;,故③正确;过A作于G,如图所示:则,四边形AEFD是平行四边形,,,,故④正确;正确的个数是4个,故选:5.【答案】A【解析】解:平分交AC于点D,,,,,≌,,为AF的中点,是的中位线,,,,,,,,,负值舍去,,,故选:根据角平分线的定义得到,根据垂直的定义得到,根据全等三角形的判定和性质得到,根据三角形中位线定理和勾股定理即可得到结论.本题考查了三角形中位线定理,全等三角形的判定和性质,勾股定理,熟练掌握三角形中位线定理是解题的关键.6.【答案】C【解析】解:由题意得:,解得:,,交点为整数,可取的整数解有0,2,3,5,,共6个.故选:让这两条直线的解析式组成方程组,求得整数解即可.本题考查了两条直线相交或者平行问题,难度一般,解决本题的难点是根据分数的形式得到相应的整数解.7.【答案】分【解析】解:他的数学成绩是:分故答案为:分.根据数学成绩=期末考试成绩所占的百分比+期中考试成绩所占的百分比+平时作业成绩所占的百分比即可求得该学生的数学成绩.本题考查的是加权平均数的求法.正确计算加权平均数是解本题的关键.8.【答案】【解析】【分析】此题主要考查了一次函数与一元一次不等式,关键是能从图象中得到正确信息.以两函数图象交点为分界,直线在直线的下方时,【解答】解:把代入得,,根据图象可得:关于x的不等式的解集为:,故答案为:9.【答案】【解析】解:设反射光线的直线解析式为,反射的路径经过点和点,,解得,,反射光线的直线解析式为,根据入射光线和反射光线轴对称,故知入射光线的解析式为,故答案为首先设反射光线的直线解析式为,把A、B两点代入,求出k和b,然后根据轴对称的知识点求出入射光线的解析式.本题主要考查待定系数法求一次函数解析式和轴对称的知识点,解答本题的关键是运用好轴对称的知识,此题难度一般.10.【答案】24【解析】解:,即,故答案为:24将所求式子提取3后,拆项变形,分别得到的因式,将已知等式变形得到,把a与的值代入计算,即可求出值.此题考查了因式分解的应用,将所求式子进行适当的变形是解本题的关键.11.【答案】【解析】解:连接DB,延长DA到F,使连接FC,,,又点E是CD的中点,为的中位线,则,在中,,,,,,又,四边形DBCF是平行四边形,,故答案为:首先作出辅助线,连接DB,延长DA到F,使,连接根据三角形中位线定理可得,再利用勾股定理求出BD的长,然后证明可得到≌,从而得到,进而得到答案.此题主要考查了三角形中位线定理,勾股定理的综合运用,做题的关键是作出辅助线,证明12.【答案】或或或【解析】解:设直线AB的函数解析式为,点A的坐标为,点B的坐标为,,解得,即直线AB的函数解析式为,点C在直线AB上且在直线上,点C的横坐标为,纵坐标,线段AC的长是:,当时,的坐标为;当时,的坐标为;当时,的坐标为;当在AC的垂直平分线上时,直线AB的函数解析式为,点A的坐标为,点C的坐标为,,设直线解析式为且过点,,解得,直线解析式为,当时,,即的坐标为;由上可得,点Q的坐标为或或或根据题意,可以先求出直线AB的函数解析式,然后根据菱形的判定和分类讨论的数学思想,可以求得相应的点Q的坐标.本题考查一次函数图象上点的坐标特征、菱形的判定,解答本题的关键是明确题意,画出相应的图象,利用数形结合和分类讨论的数学思想解答.13.【答案】解:化简x与y得:,,,,将代入方程,化简得:,,,解得【解析】首先化简x与y,可得:,,所以,;将所得结果看作整体代入方程,化简即可求得.此题考查了二次根式的分母有理化.解题的关键是整体代入思想的应用.14.【答案】证明:,直线MN是对角线BD的垂直平分线,,在和中,,≌,,,四边形BNDM是平行四边形,,四边形BNDM是菱形;解:菱形BNDM的周长为52,,又,,在中,由勾股定理得,,【解析】【分析】证≌,得出,由,证出四边形BNDM是平行四边形,进而得出结论;由菱形的周长得到菱形的边长,由菱形的性质及得到,在中由勾股定理得到OB的长,进而得到BD的长.本题考查了菱形的判定与性质、平行四边形的判定与性质、全等三角形的判定与性质、勾股定理等知识;熟练掌握菱形的判定与性质,证明三角形全等是解题的关键.15.【答案】解:由A点向BF作垂线,垂足为C,在中,,,则,因为,所以A城要受台风影响;设BF上点D,,则还有一点G,有因为,所以是等腰三角形,因为,所以AC是DG的垂直平分线,,在中,,,由勾股定理得,,则,遭受台风影响的时间是:【解析】点到直线的线段中垂线段最短,故应由A点向BF作垂线,垂足为C,若则A城不受影响,否则受影响;点A到直线BF的长为200km的点有两点,分别设为D、G,则是等腰三角形,由于,则C是DG的中点,在中,解出CD的长,则可求DG长,在DG长的范围内都是受台风影响,再根据速度与距离的关系则可求时间.此题主要考查辅助线在题目中的应用,勾股定理,点到直线的距离及速度与时间的关系等,较为复杂.16.【答案】解:,由,解得;答:y关于x的函数表达式为,自变量的取值范围是;在中,,随x的增大而增大,而,当时,,答:当甲基地运往A市10吨蔬菜时,总运费最省,最省的总运费是2550元.【解析】弄清调动方向,再依据路程和运费列出元与吨的函数关系式即可;利用一次函数的增减性确定“最省的总运费”即可.本题是一次函数与不等式的综合题,先解不等式确定自变量的取值范围,然后依据一次函数的增减性来确定总运费最省.17.【答案】解:如图,分别取AP、BP的中点M、N,并连接EM、DM、FN、根据三角形中位线定理可得:,,,,,、N分别为直角三角形AEP、BFP斜边的中点,,,已知,≌,,,、为顶角相等的等腰三角形,【解析】取AP、BP的中点,并连接EM、DM、FN、DN,根据直角三角形斜边中线性质易证得≌,即可得各角的关系.即可证得结论.本题考查了全等三角形的判定及性质,涉及到直角三角形、等腰三角形的性质等知识点,是一道难度较大的综合题型,正确作出辅助线是解题的关键.18.【答案】,【解析】解:方程:,即方程:,,,故答案为:,;猜想关于x 的方程的解为:,,故答案为:;,,,,,可得:或,解得:,,经检验,,是原分式方程的根.观察阅读材料中的方程解的规律,归纳总结得到结果;仿照阅读材料中的方程解的规律,归纳总结得到结果;先把原方程变形后,利用得出的规律即可解答.本题考查了解分式方程,分式方程的解,理解阅读材料中的方程解的规律是解题的关键.19.【答案】函数图象关于y 轴对称 【解析】解:②时,,时,,③时,,时,,故答案为:,如图,由图象可得,函数图象关于y轴对称,故答案为:函数图象关于y轴对称.当时,如图,当直线与时,方程无解,此时,当时,满足题意.如图,当直线经过,时,将,代入得,解得,时满足题意,综上所述,若无解,且②当时,,进而求解.③当时,,进而求解.分别画出,时的函数图象.根据图象求解.分类讨论与时,函数图象与直线无交点的情况求解.本题考查一次函数的综合应用,解题关键是掌握一次函数的性质,掌握待定系数法求函数解析式,通过数形结合求解.20.【答案】解:是::中,,,点D为AB的中点,是常态三角形,当,时,解得:,则,故,则的面积为:当,时,解得:,则,故,则的面积为:故的面积为或【解析】【解答】解:,三边长分别是2,和4,则此三角形是常态三角形.故答案为:是;是常态三角形,设两直角边长为:a,b,斜边长为:c,则,,则,故a::,设,,则,此三角形的三边长之比为:::故答案为:::;见答案【分析】直接利用常态三角形的定义判断即可;利用勾股定理以及结合常态三角形的定义得出两直角边的关系,进而得出答案;直接利用直角三角形的性质结合常态三角形的定义得出BD的长,进而求出答案.此题主要考查了勾股定理以及新定义,正确应用勾股定理以及直角三角形的性质是解题关键.21.【答案】120 5【解析】解:由图可得A、B两市的距离是,甲到B市后,再过小时乙到达B市;故答案为:120,5;如右图:两地的距离是120km,,,设线段BD的解析式为,由题意得:,解得:,;设EF的解析式为,由题意得:,解得:,的解析式为,当甲车还未追上乙车时,可得:,解得,小时,当甲车追上乙车后,可得:,解得;小时,当甲车返回A地后,,解得,小时,答:甲车从B市往回返后再经过小时或小时或小时两车相距15千米.根据路程=速度时间的数量关系,用甲车的速度甲车到达乙地的时间就可以求出两地的距离,根据时间=路程速度可以求出乙从A市去往B市需要的时间,从而可得答案;由的结论可以求出BD的解析式,由待定系数法就可以求出结论;运用待定系数法求出EF的解析式,再由两车之间的距离公式建立方程求出其解即可.本题考查了一次函数的应用,读懂题意,正确识图,能求出函数的解析式是解答本题关键.22.【答案】解:如图1所示:,,,又,,,又,,在和中,,≌;过点B作交AC于点C,轴,交y轴于点D,如图2所示:轴,x轴轴,,又,,又,,又,,又,,,在和中,,≌,,,又直线:与x轴交于点A,与y轴交于点B,令,得,,即,令,得,即,,,,,点C的坐标为,设的函数表达式为,点A、C两点在直线上,依题意得:,解得:,直线的函数表达式为;能成为等腰直角三角形,依题意得,①若点P为直角顶点时,如图3甲所示:设点P的坐标为,则PB的长为,,,,,又,,在和中,,≌,,,点D的坐标为,又点D在直线上,,解得:,即点D的坐标为;②若点C为直角顶点时,如图3乙所示:设点P的坐标为,则PB的长为,,同理可证明≌,,,点D的坐标为,又点D在直线上,,解得:,点P与点A重合,点M与点O重合,即点D的坐标为;③若点D为直角顶点时,如图3丙所示:设点P的坐标为,则PB的长为,,同理可证明≌,,,点D的坐标为,又点D在直线上,,解得:,即点D的坐标为;综合所述,点D的坐标为或或【解析】本题综合考查了垂直的定义,平角的定义,全等三角形的判定与性质,一次函数求法,待定系数等知识点,重点掌握在平面直角坐标系内一次函数的求法,难点是构造符合题意的全等三角形.由垂直的定义得,平角的定义和同角的余角的相等求出,角角边证明≌;证明≌,求出点C的坐标为,由点到直线上构建二元一次方程组求出,,待定系数法求出直线的函数表达式为;分三种情况讨论:①若点P为直角顶点时;②若点C为直角顶点时;③若点D为直角顶点时,设出P点坐标,构建≌,由其性质,得到点D坐标,根据点D在直线上可求出其坐标.。

浙江省金华市义乌市三校2022-2023学年八年级下学期3月检测数学试卷(含解析)

浙江省金华市义乌市三校2022-2023学年八年级下学期3月检测数学试卷(含解析)

2022-2023学年浙江省金华市义乌市三校联考八年级(下)月考数学试卷(3月份)一.选择题(每题3分,共10小题,测分30分)1.下列式子一定是二次根式的是( )A.B.C.D.2.下列关于x的方程中,是一元二次方程的是( )A.x3﹣3x+2=0B.ax2+bx+c=0C.3x2﹣x﹣1=0D.x2+=﹣23.下列各式是最简二次根式的是( )A.B.C.D.4.一组样本数据为1、2、3、3、6,下列说法错误的是( )A.平均数是3B.中位数是3C.方差是3D.众数是35.一元二次方程x2﹣4x﹣3=0配方后可化为( )A.(x﹣2)2=7B.(x﹣2)2=3C.(x+2)2=7D.(x+2)2=3 6.计算÷的结果是( )A.B.C.D.7.从班上13名排球队员中,挑选7名个头高的参加校排球比赛.若这13名队员的身高各不相同,其中队员小明想知道自己能否入选,只需知道这13名队员身高数据的( )A.平均数B.中位数C.最大值D.方差8.受新冠肺炎疫情影响,某企业生产总值从六月份的500万元,连续两个月降至380万元,设平均下降率为x,则可列方程( )A.500(1﹣x)=380B.500(1﹣2x)=380C.500(1﹣x)2=380D.500(1+x)2=3809.已知关于x的方程(k﹣1)x2有两个实数解,求k的取值范围( )A.k≤B.k≤且k≠1C.0≤k≤D.0≤且k≠110.已知一元二次方程a(x﹣x1)(x﹣x2)=0(a≠0,x1≠x2)与一元一次方程dx+e=0有一个公共解x=x1,若一元二次方程a(x﹣x1)(x﹣x2)+(dx+e)=0有两个相等的实数根,则( )A.a(x1﹣x2)=d B.a(x2﹣x1)=dC.a(x1﹣x2)2=d D.a(x2﹣x1)2=d二.填空题(每题4分,共6小题,满分24分)11.若代数式有意义,则x的取值范围是 .12.已知x=1是方程x2﹣2x+k=0的一个根,则k= .13.甲乙两个人6次体育测试的平均分相同,分,分,则成绩较为稳定的是 .(填“甲”或“乙”)14.学校将平时成绩、期中成绩和期末成绩按2:4:4计算学生的学期总评成绩.若某同学这学期的数学平时成绩、期中成绩和期末成绩分别是95分、85分、90分,则该同学的数学学期总评成绩是 分.15.实数a在数轴上的位置如图所示,则化简后 .16.如图1是某小车侧面示意图,图2是该车后备箱开起侧面示意图,具体数据如图所示(单位:cm),AC=BD,AF∥BE,∠BAF=60°,箱盖开起过程中,点A,C,F不随箱盖转动,点B,D,E绕点A沿逆时针方向转动相同角度,分别到点B′,D′,E′的位置,气簧活塞杆CD随之伸长到CD′.已知直线BE⊥B′E′,垂足为E′,CD′=2CD,BE'=28+28,那么AB的长为 cm,CD′的长为 cm.三.解答题(共8小题,满分0分)17.计算:(1);(2)()().18.解下列方程:(1)x2﹣2x=3;(2)(x﹣5)2+x(x﹣5)=0.19.某校举办了国学知识竞赛,满分10分,学生得分均为整数.在初赛中,甲乙两组(每组10人)学生成绩如:(单位:分)甲组:3,6,6,6,6,6,7,9,9,10.乙组:5,6,6,6,7,7,7,7,8,9.组别平均数中位数众数方差甲组 6.8a6 3.76乙组b7c 1.16(1)以上成绩统计分析表中a= ,b= ,c= ;(2)小明同学说:“这次竞赛我得了7分,在我们小组中属中游略偏上!”观察上面表格判断,小明可能是 组的学生;(3)从平均数和方差看,若从甲乙两组学生中选择一个组参加决赛,应选 组.20.如图,世纪广场有一块长方形绿地,AB=18m,AD=15m,在绿地中开辟三条宽为xm 的道路后,剩余绿地的面积为144m2,求道路宽x.21.已知a=3+2,b=3﹣2,分别求下列代数式的值:(1)a2﹣b2;(2)a2﹣3ab+b2.22.已知关于x的方程x2+ax+a﹣2=0(1)若该方程的一个根是,求a的值及该方程的另一个根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.23.2022年北京冬奥会吉祥物冰墩墩和雪容融在一开售时,就深受大家的喜欢.某供应商今年2月第一周购进一批冰墩墩和雪容融,已知一个冰墩墩的进价比一个雪容融的进价多40元,购买20个冰墩墩和30个雪容融的价格相同.(1)今年2月第一周每个冰墩墩和雪容融的进价分别是多少元?(2)今年2月第一周,供应商以100元每个售出雪容融140个,150元每个售出冰墩墩120个.第二周供应商决定调整价格,每个雪容融的售价在第一周的基础上下降了m元,每个冰墩墩的价格不变,由于冬奥赛事的火热进行,第二周雪容融的销量比第一周增加了m个,而冰墩墩的销量比第一周增加了0.2m个,最终商家获利5160元,求m.24.定义:若四边形的一条对角线把它分成两个全等的三角形,则称这个四边形为等角四边形,并且称这条对角线为这个四边形的等分线,显然矩形是等角四边形,两条对角线都是它的等分线.(1)如图网格中存在一个△ABC,请在图1,图2中分别找一个点D,并连接AD,BD,使得四边形ADBC是以AB为等分线的等角四边形.(2)已知,如图3,在平面直角坐标系中,直线y=﹣x+m与x轴相交于点A(8,0),与y轴相交于点B.①求m的值.②若点C的坐标为(5,0),点P、点Q是△OAB边上的两个动点,当四边形OCPQ是以OP为等分线的等角四边形时,求BQ的长.参考答案一.选择题(每题3分,共10小题,测分30分)1.解:因为(﹣1)3=﹣1<0,(﹣1)2=1>0,1﹣π<0,所以只有有意义,故选:B.2.解:A、x3﹣3x+2=0,未知数最高次数为3,不是一元二次方程;B、ax2+bx+c=0,当a=0时,不是一元二次方程;C、3x2﹣x﹣1=0,是一元二次方程;D、x2+=﹣2,不是整式方程,不是一元二次方程;故选:C.3.解:A.=3,不是最简二次根式;B.=3,不是最简二次根式;C.=,不是最简二次根式;D.是最简二次根式.故选:D.4.解:这组数据的平均数为=3,中位数为3,众数为3,方差为×[(1﹣3)2+(2﹣3)2+2×(3﹣3)2+(6﹣3)2]=2.8,故选:C.5.解:∵x2﹣4x﹣3=0,∴x2﹣4x=3,则x2﹣4x+4=3+4,即(x﹣2)2=7,故选:A.6.解:÷===.故选:C.7.解:共有13名排球队员,挑选7名个头高的参加校排球比赛,所以小明需要知道自己是否入选.我们把所有同学的身高按大小顺序排列,第7名学生的身高是这组数据的中位数,所以小明知道这组数据的中位数,才能知道自己是否入选.故选:B.8.解:依题意,得500(1﹣x)2=380.故选:C.9.解:∵关于x的方程(k﹣1)x2有两个实数解,∴Δ=(﹣)2﹣4(k﹣1)×2≥0且k﹣1≠0,k≥0,解得:0≤k≤且k≠1,故选:D.10.解:∵关于x的一元二次方程a(x﹣x1)(x﹣x2)=0与关于x的一元一次方程dx+e=0有一个公共解x=x1,∴x=x1是方程a(x﹣x1)(x﹣x2)+(dx+e)=0的一个解.∵一元二次方程a(x﹣x1)(x﹣x2)+(dx+e)=0,∴ax2﹣(ax1+ax2﹣d)x+ax1x2+e=0,∵有两个相等的实数根,∴x1+x1=﹣,整理得:d=a(x2﹣x1).故选:B.二.填空题(每题4分,共6小题,满分24分)11.解:∵代数式有意义,∴x﹣3≥0,解得:x≥3,故答案为:x≥3.12.解:∵x=1是关于x的方程x2﹣2x+k=0的一个根,∴12﹣2+k=0解得:k=1.故答案为:1.13.解:(1)∵分,分,∴,∴成绩较为稳定的是乙,故答案为:乙.14.解:根据题意得:该同学的数学学期总评成绩是=89(分);故答案为:89.15.解:由题意可得5<a<10,∴a﹣4>0,a﹣11<0,原式=|a﹣4|﹣|a﹣11|=a﹣4﹣(11﹣a)=a﹣4﹣11+a=2a﹣15,故答案为:2a﹣15.16.解:过A作AP⊥EB延长线交于点P,∵AF∥BE,∴∠ABP=∠BAF,∴sin∠ABP=,cos∠ABP=,∴BP=AB,由BE旋转一定角度后得到B'E'可知,旋转角度为90°,过B'作BH⊥AP,交AP于点H,∵∠PAB+∠ABP=90°,∠D'AP+∠PAB=90°,∴∠D'AP=∠ABP,B'H=AB'sin∠D'AP=AB sin∠P'AP=AB,∴28+28=B'H+PB=AB+AB∴AB=56(cm);设CD=xcm,则AC=BD=cm,AD'=AD=x+=(cm),CD'=2CD=2x(cm),∵∠D'AC=90°,∴AC2+AD'2=CD'2,∴+=4x2,解得x=8,或x=﹣8(舍),∴CD'=2x=16(cm),故答案为:56,16.三.解答题(共8小题,满分0分)17.解:(1)原式=4﹣+=3+;(2)原式=()2﹣()2=5﹣6=﹣1.18.解:(1)∵x2﹣2x=3,∴x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,∴x1=3,x2=﹣1;(2)∵(x﹣5)2+x(x﹣5)=0,∴(x﹣5)(2x﹣5)=0,则x﹣5=0或2x﹣5=0,解得x1=5,x2=.19.解:(1)把甲组的成绩从小到大排列后,中间两个数的平均数是=6,则中位数a =6;b=×(5+6+6+6+7+7+7+7+8+9)=6.8,乙组学生成绩中,数据7出现了四次,次数最多,所以众数c=7.故答案为:6,6.8,7;(2)小明可能是甲组的学生,理由如下:因为甲组的中位数是6分,而小明得了7分,所以在小组中属中游略偏上,故答案为:甲;(3)选乙组参加决赛.理由如下:∵甲乙两组学生平均数相同,而S甲2=3.76>S乙2=1.16,∴乙组的成绩比较稳定,故选乙组参加决赛.故选:乙.20.解:∵AB=18m,AD=15m,根据题意,得(18﹣2x)(15﹣x)=144,解方程,得x=21(舍)或x=3,∴道路宽为3m.21.解:(1)∵a=3+2,b=3﹣2,∴a+b=(3+2)+(3﹣2)=6,a﹣b=(3+2)﹣(3﹣2)=4,∴a2﹣b2=(a+b)(a﹣b)=6×4=24;(2)a2﹣3ab+b2=(a﹣b)2+ab=﹣=32﹣1=31.22.解:(1)∵将x=代入方程,得﹣a+a﹣2=0,∴a=,设另外一个根为x,由根与系数的关系可知:+x=﹣a,∴x=1,(2)由题意可知:Δ=a2﹣4(a﹣2)=(a﹣2)2+4>0,∴不论a取何实数,该方程都有两个不相等的实数根23.解:(1)设今年2月第一周每个冰墩墩的进价为x元,每个雪容融的进价为y元,依题意得:,解得:.答:今年2月第一周每个冰墩墩的进价为120元,每个雪容融的进价为80元.(2)依题意得:(100﹣m﹣80)(140+m)+(150﹣120)(120+0.2m)=5160,整理得:m2+114m﹣1240=0,解得:m1=10,m2=﹣124(不合题意,舍去).答:m的值为10.24.解:(1)由题意知:△ABC≌△ABD或△ABC≌△BAD∴可画出如图1、图2所示的两个等角四边形;(2)①∵直线y=﹣与x轴交于点A(8,0),将点A(8,0)代入得:﹣,解得:m=6;②由(1)知,直线解析式为y=﹣与y轴交于点B,∴B(0,6),根据题意,分三种情况:Ⅰ,当点Q在OB上时,OQ=5,P是∠AOQ的平分线与AB的交点时,∴BQ=OB﹣OQ=6﹣5=1;Ⅱ,当四边形OCPQ是矩形时,∵,∴,∴CP=,∴OQ=CP=,∴BQ=OB﹣OQ=6﹣=3.75;Ⅲ,当P,Q两点都在AB上时,∵OB=6,OA=8,∴AB=10,∴OH•AB=OB•OA,∴OH=4.8,∴BH==3.6,∴QH==1.4,∴BQ=BH﹣QH=3.6﹣1.4=2.2或BQ=BH+QH=3.6+1.4=5,综上所述,BQ的长为:1或3.75或2.2或5.。

江苏省南京市将军山中学2022-2023学年八年级下学期3月月考数学试卷(含答案)

江苏省南京市将军山中学2022-2023学年八年级下学期3月月考数学试卷(含答案)

2022-2023学年初二下学期南京市将军山中学3月月考一.选择题(共6小题,每题2分,共12分)1.下面的图形是天气预报使用的图标,其中是中心对称图形的是( )A.B.C.D.2.为了了解某市七年级学生的体重情况,相关人员抽查了该市1000名七年级学生,则下列说法中错误的是( )A.该市七年级学生的全体是总体B.每个七年级学生的体重是个体C.抽查的1000名学生的体重是总体的一个样本D.这次调查样本的容量是10003.下面不可以判断四边形是平行四边形的是( )A.两组对边相等的四边形B.两组对角相等的四边形C.一组对边平行,一组邻角互补的四边形D.一组对边平行,一组对角相等的四边形4.下列事件中,为必然事件的是( )A.购买一张彩票,中奖B.一个袋中只装有2个黑球,从中摸出一个球是黑球C.抛掷一枚硬币,正面向上D.打开电视,正在播放广告5.我们把顺次连接四边形各边中点所得的四边形叫做中点四边形.若一个任意四边形的面积为a,则它的中点四边形面积为( )A.a B.a C.a D.a6.如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,以下结论:①∠DCF=∠BCD;②EF=CF;③∠DFE=4∠AEF;④S△ABC<2S△CEF.一定成立的是( )A.②③④B.①②③④C.①②③D.①②④二.填空题(共10小题,每小题2分,共20分)7.某小区要了解成年居民的学历情况,应采用 方式进行调查.8.一只不透明的袋中装有除颜色外完全相同的6个球,其中3个红球、3个黄球,将球摇匀.从袋中任意摸出3个球,则其中至少有2个球同色的事件是 事件.(填“必然”、“不可能”、“随机”)9.从下列图形:等边三角形、平行四边形、矩形、菱形、正方形,圆中,任意抽取一个图形,抽取的图形既是轴对称图形,又是中心对称图形的概率是 .10.一只不透明的袋子中有1个白球、1个红球和2个黄球,这些球除颜色不同外其它都相同.搅均后从中任意摸出1个球,摸出白球可能性 摸出黄球可能性.(填“等于”或“小于”或“大于”).11.已知三角形的三条中位线的长度分别为6cm、7cm、11cm,则这个三角形的周长为 cm.12.如图,▱ABCD中,EF为对角线BD上的两点,若添加一个条件使四边形AECF为平行四边形,则可以是: .13.如图,△ABC中,∠ABC=68°,将△ABC绕点B逆时针旋转到△A′BC′的位置,使得AA′∥BC,则∠CBC′= °.14.如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD =BC,∠FPE=100°,则∠PFE的度数是 .15.如图,矩形ABCD的两条对角线夹角为60°,一条短边为4,则矩形的对角线长为 .16.已知矩形ABCD,AB=6,AD=8,将矩形ABCD绕点A顺时针旋转θ(0°<θ<360°)得到矩形AEFG,当θ= °时,GC=GB.三.解答题(共10小题,共68分)17.(4分)如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1(点A的对应点为A1).(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接OA、OA1、OB、OB1,并根据旋转的性质用符号语言写出2条不同类型的正确结论.18.(6分)△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC绕点O逆时针旋转90°后的△A1B1C1.(2)将△ABC向右平移3个单位,作出平移后的△A2B2C2.(3)若点M是平面直角坐标系中直线AB上的一个动点,点N是x轴上的一个动点,且以O、A2、M、N为顶点的四边形是平行四边形,请直接写出点N的坐标.19.(6分)如图,四边形ABCD是平行四边形,点E、F分别在BC、AD上,且BE=DF.求证:AC、EF互相平分.20.(7分)如图,①四边形ABCD是平行四边形,线段EF分别交AD、AC、BC于点E、O、F,②EF⊥AC,③AO=CO.(1)求证:四边形AFCE是平行四边形;(2)在本题①②③三个已知条件中,去掉一个条件,(1)的结论依然成立,这个条件是 (直接写出这个条件的序号).21.(6分)题目:如图1,已知线段AB、BC.用直尺和圆规作▱ABCD.(保留作图痕迹,不写作法)(1)图2是小明所作的图,根据作图痕迹,可以知道他作图的依据是“ 的四边形是平行四边形”;(2)请你以“对角线互相平分的四边形是平行四边形”为依据完成题目中的作图.22.(6分)某市林业局要移植一种树苗.对附近地区去年这种树苗移植成活的情况进行调查统计,并绘制了如图折线统计图:(1)这种树苗成活概率的估计值为 .(2)若移植这种树苗6000棵,估计可以成活 棵.(3)若计划成活9000棵这种树苗,则需移植这种树苗大约多少棵?23.(6分)某市教研室的数学调研小组对老师在讲评试卷中学生参与的深度与广度进行评调查,其评价项目为“主动质疑”、“独立思考”、“专注听讲”、“讲解题目”四项,该调研小组随机抽取了若干名初中九年级学生的参与情况,绘制成如图所示的频数.分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题(1)在这次评价中,一共抽查了 名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为 度;(3)请将频数分布直方图补充完整;(4)如果全市有60000名九年级学生,那么在试卷评讲课中,“独立思考”的九年级学生约有多少人?24.(7分)利用矩形的性质,证明:“直角三角形斜边上的中线等于斜边的一半”.已知:在Rt△ABC中,∠ABC=90°,BO是中线.求证: .证明:25.(8分)如图,在▱ABCD中,E、F分别是AD、BC的中点,∠AEF的角平分线交AB于点M,∠EFC的角平分线交CD于点N,连接MF、NE.(1)求证:四边形EMFN是平行四边形.(2)小明在完成(1)的证明后继续进行了探索,他猜想:当AB=AD时,四边形EMFN 是矩形.请在下列框图中补全他的证明思路.小明的证明思路由(1)知四边形EMFN是平行四边形.要证▱EMFN是矩形,只要证∠MFN=90°.由已知条件知∠EFN=∠CFN,故只要证∠EFM=∠BFM.易证 ,故只要证∠BFM=∠BMF,即证BM=BF,故只要证 .易证AE=AM,AE=BF,即可得证.26.(12分)(1)问题背景如图甲,∠ADC=∠B=90°,DE⊥AB,垂足为E,且AD=CD,DE=5,求四边形ABCD 的面积.小明发现四边形ABCD的一组邻边AD=CD,这就为旋转作了铺垫.于是,小明同学有如下思考过程:第一步:将△ADE绕点D逆时针旋转90°;第二步:利用∠A与∠DCB互补,证明F、C、B三点共线,从而得到正方形DEBF;进而求得四边形ABCD的面积.请直接写出四边形ABCD的面积为 .(2)类比迁移如图乙,P为等边△ABC外一点,BP=1,CP=3,且∠BPC=120°,求四边形ABPC 的面积.(3)拓展延伸如图丙,在五边形ABCDE中,BC=4,CD+AB=4,AE=DE=6,AE⊥AB,DE⊥CD,求五边形ABCDE的面积.2022-2023学年初二下学期南京市将军山中学3月月考参考答案与试题解析一.选择题(共6小题)1.下面的图形是天气预报使用的图标,其中是中心对称图形的是( )A.B.C.D.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.2.为了了解某市七年级学生的体重情况,相关人员抽查了该市1000名七年级学生,则下列说法中错误的是( )A.该市七年级学生的全体是总体B.每个七年级学生的体重是个体C.抽查的1000名学生的体重是总体的一个样本D.这次调查样本的容量是1000【解答】解:A、该市七年级学生的体重情况是总体,故A错误;B、每个七年级学生的体重是个体,故B正确;C、抽查的1000名学生的体重是总体的一个样本,故C正确;D、这次调查样本的容量是1000,故D正确;故选:A.3.下面不可以判断四边形是平行四边形的是( )A.两组对边相等的四边形B.两组对角相等的四边形C.一组对边平行,一组邻角互补的四边形D.一组对边平行,一组对角相等的四边形【解答】解:A、两组对边相等的四边形是平行四边形,故此选项不合题意;B、两组对角相等的四边形是平行四边形,故此选项不合题意;C、一组对边平行,一组邻角互补的四边形不一定是平行四边形,故此选项符合题意;D、一组对边平行,一组对角相等的四边形可证出是平行四边形,故此选项不合题意;故选:C.4.下列事件中,为必然事件的是( )A.购买一张彩票,中奖B.一个袋中只装有2个黑球,从中摸出一个球是黑球C.抛掷一枚硬币,正面向上D.打开电视,正在播放广告【解答】解:A、购买一张彩票,中奖是随机事件,故A错误;B、一个袋中只装有2个黑球,从中摸出一个球是黑球是必然事件,故B正确;C、抛掷一枚硬币,正面向上是随机事件,故C错误;D、打开电视,正在播放广告是随机事件,故D错误;故选:B.5.我们把顺次连接四边形各边中点所得的四边形叫做中点四边形.若一个任意四边形的面积为a,则它的中点四边形面积为( )A.a B.a C.a D.a【解答】解:如图,设AC与EH、FG分别交于点N、P,BD与EF、HG分别交于点K、Q,∵E是AB的中点,EF∥AC,EH∥BD,∴△EBK∽△ABM,△AEN∽△EBK,∴=,S△AEN=S△EBK,∴=,同理可得=,=,=,∴=,∵四边形ABCD的面积是a,则四边形EFGH的面积为a.故选:A.6.如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,以下结论:①∠DCF=∠BCD;②EF=CF;③∠DFE=4∠AEF;④S△ABC<2S△CEF.一定成立的是( )A.②③④B.①②③④C.①②③D.①②④【解答】解:∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故①正确;如图,延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=EM=FE,故②正确;∵EF=FM,∴S△EFC=S△CFM,即S△ECM=2S△CEF,∵△AEF≌△DMF,∴S△AEF=S△DMF,∴S△ECM=S四边形AECD,∵S△ABC<S四边形AECD,故S△ABC<2S△CEF;故③不成立;设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故④正确.故选:D.二.填空题(共10小题)7.某小区要了解成年居民的学历情况,应采用 普查 方式进行调查.【解答】解:某小区要了解成年居民的学历情况,应采用普查方式进行调查,故答案为:普查;8.一只不透明的袋中装有除颜色外完全相同的6个球,其中3个红球、3个黄球,将球摇匀.从袋中任意摸出3个球,则其中至少有2个球同色的事件是 必然 事件.(填“必然”、“不可能”、“随机”)【解答】解:至少有2个球同色的事件是必然事件.故答案是:必然.9.从下列图形:等边三角形、平行四边形、矩形、菱形、正方形,圆中,任意抽取一个图形,抽取的图形既是轴对称图形,又是中心对称图形的概率是 .【解答】解:在等边三角形、平行四边形、矩形、菱形、正方形,圆这6个图形中,既是轴对称图形,又是中心对称图形的有矩形、菱形、正方形,圆这4个,所以抽取的图形既是轴对称图形,又是中心对称图形的概率是=,故答案为:.10.一只不透明的袋子中有1个白球、1个红球和2个黄球,这些球除颜色不同外其它都相同.搅均后从中任意摸出1个球,摸出白球可能性 小于 摸出黄球可能性.(填“等于”或“小于”或“大于”).【解答】解:∵袋子中有1个白球、1个红球和2个黄球,共有4个球,∴摸到白球的概率是,摸到红球的概率是,摸到黄球的概率是=,∴摸出白球可能性<摸出黄球的可能性;故答案为:小于.11.已知三角形的三条中位线的长度分别为6cm、7cm、11cm,则这个三角形的周长为 48 cm.【解答】解:∵三角形的三条中位线的长度分别为6cm、7cm、11cm,∴这个三角形的三条边分别为12cm,14cm,22cm,∴这个三角形的周长=12+14+22=48cm.故答案为:48.12.如图,▱ABCD中,EF为对角线BD上的两点,若添加一个条件使四边形AECF为平行四边形,则可以是: BE=DF .【解答】解:可以是BE=DF.理由:在平行四边形ABCD中,则可得AD∥BC,且AD=BC,∴∠ADB=∠CBD,∴△ADF≌△CBE,∴CE=AF,同理可得AE=CF,∴四边形AECF是平行四边形.补充其他条件只要使四边形AECF是平行四边形都可,答案并不唯一.13.如图,△ABC中,∠ABC=68°,将△ABC绕点B逆时针旋转到△A′BC′的位置,使得AA′∥BC,则∠CBC′= 44 °.【解答】解:∵△ABC绕点A逆时针旋转到△BA′C′的位置,∴BA′=AB,∴∠BAA′=∠BA′A,∵AA′∥BC,∴∠A′AB=∠ABC,∵∠ABC=68°,∴∠A′AB=68°,∴∠ABA′=180°﹣2×68°=44°,∵∠CBC′=∠ABA′,∴∠CBC′=44°.故答案为44.14.如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD =BC,∠FPE=100°,则∠PFE的度数是 40° .【解答】解:∵P是对角线BD的中点,E是AB的中点,∴EP=AD,同理,FP=BC,∵AD=BC,∴PE=PF,∵∠FPE=100°,∴∠PFE=40°,故答案为:40°.15.如图,矩形ABCD的两条对角线夹角为60°,一条短边为4,则矩形的对角线长为 8 .【解答】解:∵四边形ABCD是矩形,∴∠ABC=90°,OA=OC=AC,OB=OD=BD,AC=BD,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=4,∴AC=2OA=8,故答案为:8.16.已知矩形ABCD,AB=6,AD=8,将矩形ABCD绕点A顺时针旋转θ(0°<θ<360°)得到矩形AEFG,当θ= 60或300 °时,GC=GB.【解答】解:当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角θ=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角θ=360°﹣60°=300°.故答案为:60或300三.解答题(共10小题)17.如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1(点A的对应点为A1).(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接OA、OA1、OB、OB1,并根据旋转的性质用符号语言写出2条不同类型的正确结论.【解答】解:(1)如图,点O即为所求;(2)OA=OA1、∠AOA1=∠BOB1.18.△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC绕点O逆时针旋转90°后的△A1B1C1.(2)将△ABC向右平移3个单位,作出平移后的△A2B2C2.(3)若点M是平面直角坐标系中直线AB上的一个动点,点N是x轴上的一个动点,且以O、A2、M、N为顶点的四边形是平行四边形,请直接写出点N的坐标.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)当OA2为平行四边形的边时,N点坐标为(﹣3,0)或(2,0),当OA2为平行四边形的对角线时,N点坐标为(3,0).19.如图,四边形ABCD是平行四边形,点E、F分别在BC、AD上,且BE=DF.求证:AC、EF互相平分.【解答】证明:连接AE、CF,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵BE=DF,∴AD﹣DF=BC﹣BE,∴AF=CE,∵AF∥CE,∴四边形AECF是平行四边形,∴AC、EF互相平分.20.如图,①四边形ABCD是平行四边形,线段EF分别交AD、AC、BC于点E、O、F,②EF⊥AC,③AO=CO.(1)求证:四边形AFCE是平行四边形;(2)在本题①②③三个已知条件中,去掉一个条件,(1)的结论依然成立,这个条件是 ② (直接写出这个条件的序号).【解答】解:(1)∵四边形ABCD是平行四边形,∴AE∥CF,∴∠EAO=∠FCO,在△AOE和△COF中,∴△AOE≌△COF(ASA),∴AE=CF,∴四边形AFCE是平行四边形.(2)在本题①②③三个已知条件中,去掉一个条件②,(1)的结论依然成立.故答案为②21.题目:如图1,已知线段AB、BC.用直尺和圆规作▱ABCD.(保留作图痕迹,不写作法)(1)图2是小明所作的图,根据作图痕迹,可以知道他作图的依据是“ 一组对边平行且相等 的四边形是平行四边形”;(2)请你以“对角线互相平分的四边形是平行四边形”为依据完成题目中的作图.【解答】解:(1)一组对边平行且相等的四边形是平行四边形,故答案为:一组对边平行且相等;(2)如下图,连接AC后作AC中垂线,得到AC中点O;再连接BO并延长,利用圆规得到OD=OB.则四边形ABCD即为所求作的平行四边形.22.某市林业局要移植一种树苗.对附近地区去年这种树苗移植成活的情况进行调查统计,并绘制了如图折线统计图:(1)这种树苗成活概率的估计值为 0.9 .(2)若移植这种树苗6000棵,估计可以成活 5400 棵.(3)若计划成活9000棵这种树苗,则需移植这种树苗大约多少棵?【解答】解:(1)从折线统计图中的发展趋势,随着实验次数的增加,频率越稳定在0.9附近波动,根据频率估计概率,这种树苗成活概率约为0.9,故答案为:0.9;(2)6000×0.9=5400(棵),故答案为:5400;(3)9 000÷0.9=10000(棵),答:需移植这种树苗大约10000棵.23.某市教研室的数学调研小组对老师在讲评试卷中学生参与的深度与广度进行评调查,其评价项目为“主动质疑”、“独立思考”、“专注听讲”、“讲解题目”四项,该调研小组随机抽取了若干名初中九年级学生的参与情况,绘制成如图所示的频数.分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题(1)在这次评价中,一共抽查了 560 名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为 54 度;(3)请将频数分布直方图补充完整;(4)如果全市有60000名九年级学生,那么在试卷评讲课中,“独立思考”的九年级学生约有多少人?【解答】解:(1)调查的总人数是:224÷40%=560(人),故答案是:560;(2)“主动质疑”所在的扇形的圆心角的度数是:360°×=54°,故答案是:54;(3)“讲解题目”的人数是:560﹣84﹣168﹣224=84(人).(4)60000×=18000(人),答:在试卷评讲课中,“独立思考”的初三学生约有18000人.24.利用矩形的性质,证明:“直角三角形斜边上的中线等于斜边的一半”.已知:在Rt△ABC中,∠ABC=90°,BO是中线.求证: BO=AC .证明:【解答】解:求证:BO=AC,故答案为:BO=AC.证明:如图,延长BO到D,使得OD=OB.∵BO是中线,∴OA=OC,∵OB=OD,∴四边形ABCD是平行四边形,∵∠ABC=90°,∴四边形ABCD是矩形,∴AC=BD=2OB,即BO=AC.25.如图,在▱ABCD中,E、F分别是AD、BC的中点,∠AEF的角平分线交AB于点M,∠EFC的角平分线交CD于点N,连接MF、NE.(1)求证:四边形EMFN是平行四边形.(2)小明在完成(1)的证明后继续进行了探索,他猜想:当AB=AD时,四边形EMFN 是矩形.请在下列框图中补全他的证明思路.小明的证明思路由(1)知四边形EMFN是平行四边形.要证▱EMFN是矩形,只要证∠MFN=90°.由已知条件知∠EFN=∠CFN,故只要证∠EFM=∠BFM.易证 ∠EFM=∠BMF ,故只要证∠BFM=∠BMF,即证BM=BF,故只要证 AM=BM .易证AE=AM,AE=BF,即可得证.【解答】(1)证明:在▱ABCD中,∠A=∠C,AD∥BC,AD=BC∵E、F分别是AD、BC的中点,∴AE=AD,CF=BC又∵AD=BC,∴AE=CF,∵AD∥BC,∴∠AEF=∠CFE.∵EM平分∠AEF,FN平分∠EFC.∴∠AEM=∠FEM=∠AEF,∠CFN=∠FEN=∠CFE.∵∠AEF=∠CFE,∠AEM=∠AEF,∠CFN=∠CFE.∴∠AEM=∠CFN,在△AME和△CNF中,∴△AME≌△CNF(ASA)∵∠FEM=∠FEN,∴EM∥FN,∵△AME≌△CNF,∴EM=FN.∵EM∥FN,EM=FN,∴四边形EMFN是平行四边形;(2)解:∠EFM=∠BMF,AM=BM(或:M是AB中点).故答案为:∠EFM=∠BMF,AM=BM.26.(1)问题背景如图甲,∠ADC=∠B=90°,DE⊥AB,垂足为E,且AD=CD,DE=5,求四边形ABCD 的面积.小明发现四边形ABCD的一组邻边AD=CD,这就为旋转作了铺垫.于是,小明同学有如下思考过程:第一步:将△ADE绕点D逆时针旋转90°;第二步:利用∠A与∠DCB互补,证明F、C、B三点共线,从而得到正方形DEBF;进而求得四边形ABCD的面积.请直接写出四边形ABCD的面积为 25 .(2)类比迁移如图乙,P为等边△ABC外一点,BP=1,CP=3,且∠BPC=120°,求四边形ABPC 的面积.(3)拓展延伸如图丙,在五边形ABCDE中,BC=4,CD+AB=4,AE=DE=6,AE⊥AB,DE⊥CD,求五边形ABCDE的面积.【解答】解:(1)由题可知.故答案为25.(2)如图,延长PC至D,取CD=1,连接AD.∵等边△ABC中,∠BAC=60°,∠BPC=120°,∴∠BPC+∠BAC=180°,∴四边形ABPC中,∠ABP+∠ACP=360°﹣180°=180°,∴∠ABP=∠ACD=180°﹣∠ACP,又∵AB=AC,BP=CD,∴△ABP≌△ACD(SAS),∴AP=AP,∠BAP=∠CAP.∵∠BAP+∠PAC=∠BAC=60°,∴∠CAD+∠PAC=60°,∴△APD为等边三角形且PD=PC+CD=3+1=4,∴.(3)如图,延长CD至DF=AB,连接EF、BE、CE.∵AB=DF,AE=DE,∠BAE=∠FDE=90°,∴△ABE≌△DFE(SAS),∴EB=EF.∵CD+AB=CD+DF=4,BC=4,∴CD+DF=CF=BC,∴△EBC≌△EFC(SSS),∴。

2023学年广东省揭阳市普宁市赤岗中学等五校八年级(下)月考数学试卷(3月份)+答案解析(附后)

2023学年广东省揭阳市普宁市赤岗中学等五校八年级(下)月考数学试卷(3月份)+答案解析(附后)

2022-2023学年广东省揭阳市普宁市赤岗中学等五校八年级(下)月考数学试卷(3月份)1.下面给出了5个式子:①;②;③;④;⑤;⑥,其中不等式有( )A. 2个B. 3个C. 4个D. 5个2. 在中,,,的对边分别是a,b,c,下列条件中,不能判断为直角三角形的是( )A.,, B.C.:::1:2 D.3. 不等式的解集在数轴上表示正确的是( )A. B.C. D.4. 已知,则下列各式中一定成立的是( )A. B. C. D.5. 下列命题的逆命题是假命题的是( )A. 直角三角形的两个锐角互余B. 两直线平行,内错角相等C. 三条边对应相等的两个三角形是全等三角形D. 对顶角相等6.如图,在中,,的平分线BD交AC于点D,如果DE垂直平分BC,那么( )A.B.C.D.7. 在平面直角坐标系中,直线的位置如图所示,则不等式的解集为( )A. B. C. D.8. 如图,为增强人民体质,提高全民健康水平,某市拟修建一个大型体育中心P,要使得体育中心P到三个乡镇中心A,B,C的距离相等,则点P应设计在( )A. 三条高线的交点处B.三条中线的交点处C. 三条角平分线的交点处D. 三边垂直平分线的交点处9. 若关于x的不等式组无解,则a的取值范围是( )A. B. C. D.10.如图,在格点中找一点C,使得是等腰三角形,且AB为其中的一条腰,这样的点C一共有( )A. 3个B. 4个C. 5个D. 6个11. 用反证法证明命题“已知中,;求证:”第一步应先假设______ .12. 根据“3x与5的和是负数”可列出不等式______.13. 如图,在直角坐标系中,点D的坐标是,DC是的高,且,,则的度数为______ .14. 如图,已知一次函数和的图象交于点,则可得不等式的解集是______ .15. 如图,是等边三角形,,N是AB的中点,AD是M是AD上的一个动点,连接BM,M N,则的BC边上的中线,最小值是______.16. 解下列不等式组,并把不等式组的解集在数轴上表示出来.17. 如图,已知,利用直尺和圆规作图:在BC上找一点D,使点D到AC、AB的距离相等不写作法,保留作图痕迹在的条件下,若,,则的面积是______ .18. 如图,C是路段AB的中点,两人从C同时出发,以相同的速度分别沿两条直线行走,并同时到达D,E两地,,,D,E与路段AB的距离相等吗?为什么?19. 已知关于x的方程若该方程的解满足,求a的取值范围;若该方程的解是不等式的最小整数解,求a的值.20. 如图,在中,,,AC的垂直平分线DE分别交AB,AC 于点D,求证:是等腰三角形;若的周长是13,,求AC的长.21. 为促进复工复产,调动消费积极性,两个商场分别推出了如下促销活动.甲商场:所有商品按标价9折出售.乙商场:一次购买商品总额不超过300元的按原价付费,超过300元的部分打8折.设需要购买商品的原价总额为x元,去甲商场购买应付元,去乙商场购买应付元.填空:当时,的关系式为______ ,的关系式为:______ .黄老师准备去商场购物,购物的原价会超过300元,请说明黄老师选择去哪个商场购物更划算?22.如图,在中,,,,动点P、Q同时从A、B两点出发,分别在AB、BC边上匀速移动,点P的运动速度为,点Q的运动速度为,当点P到达点B时,P、Q两点同时停止运动,设点P的运动时间为当t为何值时,为等边三角形?当t为何值时,为直角三角形?23. 为了迎接兔年的到来,某网店上架了玉兔亲子装卫衣,已知1件大人卫衣和1件小孩卫衣的售价为200元;2件大人卫衣和1件小孩卫衣的售价为320元.每件大人卫衣和小孩卫衣的售价分别为多少元?已知大人卫衣和小孩卫衣的成本分别为80元/件和50元/件.进入1月后,这款亲子装卫衣持续热销,于是网店再购进了这款卫衣共600件,其购进总价不超过37800元,且小孩卫衣的数量不超过大人卫衣数量的2倍.设网店购进大人卫衣m件,求网店最多购进多少件大人卫衣?在的条件下,为回馈新老客户,网店决定对大人卫衣降价后再销售,若一月份购进的这些卫衣全部售出,所获利润为w元,请求出w与m之间的函数关系式,说明当m为何值时,所获利润最大?并求出最大利润.答案和解析1.【答案】C【解析】解:由题可得:①;②;⑤;⑥是不等式,故不等式有4个.故选:依据不等式的定义来判断即可,用“>”、“”、“<”、“”、“”等不等号表示不相等关系的式子是不等式.本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是会识别常见的不等号:“>”、“”、“<”、“”、“”.2.【答案】D【解析】解:A、,符合勾股定理的逆定理,能够判断是直角三角形,不符合题意;B、由可得:,符合勾股定理的逆定理,能够判断是直角三角形,不符合题意;C、根据:::1:2,可得:,能够判断是直角三角形,不符合题意;D 、,可得,不能够判断是直角三角形,符合题意;故选:根据勾股定理的逆定理,三角形内角和定理进行计算,逐一判断即可解答.本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足,那么这个三角形就是直角三角形.也考查了三角形内角和定理.3.【答案】A【解析】解:不等式的解集为,在数轴上表示如下:.故选:先求出不等式的解集为,再根据其在数轴上的表示方法即可得.本题考查了在数轴上表示一元一次不等式的解集,不等式的解集在数轴上表示的方法:>,向右画;<,向左画,在表示解集时“”,“”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.【答案】B【解析】解:,,故A不符合题意;,,故B符合题意;当时,,故C不符合题意;,,,故D不符合题意,故选:根据不等式的性质:①不等式的两边同时加上或减去同一个数或同一个含有字母的式子,不等号的方向不变,②不等式的两边同时乘以或除以同一个正数,不等号的方向不变,分别判断即可.本题考查了不等式的性质,熟练掌握不等式的性质是解题的关键.5.【答案】D【解析】解:A、直角三角形的两个锐角互余的逆命题是两个锐角互余的三角形是直角三角形,逆命题是真命题,不符合题意;B、两直线平行,内错角相等的逆命题是内错角相等,两直线平行,逆命题是真命题,不符合题意;C、三条边对应相等的两个三角形是全等三角形的逆命题是全等三角形的三条边对应相等,逆命题是真命题,不符合题意;D、对顶角相等的逆命题是相等的角是对顶角,逆命题是假命题,符合题意;故选:分别写出各个命题的逆命题,根据平行线的判定定理、全等三角形的判定定理、对顶角、直角三角形的性质判断即可.本题考查的是命题的真假判断、逆命题的概念,正确写出各个命题的逆命题是解题的关键.6.【答案】C【解析】解:在中,,DE垂直平分BC,,,在和中,,≌,,是的平分线,,故选:根据线段垂直平分线的性质得到,根据等腰三角形的性质得到,根据角平分线的定义、三角形内角和定理计算即可.本题考查的是线段的垂直平分线的性质和全等三角形的性质和判定,掌握线段的垂直平分线上的点到线段的两个端点的距离相等.7.【答案】C【解析】解:直线的图象经过点,且函数值y随x的增大而增大,不等式的解集是故选:从图象上得到函数的增减性及与y轴的交点的横坐标,即能求得不等式的解集.本题考查了一次函数与一元一次不等式,一次函数的图象,一次函数的性质,认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系.8.【答案】D【解析】解:体育中心P到三个乡镇中心A、B、C的距离相等,,点P在线段AB的垂直平分线上,同理,点P在线段AC的垂直平分线上,点应设计在三条边的垂直平分线的交点,故选:直接根据线段垂直平分线的性质解答即可.本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.9.【答案】C【解析】解:不等式组无解,,解得:故选:利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.10.【答案】C【解析】解:如图,点C的位置共有5个.故选根据网格结构,分别以A、B为顶角顶点作出与AB长度相等的格点线段即可得到点C的位置.本题考查了等腰三角形的判定,关键在于根据网格结构找出与AB长度相等的线段.11.【答案】【解析】解:第一步应先假设;故答案为:根据反证法的步骤,先假设命题的结论不成立,即假设结论的反面成立,进行作答即可.本题考查反证法.熟练掌握反证法的步骤是解题的关键.12.【答案】【解析】解:由题意得:,故答案为:首先表示“3x与5的和”,再表示“负数”即可.此题主要考查了由实际问题抽象出一元一次不等式,关键是抓住题目中的关键词,如“大于小于、不超过不低于、是正数负数”“至少”、“最多”等等,正确选择不等号.13.【答案】【解析】解:点D的坐标是,,是的高,且,是的角平分线,,而,的度数为故答案为:根据已知条件可以证明AD是的角平分线即可求解.此题主要考查了坐标与图形的性质,同时也利用了角平分线的判定定理,题目比较简单.14.【答案】【解析】解:一次函数和的图像交于点,的解集是故答案为:直接根据图象作答即可.本题考查了根据图象求不等式组的解集,正确理解图象含义是解题的关键.15.【答案】【解析】解:连接CM,CN,是等边三角形,AD是中线,,,是BC的垂直平分线,,,即当点C、M、N三点共线时,最小值为CN的长,点N是AB的中点,,,,最小值为:,故答案为:连接CM,CN,由等腰三角形的性质可知:AD是BC的垂直平分线,得,则,即当点C、M、N三点共线时,最小值为CN的长,利用勾股定理求出CN的长即可.本题主要考查了等边三角形的性质,勾股定理,线段垂直平分线的性质,两点之间,线段最短等知识,将最小值转化为CN的长是解题的关键.16.【答案】解:解不等式①,得:,解不等式②,得:,将不等式的解集表示在数轴上为:不等式组的解集为:【解析】分别求出每一个不等式的解集,在数轴上表示出每个不等式的解集即可确定不等式组的解集.本题主要考查解一元一次不等式组的基本技能,准确求出每个不等式的解集是解题的根本,将不等式解集表示在数轴上是关键.17.【答案】7【解析】解:如图,点D即为所求.过点D作于点E,为的平分线,,,的面积为故答案为:利用角平分线的作图方法,作的平分线,与BC的交点即为点根据角平分线的性质可得,再利用三角形的面积公式计算即可.本题考查作图-复杂作图、角平分线的性质,熟练掌握角平分线的性质以及作图方法是解答本题的关键.18.【答案】解:D,E与路段AB的距离相等,理由:点C是路段AB的中点,,两人从C同时出发,以相同的速度分别沿两条直线行走,,,,,在和中,,,【解析】本题主要考查了全等三角形的判定与性质.首先根据题意可知,,再根据HL定理证明,可得到19.【答案】解:解方程,得,该方程的解满足,,解得;解不等式,去括号,得:,移项,得,合并同类项,得,系数化成1得:则最小的整数解是把代入得:,解得:【解析】首先要解这个关于x的方程,求出方程的解,根据方程的解满足,可以得到一个关于a的不等式,就可以求出a的范围;首先解不等式求得不等式的解集,然后确定解集中的最小整数值,代入方程求得a的值即可.本题考查了一元一次不等式的解法以及方程的解的定义,正确解不等式求得x的值是关键.20.【答案】证明:,,,是AC的垂直平分线,,,,,,是等腰三角形;解:的周长是13,,,,,,,,【解析】先利用等腰三角形的性质以及三角形内角和定理可得,再利用线段的垂直平分线性质可得,从而利用等腰三角形的性质可得,然后利用三角形外角的性质可得,最后根据等角对等边即可解答;根据已知和的结论易得,从而可得本题考查了等腰三角形的判定与性质,线段垂直平分线的性质,熟练掌握等腰三角形的判定与性质,以及线段垂直平分线的性质是解题的关键.21.【答案】【解析】解:由题意可得,,当时,,当时,,;故答案为:,;令,解得,将代入得,,由解析式可得,当时,去甲商场购物更合算;当时,两家商场购物一样合算;当时,去甲商场购物更合算.根据题意和题目中的数据,可以分别写出,关于x的函数关系式;由点E的实际意义并结合图象解答即可.本题考查了一次函数的应用及一元一次不等式的应用,解答本题的关键是明确题意,利用数形结合的思想解答.22.【答案】解:在中,,,,,,,当时,为等边三角形,即,;当时,为等边三角形;若为直角三角形,①当时,,即,,②当时,,即,即当或时,为直角三角形.【解析】用含t的代数式表示出BP、由于,当时,可得到关于t的一次方程,求解即得结论;分两种情况进行讨论:当时,当时.利用直角三角形中,含角的边间关系,得到关于t的一次方程,求解得结论.本题考查了含角的直角三角形、等边三角形的判定和性质,分类讨论的思想方法,利用“直角三角形中,角所对的边等于斜边的一半”及“有一个角是的等腰三角形是等边三角形”,得到关于t的一次方程是解决本题的关键.23.【答案】解:设每件大人卫衣售价x元,每件小孩卫衣售价y元,由题意得:,解得,答:每件大人卫衣售价120元,每件小孩卫衣售价80元;设网店购进大人卫衣m件,则购进小孩卫衣件,由题意得:,解得,的最大值为260,答:网店最多购进260件大人卫衣;根据题意得:,,且,当时,w最大,最大值为17600,与m之间的函数关系式为,当时,所获利润最大,最大利润17600元.【解析】设每件大人卫衣售价x元,每件小孩卫衣售价y元,根据“1件大人卫衣和1件小孩卫衣的售价为200元;2件大人卫衣和1件小孩卫衣的售价为320元”列出二元一次方程组,解方程组即可;设网店购进大人卫衣m件,则购进小孩卫衣件,根据“购进总价不超过37800元,且小孩卫衣的数量不超过大人卫衣数量的2倍”列出不等数组,解不等式组即可;根据总利润=大人卫衣和小孩卫衣利润之和列出函数解析式,再根据函数的性质求最值.本题考查了一次函数的应用,二元一次方程组及一元一次不等式组的应用,关键是找出数量关系列出函数解析式、方程组和不等式.。

湖北省武汉市江岸区七一华源中学2019-2020学年八年级(下)月考数学试卷(3月份) 解析版

湖北省武汉市江岸区七一华源中学2019-2020学年八年级(下)月考数学试卷(3月份)  解析版

2019-2020学年湖北省武汉市江岸区七一华源中学八年级(下)月考数学试卷(3月份)一.选择题(共10小题)1.使二次根式有意义的x的取值范围是()A.x≠2B.x>2C.x≤2D.x≥22.下列式子中,属于最简二次根式的是()A.B.C.D.3.下列各式计算正确的是()A.8﹣2=6B.5+5=10C.4÷2=2D.4×2=8 4.不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠CC.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D5.下列条件中,不能判断△ABC为直角三角形的是()A.a2=1,b2=2,c2=3B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:56.八年级(3)班同学要在广场上布置一个矩形的花坛,计划用红花摆成两条对角线.如果一条对角线用了49盆红花,还需要从花房运来红花()A.48盆B.49盆C.50盆D..51盆7.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺8.如图,在▱ABCD中,AB=5,AD=6,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为()A.3B.C.D.49.如图,在菱形ABCD中,AB=6,∠ABC=60°,M为AD中点,P为对角线BD上一动点,连结P A和PM,则P A+PM的值最小是()A.3B.2C.3D.610.在▱ABCD中,BC边上的高为4,AB=5,AC=2,则▱ABCD的周长等于()A.12B.16C.16或24D.12或20二.填空题(共6小题)11.是整数,则最小的正整数a的值是.12.已知x=+1,y=﹣1,则x2﹣y2=.13.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是.14.已知x+=,那么x﹣=.15.在矩形ABCD中,E、F、M分别为AB、BC、CD边上的点,且AB=6,BC=7,AE=3,DM=2,EF⊥FM,则EM的长为.16.如图,在矩形ABCD中,AB=2,AD=1,点P在线段AB上运动,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原设四边形EPFD的面积为S,当四边形EPFD为菱形时,请写出S的取值范围.三.解答题(共7小题)17.(1)(+)×(2)(4﹣3)﹣18.先化简,再求值:+x﹣4y﹣,其中x=,y=4.19.如图,在边长为a的正方形ABCD中,M是CD的中点,N是BC上一点,且BN=BC.求△AMN的面积.20.如图在8×8的正方形网格中,△ABC的顶点在边长为1的小正方形的顶点上.(1) 填空:∠ABC=,BC=.(2)若点A在网格所在的坐标平面里的坐标为(1,﹣2),请你在图中找出一点D,并作出以A、B、C、D四个点为顶点的平行四边形,求出满足条件的D点的坐标.21.如图,E、F、G、H分别为四边形ABCD四边之中点.(1)求证:四边形EFGH为平行四边形;(2)当AC、BD满足时,四边形EFGH为菱形.当AC、BD满足时,四边形EFGH为矩形.当AC、BD满足时,四边形EFGH为正方形.22.在三角形△ABC中,D是BC边的中点,AD=BC.(1)△ABC的形状为.(2)如图,BM=3,BC=12,∠B=45°,∠MAN=45°,求CN;(3)在(2)的条件下,AN=.23.如图所示,在平面直角坐标系中A(a,0),B(b,0),D(0,d),以AB,AD为邻边做平行四边形ABCD,其中a,b,d满足(a+1)2++|d﹣4|=0.(1)求出C的坐标,及平行四边形ABCD的面积;(2)如图2,线段BC的中垂线交y轴与点E,F为AD的中点,试判断∠EFB的大小,并说明理由;(3)如图3,过点C作CG⊥x轴与点G,K为线段DG上的一点,KH⊥CK交OG延长线与点H,且∠DKC=3∠KHG,请求出的值.参考答案与试题解析一.选择题(共10小题)1.使二次根式有意义的x的取值范围是()A.x≠2B.x>2C.x≤2D.x≥2【分析】利用当二次根式有意义时,被开方式为非负数,得到有关x的一元一次不等式,解之即可得到本题答案.【解答】解:∵二次根式有意义,∴x﹣2≥0,解得:x≥2,故选:D.2.下列式子中,属于最简二次根式的是()A.B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A正确;B、被开方数含能开得尽方的因数,故B错误;C、被开方数含能开得尽方的因数,故C错误;D、被开方数含分母,故D错误;故选:A.3.下列各式计算正确的是()A.8﹣2=6B.5+5=10C.4÷2=2D.4×2=8【分析】根据同类二次根式的合并,及二次根式的乘除法则,分别进行各选项的判断即可.【解答】解:A、8﹣2=6,原式计算错误,故A选项错误;B、5与5不是同类二次根式,不能直接合并,故B选项错误;C、4÷2=2,原式计算错误,故C选项错误;D、4×2=8,原式计算正确,故D选项正确;故选:D.4.不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠CC.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D【分析】根据平行四边形的判定定理进行判断.【解答】解:A、AB∥CD,AD=BC,不能判定四边形ABCD为平行四边形,错误;B、∵AB∥CD,∴∠A+∠D=180°,∵∠A=∠C,∴∠C+∠D=180°,∴AD∥BC,∴四边形ABCD为平行四边形,正确;C、∵AD∥BC,AD=BC,∴四边形ABCD为平行四边形,正确;D、∵∠A=∠C,∠B=∠D,∴∠A+∠D=∠C+∠D=180°,∴AD∥BC,AB∥CD,∴四边形ABCD为平行四边形,正确;故选:A.5.下列条件中,不能判断△ABC为直角三角形的是()A.a2=1,b2=2,c2=3B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5【分析】根据三角形内角和定理,以及勾股定理逆定理分别进行分析可得答案.【解答】解:A、可利用勾股定理逆定理判定△ABC为直角三角形,故此选项不合题意;B、根据勾股定理的逆定理可判断△ABC是直角三角形,故此选项不合题意;C、根据三角形内角和定理可以计算出∠A=90°,△ABC为直角三角形,故此选项不合题意;D、根据三角形内角和定理可以计算出∠A=45°,∠B=60°,∠C=75°,可判定△ABC不是直角三角形,故此选项符合题意;故选:D.6.八年级(3)班同学要在广场上布置一个矩形的花坛,计划用红花摆成两条对角线.如果一条对角线用了49盆红花,还需要从花房运来红花()A.48盆B.49盆C.50盆D..51盆【分析】根据矩形的对角线互相平分且相等,即可得出结果.【解答】解:∵矩形的对角线互相平分且相等,∴一条对角线用了49盆红花,中间一盆为对角线交点,49﹣1=48,∴还需要从花房运来红花48盆;故选:A.7.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),故选:D.8.如图,在▱ABCD中,AB=5,AD=6,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为()A.3B.C.D.4【分析】由点B恰好与点C重合,可知AE垂直平分BC,根据勾股定理计算AE的长即可.【解答】解:∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=6,∴BE=3,∴AE==4,故选:D.9.如图,在菱形ABCD中,AB=6,∠ABC=60°,M为AD中点,P为对角线BD上一动点,连结P A和PM,则P A+PM的值最小是()A.3B.2C.3D.6【分析】首先连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时P A+PM 的值最小,由在菱形ABCD中,AB=6,∠ABC=60°,易得△ACD是等边三角形,BD 垂直平分AC,继而可得CM⊥AD,则可求得CM的值,继而求得P A+PM的最小值.【解答】解:连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时P A+PM 的值最小,∵在菱形ABCD中,AB=6,∠ABC=60°,∴∠ADC=∠ABC=60°,AD=CD=6,BD垂直平分AC,∴△ACD是等边三角形,P A=PC,∵M为AD中点,∴DM=AD=3,CM⊥AD,∴CM==3,∴P A+PM=PC+PM=CM=3.故选:C.10.在▱ABCD中,BC边上的高为4,AB=5,AC=2,则▱ABCD的周长等于()A.12B.16C.16或24D.12或20【分析】根据题意分别画出图形,BC边上的高在平行四边形的内部和外部,进而利用勾股定理求出即可.【解答】解:①如图1所示:∵在▱ABCD中,BC边上的高为4,AB=5,AC=2,∴EC==2,AB=CD=5,BE==3,∴AD=BC=5,∴▱ABCD的周长等于:20,②如图2所示:∵在▱ABCD中,BC边上的高为4,AB=5,AC=2,∴EC==2,AB=CD=5,BE==3,∴BC=3﹣2=1,∴▱ABCD的周长等于:1+1+5+5=12,则▱ABCD的周长等于12或20.故选:D.二.填空题(共6小题)11.是整数,则最小的正整数a的值是5.【分析】由于45a=5×3×3×a,要使其为整数,则必能被开得尽方,所以满足条件的最小正整数a为5.【解答】解:45a=5×3×3×a,若为整数,则必能被开方,所以满足条件的最小正整数a为5.故答案为:5.12.已知x=+1,y=﹣1,则x2﹣y2=.【分析】先分解因式,再代入比较简便.【解答】解:x2﹣y2=(x+y)(x﹣y)=2×2=4.13.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是32或42.【分析】本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;(2)当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相减即为BC的长,从而可将△ABC的周长求出.【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC 的周长为32.综上所述,△ABC的周长是42或32.故填:42或32.14.已知x+=,那么x﹣=±3.【分析】直接利用完全平方公式得出x2+=11,进而得出x﹣的值.【解答】解:∵x+=,∴(x+)2=13,∴x2++2=13,∴x2+=11,∴x2+﹣2=(x﹣)2=9,∴x﹣=±3.故答案为:±3.15.在矩形ABCD中,E、F、M分别为AB、BC、CD边上的点,且AB=6,BC=7,AE=3,DM=2,EF⊥FM,则EM的长为5.【分析】由四边形ABCD是矩形,得到∠B=∠C=90°,CD=AB=6,根据AE=3,DM =2,于是得到BE=3,CM=4,推出△BEF∽△CFM,得到关于BF的比例式,进而可求出EM,EF的长,再利用勾股定理即可求出EM的长.或过M作MN⊥AB于N,易知MN=7,EN=1,EM==5.【解答】解:∵四边形ABCD是矩形,∴∠B=∠C=90°,CD=AB=6,∵AE=3,DM=2,∴BE=3,CM=4,∵EF⊥FM,∴∠BEF+∠BFE=∠BFE+∠MFC=90°,∴∠BEF=∠CFM,∴△BEF∽△CFM,∴,∴,解得:BF=3,或BF=4,∴CF=4,或CF=3,∴EF==5,FM==5,∴EM==5,故答案为:5.或过M作MN⊥AB于N,易知MN=7,EN=1,EM==5.16.如图,在矩形ABCD中,AB=2,AD=1,点P在线段AB上运动,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原设四边形EPFD的面积为S,当四边形EPFD为菱形时,请写出S的取值范围1≤S≤.【分析】由要使四边形EPFD为菱形,则需DE=EP=FP=DF,可得当点E与点A重合时,AP最小;当点P与点B重合时,AP最大,继而求得四边形EPFD为菱形的AP的取值范围,进而得到S的取值范围.【解答】解:∵要使四边形EPFD为菱形,则需DE=EP=FP=DF,∴如图1:当点E与点A重合时,AP=AD=1,此时AP最小;此时,S=AP2=1.如图2:当点P与B重合时,AP=AB=2,此时AP最大;此时,设AE=x,则EP=DE=2﹣x,根据勾股定理得:12+x2=(2﹣x)2,解得:x=,∴EP=,∴S=1×=.∴四边形EPFD为菱形时,S的取值范围:1≤S≤.故答案为:1≤S≤.三.解答题(共7小题)17.(1)(+)×(2)(4﹣3)﹣【分析】(1)根据乘法分配律可以解答本题;(2)先去括号,然后合并同类项即可解答本题.【解答】解:(1)(+)×==4+3;(2)(4﹣3)﹣=4﹣3﹣=3﹣3.18.先化简,再求值:+x﹣4y﹣,其中x=,y=4.【分析】直接利用二次根式的性质化简,进而把已知数据代入得出答案.【解答】解:原式=5+x•﹣4y•﹣•y=5+﹣4﹣=,当x=,y=4时,原式==.19.如图,在边长为a的正方形ABCD中,M是CD的中点,N是BC上一点,且BN=BC.求△AMN的面积.【分析】首先用a表示出AN、AM和MN的长,再利用勾股定理的逆定理证明△AMN是直角三角形,最后利用三角形面积公式计算即可.【解答】解:在Rt△ABN中,AN2=AB2+BN2,∴AN2=a2+(a)2=a2,在Rt△ADM中,AM2=AD2+DM2,∴AM2=a2+()2=a2,在Rt△CMN中,MN2=CM2+CN2,∴MN2=(a)2+(a)2=a2,∵a2=a2+a2,∴AN2=AM2+MN2,∴△AMN是直角三角形,∴S△AMN=AM•AN=×a×a=a2.20.如图在8×8的正方形网格中,△ABC的顶点在边长为1的小正方形的顶点上.(1) 填空:∠ABC=135°,BC=2.(2)若点A在网格所在的坐标平面里的坐标为(1,﹣2),请你在图中找出一点D,并作出以A、B、C、D四个点为顶点的平行四边形,求出满足条件的D点的坐标.【分析】(1)直接利用网格得出:∠ABC的度数,再利用勾股定理得出BC的长;(2)利用平行四边形的性质得出D点位置即可.【解答】解:(1)由图形可得:∠ABC=45°+90°=135°,BC==;故答案为:135°,2;(2)满足条件的D点共有3个,以A、B、C、D四个点为顶点的四边形为:平行四边形分别是▱ABCD1、▱ABD2C和▱AD3BC.其中第四个顶点的坐标为:D1(3,﹣4)或D2(7,﹣4)或D3(﹣1,0).21.如图,E、F、G、H分别为四边形ABCD四边之中点.(1)求证:四边形EFGH为平行四边形;(2)当AC、BD满足AC=BD时,四边形EFGH为菱形.当AC、BD满足AC⊥BD时,四边形EFGH为矩形.当AC、BD满足AC=BD且AC⊥BD时,四边形EFGH 为正方形.【分析】(1)连接BD,根据三角形的中位线平行于第三边并且等于第三边的一半可得EH∥BD且EH=BD,FG∥BD且FG=BD,从而得到EH∥FG且EH=FG,再根据一组对边平行且相等的四边形是平行四边形证明即可;(2)连接AC,同理可得EF∥AC且EF=AC,再根据邻边相等的平行四边形是菱形,邻边垂直的平行四边形是矩形,邻边相等且垂直的平行四边形是正方形解答.【解答】(1)证明:如图,连接BD,∵E、F、G、H分别为四边形ABCD四边之中点,∴EH是△ABD的中位线,FG是△BCD的中位线,∴EH∥BD且EH=BD,FG∥BD且FG=BD,∴EH∥FG且EH=FG,∴四边形EFGH为平行四边形;(2)解:连接AC,同理可得EF∥AC且EF=AC,所以,AC=BD时,四边形EFGH为菱形;AC⊥BD时,四边形EFGH为矩形;AC=BD且AC⊥BD时,四边形EFGH为正方形.故答案为:AC=BD;AC⊥BD;AC=BD且AC⊥BD.22.在三角形△ABC中,D是BC边的中点,AD=BC.(1)△ABC的形状为直角三角形.(2)如图,BM=3,BC=12,∠B=45°,∠MAN=45°,求CN;(3)在(2)的条件下,AN=2.【分析】(1)结论:△ABC是直角三角形.证明DA=DB=DC即可解决问题.(2)设CN=x,将△BAM绕点A逆时针旋转90°得到△ACH,连接NH.证明△NAM ≌△NAH(SAS),推出MN=NH,利用勾股定理构建方程解决问题即可.(3)求出AD,DN,利用勾股定理解决问题.【解答】解:(1)结论:△ABC是直角三角形.理由:∵BD=DC,AD=BC,∴DA=DB=DC,∴∠BAC=90°.故答案为直角三角形.(2)如图,设CN=x.∵∠B=45°,∠BAC=90°,∴∠ACB=∠B=45°,∴AB=AC,∵BD=DC,∴AD⊥BC,将△BAM绕点A逆时针旋转90°得到△ACH,连接NH.∵∠ACB=∠ACH=∠B=45°,∴∠NCH=90°,∵∠MAN=45°,∠MAH=90°,∴∠NAM=∠NAH=45°,∵NA=NA,AM=AH,∴△NAM≌△NAH(SAS),∴MN=NH,∵BM=CH=3,BC=12,∴CM=12﹣3=9,∴MN=NH=9﹣x,∵NH2=CH2+CN2,∴(9﹣x)2=x2+32,解得x=4.∴CN=4.(3)在Rt△ADN中,∵∠ADN=90°,AD=BD=CD=6,DN=CD﹣CN=6﹣4=2,∴AN===2.故答案为2.23.如图所示,在平面直角坐标系中A(a,0),B(b,0),D(0,d),以AB,AD为邻边做平行四边形ABCD,其中a,b,d满足(a+1)2++|d﹣4|=0.(1)求出C的坐标,及平行四边形ABCD的面积;(2)如图2,线段BC的中垂线交y轴与点E,F为AD的中点,试判断∠EFB的大小,并说明理由;(3)如图3,过点C作CG⊥x轴与点G,K为线段DG上的一点,KH⊥CK交OG延长线与点H,且∠DKC=3∠KHG,请求出的值.【分析】(1)根据非负数的性质得到a=1,b=3,d=4,求得A(﹣1,0),B(3,0),D(0,4),得到OA=1,OD=4,过C作CE⊥x轴于E点,根据平行四边形的性质得到AD=BC,AD∥BC,根据全等三角形的性质得到CE=OD=4,BE=AO=1,于是得到结论;(2)连接BE,OF,过F作FG⊥x轴于G,FK⊥y轴于K,根据线段垂直平分线的性质得到CE=BE,求得F(﹣,2),设ED=b,根据勾股定理列方程得到ED=,根据勾股定理和勾股定理的逆定理即可得到结论;(3)如图3,过K作KE⊥KG交CG于E,提出四边形CDOG是正方形,得到∠DGC =45°,推出△EKG是等腰直角三角形,求得KG=KE,根据全等三角形的性质得到CK =HK,根据已知条件即可得到结论.【解答】解:(1)∵(a+1)2++|d﹣4|=0.∴a+1=0,b﹣3=0,d﹣4=0,∴a=1,b=3,d=4,∴A(﹣1,0),B(3,0),D(0,4),∴OA=1,OD=4,过C作CE⊥x轴于E点,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAO=∠CBE,∵∠AOD=∠CEB=90°,∴△CBE≌△DAO(AAS),∴CE=OD=4,BE=AO=1,∴OE=4,∴C(4,4),∴S四边形ABCD=4×4=16;(2)连接BE,OF,过F作FG⊥x轴于G,FK⊥y轴于K,∵线段BC的中垂线交y轴与点E,∴CE=BE,∵F为AD的中点,∴F(﹣,2),设ED=b,∴DE2+DC2=EC2=EB2=EO2+OB2,∴DE2+42=(4﹣DE)2+32,解得:ED=,∴FB2=FG2+BG2=4+,EF2=FK2+EK2=+,BE2=OE2+OB2=9+=,∵FB2+EF2=+==BE2,∴△EFB是直角三角形,∴∠EFB=90°;(3)如图3,过K作KE⊥KG交CG于E,∵CG⊥x轴与点G,∴CD=CG=4,∴四边形CDOG是正方形,∴∠DGC=45°,∴△EKG是等腰直角三角形,∴KG=KE,∴∠KEG=∠KGE=45°,∴∠CEK=∠HGK=135°,∴△ECK≌△GHK(ASA),∴CK=HK,∴△KCH是等腰直角三角形,∵∠DKC=3∠KHG,∴2∠KHG=45°,∠KHG=∠KCE=22.5°,∴CD=CG=CE+EG=KE+EG=KG+KG,∴.。

2022-2023学年湖北省荆州市部分地区八年级(下)月考数学试卷(3月份)+答案解析(附后)

2022-2023学年湖北省荆州市部分地区八年级(下)月考数学试卷(3月份)+答案解析(附后)

2022-2023学年湖北省荆州市部分地区八年级(下)月考数学试卷(3月份)1. 若二次根式有意义,则x的取值范围是( )A. B. C. D.2. 下列各组数不是勾股数的是( )A. 3,4,5B. 6,8,10C. 2,,3D. 5,12,133. 如果梯子的底端离建筑物5 米,13 米长的梯子可以达到该建筑物的高度是( )A. 12 米B. 13 米C. 14 米D. 15 米4. 下列二次根式中能与合并的是( )A. B. C. D.5. 下列运算正确的是( )A. B.C. D.6. 估计的值应在( )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间7. 若是整数,则正整数a的最小值是( )A. 4B. 5C. 6D. 78. 计算的结果为( )A. B. C. D. 19.如图,中,,,,将沿DE翻折,使点A 与点B重合,则AE的长为( )A. 2B.C. 5D.10. 如图,车库宽AB的长为米,一辆宽为米即米的汽车正直停入车库,车门长为米,当左侧车门CD接触到墙壁时,车门与车身的夹角为,此时右侧车门GH开至最大的宽度FG的长为( )A. 米B. 米C. 米D. 米11. 在中,,,,则AB的长是______ .12. 比较大小:______填“>”或“<”或“=”13. 如图所示,一场暴雨过后,垂直于地面的一棵树在距地面2米的C处折断,树尖B恰好碰到地面,经测量米,折断前树高为______ 米.14. 已知一个等腰三角形的两边长分别为3和5,则这个三角形的周长为______.15. 已知,则的值为______ .16. 如图是一个按某种规律排列的数阵:根据数阵排列的规律,第11行从左向右数第10个数是______ .17. 计算;18. 先化简,再求值:,其中19. 如图,在中,,,,,垂足为的面积是______ .求BC、AD的长.20. 我市某中学有一块四边形的空地ABCD,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量,,,,求出空地ABCD的面积;若每种植1平方米草皮需要350元,问总共需投入多少元?21. 规定用符号表示一个实数的整数部分,例如,,,并且规定一个实数减去它的整数部分表示这个实数的小数部分,按此规定解答问题:______ ,的小数部分为______ ;已知a,b分别是的整数部分和小数部分,求a,b的值.22. 如图,有一艘货船和一艘客船同时从港口A出发,客船与货船的速度比为4:3,出发1小时后,客船比货船多走了10海里.客船沿北偏东方向航行,2小时后货船到达B 处,客船到达C处,若此时两船相距100海里.求两船的速度分别是多少?求货船航行的方向.23. 在学习了勾股定理后,数学兴趣小组在李老师的引导下,利用正方形网格和勾股定理,运用构图法进行了一系列探究活动:在中,AB,BC,AC三边的长分别为,,,求的面积.如图1,在正方形网格每个小正方形的边长为中,画出格点即三个顶点都在小正方形的顶点处,不需要求的高,借用网格就能计算出它的面积,这种方法叫做构图法.请利用图求出的面积;在平面直角坐标系中,①若点A为,点B为,求线段AB的长;②若点A为,点B为,请直接表示出线段AB的长;在图2中运用构图法画出图形,比较与大小.24. 阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当,时,,,当且仅当时取等号,例如:当时,求的最小值.解:,,又,,当时取等号.的最小值为请利用上述结论解决以下问题:当时,当且仅当______ 时,有最小值为______ .当时,求的最小值.请解答以下问题:如图所示,某园艺公司准备围建一个矩形花圃,其中一边靠墙墙足够长,另外三边用篱笆围成,设平行于墙的一边长为x米,若要围成面积为450平方米的花圃,需要用的篱笆最少是多少米?答案和解析1.【答案】A【解析】解:二次根式有意义,,,故选:根据二次根式有意义的条件进行求解即可.本题主要考查了二次根式有意义的条件,熟知二次根式有意义的条件是被开方数大于等于0是解题的关键.2.【答案】C【解析】解:A、,能构成勾股数,故该选项不合题意;B、,能构成勾股数,故该选项不合题意;C、,不是整数,故该选项合题意;D、,能构成勾股数,故该选项不合题意.故选:根据勾股数的定义:有a、b、c三个正整数,满足,称为勾股数.由此判定即可.本题考查勾股数,解答此题要深刻理解勾股数的定义,并能够熟练运用.3.【答案】A【解析】解:如图,梯子的底端离建筑物5 米,梯子长为13米,米故选:根据题意画出图形,再利用勾股定理求解即可.本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.4.【答案】C【解析】解:A、己是最简二次根式,但和不是同类二次根式,无法合并,故此选项不合题意;B、,和不是同类二次根式,无法合并,故此选项不合题意;C、,和是同类二次根式,可以合并,故此选项符合题意;D、,和不是同类二次根式,无法合并,故此选项不合题意.故选:只有同类二次根式方可合并,将选项中的二次根式进行化简后,找到同类二次根式即可.本题考查了同类二次根式,熟练掌握同类二次根式的定义是解此题的关键.5.【答案】D【解析】解:A、,故此选项错误,不符合题意;B、,故此选项错误,不符合题意;C、,故此选项错误,不符合题意;D、,故此选项正确,符合题意.故选:直接利用二次根式的性质以及二次根式的加减运算法则计算,进而得出答案.本题主要考查了二次根式的混合运算,正确掌握相关运算法则是解题关键.6.【答案】B【解析】解:,,,故选:先根据二次根式的乘法进行计算化简,最后估算,即可求解.本题考查了二次根式的乘法,无理数的估算,正确的计算解题的关键.7.【答案】C【解析】解:;由是整数,得a最小值为6,故选:先将54写成平方数乘以非平方数的形式,再根据二次根式的基本性质即可确定出a的最小整数值.本题考查了二次根式的基本性质,利用二次根式的基本性质是解题关键.8.【答案】A【解析】解:原式故选:根据积的乘方的逆运算对原式进行变形,再利用平方差公式进行计算即可.本题考查二次根式的混合运算,能正确利用平方差公式是解题的关键.9.【答案】D【解析】解:沿DE翻折,使点A与点B重合,,,设,则,,在中,,,解得,,故选:先利用折叠的性质得到,设,则,,在中,根据勾股定理可得到,求解即可.本题考查了折叠的性质及勾股定理的应用,理解题意,熟练掌握勾股定理解三角形是解题关键.10.【答案】B【解析】解:,,,,,,,故选:C作于O,先求出,再根据得出结论.本题考查了解直角三角形的应用问题,解题的关键是正确作出辅助线.11.【答案】【解析】解:,,,,故答案为:根据勾股定理求出AB即可.本题考查了勾股定理的应用,掌握在直角三角形中,两直角边的平方和等于斜边的平方是解题的关键.12.【答案】>【解析】【分析】本题考查了实数的大小比较,关键是得出,题目比较基础,难度适中.根据即可得出答案.【解答】解:因为,所以,故答案为:13.【答案】【解析】解:由勾股定理得,,所以故答案为:树高等于,在直角中,用勾股定理求出BC即可.本题考查了勾股定理的实际应用,解题的关键是在实际问题的图形中得到直角三角形.14.【答案】11或13【解析】解:①3是腰长时,能组成三角形,周长;②5是腰长时,能组成三角形,周长所以,它的周长是11或故答案为:11或因为腰长没有明确,所以分①3是腰长,②5是腰长两种情况求解.本题考查了等腰三角形的性质,关键是分①3是腰长,②5是腰长两种情况求解.15.【答案】【解析】解:依题意得:,,,,则故答案为:根据被开方数的非负性可得,从而得到,再代入,即可求解.本题主要考查了算术平方根的非负性,求算术平方根,熟练掌握算术平方根的非负性是解题的关键.16.【答案】【解析】解:观察可知,整个数阵从每一行左起第一个数开始,从左到右,从上到下,是连续的正整数的算术平方根,而每一行的个数依次为2、4、6、8、10,……,第10行最后一个数是,第11行倒数第10个数是观察数阵中每个算术平方根下数字的规律特征,依据规律推断所求数字.本题考查观察与归纳,要善于发现数列的规律性特征.17.【答案】解:原式;原式【解析】根据二次根式加减法则可进行求解;根据二次根式的混合运算法则可进行求解.本题主要考查二次根式的运算,熟练掌握二次根式的运算法则是解题的关键.18.【答案】解:原式,当时,原式【解析】先将原式的分子、分母进行因式分解,再将除法化乘法,化简后代值求解即可.本题主要考查了分式化简求值,将原式进行因式分解化简是解题关键.19.【答案】150【解析】解:的面积是:故答案是:150;,,,,,,由直角三角形的面积公式直接求解即可;先根据勾股定理求出BC的长,再利用三角形面积公式得出,然后即可求出此题主要考查学生对勾股定理和三角形面积的灵活运用,解答此题的关键是三角形ABC的面积可以用表示,也可以用表示,从而得出,这是此题的突破点.20.【答案】解:连接AC,,,,,,,,;即空地ABCD的面积为元,即总共需投入50400元.【解析】直接利用勾股定理AC,再用勾股定理的逆定理得出,进而得出答案;利用中所求得出所需费用.此题主要考查了勾股定理及其逆定理的应用,将四边形化为三角形后,正确用勾股定理及其逆定理是解题关键.21.【答案】【解析】解:,,,的小数部分为,故答案为:3,;,,,,估算出无理数的范围,从而得到无理数的整数部分和小数部分;根据二次根式的混合运算化简,估算出无理数的范围,得到无理数的整数部分和小数部分.本题考查了二次根式的混合运算和无理数的大小的估计,正确进行无理数的大小的估计是解题的关键.22.【答案】解:设客船与货船的速度分别是4x海里/小时和3x海里/小时,根据题意得,解得,,,即客船与货船的速度分别是40海里/小时和30海里/小时;海里,海里,海里,,,,,即货船航行的方向为南偏东【解析】设客船与货船的速度分别是4x海里/小时和3x海里/小时,依据客船1小时比货船多走10海里,列方程求解即可;依据,可得是直角三角形,且,再根据货船航行方向,即可得到客船航行的方向.本题主要考查了方向角以及勾股定理的应用,正确得出AB的长是解题的关键.23.【答案】解:;①,②;如图,,,,,【解析】根据割补法求出三角形的面积即可;①根据两点间的距离即可求出答案;②根据两点间的距离即可求出答案;先画出图形,由图可知,,,根据,即可得出答案.本题考查网格与勾股定理,掌握勾股定理是解题的关键.24.【答案】3 6【解析】解:,,又,,当且仅当时取等号.的最小值为故答案为:3,6;,,,又,,当且仅当时取等号,的最小值为,的最小值为,即的最小值为;根据题意可得,垂直于墙的一边长为米,则篱笆的长为米,,,又,,当且仅当时取等号,的最小值为60,即需要用的篱笆最少是60米.根据例题中的公式计算即可;先化简,再运用公式计算即可;由题意得篱笆的长为米,再根据例题中的公式计算即可.本题考查了二次根式的性质,理解题中例题解法,熟练掌握二次根式的性质是解题的关键.。

2022-2023学年广东省惠州市惠阳区沙田中学八年级(下)月考数学试卷(3月份)+答案解析(附后)

2022-2023学年广东省惠州市惠阳区沙田中学八年级(下)月考数学试卷(3月份)+答案解析(附后)

2022-2023学年广东省惠州市惠阳区沙田中学八年级(下)月考数学试卷(3月份)1. 以下列各组长度的线段为边,能构成三角形的是( )A. 3,4,5B. 7,3,4C. 5,6,12D. 1,2,32. 要使分式有意义,则x 的取值范围是( )A. B. C. D.3. 下列运算结果等于的是( )A. B. C. D.4. 如图图形中,不是轴对称图形的是( )A. B. C. D.5.如图,补充下列一个条件后,仍不能判定≌的是( )A. B.C. D.6. 下列因式分解正确的是( )A. B.C. D.7. 计算的结果是( )A. B.C. D.8. 下列代数式:,,,,中,共有分式( )A. 2个B. 3个C. 4个D. 5个9. 一个凸多边形的内角和与外角和之比为2:1,则这个多边形的边数为( )A. 5B. 6C. 7D. 810. 如图,在平行四边形ABCD中,,F是AD的中点,作,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是( )①;②;③;④A. ①②③B. ②③④C. ①②④D. ①③④11. 把表示成幂的形式是______.12. 分解因式:______.13. 三棱柱的三视图如图所示,在俯视图中,,,,则左视图中AB的长为______14. 在实数范围内分解因式:______ .15. 一个三角形的三边长分别为5,12,13,则这个三角形最长边上的中线为______ .16. 已知直线与两坐标轴所围成的三角形的面积为4,则m的值为______.17. 如图,先将正方形纸片对折,折痕为MN,再把点B折叠到折痕MN上,折痕为AE,点B在MN上的对应点为H,则______18. 如图,在中,弦BC平行于OA,AC交BO于M,,求的度数.19.已知:如图,,求证:≌20. 如图,桌面上竖直放置一等腰直角三角板ABC,若测得斜边AB的两端点到桌面的距离分别为AD,,,求点A距离桌面的高度.21. 如图,在矩形ABCD中,点E在BC上,,于F,连接求证:22. 已知:如图,C为线段BE上一点,,,求证:23. 四边形ABCD为菱形,BD为对角线,在对角线BD上任取一点E,连接CE,把线段CE 绕点C顺时针旋转得到线段CF,使得,点E的对应点为点F,连接如图1,求证:;如图2,若,,求菱形ABCD的边长.24. 如图所示,中,,,,是的外接圆,D是CB延长线上一点,且,连接DA,点P是射线DA上的动点.求证DA是的切线;的长度为多少时,的度数最大,最大度数是多少?请说明理由.运动的过程中,的值能否达到最小,若能,求出这个最小值,若不能,说明理由.25. 定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.如图1,损矩形ABCD,,则该损矩形的直径是线段____.在线段AC上确定一点P,使损矩形的四个顶点都在以P为圆心的同一圆上即损矩形的四个顶点在同一个圆上,请作出这个圆,并说明你的理由.友情提醒:“尺规作图”不要求写作法,但要保留作图痕迹.如图2,中,,以AC为一边向形外作菱形ACEF,D为菱形ACEF 的中心,连接BD,当BD平分时,判断四边形ACEF为何种特殊的四边形?请说明理由.若此时,,求BC的长.答案和解析1.【答案】A【解析】解:A、,可以构成三角形,故此选项正确;B、,不能构成三角形,故此选项错误;C、,不能构成三角形,故此选项错误;D、,不能构成三角形,故此选项错误;故选:根据三角形形成的条件:任意两边之和大于第三边进行判断即可.此题主要考查了三角形的三边关系,关键是掌握只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.2.【答案】A【解析】解:分式有意义,,解得:故选:根据分式有意义的条件是分母不等于零,可得出x的取值范围.本题考查了分式有意义的条件,属于基础题,注意掌握分式有意义分母不为零.3.【答案】D【解析】解:A、,无法计算,故此选项错误;B、,故此选项错误;C、,故此选项错误;D、,故此选项正确.故选:分别利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除法运算法则化简判断即可.此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘除法运算,正确掌握运算法则是解题关键.4.【答案】A【解析】解:选项B、C、D的图形均能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以是轴对称图形;选项A的图形不能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以不是轴对称图形;故选:本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.【答案】D【解析】【分析】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.根据题目所添加的条件,用全等三角形的判定定理进行分析即可.【解答】解:,,可用AAS定理进行判定;B.,,可用SAS定理进行判定;C.,,可用ASA定理进行判定;D.,,不能判定≌,故选6.【答案】D【解析】解:A、,故A不符合题意;B、,故B不符合题意;C、,故C不符合题意;D、,故D符合题意;故选:利用提公因式与公式法进行分解,逐一判断即可解答.本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.7.【答案】C【解析】解:原式,故选:根据单项式乘多项式的法则即可求出答案.本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.8.【答案】B【解析】解:代数式:,,,,中,分式有,,,共有3个.故选:根据分式的定义,分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,即可得出正确答案.本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有字母.9.【答案】B【解析】【分析】设多边形有n条边,则内角和为,再根据内角和等于外角和2倍可得方程,再解方程即可.此题主要考查了多边形的内角和和外角和,关键是掌握内角和公式为【解答】解:设多边形有n条边,由题意得:,解得:,故选:10.【答案】A【解析】解:①是AD的中点,,在▱ABCD中,,,,,,,,故①正确,符合题意;②延长EF,交CD延长线于M,四边形ABCD是平行四边形,,,为AD中点,,在和中,,≌,,,,,,,,故②正确,符合题意;④,,,故错误,不符合题意;③设,则,,,,,,故③正确,符合题意.故选:由在平行四边形ABCD中,,F是AD的中点,易得,继而证得①;然后延长EF,交CD延长线于M,分别利用平行四边形的性质以及全等三角形的判定与性质得出≌,得出对应线段之间关系进而得出答案.此题属于三角形综合题,主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出≌是解题关键.11.【答案】【解析】解:把表示成幂的形式是故答案为表示为被开方数的指数除以根指数的形式即可.考查分数指数幂的相关知识;掌握转化方式是解决本题的关键.12.【答案】【解析】解:故答案为:直接提取公因式x,即可完成分解因式.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.13.【答案】7【解析】解:过点E作于点Q,由题意可得出:,,,故答案为:根据三视图的对应情况可得出,中FG上的高即为AB的长,进而求出即可.此题主要考查了由三视图判断几何体,根据已知得出是解题关键.14.【答案】【解析】解:,,b,,,,,,故答案为:先解方程,求得方程的两个根,即可求解.本题考查了解一元二次方程,因式分解,正确地求得方程的两根是解题的关键.15.【答案】【解析】解:三角形的三边长分别为5,12,13,符合勾股定理的逆定理,此三角形为直角三角形,则13为直角三角形的斜边,三角形斜边上的中线是斜边的一半,三角形最长边上的中线为故答案为:根据已知先判定其形状,再根据直角三角形斜边上中线的性质求得其中线长.本题考查勾股定理的逆用,解答此题的关键是先判断出三角形的形状,再根据直角三角形斜边上的中线是斜边的一半判断.16.【答案】4或【解析】解:直线与x轴的交点为:,与y轴的交点为:,,解得故答案为:4或求出直线与x和y轴的交点坐标,由面积公式可得出关于m的方程,解出即可.本题考查函数解析式和三角形的结合,有一定综合性,注意掌握坐标和线段长的转化.17.【答案】75【解析】解:连接DH,由折叠可得,MN垂直平分AD,,,是等边三角形,,又,,,故答案为:依据折叠的性质以及正方形的性质,即可得到是等边三角形,即可得到,根据等腰三角形的性质可得答案.本题主要考查的是翻折的性质、等边三角形的性质和判定,证得是一个等边三角形是解题的关键.18.【答案】解:,,,在中,,,【解析】根据两直线平行,得;再根据圆周角定理求得;然后由外角定理解答即可.本题主要考查了圆周角定理、平行线的性质.解答该题时,还利用了三角形的外角定理.19.【答案】证明:在和中,,≌【解析】由“SAS”可证≌本题考查了全等三角形的判定,掌握全等三角形的判定方法是本题的关键.20.【答案】解:由题意知,,,,,在和中,≌,,,,,即点A距离桌面的高度为【解析】此题主要考查了等腰直角三角形的性质,全等三角形的判定和性质,判断出≌是解本题的关键.先利用同角的余角相等,判断出,进而判断出≌,得出,,即可得出结论.21.【答案】证明:四边形ABCD为矩形,,,且,,,,在和中≌,,【解析】本题主要考查矩形的性质,利用矩形的性质证得≌是解题的关键.利用矩形的性质结合条件可证得≌,则可得,再利用矩形的性质可求得22.【答案】证明:,,,在和中,≌,【解析】由“SAS”可证≌,可得本题考查了全等三角形的判定和性质,证明≌是本题的关键.23.【答案】证明:四边形ABCD为菱形,,把线段CE绕点C顺时针旋转得到线段CF,,,,在与中,,≌,;解:过点C作于点K,,,,≌,,,,,,,,,,,,,,菱形ABCD的边长【解析】根据菱形的性质得到,根据旋转的性质得到,根据全等三角形的性质即可得到结论;过点C作于点K,根据已知条件得到,,根据全等三角形的性质得到,求得,根据等腰三角形的性质得到,根据勾股定理即可得到结论.本题考查了旋转的性质菱形的性质,全等三角形的判定和性质,等腰三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.24.【答案】证明:如图,连接AO,,是等边三角形,,,,,是的切线;解:如图1,当点P运动到A处时,即时,的度数达到最大,为理由如下:若点P不在A处时,不妨设点P在DA的延长线上的时,连接BP,与交于一点,记为点E,连接CE,则解:如图2,作点C关于射线DA的对称点,则,当点,P,B三点共线时,的值达到最小,最小值为过点作DC的垂线,垂足记为点H,连接,在中,,为等边三角形,故H为DC的中点,,在中,根据勾股定理得,的最小值为【解析】先判断出是等边三角形,进而得出,即可得出即可得出结论;判断出最大时的点P的位置;利用对称性确定出利用勾股定理计算即可.此题是圆的综合题,主要考查了圆的性质,切线的判定,极值的确定方法,对称的性质,勾股定理,解的关键是求出,解的关键是判断出最大时的点P的位置,解的关键是判断出的最小值是一道中等难度的中考常考题.25.【答案】解:作图如图:点P为AC中点,,,,点A、B、C、D在以P为圆心,为半径的同一个圆上;菱形ACEF,,,,四边形ABCD为损矩形,由可知,点A、B、C、D在同一个圆上.平分,,,,四边形ACEF为正方形.平分,,点D到AB、BC的距离h为4,,,,,,或舍去,【解析】【分析】本题主要考查了菱形的性质,正方形的判定,圆的内接四边形等知识点.中如果无法直接求出线段的长,可通过特殊的三角形用面积法来求解.根据题中给出的定义,由于和不是直角,因此AC就是损矩形的直径.根据直角三角形斜边上中线的特点可知:此点应是AC的中点,那么可作AC的垂直平分线与AC的交点就是四边形外接圆的圆心.根据题意结合判断出点A、B、C、D在同一个圆上,从而得到,判断出四边形ACEF为正方形;根据即可得到关于BC的长的方程,求解即可.【解答】解:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.因此AC是该损矩形的直径;见答案;见答案.。

2022-2023学年山东省日照市东港区新营中学八年级(下)月考数学试卷(3月份)+答案解析(附后)

2022-2023学年山东省日照市东港区新营中学八年级(下)月考数学试卷(3月份)+答案解析(附后)

2022-2023学年山东省日照市东港区新营中学八年级(下)月考数学试卷(3月份)1. 下列式子中,属于最简二次根式的是( )A. B. C. D.2. 代数式有意义的条件是( )A. B. C.且 D.3. 下列计算正确的是( )A. B.C. D.4. 在中,:::1:2,则下列说法错误的是( )A. B. C. D.5. 图中的点均为大小相同的小正方形的顶点,对于所画的两个四边形,下列叙述中正确的是( )A. 这两个四边形的面积和周长都相同B. 这两个四边形的面积和周长都不相同C. 这两个四边形的面积相同,但周长不相同D. 这两个四边形的周长相同,但面积不相同6. 一架5m的梯子,斜靠在一竖直的墙上,这时梯足距墙角3m,若梯子的顶端下滑1m,则梯足将滑动( )A. 0mB. 1mC. 2mD. 3m7. 在中,,AD为BC边上的高,,,则BC的长为( )A. 5B. 7C. 5或7D.8. 在中,,若,,则的面积是( )A. B. C. D.9. 如图,已知,,,,则点C 到BD 的距离为( )A. B. C. D.10. 如图所示,已知圆柱的底面周长为36,高,P 点位于圆周顶面处,小虫在圆柱侧面爬行,从A 点爬到P 点,然后再爬回C 点,则小虫爬行的最短路程为( )A. 26B.C.D.11. 在学习“勾股数”的知识时,爱动脑的小明发现了一组有规律的勾股数,并将它们记录在如下的表格中.则当时,的值为( )a 68101214…b 815243548…c1017263750…A. 100B. 200C. 240D. 36012. 已知a ,b 均为正数,且,则的最小值为( )A. 8B. 9C. 10D. 1213. 你听说过亡羊补牢的故事吗?如图,为了防止羊的再次丢失,小明爸爸要在高,宽的栅栏门的相对角顶点间加一个加固木板,这条木板需______ m 长.14. 有两根木棒,分别长12cm,5cm,要再在14cm的木棒上取一段,用这三根木棒为边做成直角三角形,这第三根木棒要取的长度是______15. 将一根长为15cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是______.16. 如图,矩形纸片ABCD中,,,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为______ .17. 如图,是等腰直角三角形,BC是斜边,将绕点A逆时针旋转到的位置、如果,那么的长等于______ .18. 如图,在中,,,将沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的第13个三角形的直角顶点的坐标为______.19. 计算;;若,求代数式的值.细心观察如图,认真分析各式,然后解答下列问题:,是的面积;,是的面积;,是的面积;①请用含有为正整数的式子填空:______ ,______ .②求的值.20. 如图,每个小正方形的边长都是、B、C、D均在网格的格点上.是直角吗?请证明你的判断.直接写出四边形ABCD的面积找到格点E,并画出四边形一个即可,使得其面积与四边形ABCD面积相等.21. 如图,E、F是平行四边形ABCD的对角线AC上的两点,且,,连接BE、ED、DF、求证:四边形BEDF为平行四边形;若,,求BD的长.22. 图1是超市购物车,图2为超市购物车侧面示意图,测得,支架,两轮中心AB之间的距离为______ dm;若OF的长度为,支点F到底部DO的距离为5dm,试求的度数.23. 如图,在等腰中,垂足为已知,求AC与AB的长.点P是线段AB上的一动点,当AP为何值时,为等腰三角形.答案和解析1.【答案】D【解析】解:A、原式,故A不是最简二次根式,B、原式,故B不是最简二次根式,C、原式,故C不是最简二次根式,故选:根据最简二次根式的定义即可判断.本题考查最简二次根式,解题的关键是正确理解最简二次根式,本题属于基础题型.2.【答案】C【解析】解:由题意得,且,即且故选:根据分式和二次根式有意义的条件求出x的取值范围即可.本题考查的是二次根式及分式有意义的条件,熟知以上知识是解题的关键.3.【答案】B【解析】解:,故此选项不符合题意;B.,故此选项符合题意;C.,故此选项不符合题意;D.,故此选项不符合题意;故选:根据算术平方根和二次根式的运算法则去判断即可.此题主要考查了二次根式的性质和运算,熟练掌握二次根式的运算法则是解题的关键.4.【答案】A【解析】解:设、、分别为x、x、2x,则,解得,,、、分别为、、,,A错误,符合题意,,B正确,不符合题意;,C正确,不符合题意;,D正确,不符合题意;故选:根据三角形内角和定理分别求出、、,根据勾股定理、等腰三角形的概念判断即可.本题考查的是三角形内角和定理、勾股定理,掌握三角形内角和等于是解题的关键.5.【答案】C【解析】解:设每相邻两个点间的距离是则①的周长,①面积;②的周长,②的面积综上所述,这两个四边形的面积相同,但周长不相同.故选:根据勾股定理、周长公式、面积公式计算每个图形的周长和面积,然后进行比较.考查了图形的周长和面积计算,勾股定理.注意数形结合在解题中的应用.6.【答案】B【解析】解:依照题意画出图形,如图所示.在中,,,在中,,,,故选:依照题意画出图形,在中,利用勾股定理可求出OA的长度,结合AC的长度可得出OC的长度,在中,利用勾股定理可求出OD的长度,再利用即可求出BD 的值.本题考查了勾股定理,依照题意画出图形,利用数形结合解决问题是解题的关键.7.【答案】C【解析】解:在中,,,,如图,当点C在点D右边时,;如图,当点C在点D左边时,,故BC的长为:5或故选:在中,根据,,求得,然后分情况讨论即可求得BC 的长.本题考查解直角三角形以及分类讨论,解题关键是正确画出分类讨论的三角形图形求解.8.【答案】A【解析】解:,,,,即,,,即的面积是,故选:根据勾股定理得到,根据完全平方公式求出,得到,得到答案.本题考查的是勾股定的应用,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么9.【答案】B【解析】解:,,,,,,是直角三角形,设点C到BD的距离为h,故选:先根据勾股定理求出BC,再根据勾股定理的逆定理可得是直角三角形,再根据三角形的面积公式即可求解.本题考查了勾股定理,勾股定理的逆定理,熟悉勾股定理,勾股定理的逆定理的计算是解题的关键.10.【答案】B【解析】解:如图,小虫爬行的最短路程故选:先将图形展开,再根据两点之间线段最短,由勾股定理可得出.此题主要考查了平面展开图最短路径问题,此矩形的长等于圆柱底面周长,矩形的宽即高等于圆柱的母线长.本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.11.【答案】B【解析】解:从表中可知:a依次为6,8,10,12,14,16,18,20,22,24,,即,b依次为8,15,24,35,48,,即当时,,c依次为10,17,26,37,50,,即当时,,所以当时,故选:先根据表中的数据得出规律,根据规律求出b、c的值,再求出答案即可.本题考查了勾股数,能根据表中数据得出,是解此题的关键.12.【答案】C【解析】解:将转化为,代入得,,可理解为点到与的距离.如图:找到C关于x轴的对称点,可见,AB的长即为求代数式的最小值.,代数式的最小值为故选:将代数式转化为,理解为点到与的距离,利用勾股定理解答即可.本题考查利用轴对称求最短路线的问题,难度较大,解题关键是将求代数式的值巧妙地转化为几何问题.13.【答案】【解析】解:根据题意,结合图形可知:,,在中,故答案为:分析题意,如图进行点标注,则有米,米,在中,利用勾股定理可得本题考查的是勾股定理应用类型的题目,解题的关键是构造直角三角形.14.【答案】13或【解析】解:①12cm是直角边,第三根木棒要取的长度是;②12cm是斜边,第三根木棒要取的长度是;故答案为:13或分2种情况:①12cm是直角边;②12cm是斜边;根据勾股定理求出第三根木棒的长即可求解.考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足,那么这个三角形就是直角三角形.15.【答案】【解析】解:将一根长为15cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,在杯子中筷子最短是等于杯子的高,最长是等于杯子斜边长度,当杯子中筷子最短是等于杯子的高时为12cm,最长时等于杯子斜边长度,即:,的取值范围是:,即故答案为:根据杯子内筷子的长度取值范围得出杯子外面长度的取值范围,即可得出答案.此题主要考查了勾股定理的应用,正确得出杯子内筷子的取值范围是解决问题的关键.16.【答案】【解析】解:在中,,,,由折叠的性质可得,≌,,,,设,则,,在中,解得,即根据勾股定理可得,由折叠的性质可得≌,则,,则,在中根据勾股定理求AG的即可.此题主要考查折叠的性质,综合利用了勾股定理的知识.认真分析图中各条线段的关系,也是解题的关键.17.【答案】【解析】解:,,,,即为等腰直角三角形,由勾股定理得因为是由旋转得到的,则这两个三角形全等,根据所以,可得为等腰直角三角形,由勾股定理即可求解.此题主要考查学生对旋转的性质及等腰三角形的性质的掌握情况.18.【答案】【解析】解:,,,,根据图形,每3个图形为一个循环组,,所以,第13个三角形的直角顶点在x轴上,横坐标为,所以,第13个三角形的直角顶点的坐标为,故答案为:利用勾股定理得到AB的长度,结合图形可求出图③的直角顶点的坐标;根据图形不难发现,每3个图形为一个循环组依次循环,且下一组的第一个图形与上一组的最后一个图形的直角顶点重合.本题考查了坐标与图形的变化-旋转,仔细观察图形,判断出旋转规律“每3个图形为一个循环组依次循环,且下一组的第一个图形与上一组的最后一个图形的直角顶点重合”是解题的关键.19.【答案】【解析】解:计算;;,,;①根据上面的规律,可得,,故答案为:n,;②根据二次根式的性质,零指数幂,绝对值的性质求解即可;根据二次根式的性质,二次根式的乘除法则求解即可;先将变形为,再根据完全平方公式求解即可;①根据给定的规律填空即可;②先分母有理化,再求值即可.本题考查了二次根式的化简与求值,规律型,熟练掌握二次根式的性质是解题的关键.20.【答案】解:不是直角.理由:,,,,不是直角.四边形ABCD的面积是如图,四边形ABED即为所求作.答案不唯一【解析】解:不是直角.理由:,,,,不是直角.四边形ABCD的面积是如图,四边形ABED即为所求作.答案不唯一利用勾股定理,判断即可.利用分割法求解即可.取格点E,连接BE,DE即可.本题考查作图-应用与设计作图,勾股定理以及逆定理,四边形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.【答案】证明:连接BD交AC于O,四边形ABCD是平行四边形,,,,,,,,,在和中,,≌,,,又,四边形BEDF为平行四边形;解:由得:,,,,【解析】连接BD交AC于O,由平行四边形的性质得出,,,,由平行线的性质得出,证明≌得出,得出,即可得出结论;由得:,由勾股定理得出OB的长,即可得出结果.此题主要考查了平行四边形的判定与性质,全等三角形的判定与性质、勾股定理等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.22.【答案】6【解析】解:在中,由勾股定理得:,故答案为:6;过点F作,交DO延长线于H,如图所示:则,在中,由勾股定理得:,,是等腰直角三角形,,,的度数为在中,由勾股定理求出AB即可;过点F作,交DO延长线于H,由勾股定理得,再证是等腰直角三角形,得,进而得出答案.本题考查了勾股定理的应用、等腰直角三角形的判定与性质等知识,熟练掌握勾股定理和等腰直角三角形的性质是解题的关键.23.【答案】解:由勾股定理得,,设,则,在中,由勾股定理得,,解得,;当时,,为等腰三角形;当时,如图,,,,,,;当时,如图,过D作于点E,,设,则,,即,解得,综上,当或3或时,为等腰三角形.【解析】由勾股定理直接求得AC,设,由勾股定理列出x的方程,便可求得AB;分三种情况:;;分别进行解答便可.本题考查了勾股定理,等腰三角形的性质,分情况讨论是解题的关键.。

人教版八年级(下)学期3月份月考数学试卷含答案

人教版八年级(下)学期3月份月考数学试卷含答案

人教版八年级(下)学期3月份月考数学试卷含答案一、选择题1.下列计算正确的是( )A1 BCD±2.若有意义,则 x 的取值范围是 ( )A .3x >B .3x ≥C .3x ≤D .x 是非负数3.下列式子中,属于最简二次根式的是( )ABCD4.下列计算正确的是( )A=BCD=5.( ) A .1 B .﹣1 C. D-6.下列二次根式是最简二次根式的是( )ABCD7.下列运算正确的是( )A .52223-=y yB .428x x x ⋅=C .(-a-b )2=a 2-2ab+b 2D=8.下列计算正确的是( )A=B1-=C=D6==9.对于已知三角形的三条边长分别为a ,b ,c ,求其面积的问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式:S =,其中2a b c p ++=,若一个三角形的三边长分别为2,3,4,则其面积( ) ABCD10.当4x =-的值为( ) A .1 BC .2D .311.当119942x +=时,多项式()20193419971994x x --的值为( ). A .1 B .1- C .20022D .20012- 12.下列各式中,不正确的是( ) A .233(3)(3)->- B .33648< C .2221a a +>+ D .2(5)5-=二、填空题13.将2(3)(0)3a a a a-<-化简的结果是___________________. 14.若m =201520161-,则m 3﹣m 2﹣2017m +2015=_____. 15.设a ﹣b=2+3,b ﹣c=2﹣3,则a 2+b 2+c 2﹣ab ﹣ac ﹣bc=_____.16.若a ,b ,c 是实数,且21416210a b c a b c ++=-+-+--,则2b c +=________.17.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72 [72]=8 [8]=2 2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________.18.已知函数1x f x x ,那么21f _____.19.120654010144152118+++235a b c +的形式(,,a b c 为正整数),则abc =______.20.若a 、b 都是有理数,且2222480a ab b a -+++=ab .三、解答题21.3535+-解:设x 3535+-222(35)(35)2(35)(35)x =++-++-235354x =+,x 2=10∴x =10.3535+-03535+-10.4747+-14【分析】根据题意给出的解法即可求出答案即可.【详解】设x两边平方得:x 2=2+2+即x 2=4+4+6,x 2=14∴x =.0,∴x .【点睛】本题考查了二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.22.已知x=2,求代数式(7+x 2+(2)x【答案】2【解析】试题分析:先求出x 2,然后代入代数式,根据乘法公式和二次根式的性质,进行计算即可.试题解析:x 2=(2)2=7﹣则原式=(7﹣+(2=49﹣23.x 的值,代入后,求式子的值. 【答案】答案见解析.【解析】试题分析:先把除式化为最简二次根式,再用二次根式的乘法法则化简,选取的x 的值需要使原式有意义.试题解析:原式22x x ==--== 要使原式有意义,则x >2.所以本题答案不唯一,如取x =4.则原式=224.)÷)(a ≠b ). 【答案】【解析】试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论.试题解析:解:原式=()()a b a b --+-222225.先化简,再求值:(()69x x x x --+,其中1x =.【答案】化简得6x+6,代入得【分析】根据整式的运算公式进行化简即可求解.【详解】(()69x xx x +--+=22369x x x --++ =6x+6把1x =代入原式=61)【点睛】此题主要考查实数的运算,解题的关键熟知整式的运算法则.26.观察下列各式:11111122=+-= 11111236=+-= 111113412=+-= 请你根据上面三个等式提供的信息,猜想:(1=_____________ (2)请你按照上面每个等式反映的规律,写出用n (n 为正整数)表示的等式:______________;(3【答案】(1)1120;(211(1)n n =++;(3)1156,过程见解析 【分析】 (1)仿照已知等式确定出所求即可;(2)归纳总结得到一般性规律,写出即可;(3)原式变形后,仿照上式得出结果即可.【详解】解:(1111114520=+-=; 故答案为:1120;(2111111(1)n n n n =+-=+++;11(1)n n =++;(31156== 【点睛】此题是一个阅读题目,通过阅读找出题目隐含条件.总结:找规律的题,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.27.计算:0(3)|1|π-+.【答案】【分析】根据二次根式的意义和性质以及零次幂的定义可以得到解答.【详解】解:原式11=+=【点睛】本题考查实数的运算,熟练掌握二次根式的运算和零次幂的意义是解题关键.28.(1)计算:21)-(2)已知a ,b 是正数,4a b +=,8ab =【答案】(1)5-2【分析】(1)根据完全平方公式、平方差公式可以解答本题;(2)先将所求式子化简,然后将a+b=4,ab=8代入化简后的式子即可解答本题.【详解】解:(1)原式21)=-(31)(23)=---5=-;(2)原式=== a ,b 为正数,∴原式=把4a b +=,8ab =代入,则原式== 【点睛】本题考查二次根式的化简求值,完全平方公式、平方差公式,解答本题的关键是明确二次根式化简求值的方法.29.(1|5-+;(2)已知实数a 、b 、c 满足|3|a +=,求2(b a +的值.【答案】(1)5;(2)4【分析】(1)先利用二次根式的乘法法则和绝对值的意义计算,再进行回头运算即可;(2)先根据二次根式有意义的条件确定b 的值,再根据非负数的和的意义确定a ,c 的值,然后再计算代数式的值即可.【详解】解:(15-+5)=+5=+5=(2)由题意可知:5050b b -≥⎧⎨-≥⎩, 解得5b =由此可化简原式得,30a +=30a ∴+=,20c -=3a ∴=-,2c =22((534b a ∴+=--=【点睛】可不是考查了二次根式的混合运算以及二次根式的化简求值,熟练掌握运算法则和运算顺序是解答此题的关键.30.(1)计算)(2201113-⎛⎫--•- ⎪⎝⎭(2)已知,,a b c 为实数且2c =2c ab -的值【答案】(1)13;(2)12-【分析】(1)利用完全平方公式、负整数指数幂、零指数幂分别计算再合并即可;(2)先依据二次根式有意义的条件,求得a 、b 、c 的值,然后再代入计算即可.【详解】(1))(2201113-⎛⎫--•- ⎪⎝⎭31=+⨯=4+9=13;(2)根据二次根式有意义的条件可得:∵()2303010a a b ⎧-≥⎪⎪-≥⎨⎪-+≥⎪⎩,∴3a =,1b =-,∴2c =∴(()2223112c ab -=-⨯-=-【点睛】本题主要考查了二次根式的混合运算,二次根式有意义的条件以及二次根式的化简求值,熟练掌握二次根式有意义的条件是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】2÷故选A.2.B解析:B【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】有意义的x 的取值范围是:x ≥3.故选:B .【点睛】本题考查二次根式有意义的条件,解题关键是正确掌握定义和二次根式有意义的条件.3.D解析:D【分析】根据直角二次根式满足的两个条件进行判断即可.【详解】被开方数中含能开得尽方的因数,不是最简二次根式,故选项A 错误;=被开方数中含分母,不是最简二次根式,故选项B错误;3=被开方数中含能开得尽方的因数,不是最简二次根式,故选项C错误;是最简二次根式,故选项D正确.故选D.【点睛】本题考查的是最简二次根式的概念,满足(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式两个条件的二次根式是最简二次根式.4.D解析:D【分析】直接利用二次根式的混合运算法则分别判断得出答案.【详解】解:AB=,故此选项不合题意;2C,故此选项不合题意;D=故选:D.【点睛】本题考查二次根式的混合运算,正确掌握相关运算法则是解题关键.5.C解析:C【解析】解:原式=故选C.6.B解析:B【分析】直接利用最简二次根式的定义分析得出答案.【详解】解:ABC0.1,故此选项错误;D2故选:A.【点睛】此题主要考查了最简二次根式的定义,正确把握定义是解题关键.7.D解析:D【分析】由合并同类项、同底数幂乘法、完全平方公式、以及二次根式的加减运算,分别进行判断,即可得到答案.【详解】解:A 、222523y y y -=,故A 错误;B 、426x x x ⋅=,故B 错误;C 、222()2a b a ab b --=++,故C 错误;D ==D 正确;故选:D .【点睛】本题考查了合并同类项、同底数幂乘法、完全平方公式、以及二次根式的加减运算,解题的关键是熟练掌握运算法则进行解题.8.A解析:A【分析】本题涉及二次根式化简,在计算时,需要针对每个选项分别进行计算,然后根据实数的运算法则求得计算结果.【详解】=D. 6===,故本项错误;故选:A .【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式的运算.9.A解析:A【分析】根据公式解答即可.【详解】根据题意,若一个三角形的三边长分别为2,3,4,则2+349=222a b c p +++== ∴其面积为S====故选:A.【点睛】本题考查二次根式的应用、数学常识等知识,难度较难,掌握相关知识是解题关键.10.A解析:A【分析】根据分式的运算法则以及二次根式的性质即可求出答案.【详解】解:原式2223232323x xx x112323x x将4x=代入得,原式114234232211131331133331131=.故选:A.【点睛】本题考查分式的运算以及二次根式的性质,解题的关键是熟练运用分式的运算法则以及观察出分母可以开根号,本题属于较难题型.11.B解析:B【解析】【分析】由原式得()2211994x-=,得244+11994x x-=,原式变形后再将244+11994x x-=代和可得出答案.【详解】∵12x +=, ()2211994x ∴-=,即24419930x x --=,()()32241997199444199344199311x x x x x x x ∴--=--+---=-.∴原式()201911=-=-.【点睛】本题难度较大,需要对要求的式子进行变形,学会转化. 12.B解析:B【解析】=-3,故A 正确;=4,故B 不正确;根据被开方数越大,结果越大,可知C 正确;5=,可知D 正确.故选B.二、填空题13..【分析】根据二次根式的性质化简即可.【详解】∵a <0.∴a -3<0,∴==.故答案为:.【点睛】 本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.解析:【分析】根据二次根式的性质化简即可.【详解】∵a <0.∴a -3<0,∴(a -=-=故答案为:【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.【分析】利用平方差公式化简m ,整理要求的式子,将m 的值代入要求的式子计算即可.【详解】m== m==+1,∴m3-m2-2017m+2015=m2(m ﹣1)﹣2017m+2015解析:4030【分析】利用平方差公式化简m ,整理要求的式子,将m 的值代入要求的式子计算即可.【详解】mm ), ∴m 3-m 2-2017m +2015=m 2(m ﹣1)﹣2017m +2015= )22017)+2015=(2017+2015﹣2=4030.故答案为4030.【点睛】本题主要考查二次根式的化简以及二次根式的混合运算.15.15【解析】根据题意,由a ﹣b=2+,b ﹣c=2﹣,两式相加得,得到a ﹣c=4,然后根据配方法,把式子各项变为:a2+b2+c2﹣ab ﹣bc ﹣ac=====15.故答案为:15.解析:15【解析】根据题意,由a ﹣b ﹣c=2,两式相加得,得到a ﹣c=4,然后根据配方法,把式子各项变为:a 2+b 2+c 2﹣ab ﹣bc ﹣ac=2222222222a b c ab ac bc ++﹣﹣﹣=2222222222a ab b b bc c a ac c +++++﹣﹣﹣=222()()()2a b b c a c -+-+-=15. 故答案为:15.【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得,,的值,从而得到答案.【详解】∵∴∴∴∴∴∴∴.【点睛】本题考查了二次根式、完全平方公式的知识;解题的解析:21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得a ,b ,c 的值,从而得到答案.【详解】∵10a b c ++=∴100a b c ---=∴2221490⎡⎤⎡⎤⎡⎤-+-+-=⎣⎦⎣⎦⎣⎦∴2221)2)3)0++=∴123=== ∴111429a b c -=⎧⎪-=⎨⎪-=⎩∴2511a b c =⎧⎪=⎨⎪=⎩∴2251121b c +=⨯+=.本题考查了二次根式、完全平方公式的知识;解题的关键是熟练掌握二次根式、完全平方公式、一元一次方程的性质,从而完成求解.17.255【解析】解:∵[]=1,[]=3,[]=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和解析:255【解析】解:]=1,=3,=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.18.【分析】根据题意可知,代入原函数即可解答.【详解】因为函数,所以当时,.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键.解析:2+【分析】根据题意可知1x=,代入原函数即可解答.【详解】因为函数1xf xx,所以当1x=时,211()2221f x.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键. 19.【解析】【分析】根据题意,可得到=,利用平方关系把根号去掉,根据、、的系数相等的关系得到关于a,b,c的三元方程组,解方程组即可.【详解】∴,即.解得.【点睛】本题考查了解析:【解析】【分析】a ,b ,c 的三元方程组,解方程组即可.【详解】∴(22118=,即2222118235a b c =+++++. 2222352118,2120,2540,2144,a b c ab ac bc ⎧++=⎪=⎪∴⎨=⎪⎪=⎩ 解得15,4,18.a b c =⎧⎪=⎨⎪=⎩154181080abc ∴=⨯⨯=.【点睛】本题考查了二次根式的加减,解本题的关键是将等式平方去根号,利用等量关系中等式左、.20.【分析】先将原等式两边同时乘2,然后将左侧配方,然后利用平方的非负性即可求出a 和b 的值,然后代入即可.【详解】解:∵∴∴∵∴解得:a=-4,b=-2∴=故答案为:.【点睛解析:【分析】先将原等式两边同时乘2,然后将左侧配方,然后利用平方的非负性即可求出a 和b 的值,然后代入即可.【详解】解:∵2222480a ab b a -+++=∴222448160a ab b a -+++=∴()()222448160a ab ba a -+++=+ ∴()()22240ab a +-+=∵()()2220,40a b a +-≥≥∴20,40a b a +-==解得:a=-4,b=-2=故答案为:【点睛】此题考查的是配方法、非负性的应用和化简二次根式,掌握完全平方公式、平方的非负性和二次根式的乘法公式是解决此题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

2022-2023学年浙江省杭州市拱墅区公益中学八年级(下)月考数学试卷(3月份)+答案解析(附后)

2022-2023学年浙江省杭州市拱墅区公益中学八年级(下)月考数学试卷(3月份)+答案解析(附后)

2022-2023学年浙江省杭州市拱墅区公益中学八年级(下)月考数学试卷(3月份)1. 下列方程中,是一元二次方程的为( )A.B.C.D.2. 下列根式为最简二次根式的是( )A.B.C.D.3. 下列式子计算正确的是( )A. B.C.D.4. 五边形的内角和是( )A.B.C.D.5. 下列说法正确的是( )A. 数据3,3,4,4,7的众数是4B. 数据0,1,2,5,1的中位数是2C. 一组数据的众数和中位数不可能相等D. 数据0,5,,,7的中位数和平均数都是06. 如图,在平行四边形ABCD 中,,则的度数是( )A.B.C.D.7. 为响应“足球进校园”的号召,某校组织足球比赛,赛制为单循环形式每两个队之间都要比赛一场,计划安排28场比赛,则参赛的足球队个数为( )A. 6B. 7C. 8D. 98. 已知m 是方程的一个根,则的值为( )A. 4B.C. 8D.9. 如图,▱ABCD 中,对角线AC 、BD 相交于O ,过点O 作交AD 于E ,若,,,则AC 的长为( )A. B. C. D.10. 定义:是一元二次方程的倒方程,下列四个结论中,错误的是( )A. 如果是的倒方程的解,则B. 如果,那么这两个方程都有两个不相等的实数根C. 如果一元二次方程无解,则它的倒方程也无解D. 如果一元二次方程有两个不相等的实数根,则它的倒方程也有两个不相等的实数根11. 二次根式中,字母m的取值范围是______.12. 关于x的方程是一元二次方程,则m的值为______.13. 某校拟招聘一批优秀教师,其中某位教师笔试、试讲、面试三轮测试得分分别为95分、85分、90分,综合成绩笔试、试讲、面试的占比为2:2:1,则该名教师的综合成绩为______.14. 如图,平行四边形ABCD的对角线AC和BD相交于点O,EF过点O与AD、BC相交于点E、F,若,,,那么四边形ABFE的周长是______.15. 已知n是一个正整数,是整数,则n的最小值是______.16. 平行四边形ABCD中,,,若平行四边形ABCD的面积为,则______ .17. 计算:;18. 解下列方程组:;19. 为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A、B 两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检查人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量单位:克如表:A:74,75,75,75,73,77,78,72,76,75;B:78,74,78,73,74,75,74,74,75,整理数据,得到如下表:平均数中位数众数方差A757575B75a b⋆其中:______ ,______ ;估计B加工厂这100个鸡腿中,质量为75克的鸡腿有多少个?根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?20. 已知线段a,b,c,且线段a,b满足求a,b的值;若a,b,c是某直角三角形的三条边的长度,求c的值.21. 由于新冠疫情的影响,口罩需求量急剧上升,经过连续两次价格的上调,口罩的价格由每包10元涨到了每包元.求出这两次价格上调的平均增长率;在有关部门大力调控下,口罩价格还是降到了每包10元,而且调查发现,定价为每包10元时,一天可以卖出30包,每降价1元,可以多卖出5包.当销售额为315元时,为让顾客获得更大的优惠,应该降价多少元?22. 已知:关于x的一元二次方程求证:方程总有两个实数根;若方程有一根为,求m的值,并求另一根;若方程两根为,,且满足,求m的值.23. 如图,AC为▱ABCD的对角线,若,,,CE和AF分别平分和证明:四边形AECF是平行四边形;求平行四边形AECF的面积;连接EF,求EF的长度.答案和解析1.【答案】D【解析】解:A、是二元二次方程的定义,故选项错误;B、是二元一次方程,故选项错误;C、是分式方程,故选项错误;D、符合一元二次方程的定义,故选项正确.故选:本题根据一元二次方程的定义求解.一元二次方程必须满足三个条件:是整式方程;含有一个未知数,且未知数的最高次数是2;二次项系数不为以上三个条件必须同时成立,据此即可作出判断.考查了一元二次方程的定义,在做此类判断题时,要特别注意二次项系数这一条件.2.【答案】A【解析】解:是最简二次根式,故本选项符合题意;B.的被开方数的数不是整数,不是最简二次根式,故本选项不符合题意;C.分母中含有根号,不是最简二次根式,故本选项不符合题意;D.的被开方数含有能开得尽方的因数,不是最简二次根式,故本选项不符合题意;故选:根据最简二次根式的定义逐个判断即可.本题考查了最简二次根式的定义,能熟记最简二次根式的定义是解此题的关键,满足以下两个条件的二次根式,叫最简二次根式:①被开方数的因数是整数,因式是整式,②被开方数中不含有能开得尽方的因数和因式.3.【答案】B【解析】解:A、与不是同类二次根式,不能合并,故本选项计算错误,不符合题意;B、,故本选项计算正确,符合题意;C、,故本选项计算错误,不符合题意;D、,故本选项计算错误,不符合题意;故选:根据二次根式的加法法则判断A,根据二次根式的减法法则判断B,根据二次根式的乘法法则判断C,根据二次根式的除法法则判断本题考查了二次根式的运算,掌握运算法则是解题的关键.4.【答案】B【解析】解:五边形的内角和是:故选:根据n边形的内角和为:且n为整数,求出五边形的内角和是多少度即可.本题考查了多边形的内角和定理,掌握确n边形的内角和为:且n为整数是关键.5.【答案】D【解析】解:数据3,3,4,4,7的众数是3或4,故本选项不符合题意;B.数据0,1,2,5,1的中位数是1,故本选项不符合题意;C.一组数据的众数和中位数可以相等,如数据1、3、3、3、5的众数和中位数都是3,故本选项不符合题意;D.数据0,5,,,7的中位数和平均数都是0,说法正确,故本选项符合题意.故选:分别根据众数、中位数以及算术平均数的定义解答即可.本题考查了众数、中位数以及算术平均数,掌握相关定义是解答本题的关键.6.【答案】B【解析】解:在平行四边形ABCD中,,又有,把这两个式子相加即可求出,故选:利用平行四边形的邻角互补和已知,就可建立方程求出未知角.本题考查了平行四边形的性质:邻角互补,建立方程组求解.7.【答案】C【解析】解:设共有x个球队参赛,根据题意得:,整理得:,解得:,不符合题意,舍去,共有8个球队参赛.故选:设共有x个球队参赛,利用计划安排比赛的总场数=参赛队伍个数参赛队伍个数,可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.8.【答案】D【解析】解:因为m为方程的解,所以所以,所以故选:直接把代入方程中,进行计算即可解答.本题考查了一元二次方程的解,一元二次方程一定有两个解,但不一定有两个实数解.这,是一元二次方程的两实数根,则下列两等式成立,并可利用这两个等式求解未知量.,9.【答案】B【解析】解:连接CE,四边形ABCD是平行四边形,,,垂直平分AC,,,,,,是等腰直角三角形,,故选:连接CE,根据平行四边形的性质可得,,然后判断出OE垂直平分AC,再根据线段垂直平分线上的点到两端点的距离相等可得,利用勾股定理的逆定理得到,得到是等腰直角三角形,根据勾股定理即可求得结论.本题主要考查了平行四边形的性质,线段垂直平分线的性质,勾股定理及逆定理,正确作出辅助线证得是解决问题的关键.10.【答案】D【解析】解:的倒方程是,将代入,得,故A正确;,,这两个方程都有两个不相等的实数根,故B正确;无解,,它的倒方程的根的判别式也为,它的倒方程也无解,故C正确;若,则它的倒方程为一元一次方程,只有一个实数根,故D错误;故选:根据一元二次方程的解,根的判别式分别判断即可.本题考查了根的判别式,一元二次方程的解,根据判别式判断一元二次方程的解是解题的关键.11.【答案】【解析】解:由题意得:,解得:,故答案为:根据二次根式有意义的条件列出不等式,解不等式即可.本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.12.【答案】【解析】解:关于x的方程是一元二次方程,且,解得故答案为:根据一元二次方程的定义得到且,然后解方程和不等式即可得到满足条件的m 的值.本题考查的是一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.13.【答案】90分【解析】解:该名教师的综合成绩为分,故答案为:90分.根据加权平均数的定义列式计算即可.本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.14.【答案】15【解析】解:四边形ABCD是平行四边形,,,,,在和中,,≌,,,,四边形EFCD的周长故答案为:先证明≌,得出,,可求得,即可得出四边形ABFE的周长,进而可求解.本题考查了平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等得出对应边相等是解决问题的关键.15.【答案】3【解析】解:是一个正整数,是整数,的最小值是故答案为:先化简二次根式,然后依据化简结果为整数可确定出n的值本题主要考查的是二次根式的定义,熟练掌握二次根式的定义是解题的关键.16.【答案】【解析】解:如图,作于点E,则,四边形ABCD是平行四边形,,,,,,,,,故答案为:作于点E,由平行四边形的性质得,由,,得,则,所以,则,所以,于是得到问题的答案.此题重点考查平行四边形的性质、根据面积等式求线段的长度、勾股定理等知识与方法,正确地作出所需要的辅助线是解题的关键.17.【答案】解:原式;原式【解析】先根据二次根式的乘法法则运算,然后化简二次根式即可;先根据二次根式的除法法则和平方差公式计算,然后化简后合并即可.本题考查了二次根式的混合运算:熟练掌握二次根式的性质、二次根式的乘法法则、除法法则是解决问题的关键.18.【答案】解:,,或,所以,;,,,或,所以,【解析】先利用因式分解法把方程转化为或,然后解两个一次方程即可;先移项得到,再利用因式分解法把方程转化为或,然后解两个一次方程即可.本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.19.【答案】【解析】解:把这些数从小到大排列,最中间的数是第5和第6个数的平均数,则中位数克;因为74出现了4次,出现的次数最多,所以众数b是74克;故答案为:,74;根据题意得:个,答:质量为75克的鸡腿有30个;选B加工厂的鸡腿.A的方差是:;B的平均数是:,B的方差是:;、B平均值一样,B的方差比A的方差小,B更稳定,选B加工厂的鸡腿.根据中位数、众数和平均数的计算公式分别进行解答即可;用总数乘以质量为75克的鸡腿所占的百分比即可;根据方差的定义,方差越小数据越稳定即可得出答案.本题考查了方差、平均数、中位数、众数,熟悉计算公式和意义是解题的关键.20.【答案】解:因为线段a,b满足所以,;因为a,b,c是某直角三角形的三条边的长度,所以或【解析】根据非负数性质可得a、b的值;根据勾股定理逆定理可解答.本题主要考查二次根式的应用,根据非负数性质和勾股定理逆定理得出相应算式是关键,二次根式的化简与运算是根本技能.21.【答案】解:设这两次价格上调的平均增长率为x,依题意得:,解得:,不符合题意,舍去答:这两次价格上调的平均增长率为;设每包应该降价m元,则每包的售价为元,每天可售出包,依题意得:,整理得:,解得:,又要让顾客获得更大的优惠,的值为答:每包应该降价3元.【解析】设这两次价格上调的平均增长率为x,利用经过两次上调后的价格=原价这两次价格上调的平均增长率,即可得出关于x的一元二次方程,解之取其正值即可得出结论;设每包应该降价m元,则每包的售价为元,每天可售出包,根据每天该口罩的销售额为315元,即可得出关于m的一元二次方程,解之即可得出m的值,再结合要让顾客获得更大的优惠,即可得结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.【答案】证明:,方程总有两个实数根;解:方程有一根为,,,,解得:,,综上,m的值为,另一根为1;解:,是一元二次方程的两根,,,,,,【解析】先计算,再根据非负数的性质即可证明;将代入方程中,可求出m的值,再解方程即可求得另一根;根据根与系数的关系可得,,根据可得,再整体代入即可求解.本题主要考查根的判别式、根与系数的关系、解一元二次方程,熟知,是一元二次方程的两根时,,是解题关键.23.【答案】证明:四边形ABCD是平行四边形,,,,和AF分别平分和,,,,,,四边形AECF是平行四边形;解:四边形ABCD是平行四边形,,,,,如图1,过E作于点G,则,,,平分,,在和中,,≌,,,,设,则,在中,由勾股定理得:,解得:,,,;如图2,设EF与AC交于点O,四边形AECF是平行四边形,,,,由可知,,在中,由勾股定理得:,,即EF的长度为【解析】由平行四边形的性质得,,则,再证,则,即可得出结论;由平行四边形的性质得,再由勾股定理得,过E作于点G,然后证≌,得,,则,设,则,进而由勾股定理求出,则,即可解决问题;由平行四边形的性质得,,再由勾股定理得,即可得出结论.本题是四边形综合题目,考查了平行四边形的判定与性质、全等三角形的判定与性质、平行线的判定与性质以及勾股定理等知识,本题综合性强,熟练掌握平行四边形的判定与性质以及勾股定理是解题的关键,属于中考常考题型.。

浙教版八年级下数学3月考试卷(1-3章含解析)

浙教版八年级下数学3月考试卷(1-3章含解析)

浙教版八年级下数学月考试卷(3月份)一.选择题(共10小题,3*10=30)1.要使式子有意义的x的取值范围是()A.x<3 B.x≠3C.x≤3 D.x为一切实数2.下列计算中正确的是()A.B.C.=1D.3.方程①2x2﹣9=0②=0③xy+x2④7x+6=x2⑤ax2+bx+c=0中,一元二次方程的个数是()A.1个B.2个C.3个D.4个4.在一次献爱心的捐赠活动中,某班45名同学捐款金额统计如下:金额(元)20303550100学生数(人)51051510在这次活动中,该班同学捐款金额的众数和中位数分别是()A.30,35 B.50,35 C.50,50 D.15,505.方程x2﹣8x+15=0左边配成一个完全平方式后,所得的方程是()A.(x﹣6)2=1 B.(x﹣4)2=1 C.(x﹣4)2=31 D.(x﹣4)2=﹣76.已知方程mx2﹣mx+2=0有两个相等的实数根,则m的值是()A.m=0或m=﹣8 B.m=0或m=8 C.m=﹣8 D.m=87.某市2014年的快递业务量为4.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展.若2016年的快递业务量达到9.7亿件,设2015年与2016年这两年的平均增长率为x,则下列方程正确的是()A.4.4(1+x)=9.7B.44.4(1+2x)=9.7C.4.4(1+x)2=9.7D.4.4(1+x)+4.4(1+x)2=9..78.若0<a<1,则﹣的值为()A.2a B.C.﹣2a D.﹣49.已知等腰△ABC的底边长为3,两腰长恰好是关于x的一元二次方程kx2﹣(k+3)x+6=0的两根,则△ABC的周长为()A.6.5 B.7 C.6.5或7 D.810.小聪、小明、小伶、小刚私人共同探究代数式2x2﹣4x+6的值的情况他们做了如下分工:小聪负责找值为0时x的值,小明负责找值为4时x的值,小伶负责找最小值,小明负责找最大值,几分钟后,各自通报探究的结论,其中正确的是()(1)小聪认为找不到实数x,使2x2﹣4x+6得值为0;(2)小明认为只有当x=1时,2x2﹣4x+6的值为4;(3)小伶发现2x2﹣4x+6没有最小值;(4)小刚发现2x2﹣4x+6没有最大值.A.(1)(2)B.(1)(3)C.(1)(2)(4) D.(2)(3)(4)二.填空题(共8小题,3*8=24)11.已知x<0,化简二次根式的结果是.12.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是分.13.甲、乙两人进行飞镖比赛,已知他们每人五次投得的成绩如图,那么两人中成绩更稳定的是(填“甲”或“乙”).14.若一元二次方程x2﹣(a+1)x+a=0的两个实数根分别是2、b,则a﹣b=.15.已知(x+)(x+﹣1)=2,则x+=.16.某经营户以2元/千克的价格购进一批瓯柑,以5元/千克的价格出售,每天可售出100千克.为了促销,该经营户决定降价销售.经调查发现,这种瓯柑每千克降价0.1元,每天可多售出10千克.另外,每天的房租等固定成本共100元.该经营户要想每天盈利300元.设每千克瓯柑的售价降低x元,依题意可列方程:.17.已知有理数a,满足|2016﹣a|+=a,则a﹣20162=.18.已知a是方程x2﹣x﹣1=0的一个根,则a4﹣3a﹣2的值为.三.解答题(共7小题,66分)19.(6分)计算:(1)(﹣)2﹣+(2).20.(8分)用适当的方法解下列方程:(1)x2+2x﹣1=0(2)(3x﹣7)2=﹣2(7﹣3x)(3)2x2﹣6x﹣1=0(4)9(x﹣2)2=4(x+1)221.(8分)在最近的五次数学过关测试中,小聪和小明的成绩如下表:(单位:分)第1次第2次第3次第4次第5次小聪75801009080小明7085959580(1)完成下表:平均成绩(分)中位数(分)众数(分)小聪85小明8595(2)在这五次测试中,哪位同学的成绩比较稳定?请说明理由.22.(8分)已知关于x的一元二次方程x2﹣4x+12+m=0.(1)若方程的一个根是,求m的值及方程的另一根;(2)若方程的两根恰为等腰三角形的两腰,而这个三角形的底边为m,求m的值及这个等腰三角形的面积.23.(10分)诸暨某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售件,每件盈利元;(用x的代数式表示)(2)每件童装降价多少元时,平均每天赢利1200元.(3)要想平均每天赢利2000元,可能吗?请说明理由.24.(12俀)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1•x2=q,请根据以上结论,解决下列问题:(1)若p=﹣4,q=3,求方程x2+px+q=0的两根.(2)已知实数a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求+的值;(3)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数.25.(14分)如图1,Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,与此同时,点Q从点B开始沿BC向点C以2cm/s的速度移动.如果P,Q同时分别从A,B点出发,设出发时间为ts(t>0).(1)当t为何值时,△PBQ的面积是8cm2?(2)当t为何值时,点P和点Q间的距离是6cm?(3)如图2,若点P,点Q同时从B点出发,点P沿折线BA﹣AC移动,点Q沿折线BC﹣CA 移动,其余条件均不变,求当P,Q在D点相遇时,点D与点B的距离.参考答案与试题解析一.选择题(共10小题)1.要使式子有意义的x的取值范围是()A.x<3 B.x≠3C.x≤3 D.x为一切实数【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得3﹣x≥0,解得x≤3,故选:C.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.2.下列计算中正确的是()A.B.C.=1D.【分析】根据二次根式的性质、合并同类二次根式法则、二次根式的运算法则逐一计算即可得.【解答】解:A、=13,错误;B、===2,错误;C、2﹣=,错误;D、=|2﹣|=﹣2,正确;故选:D.【点评】本题主要考查二次根式的加减法,解题的关键是掌握二次根式的性质与运算法则.3.方程①2x2﹣9=0②=0③xy+x2④7x+6=x2⑤ax2+bx+c=0中,一元二次方程的个数是()A.1个B.2个C.3个D.4个【分析】本题根据一元二次方程的定义:含有一个未知数,并且未知数的最高次数是2的整式方程,依据定义即可解答.【解答】解:在方程①2x2﹣9=0②=0③xy+x2④7x+6=x2⑤ax2+bx+c=0中,一元二次方程的是①④这2个,故选:B.【点评】本题考查了一元二次方程的概念,解答要判断方程是否是整式方程,若是整式方程,再化简,观察化简的结果是否只含有一个未知数,并且未知数的最高次数是2.4.在一次献爱心的捐赠活动中,某班45名同学捐款金额统计如下:金额(元)20303550100学生数(人)51051510在这次活动中,该班同学捐款金额的众数和中位数分别是()A.30,35 B.50,35 C.50,50 D.15,50【分析】根据众数、中位数的定义,结合表格数据进行判断即可.【解答】解:捐款金额学生数最多的是50元,故众数为50;共45名学生,中位数在第23名学生处,第23名学生捐款50元,故中位数为50;故选:C.【点评】本题考查了众数及中位数的知识,解答本题的关键是熟练掌握众数及中位数的定义.5.方程x2﹣8x+15=0左边配成一个完全平方式后,所得的方程是()A.(x﹣6)2=1 B.(x﹣4)2=1 C.(x﹣4)2=31 D.(x﹣4)2=﹣7【分析】移项后,两边配上一次项系数一半的平方即可得.【解答】解:∵x2﹣8x=﹣15,∴x2﹣8x+16=﹣15+16,即(x﹣4)2=1,故选:B.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.6.已知方程mx2﹣mx+2=0有两个相等的实数根,则m的值是()A.m=0或m=﹣8 B.m=0或m=8 C.m=﹣8 D.m=8【分析】由方程mx2﹣mx+2=0有两个相等的实数根,得m≠0,△=m2﹣4×2m=0,解m的方程得m=0或8,最后m=8.【解答】解:因为方程mx2﹣mx+2=0有两个相等的实数根,所以m≠0且△=m2﹣4×2m=0,解方程m2﹣4×2m=0得m=0或8,所以m=8.故选:D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时也考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的定义.7.某市2014年的快递业务量为4.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展.若2016年的快递业务量达到9.7亿件,设2015年与2016年这两年的平均增长率为x,则下列方程正确的是()A.4.4(1+x)=9.7B.44.4(1+2x)=9.7C.4.4(1+x)2=9.7D.4.4(1+x)+4.4(1+x)2=9..7【分析】设2015年与2016年这两年的平均增长率为x,根据2014年及2016年的快递业务量,即可得出关于x的一元二次方程,此题得解.【解答】解:设2015年与2016年这两年的平均增长率为x,根据题意得:4.4(1+x)2=9.7.故选:C.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.若0<a<1,则﹣的值为()A.2a B.C.﹣2a D.﹣4【分析】由0<a<1,判断出>1>a>0,再根据二次根式和绝对值的性质解答即可.【解答】解:∵0<a<1,>1>a>0,∴原式=﹣,=|a﹣|﹣|a+|,=﹣a﹣a﹣,=﹣2a.故选:C.【点评】本题考查了二次根式的化简,注意二次根式的结果为非负数.9.已知等腰△ABC的底边长为3,两腰长恰好是关于x的一元二次方程kx2﹣(k+3)x+6=0的两根,则△ABC的周长为()A.6.5 B.7 C.6.5或7 D.8【分析】先根据两腰长恰好是关于x的一元二次方程kx2﹣(k+3)x+6=0的两根,求得k=3,进而得到一元二次方程为x2﹣6x+6=0,进而得到两腰之和为=4,进而得出△ABC的周长为4+3=7.【解答】解:∵两腰长恰好是关于x的一元二次方程kx2﹣(k+3)x+6=0的两根,∴△=[﹣(k+3)]2﹣4×k×6=0,解得k=3,∴一元二次方程为x2﹣6x+6=0,∴两腰之和为=4,∴△ABC的周长为4+3=7,故选:B.【点评】本题主要考查了根的判别式以及三角形三边关系,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.10.小聪、小明、小伶、小刚私人共同探究代数式2x2﹣4x+6的值的情况他们做了如下分工:小聪负责找值为0时x的值,小明负责找值为4时x的值,小伶负责找最小值,小明负责找最大值,几分钟后,各自通报探究的结论,其中正确的是()(1)小聪认为找不到实数x,使2x2﹣4x+6得值为0;(2)小明认为只有当x=1时,2x2﹣4x+6的值为4;(3)小伶发现2x2﹣4x+6没有最小值;(4)小刚发现2x2﹣4x+6没有最大值.A.(1)(2)B.(1)(3)C.(1)(2)(4) D.(2)(3)(4)【分析】解一元二次方程,根据判别式即可判断(1)(2),将式子转化为抛物线,经配方成顶点式的形式,根据抛物线的性质即可判断(3)(4).【解答】解:(1)2x2﹣4x+6=0,△=42﹣4×2×6<0,方程无实数根,故小聪找不到实数x,使2x2﹣4x+6得值为0正确,符合题意,(2)2x2﹣4x+6=4,解得x1=x2=1,方程有两个相等的实数根x=1,故小明认为只有当x=1时,2x2﹣4x+6的值为4正确,符合题意,(3)令y=2x2﹣4x+6,二次项系数为2>0,用配方法整理成y=2(x﹣2)2+4,抛物线开口向上,有最小值,故小伶发现2x2﹣4x+6没有最小值错误,不符合题意,(4)令y=2x2﹣4x+6,二次项系数为2>0,用配方法整理成y=2(x﹣2)2+4,抛物线开口向上,没有最大值,故小刚发现2x2﹣4x+6没有最大值正确,符合题意,故选:C.【点评】本题考查配方法的应用,和抛物线的性质,掌握一元二次方程求根公式和抛物线的性质是解决本题的关键.二.填空题(共8小题)11.已知x<0,化简二次根式的结果是﹣x.【分析】根据二次根式有意义,可知y≤0,再由二次根式的性质解答.【解答】解:∵x<0,﹣x2y≥0,∴y≤0,∴=﹣x.故答案为:﹣x.【点评】本题主要考查了二次根式的性质和化简,难度适中,容易丢负号.12.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是79分.【分析】按3:3:4的比例算出本学期数学总评分即可.【解答】解:本学期数学总评分=70×30%+80×30%+85×40%=79(分).故答案为:79.【点评】本题考查了加权成绩的计算,平时成绩:期中考试成绩:期末考试成绩=3:3:4的含义就是分别占总数的30%、30%、40%.13.甲、乙两人进行飞镖比赛,已知他们每人五次投得的成绩如图,那么两人中成绩更稳定的是甲(填“甲”或“乙”).【分析】根据方差的意义数据波动越小,数据越稳定即可得出答案.【解答】解:根据图形可得:甲的成绩波动最小,数据最稳定,则两人中成绩最稳定的是甲,故答案为:甲.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.若一元二次方程x2﹣(a+1)x+a=0的两个实数根分别是2、b,则a﹣b=1.【分析】根据根与系数的关系得出2+b=a+1,变形即可得出答案.【解答】解:∵一元二次方程x2﹣(a+1)x+a=0的两个实数根分别是2、b,∴2+b=a+1,∴a﹣b=2﹣1=1.故答案为:1.【点评】本题考查了根与系数的关系,难度不大,关键掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.15.已知(x+)(x+﹣1)=2,则x+=2.【分析】根据换元法可以解答本题.【解答】解:设x+=a,∵(x+)(x+﹣1)=2,∴a(a﹣1)=2,解得,a1=2,a2=﹣1,∴x+=2或x+=﹣1(舍去),故答案为:2.【点评】本题考查换元法解一元二次方程,解答本题的关键是会用换元法解方程.16.某经营户以2元/千克的价格购进一批瓯柑,以5元/千克的价格出售,每天可售出100千克.为了促销,该经营户决定降价销售.经调查发现,这种瓯柑每千克降价0.1元,每天可多售出10千克.另外,每天的房租等固定成本共100元.该经营户要想每天盈利300元.设每千克瓯柑的售价降低x元,依题意可列方程:(5﹣2﹣x)(100+)﹣100=300.【分析】设每千克瓯柑的售价降低x元.那么每千克的利润为:(5﹣2﹣x),由于这种瓯柑每千克降价0.1元,每天可多售出10千克.所以降价x元,则每天售出数量为:(100+)千克.本题的等量关系为:每千克的利润×每天售出数量﹣固定成本=300.【解答】解:设每千克瓯柑的售价降低x元.根据题意,得(5﹣2﹣x)(100+)﹣100=300.故答案为(5﹣2﹣x)(100+)﹣100=300.【点评】本题考查了由实际问题抽象出一元二次方程,解题关键是要读懂题目的意思,抓住根据描述语,找到等量关系列出方程.17.已知有理数a,满足|2016﹣a|+=a,则a﹣20162=2017.【分析】根据二次根式有意义的条件可得a﹣2017≥0,解不等式可得a的取值范围,然后再去绝对值可得a﹣2016+=a,再整理可得答案.【解答】解:由题意得:a﹣2017≥0,解得:a≥2017,|2016﹣a|+=a,a﹣2016+=a,=2016,a﹣20162=2017,故答案为:2017.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.18.已知a是方程x2﹣x﹣1=0的一个根,则a4﹣3a﹣2的值为0.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.【解答】解:把x=a代入方程可得,a2﹣a﹣1=0,即a2=a+1,∴a4﹣3a﹣2=(a2)2﹣3a﹣2=(a+1)2﹣3a﹣2=a2﹣a﹣1=0.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取等量关系a2=a+1,然后利用“整体代入法”求代数式的值.解此题的关键是降次,把a4﹣3a﹣2变形为(a2)2﹣3a﹣2,把等量关系a2=a+1代入求值.三.解答题(共7小题)19.计第:(1)(﹣)2﹣+(2).【分析】(1)根据二次根式的性质化简各二次根式,再计算加减可得;(2)先化简各二次根式,再合并同类二次根式可得.【解答】解:(1)原式=6﹣5+3=4;(2)原式=3﹣4×+2+=3﹣2+2+=+2+.【点评】本题主要考查二次根式的加减法,解题的关键是掌握二次根式的性质和运算法则.20.用适当的方法解下列方程:(1)x2+2x﹣1=0(2)(3x﹣7)2=﹣2(7﹣3x)(3)2x2﹣6x﹣1=0(4)9(x﹣2)2=4(x+1)2【分析】(1)求出b2﹣4ac的值,再带公式求出即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;(3)求出b2﹣4ac的值,再带公式求出即可;(4)两边开方,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2+2x﹣1=0,b2﹣4ac=22﹣4×1×(﹣1)=8,x=,x1=﹣1+,x2=﹣1﹣;(2)(3x﹣7)2=﹣2(7﹣3x),(3x﹣7)2﹣2(3x﹣7)=0,(3x﹣7)(3x﹣7﹣2)=0,3x﹣7=0,3x﹣7﹣2=0,x1=,x2=3;(3)2x2﹣6x﹣1=0,b2﹣4ac=(﹣6)2﹣4×2×(﹣1)=44,x=,x1=,x2=;(4)9(x﹣2)2=4(x+1)2,开方得:3(x﹣2)=±2(x+1),x1=8,x2=0.8.【点评】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.21.在最近的五次数学过关测试中,小聪和小明的成绩如下表:(单位:分)第1次第2次第3次第4次第5次小聪75801009080小明7085959580(1)完成下表:平均成绩(分)中位数(分)众数(分)小聪858080小明858595(2)在这五次测试中,哪位同学的成绩比较稳定?请说明理由.【分析】(1)将小聪的成绩按照从小到大的顺序排列,结合中位数、众数的定义即可得出小聪成绩的中位数、众数,再根据小明五次测试的成绩结合平均数的定义,即可求出小明五次测试的平均分;(2)根据方差公式,分别求出S2小明、S2小聪,二者比较后即可得出结论.【解答】解:(1)按照从小到大的顺序排列小聪的成绩:75,80,80,90,100,∴小聪成绩的中位数为80分,众数为80分.小明成绩的平均成绩为(70+85+95+95+80)÷5=80(分).故答案为:80;80;85.(2)小聪的成绩比较稳定,理由如下:S2小聪=×[(75﹣85)2+(80﹣85)2+(100﹣85)2+(90﹣85)2+(80﹣85)2],=×[100+25+225+25+25],=×400,=80(分2);S2小明=×[(70﹣85)2+(85﹣85)2+(95﹣85)2+(95﹣85)2+(80﹣85)2],=×[225+0+100+100+25],=90(分2).∵90>80,∴S2小明>S2小聪,∴小聪的成绩比较稳定.【点评】本题考查了方差、中位数以及众数,解题的关键是:(1)牢记中位数、众数以及平均数的定义;(2)牢记方差公式.22.已知关于x的一元二次方程x2﹣4x+12+m=0.(1)若方程的一个根是,求m的值及方程的另一根;(2)若方程的两根恰为等腰三角形的两腰,而这个三角形的底边为m,求m的值及这个等腰三角形的面积.【分析】(1)可将该方程的已知根代入方程,求出m的值,即可求出方程的另一根,(2)根据方程的两根恰为等腰三角形的两腰可得△=b2﹣4ac=0,列出式子,即可求实数m的值,再根据勾股定理可求底边的高,根据三角形面积公式计算即可求解.【解答】解:(1)∵x=是方程x2﹣4x+12+m=0的一个根∴()2﹣4×+12+m=0解得:m=3则方程为:x2﹣4x+15=0解得:x1=,x2=3.∴方程的另一根为3.(2)若方程的两根恰为等腰三角形的两腰,则△=b2﹣4ac=0,所以△=(﹣4)2﹣4(12+m)=0,解得m=8,则方程为:x2﹣4x+20=0,解得x=2,底边的高为:=2,故面积为8×2÷2=8.【点评】此题考查了一元二次方程的解和根的判别式,解决此类题目时要认真审题,根据根的判别式列出式子.23.诸暨某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售20+2x件,每件盈利40﹣x元;(用x的代数式表示)(2)每件童装降价多少元时,平均每天赢利1200元.(3)要想平均每天赢利2000元,可能吗?请说明理由.【分析】(1)根据:销售量=原销售量+因价格下降而增加的数量,每件利润=实际售价﹣进价,列式即可;(2)根据:总利润=每件利润×销售数量,列方程求解可得;(3)根据(2)中相等关系列方程,判断方程有无实数根即可得.【解答】解:(1)设每件童装降价x元时,每天可销售20+2x件,每件盈利40﹣x元,故答案为:(20+2x),(40﹣x);(2)根据题意,得:(20+2x)(40﹣x)=1200解得:x1=20,x2=10答:每件童装降价20元或10元,平均每天赢利1200元;(3)不能,∵(20+2x)(40﹣x)=2000 此方程无解,故不可能做到平均每天盈利2000元.【点评】本题主要考查一元二次方程的实际应用,理解题意找到题目蕴含的等量关系是列方程求解的关键.24.如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1•x2=q,请根据以上结论,解决下列问题:(1)若p=﹣4,q=3,求方程x2+px+q=0的两根.(2)已知实数a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求+的值;(3)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数.【分析】(1)根据p=﹣4,q=3,得出方程x2﹣4x+3=0,再求解即可;(2)根据a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,得出a,b是x2﹣15x﹣5=0的解,求出a+b 和ab的值,即可求出+的值;(3)先设方程x2+mx+n=0,(n≠0)的两个根分别是x1,x2,得出+=﹣,•=,再根据这个一元二次方程的两个根分别是已知方程两根的倒数,即可求出答案.【解答】解:(1)当p=﹣4,q=3,则方程为x2﹣4x+3=0,解得:x1=3,x2=1.(2)∵a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,∴a、b是x2﹣15x﹣5=0的解,当a≠b时,a+b=15,ab=﹣5,+====﹣47;当a=b时,原式=2.(3)设方程x2+mx+n=0,(n≠0),的两个根分别是x1,x2,则+==﹣,•==,则方程x2+x+=0的两个根分别是已知方程两根的倒数.【点评】本题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.25.如图1,Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从点A开始沿AB边向点B以1cm/s 的速度移动,与此同时,点Q从点B开始沿BC向点C以2cm/s的速度移动.如果P,Q同时分别从A,B点出发,设出发时间为ts(t>0).(1)当t为何值时,△PBQ的面积是8cm2?(2)当t为何值时,点P和点Q间的距离是6cm?(3)如图2,若点P,点Q同时从B点出发,点P沿折线BA﹣AC移动,点Q沿折线BC﹣CA 移动,其余条件均不变,求当P,Q在D点相遇时,点D与点B的距离.【分析】(1)设出运动所求的时间,可将BP和BQ的长表示出来,代入三角形面积公式,列出等式,可将时间求出;(2)根据PQ2=PB2+BQ2,列出方程即可解决问题;(3)作BE⊥AC于E,连接DB,在Rt△DBE中,解直角三角形即可解决问题;【解答】解:(1)∵P A=t.BQ=2t,AB=6,∴PB=6﹣t,由题意(6﹣t)•2t=8,解得t=2或4,∴当t为2s或4s时,△PBQ的面积是8cm2.(2)由题意:(6﹣t)2+(2t)2=62,解得t1=0(舍),t2=,∴当t为s时,点P和点Q间的距离是6cm.(3)∵∠B=90°,AB=6cm,BC=8cm,∴AC==10cm,由题意,得(1+2)t=6+8+10,∴t=8,∴AD=t﹣AB=2cm.作BE⊥AC于E,连接DB,则BE==cm,∴AE==cm,∴DE=AE﹣AD=cm,∴BD==cm.【点评】本题考查三角形综合题、勾股定理、一元二次方程的应用等知识,解题的关键是学会利用参数构建方程解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.。

南昌市东湖区八年级下月考数学试卷(3月份)含答案解析

南昌市东湖区八年级下月考数学试卷(3月份)含答案解析

2022-2023江西省南昌市东湖区八年级(下)月考数学试卷(3月份)一、选择题(每小题3分,共24分)1.(3分)下列各式是最简二次根式的是()A. B.C.D.2.(3分)若式子有意义,则x的取值范围为()A.x≥2 B.x≠3 C.x≥2或x≠3 D.x≥2且x≠33.(3分)下列计算结果正确的是()A. += B.2+=2C.3﹣=2D.=14.(3分)直角三角形两边长分别是3、4,第三边是()A.5 B.C.5或D.无法确定5.(3分)如图,已知正方形的B面积为144,正方形C的面积为169时,那么正方形A的面积为()A.100 B.121 C.64 D.256.(3分)实数a、b在数轴上的对应点如图,化简﹣+的结果是()A.2a﹣2b B.0 C.﹣2a D.2b7.(3分)已知是整数,正整数n的最小值为()A.0 B.1 C.6 D.368.(3分)如图是一块长、宽、高分别是6cm、4cm和3cm的长方体木块.一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A点相对的顶点B处吃食物,那么它需要爬行的最短路径的长是()A.()cm B.C.D.9cm二、填空题(每小题3分,共24分)9.(3分)若最简二次根式与可以合并,则a=.10.(3分)计算﹣3的结果是.11.(3分)三角形三边长为6、8、10,则这个三角形的面积是.12.(3分)在△ABC中,∠A:∠B:∠C=1:2:3.已知BC=3cm,则AB=cm.13.(3分)“等边三角形是锐角三角形”的逆命题是.14.(3分)若1<x<2,则|x﹣1|+的值为.15.(3分)已知a、b、c是△ABC的三边长,且满足关系式+|a﹣b|=0,则△ABC的形状为.16.(3分)观察下列各式:①;②=3;③,…请用含n(n≥1)的式子写出你猜想的规律:.三、解答题(第17题8分,第18、19各6分,共20分)17.(8分)计算(1)﹣4+÷(2)(1﹣)2﹣+()0.18.(6分)已知:,,求的值.19.(6分)如图,在△DEF中,DE=17,EF=30,EF边上的中线DH=8,请判断△DEF的形状?并说明理由.四、完成下列各题(每小题8分,共32分.)20.(8分)如图,将一个边长分别为4,8的长方形纸片ABCD折叠,使C点与A点重合,求(1)AE的长.(2)折痕EF的长.21.(8分)如图所示,在正方形ABCD中,M为AB的中点,N为AD上的一点,且AN=AD,试猜测△CMN是什么三角形,请证明你的结论.(提示:正方形的四条边都相等,四个角都是直角)22.(8分)观察下列等式:①=+1;②=+;③=+;…,(1)、请用字母表示你所发现的律:即=.(n为正整数)(2)化简计算: +++…+.23.(8分)如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知AB=5,DE=1,BD=8,设CD=x(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的规律和结论,请构图求出代数式+的最小值.2016-江西省南昌市东湖区八年级(下)月考数学试卷(3月份)参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)下列各式是最简二次根式的是()A. B.C.D.【解答】解:A、被开方数含能开得尽方的因数或因式,故A不符合题意;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故B符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含分母,故D不符合题意;故选:B.2.(3分)若式子有意义,则x的取值范围为()A.x≥2 B.x≠3 C.x≥2或x≠3 D.x≥2且x≠3【解答】解:根据二次根式有意义,分式有意义得:x﹣2≥0且x﹣3≠0,解得:x≥2且x≠3.故选:D.3.(3分)下列计算结果正确的是()A. += B.2+=2C.3﹣=2D.=1【解答】解:A、+不能合并,故A错误;B、2+不能合并,故B错误;C、3﹣=2,故C正确;D、==,故D错误;故选:C.4.(3分)直角三角形两边长分别是3、4,第三边是()A.5 B.C.5或D.无法确定【解答】解:当第三边是斜边时,则第三边==5;当第三边是直角边时,则第三边==.故选:C.5.(3分)如图,已知正方形的B面积为144,正方形C的面积为169时,那么正方形A的面积为()A.100 B.121 C.64 D.25【解答】解:根据题意知正方形的B面积为144,正方形C的面积为169,则字母A所代表的正方形的面积=169﹣144=25.故选:D.6.(3分)实数a、b在数轴上的对应点如图,化简﹣+的结果是()A.2a﹣2b B.0 C.﹣2a D.2b【解答】解:由数轴可得:∵﹣1<a<0,0<b<1,∴a﹣b<0,∴﹣+=﹣a﹣b﹣(a﹣b)=﹣2a.故选:C.7.(3分)已知是整数,正整数n的最小值为()A.0 B.1 C.6 D.36【解答】解:∵,且是整数,∴是整数,即6n是完全平方数;∴n的最小正整数值为6.故选:C.8.(3分)如图是一块长、宽、高分别是6cm、4cm和3cm的长方体木块.一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A点相对的顶点B处吃食物,那么它需要爬行的最短路径的长是()A.()cm B.C.D.9cm【解答】解:AB就是蚂蚁爬的最短路线.但有三种情况:当:AD=3,DB=4+6=10.AB==.当AD=4,DB=6+3=9.AB=.当AD=6,DB=3+4=7AB=.所以第三种情况最短.故选:C.二、填空题(每小题3分,共24分)9.(3分)若最简二次根式与可以合并,则a=1.【解答】解:∵最简二次根式与可以合并,∴1+2a=5﹣2a,∴4a=4,∴a=1,故答案为1.10.(3分)计算﹣3的结果是2.【解答】解:原式=3﹣=2.故答案为:2.11.(3分)三角形三边长为6、8、10,则这个三角形的面积是24.【解答】解:∵三角形的三边长分别为6、8、10,而62+82=102,∴此三角形是直角三角形,6×8=24.∴S△=×12.(3分)在△ABC中,∠A:∠B:∠C=1:2:3.已知BC=3cm,则AB=6cm.【解答】解:∵∠A:∠B:∠C=1:2:3,∴设∠A=x,∠B=2x,∠C=3x,∴x+2x+3x=180°,解得x=30°,则∠A=30°,∠C=3×30°=90°,∵30°的角所对的直角边是斜边的一半,∴AB=3×2=6cm.13.(3分)“等边三角形是锐角三角形”的逆命题是锐角三角形是等边三角形.【解答】解:其逆命题是:锐角三角形是等边三角形.14.(3分)若1<x<2,则|x﹣1|+的值为1.【解答】解:∵1<x<2,∴x﹣1>0,x﹣2<0,∴原式=x﹣1+2﹣x=1.故答案为:1.15.(3分)已知a、b、c是△ABC的三边长,且满足关系式+|a﹣b|=0,则△ABC的形状为等腰直角三角形.【解答】解:∵+|a﹣b|=0,∴c2﹣a2﹣b2=0,且a﹣b=0,∴c2=a2+b2,且a=b,则△ABC为等腰直角三角形.故答案为:等腰直角三角形16.(3分)观察下列各式:①;②=3;③,…请用含n(n≥1)的式子写出你猜想的规律:=(n+1).【解答】解:从①②③三个式子中,我们可以发现计算出的等号后面的系数为等号前面的根号里的整数加分数的分子,根号里的还是原来的分数,即=(n+1).三、解答题(第17题8分,第18、19各6分,共20分)17.(8分)计算(1)﹣4+÷(2)(1﹣)2﹣+()0.【解答】解:(1)原式=3﹣2+=3﹣2+2=3;(2)原式=1﹣2+2﹣3(﹣1)+1=3﹣2﹣3+3+1=7﹣5.18.(6分)已知:,,求的值.【解答】解:=…(2分)=,…(4分)当x=+1,y=﹣1时,原式===.19.(6分)如图,在△DEF中,DE=17,EF=30,EF边上的中线DH=8,请判断△DEF的形状?并说明理由.【解答】解:△DEF是等腰三角形.理由:∵DH是EF边上的中线,EF=30cm,∴EH=15cm,∵DE=17cm,DH=8cm,∴EH2+DH2=DE2,∴DH⊥EF,∴△DHE≌△DHF,∴DE=DF,∴△DEF是等腰三角形.四、完成下列各题(每小题8分,共32分.)20.(8分)如图,将一个边长分别为4,8的长方形纸片ABCD折叠,使C点与A点重合,求(1)AE的长.(2)折痕EF的长.【解答】解:(1)∵将长方形纸片ABCD折叠,使C点与A点重合,∴AE=CE,∴BE=BC﹣CE=BC﹣AE=8﹣AE,∵∠B=90°,∴AB2+BE2=AE2,即42+(8﹣AE)2=AE2,∴AE=5;(2)解:过点F作FG⊥BC于G∵EF是直角梯形AECD的折痕∴AE=CE,∠AEF=∠CEF.又∵AD∥BC∴∠AEF=∠AFE.∴AE=AF.在Rt△ABE中,设BE=x,AB=4,AE=CE=8﹣x.x2+42=(8﹣x)2,解得x=3.在Rt△FEG中,EG=BG﹣BE=AF﹣BE=AE﹣BE=5﹣3=2,FG=4,∴EF==2.21.(8分)如图所示,在正方形ABCD中,M为AB的中点,N为AD上的一点,且AN=AD,试猜测△CMN是什么三角形,请证明你的结论.(提示:正方形的四条边都相等,四个角都是直角)【解答】解:△CMN是直角三角形.理由如下:设正方形ABCD的边长为4a,则AB=BC=CD=AD=4a.∵M是AB的中点,∴AM=BM=2a.∵AN=AD,AD=4a,∴AN=a,DN=3a.∵在Rt△AMN中,满足AM2+AN2=MN2,且AM=2a,AN=a,∴MN=a.同理可得:MC=a,NC=5a.∵MN2+MC2=(a)2+(a)2=25a2,NC2=(5a)2=25a2,∴MN2+MC2=NC2,∴△CMN是直角三角形.22.(8分)观察下列等式:①=+1;②=+;③=+;…,(1)、请用字母表示你所发现的律:即=+.(n为正整数)(2)化简计算: +++…+.【解答】解:(1)=+,故答案为: +;(2)+++…+=﹣1+﹣+﹣+…+﹣=﹣1.23.(8分)如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知AB=5,DE=1,BD=8,设CD=x(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的规律和结论,请构图求出代数式+的最小值.【解答】解:(1)AC+CE=+;(2)当A、C、E三点共线时,AC+CE的值最小;(3)如右图所示,作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,连接AE交BD于点C,设BC=x,则AE的长即为代数+的最小值.过点A作AF∥BD交ED的延长线于点F,得矩形ABDF,则AB=DF=2,AF=BD=12,EF=ED+DF=3+2=5,所以AE===13,即+的最小值为13.故代数式+的最小值为13.。

2022-2023学年河南省周口市项城四中等五校八年级(下)月考数学试卷(3月份)+答案解析(附后)

2022-2023学年河南省周口市项城四中等五校八年级(下)月考数学试卷(3月份)+答案解析(附后)

2022-2023学年河南省周口市项城四中等五校八年级(下)月考数学试卷(3月份)1. 下列式子中,是不等式的是( )A. B. C. D.2. 如图,,添加一个条件,可使用“HL”判定与全等.以下给出的条件适合的是( )A.B.C.D.3. 若,则下列不等式正确的是( )A. B. C. D.4.如图,在中,,点D是边BC的中点,如果,那么的度数为( )A. B. C. D.5. 如图,数轴上表示的不等式的解集是( )A. B. C. D.6. 下列命题的逆命题是真命题的是( )A. 若,,则B. 三边长为3,4,5的三角形为直角三角形C. 在一个角的内部,到角的两边距离相等的点在这个角的平分线上D. 若,则7. 如图,为促进某地旅游业的发展,当地旅游部门要在三条公路AB,AC,BC两两相交后围成的三角形区域内修建一个度假村,若这个度假村到三条公路的距离相等,则度假村应建在( )A. 三边的垂直平分线的交点上B. 三条角平分线的交点上C. 三条高线的交点上D. 三边中线的交点上8. 某经销商销售一批电话手表,第一个月以600元/块的价格售出60块,第二个月降价处理,以500元/块的价格将这批电话手表全部售出,这两个月的销售总额不少于86000元.则这批电话手表的总数量块应满足的不等式为( )A. B.C. D.9. 如图,在中,,,,点P,D分别为BC,AB上的动点,则的最小值是( )A. 2B. 3C. 4D.10. 如图,在中,BC的垂直平分线DN与的平分线AD相交于点D,于点E,于点F,则有下列结论:①;②;③;④其中正确结论的个数有( )A. 0个B. 1个C. 2个D. 3个11. 请写出一个解集为的不等式______.12. 用反证法证明命题“一个三角形中不能有两个角是钝角”时,应先假设一个三角形中______ .13. 不等式的正整数解有______ 个.14. 如图,在中,,,边AB的垂直平分线交BC于点D,交AB于点E,连接若,则______ .15. 如图,在中,,,,D是BC的中点,E是AC上一动点,将沿DE折叠到,连接,当是直角三角形时,CE的长为______ .16. 将下列不等式化成“”或“”的形式:;17. 如图,点D,E在线段BC上,,,,求证:为等边三角形.18. 请在内部找一点P,使点P到AC,BC的距离相等,且尺规作图,保留作图痕迹,不写作法19. 对于任意实数a,b,定义关于“⊗”的一种运算规则如下:例如:若的值不小于,求x的取值范围,并在数轴上表示出来. 20. 如图,在中,AD是BC边上的中线,于点E,于点F,且求证:≌;21.如图,在中,DM,EN分别垂直平分边AC和边BC,交边AB于M,N两点,DM 与EN相交于点若,则的周长为______ ;若,求的度数.22. 如图1,在中,,的平分线交于点O,过点O作分别交AB,AC于点E,直接写出线段EF与BE,CF之间的数量关系:______.如图2,若中的平分线BO与三角形外角平分线CO交于点O,过O点作交AB于点E,交AC于点则EF与BE,CF之间的数量关系又如何?说明你的理由.23.如图,在中,,,,P,Q是边上的两个动点.其中点P从点A出发,沿方向运动,速度为每秒1cm;点Q从点B出发,沿方向运动,速度为每秒2cm;两点同时开始运动,设运动时间为t秒.①斜边AC上的高为______ cm;②当时,PQ的长为______当点Q在BC边上运动时,出发几秒钟后,是等腰三角形?当点Q在CA边上运动时,直接写出所有能使成为等腰三角形的t的值.答案和解析1.【答案】A【解析】解:A、属于不等式,故本选项符合题意;B、是多项式,不属于不等式,故本选项不合题意;C、是方程,不属于不等式,故本选项不合题意;D、是单项式,不属于不等式,故本选项不合题意;故选:根据不等式的概念:用“>”或“<”号表示大小关系的式子,叫做不等式,用“”号表示不等关系的式子也是不等式可得答案.本题考查了不等式的定义,能熟记不等式的定义的内容是解此题的关键,注意:不等号有:>,<,,,2.【答案】A【解析】解:添加,理由如下:,在和中,,,故选:根据直角三角形全等的判定方法HL即可确定答案.本题考查了直角三角形的全等的判定,熟练掌握HL是解题的关键.3.【答案】D【解析】解:,,故A不符合题意;,,故B不符合题意;,,故C不符合题意;,,故D符合题意,故选:根据不等式的性质①不等式的两边同时加上或减去同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以或除以同一个正数,不等号的方向不变;③不等式的两边同时乘以或除以同一个负数,不等号的方向改变,分别判断即可.本题考查了不等式的性质,熟练掌握不等式的性质是解题的关键.4.【答案】B【解析】解:,D是BC中点,是的角平分线,,,故选:根据等腰三角形的性质可得到AD是顶角的角平分线,再根据三角形内角和定理不难求得顶角的度数,最后根据角平分线的定义即可求解.此题主要考查等腰三角形的性质及三角形内角和定理,掌握等腰三角形的性质是解题的关键.5.【答案】C【解析】解:依题意得:数轴表示的解集是:,故选:本题先观察数轴表示的不等式的解集,再看选项是否与题意相符.若是,则该选项为正确的答案.本题考查的是数轴与不等式的结合.明确在数轴上实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左是解题的关键.6.【答案】C【解析】解:A、若,,则的逆命题是若,则,,是假命题,不符合题意;B、三边长为3,4,5的三角形为直角三角形的逆命题是直角三角形的三边长为3,4,5,是假命题,不符合题意;C、在一个角的内部,到角的两边距离相等的点在这个角的平分线上的逆命题是角的平分线上的点到角的两边距离相等,是真命题,符合题意;D、若,则的逆命题是若,则,是假命题,不符合题意;故选:根据有理数的乘法法则、勾股定理、角平分线的性质、绝对值的性质判断即可.本题考查的是命题的真假判断、逆命题的概念,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.【答案】B【解析】解:这个度假村到三条公路的距离相等,度假村应建在三条角平分线的交点上.故选:根据角平分线的性质进行判断.本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.8.【答案】C【解析】解:设这批电话手表有x块,则降价后售出块,依题意得:,故选:设这批电话手表有x块,则降价后售出块,利用销售总额=销售单价销售数量,结合销售总额超过了86000万元,即可得出关于x的一元一次不等式,解之取其中的最小整数值即可得出结论.本题考查了由实际问题抽象出一元一次不等式,正确的列出不等式是解题的关键.9.【答案】C【解析】解:作A关于BC的对称点,连接,则的长度就是的最小值,连接,,,,,,,,为等边三角形,,,的最小值是4,故选:作A关于BC的对称点,连接,,则的长度就是的最小值,,,由已知求得,得到为等边三角形,则本题考查的是最短线路问题及等边三角形的性质和判定,熟知两点之间线段最短的知识是解答此题的关键.10.【答案】D【解析】解:的垂直平分线过点D,,平分,,,,,在和中,,,,故①正确,符合题意;,,,故②正确,符合题意;,,,,即,,故③正确,符合题意;的度数不能确定,④不正确,不符合题意.故选:利用HL证明,可判断①正确;根据全等三角形的性质,可判断②正确;利用角度的计算可对③进行判断;由于的度数不能确定,则可对④进行判断.本题考查了全等三角形的判定与性质、角平分线的性质等知识,证明是解题的关键.11.【答案】答案不唯一【解析】解:由题意可得:答案不唯一故答案为:答案不唯一直接利用不等式的解集写出一个符合题意不等式即可.此题主要考查了不等式的解集,正确掌握不等式解法是解题关键.12.【答案】有两个角是钝角【解析】解:用反证法证明命题“一个三角形中不能有两个角是钝角”,应先假设这个三角形有两个角是钝角,故答案为:有两个角是钝角.根据反证法的步骤中,第一步是假设结论不成立,反面成立解答.本题考查的是反证法的应用,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.13.【答案】2【解析】解:不等式的正整数解为1,故答案为:从不等式的解集中找出适合条件的正整数即可.本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.14.【答案】3【解析】解:是AB的垂直平分线,,,,又,,故答案为:根据线段垂直平分线上的点到两端点的距离相等可得,根据等边对等角可得,再根据三角形的一个外角等于与它不相邻的两个内角的和求出,然后根据直角三角形角所对的直角边等于斜边的一半可得本题考查了直角三角形角所对的直角边等于斜边的一半的性质,线段垂直平分线上的点到两端点的距离相等的性质以及三角形的一个外角等于与它不相邻的两个内角的和,掌握含角的直角三角形的性质是解题的关键.15.【答案】或【解析】解:如图1,当时,,,,,A共线,,,,设,则,在中,则有,解得,如图2,当时,,,,,综上所述,满足条件的CE的值为或故答案为:或两种情形:如图1,当时,如图2,当时,由直角三角形的性质分别求解即可.本题考查翻折变换折叠问题,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题.16.【答案】解:两边同时减去4x,得,即;两边同时加上2,得,两边同时乘,得【解析】根据不等式的性质①不等式的两边同时加上或减去同一个数或同一个含有字母的式子,不等号的方向不变,求解即可;根据不等式的性质①不等式的两边同时加上或减去同一个数或同一个含有字母的式子,不等号的方向不变,③不等式的两边同时乘以或除以同一个负数,不等号的方向改变,求解即可.本题考查了不等式的性质,熟练掌握不等式的性质是解题的关键.17.【答案】证明:,,在和中,,≌,,为等腰三角形.,为等边三角形.【解析】根据SAS证明≌,可得,所以为等腰三角形.再根据有一个角是60度的等腰三角形是等边三角形即可证明结论.本题考查的是全等三角形的判定和性质、等边三角形的判定,掌握全等三角形的判定定理和性质定理是解题的关键.18.【答案】解:如下图:点P即为所求.【解析】作的平分线和线段AC的垂直平分线的交点即可.本题考查了复杂作图,掌握角平分线和线段的垂直平分线的性质是解题的关键.19.【答案】解:的值不小于,,解得:不等式的解集在数轴上表示为:.【解析】利用新定义的规定得到关于x的不等式,解不等式即可得出结论.本题主要考查了一元一次方程的解法,一元一次不等式的解法,本题是新定义型,正确理解新定义的规定并熟练运用是解题的关键.20.【答案】证明:是BC边上的中线,,于点E,于点F,,在和中,,;,,是BC边上的中线,【解析】根据中点的定义得到,利用HL证明;根据全等三角形的性质得到,则,根据等腰三角形的性质即可得解.此题考查了全等三角形的判定与性质,利用是解题的关键.21.【答案】5【解析】解:,EN分别垂直平分边AC和边BC,,,的周长,,的周长,故答案为:5;,,,,,,,,根据线段垂直平分线的性质得到,,再根据三角形的周长公式计算即可;根据三角形内角和定理求出,根据对顶角相等求出,根据等腰三角形的性质得到,,根据三角形内角和定理计算,得到答案.本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.22.【答案】【解析】解:平分,CO平分,,,,,,,,,,,,故答案为:;,理由是:平分,,,,,,同理可得:,,利用角平分线与平行线证明和是等腰三角形即可;利用角平分线与平行线证明和是等腰三角形即可.本题考查了等腰三角形的判定与性质,平行线的性质,结合图形找到角与边的关系是解题的关键.23.【答案】【解析】解:①设斜边AC上的高为h cm,,,,,,,解得,故答案为:②如图1,点P的速度为每秒1cm,点Q的速度为每秒2cm,,,当时,点Q在BC边上,,,,,故答案为:如图2,点Q在边BC上运动,,,是等腰三角形,且,,,,解得,出发秒后,是等腰三角形.点Q在边CA上运动,,当为等腰三角形,且时,如图3,则,,,,,,,解得;当为等腰三角形,且时,如图4,,解得;当为等腰三角形,且时,如图5,作于点D,则,由得,,,,,解得,综上所述,能使成为等腰三角形的t 的值为11或12或①设斜边AC 上的高为hcm ,由,,,根据勾股定理求得,则,求出h 的值即得到问题的答案;②当时,点Q 在BC 边上,,可求得,,则,于是得到问题的答案;由,是等腰三角形,得,则,解方程求出t 的值即可;由点Q 在边BC 上运动,得,再分三角情况讨论,一是,则,由等角的余角相等得,则,所以,则;二是,则;三是,作于点D ,则,,所以,,则,解方程求出相应的t 值即可.此题重点考查等腰三角形的判定与性质、根据面积等式求线段的长度、勾股定理、等角的余角相等、动点问题的求解、数形结合与分类讨论数学思想的运用等知识与方法,此题综合性强,难度较大,属于考试压轴题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.如图,ABC 是等边三角形,点D .E 分别为边BC .AC 上的点,且CD AE =,点F是BE 和AD 的交点,BG AD ⊥,垂足为点G ,已知75∠=︒BEC ,1FG =,则2AB 为( )A .4B .5C .6D .72.如图,点A 的坐标是(2)2,,若点P 在x 轴上,且APO △是等腰三角形,则点P 的坐标不可能是( )A .(2,0)B .(4,0)C .(-22,0)D .(3,0)3.在ABC ∆中,D 是直线BC 上一点,已知15AB =,12AD =,13AC =,5CD =,则BC 的长为( ) A .4或14B .10或14C .14D .104.如果正整数a 、b 、c 满足等式222+=a b c ,那么正整数a 、b 、c 叫做勾股数.某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知x y +的值为( )A .47B .62C .79D .98 5.如图所示,在中,,,.分别以,,为直径作半圆(以为直径的半圆恰好经过点,则图中阴影部分的面积是( )A.4 B.5 C.7 D.66.如果直角三角形的三条边为3、4、a,则a的取值可以有()A.0个B.1个C.2个D.3个7.在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,交AC于点D,若CD=1,则AB的长是()A.2 B.23C.43D.48.圆柱形杯子的高为18cm,底面周长为24cm,已知蚂蚁在外壁A处(距杯子上沿2cm)发现一滴蜂蜜在杯子内(距杯子下沿4cm),则蚂蚁从A处爬到B处的最短距离为()A.813B.28 C.20 D.1229.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm,在容器内壁离容器底部4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm,则该圆柱底面周长为()A.12cm B.14cm C.20cm D.24cm10.下列四组线段中,可以构成直角三角形的是()A.1、2、3B.2、3、4 C.1、2、3 D.4、5、6二、填空题11.如图,Rt△ABC中,∠ACB=90o,AC=12,BC=5,D是AB边上的动点,E 是AC边上的动点,则BE+ED的最小值为.12.如图,现有一长方体的实心木块,有一蚂蚁从A处出发沿长方体表面爬行到C'处,若长方体的长4cm AB =,宽2cm BC =,高1cm BB '=,则蚂蚁爬行的最短路径长是___________.13.如图,ACB △和ECD 都是等腰直角三角形,CA CB =,CE CD =,ABC 的顶点A 在ECD 的斜边上.若3AE =,7AD =,则AC 的长为_________14.如图,在矩形ABCD 中,AB =6,AD =8,矩形内一动点P 使得S △PAD =13S 矩形ABCD ,则点P 到点A 、D 的距离之和PA +PD 的最小值为_____.15.如图,△ABC 中,∠ACB=90°,AB=2,BC=AC ,D 为AB 的中点,E 为BC 上一点,将△BDE 沿DE 翻折,得到△FDE ,EF 交AC 于点G ,则△ECG 的周长是___________.16.如图,30AOB ∠=︒,点,M N 分别在,OA OB 上,且6,8OM ON ==,点,P Q 分别在,OB OA 上运动,则PM PQ QN ++的最小值为______.17.已知x ,y 为一个直角三角形的两边的长,且(x ﹣6)2=9,y =3,则该三角形的第三边长为_____.18.如图,在△ABC 中,AB =AC =10,BC =12,AD 是角平分线,P 、Q 分别是AD 、AB 边上的动点,则BP +PQ 的最小值为_______.19.已知a 、b 、c 是△ABC 三边的长,且满足关系式2222()0c a b a b --+-=,则△ABC 的形状为___________20.如图,由两个直角三角形和三个正方形组成的图形,已知25AB = ,24AC = 其中阴影部分面积是_____________平方单位.三、解答题21.如图,△ABC 和△ADE 都是等腰三角形,其中AB =AC ,AD =AE ,且∠BAC =∠DAE . (1)如图①,连接BE 、CD ,求证:BE =CD ;(2)如图②,连接BE 、CD ,若∠BAC =∠DAE =60°,CD ⊥AE ,AD =3,CD =4,求BD 的长;(3)如图③,若∠BAC =∠DAE =90°,且C 点恰好落在DE 上,试探究CD 2、CE 2和BC 2之间的数量关系,并加以说明.22.如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)当2t =秒时,求PQ 的长;(2)求出发时间为几秒时,PQB ∆是等腰三角形?(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.23.如图,己知Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,ED 为AB 垂直平分线,且23DE =,连接DB ,DA .(1)直接写出BC =__________,AC =__________; (2)求证:ABD ∆是等边三角形;(3)如图,连接CD ,作BF CD ⊥,垂足为点F ,直接写出BF 的长;(4)P 是直线AC 上的一点,且13CP AC =,连接PE ,直接写出PE 的长. 24.如图,在平面直角坐标系中,点O 是坐标原点,ABC ∆,ADE ∆,AFO ∆均为等边三角形,A 在y 轴正半轴上,点0()6,B -,点(6,0)C ,点D 在ABC ∆内部,点E 在ABC ∆的外部,32=AD 30DOE ∠=︒,OF 与AB 交于点G ,连接DF ,DG ,DO ,OE .(1)求点A 的坐标;(2)判断DF 与OE 的数量关系,并说明理由; (3)直接写出ADG ∆的周长. 25.(知识背景)据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三、股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数. (应用举例)观察3,4,5;5,12,13;7,24,25;…可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且 勾为3时,股14(91)2=-,弦15(91)2=+; 勾为5时,股112(251)2=-,弦113(251)2=+; 请仿照上面两组样例,用发现的规律填空:(1)如果勾为7,则股24= 弦25=(2)如果勾用n (3n ≥,且n 为奇数)表示时,请用含有n 的式子表示股和弦,则股= ,弦= . (解决问题)观察4,3,5;6,8,10;8,15,17;…根据应用举例获得的经验进行填空: (3)如果,,a b c 是符合同样规律的一组勾股数,2a m =(m 表示大于1的整数),则b = ,c = ,这就是古希腊的哲学家柏拉图提出的构造勾股数组的公式.(4)请你利用柏拉图公式,补全下面两组勾股数(数据从小到大排列)第一组: 、24、 :第二组: 、 、37.26.如图1,已知△ABC 是等边三角形,点D ,E 分别在边BC ,AC 上,且CD =AE ,AD 与BE 相交于点F .(1)求证:∠ABE =∠CAD ;(2)如图2,以AD 为边向左作等边△ADG ,连接BG . ⅰ)试判断四边形AGBE 的形状,并说明理由;ⅱ)若设BD =1,DC =k (0<k <1),求四边形AGBE 与△ABC 的周长比(用含k 的代数式表示).27.在平面直角坐标系中,点A(0,4),B(m,0)在坐标轴上,点C,O关于直线AB 对称,点D在线段AB上.(1)如图1,若m=8,求AB的长;(2)如图2,若m=4,连接OD,在y轴上取一点E,使OD=DE,求证:CE=2DE;(3)如图3,若m=43,在射线AO上裁取AF,使AF=BD,当CD+CF的值最小时,请在图中画出点D的位置,并直接写出这个最小值.28.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证:四边形AFCE为菱形.(2)如图1,求AF的长.(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,设运动时间为t秒.①问在运动的过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度;若不可能,请说明理由.②若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t 的值.29.已知ABC是等边三角形,点D是BC边上一动点,连结AD()1如图1,若2DC=,求AD的长;BD=,4()2如图2,以AD为边作60∠=∠=,分别交AB,AC于点E,F.ADE ADF①小明通过观察、实验,提出猜想:在点D运动的过程中,始终有AE AF=,小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的两种想法想法1:利用AD 是EDF ∠的角平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.想法2:利用AD 是EDF ∠的角平分线,构造ADF 的全等三角形,然后通过等腰三角形的相关知识获证.请你参考上面的想法,帮助小明证明.(AE AF =一种方法即可)②小聪在小明的基础上继续进行思考,发现:四边形AEDF 的面积与AD 长存在很好的关系.若用S 表示四边形AEDF 的面积,x 表示AD 的长,请你直接写出S 与x 之间的关系式.30.如图,在△ABC 中,∠ACB =90°,AC =BC ,AB =2,CD 是边AB 的高线,动点E 从点A 出发,以每秒1个单位的速度沿射线AC 运动;同时,动点F 从点C 出发,以相同的速度沿射线CB 运动.设E 的运动时间为t (s )(t >0).(1)AE = (用含t 的代数式表示),∠BCD 的大小是 度; (2)点E 在边AC 上运动时,求证:△ADE ≌△CDF ; (3)点E 在边AC 上运动时,求∠EDF 的度数;(4)连结BE ,当CE =AD 时,直接写出t 的值和此时BE 对应的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】结合等边三角形得性质易证△ABE ≌△CAD ,可得∠FBG =30°,BF =2FG =2,再求解∠ABE =15°,进而两次利用勾股定理可求解. 【详解】∵△ABC 为等边三角形∴∠BAE =∠C =60°,AB =AC ,CD =AE ∴△ABE ≌△CAD (SAS ) ∴∠ABE=∠CAD∴∠BFD=∠ABE+∠BAD=∠CAD+∠BAF=∠BAC=60°,∵BG⊥AD,∴∠BGF=90°,∴∠FBG=30°,∵FG=1,∴BF=2FG=2,∵∠BEC=75°,∠BAE=60°,∴∠ABE=∠BEC﹣∠BAE=15°,∴∠ABG=45°,∵BG⊥AD,∴∠AGB=90°,∴AG=BG=2222-=-=3,BF FG21AB2=AG2+BG2=(3)2+(3)2=6.故选C.【点睛】本题考查全等三角形的判定与性质,等边三角形的性质,勾股定理,证明△ABG为等腰直角三角形是解题关键.2.D解析:D【详解】解:(1)当点P在x轴正半轴上,①以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=22,∴P的坐标是(4,0)或(22,0);②以OA为底边时,∵点A的坐标是(2,2),∴当点P的坐标为:(2,0)时,OP=AP;(2)当点P在x轴负半轴上,③以OA 为腰时,∵A 的坐标是(2,2), ∴OA= 22, ∴OA=AP=22∴P 的坐标是(-22,0). 故选D .3.A解析:A 【分析】根据AC =13,AD =12,CD =5,可判断出△ADC 是直角三角形,在Rt △ADB 中求出BD ,继而可得出BC 的长度. 【详解】∵AC =13,AD =12,CD =5, ∴222AD CD AC +=, ∴△ABD 是直角三角形,AD ⊥BC , 由于点D 在直线BC 上,分两种情况讨论: 当点D 在线段BC 上时,如图所示,在Rt △ADB 中,229BD AB AD =-=,则14BC BD CD =+=;②当点D 在BC 延长线上时,如图所示,在Rt △ADB 中,229BD AB AD =-=,则4BC BD CD =-=.故答案为:A.【点睛】本题考查勾股定理和逆定理,需要分类讨论,掌握勾股定理和逆定理的应用为解题关键.4.C解析:C【分析】依据每列数的规律,即可得到2221,,1a n b n c n =-==+,进而得出x y +的值.【详解】解:由题可得:222321,42,521=-==+…… 2221,,1a n b n c n ∴=-==+当21658c n n =+==时,63,16x y ∴==79x y ∴+=故选C【点睛】本题为勾股数与数列规律综合题;观察数列,找出规律是解答本题的关键.5.D解析:D【解析】【分析】先利用勾股定理计算BC 的长度,然后阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积. 【详解】 解:在中 ∵,, ∴, ∴BC=3,∴阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积=6.故选D. 【点睛】本题考查扇形面积的计算和勾股定理.在本题中解题关键是用重叠法去表示阴影部分的面积. 6.C解析:C【解析】【分析】根据勾股定理求解即可,注意要确认a 是直角边还是斜边.【详解】解:当a是直角三角形的斜边时,22345a=+=;当a为直角三角形的直角边时,22437a=-=.故选C.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.7.B解析:B【分析】根据30°直角三角形的性质,求出∠ABC的度数,然后根据角平分线的性质求出∠CBD=30°,再根据30°角所对的直角三角形性质,30°角所对的直角边等于斜边的一半,求解即可.【详解】如图∵∠C=90°,∠A=30°,∴∠ABC=90°-30°=60°,∵BD平分∠ABC,∴∠ABD=12∠ABC=12×60°=30°,∵CD=1,∠CDB=30°∴BD=2根据勾股定理可得BC=2222=21=3BD CD--∵∠A=30°∴AB=23故选B.【点睛】此题主要考查了30°角直角三角形的性质的应用,关键是根据题意画出图形,再利用30°角所对直角边等于斜边的一半求解.8.C解析:C【解析】分析:将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.详解:如图所示,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B=2222'++ (cm)A D BD=1216=20故选C.点睛:本题考查了勾股定理、最短路径等知识.将圆柱侧面展开,化曲面为平面并作出A关于EF的对称点A′是解题的关键.9.D解析:D【分析】将容器侧面展开,建立A关于EG的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如图:将圆柱展开,EG为上底面圆周长的一半,作A关于E的对称点A',连接A'B交EG于F,则蚂蚁吃到蜂蜜需爬行的最短路径为AF+BF 的长,即AF+BF=A'B=20cm,延长BG,过A'作A'D⊥BG于D,∵AE=A'E=DG=4cm,∴BD=16cm,Rt△A'DB中,由勾股定理得:22-=cm201612∴则该圆柱底面周长为24cm.故选:D.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.10.A解析:A【分析】求出两小边的平方和、最长边的平方,看看是否相等即可.【详解】A、12+(2)2=(3)2∴以1、2、3为边组成的三角形是直角三角形,故本选项正确;B、22+32≠42∴以2、3、4为边组成的三角形不是直角三角形,故本选项错误;C、12+22≠32∴以1、2、3为边组成的三角形不是直角三角形,故本选项错误;D、42+52≠62∴以4、5、6为边组成的三角形不是直角三角形,故本选项错误;故选A..【点睛】本题考查了勾股定理的逆定理应用,掌握勾股定理逆定理的内容就解答本题的关键.二、填空题11.【解析】试题分析:作点B关于AC的对称点B′,过B′点作B′D⊥AB于D,交AC于E,连接AB′、BE,则BE+ED=B′E+ED=B′D的值最小.∵点B关于AC的对称点是B′,BC=5,∴B′C=5,BB′=10.∵Rt△ABC中,∠ACB=90°,AC=12,BC=5,∴22AC BC+,∵S△ABB′=12•AB•B′D=12•BB′•AC,∴B′D=B10121201313B ACAB'⋅⨯==,∴BE+ED= B′D=12013.考点:轴对称-最短路线问题. 12.5cm【分析】连接AC',分三种情况进行讨论:画出图形,用勾股定理计算出AC'长,再比较大小即可得出结果.【详解】解:如图展开成平面图,连接AC',分三种情况讨论:如图1,AB=4,BC'=1+2=3,∴在Rt△ABC'中,由勾股定理得AC'22+(cm),43如图2,AC=4+2=6,CC'=1∴在Rt△ACC'中,由勾股定理得AC'22+37(cm),61如图3,AD =2,DC'=1+4=5,∴在Rt△ADC'中,由勾股定理得AC'22+29(cm)25∵2937,∴蚂蚁爬行的最短路径长是5cm,故答案为:5cm.【点睛】本题考查平面展开-最短路线问题和勾股定理,本题具有一定的代表性,是一道好题,注意要分类讨论.135【分析】由题意可知,AC=BC,DC=EC,∠DCE=∠ACB=90°,∠D=∠E=45°,求出∠ACE=∠BCD可证△ACE≌△BCD,可得AE=BD3ADB=90°,由勾股定理求出AB即可得到AC的长.【详解】解:如图所示,连接BD,∵△ACB 和△ECD 都是等腰直角三角形,∴AC =BC ,DC =EC ,∠DCE =∠ACB =90°,∠D =∠E =45°,且∠ACE =∠BCD =90°-∠ACD , 在ACE 和BCD 中,AC=BC ACE=BCD CE=CD ⎧⎪∠∠⎨⎪⎩∴△ACE ≌△BCD (SAS ),∴AE =BD 3E =∠BDC =45°,∴∠ADB =∠ADC+∠BDC =45°+45°=90°,∴AB 22AD +BD =7+3=10, ∵AB=2BC ,∴BC =2AB=525【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质以及勾股定理等知识,添加恰当的辅助线构造全等三角形是解题的关键.14.2【分析】根据S △PAD =13S 矩形ABCD ,得出动点P 在与AD 平行且与AD 的距离是4的直线l 上,作A 关于直线l 的对称点E ,连接DE ,BE ,则DE 的长就是所求的最短距离.然后在直角三角形ADE 中,由勾股定理求得DE 的值,即可得到PA+PD 的最小值.【详解】设△PAD 中AD 边上的高是h .∵S △PAD =13S 矩形ABCD , ∴12 AD •h =13AD •AB , ∴h =23AB =4, ∴动点P 在与AD 平行且与AD 的距离是4的直线l 上,如图,作A关于直线l的对称点E,连接BE,DE,则DE的长就是所求的最短距离.在Rt△ADE中,∵AD=8,AE=4+4=8,DE=2222AE AD+=+= ,8882即PA+PD的最小值为82.故答案82.【点睛】本题主要考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.15.2【分析】连接CE.根据“直角三角形斜边上的中线等于斜边的一半”、等腰三角形的性质以及折叠的性质推知EG+CG=EG+GF=EF=BE,【详解】解:(1)如图,连接CD、CF.∵Rt△ABC中,∠ACB=90°,AC=BC,D为AB边的中点,∴BD=CD=1.2 ,∵由翻折可知BD=DF,∴CD=BD=DF=1,∠DFE=∠B=∠DCA=45°,∴∠DCF=∠DFC,∴∠DCF-∠DCA=∠DFC-∠DFE,即∠GCF=∠GFC,∴GC=GF,∴EG+CG=EG+GF=EF=BE,∴△ECG 的周长=EG+GC+CE=BE+EC=BC=2,故答案为2.【点睛】本题考查了折叠的性质、勾股定理、直角三角形的性质,能将三角形的周长转移到已知线段上是解题的关键..16.10【分析】首先作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接M ′N ′,即为MP +PQ +QN 的最小值,易得△ONN ′为等边三角形,△OMM ′为等边三角形,∠N ′OM ′=90°,继而可以求得答案.【详解】作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接M ′N ′,即为MP +PQ +QN 的最小值.根据轴对称的定义可知:∠N ′OQ =∠M ′OB =30°,∠ONN ′=60°,OM ′=OM =6,ON ′=ON =8,∴△ONN ′为等边三角形,△OMM ′为等边三角形,∴∠N ′OM ′=90°.在Rt △M ′ON ′中,M ′N ′=22''OM ON +=10. 故答案为10.【点睛】本题考查了最短路径问题,根据轴对称的定义,找到相等的线段,得到直角三角形是解题的关键.17.310232【解析】【详解】∵(x-6)2=9,∴x-6=±3,解得:x 1=9,x 2=3,∵x ,y 为一个直角三角形的两边的长,y=3,∴当x=3时,x 、y 223332+=;当x=9时,x 、y 2293310+=;当x=9时,x 为斜边、y 为直角边,则第三边为263922=-.故答案为:310232【点睛】本题主要考查了勾股定理的应用,正确分类讨论是解决问题的关键,解题时注意一定不要漏解.18.6【解析】∵AB=AC ,AD 是角平分线,∴AD ⊥BC ,BD=CD ,∴B 点,C 点关于AD 对称,如图,过C 作CQ ⊥AB 于Q ,交AD 于P ,则CQ=BP+PQ 的最小值,根据勾股定理得,AD=8,利用等面积法得:AB ⋅CQ=BC ⋅AD ,∴CQ=BC AD AB ⋅=12810⨯=9.6 故答案为:9.6. 点睛:此题是轴对称-最短路径问题,主要考查了角平分线的性质,对称的性质,勾股定理,等面积法,用等面积法求出CQ 是解本题的关键.19.等腰直角三角形【解析】根据非负数的意义,由()22220c a b a b --+-=,可知222c a b =+,a=b ,可知此三角形是等腰直角三角形.故答案为:等腰直角三角形.点睛:此题主要考查了三角形形状的确定,根据非负数的性质,可分别得到关系式,然后结合勾股定理的逆定理知是直角三角形,然后由a-b=0得到等腰直角三角形,比较容易,关键是利用非负数的性质得到关系式.20.49【分析】先计算出BC 的长,再由勾股定理求出阴影部分的面积即可.【详解】∵∠ACB=90︒,25AB = ,24AC =,∴22222252449BC AB AC =-=-=,∴阴影部分的面积=249BC =,故答案为:49.【点睛】此题考查勾股定理,能利用根据直角三角形计算得到所需的边长,题中根据勾股定理的图形得到阴影部分面积等于BC的平方是解题的关键.三、解答题21.(1)证明见解析;(2)5;(3)CD2+CE2=BC2,证明见解析.【分析】(1)先判断出∠BAE=∠CAD,进而得出△ACD≌△ABE,即可得出结论.(2)先求出∠CDA=12∠ADE=30°,进而求出∠BED=90°,最后用勾股定理即可得出结论.(3)方法1、同(2)的方法即可得出结论;方法2、先判断出CD2+CE2=2(AP2+CP2),再判断出CD2+CE2=2AC2.即可得出结论.【详解】解:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD.又∵AB=AC,AD=AE,∴△ACD≌△ABE(SAS),∴CD=BE.(2)如图2,连结BE,∵AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴DE=AD=3,∠ADE=∠AED=60°,∵CD⊥AE,∴∠CDA=12∠ADE=12×60°=30°,∵由(1)得△ACD≌△ABE,∴BE=CD=4,∠BEA=∠CDA=30°,∴∠BED=∠BEA+∠AED=30°+60°=90°,即BE⊥DE,∴BD5.(3)CD2、CE2、BC2之间的数量关系为:CD2+CE2=BC2,理由如下:解法一:如图3,连结BE.∵AD=AE,∠DAE=90°,∴∠D=∠AED=45°,∵由(1)得△ACD≌△ABE,∴BE=CD,∠BEA=∠CDA=45°,∴∠BEC=∠BEA+∠AED=45°+45°=90°,即BE⊥DE,在Rt△BEC中,由勾股定理可知:BC2=BE2+CE2.∴BC2=CD2+CE2.解法二:如图4,过点A 作AP ⊥DE 于点P .∵△ADE 为等腰直角三角形,AP ⊥DE ,∴AP =EP =DP .∵CD 2=(CP +PD )2=(CP +AP )2=CP 2+2CP •AP +AP 2,CE 2=(EP ﹣CP )2=(AP ﹣CP )2=AP 2﹣2AP •CP +CP 2,∴CD 2+CE 2=2AP 2+2CP 2=2(AP 2+CP 2),∵在Rt △APC 中,由勾股定理可知:AC 2=AP 2+CP 2,∴CD 2+CE 2=2AC 2.∵△ABC 为等腰直角三角形,由勾股定理可知:∴AB 2+AC 2=BC 2,即2AC 2=BC 2,∴CD 2+CE 2=BC 2.【点睛】本题是几何变换综合题,主要考查了全等三角形的判定和性质,勾股定理,等边三角形的判定和性质,等腰直角三角形的判定和性质,解(1)的关键是判断出∠BAE=∠CAD ,解(2)(3)的关键是判断出BE ⊥DE ,是一道中等难度的中考常考题.22.(1)132)83;(3)5.5秒或6秒或6.6秒 【分析】(1)根据点P 、Q 的运动速度求出AP ,再求出BP 和BQ ,用勾股定理求得PQ 即可; (2)由题意得出BQ BP =,即28t t =-,解方程即可;(3)当点Q 在边CA 上运动时,能使BCQ ∆成为等腰三角形的运动时间有三种情况: ①当CQ BQ =时(图1),则C CBQ ∠=∠,可证明A ABQ ∠=∠,则BQ AQ =,则CQ AQ =,从而求得t ;②当CQ BC =时(图2),则12BC CQ +=,易求得t ;③当BC BQ =时(图3),过B 点作BE AC ⊥于点E ,则求出BE ,CE ,即可得出t .【详解】(1)解:(1)224BQ cm =⨯=,8216BP AB AP cm =-=-⨯=,90B ∠=︒, 222246213()PQ BQ BP cm =+=+=; (2)解:根据题意得:BQ BP =,即28t t =-,解得:83t =; 即出发时间为83秒时,PQB ∆是等腰三角形; (3)解:分三种情况:①当CQ BQ =时,如图1所示:则C CBQ ∠=∠,90ABC ∠=︒, 90CBQ ABQ ∴∠+∠=︒,90A C ∠+∠=︒,A ABQ ∴∠=∠BQ AQ ∴=,5CQ AQ ∴==,11BC CQ ∴+=,112 5.5t ∴=÷=秒.②当CQ BC =时,如图2所示:则12BC CQ +=1226t ∴=÷=秒.③当BC BQ =时,如图3所示:过B 点作BE AC ⊥于点E , 则68 4.8()10AB BC BE cm AC ⨯=== 22 3.6CE BC BE cm ∴=-=,27.2CQ CE cm ∴==,13.2BC CQ cm ∴+=,13.22 6.6t ∴=÷=秒.由上可知,当t 为5.5秒或6秒或6.6秒时,BCQ ∆为等腰三角形.【点睛】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.23.(1)2,232)证明见解析(3221(423221【分析】(1)根据含有30°角的直角三角形的性质可得BC=2,再由勾股定理即可求出AC 的长; (2)由ED 为AB 垂直平分线可得DB=DA ,在Rt △BDE 中,由勾股定理可得BD=4,可得BD=2BE ,故∠BDE 为60°,即可证明ABD ∆是等边三角形;(3)由(1)(2)可知,=23AC AD=4,进而可求得CD 的长,再由等积法可得BCD ACD ACBD S S S =+四边形,代入求解即可;(4)分点P 在线段AC 上和AC 的延长线上两种情况,过点E 作AC 的垂线交AC 于点Q ,构造Rt △PQE ,再根据勾股定理即可求解.【详解】(1)∵Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,∴122BC AB ==,∴22=23AC AB BC =- (2)∵ED 为AB 垂直平分线,∴ADB=DA ,在Rt △BDE 中, ∵122BE AE AB ===,23DE = ∴22=4BD BE DE =+,∴BD=2BE ,∴∠BDE 为60°,∴ABD ∆为等边三角形;(3))由(1)(2)可知,=23AC ,AD=4, ∴22=27CD AC AD =+,∵BCD ACD ACBD S SS =+四边形, ∴111()222BC AD AC AC AD BF CD +⨯=⨯+⨯, ∴2217BF =; (4)分点P 在线段AC 上和AC 的延长线上两种情况,如图,过点E 作AC 的垂线交AC 于点Q ,∵AE=2,∠BAC=30°,∴EQ=1, ∵=23AC ,∴=3CQ QA =,①若点P 在线段AC 上, 则23=333PQ CQ CP =-=, ∴22233PE PQ EQ =+; ②若点P 在线段AC 的延长线上, 则253333PQ CQ CP =+=, ∴22221=3PE PQ EQ =+; 综上,PE 的长为33221. 【点睛】 本题考查勾股定理及其应用、含30°的直角三角形的性质等,解题的关键一是能用等积法表示并求出BF 的长,二是对点P 的位置要分情况进行讨论.24.(1)(0,;(2)DF OE =;(3)9+【分析】(1)由等边三角形的性质得出6OB =,12AB AC BC ===,由勾股定理得出OA ==A 的坐标;(2)由等边三角形的性质得出AD AE =,AF AO =,60FAO DAE ∠=∠=︒,证出FAD OAE ∠=∠,由SAS 证明FAD OAE ∆≅∆,即可得出DF OE =;(3)证出90AGO ∠=︒,求出9AG =,由全等三角形的性质得出AOE AFD ∠=∠,证出6090FDO AFD AOD ∠=∠+︒+∠=︒,由等边三角形的性质得12DG OF ==即可得出答案.【详解】解:(1)ABC ∆是等边三角形,点0()6,B -,点(6,0)C ,6OB ∴=,12AB AC BC ===,OA === ∴点A 的坐标为(0,;(2)DF OE =;理由如下:ADE ∆,AFO ∆均为等边三角形,AD AE ∴=,AF AO =,60FAO DAE ∠=∠=︒,FAD OAE ∴∠=∠,在FAD ∆和OAE ∆中,AF AO FAD OAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()FAD OAE SAS ∴∆≅∆,DF OE ∴=;(3)60AOF ∠=︒,30FOB ∴∠=︒,60ABO ∠=︒,90AGO ∴∠=︒,AFO ∆是等边三角形,AO =·sin 6092AG OA ∴=︒==, FAD OAE ∆≅∆,AOE AFD ∴∠=∠,30DOE AOD AOE ∠=︒=∠+∠,30AOD AFD ∴∠+∠=︒,FDO AFD FAO AOD ∠=∠+∠+∠,60603090FDO AFD AOD ∴∠=∠+︒+∠=︒+︒=︒,AG OF ⊥,AOF ∆为等边三角形,G ∴为斜边OF 的中点,1122DG OF ∴==⨯=ADG ∴∆的周长9AG AD DG =++=+【点睛】本题是三角形综合题目,考查了等边三角形的性质、勾股定理、坐标与图形性质、全等三角形的判定与性质、三角函数等知识;本题综合性强,有一定难度,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.25.(1)1(491)2-;1(491)2+;(2)21(1)2n -;21(1)2n +;(3)21m -;21m +;(4)10;26; 12;35;【解析】【分析】(1)依据规律可得,如果勾为7,则股24=1(491)2-, 弦25=1(491)2+; (2)如果勾用n (n≥3,且n 为奇数)表示时,则股=21(1)2n -, 弦=21(1)2n +; (3)根据规律可得,如果a ,b ,c 是符合同样规律的一组勾股数,a=2m (m 表示大于1的整数),则b=m 2-1,c=m 2+1;(4)依据柏拉图公式,若m 2-1=24,则m=5,2m=10,m 2+1=26;若m 2+1=37,则m=6,2m=12,m 2-1=35.【详解】解:(1)依据规律可得,如果勾为7,则股24=1(491)2-, 弦25=1(491)2+; 故答案为:1(491)2-;1(491)2+; (2)如果勾用n (n≥3,且n 为奇数)表示时,则股=21(1)2n -, 弦=21(1)2n +; 故答案为:21(1)2n -;21(1)2n +;(3)根据规律可得,如果a ,b ,c 是符合同样规律的一组勾股数,a=2m (m 表示大于1的整数),则b=m 2-1,c=m 2+1;故答案为:m 2-1,m 2+1;(4)依据柏拉图公式,若m 2-1=24,则m=5,2m=10,m 2+1=26;若m 2+1=37,则m=6,2m=12,m 2-1=35;故答案为:10、26;12、35.【点睛】此题主要考查了勾股数的定义,及勾股定理的逆定理:已知△ABC 的三边满足a 2+b 2=c 2,则△ABC 是直角三角形.26.(1)详见解析;(2)ⅰ)四边形AGBE 是平行四边形,证明详见解析;ⅱ)222133k k k k ++++. 【解析】【分析】(1)只要证明△BAE ≌△ACD ;(2)ⅰ)四边形AGBE 是平行四边形,只要证明BG=AE ,BG ∥AE 即可;ⅱ)求出四边形BGAE 的周长,△ABC 的周长即可;【详解】(1)证明:如图1中,∵△ABC 是等边三角形,∴AB =AC ,∠BAE =∠C =60°,∵AE =CD ,∴△BAE ≌△ACD ,∴∠ABE =∠CAD .(2)ⅰ)如图2中,结论:四边形AGBE 是平行四边形.理由:∵△ADG ,△ABC 都是等边三角形,∴AG =AD ,AB =AC ,∴∠GAD =∠BAC =60°,∴△GAB ≌△DAC ,∴BG =CD ,∠ABG =∠C ,∵CD =AE ,∠C =∠BAE ,∴BG =AE ,∠ABG =∠BAE ,∴BG ∥AE ,∴四边形AGBE 是平行四边形,ⅱ)如图2中,作AH ⊥BC 于H .∵BH =CH =1(1)2k +∴1111(1),1)222DH k k AH k =-+=-==+∴AD ==∴四边形BGAE 的周长=2k +,△ABC 的周长=3(k +1),∴四边形AGBE 与△ABC 的周长比=233k k ++ 【点睛】本题考查全等三角形的判定和性质、平行四边形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.27.(1)AB =2)见解析;(3)CD +CF 的最小值为.【分析】(1)根据勾股定理可求AB 的长;(2)过点D 作DF ⊥AO ,根据等腰三角形的性质可得OF =EF ,根据轴对称的性质等腰直角三角形的性质可得AF =DF ,设OF =EF =x ,AE =4﹣2x ,根据勾股定理用参数x 表示DE ,CE 的长,即可证CE DE ;(3)过点B 作BM ⊥OB ,在BM 上截取BM =AO ,过点C 作CN ⊥BM ,交MB 的延长线于点N ,根据锐角三角函数可得∠ABO =30°,根据轴对称的性质可得AC =AO =4,BO =BC=ABO =∠ABC =30°,∠OAB =∠CAB =60°,根据“SAS ”可证△ACF ≌△BMD ,可得CF =DM ,则当点D 在CM 上时,CF +CD 的值最小,根据直角三角形的性质可求CN ,BN 的长,根据勾股定理可求CM 的长,即可得CF +CD 的最小值.【详解】(1)∵点A (0,4),B (m ,0),且m =8,∴AO =4,BO =8,在Rt △ABO 中,AB =(2)如图,过点D 作DF ⊥AO ,∵DE =DO ,DF ⊥AO ,∴EF =FO ,∵m =4,∴AO =BO =4,∴∠ABO =∠OAB =45°,∵点C ,O 关于直线AB 对称,∴∠CAB =∠CBA =45°,AO =AC =OB =BC =4,∴∠CAO =∠CBO =90°,∵DF ⊥AO ,∠BAO =45°,∴∠DAF =∠ADF =45°,∴AF =DF ,设OF =EF =x ,AE =4﹣2x ,∴AF =DF =4﹣x ,在Rt △DEF 中,DE =()2222242816EF DF x x x x +=+-=-+ 在Rt △ACE 中,CE =()()2222164222816AC AE x x x +=+-=-+ ∴CE =2DE ,(3)如图,过点B 作BM ⊥OB ,在BM 上截取BM =AO ,过点C 作CN ⊥BM ,交MB 的延长线于点N ,∵m =3,∴OB =3∴tan ∠ABO =3343AO BO ==, ∴∠ABO =30°∵点C ,O 关于直线AB 对称,∴AC =AO =4,BO =BC =3,∠ABO =∠ABC =30°,∠OAB =∠CAB =60°, ∴∠CAF =120°,∠CBO =60°∵BM⊥OB,∠ABO=30°,∴∠ABM=120°,∴∠CAF=∠ABM,且DB=AF,BM=AO=AC=4,∴△ACF≌△BMD(SAS)∴CF=DM,∵CF+CD=CD+DM,∴当点D在CM上时,CF+CD的值最小,即CF+CD的最小值为CM的长,∵∠CBO=60°,BM⊥OB,∴∠CBN=30°,且BM⊥OB,BC=∴CN=BNCN=6,∴MN=BM+BN=4+6=10,在Rt△CMN中,CM=,∴CD+CF的最小值为.【点睛】本题是三角形综合题,考查了等腰三角形的性质,勾股定理,轴对称的性质,全等三角形的判定和性质,最短路径问题等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.28.(1)证明见解析;(2)AF=5cm;(3)①有可能是矩形,P点运动的时间是8,Q的速度是0.5cm/s;②t=203.【解析】【分析】(1)证△AEO≌△CFO,推出OE=OF,根据平行四边形和菱形的判定推出即可;(2)设AF=CF=a,根据勾股定理得出关于a的方程,求出即可;(3)①只有当P运动到B点,Q运动到D点时,以A、P、C、Q四点为顶点的四边形有可能是矩形,求出时间t,即可求出答案;②分为三种情况,P在AF上,P在BF上,P在AB 上,根据平行四边形的性质求出即可.【详解】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠AEO=∠CFO,∵AC的垂直平分线EF,∴AO=OC,AC⊥EF,在△AEO和△CFO中∵AEO CFOAOE COF AO OC∠∠⎧⎪∠∠⎨⎪⎩===,∴△AEO≌△CFO(AAS),∴OE=OF,∵OA=OC,∴四边形AECF是平行四边形,∵AC⊥EF,∴平行四边形AECF是菱形;(2)解:设AF=acm,∵四边形AECF是菱形,∴AF=CF=acm,∵BC=8cm,∴BF=(8﹣a)cm,在Rt△ABF中,由勾股定理得:42+(8﹣a)2=a2,a=5,即AF=5cm;(3)解:①在运动过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形,只有当P运动到B点,Q运动到D点时,以A、P、C、Q四点为顶点的四边形有可能是矩形,P点运动的时间是:(5+3)÷1=8,Q的速度是:4÷8=0.5,即Q的速度是0.5cm/s;②分为三种情况:第一、P在AF上,∵P的速度是1cm/s,而Q的速度是0.8cm/s,∴Q只能再CD上,此时当A、P、C、Q四点为顶点的四边形不是平行四边形;第二、当P在BF上时,Q在CD或DE上,只有当Q在DE上时,当A、P、C、Q四点为顶点的四边形才有可能是平行四边形,如图,∵AQ=8﹣(0.8t﹣4),CP=5+(t﹣5),∴8﹣(0.8t﹣4)=5+(t﹣5),t=203,第三情况:当P在AB上时,Q在DE或CE上,此时当A、P、C、Q四点为顶点的四边形不是平行四边形;即t=203.。

相关文档
最新文档