如何选择射频测试仪器
射频常用仪器仪表的基本使用和注意事项
附录1:仪器贵重,请小心操作本篇主要介绍射频常用仪器仪表的基本使用和注意事项,文中仪表实例基于公司现有的通用仪表。
如需要了解更详细的内容及使用方法,请与仪器管理员联系索取仪器使用说明书。
一 、数字万用表:1 、基本功能:数字万用表作为硬件工程师最基本的仪表,可以测试直流 、交流电压 、电流;直流电阻;二极管 、三极管的直流特性。
有些数字万用表还可以测试电容值,但建议射频工程师在测试射频用电容时请选用网络分析仪来测试。
2 、使用方法:以FLUK 数字万用表为例:面板如图所示:A 为液晶显示器,可以显示5位数字。
测试结果直接从液晶显示器读出。
12J 为测试项目选择旋钮。
可以旋转测试直流电压(DC VOLTAGE )、直流电流(DC CURRENT )、交流电压(AC VOLTAGE )、交流电流(AC VOLTAGE )、直流电阻(RESISTER )、二极管、三极管通断特性等......FLUKE 87ABC D E F G H IJK L M NK~N 为4个插孔,M 孔为接地孔(接黑色表笔)。
K ,L ,N 三个孔对应测试项目来分别选择。
(接红表笔)第一孔在测试大于10A 电流时选择使用,第二孔在测试小电流小于400mA 时选择使用。
测试电压和电阻时选择使用N 孔即可。
测试时,根据需要测试的项目通过旋转J 选择测试档,把表笔插在对应的孔位。
使用红黑表笔测试项目对应两端点,就可以从液晶显示器上读出测试结果(包括单位)。
例如:测试一个通路的直流电流大小。
首先计算出大概的电流范围,假设在1~10mA 之间。
旋转J 到直流电流测试档(mA/A —),然后把黑表笔插在M 处(COM ),红表笔插在L 处(mA/uA )。
把红表笔另一端点到测试单元的电流输出端,黑表笔的另一端点到测试单元的电流输入端。
在A 处会显示测试结果XXXmA ,即被测试通路通过的电流值。
3、注意事项:1、使用时一定要把选择旋钮旋转到正确的位置2、一定要把表笔插入对应的孔位二、数字示波器:1、基本功能:数字示波器是一种时域测试、分析仪器,通过测试测试点的电压-时间响应来分析该处信号的正确性。
安捷伦网络分析仪选型指南
射频网络分析的业界标准
ENA 网络分析仪 E5071C
Agilent ENA 为双工器和耦合器 等多端口器件提供快速精确的测量解 决方案。E5071C 在 4.5、6.5、8.5、 14 和 20 GHz 的测量频率范围内最多 可以配置成 4 个内置测量端口。
ENA 中内置了测量平衡器件的 先进功能,用户很容易就可以对用在 手机或其它射频终端设备中的元器 件,例如平衡 SAW 滤波器等进行测 量。使用内置的夹具仿真功能,用户 可以完成匹配电路嵌入、测试夹具去 嵌入和阻抗转换等更复杂一些的测量 工作,ENA 也支持混合模式 S 参数的 测量。
E5061B 适用于测量各种低频器 件,例如直流至直流转换器、无线电 系统和无线接口中使用的射频器件、 传感器电路等,这为用户改善终端产 品的性能和质量提供了保障。当然,它 也非常适用于所有需要对被测器件进 行网络分析测量的实验室和教学机构。
● 内置直流偏置源 (高达 ± 40 Vdc) ● 外形紧凑 (254 毫米长) ● 内置 Visual Basic 应用程序设计语言 (VBA)
ENA的频率偏置测量模式 (FOM) 可以让用户精确地对混频器和变频器 的特性进行表征。
用户可以使用 ENA 在制造过程 中轻松高效地完成测量任务。使用内 置的微软 Visual Basic 应用编程语言 (VBA) 可以快速开发自动化测量程序; ENA的器件拣放机械手接口的数据通 讯速度极快,使它很容易集成到完全 自动化的生产系统中。
4
网络分析仪概览 射频网络分析仪
1.5 GHz/3 GHz
低成本基础射频网络分析的新标准
ENA-L 射频网络分析仪 E5061A、E5062A
Agilent ENA-L 网络分析仪具有 领先的现代技术和应用灵活性,可在 多种行业和应用 (例如无线通信、有线 电视、汽车制造、教育) 中完成基础的 矢量网络分析测量任务。它旨在帮助 用户缩短被测器件的调谐和测量时 间,提高测量效率,让生产线具有更 高的生产能力。
射频指标的测试方法
射频指标的测试方法射频(Radio Frequency,RF)指标的测试方法是评估无线通信设备性能的重要手段之一,包括信号强度、信噪比、频谱带宽、频率误差、相位噪声等指标。
下面将详细介绍射频指标的测试方法。
1.信号强度测试:信号强度是衡量射频通信质量的重要指标之一、测试方法包括测量信号接收功率和发射功率。
接收功率测试可以使用光谱分析仪或功率计等仪器,将设备的天线连接到测试设备,并测量接收到的射频信号的功率。
发射功率测试可以使用功率计、天线分析仪或频谱分析仪等仪器,通过测量设备发射的射频信号功率来评估发射功率。
2.信噪比测试:信噪比是衡量射频通信系统性能的指标之一、测试方法包括测量信号功率和背景噪声功率。
信号功率可以通过功率计或频谱分析仪来测量,背景噪声功率可以通过无信号输入时的频谱或功率测量获得。
然后,计算信噪比等于信号功率减去背景噪声功率。
3.频谱带宽测试:频谱带宽是指射频信号频谱的宽度,用于评估通信信道的有效传输能力。
测试方法包括使用频谱分析仪测量射频信号的频谱,然后通过分析频谱曲线的宽度来确定频谱带宽。
4.频率误差测试:频率误差是指设备实际输出频率与理论频率之间的差值。
测试方法包括使用频谱分析仪或频率计等仪器,将设备的输出信号连接到测试设备,并测量输出信号的频率。
然后,与设备的理论频率进行比较,计算频率误差。
5.相位噪声测试:相位噪声是指射频信号相位的随机变化。
测试方法包括使用相位噪声测试仪或频谱分析仪等仪器,将设备的输出信号连接到测试设备,并测量输出信号的相位噪声。
常用的相位噪声度量单位为分贝/赫兹(dBc/Hz)。
除了上述常见的射频指标测试方法外,还有其他射频指标的测试方法,例如功率谱密度测试、穿透损耗测试、带内波动测试等。
测试方法的选择取决于需要评估的具体指标和设备特性。
在进行射频指标测试时,需要使用适当的测试设备和测试仪器,如频谱分析仪、功率计、天线分析仪等。
同时,测试环境的选择也很重要,应尽量减少外部干扰和背景噪声,以确保测试结果的准确性和可靠性。
射频指标及测试方法
射频指标及测试方法射频指标是指在射频电路设计和测试中用来描述电路性能的参数。
它们包括射频功率、频率、增益、带宽、噪声系数、相位噪声等指标。
下面将介绍几个常见的射频指标及其测试方法。
1.射频功率:射频功率是指射频信号在电路中传输或输出时的功率大小。
常用的射频功率单位有瓦特(W)、分贝毫瓦(dBm)等。
测试射频功率的方法主要有功率计和功率分配器。
-功率计是一种可以测量射频信号功率的仪器。
它通过接收射频信号并测量其功率大小,适用于不同功率级别的测量。
-功率分配器是一种可以将射频信号分配给多个测量点的设备。
它通常包含多个输出端口和一个输入端口,可以将输入信号按照一定的功率比例分配到各个输出端口上,用于同时测量多个信号的功率。
2.频率:频率是指射频信号的振荡频率。
在射频电路设计和测试中,往往需要准确测量射频信号的频率。
常用的测量方法有频谱仪和频率计。
-频谱仪是一种可以将射频信号的频谱显示出来的仪器。
它可以显示出信号的频率分布情况,包括主要的频率成分和谐波成分。
通过观察频谱仪上的显示,可以准确测量射频信号的频率。
-频率计是一种可以直接测量射频信号的频率的仪器。
它可以通过连接到射频电路上,直接读取射频信号的频率值。
3.增益:增益是指射频信号在电路中传输或放大时的信号增强的程度。
在射频电路设计和测试中,测量增益是非常重要的。
常用的测量方法有功率计和射频网络分析仪。
-功率计测量增益的方法是通过测量射频信号的输入功率和输出功率,计算出功率的增益。
-射频网络分析仪是一种可以测量射频电路的传输属性的仪器。
它可以通过测量射频电路的S参数(散射参数),计算出射频信号在电路中的增益。
4.带宽:带宽是指射频信号的频率范围。
在射频电路设计和测试中,测量带宽是评估电路性能的重要指标。
常用的测量方法有频谱仪和网络分析仪。
-频谱仪测量带宽的方法是通过观察频谱仪上的显示,找到射频信号的起始频率和终止频率,计算出频率范围,即为带宽。
-网络分析仪测量带宽的方法是通过测量射频电路的S参数,找到电路的3dB带宽,即为带宽。
GSM规范
CMU200射频综测仪使用规范1.目的:规范综测仪的正确使用, 保证CDMA/GSM手机的射频参数测试的合理性与正确性。
2.参考资料:YDN 055-1997《900/1800MHz TDMA 数字蜂窝移动通信网移动台设备技术规范》EN 300 607-1(GSM 11.10-1)《数字蜂窝无线电通信系统(第2阶段)移动台一致性要求:部分1:CDMA2000数字蜂窝移动通信网设备总测试规范:移动台《R&S CMU200 使用说明书》3.仪器名称: 射频综测仪(型号:CMU200, 双模_GSM & CDMA2000)4.仪器自检和校准:为了能够保证每次的测试数据是准确的,经常需要对综测仪进行校准。
(1)打开综测仪的电源;(2)去掉与综测仪连接的全部射频线;(3)按“Menu Select”键选择“Basic Functions”→“Base”→“Maintenance”进“Maintenance”界面;(4)按“Select”键进行校准项选择,需校准项项目有“RXTX Selftest”和“FM Modulation Calibration”(5)按“Test“键后再按”ON/OFF”键开始校准,校准通过时会显示“Passed”提示。
5.试验操作:5.1开机:(1)接好电源线(在仪器背面电源接口处标识相应的输入电压范围,通常接220V/50Hz电源), 按开机键, 进入待机界面;(2)开机预热30分钟后再准备测试。
(3)恢复仪器的原始设置:按“Reset”键后再按两次“Enter”键;5.2选择测试模块及网络标准:(1)此型号CMU200可以兼容不同制式的测试模块, 目前有GSM900, GSM1800, CDMA2000)。
选择不同制式测试模块(GSM或CDMA),所用选择和确认可用旋钮操作完成:选择为滚动旋钮,确认则按一下旋钮。
(2) GSM测试模块及网络标准选择:在待机界面按“Menu Select”选择“GSM Mobile Station”→“GSM900”或“GSM1800”,按“Enter”,选择GSM测试模块后“Network Standard”缺省为“GSM only”。
射频仪器的操作方法
射频仪器的操作方法
射频仪器具体操作方法取决于不同仪器的型号和功能,一般操作步骤如下:
1.先按照仪器说明书的要求安装好设备,并连接好所有的连接线。
2.开启电源,仪器处于待机状态,然后进行基础设置。
这项设置包括选择仪器需要测量的射频频率范围,增益和谐波消除等。
3.为了准确测量信号,确保各个仪表的校准状态。
对仪器进行校准,通常需要使用专业的校准工具和标准样品来进行。
4.对待测样品和测试电极,进行合适的放置配置设置。
确保样品安装正确,以允许仪器测量出关键参数。
5.启动测量。
仪器根据您所选择的设置参数进行处理,并输出结果到屏幕或者存储介质。
6.对测量结果进行分析。
可以使用计算机连接到仪器,使用专业的软件对测量结果进行分析与处理。
7.经过数次检验和对比分析量测结果,确保数据的准确性。
确认测量数据。
8.结束测试并清理仪器。
将仪器归位并注意仪器的使用与保养。
LTE射频测试仪器操作指南(RS)
中国移动TD-LTE射频测试操作指南(R&S)注:本文测试条目编号与《TD-LTE无线子系统射频测试规范》一致7.1发射机指标测试7.1.1最大输出功率1.配置载波频点,信道带宽20MHz;2.启动发射机工作在E-TM1.1模式以最大功率发射;3.设置仪表外部参考信号和帧触发信号;1)设置仪表中心频率为载波频率,频率跨度(SPAN)设为30MHz2)设置频谱仪为外部参考频率:连接10MHz参考频率至仪器后面板的BNC接口REF IN1…20MHz 点击SETUP键,点击REFERENCE FREQUENCY键,选择REFERENCE EXTERNAL.3)设置外触发信号测量时间门限,用来选择SF5~SF0连续六个子帧:连接外触发信号至仪器后面板的BNC接口EXT GATE/TRIGGER IN,点击硬键TRIG,选择EXTERN,选择GATED TRIGGER,点击GATE SETTING,设置GATE DELAY为5ms,GATE LENGTH为6ms。
4.测试信道带宽内SF5~SF0连续六个子帧的积分功率;1)点击硬键MEAS,点击CHAN PWR ACP,点击CP/ACP STANDARD,在弹出菜单里选择E-UTRA/LTE SQUARE项,点击CP/ACP CONFIG,点击CHANNEL BANDWIDTH,将TX BANDWIDTH改为18.015MHz.2)得到SF5~SF0连续六个子帧的发射功率,可以通过SWEEP---SWEEP TIME MANUAL来增加测量时间以得到更加稳定的测量结果。
5.遍历测试高、中、低三个频点,重复步骤1~4;6.测量限值:在正常测试环境下,测量出的eNB最大输出功率应在制造商给出的eNB额定输出功率的+2dB和–2dB范围内;在极端测试环境下,测量出的eNB最大输出功率应在制造商给出的eNB额定输出功率的+2.5dB和–2.5dB范围内。
警用数字集群(pdt)通信系统射频设备技术要求和测试方法
警用数字集群(pdt)通信系统射频设备技术要求和测试方法1. 引言1.1 背景近年来,数字通信技术迅猛发展,尤其是在警用领域中,警用数字集群通信系统逐渐成为一种重要的通信手段。
该系统能够有效提升警察部门的通信效率和应急响应能力,实现信息的快速传输和共享。
然而,在使用警用数字集群通信系统时,面临着射频设备技术要求和测试方法等方面的挑战。
1.2 研究目的本文旨在对警用数字集群通信系统射频设备技术要求和测试方法进行深入分析,并提出解决方案。
通过对射频设备技术要求的分析,可以确保该系统在不同环境下具有足够的频率覆盖范围、功率输出以及敏感度与抗干扰能力。
同时,探讨适合该系统的测试方法可以保证设备符合相关标准,并提供可靠的数据支持。
1.3 意义与价值警用数字集群通信系统作为公安部门重要工具之一,对于日常执勤、紧急救援和反恐任务等方面都起到了关键作用。
因此,对该系统的射频设备技术要求和测试方法进行研究具有重要意义和价值。
通过合理的技术要求和科学有效的测试方法,可以确保警用数字集群通信系统在各种复杂环境下的可靠性和稳定性,提高公安工作效率,维护社会治安。
以上是文章“1. 引言”部分的内容,针对背景、研究目的以及意义与价值进行了详细描述。
接下来将展开讨论警用数字集群通信系统概述、射频设备技术要求分析、测试方法探讨以及结论与展望等相关内容,以全面阐述警用数字集群通信系统射频设备技术要求和测试方法。
2. 警用数字集群通信系统概述2.1 技术发展历程警用数字集群通信系统是随着现代化社会的发展而逐渐兴起的一种先进通信技术。
在过去,传统的模拟通信系统无法满足警察部门在应急救援、执法行动等方面的需求。
因此,人们开始探索新型的数字集群通信系统来弥补这些不足之处。
首次引入数字集群通信技术的警用系统可以追溯到20世纪80年代末和90年代初。
当时,一些国家开始开发基于数字频率调制(FM)技术的警用通信系统,并相继推出了第一代数字集群通信设备。
手机射频(天线)测试的主要参数与测试方法
在业务信道(TCH)激活PHASE ERROR即可观测到相位误差值。测试时通过综 合测试仪MU200产生比特流进行调制后送给手机,并指令手机处于环回模式。然后 去捕捉手机的一个突发信号,对其进行均匀相位抽样,抽样周期为调制信号周期的 1/2,最后根据抽样的正常突发中的样点计算出相位轨迹和误差。 测试条件
2) 发射功率/时间特性 定义
发射功率时间特性是指发射功率与发射时间之间的关系。由于GSM系统是 一个TDMA的系统,八个用户共用一个频点,手机只在分配给它的时间内打开, 然后必须及时关闭,以免影响相邻时隙的用户。由于这一原因,GSM规范对一 个时隙中的RF突发的幅度包络作了规定,对于的平坦度也作了相应的规定,这 个幅度包络在577us的一个时隙内,其动态范围时隙中间有用信号大于70dB, 而时隙有用部分平坦度应小于±1dB。
TDMA帧,用于在物理信道中体现逻辑信道复用,含26个帧的复帧周期为120ms, 用于业务信道或随路控制信道,含51个帧的复帧周期为235.385ms,用于控制 信道;
超帧:由多个复帧构成超帧,超帧周期为6.12秒,用于控制信道或特种业务; 超高帧:包含2048个超帧,周期为3小时28分53秒760毫秒,用于加密的 话音和数据;以上分类比简单的全帧,子帧分类更明确
频谱仪如何选择合适的带宽 频谱仪如何操作
频谱仪如何选择合适的带宽频谱仪如何操作频谱分析仪是一种应用广泛的信号分析仪器。
它可用来测量信号的频率、电平、波形失真、噪声电平、频谱特性等,加上标准天线还可用来测量场强。
它的紧要特点是:能频谱分析仪是一种应用广泛的信号分析仪器。
它可用来测量信号的频率、电平、波形失真、噪声电平、频谱特性等,加上标准天线还可用来测量场强。
它的紧要特点是:能宽频带连续扫描,并将测得的信号在CRT屏上直观地显示出来。
在整个频段内,电平显示范围大于70dB,在无线电电波测量中可以很便利地看出频谱占用和信号活动情况,所以在很多场合,频谱仪正在替代场强仪成为电波测量中一种新的被广泛应用的仪器。
但必竟二者设计上有差异,因此使用侧重面应有全部同,否则将会带来很大的测量误差。
现代频谱仪多接受微机处理,显示刻度可以自动转换。
在实际测量中要特别注意天线阻抗与测试系统的匹配问题,避开产生失配误差。
由于频谱仪在使用中是进行宽带扫描,所以所用天线要求也都是宽带天线,而宽带天线的VSWR一般都较大,假如与频谱仪联接的不是匹配天线,则要对所用天线的天线系数重新校对。
在实际测量中,输入衰减器不宜放在0dB的位置,假如衰减器置0,输入信号直接接到混频器上,则阻抗特性变差,造成较大的失配误差。
二、防止频谱分析仪过载一般测试接收机的输入端都有带有调谐式高放电路,以抑制带外信号,提高灵敏度。
而频谱分析仪由于其宽带连续快速扫描的特性,输入端一般都直接接到第一混频器上。
当信号电平较高时,混频器工作在非线性变频状态,将产生高阶互调和混频增益压缩,而且过高的电平(一般大于5dBm)将烧坏混频器,故在使用中要合理地选择射频衰减器以确保线性工作状态。
为使混频器进行线性变频,中频放大器进行线性放大,使示波屏上显现的假响应电平缩至最小,这就要求加在混频器上的输入信号功率越小越好;而为了扩大测量电平的动态范围,则要求输入功率越大越好。
为此对输入信号电平的选择有如下三个规定:(1)较佳输入信号电平在频谱仪输入混频器上输入信号时,使所产生的失真电平小于某个规定电平常的输入信号电平叫较佳输入电平。
射频器件的承受功率测试标准
射频器件的承受功率测试标准通常包括以下几个方面:一、功率范围射频器件的承受功率测试通常在特定的频率范围内进行,如2.4GHz或5GHz频段。
根据产品型号和规格的不同,测试功率范围一般在微瓦(μW)到瓦(W)之间。
一般来说,功率测试的范围越宽,对产品的要求也就越高。
二、测试环境要求射频器件的承受功率测试需要在特定的环境条件下进行,如稳定的温度和湿度环境、电磁屏蔽设施等。
为了保证测试结果的准确性和可靠性,实验室测试通常采用恒温恒湿环境控制设备,确保测试环境的稳定性和一致性。
三、测试设备要求射频器件的承受功率测试需要使用专门的测试设备和仪器,如功率计、信号源、接收机等。
这些设备必须经过精确校准和测试,以确保其准确性和可靠性。
此外,为了保证测试结果的准确性,测试人员需要了解并遵守相关设备的操作规程和使用注意事项。
四、测试方法射频器件的承受功率测试方法通常包括辐射功率测试和耦合功率测试两种。
辐射功率是指射频器件向外发射的功率,而耦合功率则是指从外部耦合到射频器件的功率。
根据不同的测试需求和产品类型,测试人员可以选择不同的测试方法进行测试。
一般来说,对于移动设备中的射频器件,通常采用耦合功率测试方法进行测试。
五、误差控制射频器件的承受功率测试结果可能受到多种因素的影响,如测试设备的误差、环境因素的波动等。
因此,为了控制误差,测试人员需要进行多次测试,并取平均值作为最终结果。
此外,对于一些关键指标,如最大承受功率、最小可接收功率等,还需要进行重复性测试和稳定性测试,以确保测试结果的可靠性和稳定性。
总之,射频器件的承受功率测试标准涉及到多个方面,包括功率范围、环境要求、测试设备要求、测试方法以及误差控制等。
为了保证测试结果的准确性和可靠性,测试人员需要了解并遵守相关标准和规范,使用精确的测试设备和仪器,进行多次测试并控制误差。
同时,对于不同的产品类型和测试需求,还需要根据实际情况进行调整和改进,以确保射频器件的性能和可靠性达到预期要求。
射频仪器技术参数
射频仪器技术参数随着科技的进步,射频仪器已经成为现代工业中不可或缺的一部分。
它们用于测量和测试无线电频率,并帮助保持无线电系统稳定性和可靠性。
由于射频仪器完全依靠电子元件来测量无线电频率,因此具有较低的硬件成本和良好的精确度和可靠性。
射频仪器的主要技术参数包括频率,带宽,频率分辨率,调制精度,接收灵敏度,动态范围,噪声等等。
频率是射频仪器对无线电信号进行测量所必须的参数。
一般而言,频率范围与射频仪器的型号有关,从几百兆赫到几十兆赫不等。
在测量同一个信号时,仪器的频率范围越广,它的性能和功能越高。
带宽是射频仪器可以检测的信号范围。
一般而言,带宽由仪器的最大或最小频率决定,常见的带宽为10KHZ至2.4GHZ。
由于信号的频带越宽,相关的仪器就越复杂,价格也会更高。
频率分辨率是指射频仪器在测量或调整频率时可以检测到的最小变化量。
通常,仪器的最小频率分辨率越小,仪器的精度就越高。
而且,频率分辨率也和仪器的价格和类型有关,一般数码式仪器的频率分辨率更高。
调制精度是指射频仪器在调节控制无线电信号频率时可以调节的精度。
较好的调制精度能够提高信号的传播稳定性和可调性,也能够保证信号的传输质量。
接收灵敏度指的是射频仪器对无线电信号的接收能力。
较好的接收灵敏度能够保证仪器能够接收到更弱的信号,从而提高测量精度。
动态范围是指射频仪器的输入信号的能量范围,一般来说,动态范围越大,仪器的测量稳定性就越高,而且也能够改善仪器的信号传输质量。
噪声是指射频仪器在工作过程中产生的多余噪声,一般来说,噪声越小,仪器的测量和控制精度就越高。
实际上,除了上述技术参数外,射频仪器的性能还受到其他参数的影响,这些参数包括信号量控,量控精度,变频器精度,调制方法,夹具设计方式,电子衡等等。
这些参数的性能都直接影响着射频仪器的测量性能和精度,因此在选择和使用射频仪器时必须考虑到以上所有参数。
综上所述,射频仪器的技术参数和性能是影响其功能和精度的重要因素,因此,建议在购买和使用射频仪器时,应当注意了解其各项技术参数,以便更好地发挥它们的功能和作用。
RF设备基本操作(学习资料)
RF设备基本操作整理:张春来前言一、所有仪器自校的目的:检查仪器各项测试功能正常,保证每次测试数据的精准性。
二、所有仪器复位的目的:使仪器恢复到初始化状态,保证仪器正常。
三、所有仪器设置GPIB的目的:使仪器能成功实现远程控制。
四、所有仪器安装软件的目的:适应新的测试需要和排除仪器软件故障。
五、所有RF测试仪器在使用前都必须提前预热30分钟,保证仪器工作时的稳定性。
第一类RF 设备∧nristu(安立)-MT8820频率范围:30M-2.7GHZ适用范围:就目前可支持测试GSM所有频段和WCDMA所有频段。
一、自校(1)Shift + Screen(备注:此功能用来仪器1和2之间的切换)(2)Std----GSM----Next----Next----Band----Clibration/Full Clibration(3)Std----W C DMA----Next----Next----Band----Clibration/Full Clibration二、复位(1)Shift + Screen(备注:此功能用来仪器1和2之间的切换)(2)Std----GSM----Preset----Preset(3)Std----WCDMA----Preset----Preset/Preset(3GP)三、从机器本身安装软件Screen----System Configuration----Standard Load四、GPIB设定Screen----System Configuration----Phone1/2----GPIB五、备注:1.MT8820有A\B\C\D不同版本之分,最主要的区别是A\B是机械式元件,C\D是电子式的元件,机械式的损耗要比电子式的大,测试没有电子式的精度高。
2.如果用在校准位,不要用C\D版本的MT8820,因为A\B的损耗大过C\D版本,如果校准位用C\D的MT8820校出来的NV会比较精确和小,会造成这个NV值在用A\B综测的时候功率偏小达不指标。
常温下GSM手机射频测试规范
1测试条件射频测试应该分别在常温,高温,低温下测试,湿度控制在20~75%之间,电源供电电压应该分别采用高压,常压和低压。
具体测试环境如下:常温:25±2℃高压:4.2V低压:3.6V常压:3.8V2射频指标测试参数选择信道号的选择:对于GSM900:ARFCN低端范围:1到5,通常选择为1ARFCN中端范围:60到65,通常选择62ARFCN高端范围:120到124,通常选择124对于DCS1800:ARFCN低端范围:512~523,通常选择512ARFCN中端范围:690到710,通常选择698或者699ARFCN高端范围:874到885,通常选择为885功率控制等级:目前我们手机功率等级为4,功率控制电平为GSM 5~19,DCS 0~15,研发阶段考虑到测试的完整性,要求对所有的功率控制等级进行测试。
3发射性能测试要求以及测试方法3.1 相位误差和频率误差a.定义发射机的相位误差和频率误差是指实际测量得到的相位频率数据与理论数据的差值。
说明:相位误差的是对手机TX burst进行取样,得到相位轨迹,和理论上的相位轨迹进行比较,从两条轨迹得出的回归线可以用来指示相位误差,而与此回归线的相位的偏差便是测量的相位误差,峰值相位误差是指偏离理想相位最大的值,RMS是所有取样的均方根平均值。
3.2 发射机输出功率以及时间包络3.2.1输出功率测试发射机的输出功率是指在一个突发脉冲的有用信息比特时间上,传递到外接天线或者MS内部天线辐射的功率的平均值。
手机与基站建立通话后,分别在GSM和DCS各四个功率等级上进行测试。
GSM频段测试4个功率等级:5、10、15和19功率等级;DCS频段测试4个功率等级:0、5、10和15功率等级;按照GSM规范,以上功率等级所对应的功率应该符合下面的限制条件:GSM频段:DCS频段:功率等级5:33±2dBm 功率等级0:30±2dBm功率等级10:23±3dBm 功率等级5:20±3dBm功率等级15:13±3dBm 功率等级10:10±3dBm功率等级19:5±5dBm 功率等级15:0±5dBm3.2.2功率时间包络测试手机与基站建立通话后,在正常测试条件下,各功率控制等级下的正常突发脉冲的功率/时间包络应该在下图所示的的模板范围内。
射频测试环境好坏判断
射频测试环境好坏判断常用的射频和微波测试仪器有信号发生器、功率计、频谱分析仪和网络分析仪等。
信号发生器分为连续波信号发生器和矢量信号发生器,视测试需要选择。
信号发生器的主要指标有相位噪声、输出信号的幅度精度、频谱纯度和频率精度等。
功率计分为通过式和终端式两大类.前者可以在线测量大功率VSWR,但是精度却不如终端式功率计,通过式功率计的精度通常为±5%,而终端式功率计则可以达到±1%的精度。
所以通常用终端式功率计来校准信号发生器和频谱分析仪,以提高系统的测试精度。
频谱分析仪的幅度测量精度目前已经可以做到±0.5dB,但即使如此,要准确测量发射机的输出功率还是要由功率计来完成。
频谱分析仪的指标很多,其中一项重要的衡量指标就是显示平均噪声电平(DANL),它决定了频谱分析仪测量微弱信号的能力。
测试环境测试环境也是影响射频和微波测量准确性的因素,这里所说的测试环境是指测试中的电磁兼容性、测试通路的设计和具体的连接操作这几方面。
测试通路的设计要考虑三个问题:从哪里取被测信号?取多大幅度的信号?取样信号的带宽又是多少?以蜂窝基站测试为例,对于运营商而言,他们最关心的是频道内和频带内的指标,所以,在每个发射机的输出口,通常都接有一个定向耦合器,这个耦合器必然是窄带的,成本和测试目标决定了这个取样耦合器的设计性能。
但是这个测试点对于无线电监测站则并不适用,他们所关心的是从9kHz到12.75GHz这么宽的频率范围的传导杂散指标,要做到这一点需要付出不菲的代价。
萏先,必须从主馈线中取出测试信号,因为传导杂散就是从这条通路上辐射出去的;其次,要取出这么宽的信号必须采用宽带的定向耦合器或者宽带的衰减器,同样测试电缆和连接器也必须是宽带的。
最后,要计算取样信号的幅度大小以适应频谱分析仪的要求,如果需要检测微弱信号,还可能要增加滤波器和低噪声放大器来配合完成测试。
测试系统的连接操作决定了被测器件的位置、各器件之间的隔离、接头的连接力矩等因素。
射频各项测试指标
双频段GSM/DCS移动电话射频指标分析2003-7-14[摘要]本文对GSM移动电话的射频指标进行了分析,并讨论了改进办法。
其中一些测试及提高射频指标的方法是从实践经验中总结出来的,有一定的参考价值。
第一部分对各射频指标作了简要介绍。
第二部分介绍了射频指标的测试方法。
第三部分介绍了一些提高射频指标的设计和改进方法。
1 射频(RF)指标的定义和要求1.1 接收灵敏度(Rx sensitivity)(1)定义接收灵敏度是指收信机在满足一定的误码率性能条件下收信机输入端需输入的最小信号电平。
衡量收信机误码性能主要有帧删除率(FER)、残余误比特率(RBER)和误比特率(BER)三个参数。
这里只介绍用残余误比特率(RBER)来测量接收灵敏度。
残余误比特率(RBER)的定义为接收到的错误比特与所有发送的的数据比特之比。
(2)技术要求●对于GSM900MHz频段接收灵敏度要求:当RF输入电平为-102dBm(分贝)时,RBER不超过2%。
测量时可测试实际灵敏度指标。
根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为-l09~-l07dBm,则接收灵敏度为优;若RF输入电平为-l07~l05dBm,则接收灵敏度为良好;若RF输入电平为-105~-l02dBm,则接收灵敏度为一般;若RF输入电平>-l02dBm,则接收灵敏度为不合格。
●对于DCSl800MHz频段接收灵敏度要求:当RF输入电平为-l00dBm,RBER不超过2%。
测量时可测试实际灵敏度指标。
根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为-l08~-105dBm,则接收灵敏度为优;若RF输入电平为-105~ -l03dBm,则接收灵敏度为良好;若RF输入电平为-l03~ -100dBm,则接收灵敏度为一般;若RF输入电平为>-l00 dB mm,则接收灵敏度为不合格。
1.2频率误差Fe、相位误差峰值Pepeak、相位误差有效值PeRMS(1)定义测量发射信号的频率和相位误差是检验发信机调制信号的质量。
射频测试指导
射频测试指导第一章测试条件手机的测试条件包括测试环境条件、测试温度、湿度条件、测试电压及震动测试等内容。
民用设备的测试一般应在正常测试条件下进行,如有特殊要求时,也可在极限条件下进行测试。
鉴于移动站的特殊使用环境,下面将对移动站的测试条件作重点介绍。
1.1 正常测试条件对于移动站来说,正常测试温度和湿度条件应为以下范围的任意组合:温度:15—35℃相对湿度:25—75%正常测试电压应为设备的标称工作电压,其频率(测试电源)应为标称频率±lHz 范围内。
对于用在车载整流铅酸电他上的无线设备,其正常测试电压应为电池标称电压的 1.1 倍。
1.2 极限测试条件对于移动站,极限测试条件应为极限电压部极限温度的任意组。
其中对于手持机来说极限环境温度为-10~+55℃。
对于车载台和便携式移动站来说,其极限测试温度为-20~+55℃。
极限测试电压对于使用交流市电的移动站,为其标称电压的0.9~1.1 倍。
对于采用汞/镍镉电池的移动站,极限测试电压为其标称电压的0.9~1.0 倍。
对于采用整流铅酸电他的移动站来说,极限测试电压为其标称电压的0.9~1.3 倍。
在极限温度下的测试过程:对于高温,当实现温度平衙后,移动站在发射条件下(非DTx)开机1 分钟再在空闲模式(idle mode)(非DTx)下开机4 分钟,Ms 应满足规定的要求。
对于低温,当实现温度平衡后,移动站应在Ms空闲模式(非DTx)下开机1 分钟再进行测试,Ms 应满足规定的要求。
1.3 震动条件在震动条件下测试移动站,应采用随机震动,其震动频率范围和加速度频谱密度(ASD)如下:在频率为5~20Hz范围内,其震动ASD为0.96m2/s3。
在频率为20~500Hz范围内,在20Hz时ASD为0.96m2/s3,其它频率为-3dB/倍频程。
1.4 其它测试条件及规定1.系统模拟器(SS)系统模拟器是一系列测试设备的总称,它是一个功能性工具,能对被测设备提供必要的输入测试信号并能分析被测设备的输出信号以实施GSM 规范中所有的测试、市场上现存的测试仪器可以实现全部或部分系统模拟器的测试功能。
射频仪的使用方法
射频仪的使用方法
射频仪是用于测量电磁场的仪器,使用它可以测量特定电磁场的强度和状态。
射频仪把射频信号变成视觉和声音信号,便于人们观察和记录。
它有助于理解电磁波的性质和行为,在电子设备的制造、维护、安装和维修中发挥着重要作用。
使用射频仪时,应该注意以下几点:
首先,要了解其使用范围,射频仪主要用于测试射频信号,不同型号的仪器适用范围不同,因此需要根据实际应用来选择合适的射频仪。
其次,了解射频仪的操作和控制。
在操作前,应该先明确射频仪使用的参考电平,以及射频仪的调谐范围,然后根据实际应用明确目标信号的频率。
操作时,需要控制信号的调谐、接收和模拟等多个操作参数,使射频仪正常工作,对准目标信号。
再次,要注意射频仪使用范围内的安全限值,尤其是电磁辐射,应该始终小心保护好自己,以免受到电磁辐射的危害。
最后,要了解射频仪的工作原理,如何进行参数设置,如何校准,以及如何保养。
这些知识帮助用户更好地了解射频仪,并使用它们更安全、精确地测量电磁场。
射频仪的使用非常广泛,它们能够在多个行业和领域得到应用,如电子和电信领域,工业和航空航天领域,军事和民用安全领域,科学研究和医学检测领域,智能家居领域等。
因此,人们在使用射频仪时应该注意以上几点,要仔细阅读说明
书,了解其使用范围,操作原理,参数设置,校准及安全限值。
同时,应当根据实际应用,按照正确的步骤操作射频仪,以便及时获取准确的测量结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何选择射频测试仪器
当前,基于射频原理的无线通信产品俯拾即是,其数量的增长速度也非常惊人。
从蜂窝电话和无线PDA,到支持WiFi的笔记本电脑、蓝牙耳机、射频身份标签、无线医疗设备和Zigbee传感器,射频设备的市场规模在飞速扩大。
要想进行全面的生产测试并提高测试产能,测试工程师们必须懂得选用最适合的仪器完成这些测试工作。
那么,如何选择射频测试仪器呢?
一、射频信号源的选择
所有的射频信号源都能产生连续(CW)射频正弦波信号。
某些信号发生器也能够产生模拟调制射频信号(如AM信号或脉冲射频信号),矢量信号发生器采用IQ调制器产生各种模拟或数字调制信号。
射频信号源进一步可以分成很多种,包括固定频率CW正弦波输出源、扫描输出一个频段非固定频率CW正弦波的扫频源、模拟信号发生器以及增加模拟和数字调制功能的矢量信号发生器。
如果测试需要激励信号,那么就需要射频信号源。
射频信号源的关键指标是频率与幅值范围、幅值精度和调制质量(对于产生调制信号的信号源而言)。
频率调谐速度和幅值稳定时间对于减少测试时间也是非常关键的。
矢量信号发生器是一种高性能的信号源,通常结合任意波形发生器一起产生某些调制信号。
通过任意波形发生器可以使矢量信号发生器产生任意类型的模拟或数字调制信号。
这种发生器可以在内部产生多种基带波形,在某些情况下,也可以在外部产生某种基带波形然后载入到仪器中。
如果测试规范要求被测的元件、设备或系统按照待测设备最终使用中的处理调制方式进行测试,那么这种情况下通常需要使用矢量信号发生器。
如果测试规范需要进行接收器灵敏度测试、误码率测试、相邻信道抑制、双音互调抑制、或双音互调失真的测试,那么也需要使用射频信号源。
双音互调测试和相邻信道抑制测试需要两个信号源,接收器灵敏度测试和/或误码率测试只需要使用一个射频信号源。
如果待测器件是用于移动电话的,那么测试者可能要根据移动电话标准的需要进行调制信。